BEM/FEM COUPLING FOR TRANSIENT ACOUSTIC SCATTERING BY PIEZOELECTRIC OBSTACLES

TONATIUH SANCHEZ-VIZUET AND FRANCISCO-JAVIER SAYAS

ABSTRACT. We consider the interaction of an incident acoustic wave v^{inc} propagating in the unbounded region $\Omega_+ \subset \mathbb{R}^d$ and a piezoelectric solid contained in the bounded region $\Omega_- := \overline{\Omega}_+^c$. The scattered component of the acoustic wave v, the elastic displacement vector \mathbf{u} , and the electric potential ψ satisfy the system of PDE's

(1a) $\Delta v = c^{-2} v_{tt} \qquad \text{in } \Omega_+ \times [0, \infty),$

(1b)
$$\nabla \cdot \boldsymbol{\sigma} = \rho_{\Sigma} \mathbf{u}_{tt}$$
 in $\Omega_{-} \times [0, \infty)$,

(1c)
$$\nabla \cdot \mathbf{D} = 0$$
 in $\Omega_{-} \times [0, \infty)$,

(1d)
$$(\mathbf{u} \cdot \boldsymbol{\nu})_t + \partial_{\boldsymbol{\nu}} v = -\partial_{\boldsymbol{\nu}} v^{inc}$$
 on $\Gamma \times [0, \infty)$,

(1e)
$$\boldsymbol{\sigma}\,\boldsymbol{\nu} + \rho_f v_t \boldsymbol{\nu} = -\rho_f (v^{inc})_t \boldsymbol{\nu} \qquad \text{on } \Gamma \times [0,\infty),$$

(1f)
$$\mathbf{D} \cdot \boldsymbol{\nu} = \eta_d$$
 on $\Gamma_N \times [0,$

(1g)
$$\psi = \mu_d$$
 on $\Gamma_D \times [0, \infty)$,

where $\Gamma := \partial \Omega_{-}$ and v, v_t, \mathbf{u} , and \mathbf{u}_t satisfy homogeneous initial conditions. The stress tensor $\boldsymbol{\sigma}$ and the electric displacement vector \mathbf{D} satisfy the constitutive relations

 ∞),

$$\boldsymbol{\sigma} := \mathbf{C} \boldsymbol{\varepsilon}(\mathbf{u}) + \mathbf{e} \nabla \psi, \qquad \mathbf{D} := \mathbf{e}^{\top} \boldsymbol{\varepsilon}(\mathbf{u}) - \boldsymbol{\epsilon} \nabla \psi,$$

where **C** is the elastic compliance tensor, $\boldsymbol{\varepsilon}$ is the elastic strain tensor, **e** is the piezoelectric tensor, and $\boldsymbol{\epsilon}$ is the dielectric tensor. The problem is transferred into the Laplace domain and transformed into an integro-differential system. For this system, a Galerkin space discretization suitable for BEM/FEM treatment is proposed. Well posedness for the continuous and semi-discrete systems is shown simultaneously and stability bounds in terms of the Laplace parameter S are found. Full discretization is achieved using BDF2-based Convolution Quadrature for the BIE's and BDF2 time-stepping for the elastic and electric unknowns. Using the Laplace-domain stability estimates, we provide time-domian bounds with explicit time dependence and show that, for smooth enough problem data, optimal second-order convergence is achieved. Numerical experiments are given for BDF2 and Trapezoidal Rule based CQ.

Keywords: Time-Domain Boundary Integral Equations, Convolution Quadrature, Scattering, Coupling BEM/FEM, Piezoelectricity.

Mathematics Subject Classifications (2010): 65R20, 65M38, 74J20, 74F10.

References

- [1] T. Sánchez-Vizuet, and F.-J. Sayas. Symmetric BEM/FEM coupling for time domain acoustic scattering by linearly elastic obstacles with piezoelectric behavior. Submitted, 2015.
- [2] G. Hsiao, T. Sánchez-Vizuet, and F.-J. Sayas. Boundary and coupled boundary-finite element methods for transient wave-structure interaction. Submitted, 2015.
- [3] A. Laliena, and F.-J. Sayas Theoretical aspects of the application of Convolution Quadrature to scattering of acoustic waves *Numerische Mathematik* Vol. 112: 637–678, 2009.

UNIVERSITY OF DELAWARE. DEPARTMENT OF MATHEMATICAL SCIENCES. *E-mail address*: tonatiuh@udel.edu

UNIVERSITY OF DELAWARE. DEPARTMENT OF MATHEMATICAL SCIENCES. *E-mail address:* fjsayas@udel.edu