VALPARAISO NUMERICO IV

Séptimo Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Diciembre 11–13, 2013

The finite element immersed boundary method for fluid structure interactions: A fictitious domain approach

DANIELE BOFFI*

Abstract

The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier–Stokes equations. We introduced a finite element formulation which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this talk we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Appropriate CFL conditions are discussed for the stability of the time marching scheme. A new implementation of the method shows a link with the *fictitious domain* method. It turns out that the new scheme enjoys more accurate mass conservation and more robust stability properties.

Key words: fluid-structure interactions, finite elements, immersed boundary method, fictitious domain, mass conservation

Mathematics subject classifications (1991): 65N30, 74F10, 65M85

References

- BOFFI, D., GASTALDI, L., HELTAI, L., AND PESKIN, C.S., On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Engrg., vol. 197, pp. 2210-2231, (2008).
- [2] BOFFI, D., CAVALLINI, N., AND GASTALDI, L., Finite element approach to immersed boundary method with different fluid and solid densities. Math. Models Methods Appl. Sci., vol. 21, pp. 2523-2550, (2011).
- [3] BOFFI, D., GASTALDI, L., AND RUGGERI, M., Mixed formulation for interface problems with distributed Lagrange multiplier. Submitted (2013).

^{*}Dipartimento di Matematica "F. Casorati", Università di Pavia, Italy, e-mail: daniele.boffi@unipv.it

- [4] GLOWINSKI, R. AND KUZNETSOV, Y., Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Engrg., vol. 196, pp. 1498-1506 (2007).
- [5] PESKIN, C.S., The immersed boundary method, Acta Numerica, vol. 11, pp. 479-517 (2002).