A SCHEME WITH DISCONTINUOUS AND CONFORMING SPACES FOR THE WAVE EQUATION

JAY GOPALAKRISHNAN, PETER MONK, AND PAULINA SEPÚLVEDA

ABSTRACT. Using the classical work of Friedrichs, certain boundary value problems can be posed on Hilbert spaces normed with a graph norm. Functions in such spaces arising from advective problems are found to have a weak continuity property on tent-shaped domains, where inflow and outflow boundary meet. In this setting, we present a locally implicit space-time finite element method for solving advective problems on tent-shaped domains, with spaces that conform to the continuity property. The scheme uses tent pitched meshes that form an advancing space-time front. As a model example, we consider a one-dimensional wave propagation problem, the conditions needed to have a well posed formulation, and some numerical results.

Keywords: hyperbolic, wave equation, inflow, trace, space-time element, weak formulation, boundary operator.

Mathematics Subject Classifications (2010): code 35L50, 65M60

References

- J. Gopalakrishnan, P. Monk and P. Sepúlveda. A tent pitching scheme motivated by Friedrichs theory. Computers and Mathematics with Applications, 70(5):1114-1135, 2015.
- [2] T. Bui-Thanh, L. Demkowicz, and O. Ghattas. A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs' systems. SIAM Journal on Numerical Analysis, 51(4):1933-1958, 2013.
- [3] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM Journal on Numerical Analysis, 44(2):753-778, 2006.
- [4] K. O. Friedrichs. Symmetric positive linear differential equations. Communications on Pure and Applied Mathematics, 11:333-418, 1958.
- [5] M. Jensen. Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. PhD thesis, University of Oxford, 2004.
- [6] A. Üngör and A. Sheffer. Pitching tents in space-time: mesh generation for discontinuous Galerkin method. Internat. J. Found. Comput. Sci., 13(2):201-221, 2002.

PO BOX 751, PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207-0751. E-mail address: gjay@pdx.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELAWARE, NEWARK, DE. *E-mail address:* monk@udel.edu

PO BOX 751, PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207-0751. *E-mail address:* spaulina@pdx.edu