A COMPACT-STENCIL SCHEME OF ORDER $\frac{3}{2}$ ON POLYHEDRAL MESHES FOR ADVECTION-REACTION EQUATIONS

P. CANTIN, E. BURMAN, AND A. ERN

Abstract. Motivated by the recent CDO (compatible discrete operator) framework, see [1, 2], our goal is to develop and analyze numerical schemes that support general meshes with polyhedral cells and nonmatching interfaces. Recently, a CDO scheme of order $\frac{1}{2}$ with degrees of freedom attached to polyhedral mesh vertices has been proposed for the scalar advection-reaction and advection-diffusion problems on general meshes, see [3]. In the present work, we focus on the advection-reaction equation, and we devise and analyze a new scheme of order $\frac{3}{2}$. The key idea is to consider degrees of freedom attached to mesh vertices and to cell centers (as for VAG schemes [4]). Then, taking inspiration from the recent analyze of finite element methods stabilized by local continuous interior penalty [5], the present scheme is stabilized by penalizing the gradient jump on some internal faces inside each mesh cell. Well-posedness of the scheme follows from an inf-sup stability condition, and error estimates of order $\frac{3}{2}$ are inferred for smooth solutions by bounding the consistency error. Numerical results are presented on three-dimensional polyhedral meshes [6], and the benefit (or not) of static condensation to eliminate degrees of freedom attached to cells is discussed.

Keywords: Polyhedral meshes, advection-reaction, stabilization, static condensation.

Mathematics Subject Classifications (2010): 65N15, 65N30, 65Zxx

References

Université Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée Cedex 2, France
E-mail address: pircantin@gmail.com

Dept. of Math., University College London, Gower Street, London, United Kingdom.
E-mail address: e.burman@ucl.ac.uk

Université Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée Cedex 2, France
E-mail address: ern@cermics.enpc.fr