STABLE PERFECTLY MATCHED LAYERS FOR COLD PLASMAS IN STRONG MAGNETIC FIELDS

ÉLIANE BÉCACHE, PATRICK JOLY, AND MARYNA KACHANOVSKA

ABSTRACT. We consider the problem of wave propagation in cold magnetized plasmas in unbounded domains. We concentrate on a simplified cold plasma model, which in the frequency domain reads

(1)
$$\operatorname{curl}\operatorname{curl}\mathbf{E} - \frac{\omega^2}{c^2}\epsilon(\omega)\mathbf{E} = 0, \ \epsilon(\omega) = \operatorname{diag}\left(1, \ 1, \ 1 - \frac{\omega_p^2}{\omega^2}\right), \ \omega_p > 0.$$

To bound the computational domain, we suggest using the perfectly matched layer (PML) technique. It is well-known [1, 2] that the Bérenger's PMLs can exhibit instabilities in anisotropic and/or dispersive media, due to the presence of backward propagating modes [2]. This work deals with the construction of stable PMLs for the model (1).

First we consider a simplified 2D case (x = const, TE mode). The Bérenger's PML in the direction z is stable. In the direction y all the waves propagate backwards for $\omega < \omega_p$ and forward otherwise. Therefore, in this case we suggest to use an improved PML proposed in [1], which is particularly well-suited for problems that have for a fixed frequency only forward or only backward propagating modes.

In 3D, the situation is different. While in the direction z the Bérenger's PML is still stable, and in the directions x, y, for $\omega > \omega_p$ there are only forward propagating modes, for $\omega < \omega_p$ there exist simultaneously forward and backward propagating waves. Therefore, the method of [1] is no longer directly applicable. To cope with this difficulty, we suggest to make use of a structure of the dispersion relation in three dimensions. More precisely, it can be represented as a product of two dispersion relations. The first one, $F_{\omega}(\omega, \mathbf{k})$, is the dispersion relation for the isotropic non-dispersive Maxwell equations. The second one, $F_{2D}(\omega, \mathbf{k})$, resembles the dispersion relation for the two-dimensional TM system (1). Therefore, it is possible to perform the splitting of (1) into two systems, one with the dispersion relation $F_{\omega}(\omega, \mathbf{k})$, and thus having only forward propagating modes, and another one with the dispersion relation $F_{2D}(\omega, \mathbf{k})$, and thus behaving like the two-dimensional case of (1). This allows to use the Bérenger's PML for the first system, and the 2D-cold-plasma-like PML for the second one. The stability of new PMLs is demonstrated with the help of theoretical and numerical arguments.

Keywords: perfectly matched layers, cold plasma, Maxwell equations

Mathematics Subject Classifications (2010): 65M12, 65Z05

References

- [1] É. Bécache, P. Joly, and V. Vinoles. On the analysis of perfectly matched layers for a class of dispersive media. Application to negative index meta-materials. In preparation.
- [2] É. Bécache, S. Fauqueux, and P. Joly. Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys., 188(2):399-433, 2003.

POEMS (ENSTA PARISTECH, INRIA, CNRS), 828, BOULEVARD DES MARÉCHAUX, 91120 PALAISEAU, FRANCE

E-mail address: eliane.becache@inria.fr

POEMS (ENSTA PARISTECH, INRIA, CNRS), PALAISEAU, FRANCE *E-mail address:* patrick.joly@inria.fr

POEMS (ENSTA PARISTECH, INRIA, CNRS), PALAISEAU, FRANCE *E-mail address:* maryna.kachanovska@ensta.fr