ON ALL-REGIME LAGRANGE-REMAP NUMERICAL SCHEMES FOR COMPRESSIBLE FLUIDS SYSTEMS

C. CHALONS, M. GIRARDIN, AND S. KOKH

ABSTRACT. It is the purpose of this contribution to provide an overview on recent advances in the development of all-regime Lagrange-Remap numerical schemes for compressible fluids systems with source terms. We will consider in particular the case of large friction coefficients and the case of low-Mach numbers. More precisely, we will present a discretization strategy for gas dynamics equations for unstructured grids based on a Lagrange-Remap approach that does not involve any moving mesh. A natural semi-implicit extension of the method that allows to remain stable under a CFL condition involving only the material velocity will be given, together with an extremely simple modification that allows to provide an accurate and stable solver for simulations involving low-Mach regions in the flow. The stability properties of the proposed schemes and several numerical experiments will be presented.

This contribution is based on a series of joint works [1], [2], [3], [4] with Mathieu Girardin and Samuel Kokh. These works were performed during M. Girardin's PhD thesis.

Keywords: gas dynamics equations, large friction regime, low-Mach regime, finite volume schemes, lagrange-remap decomposition, all-regime and asymptotic-preserving schemes

References

- Chalons C., Girardin M., Kokh S., Large time-step and asymptotic-preserving numerical schemes for the gas dynamics equations with source terms, SIAM J. Sci. Comput. 35-6, pp. A2874-A2902 (2013)
- [2] Chalons C., Girardin M., Kokh S., Operator-splitting based AP schemes for the 1D and 2D gas dynamics equations with stiff sources, AIMS Series on Applied Mathematics, vol 8, pp. 607614 (2014)
- [3] Chalons C., Girardin M., Kokh S., An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes (submitted, 2015)
- [4] Chalons C., Girardin M., Kokh S., An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes (submitted, 2015)

LABORATOIRE DE MATHÉMATIQUES DE VERSAILLES, UNIVERSITÉ DE VERSAILLES SAINT-QUENTIN E-mail address: christophe.chalons@uvsq.fr

CENTRE DE MATHÉMATIQUES APPLIQUÉES, ECOLE POLYTECHNIQUE *E-mail address*: mathieu.girardin@polytechnique.edu

Maison de la Simulation et CEA-Saclay (Commissariat à l'Energie Atomique) E-mail address: samuel.kokh@cea.fr