FINITE DIFFERENCE WENO SCHEMES FOR MULTI-DIMENSIONAL MULTIPHASE FLOWS IN POROUS MEDIA

R. BÜRGER, F. GUERRERO, M.C. MARTÍ, AND P. MULET

Abstract. Mathematical models for multiphase flow processes in porous media under vertical equilibrium have been used since the end of XIX century in many different physical situations as water filtration [5], enhanced oil recovery [1], etc.

It is the primary purpose of this contribution to introduce the use of finite difference WENO schemes to multiphase flow problems in porous medium for multi-dimensional problems, following the work developed by Donat et al. in [2, 3, 4], where a progressive evolution towards the application of WENO schemes to one-dimensional multiphase porous media flow processes is performed.

In the one-dimensional setting the expression of the gradient of the pressure appearing in the constitutive mathematical model equations can be explicitly derived from the equations (see [3]), but that is not possible in a multi-dimensional frame, which encourages us to develop some new methodology to apply finite difference conservative WENO schemes to a multi-dimensional version of this problem. The key idea behind the proposed numerical technique is to define a compatible discretization for the fluxes of the convective term in order to maintain their divergence-free character not only in the continuous setting but also in the discrete setting, assuring the conservation of the sum of the saturations through time evolution.

Keywords: Finite difference WENO schemes, Porous media, Multiphase flow, Vertical equilibrium

Mathematics Subject Classifications (2010): 35L65, 65M06, 76S05.

References