OPTIMAL ADDITIVE SCHWARZ PRECONDITIONING FOR THE
hp-BEM: THE HYPERSINGULAR INTEGRAL OPERATOR IN 3D

T. FÜHRER, J.M. MELENK, D. PRAETORIUS, AND A. RIEDER

Abstract. We consider the discretization of the hypersingular integral operator by the hp-version of the Galerkin boundary element method (hp-BEM) in \mathbb{R}^3 and propose a preconditioner based on the overlapping additive Schwarz framework. The preconditioner is based on a space decomposition into the space of piecewise linears and spaces of high order polynomials supported by the vertex patches. This decomposition results in uniformly bounded (w.r.t. mesh size h and polynomial degree p) condition number for the preconditioned system. It is possible to further decompose the space of piecewise linears in a multilevel fashion and retain the uniformly bounded condition number. The preconditioner is suitable for locally refined meshes but assumes shape regularity of the mesh. For a mesh with N elements, the preconditioner can be applied in $O(Np^4)$ operations; the setup of the preconditioner takes $O(N + p^6)$ operations.

Keywords: hp-BEM, hypersingular integral equation, additive Schwarz preconditioning

Mathematics Subject Classifications (2010): 65N38, 65F08

References

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE
E-mail address: tofuhrer@mat.puc.cl

TU WIEN
E-mail address: melenk@tuwien.ac.at

TU WIEN
E-mail address: dirk.praetorius@tuwien.ac.at

TU WIEN
E-mail address: alexander.rieder@tuwien.ac.at