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Abstract. When using the method of lines for the approximate solution of nonlinear, possibly
strongly degenerate, convection-diffusion partial differential equations, Implicit-Explicit (IMEX)
[11] Runge-Kutta (RK) methods, that combine an explicit RK scheme for the time integration of
the convective part with a diagonally implicit one for the diffusive part, are suitable for, at least,
the following reasons:

(1) The stability restrictions, coming from the explicitly treated convective part, are much less
severe than those that would be deduced from an explicit treatment of the diffusive term.

(2) Since the convective terms may be dominant in some spatio-temporal regions, care must be
taken for its appropriate high-order upwind approximation. This entails a fairly sophisti-
cated discretization, whose implicit treatment would be highly intricate and could lead to
badly behaved nonlinear systems.

In [8] a scheme of this type is proposed, where the nonlinear and nonsmooth systems of
algebraic equations arising in the implicit treatment of the degenerate diffusive part are solved by
smoothing of the diffusion coefficients combined with a damped Newton-Raphson method with
a line search strategy for globalizing convergence.

This nonlinearly implicit method is robust but associated with considerable effort of imple-
mentation and possibly CPU time. To overcome these burdens while keeping the advantageous
stability properties of IMEX-RK methods, a second variant of these methods is proposed in [2], in
which the diffusion terms are discretized in a way that more carefully distinguishes between stiff
and nonstiff dependence, such that in each time step only a linear system needs to be solved, still
maintaining high order accuracy in time, which makes these methods much simpler to implement.

These Linearly Implicit-Explicit Runge-Kutta (LIMEX-RK) schemes, based on partitioned
Runge-Kutta methods, may be advantageous in some cases, but are not advisable in those cases
where special structure of the diffusive terms would be lost. This is the case of some nonlinear
convection-diffusion equations with nonlocal flux and possibly degenerate diffusion that arise in
various contexts including interacting gases, granular flows, flow in porous media and collective
behavior in biology [13, 14].

The work in [4] is concerned with numerical methods for a nonlinear nonlocal equation with
a gradient flow structure, whose numerical solution by an explicit finite difference method is
costly due to the necessity of discretizing a local spatial convolution for each evaluation of the
convective numerical flux, and due to the disadvantageous Courant-Friedrichs-Lewy (CFL) con-
dition incurred by the diffusion term. Based on explicit schemes for such models devised in [9] a
second-order implicit-explicit Runge-Kutta (IMEX-RK) method can be formulated.

The first-order version of this method is proven to yield uniquely solvable nonlinear systems of
equations that maintain the positivity of the solution (which typically are probability distribution
functions or densities). This result would not be obtained for LIMEX-RK methods, since the
special structure of the diffusion term (a Laplacian of a nonlinear function) plays a key role in
the proof for the existence and uniqueness of a solution.

In this talk a survey of these techniques will be given, some recent successful applications of
them [3, 6, 7] will be reported and some future applications, as multispecies nonlinear nonlo-
cal equations [10] with cross-diffusion or Navier-Stokes-Cahn-Hilliard equations [12, 1], will be
presented.
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Mari Carmen Mart́ı (U. València), Rafael Ordóñez (U. Concepción), Giovanni Russo (U. Catania)
and Luis Miguel Villada (U. Bio Bio).

Keywords: Implicit-Explicit Runge-Kutta methods, degenerate diffusion, polydisperse sedimen-
tation, models for collective behavior, Navier-Stokes-Cahn-Hilliard equations.

Mathematics Subject Classifications (2010): 65M06 (35K57 35K59 35L65 76M20)

1



2

References

[1] H. Abels, E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana
Univ. Math. J., 57 (2), 659-698, 2008.

[2] S. Boscarino, R. Bürger, P. Mulet, G. Russo, L. M. Villada, Linearly implicit IMEX Runge-Kutta methods for
a class of degenerate convection-diffusion problems, SIAM J. Sci. Comput., 37(2), B305–B331, 2015.

[3] R. Bürger, S. Diehl, M. C. Mart́ı, P. Mulet, I. Nopens, E. Torfs, P. A. Vanrollegheme, Numerical solution of a
multi-class model for batch settling in water resource recovery facilities, Applied Mathematical Modelling, 49,
415–436, 2017.

[4] R. Bürger, D. Inzunza, P. Mulet, Implicit-explicit schemes for nonlinear nonlocal equations with a gradient
flow structure in one space dimension, to appear in Numerical Methods in PDE, 2018.

[5] R. Bürger, G. Chowell-Puente, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal
gender-structured model for hantavirus infection in rodents, Mathematical Biosciences and Engineering, 15 (1),
95-123, 2018.

[6] R. Bürger, G. Chowell-Puente, E. Gavilán, P. Mulet,
[7] L. M. Villada, Numerical solution of a spatio-temporal predator-prey model with infected prey, to appear in

Mathematical Biosciences and Engineering, 2018.
[8] R. Bürger, P. Mulet, L. M. Villada, Regularized nonlinear solvers for imex methods applied to diffusively

corrected multispecies kinematic flow models, SIAM J. Sci. Comp., 35(3), B751-B777, 2013.
[9] J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient

flow structure, Commun. Comput. Phys. vol. 17 (2015) pp. 233–258.
[10] J. A. Carrillo, Y. Huang, M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species, SIAM

J. Appl. Math. 78(2), 1078-1104, 2018.
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