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On numerical methods for nonlinear singularly perturbed

Schrödinger problems
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Abstract

Nonlinear Schrödinger equations (NSE) model several important problems in Quantum
Physics and Morphogenesis. In case of singularly perturbed problems, the theory have
made interesting progress, but numerical methods have been not able to come up with
small values of the singular parameter ε. Moreover, the saddle-point characteristic
of the associated functional is another challenge that it was first studied by Choi &
McKenna, who developed the Mountain Pass Algorithm. We will focus on NSE where
a uniqueness result for ground-state solutions is obtained. In this article, we develop a
new method which improves the results for a large range of singular parameters. We
extend the MPA ideas considering the singulary perturbed problems by developing a
finite element approach mixed with steepest descend directions. We use a modified line
search method based on Armijo’s rule for improving the Newton search and Patankar
trick for preserving the positiveness of the solution. To improve the range of the singular
parameter, adaptive methods based on Dual Weighted Residual method are used. Our
numerical experiments are performed with the deal.II library and we show that it is
possible to get solutions for ε = 10−6 improving the current results in four order of
magnitude. At this level, machine precision must be considered for further studies.
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