VALPARAISO NUMERICO IV

Séptimo Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Diciembre 11–13, 2013

Finite element approximation of the eigenvalue problem for the **curl** operator in multiply connected domains.*

Eduardo Lara[†] <u>Rodolfo Rodríguez</u>[†] Pablo Venegas[†]

Abstract

In a recent paper [1], two of the authors introduced and analyzed a couple of numerical methods based on Nédélec finite elements to solve the eigenvalue problem for the **curl** operator in simply connected domains. This topological assumption is not just a technicality, since the eigenvalue problem is ill-posed on multiply connected domains, in the sense that its spectrum is the whole complex plane, as is shown in [2]. However, additional constraints can be added to the eigenvalue problem in order to recover a well posed problem with a discrete spectrum [2, 3]. We choose as additional constraints a zero-flux condition of the curl on all the cutting surfaces. We introduce two weak formulations of the corresponding problem, which are convenient variations of those studied in [1]; one of them is mixed and the other a Maxwell-like formulation. We prove that both are well posed and show how to modify the finite element discretization from [1] to take care of these additional constraints. We prove spectral convergence of both discretization as well as a priori error estimates. Finally, we report a numerical test which allows assessing the performance of the proposed methods.

Key words: eigenvalue problems, topological constraints, finite element methods, spectral approximation.

Mathematics subject classifications (2010): Primary 65N15, 65N25, 65N30.

References

- [1] RODRÍGUEZ, R. AND VENEGAS, P., Numerical approximation of the spectrum of the curl operator, Mathematics of Computation (online: S 0025-5718(2013)02745-7).
- [2] YOSHIDA, Z. AND GIGA, Y., Remarks on spectra of operator rot, Mathematische Zeitschrift, vol. 204, pp. 235–245, (1990).
- [3] HIPTMAIR, R., KOTIUGA, P.R. AND TORDEUX, S., Self-adjoint curl operators, Annali di Matematica Pura ed Applicata, vol. 191, pp. 431–457, (2012).

^{*}This research was partially supported by BASAL project CMM, Universidad de Chile and Anillo ANANUM, ACT1118, CONICYT (Chile).

[†]CI²MA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, e-mails: elara@udec.cl, rodolfo@ing-mat.udec.cl, pvenegas@ing-mat.udec.cl