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Abstract. In this presentation we consider numerical methods for the quantification of the
stochastic variability of solutions u = u(x, t) of the strongly degenerate parabolic equation

∂tu + ∂xf(u) = ∂2
xA(u), (x, t) ∈ I × (0, T ), T > 0,(1)

defined on the interval I with suitable initial and boundary conditions. The uncertainty arises
from uncertainty in the parameters that define the function a = a(u), where

A(u) =

∫ u

0

a(s) ds, a ∈ L1[0, umax], a(u) ≥ 0 for 0 ≤ u ≤ umax.

Under the assumption of strong degeneracy, the equation (1) arises in a number of applications,
including a model of sedimentation of flocculated suspensions [3]. It is frequently assumed that

a(u)


= 0 for u ≤ uc and u > umax,

> 0 for uc < u < umax,

≥ 0 for u = umax,

where uc ≥ 0 is a given critical value, so that (1) degenerates wherever u ≤ uc.
The hybrid stochastic Galerkin (HSG) method is an intrusive stochastic Galerkin (SG)

discretization method that was successfully applied to several non-linear PDEs [1, 4]. The idea
of intrusive SG discretizations is to transform the underlying PDE, which is assumed to depend
on random parameters, into a deterministic system by means of a Galerkin projection onto
the stochastic space. We present an appropriate numerical scheme, which is based on central
upwind method [6], and apply it to several examples motivated by real-world applications.
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