OPTIMAL ADDITIVE SCHWARZ PRECONDITIONING FOR THE *hp*-BEM: THE HYPERSINGULAR INTEGRAL OPERATOR IN 3D

T. FÜHRER, J.M. MELENK, D. PRAETORIUS, AND A. RIEDER

ABSTRACT. We consider the discretization of the hypersingular integral operator by the hp-version of the Galerkin boundary element method (hp-BEM) in \mathbb{R}^3 and propose a preconditioner based on the overlapping additive Schwarz framework. The preconditioner is based on a space decomposition into the space of piecewise linears and spaces of high order polynomials supported by the vertex patches. This decomposition results in uniformly bounded (w.r.t. mesh size h and polynomial degree p) condition number for the preconditioned system. It is possible to further decompose the space of piecewise linears in a multilevel fashion and retain the uniformly bounded condition number. The preconditioner is suitable for locally refined meshes but assumes shape regularity of the mesh. For a mesh with N elements, the preconditioner takes $O(N + p^6)$ operations.

Keywords: hp-BEM, hypersingular integral equation, additive Schwarz preconditioning

Mathematics Subject Classifications (2010): 65N38, 65F08, files after the lastname of the first author, that is lastname.tex, and send both the .tex and .pdf files.

References

 T. Führer, J. M. Melenk, D. Praetorius, and A. Rieder. Optimal additive Schwarz methods for the hp-BEM: The hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl., 70(7):1583–1605, 2015.

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE *E-mail address:* tofuhrer@mat.puc.cl

TU WIEN E-mail address: melenk@tuwien.ac.at

TU WIEN

 $E\text{-}mail\ address: \texttt{dirk.praetorius@tuwien.ac.at}$

TU WIEN E-mail address: alexander.rieder@tuwien.ac.at