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Abstract. The phenomenon of order reduction for time step integrators has been of inter-
est for many years — e.g., see [1] through [13], (intended as a sample, and not inclusive).
Here we will concentrate on describing the space structure associated with the order reduc-
tion phenomenon for pde initial-boundary-value problems that occurs with many Runge-Kutta
time-stepping schemes. First, we will illustrate the phenomena with some numerical examples.
Second, we will introduce a geometric explanation of the mechanics of the phenomenon: the
approximation error develops boundary layers, induced by a mismatch between the approxi-
mation error in the interior and at the boundaries. Third, we will describe how an analysis of
the modes of the numerical scheme explains under which circumstances the boundary layers
persist over many time steps, leading to order reduction. Fourth, we will provide a new con-
dition on the Butcher tableau, called weak stage order, which can recover the full order and
is compatible with diagonally implicit Runge-Kutta schemes. An example scheme satisfying
the condition will be shown. Note that a second, somewhat less appealing, approach to avoid
order reduction is the use of modified boundary conditions. Finally, we will describe some
fundamental differences between order reduction for pde’s and for stiff ode’s. In particular,
why the reduction orders differ.
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