VALPARAISO NUMERICO IV

Séptimo Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Diciembre 11–13, 2013

DPG boundary elements with optimal test functions on surfaces

Norbert Heuer^{*} <u>Michael Karkulik[†]</u>

Abstract

We present an ultra-weak formulation of a hypersingular integral equation on polyhedral surfaces and prove its well-posedness and equivalence with the standard variational formulation. Based on this ultra-weak formulation we present a discontinuous Petrov-Galerkin method with optimal test functions and prove its optimal convergence. The two-dimensional case on (closed) polygons has been studied in [1]. In that situation, appearing derivatives are with respect to the arc length, and Sobolev spaces are only of the L^2 and H^1 -type. In this talk we study, in particular, open surfaces, where surface differential operators appear and where singularities in the exact solution prohibit to use simple L^2 and H^1 spaces for the ultra-weak formulation, though spaces of orders $\pm 1/2$ are avoided throughout. Some numerical results are shown that underline our theoretical estimates.

Key words: boundary element method, discontinuous Petrov-Galerkin method, optimal test functions

Mathematics subject classifications (1991): 65N30

References

[1] N. HEUER AND F. PINOCHET, Ultra-weak formulation of a hypersingular integral equation on polygons and DPG method with optimal test functions. arXiv:1309.1697, 2013.

^{*}Pontificia Universidad Católica de Chile, e-mail: nheuer@mat.puc.cl

[†]Pontificia Universidad Católica de Chile, e-mail: mkarkulik@mat.puc.cl