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Abstract. Exact solutions of some ordinary differential systems have qualitative properties,
e.g., monotonicity, positivity, etc., which are relevant in the context of the problem. In these
cases, it is convenient to preserve them numerically. For Runge-Kutta (RK) methods, the
above qualitative properties can be ensured under stepsize restrictions given in terms of the
radius of absolute monotonicity, also known as SSP or Kraaijevanger’s coefficient.

However, some well known RK methods have a trivial SSP coefficient and, therefore, mono-
tonicity cannot be ensured. For one of these methods, in [6] a second spatial discretization
of the PDE is used wherever a negative coefficient appears in the time integration method;
this process can be interpreted as a perturbation of the original RK method [2]. During the
last years, several authors have studied perturbed RK methods (also known as downwind RK
methods) to find high order schemes with optimal SSP coefficients (see, e.g., [5]).

But monotonicity preservation is not the only numerical property of interest in applications,
and one may wish to use a particular method that has small or zero SSP coefficient. In this
case, we can use a perturbation of the scheme that ensures a larger monotonicity–preserving
time step.

In this talk we show some results on optimal monotonicity–preserving perturbations of a
given explicit RK method. The presentation is based on the paper [5].

This framework can also be used to explain the qualitative correct solutions obtained in the
context of positivity when some problems are integrated with explicit RK schemes that have
trivial SSP coefficients (or IMEX RK methods that have trivial regions of absolute monotonic-
ity) [1, 3].
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