CONVOLUTION QUADRATURE METHODS FOR TIME-DOMAIN SCATTERING FROM UNBOUNDED PENETRABLE INTERFACES

IGNACIO LABARCA, CARLOS PÉREZ-ARANCIBIA, AND LUIZ FARIA

ABSTRACT. We present a class of boundary integral equation methods for the numerical solution of acoustic and electromagnetic time-domain scattering problems in the presence of unbounded penetrable interfaces in two-spatial dimensions. The proposed methodology relies on Convolution Quadrature (CQ) methods in conjunction with the recently introduced Windowed Green Function (WGF) method. As in standard time-domain scattering from bounded obstacles, a CQ method of the user’s choice is utilized to transform the problem into a finite number of (complex) frequency-domain problems posed on the domains involving penetrable unbounded interfaces. Each one of the frequency-domain transmission problems is then formulated as a second-kind integral equation that is effectively reduced to a bounded interface by means of the WGF method—which introduces errors that decrease super-algebraically fast as the window size increases. The resulting windowed integral equations can then be solved by means of any (accelerated or unaccelerated) off-the-shelf Helmholtz boundary integral equation solver capable of handling complex wavenumbers with large imaginary part. A high-order Nyström method based on Alpert quadrature rules is utilized here. A variety of numerical examples including wave propagation in open waveguides as well as scattering from multiply layered media, demonstrate the capabilities of the proposed approach.

Keywords: time-domain scattering, boundary integral equations, layered media, waveguides.


REFERENCES


Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
E-mail address: ijlabarca@uc.cl

Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
E-mail address: cperez@mat.uc.cl

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
E-mail address: lfaria@mit.edu