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Abstract. In this work we propose a numerical strategy to solve a family of partial differential
equations arising from the water-wave theory. These problems may contain four terms; a source
which is an algebraic function of the solution, a convective part involving first order spatial
derivatives of the solution, a diffusive part involving second order spatial derivatives and the
transient part. Unlike partial differential equations of hyperbolic or parabolic type, where
transient part is the time derivative of the solution, here transient part can contain mixed
time and space derivatives. Examples of these type of partial differential equations are Saint-
Venant equations and Bussinesq-Peregrine equations [1, 4].

In [8], authors proposed a globally implicit strategy to solve the Richard equation. In that
case, transient terms consisted of algebraic equations of the solution. So motivated by this
work, we propose a one-step finite volume method to deal with problems in which transient
terms are differential operators. Here, a locally implicit formulation is investigated, which is
based on the ADER philosophy first put forward by Toro et al. [6, 7]. The scheme is divided in
three steps: i) a polynomial reconstruction of the data; ii) solutions to Generalized Riemann
Problems (GRP); iii) the solution of differential problems. Note that steps i) and ii), are those
of conventional ADER schemes, see [5, 2, 3]. Advantages of the present approach include the
possibility to construct high-order approximations in both space and time, the differential
problem can be non-linear and numerical strategies can be adopted to solve it, for which
existing methodologies for hyperbolic problems can be applied. Convergence of the scheme is
proved analytically and an empirical convergence rates assessment is carried out in order to
illustrate the high space and time accuracy of the present scheme.
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