VALPARAISO NUMERICO IV

Séptimo Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Diciembre 11–13, 2013

Numerical simulation of thermally convective viscoplastic fluids by semismooth second order type methods^{*}

Juan Carlos De los Reyes[†] <u>Sergio González-Andrade</u>[‡]

Abstract

This talk is focused on the numerical solution of thermally convective viscoplastic fluids with yield stress. Following [4], a Bousinessq approximation of the convection effect is considered. The resulting coupled model is then regularized by means of a local regularization technique (see [2, 1]). We discuss a discretization in space by using a finite difference approach based on MAC scheme on staggered grids (see [3]). After space discretization, a second order BDF method is used for the time discretization of the regularized problem, leading, in each time iteration, to a nonsmooth system of equations, which is amenable to be solved by generalized Newton methods (see [2]). A semismooth Newton algorithm with a modified Jacobian is constructed for the solution of the discrete systems. Finally, we present a detailed computational experiment that exhibits the main properties of the numerical approach.

Key words: Thermal convection, viscoplastic fluids, yield stress, BDF methods, Semismooth Newton methods.

Mathematics subject classifications (1991): 65N30, 65N12, 65N15, 74F10, 74B05, 35J05

References

- [1] BEVERLY C.R., TANNER R.I., Numerical analysis of three-dimensional Bingham plastic flow, Journal of non-newtonian fluid mechanics, (1992), 42, pp. 85–115.
- [2] DE LOS REYES, J.C. AND GONZÁLEZ ANDRADE, S., A combined BDF-semismooth Newton approach for time-dependent Bingham flow, Numerical Methods for Partial Differential Equations, (2012) 28, pp. 834-860.

^{*}This research was partially supported by Proyecto Semilla PIS 12-17 EPN "Convección Natural en Fluidos Viscoplásticos: Modelización Matemática y Simulación Numérica".

[†]ModeMat: Centro de Modelización Matemática, Escuela Politécnica Nacional, Quito, Ecuador, e-mail: juan.delosreyes@epn.edu.ec

[‡]ModeMat: Centro de Modelización Matemática, Escuela Politécnica Nacional, Quito, Ecuador, e-mail: sergio.gonzalez@epn.edu.ec

- [3] MURAVLEVA, E.A. AND OLSHANSKII, M.A., Two finite-difference schemes for calculation of Bingham fluid flows in a cavity, Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 23(6), pp. 615–634, 2009.
- [4] ZHANG, J AND VOLA, D. AND FRIGAARD, I., Yield stress effects on Rayleigh-Bérnard convection, J. Fluid Mech., 566 (2006), pp. 389–419.