A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE BIHARMONIC PROBLEM

ALEJANDRA BARRIOS AND MANUEL SOLANO

ABSTRACT. A Hybridizable Discontinuous Galerkin (HDG) method for solving the biharmonic problem $\Delta^2 u = f$ is proposed and analyzed in this work. More precisely, we employ an HDG method based on a system of first-order equations, which we propose to approximate $u, \nabla u$, $\mathcal{H}(u)$ and $\nabla \cdot \mathcal{H}(u)$ simultaneously, where \mathcal{H} correspond to Hessian matrix. This method allows us to eliminate all the interior variables locally to obtain a global system for \hat{u}_h and \hat{q}_h that approximate u and ∇u , respectively, on the interfaces of the triangulation. As a consequence the only globally coupled degrees of freedom are those of the approximations to u and ∇u on the faces of the elements. We also carry out an priori error analysis using the orthogonal L^2 -projector and concluded that the orders of convergence for the errors in the approximation of $\mathcal{H}(u), \nabla \cdot \mathcal{H}(u), \nabla u$ and u are $h^{k+1/2}$, $h^{k-1/2}$, h^k , y h^{k+1} respectively, where $k \geq 1$ is the polynomial degree of the local spaces and h is the meshsize. Our numerical results suggest that our estimate for u is sharp, whereas the approximations of $H(u), \nabla u$ and $\nabla \cdot \mathcal{H}(u)$ converge with an extra half a power of h.

Keywords: Hybridizable Discontinuous Galerkin, Biharmonic, High order

Mathematics Subject Classifications (2010): 65N15, 65N30

References

- E.M. Behrens and J. Guzmn. A mixed method for the biharmonic problem based on a system of first-order equations. SIAM *Journal on Numerical Analysis*, 49, pp. 789817, 2011.
- [2] B. Cockburn, J. Gopalakrishman and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM *Journal on Numerical Analysis*, 47, pp. 1319-1365, 2009.
- [3] B. Cockburn, B. Dong and J. Guzmán. A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput., 40, pp. 141-187, 2009.

 $\rm CI^2MA$ and Department of Mathematical Engineering, Universidad de Concepción, Concepción, Chile.

E-mail address: alebarrios@udec.cl

CI²MA AND DEPARTMENT OF MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN, CONCEPCIÓN, CHILE.

E-mail address: msolano@ing-mat.udec.cl