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Abstract

In this thesis we introduce and analyze new augmented mixed finite element
methods for a class of nonlinear elasticity problems arising in hyperelasticity.
The starting mixed method is based on the incorporation of the strain tensor
as an auxiliary unknown, which, together with the usual stress-displacement-
rotation approach employed in linear elasticity, yields a nonlinear twofold sad-
dle point operator equation as the resulting weak formulation. We first extend
known results on the well-posedness of the associated Galerkin scheme with
PEERS of order k = 0 to the case k ≥ 1. Then the augmented schemes are ob-
tained by adding consistent Galerkin-type terms arising first from the constitu-
tive equation, and then from the equilibrium equation and the relations defining
the rotation in terms of the displacement and the strain tensor as independent
unknown, all of them multiplied by suitably chosen stabilization parameters.
We apply classical results on the solvability analysis of nonlinear saddle point
and strongly monotone operator equations to prove that the corresponding con-
tinuous and discrete augmented schemes are well-posed. In particular, we show
that the well-posedness of a partially augmented Galerkin scheme is ensured by
any finite element subspace for the strain tensor together with the PEERS space
of order k ≥ 0 for the remaining unknowns, whereas any finite element subspace
of the whole continuous space will do in the case of a fully augmented scheme.
Then, we derive reliable and efficient residual-based a posteriori error estimators
for all the schemes. Finally, we provide several numerical results illustrating the
good performance of the mixed finite element methods, confirming the theoret-
ical properties of the estimators, and showing the behaviour of the associated
adaptive algorithms.
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Resumen

En esta memoria se introducen y analizan nuevos métodos de elementos fini-
tos mixtos aumentados para una clase de ecuaciones de elasticidad no lineal
que surgen en hiperelasticidad. El método mixto original se basa en la incor-
poración del tensor de deformaciones como variable auxiliar, de modo tal que,
junto con las variables usuales de esfuerzo, desplazamiento y rotación empleadas
en elasticidad lineal, se da origen a una formulación variacional en la forma de
una ecuación no lineal de operadores tipo punto silla doble. En primer lugar
se extienden resultados conocidos sobre la existencia, unicidad y estabilidad del
esquema de Galerkin asociado con PEERS de orden k = 0 al caso k ≥ 1. Los
esquemas de Galerkin aumentados, tanto de manera parcial como total, se ob-
tienen agregando los teminos consistentes que surgen de la ecuación constitutiva,
la ecuación de equilibrio, y las relaciones que definen la rotación en función del
desplazamiento, y el tensor de deformaciones como variable independiente, todos
ellos multiplicados por constantes de estabilización elegidas convenientemente.
Se aplican los resultados clasicos del análisis de esquemas de punto silla doble
no lineal y de ecuaciones con operadores fuertemente monotonos para probar
que los esquemas aumentados continuo y discreto estan bien propuestos. En
particular, se demuestra que el esquema de Galerkin parcialmente aumentado
queda bien definido con cualquier subespacio de elementos finitos para el ten-
sor de deformaciones, y con el espacio PEERS de orden k ≥ 0 para las demás
incógnitas, mientras que, cualquier subespacio de elementos finitos que aproxime
todas las incógnitas se puede utilizar para el caso del esquema completamente
aumentado. Luego se deducen estimadores de error a posteriori residuales para
cada uno de los esquemas, y se prueba que todos ellos son confiables y eficientes.
Finalmente, se proporcionan varios ejemplos numéricos que ilustran el buen de-
sempeño de los métodos de elementos finitos mixtos resultantes, confirman las
propiedades teóricas de los estimadores, y muestran el comportamiento de los
algoritmos adaptativos asociados.
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CHAPTER 1

Introduction

1. Purpose and context of this work

The nonlinear twofold saddle point operator equations, also called dual-dual variational
formulations, arised about a decade ago from the necessity of applying dual-mixed methods
to a class of nonlinear boundary value problems appearing in continuum mechanics, particu-
larly in potential theory, heat conduction, elasticity, and fluid mechanics. At that time, the
usual procedure for treating nonlinear elliptic equations in divergence form was based on the
inversion, thanks to the implicit function theorem, of the constitutive equations involved. In
heat conduction, for instance, the gradient of the temperature was expressed, when possible,
as a function of the temperature and the flux variable. Then, in order to deal with the case of
constitutive equations that are not explicitly invertible, an alternative approach was proposed
first in [45] and [46], in connection with the coupling of mixed finite element and boundary
element methods for solving nonlinear transmission problems. This new methodology, which
has been later on extended to several other nonlinear boundary value problems, is based on
the introduction of auxiliary unknowns such as the gradient of the temperature (in heat con-
duction) or the strain tensor (in elasticity and fluid mechanics), which yields twofold saddle
point operator equations as the resulting weak formulations (see, e.g. [1], [4], [5], [28], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [43], and [44]). Actually, the idea of introducing
further incognitas to deal with the nonlinearities of a boundary value problem had been em-
ployed before in [24], [14], and [15], in which the associated Galerkin schemes were named
expanded mixed finite element methods. However, it is important to remark that the twofold
saddle point structure has only been obtained and analyzed in the works mentioned above.
Now, particularly significant for the current paper are the results from [5], where a detailed
analysis of the continuous and discrete dual-mixed formulations of a two-dimensional non-
linear boundary value problem arising in hyperelasticity was developed. In particular, it is
shown there that stable mixed finite elements for linear elasticity, such as PEERS of order
0, also lead to well-posed Galerkin schemes for that nonlinear problem. The corresponding
extensions to nonlinear incompressible elasticity and quasi-Newtonian Stokes flows were short
after provided in [44], [32] and [31]. Further applications to diverse transmission problems
are given in [4], [34], [38], and [43]. The results in [32] were also extended in [19] and [49] to
a setting in reflexive Banach spaces, thus allowing other nonlinear models such as the Carreau
law for viscoplastic flows. More recently, a velocity-pseudostress formulation for the same
quasi-Newtonian Stokes flows considered in [32] and [19] is analyzed in [42]. In this case,
in addition to introducing the gradient of the velocity of the fluid as an auxiliary unknown,
the pressure is eliminated using the incompressibility condition, and similarly as in [32] the
resulting variational formulation still shows a twofold saddle point structure.

In turn, the abstract framework that is needed for the solvability analysis of the continuous
and discrete nonlinear twofold saddle point formulations, which constitutes a natural extension
of the classical Babuška-Brezzi theory, was derived in [28] and [39]. It is quite clear from these
works that, as for the case of linear saddle point problems (see, e.g. [10]), the hardest aspect
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2 1. INTRODUCTION

of the associated numerical analysis refer to the choice of suitable finite element subspaces
satisfying the discrete inf-sup conditions involved. Moreover, while it is usually possible to
establish specific well-posed Galerkin schemes for each one of the problems studied so far, it
is also true that not any polynomial degree can be employed for the local approximations of
the unknowns and that additional necessary conditions among the global subspaces need to
be satisfied.

In the case of linear problems, the restrictions and conditions mentioned in the previ-
ous paragraph have been somehow overcomed through the application of several stabilization
procedures developed during the last two decades, which have allowed more flexibility in the
choice of the corresponding finite element subspaces. In particular, the augmented variational
formulations, also known as Galerkin least-squares methods, and which go back to [22] and
[23], have already been extended in different directions. Some applications to elasticity prob-
lems can be found in [26] and [12], and a non-symmetric variant was considered in [18] for the
Stokes problem. In addition, stabilized mixed finite element methods for related problems, in-
cluding Darcy and incompressible flows, can be seen in [3], [9], [25], and [52]. For an abstract
framework concerning the stabilization of general mixed finite element methods, we refer to
[11]. Furthermore, a new stabilized mixed finite element method for plane linear elasticity
was introduced and analyzed in [29]. The approach there is based on the incorporation of
suitable Galerkin least-squares terms arising from the constitutive and equilibrium equations,
and from the relation defining the rotation in terms of the displacement. It is shown that the
resulting continuous and discrete augmented formulations are well posed, and that the latter
becomes locking-free for both Dirichlet and mixed boundary conditions. Moreover, in the case
of pure Dirichlet conditions, the augmented formulation becomes strongly coercive, and hence
arbitrary finite element subspaces can be employed in the associated Galerkin scheme, which
constitutes one of its main advantages with respect to other methods. In particular, Raviart-
Thomas spaces of lowest order for the stress tensor, continuous piecewise linear elements for
the displacement, and piecewise constants for the rotation can be used. The correspond-
ing extensions to non-homogeneous Dirichlet boundary conditions and to three-dimensional
elasticity were provided in [30] and [40], respectively. In addition, residual based a poste-
riori error analyses yielding reliable and efficient estimators for the augmented method from
[29], are presented in [7] and [6]. Furthermore, augmented mixed finite element methods for
pseudostress-based formulations of the stationary Stokes equations, which further extends the
results from [29], [30], and [40], are introduced and analyzed in [21]. The corresponding
augmented mixed finite element schemes for the velocity-pressure-stress formulation of the
Stokes problem, in which the vorticity is introduced as the Lagrange multiplier taking care of
the weak symmetry of the stress, are studied in [20]. The results in [21] and [20] also include
the derivation of reliable and efficient residual-based a posteriori error estimators.

Motivated by the discussion from the preceding paragraphs, and in order to achieve also
more flexibility in the choice of the finite element subspaces for the dual-mixed formulations of
nonlinear boundary value problems, we now aim to extend the applicability of the augmented
dual-mixed formulations developed in [29], [30], [40], [21], and [20] to the class of nonlinear
twofold saddle point operator equations described above. We are interested in the a priori and
a posteriori error analyses of the resulting augmented schemes, and as a model we consider
the problem in hyperelasticity studied in [5]. Up to the authors’ knowledge, the closest
contribution in the proposed direction is given by a partially augmented approach introduced
in [42] for the velocity-pseudostress formulation of quasi-Newtonian Stokes flows. Indeed,
the redundant incorporation of the constitutive law relating the stress and the strain tensors
transforms the original twofold saddle point structure of the nonlinear problem in [42] into
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a single saddle point operator equation, which certainly simplifies the requirements for well-
posedness of the associated Galerkin scheme. The adaptation of this idea to our model problem
from [5] constitutes the starting point of the augmented formulations that are introduced and
analyzed in the present paper. As a by product of our preliminary analysis, we extend the
results from [5] and show that the Galerkin scheme becomes well-posed for any PEERS space
of order k ≥ 1 (not only for k = 0 as proved in [5]).

The rest of our work is organized as follows. In Chapter 2 we introduce the model prob-
lem, derive the associated nonlinear operator equation, which, as shown originally in [5], has
a twofold saddle point structure, and then discuss the solvability and stability of the con-
tinuous and discrete formulations. Next, in Chapter 3 we propose and analyze a partially
augmented approach for our twofold saddle point problem. Classical results on nonlinear
functional analysis are applied to prove the well-posedness of the resulting continuous and
discrete formulations. In particular, a discrete inf-sup condition for one of the forms involved
is no longer required, and hence a larger class of finite element subspaces can be employed to
define the Galerkin schemes. Several examples in this direction are specified. The idea and
analysis from Chapter 3 are extended in Chapter 4 through the introduction of a fully aug-
mented approach. In this case, no discrete inf-sup conditions are needed at all, and therefore
the associated discrete scheme becomes well-posed for any finite element subspace. Then, in
Chapter 5 we derive reliable and efficient residual-based a posteriori error estimators for the
three Galerkin schemes defined in the previous chapters. Finally, several numerical results
illustrating the performance of the methods, confirming the reliability and efficiency of the a
posteriori estimators, and showing the good behavior of the associated adaptive algorithms,
are reported in Chapter 6.

2. Notation

We end this chapter with several notations to be used below. In what follows, R2×2 is the
space of square matrices of orden 2 with real entries, I := (δij) is the identity matrix of R2×2,
and given τ := (τij), ζ := (ζij) in R2×2, we write as usual

τ t := (τji) , tr(τ ) :=

2∑

i=1

τii , τ d := τ −
1

2
tr(τ ) I , and τ : ζ :=

2∑

i,j=1

τij ζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator of a tensor τ ,
and to the tensorial product between τ and ζ. In turn, in what follows we utilize standard
simplified terminology for Sobolev spaces and norms. In particular, if O is a domain, S is a
closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , Hr(O) := [Hr(O)]2×2 , and Hr(S) := [Hr(S)]2 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O),
and H0(S), respectively. The corresponding norms are denoted by ‖ ·‖r,O (for Hr(O), Hr(O),
and Hr(O)) and ‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we
use H and H to denote [H]2 and [H]2×2, respectively. In addition, we use 〈·, ·〉S to denote the

usual duality pairings between H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S).
Furthermore, with div denoting the usual divergence operator, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [10], [47]). The space of matrix valued
functions whose rows belong to H(div;O) will be denoted H(div;O), where div stands for
the action of div along each row of a tensor. The Hilbert norms of H(div;O) and H(div;O)
are denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈
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L2(O). Finally, we employ 0 to denote a generic null vector (including the null functional and
operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic
constants independent of the discretization parameters, which may take different values at
different places.



CHAPTER 2

The twofold saddle point approach

3. The model problem

In order to describe the nonlinear problem studied in [5], we now let Ω be a bounded and
simply connected polygonal domain in R2 with Lipschitz-continuous boundary Γ. Our goal is
to determine the displacement u and stress σ of a hyperelastic material occupying the region
Ω, which is subject to a volume force and has a known displacement on Γ. As a description
of the hyperelasticity we assume the validity of the Hencky-Mises stress-strain relation as
discussed in [53] (see also [59]). In other words, given f ∈ L2(Ω) and g ∈ H1/2(Γ), the
nonlinear boundary value problem reads as follows: Find a tensor field σ and a vector field u
such that

σ = λ̃(‖e(u)d‖)
(
divu

)
I + µ̃(‖e(u)d‖) e(u) in Ω ,

divσ = − f in Ω , u = g on Γ ,
(3.1)

where λ̃, µ̃ : R+ → R are the nonlinear Lamé functions, ∇u is the tensor gradient of u,

e(u) := 1
2

(
∇u +

(
∇u
)
t
)

is the strain tensor of small deformations, ‖ · ‖ is the euclidean

norm in R2×2, and ν stands for the unit outward normal to Γ. In addition, from now on we

suppose that λ̃, µ̃ ∈ C1(R+) and that there exist κ, µ0, µ1, µ2 > 0 such that for all ρ ≥ 0,

λ̃(ρ) = κ−
1

2
µ̃(ρ) , µ0 ≤ µ̃(ρ) < 2κ , µ1 ≤ µ̃(ρ) + ρ µ̃′(ρ) ≤ µ2 . (3.2)

4. The continuous variational formulation

We now recall from [5] the dual-mixed variational formulation of (3.1). For this purpose
we set

λ(r) := λ̃(‖rd‖) and µ(r) := µ̃(‖rd‖) ∀ r ∈ L2(Ω) ,

so that, defining the new unknown t := e(u) ∈ L2(Ω), problem (3.1) adopts the equivalent
form

t = e(u) in Ω , σ = λ(t) tr(t) I + µ(t) t in Ω ,

divσ = − f in Ω , u = g on Γ .
(4.1)

Next, we introduce the subspace of L2(Ω) given by

L2
skew

(Ω) :=
{
η ∈ L2(Ω) : η + ηt = 0

}
.

Then, rewriting the identity t = e(u) as

t = ∇u − γ , (4.2)

where

γ :=
1

2

(
∇u− (∇u)t

)
(4.3)

5



6 2. THE TWOFOLD SADDLE POINT APPROACH

is an auxiliary unknown (named rotation) living in L2
skew

(Ω), and following the usual inte-
gration by parts procedure (see [5] for details), we arrive at the problem: Find (t,σ,u,γ) ∈
L2(Ω)×H(div; Ω)× L2(Ω)× L2

skew
(Ω) such that

∫

Ω

{
λ(t) tr(t) tr(s) + µ(t) t : s

}
−

∫

Ω
σ : s = 0 ,

−

∫

Ω
t : τ −

∫

Ω
u · div τ −

∫

Ω
γ : τ = −〈 τ ν , g 〉Γ ,

−

∫

Ω
v · divσ −

∫

Ω
η : σ =

∫

Ω
f · v ,

(4.4)

for all (s, τ ,v,η) ∈ L2(Ω)× H(div; Ω)× L2(Ω)× L2
skew

(Ω).

Next, we notice that (4.4) has the typical twofold saddle point structure (see, e.g. [28],
[39]). In fact, let us define the Hilbert spaces X1 := L2(Ω), M1 := H(div; Ω), and M :=
L2(Ω) × L2

skew
(Ω), provided with the usual norms and product norms, respectively, and the

nonlinear operator A1 : X1 → X ′
1, the bounded linear operators B1 : X1 → M ′

1 and B :
M1 → M ′, and the bounded linear functionals H ∈ X ′

1, G ∈ M ′
1 and F ∈ M ′, given for

each r, s ∈ X1, ζ, τ ∈ M1 and (v,η) ∈ M as

[A1(r), s] :=

∫

Ω

{
λ(r) tr(r) tr(s) + µ(r) r : s

}
,

[B1(r), τ ] := −

∫

Ω
r : τ ,

[B(ζ), (v,η)] := −

∫

Ω
v · div ζ −

∫

Ω
ζ : η ,

(4.5)

and

[H, s] := 0, [G, τ ] := −〈 τ ν , g 〉Γ , and [F, (v,η)] :=

∫

Ω
f · v ,

where the brackets [ ·, · ] denote the duality pairings induced by the corresponding operators
and functionals.

Then, it is easy to see that the variational formulation (4.4) can be rewritten as: Find
(t,σ, (u,γ)) ∈ X := X1 ×M1 ×M such that

[A1(t), s] + [B1(s),σ] = [H, s] ∀ s ∈ X1 ,

[B1(t), τ ] + [B(τ ), (u,γ)] = [G, τ ] ∀ τ ∈ M1 ,

[B(σ), (v,η)] = [F, (v,η)] ∀ (v,η) ∈ M .

(4.6)

The abstract theory for this kind of twofold saddle point operator equation, including
the analysis of the associated discrete formulation (whose definition is pretty straightforward
from (4.6)), is already well known (see [28], [39]), and their main results are recalled in the
following chapter.

5. Abstract theory for twofold saddle point operator equations

Let X1, M1, and M be Hilbert spaces, and consider a nonlinear operator A1 : X1 → X ′
1,

and linear bounded operators B1 : X1 → M ′
1 and B : M1 → M ′, with transposes B′

1 : M1 →
X ′

1 and B′ : M → M ′
1, respectively. Then, given (H,G,F) ∈ X ′

1×M ′
1×M ′, we are interested
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in the following nonlinear variational problem (written as a matrix operator equation): Find
(t,σ, u) ∈ X1 ×M1 ×M such that




A1 B′
1 O

B1 O B′

O B O







t

σ

u


 =




H

G

F


 . (5.1)

We have the following theorem.

Theorem 5.1. Let V := Ker (B), define V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈ V }, and let
Π1 : X

′
1 → V ′

1 be the operator defined by Π1(H) = H|V1 for all H ∈ X ′
1. Assume that

i) the nonlinear operator A1 : X1 → X ′
1 is Lipschitz continuous with a Lipschitz con-

stant γ > 0, and for any t̃ ∈ X1, the nonlinear operator Π1A1(· + t̃) : V1 → V ′
1 is

strongly monotone with a monotonicity constant α > 0 independent of t̃.
ii) there exists β > 0 such that for all v ∈ M

sup
τ∈M1\{0}

[B(τ ), v]

||τ ||M1

≥ β ||v||M ; (5.2)

iii) there exists β1 > 0 such that for all τ ∈ V

sup
s∈X1\{0}

[B1(s), τ ]

||s||X1

≥ β1 ||τ ||M1 ; (5.3)

Then, for each (H,G,F) ∈ X ′
1 × M ′

1 × M ′ there exists a unique (t,σ, u) ∈ X1 × M1 × M
solution of (5.1). Moreover, there exists C > 0, independent of the solution, such that

‖(t,σ, u)‖X1×M1×M ≤ C
{
‖H‖+ ‖G‖+ ‖F‖+ ‖A1(0)‖

}
. (5.4)

Proof. See [28, Theorem 2.4] (see also [39, Theorem 2.1] or [43, Theorem 4.1]). �

Now, let X1,h, M1,h andMh be finite dimensional subspaces ofX1, M1 andM , respectively.
Then the Galerkin scheme associated with (5.1) reads as follows: Find (th,σh, uh) ∈ X1,h ×
M1,h ×Mh such that

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h ,

[B1(th), τ h] + [B(τ h), uh] = [G, τ h] ∀ τ h ∈ M1,h ,

[B(σh), vh] = [F, vh] ∀ vh ∈ Mh .

(5.5)

The discrete analogue of Theorem 5.1 is established next.

Theorem 5.2. Let Vh := {τ h ∈ M1,h : [B(τ h), vh] = 0 ∀ vh ∈ Mh}, define the
space V1,h := {sh ∈ X1,h : [B1(sh), τ h] = 0 ∀ τh ∈ Vh} and let Π1,h : X ′

1,h → V ′
1,h be the

operator defined by Π1,h(Hh) = Hh|V1,h
for all Hh ∈ X ′

1,h. Further, let A1,h := p′hA1 : X1 →

X ′
1,h where ph : X1,h → X1 is the canonical injection with adjoint p′h : X ′

1 → X ′
1,h. Assume

that

i) the nonlinear operator A1,h : X1 → X ′
1,h is Lipschitz-continuous with a Lipschitz

constant γh > 0, and for any t̃ ∈ X1,h, the nonlinear operator Π1,hA1,h(· + t̃) :
V1,h → V ′

1,h is strongly monotone with a monotonicity constant αh > 0 independent

of t̃.
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ii) there exists βh > 0 such that for all vh ∈ Mh

sup
τ h ∈M1,h\{0}

[B(τ h), vh]

||τ h||M1

≥ βh ||vh||M ; (5.6)

iii) there exists β1,h > 0 such that for all τh ∈ Vh

sup
sh ∈X1,h\{0}

[B1(sh), τ h]

||sh||X1

≥ β1,h ||τ h||M1 ; (5.7)

Then, for each (H,G,F) ∈ X ′
1×M ′

1×M ′ there exists a unique (th,σh, uh) ∈ X1,h×M1,h×Mh

solution of (5.5). Moreover, there exists Ch > 0, independent of the solution, but depending
on h, such that

‖(th,σh, uh)‖X1×M1×M ≤ Ch

{
‖Hh‖+ ‖Gh‖+ ‖Fh‖+ ‖A1,h(0)‖

}
,

where Hh := H|X1,h
, Gh := G|M1,h

, and Fh := F|Mh
.

Proof. See [28, Theorem 3.2] (see also [39, Theorem 3.1] or [43, Theorem 4.2]). �

Finally, concerning the error analysis, we have the following result.

Theorem 5.3. Assume that the hypotheses of Theorems 5.1 and 5.2 are satisfied, and let
(t,σ, u) ∈ X1 ×M1 ×M and (th,σh, uh) ∈ X1,h ×M1,h ×Mh be the unique solutions of (5.1)

and (5.5), respectively. In addition, suppose that there exist positive constants γ̃, α̃, β̃, and

β̃1 such that γh ≤ γ̃, αh ≥ α̃, βh ≥ β̃, and β1,h ≥ β̃1 for all h. Then, there exists C > 0,
independent of h, such that the following Céa error estimate holds:

‖(t,σ, u)− (th,σh, uh)‖ ≤ C inf
(sh,τ h,vh)

∈X1,h×M1,h×Mh

‖(t,σ, u)− (sh, τ h, vh)‖ .

Proof. See [28, Section 4] (see also [39, Theorem 3.3]). �

6. Analysis of the continuous formulation

The well-posedness of the continuous formulation (4.4) (equivalently (4.6)) was already
established in [5, Theorem 4.5]. However, for the sake of completeness, and for later use
throughout the paper, in what follows we collect the intermediate results yielding that main
theorem. In addition, we remark in advance that some parts of the analysis will employ
alternative arguments to those given in [5]. We begin with the Gâteaux differentiability of the
nonlinear operator A1 (cf. (4.5)).

Lemma 6.1. The nonlinear operator A1 : X1 → X ′
1 is Gâteaux differentiable in X1, and

the family of Gâteaux derivatives {DA1(x)}x∈X1 is both uniformly bounded and uniformly
elliptic on X1 ×X1. More precisely, there exist positive constants γ1, α1, depending only on
κ, µ0, µ1, and µ2 (cf. (3.2)), such that for all x, r, s ∈ X1, there hold

| DA1(x)(r, s) | ≤ γ1 ‖r‖X1 ‖s‖X1 (6.1)

and

DA1(x)(r, r) ≥ α1 ‖r‖
2
X1

. (6.2)
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Proof. Simple computations and the C1-regularity of µ̃ and λ̃ yield for x, r, s ∈ X1,
xd 6= 0,

lim
ǫ→ 0

[
A1(x+ ǫ r)−A1(x), s

]

ǫ
=

∫

Ω
λ̃′(‖xd‖)

(xd : rd)

‖xd‖
tr(x) tr(s)

+

∫

Ω
λ̃(‖xd‖) tr(r) tr(s) +

∫

Ω
µ̃′(‖xd‖)

(xd : rd)

‖xd‖
x : s +

∫

Ω
µ̃(‖xd‖) r : s ,

(6.3)

whereas for xd = 0 there holds

lim
ǫ→ 0

[
A1(x+ ǫ r)−A1(x), s

]

ǫ
=

∫

Ω
λ̃′(0) ‖rd‖ tr(x) tr(s)

+

∫

Ω
λ̃(0) tr(r) tr(s) +

∫

Ω
µ̃′(0) ‖rd‖x : s +

∫

Ω
µ̃(0) r : s .

(6.4)

The above identities show that A1 is Gâteaux differentiable at x. Moreover, DA1(x) is the
bounded linear operator fromX1 intoX

′
1 that can be identified with the bilinear form DA1(x) :

X1 ×X1 → R defined by

DA1(x)(r, s) := lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
∀ r, s ∈ X1 . (6.5)

Hence, the derivation of (6.1) and (6.2) follows from (6.5), using (6.3), (6.4), and the as-

sumptions on λ̃ and µ̃ (cf. (3.2)). We omit further details and refer to [27, Lemma 5.1]. In
particular, from the analysis there we find that

γ1 = max
{
µ2 + 2κ, 6κ

}
and α1 = min

{
µ0, µ1, 2κ

}
. (6.6)

Alternatively, one may look at the corresponding analysis within the proof of [5, Lemma
4.1]. �

The Lipschitz-continuity and strong monotonicity of A1, which is a straightforward con-
sequence of Lemma 6.1, is established next.

Lemma 6.2. Let γ1 and α1 be the constants from Lemma 6.1 (cf. (6.6)). Then, for each
t, r ∈ X1 there hold

‖A1(t)− A1(r)‖X′

1
≤ γ1 ‖t− r‖X1 , (6.7)

and
[A1(t)− A1(r), t − r] ≥ α1 ‖t− r‖2X1

. (6.8)

Proof. Given t, r ∈ X1, a direct application of the mean value theorem yields the
existence of a convex combination of t and r, say r̃ ∈ X1, such that

[A1(t)− A1(r), s] = DA1(r̃)(t − r, s) ∀ s ∈ X1 . (6.9)

Hence, (6.7) and (6.8) follow easily from (6.9) and the estimates (6.1) and (6.2). �

It is quite clear from Lemma 6.2 that the hypothesis i) of Theorem 5.1 is satisfied by the
operator A1, and hence by our twofold saddle point variational formulation (4.6). In particular,
for the strong monotonicity property, let V := Ker(B), V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈
V}, and Π1 : X

′
1 → V′

1 be the operator defined by Π1(H) = H|V1 for all H ∈ X ′
1. Hence, given

t̃ ∈ X1 and r, s ∈ V1, we find that

[Π1 A1(r+ t̃) − Π1 A1(s+ t̃), r− s] = [A1(r+ t̃) − A1(s+ t̃), r− s]

= [A1(r+ t̃) − A1(s+ t̃), (r + t̃)− (s+ t̃)] ≥ α1 ‖r− s‖2X1
,

(6.10)
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which shows that for each t̃ ∈ X1, Π1 A1(·+ t̃) : V1 → V′
1 is strongly monotone with constant

α = α1.

On the other hand, the continuous inf-sup condition (5.2) for B, which is equivalent to the
surjectivity of this operator, is already a classical requirement in the analysis of the dual-mixed
variational formulation for linear elasticity. However, just a few places seem to provide a proof
of this inequality (see, e.g. [5, Lemma 4.3]), and therefore a simple version of it is given now.

Lemma 6.3. The operator B : M1 → M ′ is surjective.

Proof. We first observe from (4.5) that B(τ ) = R−1
(
− div τ ,− 1

2(τ − τ t)
)
for each

τ ∈ M1, where R : M ′ → M is the corresponding Riesz operator. Then, given F ∈ M ′, we
let (v,η) := R(F) ∈ M and consider the boundary value problem

div e(z) = v − divη in Ω , z = 0 in Γ ,

whose weak formulation reduces to: Find z ∈ H1
0(Ω) such that

∫

Ω
e(z) : e(w) = −

∫

Ω
v ·w −

∫

Ω
η : ∇w ∀w ∈ H1

0(Ω) .

It follows, thanks to Korn’s inequality and Lax-Milgram’s Lemma, that the above problem
has a unique solution z depending continuously on the data v and η. In this way, defining
τ̂ := e(z) + η, we easily see that τ̂ ∈ H(div; Ω),

(
div τ̂ , 12(τ̂ − τ̂ t)

)
= (v,η), and therefore

B(−τ̂ ) = F, which confirms the surjectivity of B. �

In turn, the continuous inf-sup condition (5.3) for B1 requires first to identify V := Ker(B),
which, acording to the definition of B (cf. (4.5)), is given by

V =
{
τ ∈ H(div; Ω) : div τ = 0 and τ = τ t in Ω

}
.

Then, using that V ⊆ X1 := L2(Ω) and that the tensors of V are divergence-free, it follows
that

sup
s∈X1
s6=0

[B1(s), τ ]

‖s‖0,Ω
≥

[B1(−τ ), τ ]

‖τ‖0,Ω
= ‖τ‖0,Ω = ‖τ‖div;Ω ∀ τ ∈ V , (6.11)

which shows that B1 satisfies (5.3) with a constant β1 = 1.

Alternatively, we see from the definition of B1 (cf. (4.5)) that the above condition is
equivalent to the surjectivity of the operator

ΠB1 := − i′ R−1
1 : X1 → V′ ,

where Π : M ′
1 → V′ is defined by Π(G) = G|V for all G ∈ M ′

1, i
′ is the adjoint of the canonical

injection i : V → X1, and R1 : X ′
1 → X1 is the Riesz operator. Thus, given F ∈ V′, the fact

that ‖ · ‖div;Ω and ‖ · ‖0,Ω coincide in V says that actually F is bounded with respect to the
L2(Ω)-norm. Hence, we let F ∈ X ′

1 be any extension (by Riesz or Hahn-Banach) of F, define

r := −R1(F) ∈ X1, and observe that − i′R−1
1 (r) = F, which shows the surjectivity of ΠB1.

Note again that the inclusion V ⊆ X1 and the divergence-free property of the elements in V

are crucial here.

Having proved the above results, the well-posedness of (4.6) can be established next.

Theorem 6.1. There exists a unique (t,σ, (u,γ)) ∈ X := X1 × M1 × M solution of
problem (4.6). Moreover, there exists C > 0, independent of the solution and the data, such
that

‖(t,σ, (u,γ))‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.
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Proof. It follows from a straightforward application of Theorem 5.1, taking also into
account that A1(0) becomes the null functional 0. �

7. The discrete formulation and its analysis

We now let X1,h, M1,h and Mh := Mu

h ×Mγ
h be arbitrary finite dimensional subspaces

of X1, M1 and M := L2(Ω) × L2
skew

(Ω), respectively. Then the Galerkin scheme associated
with (4.6) reads as follows: Find (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh such that

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h ,

[B1(th), τ h] + [B(τ h), (uh,γh)] = [G, τ h] ∀ τh ∈ M1,h ,

[B(σh), (vh,ηh)] = [F, (vh,ηh)] ∀ (vh,ηh) ∈ Mh .
(7.1)

In order to define specific finite element subspaces X1,h, M1,h and Mh satisfying the hy-
potheses of the abstract Theorem 5.2, our strategy is to follow/adapt as much as possible
the continuous analysis from Section 6. To this respect, we first observe, thanks to Lemma
6.2, that the strong monotonicity and Lipschitz-continuity properties concerning the operator
A1,h := p′hA1 : X1 → X1,h (ph being the canonical injection from X1,h to X1), which consti-
tute the assumption i) of Theorem 5.2, are satisfied for any finite dimensional subspace X1,h,
and with the same constants γ1 and α1 from Lemma 6.1 (cf. (6.6)). In particular, it is easy
to see that the simple computation given in (6.10) also works for Π1,hA1,h instead of Π1A1,
where Π1,h is defined as in Theorem 5.2.

Now, given a pair of finite element subspaces M1,h and Mh satisfying the discrete inf-sup

condition (5.6) for B uniformly (which means that there exists β̃ > 0 such that βh ≥ β̃ for all
h > 0), we let Vh be the discrete kernel of B, that is

Vh :=
{
τ h ∈ M1,h : [B(τh), (vh,ηh)] = 0 ∀ (vh,ηh) ∈ Mh

}
.

which, according to the definition of B (cf. (4.5)), reduces to

Vh :=
{
τh ∈ M1,h :

∫

Ω
vh · div τh = 0 ∀vh ∈ Mu

h and

∫

Ω
τ h : ηh = 0 ∀ηh ∈ Mγ

h

}
.

(7.2)
Next, in order to be able to apply analogous arguments to those employed in the previous

section (cf. (6.11)) to conclude the discrete inf-sup condition (5.7) for B1 uniformly, we just
need to assume that

Vh ⊆ X1,h and div τ h = 0 ∀ τh ∈ Vh . (7.3)

In particular, note from the first identity defining Vh (cf. (7.2)) that a sufficient condition for
the second requirement in (7.3) is that div

(
M1,h

)
⊆ Mu

h .

The above analysis and the abstract Theorem 5.2 induce the following general result.

Theorem 7.1. Let X1,h, M1,h and Mh := Mu

h ×Mγ
h be finite dimensional subspaces of

X1, M1 and M := L2(Ω)×L2
skew

(Ω), respectively, and let Vh be the associated discrete kernel
of B (as defined by (7.2)). Assume that:

(H.1) M1,h and Mh satisfy the discrete inf-sup condition (5.6) for B uniformly.
(H.2) Vh is contained in X1,h.
(H.3) div τh = 0 ∀ τh ∈ Vh, or in particular

(̃H.3) div
(
M1,h

)
⊆ Mu

h .
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Then, there exists a unique (th,σh, (uh,γh)) ∈ X1,h×M1,h×Mh solution of (7.1). Moreover,

there exist C, C̃ > 0, independent of h, such that

‖(th,σh, (uh,γh))‖X ≤ C
{
‖Hh‖+ ‖Gh‖+ ‖Fh‖

}

and

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C̃ inf
(sh,τ h,(vh,ηh))

∈X1,h×M1,h×Mh

‖(t,σ, (u,γ))− (sh, τ h, (vh,ηh))‖ ,

where Hh := H|X1,h
, Gh := G|M1,h

, and Fh := F|Mh
.

8. Specific finite element subspaces

In order to provide concrete examples of finite element subspaces satisfying the assump-
tions of Theorem 7.1, we assume from now on that Γ is a polygonal curve and let {Th}h>0

be a regular family of triangulations of Ω, made up of triangles T of diameter hT , such that
h := max {hT : T ∈ Th} and Ω :=

⋃
{T : T ∈ Th}. Given an integer ℓ ≥ 0 and a subset S of

R2, we denote by Pℓ(S) and P̃ℓ(S) the spaces of polynomials defined on S of total degree at
most ℓ and equal ℓ, respectively. Then, for each T ∈ Th and for each integer k ≥ 0 we define
the local Raviart-Thomas space of order k (see, e.g. [10], [55])

RTk(T ) := Pk(T )⊕ P̃k(T )x,

where x := (x1, x2) is a generic vector of R2. Recall here that, according to the notation
described in Chapter 1, Pk(T ) stands for [Pk(T )]

2. In addition, we let bT be the triangle-
bubble function defined as the unique polynomial in P3(T ) vanishing on ∂T with

∫
T bT = 1.

Then, for each T ∈ Th and for each integer k ≥ 0 we define the local bubble space of order k

Bk(T ) := curlt
(
bT Pk(T )

)
,

where, given a scalar field v, curlt v is the vector field

curlt v :=
( ∂v

∂x2
−

∂v

∂x1

)
. (8.1)

Next, given an integer k ≥ 0, we introduce the finite element subspaces

M1,h :=
{
τh ∈ H(div; Ω) : τ h|T ∈ [RTk(T )⊕Bk(T )]

2 ∀T ∈ Th
}
, (8.2)

Mu

h :=
{
vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
, (8.3)

Mγ
h :=

{
ηh ∈ L2

skew
(Ω) ∩C(Ω) : ηh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (8.4)

and

Mh := Mu

h × Mγ
h .

The resulting product space M1,h × Mu

h × Mγ
h (with k = 0) corresponds to the classical

PEERS-space introduced originally in [2] for the linear elasticity problem. Moreover, it was
shown in [2, Lemma 4.4] that these particular spaces M1,h and Mh satisfy the discrete inf-sup
condition (5.6) uniformly, thus providing one of the first stable Galerkin schemes for the mixed
variational formulation of the elasticity problem with weak symmetry. In turn, the general
case k ≥ 0 corresponds to the PEERS-space of order k introduced in [50], which is denoted
PEERSk := M1,h ×Mu

h ×Mγ
h . More precisely, it is shown in [50, Theorem 4.5 and Section

5], as a simple corollary of the corresponding stability result for the BDMS element, that
PEERSk also satisfies the discrete inf-sup condition (5.6) uniformly.
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Hence, knowing that the spaces defined by (8.2), (8.3), and (8.4) satisfy the hypothesis
(H.1) of Theorem 7.1 for each integer k ≥ 0, we now aim to prove that, defining a suitable
subspace X1,h, they all verify (H.2) and (H.3) as well. In fact, it is quite straightforward to
see that in this case there holds div

(
M1,h

)
⊆ Mu

h , which certainly implies that div τ h =
0 ∀ τ h ∈ Vh, thus satisfying (H.3), where Vh is the discrete kernel of B defined according to
(7.2), (8.2), (8.3), and (8.4). Moreover, given τ h ∈ Vh ⊆ M1,h, T ∈ Th, and i ∈ {1, 2}, there

exist q ∈ Pk(T ), q̃ ∈ P̃k(T ), and b ∈ Bk(T ), such that, denoting by τ h,i the i-th row of τh,

τ h,i = q + q̃ x + b in T .

It follows, performing simple algebraic computations, that

0 = div τ h,i = divq + (k + 2) q̃ in T ,

which yields q̃ = 0 since divq = 0 for k = 0, and for k ≥ 1 there also holds q̃ = 0 since

otherwise q̃ = −
1

(k + 2)
divq ∈ Pk−1(T ), which contradicts the fact that q̃ ∈ P̃k(T ). In this

way, we actually have that τ h,i = q + b in T , from which we conclude that

τ h|T ∈ [Pk(T ) ⊕ Bk(T )]
2 ∀T ∈ Th .

Therefore, in order to accomplish (H.2), the above suggests to simply define for each k ≥ 0

X1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ [Pk(T )⊕Bk(T )]

2 ∀T ∈ Th
}
. (8.5)

We have thus demonstrated the following theorem, which extends to the case k ≥ 1 the
corresponding result provided in [5, Theorem 5.1].

Theorem 8.1. Given an integer k ≥ 0, we let X1,h, M1,h and Mh := Mu

h ×Mγ
h be the

finite element subspaces defined by (8.5), (8.2), (8.3), and (8.4), respectively. Then, there
exists a unique (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh solution of (7.1). Moreover, there exist

C, C̃ > 0, independent of h, such that

‖(th,σh, (uh,γh))‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}

and

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C̃ inf
(sh,τ h,(vh,ηh))

∈X1,h×M1,h×Mh

‖(t,σ, (u,γ))− (sh, τ h, (vh,ηh))‖ .

(8.6)

Proof. It is a straightforward application of Theorem 7.1 and the fact that the discrete
functionals are bounded by the data as indicated here. �

Furthermore, in order to establish the rate of convergence of the Galerkin solution provided
by Theorem 8.1, we need the approximation properties of the finite element subspaces involved.
For this purpose, we first define the global Raviart-Thomas, bubble, and piecewise polynomial
spaces, all of order k ≥ 0, as

RTk(Th) :=
{
τ h ∈ H(div; Ω) : τh|T ∈ [RTk(T )]

2 ∀T ∈ Th
}
,

Bk(Th) :=
{
τh ∈ H(div; Ω) : τ h|T ∈ [Bk(T )]

2 ∀T ∈ Th
}
,

and

Pk(Th) :=
{
vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
.
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Note, in particular, that the finite element subspaces X1,h (cf. (8.5)), M1,h (cf. (8.2)), and
Mu

h (cf. (8.3)) can also be defined, for each k ≥ 0, as

X1,h = [Pk(Th)]
2×2 ⊕ Bk(Th) , M1,h := RTk(Th)⊕ Bk(Th) , and Mu

h := [Pk(Th)]
2 .

Now, we let Ek
h : H1(Ω) −→ RTk(Th) be the usual equilibrium interpolation operator (see,

e.g. [55], [10]), which, given τ ∈ H1(Ω), is characterized by the following identities:
∫

e
Ek
h(τ )ν · ψ =

∫

e
τν · ψ ∀ edge e ∈ Th , ∀ ψ ∈ Pk(e) , when k ≥ 0 , (8.7)

and ∫

T
Ek
h(τ ) : ψ =

∫

T
τ : ψ ∀ T ∈ Th , ∀ ψ ∈ Pk−1(T ) , when k ≥ 1 . (8.8)

It is easy to show, using (8.7) and (8.8), that

div(Ek
h(τ )) = Pk

h(div(τ )) , (8.9)

where Pk
h is the orthogonal projector from L2(Ω) into [Pk(Th)]

2. Note that Pk
h can also be

identified with (Pk
h,P

k
h), where Pk

h is the orthogonal projector from L2(Ω) into Pk(Th). It is
well known (see, e.g. [16]) that for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖v −Pk
h(v)‖0,T ≤ C hmT |v|m,T ∀T ∈ Th . (8.10)

In addition, the operator Ek
h satisfies the following approximation properties (see, e.g. [10],

[55]):

‖τ − Ek
h(τ )‖0,T ≤ C hmT |τ |m,T ∀T ∈ Th , (8.11)

for each τ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ − Ek
h(τ ))‖0,T ≤ C hmT |div(τ )|m,T ∀T ∈ Th , (8.12)

for each τ ∈ H1(Ω) such that div(τ ) ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ ν − Ek
h(τ )ν‖0,e ≤ C h1/2e ‖τ‖1,Te ∀ edge e ∈ Th , (8.13)

for each τ ∈ H1(Ω), where Te ∈ Th contains e on its boundary. In particular, note that
(8.12) follows easily from (8.9) and (8.10). Moreover, it turns out (see, e.g. Theorem 3.16
in [48]) that Ek

h can also be defined as a bounded linear operator from the larger space

Hδ(Ω) ∩ H(div; Ω) into RTk(Th) for all δ ∈ (0, 1]. Furthermore, it is easy to show, using the
well-known Bramble-Hilbert Lemma and the boundedness of the local interpolation operators

on the reference element T̂ (see, e.g. [48, equation (3.39)]), that in this case there holds the
following interpolation error estimate

‖τ − Ek
h(τ )‖0,T ≤ C hδT

{
‖τ‖δ,T + ‖div(τ )‖0,T

}
∀T ∈ Th . (8.14)

Then, as a consequence of (8.10), (8.11), (8.12), (8.13), (8.14), and the usual interpolation
estimates, we find that the finite element subspaces X1,h, M1,h, and Mu

h given by (8.5), (8.2),
and (8.3) for k ≥ 0, satisfy the following approximation properties:

(APt

1,h) For each δ ∈ [0, k + 1] and for each s ∈ Hδ(Ω) there exists sh ∈ X1,h such that

‖s− sh‖0,Ω ≤ C hδ ‖s‖δ,Ω .

(APσ
1,h) For each δ ∈ (0, k + 1] and for each τ ∈ Hδ(Ω) ∩ H(div; Ω) with div τ ∈ Hδ(Ω)

there exists τh ∈ M1,h such that

‖τ − τ h‖div,Ω ≤ C hδ
{
‖τ‖δ,Ω + ‖div τ‖δ,Ω

}
.
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(APu

h) For each δ ∈ [0, k + 1] and for each v ∈ Hδ(Ω) there exists vh ∈ Mu

h such that

‖v − vh‖0,Ω ≤ C hδ ‖v‖δ,Ω .

In turn, the approximation property of Mγ
h is given as follows (cf. [10]):

(APγ
h) For each δ ∈ [0, k+1] and for each η ∈ Hδ(Ω) ∩ L2

skew
(Ω) there exists ηh ∈ Mγ

h such
that

‖η − ηh‖0,Ω ≤ C hδ ‖η‖δ,Ω .

The following theorem establishes the corresponding rate of convergence of the Galerkin
scheme (7.1).

Theorem 8.2. Given an integer k ≥ 0, we let X1,h, M1,h and Mh := Mu

h×Mγ
h be the finite

element subspaces defined by (8.5), (8.2), (8.3), and (8.4), respectively. Let (t,σ, (u,γ)) ∈
X := X1 ×M1 ×M and (th,σh, (uh,γh)) ∈ X1,h ×M1,h ×Mh be the unique solutions of the

continuous and discrete formulations (4.6) and (7.1), respectively. Assume that t ∈ Hδ(Ω),
σ ∈ Hδ(Ω), divσ ∈ Hδ(Ω), u ∈ Hδ(Ω) and γ ∈ Hδ(Ω), for some δ ∈ (0, k + 1]. Then there
exists C > 0, independent of h, such that

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω + ‖γ‖δ,Ω

}
.

(8.15)

Proof. It follows from the Céa estimate (8.6) and the above approximation properties.
�





CHAPTER 3

The augmented variational formulation

In this chapter we propose an augmented formulation for (4.6) and a corresponding discrete
scheme whose main advantage is the elimination of the assumption (H.2) in Theorem 7.1,
which means that the discrete inf-sup condition for B1 is no longer required. More precisely,
we show that a suitable enrichment of (4.6) yields an associated Galerkin scheme whose well-
posedness is guaranteed by any finite dimensional subspaceX1,h of X1 and any pair (M1,h,Mh)
satisfying (H.1) and (H.3) only. In particular, the eventual need of approximating t by either
continuous or discontinuous piecewise polynomial tensors of any degree can be satisfied with
this approach.

9. The continuous augmented formulation

As mentioned above, we now enrich the formulation (4.6) with the further introduction of
the constitutive law relating σ and t (written as in the second equation of (4.1)) multiplied
by a stabilization parameter. More precisely, given κ0 > 0, to be chosen later, we add

κ0

∫

Ω

(
σ −

{
λ(t) tr(t) I + µ(t) t

})
: τ = 0 ∀ τ ∈ H(div; Ω)

to the first equation of (4.6), and subtract the second equation of (4.6) to the resulting
expression. In addition, we keep the third equation as it is, but multiplied by −1. In this way,
denoting the product space X := X1×M1, we arrive at the following augmented formulation
(written as a single saddle point system): Find ((t,σ), (u,γ)) ∈ X ×M such that

[A(t,σ), (s, τ )] + [B(s, τ ), (u,γ)] = [F , (s, τ )] ∀ (s, τ ) ∈ X ,

[B(t,σ), (v,η)] = [G, (v,η)] ∀ (v,η) ∈ M ,
(9.1)

where the nonlinear operatorA : X → X ′, the linear operator B : X → M ′, and the functionals
F ∈ X ′ and G ∈ M ′, are defined by:

[A(t,σ), (s, τ )] := [A1(t), s] + [B1(s),σ]− [B1(t), τ ] + κ0

∫

Ω

(
σ−
{
λ(t) tr(t) I+µ(t) t

})
: τ ,

(9.2)

[B(s, τ ), (v,η)] := − [B(τ ), (v,η)] =

∫

Ω
v · div τ +

∫

Ω
τ : η , (9.3)

[F , (s, τ )] := [H, s] − [G, τ ] = 〈τ ν,g〉Γ , (9.4)

and

[G,v] := − [F,v] = −

∫

Ω
f · v . (9.5)

Our next goal is to show the unique solvability of the variational formulation (9.1), whence
(4.6) and (9.1) share the same unique solution. We first recall from [57] the following abstract
theorem.

17
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Theorem 9.1. Let X, M be Hilbert spaces and let A : X → X ′ and B : X → M ′ be
nonlinear and linear operators, respectively. Let V := Ker (B) = {x ∈ X : [B(x), q] =
0 ∀ q ∈ M }. Assume that A is Lipschitz-continuous on X and that for all z̃ ∈ X, A(z̃ + ·)
is uniformly strongly monotone on V , that is, there exist constants γ, α > 0 such that

||A(x) − A(y)||X′ ≤ γ ‖x− y‖X ∀x, y ∈ X ,

and

[A(z̃ + x)−A(z̃ + y), x− y] ≥ α ‖x− y‖2X
for all z̃ ∈ X and for all x, y ∈ V . In addition, assume that there exists β > 0 such that for
all q ∈ M

sup
x∈X\{0}

[B(x), q]

‖x‖X
≥ β ‖q‖M .

Then, given (F ,G) ∈ X ′ ×M ′, there exists a unique (x, p) ∈ X ×M such that

[A(x), y] + [B(y), p] = [F , y] ∀ y ∈ X ,

[B(x), q] = [G, q] ∀ q ∈ M .

Further, the following estimates hold

‖x‖X ≤
1

α
‖F‖ +

1

β

(
1 +

γ

α

)
‖G‖ , (9.6)

‖p‖M ≤
1

β

(
1 +

γ

α

) (
‖F‖ +

γ

β
‖G‖

)
. (9.7)

Proof. It is a particular case of Proposition 2.3 in [57]. �

The discrete analogue of Theorem 9.1 and the corresponding Céa estimate are provided
in [57, Proposition 2.6, Theorem 2.1]. We omit details here.

In order to apply Theorem 9.1 to the augmented formulation (9.1), we need several pre-
liminary results establishing the required properties for our nonlinear operator A (cf. (9.2)).
We begin with the following lemma.

Lemma 9.1. Let A be the nonlinear operator defined by (9.2). Then, there exists a constant
γ > 0 such that

||A(t,σ) − A(s, τ )||X′ ≤ γ ‖(t,σ)− (s, τ )‖X ∀ (t,σ), (s, τ ) ∈ X . (9.8)

Proof. Given (t,σ), (s, τ ), (r, ζ) ∈ X, we obtain, according to (9.2) and the definition
of A1 (cf. (4.5)), that

[A(t,σ)−A(s, τ ), (r, ζ)] = [A1(t)− A1(s), r] + [B1(r),σ − τ ] − [B1(t− s), ζ]

+ κ0

∫

Ω
(σ − τ ) : ζ − κ0 [A1(t) − A1(s), ζ] ,

(9.9)

which, employing Cauchy-Schwarz’s inequality, yields
∣∣ [A(t,σ)−A(s, τ ), (r, ζ)]

∣∣ ≤ ||A1(t)− A1(s)||X′

1
||r||X1 + ||B1(r)||M ′

1
||σ − τ ||M1

+ ‖B1(t− s)||M ′

1
||ζ||M1 + κ0 ||(σ − τ )||M1 ||ζ||M1 + κ0 ||A1(t)− A1(s)||X′

1
||ζ||M1 .

Hence, applying the Lipschitz-continuity of A1 (cf. (6.7) in Lemma 6.2) and the boundedness
of B1, we conclude from the above inequality that A is Lipschitz continuous on X with a
constant γ depending on γ1, ‖B1‖, and κ0. �
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The following estimate is applied later on to show that A satisfies the strong monotonicity
property.

Lemma 9.2. Let A be the operator defined by (9.2) and assume that the parameter κ0 lies

in

(
0,

2α1

γ21

)
, where γ1 and α1 are the positive constants from Lemma 6.1 (cf. (6.6)). Then,

there exists a constant α > 0 such that

[A((r, ζ)+(t,σ)) − A((r, ζ)+(s, τ )), (t,σ) − (s, τ )] ≥ α
{
‖t − s‖2X1

+ ‖σ − τ‖20,Ω

}
(9.10)

for all (r, ζ) , (t,σ) , (s, τ ) ∈ X.

Proof. Given (r, ζ) , (t,σ) , (s, τ ) ∈ X, we find, using the identity (9.9) and noting
that the terms involving B1 cancell out, that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] = [A1(r+ t) − A1(r+ s), t − s]

+ κ0 ‖σ − τ‖20,Ω − κ0 [A1(r+ t)− A1(r+ s),σ − τ ] .

Then, using that [A1(r+ t)−A1(r+ s), t− s] = [A1(r+ t)−A1(r+ s), (r+ t)− (r+ s)], and
applying the strong monotonicity and Lipschitz-continuity of A1 (cf. Lemma 6.2), we deduce
from the above equation that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )]

≥ α1 ‖t− s‖2X1
+ κ0 ‖σ − τ‖20,Ω − κ0 γ1 ‖t − s‖X1 ‖σ − τ‖0,Ω

≥ α1 ‖t− s‖2X1
+ κ0 ‖σ − τ‖20,Ω − κ0 γ1

{
‖t− s‖2X1

2 δ
+

δ

2
‖σ − τ‖20,Ω

}

=
(
α1 −

κ0 γ1
2 δ

)
‖t− s‖2X1

+ κ0

(
1 −

γ1 δ

2

)
‖σ − τ‖20,Ω ∀ δ > 0 .

It follows that the constants multiplying the norms above become positive if δ ∈

(
0,

2

γ1

)

and κ0 ∈

(
0,

2α1 δ

γ1

)
. In particular, for δ =

1

γ1
we require κ0 ∈

(
0,

2α1

γ21

)
, whence we find

that
[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )]

≥
(
α1 −

κ0 γ
2
1

2

)
‖t − s‖2X1

+
κ0
2

‖σ − τ‖20,Ω .

Finally, this inequality implies the required estimate with α := min

{
α1 −

κ0 γ
2
1

2
,
κ0
2

}
. �

It is quite straightforward from Lemma 9.2 that, defining

Ṽ := X1 ×
{
τ ∈ M1 : div τ = 0 in Ω

}
, (9.11)

and assuming again that the parameter κ0 lies in

(
0,

2α1

γ21

)
, there holds with the same constant

α,

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] ≥ α ‖(t,σ)− (s, τ )‖2X (9.12)
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for all (r, ζ) ∈ X, and for all (t,σ), (s, τ ) ∈ Ṽ. In particular, noting from the definition of B
(cf. (9.3)) that its kernel V reduces to

V = X1 ×
{
τ ∈ M1 : div τ = 0 and τ = τ t in Ω

}
,

which is certainly contained in Ṽ , we find that

[A((r, ζ) + (t,σ))−A((r, ζ) + (s, τ )), (t,σ)− (s, τ )] ≥ α ‖(t,σ)− (s, τ )‖2X

for all (r, ζ) ∈ X, and for all (t,σ), (s, τ ) ∈ V.

On the other hand, it is clear from the definition of our linear operator B (cf. (9.3)) that

sup
(s,τ )∈X\{0}

[B(s, τ ), (v,η)]

‖(s, τ )‖X
= sup
τ∈M1\{0}

[B(τ ), (v,η)]

‖τ‖M1

∀ (v,η) ∈ M , (9.13)

which implies that the continuous inf-sup conditions for B and B, the latter already proved in
Lemma 6.3, coincide.

Hence, we are ready to establish the well-posedness of our augmented formulation (9.1).

Theorem 9.2. Assume that the parameter κ0 lies in

(
0,

2α1

γ21

)
, where γ1 and α1 are the

positive constants from Lemma 6.1. Then, there exists a unique ((t,σ), (u,γ)) ∈ X × M
solution of (9.1). Moreover, there exists C > 0 such that

‖((t,σ), (u,γ))‖X×M ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. By virtue of the previous discussion and the fact that the functionals F (cf.
(9.4)) and G (cf. (9.5)) are bounded by the data (as indicated here), the proof follows from a
straightforward application of Theorem 9.1. �

10. The discrete augmented formulation

We now come to the analysis of the Galerkin scheme associated with the augmented
formulation (9.1). To this end, we now let X1,h, M1,h, and Mh := Mu

h × Mγ
h be finite

dimensional subspaces of X1, M1, and M , respectively, and define Xh := X1,h ×M1,h. Then,
we are interested in the following discrete scheme: Find ((th,σh), (uh,γh)) ∈ Xh ×Mh such
that

[A(th,σh), (s, τ )] + [B(s, τ ), (uh,γh)] = [F , (s, τ )] ∀ (s, τ ) ∈ Xh ,

[B(th,σh), (v,η)] = [G, (v,η)] ∀ (v,η) ∈ Mh .
(10.1)

In order to analyze the solvability of (10.1), we first notice from (9.3) that the discrete

kernel of B, that is Vh :=
{
(sh, τ h) ∈ Xh : [B(sh, τ h), (vh,ηh)] = 0 ∀ (vh,ηh) ∈ Mh

}
,

reduces to

Vh = X1,h×
{
τ h ∈ M1,h :

∫

Ω
vh·div τh = 0 and

∫

Ω
τh : ηh = 0 ∀ (vh,ηh) ∈ Mh

}
.

In addition, as in (9.13), we realize that

sup
(sh,τ h)∈Xh\{0}

[B(sh, τ h), (vh,ηh)]

‖(sh, τ h)‖X
= sup
τ h∈M1,h\{0}

[B(τ h), (vh,ηh)]

‖τ h‖M1

∀ (vh,ηh) ∈ Mh ,

which implies that the discrete inf-sup conditions for B and B also coincide.

Hence, we are in a position to establish the following result.
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Theorem 10.1. Besides the hypotheses of Theorem 9.2, assume that X1,h is any finite

element subspace of X1, that div τh = 0 ∀ (sh, τ h) ∈ Vh (equivalently, Vh ⊆ Ṽ), and that

B satisfies the discrete inf-sup condition on M1,h×Mh, that is there exists β̃ > 0, independent
of h, such that

sup
τ h∈M1,h\{0}

[B(τh), (vh,ηh)]

‖τ h‖M1

≥ β̃ ‖(vh,ηh)‖M ∀ (vh,ηh) ∈ Mh .

Then there exists a unique ((th,σh), (uh,γh)) ∈ Xh×Mh solution of (10.1). Moreover, there
exist C1, C2 > 0, independent of h, such that

‖((th,σh), (uh,γh))‖X×M ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
, (10.2)

and

‖((t,σ), (u,γ))− ((th,σh), ((uh,γh))‖X×M

≤ C2

{
inf

(sh,τ h)∈Xh

‖(t,σ)− (sh, τ h)‖X + inf
(vh,ηh)∈Mh

‖(u,γ)− (vh,ηh)‖M
}
.

(10.3)

Proof. It is clear that the Lipschitz-continuity of A (cf. Lemma 9.1) is also valid on
Xh ×X ′

h, which means that, with the same constant γ from Lemma 9.1, there holds

||A(th,σh) − A(sh, τ h)||X′

h
≤ γ ‖(th,σh)− (sh, τ h)‖X ∀ (th,σh), (sh, τ h) ∈ Xh .

Furthermore, since Vh ⊆ Ṽ (cf. (9.11)), the strong monotonicity of A provided by (9.12)
also holds for all (rh, ζh) ∈ Xh, and for all (th,σh), (sh, τ h) ∈ Vh. Therefore, the unique
solvability of (10.1) and the estimate (10.2) are again consequence of Theorem 9.1 (see also the
discrete analogue given by [57, Proposition 2.6]). Finally, the Céa estimate (10.3) constitutes
a particular application of the general result given by [57, Theorem 2.1]. We omit further
details. �

It is important to notice that, on the contrary to the condition (H.2) in Theorem 7.1, the
well-posedness of the present discrete augmented scheme (10.1) does not require any additional
restriction on X1,h, but being only a finite dimensional subspace of X1. Furthermore, as

established by the hypothesis (̃H.3) in Theorem 7.1, we recall that a sufficient condition for

Vh ⊆ Ṽ to hold is that div(M1,h) ⊆ Mu

h . Finally, we remark that, though the unique solutions
of the discrete schemes (5.5) and (10.1) are denoted in the same way, they do not necessarily
coincide.

11. Specific finite element subspaces

We now provide several examples of subspaces verifying the hypotheses of Theorem 10.1.
First of all, it is quite clear from the analysis in Section 8 that, given an integer k ≥ 0, the
subspaces M1,h and Mh := Mu

h × Mγ
h defined by (8.2), (8.3), and (8.4), and the resulting

discrete kernel Vh of B (irrespective of the chosen subspace X1,h), satisfy the corresponding
assumptions in Theorem 10.1. Consequently, and since any finite element subspace X1,h of
X1 will yield a well-posed discrete augmented scheme (10.1), we can establish the following
result.

Theorem 11.1. Besides the hypotheses of Theorem 9.2, assume that X1,h is any finite
element subspace of X1, and that given an integer k ≥ 0, M1,h and Mh := Mu

h × Mγ
h are
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defined by (8.2), (8.3), and (8.4), respectively. Then there exists a unique ((th,σh), (uh,γh)) ∈
Xh ×Mh solution of (10.1). Moreover, there exist C1, C2 > 0, independent of h, such that

‖((th,σh), (uh,γh))‖X×M ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
,

and

‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ C2

{
inf

(sh,τ h)∈Xh

‖(t,σ)− (sh, τ h)‖X + inf
(vh,ηh)∈Mh

‖(u,γ)− (vh,ηh)‖M
}
.

(11.1)

Proof. It is a direct consequence of the previous analysis and Theorem 10.1. �

Next, for the rate of convergence of (10.1) we proceed similarly as we did for Theorem
8.2, using now the Céa estimate (10.3) (or (11.1)), and the approximation properties of the
subspaces involved. In particular, if the discrete augmented scheme (10.1) is defined with
the subspaces from Theorem 8.2, we obtain exactly the same estimate (8.15) provided there.
Moreover, this result also holds if we take the bubble functions away in (8.5) and consider the
simpler subspace

X̃1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk(T ) ∀T ∈ Th

}
, (11.2)

which, failing to satisfy (H.2) in Theorem 7.1, is certainly not suitable for the non-augmented
discrete scheme (7.1). Note, however, that the approximation property (APt

1,h) of X1,h (cf.

(8.5)), which was introduced in Section 8, actually corresponds to the approximation property

of X̃1,h (cf. (11.2)). The results described in this paragraph are summarized as follows.

Theorem 11.2. Given an integer k ≥ 0, we take X1,h (cf. (8.5)) or X̃1,h (cf. (11.2)) as
the finite element subspace of X1, and let M1,h and Mh := Mu

h × Mγ
h be the finite element

subspaces defined by (8.2), (8.3), and (8.4), respectively. Let ((t,σ), (u,γ)) ∈ X × M and
((th,σh), (uh,γh)) ∈ Xh×Mh be the unique solutions of the continuous and resulting discrete
formulations (9.1) and (10.1), respectively. Assume that t ∈ Hδ(Ω), σ ∈ Hδ(Ω), divσ ∈
Hδ(Ω), u ∈ Hδ(Ω) and γ ∈ Hδ(Ω), for some δ ∈ (0, k + 1]. Then there exists C > 0,
independent of h, such that

‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω + ‖γ‖δ,Ω

}
.

On the other hand, we could keep M1,h and Mh as given by (8.2), (8.3), and (8.4), but
use a lower polynomial degree for approximating t in the case k ≥ 1. For example, instead of
(11.2), we could consider:

X̂1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk−1(T ) ∀T ∈ Th

}
, (11.3)

which clearly does not satisfy (H.2) in Theorem 7.1 either. It follows, applying (8.10), that

the approximation property of X̂1,h (cf. (11.3)) becomes as (APt

1,h), but with regularity range

[0, k] instead of [0, k+1]. Hence, thanks to the approximation properties of M1,h and Mh (cf.
(APσ

1,h) and (APu

h) in Section 8), we also obtain in this case the same rate of convergence

provided by Theorem 11.2, but limited to δ ∈ (0, k].
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Another possibility is to approximate t by continuous piecewise polynomial tensors. For
instance, given k ≥ 0, we could keep again M1,h and Mh as given by (8.2), (8.3), and (8.4),
and consider now:

X1,h :=
{
sh ∈ C(Ω) : sh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (11.4)

which, due to the continuity requirement, does not verify (H.2) in Theorem 7.1 either. In this
case, assuming a convex domain Ω, one can show (cf. [54, eq. (3.5.15) and Remark 6.2.1])
that X1,h (cf. (11.4)) satisfies the approximation property

(APt

1,h) For each δ ∈ [0, k +1] and for each s ∈ Hδ(Ω) ∩ X1 there exists sh ∈ X1,h such that

‖s− sh‖0,Ω ≤ C hδ ‖s‖δ,Ω .

Hence, the rate of convergence of the resulting augmented scheme is again the same provided
by Theorem 11.2.





CHAPTER 4

The fully augmented variational formulation

In this chapter we propose a fully augmented formulation for (4.6) and a corresponding
discrete scheme whose main advantage is the elimination of the remaining assumptions on the
finite element subspaces (cf. Theorem 10.1), which means that the discrete inf-sup condition
for B is no longer needed. In other words, we show that a further enrichment of (9.1) yields an
associated Galerkin scheme whose well-posedness is guaranteed by any finite element subspace
of the resulting global space.

12. The continuous fully augmented formulation

In what follows we proceed as in [29] and enrich the variational formulation (9.1) with
additional terms arising from the equilibrium equation and from the relations defining t and
the rotation γ as functions of the displacement u. In addition, in order to deal with the
non-homogeneous Dirichlet boundary condition on Γ, we apply the idea from [30] (see also
[40]) and introduce a consistent boundary term. More precisely, we first substract the second
from the first equation of (9.1) and then add the redundant equations:

κ1

∫

Ω

(
divσ + f

)
· div τ = 0 ,

κ2

∫

Ω

(
e(u) − t

)
: e(v) = 0 ,

κ3

∫

Ω

{
γ −

1

2
(∇u − (∇u)t)

}
: η = 0 ,

and

κ4

∫

Γ
u · v = κ4

∫

Γ
g · v ,

for all (τ ,v,η) ∈ H(div; Ω)×H1(Ω)× L2
skew

(Ω), where (κ1, κ2, κ3, κ4) is a vector of positive
constants, also named stabilization parameters, to be suitably chosen later on. It is important
to observe here that the above terms require now the displacement u to live in H1(Ω) (instead
of u ∈ L2(Ω) as in (4.6) and (9.1)).

In this way, we now look at the following fully augmented variational formulation: Find
(t,σ,u,γ) ∈ X := L2(Ω)×H(div; Ω)×H1(Ω)× L2

skew
(Ω) such that

[A(t,σ,u,γ), (s, τ ,v,η)] = [F, (s, τ ,v,η)] ∀ (s, τ ,v,η) ∈ X , (12.1)

where the nonlinear operator A : X → X′ and the functional F ∈ X′ are defined by

[A(t,σ,u,γ), (s, τ ,v,η)] := [A(t,σ), (s, τ )] + [B(s, τ ), (u,γ)] − [B(t,σ), (v,η)]

+ κ1

∫

Ω
divσ · div τ + κ2

∫

Ω

(
e(u) − t

)
: e(v)

+ κ3

∫

Ω

{
γ −

1

2
(∇u − (∇u)t)

}
: η + κ4

∫

Γ
u · v ,

(12.2)

25
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and

[F, (s, τ ,v,η)] := [F , (s, τ )] − [G, (v,η)] − κ1

∫

Ω
f · div τ + κ4

∫

Γ
g · v .

Our next goal is to show the unique solvability of the variational formulation (12.1), whence
(9.1) and (12.1) share the same unique solution. We first recall from [53] the following abstract
theorem.

Theorem 12.1. Let X be a Hilbert space and let A : X → X ′ be a nonlinear operator. As-
sume that A is Lipschitz-continuous and strongly monotone on X, that is, there exist constants
γ̃, α̃ > 0 such that

||A(x) − A(y)||X′ ≤ γ̃ ‖x− y‖X ∀x, y ∈ X ,

and
[A(x)−A(y), x − y] ≥ α̃ ‖x− y‖2X ∀x, y ∈ X .

Then, given F ∈ X ′, there exists a unique x ∈ X such that

[A(x), y] = [F, y] ∀x ∈ X .

Further, the following estimate holds

‖x‖X ≤
1

α̃
‖F‖X′ . (12.3)

Proof. It is a particular case of [53, Theorem 3.3.23]. �

In order to apply Theorem 12.1 to the fully augmented formulation (12.1), we need to
prove first the required properties for our nonlinear operator A (cf. (12.2)). We begin with
the Lipschitz-continuity.

Lemma 12.1. Let A be the nonlinear operator defined by (12.2). Then, there exists a
constant γ̃ > 0, depending on γ (cf. (9.8)), ‖B‖, and the parameters κi, i ∈ {1, ..., 4}, such
that

||A(t,σ,u,γ) − A(s, τ ,v,η)||X′ ≤ γ̃ ‖(t,σ,u,γ)− (s, τ ,v,η)‖X
for all (t,σ,u,γ) , (s, τ ,v,η) ∈ X.

Proof. It basically follows from the Lipschitz-continuity of the nonlinear operator A (cf.
Lemma 9.1) and the boundedness of the remaining terms (all bilinear) defining A, together
with applications of the Cauchy-Schwarz inequality and the trace theorem in H1(Ω). We omit
further details.

�

In turn, the strong monotonicity of A makes use of a slight extension of the second Korn
inequality, which establishes the existence of a constant c1 > 0 such that

‖e(v)‖20,Ω + ‖v‖20,Γ ≥ c1 ‖v‖21,Ω ∀v ∈ H1(Ω) . (12.4)

The proof of (12.4) follows from a direct application of the Peetre-Tartar Lemma (see, e.g.
[47, Theorem 2.1, Chapter I]). Alternatively, (12.4) is a particular case of [30, Lemma 3.1],
whose proof employs analogue arguments to those given in the proof of [8, Theorem 9.2.16].

Lemma 12.2. Let A be the nonlinear operator defined by (12.2), and let the parameter

κ0 ∈

(
0,

2α1

γ21

)
, where γ1 and α1 are the positive constants from Lemma 6.1 (cf. (6.6)).

In addition, assume that the parameters κ1, κ2, κ3, and κ4 are chosen such that 0 < κ1,
0 < κ2 < 2α, 0 < κ3 < α3, and 0 < κ4, where α is the constant from (9.10) (cf. Lemma
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9.2), that is α := min

{
α1 −

κ0 γ
2
1

2
,
κ0
2

}
, and α3 := c1 min{κ2, 2κ4}. Then, there exists a

constant α̃ > 0, depending on α, c1, κ1, κ2, κ3, and κ4, such that

[A(t,σ,u,γ)− A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥ α̃ ‖(t,σ,u,γ) − (s, τ ,v,η)‖2X

for all (t,σ,u,γ), (s, τ ,v,η) ∈ X.

Proof. Given (t,σ,u,γ), (s, τ ,v,η) ∈ X, we observe, according to the definition of A
(cf. (12.2)) and the fact that the terms involving B cancell out, that

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] = [A(t,σ)−A(s, τ ), (t,σ)− (s, τ )]

+ κ1 ‖div
(
σ − τ

)
‖20,Ω + κ2

∫

Ω

(
e(u − v) −

(
t − s

))
: e(u − v)

+ κ3

∫

Ω

{(
γ − η

)
−

1

2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)}
:
(
γ − η

)
+ κ4 ‖u − v‖20,Γ ,

which, applying (9.10) (cf. Lemma 9.2), the Cauchy-Schwarz inequality, and the basic estimate
a b ≤ 1

2 (a
2 + b2), yields

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥ α
{
‖t − s‖20,Ω + ‖σ − τ‖20,Ω

}

+ κ1 ‖div
(
σ − τ

)
‖20,Ω +

κ2
2

‖e(u− v)‖20,Ω −
κ2
2

‖t− s‖20,Ω +
κ3
2

‖γ − η‖20,Ω

−
κ3
2

∥∥∥1
2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)∥∥∥
2

0,Ω
+ κ4 ‖u − v‖20,Γ .

Then, noting that
∥∥∥1
2

(
∇
(
u− v

)
−
(
∇
(
u− v

))t)∥∥∥
2

0,Ω
= |u− v|21,Ω − ‖e(u− v)‖20,Ω ,

and employing the Korn inequality (12.4), we find that

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥
(
α−

κ2
2

)
‖t − s‖20,Ω + α2 ‖σ − τ‖2div;Ω

+
(κ2 + κ3)

2
‖e(u− v)‖20,Ω + κ4 ‖u − v‖20,Γ −

κ3
2

|u− v|21,Ω +
κ3
2

‖γ − η‖20,Ω

≥
(
α−

κ2
2

)
‖t − s‖20,Ω + α2 ‖σ − τ‖2div;Ω +

(α3 − κ3)

2
‖u− v‖21,Ω +

κ3
2

‖γ − η‖20,Ω
(12.5)

where α2 := min{α, κ1}, thus finishing the proof with α̃ := min
{(

α− κ2
2

)
, α2,

(α3−κ3)
2 , κ3

2

}
.

�

The well-posedness of the fully augmented formulation (12.1) can be established as follows.

Theorem 12.2. Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as in-
dicated in Lemma 12.2. Then, there exists a unique (t,σ,u,γ) ∈ X solution of (12.1).
Moreover, there exists C > 0, depending on α̃ (cf. Lemma 12.2), such that

‖(t,σ,u,γ)‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.
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Proof. Thanks to Lemmas 12.1 and Lemma 12.2, the proof is a direct application of
Theorem 12.1.

�

It is important to remark here that all the parameters but κ3, which depends on the
unknown constant c1 (cf. (12.4)), can be chosen explicitly. In particular, and adopting as

criterion the choice of the average value of each feasible range, we take κ0 =
α1

γ21
and κ2 = α,

which yields

κ2 =
α1

2
min

{
1,

1

γ21

}
.

Next, in order to maximize the values of the minima involved in the definition of α2 and α3,
thus maximizing these constants, we choose κ1 = α and 2κ4 = κ2, which gives

κ1 =
α1

2
min

{
1,

1

γ21

}
and κ4 =

α1

4
min

{
1,

1

γ21

}
.

Then, the theoretical feasible range of κ3 becomes the interval
(
0, c1 κ2

)
, whose average value

is

κ3 = c1
α1

4
min

{
1,

1

γ21

}
.

The numerical results shown below in Chapter 6, which simply assume c1 = 1 in the above
expression, illustrate that not knowing this constant does not really affect, at least for the
examples considered there, the well-posedness of the resulting discrete fully augmented scheme.

On the other hand, we remark that when g = 0, that is in the case of homogeneous
Dirichlet boundary conditions, there is no need to introduce the boundary term on Γ, and
hence no parameter κ4 appears in the fully augmented formulation. In fact, the corresponding
product space is then X0 := L2(Ω) × H(div; Ω) × H1

0(Ω) × L2
skew

(Ω), and according to the
first Korn inequality, which says that

‖e(v)‖20,Ω ≥
1

2
|v|21,Ω ∀v ∈ H1

0(Ω) ,

the estimate (12.5) now becomes

[A(t,σ,u,γ) − A(s, τ ,v,η), (t,σ,u,γ) − (s, τ ,v,η)] ≥
(
α−

κ2
2

)
‖t − s‖20,Ω

+ α2 ‖σ − τ‖2div;Ω +
(κ2 − κ3)

4
|u− v|21,Ω +

κ3
2

‖γ − η‖20,Ω .

In this way, the strong monotonicity of A is guaranteed by any explicit choice of the parameters
satisfying 0 < κ2 < 2α and 0 < κ3 < κ2 (besides the already mentioned choices for κ0 and
κ1).

13. The discrete fully augmented formulation

We now consider the Galerkin scheme associated with the fully augmented formulation
(12.1). For this purpose, we now letX1,h, M1,h, M

u

h , andMγ
h be finite dimensional subspaces of

L2(Ω), H(div; Ω),H1(Ω), and L2
skew

(Ω), respectively, and defineXh := X1,h×M1,h×Mu

h×Mγ
h .

Then, we are interested in the following discrete scheme: Find (th,σh,uh,γh) ∈ Xh such that

[A(th,σh,uh,γh), (s, τ ,v,η)] = [F, (s, τ ,v,η)] ∀ (s, τ ,v,η) ∈ Xh . (13.1)

The following theorem establishes the well-posedness and convergence properties of (13.1).
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Theorem 13.1. Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as indi-
cated in Lemma 12.2. In addition, let X1,h, M1,h, M

u

h , and Mγ
h be arbitrary finite dimensional

subspaces of L2(Ω), H(div; Ω), H1(Ω), and L2
skew

(Ω), respectively. Then there exists a unique
(th,σh,uh,γh) ∈ Xh solution of (13.1). Moreover, there exist C1, C2 > 0, independent of h,
such that

‖(th,σh,uh,γh)‖X ≤ C1

{
‖f‖0,Ω + ‖g‖1/2,Γ

}
, (13.2)

and
‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ C2 inf
(sh,τ h,vh,ηh)∈Xh

‖(t,σ,u,γ)− (sh, τ h,vh,ηh)‖X .
(13.3)

Proof. It is clear that the Lipschitz-continuity and strong monotonicity of A (cf. Lemmas
12.1 and 12.2) are certainly valid on Xh ×X′

h, with the same constants γ̃ and α̃, respectively.
Therefore, the unique solvability of (13.1) and the estimate (13.2) are again consequence of
Theorem 12.1. In turn, the Céa estimate (13.3) follows from standard arguments, similarly
as for linear problems, and using obviously the above mentioned properties of A. We omit
further details.

�

Next, we consider the canonical finite element subspaces X1,h, M1,h, Mu

h , and Mγ
h of

L2(Ω), H(div; Ω), H1(Ω), and L2
skew

(Ω), respectively. More precisely, given an integer k ≥ 0,
we now define

X1,h :=
{
sh ∈ L2(Ω) : sh|T ∈ Pk(T ) ∀T ∈ Th

}
, (13.4)

M1,h :=
{
τ h ∈ H(div; Ω) : τh|T ∈ [RTk(T )]

2 ∀T ∈ Th
}
, (13.5)

Mu

h :=
{
vh ∈ C(Ω̄) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
, (13.6)

and

Mγ
h :=

{
ηh ∈ L2

skew
(Ω) : ηh|T ∈ Pk(T ) ∀T ∈ Th

}
. (13.7)

It is easy to see that the approximation properties of X1,h (cf. (13.4)) and M1,h (cf.
(13.5)) are given by (APt

1,h) and (APσ
1,h) in Section 8. Note, in particular, that the present

X1,h coincides with the subspace X̃1,h (cf. (11.2)), whose approximation property was already
identified in Section 11. In turn, the approximation property of Mγ

h (cf. (13.7)) is basically
the same as that of X1,h (except for the skew-symmetry), while the one of Mu

h (cf. (13.6)),
which is the classical Lagrange finite element subspace of order k+1, reduces to the following
(see [16]):

(APu

h) For each δ ∈ (0, k + 1] and for each v ∈ H1+δ(Ω) there exists vh ∈ Mu

h such that

‖v − vh‖1,Ω ≤ C hδ ‖v‖1+δ,Ω .

The following theorem provides the corresponding rate of convergence of (13.1).

Theorem 13.2. Assume that the parameters κ0, κ1, κ2, κ3, and κ4 are chosen as in-
dicated in Lemma 12.2. In addition, given an integer k ≥ 0, we let X1,h, M1,h, Mu

h , and
Mγ

h be the finite element subspaces defined by (13.4), (13.5), (13.6), and (13.7), respectively.
Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the continuous and
discrete formulations (12.1) and (13.1), respectively, and suppose that t ∈ Hδ(Ω), σ ∈ Hδ(Ω),
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divσ ∈ Hδ(Ω), u ∈ H1+δ(Ω) and γ ∈ Hδ(Ω), for some δ ∈ (0, k + 1]. Then there exists
C > 0, independent of h, such that

‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖1+δ,Ω + ‖γ‖δ,Ω

}
.

Proof. It follows from the Céa estimate (13.3) and the above indicated approximation
properties. �



CHAPTER 5

A posteriori error analysis

In this chapter we derive reliable and efficient residual-based a posteriori error estimators
for the Galerkin schemes (7.1), (10.1) and (13.1).

14. Preliminaries and main results

We begin by introducing several notations. We let Eh be the set of all edges of the
triangulation Th, and given T ∈ Th, we let E(T ) be the set of its edges. Then we write
Eh = Eh,Ω∪Eh,Γ, where Eh,Ω := {e ∈ Eh : e ⊆ Ω} and Eh,Γ := {e ∈ Eh : e ⊆ Γ}. In what follows,
he stands for the length of the edge e. Also, for each edge e ∈ Eh we fix a unit normal vector
νe := (ν1, ν2)

t, and let se := (−ν2, ν1)
t be the corresponding fixed unit tangential vector

along e. Then, given e ∈ Eh,Ω and τ ∈ L2(Ω) such that τ |T ∈ C(T ) on each T ∈ Th, we let
[τ se] be the corresponding jump across e, that is [τ se] := (τ |T − τ |T ′)|e se, where T and
T ′ are the triangles of Th having e as a common edge. Abusing notation, when e ∈ Eh(Γ),
we also write [τ se] := τ |e se. Similar definitions hold for the tangential jumps of scalar fields
v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. From now on, when no confusion arises, we
simply write s and ν instead of se and νe, respectively. Finally, given scalar, vector and tensor
valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, we recall that curlt v is defined in
(8.1), and now let

curl v :=




∂v

∂x2

−
∂v

∂x1


 , curl(ϕ) :=

(
curlt ϕ1

curlt ϕ2

)
and curl(τ ) :=




∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2


 .

Then, letting (t,σ, (u,γ)) ∈ X1 ×M1 ×M and (th,σh, (uh,γh)) ∈ X1,h ×M1,h×Mh be
the unique solutions of the continuous and discrete formulations (4.6) and (7.1), respectively,
we define for each T ∈ Th a local error indicator θT as follows:

θ2T :=
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

+ ‖f + divσh‖
2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ h2T
∥∥curl

{
th + γh

}∥∥2
0,T

+ h2T ‖∇uh − (th + γh)‖
2
0,T +

∑

e∈E(T )∩Eh,Ω

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh,Γ

he

{∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}
.

(14.1)

Note that the above requires that
dg

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(Γ). This is fixed below by

assuming that g ∈ H1(Γ).

Similarly, letting ((t,σ), (u,γ)) ∈ X × M and ((th,σh), (uh,γh)) ∈ Xh × Mh be the
unique solutions of the continuous and discrete formulations (9.1) and (10.1), respectively, we

31
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define for each T ∈ Th a local error indicator θ̃T as follows:

θ̃2T := θ2T + h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
.

(14.2)

In turn, letting (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the
continuous and discrete formulations (12.1) and (13.1), respectively, we define for each T ∈ Th
a local error indicator θ̂T as follows:

θ̂2T :=
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

+ ‖f + divσh‖
2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ h2T
∥∥curl

{
th + γh

}∥∥2
0,T

+ h2T ‖∇uh − (th + γh)‖
2
0,T +

∑

e∈E(T )∩Eh,Ω

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh,Γ

{
he

∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}

+ h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+

∥∥∥∥γh −
1

2
(∇uh − (∇uh)

t)

∥∥∥∥
2

0,T

+ ‖e(uh) − th‖
2
0,T +

∑

e∈E(T )∩Eh(Ω)

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
.

(14.3)
Equivalently,

θ̂2T = θ̃2T +
∑

e∈E(T )∩Eh,Γ

(1− he) ‖g − uh‖
2
0,e

+

∥∥∥∥γh −
1

2
(∇uh − (∇uh)

t)

∥∥∥∥
2

0,T

+ ‖e(uh) − th‖
2
0,T .

The residual character of each term on the right hand sides of (14.1), (14.2) and (14.3) is
quite clear. As usual the expressions

θ :=




∑

T∈Th

θ2T





1/2

, θ̃ :=




∑

T∈Th

θ̃2T





1/2

and θ̂ :=




∑

T∈Th

θ̂2T





1/2

are employed as the respective global residual error estimators.

The following theorems constitute the main results of this chapter.

Theorem 14.1. Let (t,σ, (u,γ)) ∈ X := X1 ×M1 ×M and (th,σh, (uh,γh)) ∈ X1,h ×
M1,h×Mh be the unique solutions of the continuous and discrete formulations (4.6) and (7.1),
respectively, and assume that g ∈ H1(Γ). Then there exist positive constants Ceff and Crel,
independent of h, such that

Ceff θ + h.o.t. ≤ ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ Crel θ , (14.4)

where h.o.t. stands for one or several terms of higher order.



15. RELIABILITY OF THE A POSTERIORI ERROR ESTIMATOR θ 33

Theorem 14.2. Let ((t,σ), (u,γ)) ∈ X × M and ((th,σh), (uh,γh)) ∈ Xh × Mh be
the unique solutions of the continuous and discrete augmented formulations (9.1) and (10.1),

respectively, and assume that g ∈ H1(Γ). Then there exist positive constants C̃eff and C̃rel,
independent of h, such that

C̃eff θ̃ + h.o.t. ≤ ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M ≤ C̃rel θ̃ , (14.5)

where h.o.t. stands for one or several terms of higher order.

Theorem 14.3. Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions
of the continuous and discrete augmented formulations (12.1) and (13.1), respectively, and

assume that g ∈ H1(Γ). Then there exist positive constants Ĉeff and Ĉrel, independent of h,
such that

Ĉeff θ̂ + h.o.t. ≤ ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤ Ĉrel θ̂ , (14.6)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that for the proofs of these theorems we follow very closely the
approaches introduced in [42] and [27]. The efficiency of the global error estimators (lower
bounds in (14.4), (14.5) and (14.6)) is proved below in Section 18, whereas the corresponding
reliability (upper bounds in (14.4), (14.5) and (14.6)) is derived next in Sections 15, 16 and
17. However, since the reliability and efficiency of θ (cf. Theorem 14.1) were already proved
in [27] within a general framework for nonlinear twofold saddle point formulations, in the
corresponding chapters below we just provide, for sake of completeness, the main aspects of
the associated analysis.

15. Reliability of the a posteriori error estimator θ

We begin by recalling from the analysis in Section 6 that the Gâteaux derivatives
{
DA1(r̃)

}
r̃∈X1

constitute a family of uniformly bounded and uniformly elliptic bilinear forms on X1 × X1

(cf. (6.1) and (6.2) in Lemma 6.1), and that the operators B and B1 satisfy the corresponding
continuous inf-sup conditions (cf. Lemma 6.3 and the discussion right after it). Hence, as a
consequence of the continuous dependence result provided by the linear version of Theorem
5.1 (cf. (5.4) with A1 linear), we conclude that the linear operator L obtained by adding the
three equations of the left hand side of (4.6), after replacing A1 by the Gâteaux derivative
DA1(r̃) at any r̃ ∈ X1, satisfies a global inf-sup condition. More precisely, there exists a

constant C̃ > 0 such that

C̃ ‖(r, ζ, (w, ξ))‖X ≤ sup
(s,τ ,(v,η))∈X\{0}

[L(s, τ , (v,η)), (r, ζ, (w, ξ))]

‖(s, τ , (v,η))‖X
(15.1)

for all (r̃, (r, ζ, (w, ξ))) ∈ X1 ×X, where

[L(s, τ , (v,η)), (r, ζ, (w, ξ))] := DA1(r̃)(r, s) + [B1(s), ζ] + [B1(r), τ ]

+ [B(τ ), (w, ξ)] + [B(ζ), (v,η)] .
(15.2)

We now have the following preliminary result.

Lemma 15.1. Let (t,σ, (u,γ)) ∈ X := X1 × M1 × M and (th,σh, (uh,γh)) ∈ X1,h ×
M1,h×Mh be the unique solutions of the continuous and discrete formulations (4.6) and (7.1),
respectively. Then there exists C > 0, independent of h, such that

C ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

+ ‖R‖M ′

1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

,
(15.3)
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where

R(τ ) := −〈τ ν,g〉Γ +

∫

Ω
(th + γh) : τ +

∫

Ω
uh · div τ ∀ τ ∈ M1 . (15.4)

In addition, there holds
R(τ h) = 0 ∀ τh ∈ M1,h .

Proof. We first proceed as in the proof of Lemma 6.2 (cf. (6.9)) and observe, thanks to
the mean value theorem, that there exists a convex combination of t and th, say r̃h ∈ X1,
such that

DA1(r̃h)(t− th, s) = [A1(t), s] − [A1(th), s] ∀ s ∈ X1 . (15.5)

Then, applying (15.1)-(15.2) to the error (r, ζ, (w, ξ)) := (t,σ, (u,γ)) − (th,σh, (uh,γh)),
and making use of the identity (15.5), the equations forming (4.6), and the definitions of the
operators A1, B1, and B (cf. (4.5)), we find that

C̃ ‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ sup
(s,τ ,(v,η))∈X\{0}

{
Q(s) + R(τ ) + S(v,η)

‖(s, τ , (v,η))‖X

}

≤ ‖Q‖X′

1
+ ‖R‖M ′

1
+ ‖S‖M ′ ,

(15.6)
where R is defined by (15.4), and Q ∈ X ′

1 and S ∈ M ′ are given by

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

S(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η ∀ (v,η) ∈ M .

It follows, using Cauchy-Schwarz’s inequality and the fact that

∫

Ω
σh : η =

1

2

∫

Ω

(
σh−σ

t

h

)
: η,

that
‖Q′‖M ′

1
≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

(15.7)

and
‖S′‖M ′ ≤ ‖f + divσh‖0,Ω + ‖σh − σt

h‖0,Ω . (15.8)

In this way, (15.3) is a direct consequence of (15.6), (15.7) and (15.8). In turn, it is easy to see
from the second equation of (7.1) that R(τ h) = 0 ∀ τh ∈ M1,h, which completes the proof.

�

It remains to bound ‖R‖M ′

1
in (15.3), for which we proceed as in [41, Section 4.1] (see

also [42, Section 4.2]) and use that R(τ ) = R(τ − τ h) for each τh ∈ M1,h. Hence, in order
to define a suitable τh ∈ M1,h for the computation of R(τ − τ h) according to (15.4), we now
let Ih : H1(Ω) −→ Xh be the Clément interpolation operator (cf. [17]), where

Xh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1 ∀T ∈ Th

}
.

The following lemma establishes the local approximation properties of Ih.

Lemma 15.2. There exist constants C1, C2 > 0, independent of h, such that for all v ∈
H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ih(v)‖0,e ≤ C2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh ,

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.
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Proof. See [17].
�

Next, given τ ∈ M1, we consider the Helmholtz decomposition

τ = curl(ϕ) + ∇z , (15.9)

where ϕ := (ϕ1, ϕ2)
t ∈ H1(Ω), with

∫

Ω
ϕ1 =

∫

Ω
ϕ2 = 0, z ∈ H2(Ω), and

‖ϕ‖1,Ω + ‖z‖2,Ω ≤ C ‖τ‖div;Ω . (15.10)

Then, we set ϕh := (Ih(ϕ1), Ih(ϕ2))
t and define the discrete Helmholtz decomposition

τh := curl(ϕh) + Ek
h(∇z) , (15.11)

where Ek
h : H1(Ω) −→ RTk(Th) is the Raviart-Thomas interpolation operator (cf. (8.7), (8.8)).

In this way, replacing τ (cf. (15.9)) and τh (cf. (15.11)) into the expression R(τ ) = R(τ−τh),
observing that div(∇z) = div τ , and noting, according to (8.9) and the definition of Pk

h , that
∫

Ω
uh · div(∇z− Ek

h(∇z)) =

∫

Ω
uh ·

(
div τ − Pk

h(div τ )
)
= 0 ,

we find that R(τ ) can be decomposed as R(τ ) = R1(ϕ) + R2(z), where

R1(ϕ) := −〈curl(ϕ−ϕh)ν,g〉Γ +

∫

Ω
(th + γh) : curl(ϕ−ϕh)

and

R2(z) := −〈(∇z− Ek
h(∇z))ν,g〉Γ +

∫

Ω
(th + γh) : (∇z− Ek

h(∇z)) .

The following two lemmas provide upper bounds for |R1(ϕ)| and |R2(z)|.

Lemma 15.3. Assume that g ∈ [H1(ΓD)]
2. Then there exists C > 0, independent of h,

such that

|R1(ϕ)| ≤ C




∑

T∈Th

θ21,T





1/2

‖τ‖div;Ω ,

where

θ21,T := h2T
∥∥curl

{
th + γh

}∥∥2
0,T

+
∑

e∈E(T )∩Eh,Ω

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh,Γ

he

∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

.

Proof. It follows analogously to the proof of [41, Lemma 4.3] by employing th + γh

instead of just th. The main tools employed are integration by parts, the Cauchy-Schwarz
inequality, the approximation properties of the Clément interpolant (cf. Lemma 15.2), the
fact that the number of triangles in ∆(T ) and ∆(e) are bounded, and the estimate (15.10).
We omit further details here.

�
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Lemma 15.4. There exists C > 0, independent of h, such that

|R2(z)| ≤ C




∑

T∈Th

θ22,T





1/2

‖τ‖div;Ω ,

where

θ22,T = h2T ‖∇uh − (th + γh)‖
2
0,T +

∑

e∈E(T )∩Eh,Γ

he ‖g − uh‖
2
0,e .

Proof. It follows analogously to the proof of [41, Lemma 4.4] by employing again th+γh

instead of just th. In this case the main tools are given by the identities (8.7) and (8.8)
characterizing Ek

h , the Cauchy-Schwarz inequality, the approximation properties (8.13) and
(8.11) (with m = 1), and the estimate (15.10). Further details are omitted here.

�

Finally, it follows from the decomposition of R and Lemmas 15.3 and 15.4 that

|R(τ ) | = |R(τ − τ h)| ≤




∑

T∈Th

(
θ21,T + θ22,T

)




1/2

‖τ‖M1 ∀ τ ∈ M1 , (15.12)

which, together with the estimate (15.3) (cf. Lemma 15.1), yields the reliability of θ.

16. Reliability of the a posteriori error estimator θ̃

We now consider the augmented formulation (9.1) and let M be the linear operator ob-
tained by adding the two equations of its left hand side, after replacing A1 within A (see (9.2))
by the Gâteaux derivative DA1(r̃) at any r̃ ∈ X1, that is

[M((s, τ ), (v,η)), ((r, ζ), (w, ξ))] := DA1(r̃)(r, s − κ0 τ ) + [B1(s), ζ] − [B1(r), τ ]

+κ0

∫

Ω
ζ : τ + [B(s, τ ), (w, ξ)] + [B(r, ζ), (v,η)]

(16.1)
for all ((s, τ ), (v,η)), ((r, ζ), (w, ξ)) ∈ X×M . Note that we have used here that the nonlinear
operator A (cf. (9.2)) can be rewritten as

[A(r, ζ), (s, τ )] := [A1(r), s − κ0 τ ] + [B1(s), ζ] − [B1(r), τ ] + κ0

∫

Ω
ζ : τ . (16.2)

Then, applying the continuous dependence result provided by the linear version of Theorem 9.1
(cf. (9.6)-(9.7) with A linear), which is actually the usual estimate provided by the Babuška-
Brezzi theory (see, e.g. [47, Theorem 4.1, Chapter I]), and having in mind again the uniform
estimates (6.1) and (6.2), we deduce that M satisfies a global inf-sup condition uniformly with

respect to r̃ ∈ X1, that is there exists a constant C̃ > 0 such that

C̃ ‖((r, ζ), (w, ξ))‖X×M ≤ sup
((s,τ ),(v,η))∈X×M\{0}

[M((s, τ ), (v,η)), ((r, ζ), (w, ξ))]

‖((s, τ ), (v,η))‖X×M
(16.3)

for all (r̃, ((r, ζ), (w, ξ))) ∈ X1 × (X ×M).

The analogue of Lemma 15.1 is established as follows.
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Lemma 16.1. Let ((t,σ), (u,γ)) ∈ X × M and ((th,σh), (uh,γh)) ∈ Xh × Mh be the
unique solutions of the continuous and discrete augmented formulations (9.1) and (10.1),
respectively. Then there exists C > 0, independent of h, such that

C ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M ≤
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥
0,Ω

+ ‖R+ R̃ ‖M ′

1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

,

(16.4)
where R is defined by (15.4) and

R̃(τ ) := κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: τ ∀ τ ∈ M1 . (16.5)

In addition, there holds

R(τ h) + R̃(τ h) = 0 ∀ τh ∈ M1,h .

Proof. We proceed analogously to the proof of Lemma 15.1, though we omit several
similar details. Indeed, according to (16.1) and (16.3), we easily deduce that

C̃ ‖((t,σ), (u,γ))− ((th,σh), (uh,γh))‖X×M

≤ sup
((s,τ ),(v,η))∈X×M\{0}

{
Q(s) + R(τ ) + R̃(τ ) + S(v,η)

‖((s, τ ), (v,η))‖X×M

}

≤ ‖Q‖X′

1
+ ‖R+ R̃‖M ′

1
+ ‖S‖M ′ ,

(16.6)

where R and R̃ are defined by (15.4) and (16.5), and Q ∈ X ′
1 and S ∈ M ′ are given as in the

proof of Lemma 15.1, that is

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

S(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η ∀ (v,η) ∈ M .

The rest of the derivation of (16.4) is pretty straightforward from (16.6) and the above ex-
pressions for Q and S. Finally, taking s = 0 and τ = τ h ∈ M1,h in the first equation of (10.1),

we deduce that R+ R̃ vanishes in M1,h, which completes the proof.
�

We now aim to bound ‖R + R̃‖M ′

1
in (16.4) by proceeding similarly as we did before for

‖R‖M ′

1
. Indeed, we first note that R(τ )+ R̃(τ ) = R(τ −τ h)+ R̃(τ −τh) for each τ h ∈ M1,h,

and then employ again the Helmholtz decompositions (15.9) and (15.11) for rewriting τ and
introducing the particular tensor τh ∈ M1,h, respectively. In this way, since R(τ − τh) is

already bounded by (15.12), it only remains to estimate the extra-term given by R̃(τ − τh),
which becomes

R̃(τ − τ h) := κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: curl(ϕ−ϕh)

+κ0

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

})
: (∇z − Ek

h(∇z)) .

Moreover, by applying the same techniques employed to prove Lemmas 15.3 and 15.4 (see also

[41, Lemmas 4.3 and 4.4] for further details), we arrive at the following estimate for R̃(τ−τh).
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Lemma 16.2. There exists C > 0, independent of h, such that

|R̃(τ − τ h)| ≤ C




∑

T∈Th

θ̃21,T





1/2

‖τ‖div;Ω ∀ τ ∈ M1 , (16.7)

where

θ̃21,T = h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

+
∑

e∈E(T )

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e

+ h2T
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

.

As a consequence of (15.12) and (16.7) we deduce that

|R(τ ) + R̃(τ )| = |R(τ − τ h) + R̃(τ − τ h)|

≤




∑

T∈Th

(
θ21,T + θ22,T + θ̃21,T

)




1/2

‖τ‖M1 ∀ τ ∈ M1 ,

which, together with (16.4), and noting that the third term in the definition of θ̃21,T is certainly

dominated by
∥∥σh −

{
λ(th) tr(th) I + µ(th) th

}∥∥2
0,T

, yields the reliability of the a posteriori

error estimator θ̃.

17. Reliability of the a posteriori error estimator θ̂

Following the same reasoning of the previous chapters, we now consider the fully aug-
mented formulation (12.1) and let N be the linear operator obtained by replacing A1 within
A (see (12.2) and (16.2)) by the Gâteaux derivative DA1(r̃) at any r̃ ∈ X1, that is

[N (s, τ ,v,η), (r, ζ,w, ξ)] := DA1(r̃)(r, s − κ0 τ ) + [B1(s), ζ] − [B1(r), τ ]

+κ0

∫

Ω
ζ : τ + [B(s, τ ), (w, ξ)] − [B(r, ζ), (v,η)] + κ1

∫

Ω
div ζ · div τ

+ κ2

∫

Ω
(e(w) − r) : e(v) + κ3

∫

Ω

{
ξ −

1

2
(∇w − (∇w)t)

}
: η + κ4

∫

ΓD

w · v

(17.1)

for all (s, τ ,v,η), (r, ζ,w, ξ) ∈ X. Then, applying the continuous dependence result provided
by the linear version of Theorem 12.1 (cf. (12.3) with A linear), we deduce that N satisfies
a global inf-sup condition uniformly with respect to r̃ ∈ X1, which means that there exists a
constant C̃ > 0 such that

C̃ ‖(r, ζ,w, ξ)‖X ≤ sup
(s,τ ,v,η)∈X\{0}

[N (s, τ ,v,η), (r, ζ,w, ξ)]

‖(s, τ ,v,η)‖X
(17.2)

for all (r̃, (r, ζ,w, ξ)) ∈ X1 × X.

The analogue of Lemma 16.1 is established as follows.
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Lemma 17.1. Let (t,σ,u,γ) ∈ X and (th,σh,uh,γh) ∈ Xh be the unique solutions of the
continuous and discrete fully augmented formulations (12.1) and (13.1), respectively. Then
there exists C > 0, independent of h, such that

C ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤
∥∥σh −

{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

+ ‖R + R̃ + R̂‖M ′

1
+ ‖f + divσh‖0,Ω +

∥∥σh − σt

h

∥∥
0,Ω

+ ‖e(uh) − th‖0,Ω +
∥∥∥γh −

1

2
(∇uh − (∇uh)

t)
∥∥∥
0,Ω

+ ‖uh − g‖0,Γ

(17.3)

where R and R̃ are defined by (15.4) and (16.5), respectively, and

R̂(τ ) := κ1

∫

Ω

(
divσh + f

)
· div τ ∀ τ ∈ M1 . (17.4)

In addition, there holds

R(τ h) + R̃(τ h) + R̂(τ h) = 0 ∀ τ h ∈ M1,h .

Proof. We proceed analogously to the proofs of Lemmas 15.1 and 16.1. Indeed, applying
now (17.2) and (17.1), we deduce that

C̃ ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X

≤ sup
(s,τ ,v,η)∈X\{0}

{
Q(s) + R(τ ) + R̃(τ ) + R̂(τ ) + Ŝ(v,η)

‖(s, τ ,v,η)‖X

}

≤ ‖Q‖X′

1
+ ‖R + R̃+ R̂‖M ′

1
+ ‖Ŝ‖M ′ ,

(17.5)

where R, R̃, and R̂ are defined by (15.4), (16.5), and (17.4), respectively, Q ∈ X ′
1 is given as

in the proof of Lemma 16.1, that is

Q(s) =

∫

Ω

(
σh −

{
λ(th) tr(th) I + µ(th) th

}
) : s ∀ s ∈ X1 ,

and

Ŝ(v,η) =

∫

Ω

{
f + divσh

}
· v +

∫

Ω
σh : η + κ2

∫

Ω
(e(uh) − th) : e(v)

+ κ3

∫

Ω

{
γh −

1

2
(∇uh − (∇uh)

t)
}
: η + κ4

∫

Γ
(uh − g) · v ∀ (v,η) ∈ M

The rest of the derivation of (17.3) follows from (17.5) and the application of the Cauchy-

Schwarz inequality to the above expressions for Q and Ŝ. In particular, the fact that the test
functions v belong now to H1(Ω), and the corresponding trace theorem, imply that

∣∣∣∣
∫

Γ
(uh − g) · v

∣∣∣∣ ≤ ‖uh − g‖0,Γ ‖v‖0,Γ ≤ c ‖uh − g‖0,Γ ‖v‖1,Ω .

Finally, it is straightforward to see that, taking s = 0, v = 0, η = 0 and τ = τh ∈ M1,h in

(13.1), we find that R+ R̃+ R̂ vanishes in M1,h, which ends the proof.
�

It remains to bound ‖R + R̃ + R̂‖M ′

1
in (17.3), for which we proceed as we did before

for ‖R‖M ′

1
and ‖R + R̃‖M ′

1
. In other words, we now use that R(τ ) + R̃(τ ) + R̂(τ ) = R(τ −

τ h) + R̃(τ − τ h) + R̂(τ − τ h) for each τ h ∈ M1,h, and then employ once again the Helmholtz
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decompositions (15.9) and (15.11). In this way, since R(τ − τh) and R̃(τ − τ h) are already

bounded by (15.12) and (16.7), we just need to estimate the extra-term given by R̂(τ − τh),
which is done as follows.

Lemma 17.2. There exists C > 0, independent of h, such that

|R̂(τ − τ h)| ≤ C




∑

T∈Th

θ̂21,T





1/2

‖τ‖div;Ω , (17.6)

where

θ̂21,T := h2T ‖divσh + f‖20,T .

Proof. It suffices to observe, having in mind (15.9) and (15.11), that

R̂(τ − τ h) = κ1

∫

Ω
(divσh + f) · div (∇z− Ek

h(∇z)) ,

and then apply the Cauchy-Schwarz inequality, (8.9), and (8.10).
�

As a consequence of (15.12), (16.7), and (17.6) we deduce that

|R(τ ) + R̃(τ ) + R̂(τ ) | = |R(τ − τh) + R̃(τ − τh) + R̂(τ − τh) |

≤




∑

T∈Th

(
θ21,T + θ22,T + θ̃21,T + θ̂21,T

)




1/2

‖τ‖M1 ∀ τ ∈ M1 ,

which, replaced back into (17.3) for estimating ‖R+ R̃+ R̂|M ′

1
, and noting that h2T ‖divσh + f‖20,T

and he ‖g − uh‖
2
0,e are dominated by ‖divσh + f‖20,T and ‖g − uh‖

2
0,e, respectively, yields

the reliability of the a posteriori error estimator θ̂.

At this point we find it important to remark that the derivation of θ̂ does not take
into account that actually uh also belongs to H1(Ω). To this respect, we show next that

this fact allows to simplify the upper bound of ‖R + R̃ + R̂‖M ′

1
(cf. (17.3)), which yields

a simpler reliable and efficient a posteriori error estimator. However, unless the Dirichlet
datum is homogeneous, this alternative estimator does not become localizable, which makes
it unsuitable for adaptive computations. More precisely, integrating by parts the third term
in the definition of R (cf. (15.4)), we find that

R(τ ) =

∫

Ω

(
th + γh − ∇uh

)
: τ + 〈τ ν,uh − g〉Γ ∀ τ ∈ M1 ,

which gives

‖R‖M ′

1
≤ C

{
‖th + γh − ∇uh‖0,Ω + ‖uh − g‖1/2,Γ

}
.

In turn, simple applications of the Cauchy-Schwarz inequality in (16.5) and (17.4) imply,
respectively,

‖R̃‖M ′

1
≤ κ0

∥∥σh −
{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

and ‖R̂‖M ′

1
≤ κ1 ‖f + divσh‖0,Ω .
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In this way, employing the above estimates to bound ‖R + R̃ + R̂‖M ′

1
in (17.3), we arrive at

C ‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤
∥∥σh −

{
λ(th) tr(th)I + µ(th) th

}∥∥
0,Ω

+ ‖th + γh − ∇uh‖0,Ω + ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖e(uh) − th‖0,Ω +
∥∥∥γh −

1

2
(∇uh − (∇uh)

t)
∥∥∥
0,Ω

+ ‖uh − g‖1/2,Γ ,

(17.7)

from which it is clear that the last term on the right hand side is not localizable. Certainly,
one could use interpolation results to handle ‖uh − g‖1/2,Γ in terms of local terms, but then

it is easy to see that the resulting estimator does not become efficient. Nevertheless, if the
Dirichlet datum g vanishes on Γ, the last term in (17.7) dissapears, and the above reduces to

‖(t,σ,u,γ)− (th,σh,uh,γh)‖X ≤ C θ := C




∑

T∈Th

θ
2
T





1/2

,

where
θ
2
T :=

∥∥σh −
{
λ(th) tr(th)I + µ(th) th

}∥∥2
0,T

+ ‖th + γh − ∇uh‖
2
0,T + ‖f + divσh‖

2
0,T +

∥∥σh − σt

h

∥∥2
0,T

+ ‖e(uh) − th‖
2
0,T +

∥∥∥γh −
1

2
(∇uh − (∇uh)

t)
∥∥∥
2

0,T
.

(17.8)

The efficiency of θ, which is quite straightforward, is briefly mentioned at the end of Section
18.

18. Efficiency of the a posteriori error estimators θ, θ̃ and θ̂

In this section we establish the efficiency of our main a posteriori error estimators θ, θ̃

and θ̂ (lower bounds in (14.4), (14.5) and (14.6), respectively). In other words, we provide
suitable upper bounds for the eight terms defining the local error indicator θ2T (cf. (14.1)), for

the remaining two terms completing the definition of the local error indicator θ̃2T (cf. (14.2))

and for the remaining three terms completing the local error indicator θ̂2T (cf. (14.3)). For this
purpose, we first notice that the converses of the derivations of (4.6), (9.1) and (12.1) from
(3.1) hold true. Indeed, it is not difficult to prove, applying integration by parts backwardly
and using appropriate test functions, that the unique solution (t,σ, (u,γ)) ∈ X1 ×M1 ×M
of (4.6) (which is easily shown to coincide with that of (9.1) and (12.1)) solves the original
problem (3.1).

We begin with three simple estimates. Since f = −divσ in Ω, it is clear that

‖f + divσh‖0,T =
∥∥div

(
σ − σh

)∥∥
0,T

. (18.1)

In addition, using that σ = λ(t) tr(t)I + µ(t) t in Ω and applying the Lipschitz-continuity
of A1 (cf. Lemma 6.2), but restricted to the triangle T ∈ Th instead of Ω, we deduce that

∥∥σh −
{
λ(th) tr(th) I + µ(th) th

}∥∥
0,T

≤ c
{
‖σ − σh‖0,T + ‖t− th‖0,T

}
. (18.2)

Furthermore, using the symmetry of σ, we easily find that
∥∥σh − σt

h

∥∥
0,T

≤ 2 ‖σ − σ‖0,T . (18.3)

Next, in order to bound the terms involving the mesh parameters hT and he, we make
use of the general results and estimates available in the analysis of related linear problems
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(see, e.g. [41, Section 4.2]). The techniques applied there are based on triangle-bubble and
edge-bubble functions, extension operators, and discrete trace and inverse inequalities. For
further details on these tools we refer particularly to [41, Lemmas 4.7 and 4.8, and eq. (4.34)].

We have the following efficiency estimates.

Lemma 18.1. There exist C1, C2 > 0, independent of h, such that

h2T
∥∥curl

{
th + γh

}∥∥2
0,T

≤ C1

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀T ∈ Th ,

and

he ‖ [(th + γh) s] ‖
2
0,e ≤ C2

{
‖ t − th ‖

2
0,ωe

+ ‖γ − γh ‖
2
0,ωe

}
∀ e ∈ Eh(Ω) ,

where ωe := ∪
{
T ∈ Th : e ∈ E(T )

}
.

Proof. It suffices to apply the general results stated in [41, Lemmas 4.9 and 4.10] to
ρh = th + γh and ρ = t + γ = ∇u, noting that curl(ρ) = curl(∇u) = 0 in Ω (cf. (4.2)
and (4.3)).

�

Lemma 18.2. There exists C3 > 0, independent of h, such that

h2T ‖∇uh − (th + γh)‖
2
0,T ≤ C3

{
‖u− uh ‖

2
0,T + h2T ‖ t− th ‖

2
0,T + h2T ‖γ − γh ‖

2
0,T

}

(18.4)
for all T ∈ Th .

Proof. It follows from the proof of [41, Lemma 4.13], which itself is a slight modification
of the proof of [13, Lemma 6.3], by replacing the tensor utilized there by ∇uh − (th + γh),
and recalling that ∇u = t+ γ.

�

Lemma 18.3. Assume that g is piecewise polynomial. Then there exists C4 > 0, indepen-
dent of h, such that

he

∥∥∥dg
ds

− (th + γh )s
∥∥∥
2

0,e
≤ C4

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) , (18.5)

where T is the triangle of Th having e as an edge.

Proof. It suffices to modify the proof of [41, Lemma 4.15], by using
dg

ds
− (th + γh) s

instead of
dg

ds
−

1

2µ
σt

h s, and noting in the present case that
dg

ds
= (∇u) s = (t+γ) s on Γ.

�

Lemma 18.4. There exists C5 > 0, independent of h, such that

he ‖g − uh‖
2
0,e ≤ C5

{
‖u− uh‖

2
0,T + h2T ‖t− th‖

2
0,T + h2T ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

Proof. Similarly to the previous lemmas, it follows as in the proof of [41, Lemma 4.14]
by utilizing the tensor ∇uh − (th + γh), and then using that ∇u = t + γ in Ω. At the end,

the above estimate (18.4) for h2T ‖∇uh − (th + γh)‖
2
0,T is also employed.

�
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We remark here that if g were not piecewise polynomial but sufficiently smooth, then
higher order terms given by the errors arising from suitable polynomial approximations would
appear in (18.5). This explains the eventual expression h.o.t. in (14.4). In this way, the
efficiency of θ follows straightforwardly from estimates (18.1), (18.2) and (18.3), together with
Lemmas 18.1 throughout 18.4, after summing up over T ∈ Th and using that the number of
triangles on each domain ωe is bounded by two.

Next, for the efficiency of θ̃ it only remains to provide upper bounds for the two terms

completing the definition of the local error indicator θ̃2T (cf. (14.2)), which is established in
the following lemma.

Lemma 18.5. There exist C6, C7 > 0, independent of h, such that

h2T
∥∥curl

(
σh −

{
λ(th) tr(th) I + µ(th) th

})∥∥2
0,T

≤ C6

{
‖t− th‖

2
0,T + ‖σ − σh‖

2
0,T

}

for all T ∈ Th, and

he
∥∥[(σh −

{
λ(th) tr(th) I + µ(th) th

})
s
]∥∥2

0,e
≤ C7

{
‖t− th‖

2
0,ωe

+ ‖σ − σh‖
2
0,ωe

}

for all e ∈ Eh(Ω).

Proof. As in the proof of Lemma 18.1, it suffices now to apply the general results stated
in [41, Lemmas 4.9 and 4.10] to ρh = σh −

{
λ(th) tr(th) I + µ(th) th

}
and ρ = σ −{

λ(t) tr(t) I + µ(t) t
}

= 0 in Ω, and then use the Lipschitz-continuity of A1 (cf. (6.7) in
Lemma 6.2) restricted to T and ωe.

�

Now, for the efficiency of θ̂ it remains to provide upper bounds for the three terms com-

pleting the definition of the local error indicator θ̂2T (cf. (14.3)), which is done in what follows.

In fact, using that t = e(u) and that γ =
1

2
(∇u − (∇u)t) in Ω, we easily deduce that

‖e(uh) − th‖0,T ≤ C
{
‖u − uh‖1,T + ‖t − th‖0,T

}
(18.6)

and∥∥∥γh −
1

2
(∇uh − (∇uh)

t)
∥∥∥
0,T

≤ C
{
‖u − uh‖1,T + ‖γ − γh‖0,T

}
. (18.7)

In addition, employing that u = g on Γ and applying the trace theorem, we find that
∑

e∈Eh(Γ)

‖g − uh‖
2
0,e = ‖u− uh‖

2
0,Γ ≤ c ‖u − uh‖

2
1,Ω .

Finally, in order to complete the efficiency estimate for θ, we just need to bound the second

term defining the local error indicator θ
2
T (cf. (17.8)), which, using again that t + γ = ∇u,

yields
‖th + γh − ∇uh‖0,T ≤ ‖t− th‖0,T + ‖γ − γh‖0,T + ‖u− uh‖1,T . (18.8)

Therefore, the required lower bound for θ is a straightforward consequence of (18.1), (18.2),
(18.3), (18.6), (18.7), and (18.8).





CHAPTER 6

Numerical results

In this chapter we present numerical examples illustrating the performance of the Galerkin
schemes (7.1), (10.1), and (13.1), confirming the reliability and efficiency of the a posteriori
error estimators derived in Chapter 5, and showing the behaviour of the associated adaptive
algorithms. The specific finite element subspaces X1,h, M1,h, M

u

h , and Mγ
h that are employed

for the respective computational implementations are indicated below in Table 1. In each case
we consider k = 0. In addition, all the nonlinear algebraic systems arising from the Galerkin
schemes are solved by the Newton method with a tolerance of 1E-06 and taking as initial

iteration the solution of the associated linear problems with µ̃, and hence λ̃, constant.

Table 1. Finite element subspaces employed

Galerkin scheme X1,h M1,h Mu

h Mγ
h

(7.1) (8.5) (8.2) (8.3) (8.4)

(10.1) (11.2) (8.2) (8.3) (8.4)

(13.1) (13.4) (13.5) (13.6) (13.7)

In what follows, N stands for the total number of degrees of freedom (unknowns) of each
Galerkin scheme, which can be proved to behave asymptotically as the number of elements
of each triangulation, multiplied by the factors 13.5, 11.5, and 9, for (7.1), (10.1), and (13.1),
respectively. Also, the individual and total errors are given by

e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div;Ω , e0(u) := ‖u− uh‖0,Ω ,

e1(u) := ‖u− uh‖1,Ω , e(γ) := ‖γ − γh‖0,Ω ,

e(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e0(u)]

2 + [e(γ)]2
}1/2

,

ẽ(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e0(u)]

2 + [e(γ)]2
}1/2

,

ê(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e1(u)]

2 + [e(γ)]2
}1/2

,

and

e(t,σ,u,γ) :=
{
[e(t)]2 + [e(σ)]2 + [e1(u)]

2 + [e(γ)]2
}1/2

,

whereas the effectivity indexes are defined by

ef(θ) := e(t,σ,u,γ)/θ , ef(θ̃) := ẽ(t,σ,u,γ)/θ̃ ,

ef(θ̂) := ê(t,σ,u,γ)/θ̂ , and ef(θ) := e(t,σ,u,γ)/θ .

45
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In addition, we introduce the experimental rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r0(u) :=

log(e0(u)/e
′
0(u))

log(h/h′)
,

r1(u) :=
log(e1(u)/e

′
1(u))

log(h/h′)
, r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
,

r(t,σ,u,γ) :=
log(e(t,σ,u,γ)/e′(t,σ,u,γ))

log(h/h′)
,

and analogously for r̃(t,σ,u,γ), r̂(t,σ,u,γ), and r(t,σ,u,γ), where e and e
′ denote the

corresponding errors at two consecutive triangulations with mesh sizes h and h′, respectively.
However, when the adaptive algorithm is applied (see details below), the expression log(h/h′)
appearing in the computation of the above rates is replaced by − 1

2 log(N/N ′), where N and
N ′ denote the corresponding degrees of freedom of each triangulation.

The examples to be considered in this chapter are described next. Example 1 is employed to
illustrate the performance of the discrete schemes and to confirm the reliability and efficiency of
the a posteriori error estimators when a sequence of quasi-uniform meshes is considered. Then,
Examples 2 and 3 are utilized to show the behavior of the associated adaptive algorithms,

which apply the following procedure from [58] for each χ ∈
{
θ, θ̃, θ̂, θ

}
with local indicators

χT , T ∈ Th:

1) Start with a coarse mesh Th.
2) Solve the discrete problem for the actual mesh Th.
3) Compute χT for each triangle T ∈ Th.
4) Evaluate stopping criterion and decide to finish or go to next step.
5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator χT ′ satisfies

χT ′ ≥
1

2
max

{
χT : T ∈ Th

}

6) Define resulting mesh as actual mesh Th and go to step 2.

In all the examples we consider the Lamé functions λ̃, µ̃ : R+ → R defined by

λ̃(ρ) := κ−
1

2
µ̃(ρ) and µ̃(ρ) := β0 + β1 (1 + ρ2)(β−2)/2 ∀ ρ ∈ R+ ,

with κ = β0 = β1 = 1/4, and β = 3/2, which are easily shown to verify the assumptions
(3.2) with µ0 = µ1 = 1/4 and µ2 = 5/8. This function µ̃ corresponds to the Carreau law for
viscoplastic materials (see, e.g. [51], [56]). Now, according to (6.6), we obtain α1 = 1/4 and
γ1 = 3/2, which, as indicated in Section 12, yields the following stabilization parameters for
the partial and fully augmented formulations:

κ0 =
α1

γ21
= 1/9 , κ1 =

α1

2
min

{
1,

1

γ21

}
= 1/18 , κ2 =

α1

2
min

{
1,

1

γ21

}
= 1/18 ,

κ3 =
α1

4
min

{
1,

1

γ21

}
= 1/36 , and κ4 =

α1

4
min

{
1,

1

γ21

}
= 1/36 .

(18.9)

In Example 1 we set Ω =]0, 1[2 and choose the data f and g so that the exact solution is
given by

u(x) :=

(
sinx1 cosx2 exp(x1x2)

cos x1 sinx2 exp(−x1x2)

)
∀x := (x1, x2)

t ∈ Ω .
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In turn, in Example 2 we consider the T -shaped domain Ω =] − 1, 1[2 \
(
[−1,−0.25] ×

[−1, 0.5]∪ [0.25, 1]× [−1, 0.5]
)
, and choose the data f and g so that the exact solution is given

by

u(x) :=

(∥∥x− (−0.25, 0.5)
∥∥4/3 sin

(
2θ1 + π

3

)
,
∥∥x− (0.25, 0.5)

∥∥5/3 sin

(
2θ2
3

))
t

for all x := (x1, x2)
t ∈ Ω, with

θ1 := Arctan

(
x2 − 0.50

x1 + 0.25

)
and θ2 := Arctan

(
x2 − 0.50

x1 − 0.25

)
.

Note that the partial derivatives of this solution are singular at the points (−0.25, 0.5) and
(0.25, 0.5), which are the middle corners of the T .

Finally, in Example 3, we consider the L-shaped domain Ω := ]− 1, 1[2 \ [0, 1]2 and choose
the data f and g so that the exact solution is given by

u(x) := sin(π x1) sin(π x2) r
−2/3 sin

(
2 θ − π

3

)
(1, 1)t ∀x := (x1, x2)

t ∈ Ω ,

where (r, θ) stands for the usual polar coordinates, that is r := ‖x‖ and θ := Arctan

(
x2
x1

)
.

Note that the trace of u vanishes on Γ := ∂Ω and that its partial derivatives are singular at
the origin, which is the inner corner of the L.

In Tables 2, 3, and 4 we summarize the convergence history of the finite element schemes
(7.1), (10.1), and (13.1) as applied to Example 1 for sequences of quasi-uniform triangulations
of the domains. The number of Newton iterations required, for the tolerance given, ranges
between 3 and 6 for all the nonlinear systems involved. We observe in these tables, looking at
the corresponding experimental rates of convergence, that the O(h) predicted by Theorems
8.2, 11.2, and 13.2 (with δ = 1 in the three cases) is attained by all the unknowns. In
addition, we also highlight, according to the last column of each one of the tables, that the

effectivity indexes ef(θ), ef(θ̃), and ef(θ̂) remain all bounded (they lie in neighborhoods of
0.34, 0.19, and 0.17, respectively), which illustrates, in this case of a regular solution, the

reliability and efficiency of the three a posteriori error estimators θ, θ̃, and θ̂. On the other
hand, in Figure 18.1, which for sake of completeness includes additional inputs that are not
listed in the corresponding tables, we display the total errors e(t,σ,u,γ), ẽ(t,σ,u,γ), and
ê(t,σ,u,γ) vs. the degrees of freedom N . It is interesting to notice there that, though
the three schemes yield the same rate of convergence (which was already confirmed by the
tables), the augmented one requires less degrees of freedom than the other two to achieve a
given accuracy. This fact is particularly important when comparing the non-augmented and
augmented approaches since both measure their respective errors with exactly the same norm,
and hence, this example would suggest to better employ the latter one instead of the former.
Actually, this observation could have been announced in advance since, on the contrary to the
finite element subspace X1,h (cf. (8.5)) employed in (7.1), the corresponding finite element

subspace X̃1,h (cf. (11.2)) utilized in the augmented scheme (10.1) does not include the bubble
functions, which certainly yields a less amount of degrees of freedom.

Next, in Tables 5 up to 12, we provide the convergence history of the quasi-uniform and
adaptive schemes (7.1), (10.1), and (13.1) as applied to Examples 2 and 3. More precisely,
Example 2 is utilized to illustrate the behavior of the three methods, while Example 3, which
considers homogeneous Dirichlet boundary conditions, is employed only to show the perfor-
mance of the fully-augmented approach (13.1) with the a posteriori error estimator θ. The
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number of Newton iterations required now ranges between 3 and 8, and between 11 and 18,
respectively. We notice, as expected, that the errors of the adaptive methods decrease faster
than those obtained by the quasi-uniform ones. This fact is better illustrated in Figures 18.2,
18.3, 18.4, and 18.7, where we display the total errors vs. the degrees of freedom N for the
corresponding refinements. In addition, in Figures 18.5 and 18.6 we summarize the results
of Example 2 by displaying the total errors vs. N for the quasi-uniform and adaptive refine-
ments of the three schemes. It is interesting to observe there that, at least for this example,
both augmented approaches perform much better than the non-augmented one. Note that
all these figures include additional data that are not shown in the corresponding tables. Fur-
thermore, we see from the last column of the tables that the effectivity indexes remain again

bounded from above and below, which confirms the reliability and efficiency of θ, θ̃, θ̂, and
θ, in these cases of non-smooth solutions, as well. Some intermediate meshes obtained with
the associated adaptive algorithms are displayed in Figures 18.8 and 18.10 for the augmented
and fully-augmented schemes, respectively. It is important to observe here that the adapted
meshes concentrate the refinements around the points (−0.25, 0.5) and (0.25, 0.5) in Example
2, and around the origin in Example 3, which confirms that the methods are able to recognize
the singularity regions of the solutions. On the other hand, in Figures 18.9 and 18.11 we
consider fixed meshes (according to the values of N indicated there) and display the total
errors vs. κ0 and κ3, respectively, for the quasi-uniform augmented and fully-augmented ap-
proaches as applied to Example 2. The other parameters needed are taken from (18.9). The
corresponding non-augmented schemes yield N = 252868 and N = 312172 with total errors
e(t,σ,u,γ) given by 3.188E − 01 and 3.003E − 01, respectively. It is quite clear from these
figures that for each one of the parameters κ0 and κ3 there is a sufficiently large range yielding
stable Galerkin schemes in the sense that the corresponding errors remain bounded. This
fact, which was theoretically known in advance for κ0 (cf. Theorems 10.1 and 13.1), certainly
confirms the robustness of the augmented and fully-augmented methods with respect to these
stabilization parameters. This remark is specially significant for κ3, which, as explained in Sec-
tion 12, can only be determined heuristically. Note in particular that the parameters κ0 = 1/9
and κ3 = 1/36 employed in our computations lie precisely in the ranges identified by Figures
18.9 and 18.11. Finally, in order to illustrate the accurateness of the finite element schemes
and their associated adaptive algorithms, in Figures 18.12, 18.13, and 18.14, we display some
components of the approximate (left) and exact (right) solutions for Examples 2 and 3.

We conclude this paper by emphasizing that we have provided enough support to consider
the augmented and fully-aumented mixed finite element schemes (10.1) and (13.1), together
with its associated adaptive algorithms, as valid and competitive alternatives to solve the
present class of nonlinear elasticity problems.
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N h e(t) r(t) e(σ) r(σ) e0(u) r0(u) e(γ) r(γ) ef(θ)

7009 1/16 3.808E−02 − 7.034E−02 − 2.003E−02 − 1.472E−02 − 0.3418
10921 1/20 3.047E−02 1.000 5.628E−02 1.000 1.602E−02 1.000 1.106E−02 1.294 0.3412
15697 1/24 2.539E−02 1.001 4.690E−02 1.000 1.335E−02 1.000 8.693E−03 1.327 0.3409
21337 1/28 2.176E−02 1.002 4.020E−02 1.000 1.145E−02 1.000 7.065E−03 1.351 0.3407
27841 1/32 1.903E−02 1.002 3.517E−02 1.000 1.001E−02 1.000 5.887E−03 1.370 0.3407
35209 1/36 1.691E−02 1.002 3.126E−02 1.000 8.902E−03 1.000 5.003E−03 1.385 0.3406
62497 1/48 1.268E−02 1.002 2.344E−02 1.000 6.676E−03 1.000 3.342E−03 1.407 0.3407
110977 1/64 9.502E−03 1.002 1.758E−02 1.000 5.007E−03 1.000 2.217E−03 1.432 0.3408
173281 1/80 7.598E−03 1.002 1.406E−02 1.000 4.006E−03 1.000 1.607E−03 1.443 0.3409
249409 1/96 6.330E−03 1.002 1.172E−02 1.000 3.338E−03 1.000 1.233E−03 1.453 0.3409
443137 1/128 4.746E−03 1.000 8.790E−03 0.999 2.504E−03 1.000 8.165E−04 1.403 0.3411
692161 1/160 3.796E−03 1.000 7.032E−03 1.000 2.003E−03 1.000 5.909E−04 1.448 0.3412
996481 1/192 3.164E−03 1.000 5.861E−03 1.000 1.669E−03 1.000 4.545E−04 1.440 0.3413

Table 2. Example 1, quasi–uniform non–augmented scheme (7.1)

N h e(t) r(t) e(σ) r(σ) e0(u) r0(u) e(γ) r(γ) ef(θ̃)

5985 1/16 4.047E−02 − 3.547E−02 − 2.003E−02 − 5.355E−03 − 0.1990
7561 1/18 3.597E−02 1.000 3.169E−02 0.957 1.780E−02 1.000 4.499E−03 1.478 0.1985
11265 1/22 2.942E−02 1.001 2.612E−02 0.966 1.457E−02 1.000 3.343E−03 1.481 0.1978
15705 1/26 2.489E−02 1.001 2.221E−02 0.971 1.233E−02 1.000 2.612E−03 1.481 0.1973
20881 1/30 2.157E−02 1.001 1.932E−02 0.975 1.068E−02 1.000 2.113E−03 1.481 0.1970
26793 1/34 1.903E−02 1.001 1.709E−02 0.979 9.425E−03 1.000 1.756E−03 1.482 0.1967
37041 1/40 1.617E−02 1.001 1.458E−02 0.981 8.012E−03 1.000 1.380E−03 1.482 0.1964
72465 1/56 1.154E−02 1.001 1.046E−02 0.986 5.723E−03 1.000 8.381E−04 1.482 0.1960
147681 1/80 8.078E−03 1.001 7.352E−03 0.990 4.006E−03 1.000 4.942E−04 1.481 0.1957
289185 1/112 5.773E−03 0.995 5.268E−03 0.989 2.861E−03 1.000 3.098E−04 1.280 0.1956
477793 1/144 4.492E−03 0.998 4.104E−03 0.994 2.226E−03 1.000 2.271E−04 1.188 0.1955
589761 1/160 4.044E−03 0.998 3.696E−03 0.995 2.003E−03 1.000 2.025E−04 1.089 0.1955
849025 1/192 3.370E−03 0.999 3.078E−03 1.003 1.669E−03 1.000 1.804E−04 0.635 0.1955
1155393 1/224 2.891E−03 0.996 2.640E−03 0.996 1.431E−03 1.000 1.594E−04 0.803 0.1955

Table 3. Example 1, quasi–uniform augmented scheme (10.1)

N h e(t) r(t) e(σ) r(σ) e1(u) r1(u) e(γ) r(γ) ef(θ̂)

4738 1/16 4.223E−02 − 2.633E−02 − 5.051E−02 − 1.154E−01 − 0.1755
8890 1/22 3.030E−02 1.040 1.895E−02 1.030 3.613E−02 1.049 8.808E−02 0.872 0.1726
12378 1/26 2.549E−02 1.034 1.596E−02 1.025 3.035E−02 1.042 7.588E−02 0.900 0.1715
16442 1/30 2.199E−02 1.030 1.379E−02 1.021 2.616E−02 1.037 6.657E−02 0.919 0.1708
21082 1/34 1.934E−02 1.026 1.214E−02 1.018 2.298E−02 1.033 5.926E−02 0.933 0.1702

29122 1/40 1.638E−02 1.022 1.030E−02 1.015 1.945E−02 1.028 5.084E−02 0.945 0.1696
56898 1/56 1.163E−02 1.015 7.326E−03 1.010 1.379E−02 1.019 3.680E−02 0.966 0.1687
74242 1/64 1.016E−02 1.012 6.404E−03 1.008 1.204E−02 1.016 3.232E−02 0.973 0.1685
166658 1/96 6.750E−03 1.007 4.260E−03 1.004 7.989E−03 1.010 2.171E−02 0.985 0.1679
295938 1/128 5.061E−03 1.003 3.193E−03 1.002 5.986E−03 1.004 1.633E−02 0.991 0.1677
462082 1/160 4.048E−03 1.000 2.554E−03 1.001 4.787E−03 1.001 1.308E−02 0.994 0.1675
665090 1/192 3.372E−03 1.001 2.128E−03 1.001 3.989E−03 1.000 1.091E−02 0.995 0.1675
904962 1/224 2.892E−03 0.997 1.824E−03 1.000 3.421E−03 0.997 9.359E−03 0.996 0.1675
1181698 1/256 2.532E−03 0.995 1.596E−03 0.999 2.995E−03 0.995 8.192E−03 0.997 0.1674

Table 4. Example 1, quasi–uniform fully-augmented scheme (13.1)
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Figure 18.1. Example 1, total error vs. N for the quasi-uniform schemes

N h e(t) e(σ) e0(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)

184 1/1 3.315E−01 1.168E−00 2.361E−01 4.371E−01 1.311E−00 − 0.4497
745 1/3 1.584E−01 8.296E−01 9.472E−02 1.251E−01 8.590E−01 0.613 0.6926
3817 1/7 7.368E−02 6.473E−01 4.206E−02 4.717E−02 6.545E−01 0.274 0.8589
6256 1/9 5.511E−02 5.812E−01 3.230E−02 2.601E−02 5.853E−01 0.175 0.9000
9211 1/11 4.484E−02 5.181E−01 2.685E−02 2.164E−02 5.211E−01 0.405 0.9125
13297 1/13 3.803E−02 5.056E−01 2.245E−02 1.792E−02 5.078E−01 0.433 0.9324
15115 1/14 3.559E−02 5.058E−01 -2.101E−02 1.466E−02 5.077E−01 0.002 0.9416
25828 1/18 2.763E−02 4.486E−01 1.616E−02 1.243E−02 4.499E−01 0.866 0.9540
38188 1/22 2.298E−02 4.151E−01 1.328E−02 9.829E−03 4.160E−01 0.621 0.9626
67732 1/29 1.699E−02 3.717E−01 9.862E−03 5.512E−03 3.723E−01 0.485 0.9746
142486 1/42 1.197E−02 3.507E−01 6.824E−03 3.858E−03 3.510E−01 0.108 0.9858
252868 1/56 8.936E−03 3.186E−01 5.112E−03 2.911E−03 3.188E−01 0.117 0.9903
321172 1/63 7.982E−03 3.002E−01 4.535E−03 2.301E−03 3.003E−01 0.507 0.9914
519349 1/80 6.257E−03 2.758E−01 3.562E−03 1.778E−03 2.759E−01 0.428 0.9937
660085 1/90 5.596E−03 2.584E−01 3.156E−03 1.632E−03 2.585E−01 0.552 0.9943
813916 1/100 4.978E−03 2.391E−01 2.846E−03 1.364E−03 2.391E−01 0.739 0.9947

Table 5. Example 2, quasi–uniform non-augmented scheme (7.1)
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N h e(t) e(σ) e0(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)

184 1.000 3.315E−01 1.168E−00 2.361E−01 4.371E−01 1.311E−00 − 0.4497
1288 0.451 1.190E−01 7.572E−01 9.565E−02 1.088E−01 7.801E−01 0.481 0.6742
3340 0.375 8.009E−02 5.796E−01 6.607E−02 7.456E−02 5.935E−01 0.683 0.7048
5881 0.354 6.565E−02 4.499E−01 5.269E−02 5.932E−02 4.615E−01 0.852 0.6963
10315 0.250 5.654E−02 3.534E−01 4.681E−02 4.376E−02 3.636E−01 1.007 0.6732
16111 0.188 4.523E−02 2.925E−01 3.259E−02 3.274E−02 2.996E−01 0.975 0.7048
18856 0.188 3.898E−02 2.648E−01 3.068E−02 2.898E−02 2.709E−01 1.277 0.7071
25870 0.125 3.277E−02 2.206E−01 2.627E−02 2.219E−02 2.257E−01 1.085 0.7075
56914 0.094 2.219E−02 1.520E−01 1.683E−02 1.515E−02 1.553E−01 0.981 0.7226
83722 0.094 1.772E−02 1.246E−01 1.450E−02 1.204E−02 1.272E−01 1.091 0.7203
124744 0.063 1.457E−02 1.021E−01 1.204E−02 8.918E−03 1.043E−01 0.968 0.7247
202879 0.047 1.140E−02 8.102E−02 8.635E−03 7.565E−03 8.262E−02 1.045 0.7362
484858 0.031 7.374E−03 5.211E−02 6.112E−03 4.357E−03 5.316E−02 0.999 0.7258
811063 0.023 5.713E−03 4.126E−02 4.351E−03 3.431E−03 4.202E−02 0.987 0.7432

1002865 0.023 5.031E−03 3.670E−02 4.060E−03 2.975E−03 3.738E−02 1.102 0.7382

Table 6. Example 2, adaptive non-augmented scheme (7.1)
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Figure 18.2. Example 2, e(t,σ,u,γ) vs. N for non-augmented scheme (7.1)
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N h e(t) e(σ) e0(u) e(γ) ẽ(t,σ,u,γ) r̃(t,σ,u,γ) ef(θ̃)

160 1/1 2.476E−01 4.578E−01 2.291E−01 9.596E−02 5.767E−01 − 0.2685
641 1/3 1.307E−01 3.193E−01 9.468E−02 4.036E−02 3.600E−01 0.721 0.3645
1894 1/5 7.750E−02 2.555E−01 5.534E−02 2.062E−02 2.734E−01 0.407 0.4225
5346 1/9 4.686E−02 2.105E−01 3.231E−02 1.098E−02 2.183E−01 0.325 0.4918
7867 1/11 3.801E−02 1.867E−01 2.686E−02 7.872E−03 1.925E−01 0.486 0.5052
11351 1/13 3.214E−02 1.804E−01 2.245E−02 6.398E−03 1.847E−01 0.519 0.5436
19863 1/17 2.487E−02 1.623E−01 1.688E−02 4.792E−03 1.651E−01 0.745 0.5949
27187 1/20 2.134E−02 1.571E−01 1.453E−02 3.909E−03 1.592E−01 0.201 0.6436
43166 1/25 1.687E−02 1.414E−01 1.151E−02 2.745E−03 1.429E−01 0.349 0.6849
84032 1/35 1.223E−02 1.260E−01 8.181E−03 1.830E−03 1.268E−01 0.231 0.7512
173459 1/50 8.548E−03 1.136E−01 5.698E−03 1.181E−03 1.141E−01 0.478 0.8230
215506 1/56 7.637E−03 1.116E−01 5.112E−03 1.046E−03 1.120E−01 0.161 0.8497
442551 1/80 5.353E−03 9.618E−02 3.562E−03 6.419E−04 9.640E−02 0.455 0.8907
562455 1/90 4.785E−03 9.118E−02 3.156E−03 5.895E−04 9.137E−02 0.455 0.9007
693514 1/100 4.262E−03 8.424E−02 2.846E−03 4.910E−04 8.440E−02 0.752 0.9054

Table 7. Example 2, quasi–uniform augmented scheme (10.1)

N h e(t) e(σ) e0(u) e(γ) ẽ(t,σ,u,γ) r̃(t,σ,u,γ) ef(θ̃)

160 1.000 2.476E−01 4.578E−01 2.291E−01 9.596E−02 5.767E−01 − 0.2685
1569 0.500 8.140E−02 2.640E−01 6.894E−02 2.496E−02 2.858E−01 0.544 0.3910
6105 0.250 4.152E−02 1.845E−01 3.585E−02 9.050E−03 1.927E−01 0.595 0.3973
14792 0.188 2.875E−02 1.380E−01 2.583E−02 5.233E−03 1.434E−01 0.683 0.4147
23877 0.125 2.273E−02 1.063E−01 2.010E−02 3.875E−03 1.106E−01 1.239 0.3984
31951 0.125 1.971E−02 9.002E−02 1.802E−02 3.139E−03 9.395E−02 1.683 0.3925
36300 0.125 1.846E−02 8.232E−02 1.698E−02 2.770E−03 8.610E−02 1.368 0.3850
44567 0.094 1.657E−02 7.462E−02 1.520E−02 2.371E−03 7.797E−02 0.966 0.3851
55891 0.088 1.482E−02 6.750E−02 1.359E−02 2.081E−03 7.047E−02 0.894 0.3866
69790 0.063 1.329E−02 6.113E−02 1.227E−02 1.870E−03 6.378E−02 0.898 0.3890
88006 0.063 1.181E−02 5.432E−02 1.103E−02 1.555E−03 5.669E−02 1.015 0.3870
114690 0.063 1.023E−02 4.805E−02 9.387E−03 1.298E−03 5.003E−02 0.944 0.3895
142100 0.063 9.170E−03 4.349E−02 8.309E−03 1.113E−03 4.523E−02 0.941 0.3914

174543 0.047 8.284E−03 3.888E−02 7.528E−03 9.659E−04 4.047E−02 1.083 0.3860
223591 0.044 7.395E−03 3.487E−02 6.867E−03 1.121E−03 3.632E−02 0.873 0.3884

Table 8. Example 2, adaptive augmented scheme (10.1)

N h e(t) e(σ) e1(u) e(γ) ê(t,σ,u,γ) r̂(t,σ,u,γ) ef(θ̂)

138 1/1 2.389E−01 4.817E−01 7.515E−01 9.610E−02 9.290E−01 − 0.7159
526 1/3 1.325E−01 3.210E−01 2.506E−01 1.289E−01 4.472E−01 0.968 0.5157
1519 1/5 7.912E−02 2.535E−01 1.539E−01 1.001E−01 3.228E−01 0.695 0.4972
6234 1/11 3.916E−02 1.832E−01 6.733E−02 7.062E−02 2.112E−01 0.583 0.4606
12094 1/15 2.899E−02 1.688E−01 5.364E−02 5.144E−02 1.867E−01 0.735 0.5308
15661 1/17 2.548E−02 1.607E−01 4.966E−02 4.272E−02 1.754E−01 0.925 0.5794
21411 1/20 2.192E−02 1.557E−01 4.383E−02 3.874E−02 1.678E−01 0.265 0.5984
33951 1/25 1.732E−02 1.404E−01 3.133E−02 3.137E−02 1.483E−01 0.393 0.6307
66000 1/35 1.261E−02 1.254E−01 2.083E−02 2.367E−02 1.299E−01 0.260 0.6845
136083 1/50 8.807E−03 1.133E−01 1.435E−02 1.646E−02 1.157E−01 0.494 0.7689
214624 1/63 7.034E−03 1.048E−01 1.049E−02 1.355E−02 1.064E−01 0.541 0.8016
346875 1/80 5.530E−03 9.606E−02 8.087E−03 1.073E−02 9.715E−02 0.469 0.8391
440779 1/90 4.943E−03 9.112E−02 7.438E−03 9.560E−03 9.206E−02 0.457 0.8538
543413 1/100 4.401E−03 8.420E−02 6.289E−03 8.664E−03 8.499E−02 0.758 0.8582
779875 1/120 3.721E−03 8.440E−02 5.497E−03 7.126E−03 8.496E−02 0.002 0.8971

Table 9. Example 2, quasi–uniform fully-augmented scheme (13.1)
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Figure 18.3. Example 2, ẽ(t,σ,u,γ) vs. N for augmented scheme (10.1)

N h e(t) e(σ) e1(u) e(γ) ê(t,σ,u,γ) r̂(t,σ,u,γ) ef(θ̂)

138 1.000 2.389E−01 4.817E−01 7.515E−01 9.610E−02 9.290E−01 − 0.7159
976 0.707 9.092E−02 2.702E−01 1.721E−01 1.088E−01 3.503E−01 0.739 0.4652
3796 0.500 5.491E−02 1.825E−01 7.484E−02 6.519E−02 2.149E−01 0.812 0.4612
7538 0.250 4.004E−02 1.414E−01 4.926E−02 4.594E−02 1.617E−01 0.797 0.4850
12319 0.250 3.503E−02 1.130E−01 4.231E−02 3.729E−02 1.311E−01 0.740 0.4827
19871 0.177 2.551E−02 9.059E−02 3.037E−02 2.994E−02 1.033E−01 0.985 0.4802
30635 0.125 2.039E−02 7.395E−02 2.404E−02 2.357E−02 8.377E−02 0.952 0.4933
46093 0.125 1.714E−02 6.098E−02 2.042E−02 1.911E−02 6.924E−02 0.957 0.4978
73803 0.125 1.323E−02 4.800E−02 1.551E−02 1.572E−02 5.447E−02 0.994 0.4814
120383 0.094 1.028E−02 3.849E−02 1.191E−02 1.211E−02 4.331E−02 1.065 0.4925
185623 0.063 8.290E−03 3.112E−02 9.650E−03 9.901E−03 3.504E−02 0.983 0.4889
301403 0.063 6.490E−03 2.442E−02 7.533E−03 7.847E−03 2.751E−02 0.881 0.4850
486087 0.044 5.134E−03 1.960E−02 5.950E−03 6.096E−03 2.198E−02 0.987 0.4950
612070 0.044 4.663E−03 1.794E−02 5.406E−03 5.497E−03 2.008E−02 0.785 0.4999

Table 10. Example 2, adaptive fully-augmented scheme (13.1)
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Figure 18.4. Example 2, ê(t,σ,u,γ) vs. N for fully-augmented scheme (13.1)
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Figure 18.5. Example 2, total error vs. N for the quasi-uniform refinements
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Figure 18.6. Example 2, total error vs. N for the adaptive refinements
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N h e(t) e(σ) e1(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)

72 1/1 4.382E−00 8.486E−00 1.048E+01 7.985E−01 1.420E+01 − 0.8621
824 1/3 2.058E−00 6.466E−00 4.903E−00 3.122E−00 8.935E−00 1.203 0.7309
2206 1/5 1.321E−00 5.356E−00 3.093E−00 2.202E−00 6.696E−00 0.043 0.7667
4614 1/7 9.479E−01 4.609E−00 2.050E−00 1.815E−00 5.445E−00 0.337 0.7872
7382 1/9 7.771E−01 3.871E−00 1.258E−00 1.560E−00 4.428E−00 0.656 0.7971
11194 1/11 6.347E−01 3.940E−00 1.175E−00 1.407E−00 4.392E−00 -0.725 0.8183
15888 1/13 5.392E−01 3.616E−00 9.299E−01 1.191E−00 3.956E−00 -0.532 0.8395
26662 1/17 4.172E−01 3.297E−00 6.863E−01 9.214E−01 3.517E−00 0.253 0.8731
58920 1/25 2.802E−01 2.993E−00 4.572E−01 5.925E−01 3.098E−00 0.078 0.9263
113638 1/35 2.057E−01 2.834E−00 3.457E−01 4.663E−01 2.900E−0 -0.259 0.9462
229726 1/50 1.471E−01 2.368E−00 2.119E−01 3.478E−01 2.407E−00 1.282 0.9584
370046 1/63 1.150E−01 2.159E−00 1.522E−01 2.671E−01 2.184E−00 0.258 0.9703
457062 1/70 1.025E−01 2.110E−00 1.358E−01 2.584E−01 2.132E−00 0.226 0.9710
596632 1/80 8.987E−02 2.146E−00 1.301E−01 2.082E−01 2.162E−00 -0.104 0.9808
749216 1/90 8.001E−02 2.037E−00 1.102E−01 1.889E−01 2.050E−00 0.453 0.9826

Table 11. Example 3, quasi–uniform fully-augmented scheme (13.1)

N h e(t) e(σ) e1(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) ef(θ)

72 1.000 4.382E−00 8.486E−00 1.048E+01 7.985E−01 1.420E+01 − 0.8621
828 0.500 2.085E−00 7.518E−00 5.603E−00 2.675E−00 9.971E−00 0.884 0.7717

2519 0.500 1.328E−00 5.213E−00 2.092E−00 1.539E−00 5.974E−00 1.014 0.8418
7419 0.354 8.816E−01 3.233E−00 1.143E−00 1.222E−00 3.746E−00 0.989 0.8128
9694 0.250 7.603E−01 2.827E−00 9.475E−01 9.652E−01 3.225E−00 1.041 0.8394
12043 0.250 6.977E−01 2.440E−00 8.382E−01 9.335E−01 2.831E−00 1.228 0.8165
16637 0.250 6.173E−01 2.006E−00 7.332E−01 8.056E−01 2.364E−00 1.018 0.8107
24816 0.250 4.949E−01 1.625E−00 5.711E−01 6.824E−01 1.917E−00 1.074 0.8093
38405 0.125 3.943E−01 1.315E−00 4.469E−01 5.334E−01 1.539E−00 0.903 0.8129
61030 0.125 3.147E−01 1.033E−00 3.475E−01 4.375E−01 1.216E−00 1.001 0.8049
94214 0.125 2.511E−01 8.360E−01 2.803E−01 3.495E−01 9.812E−01 0.999 0.8086
154303 0.088 1.990E−01 6.632E−01 2.210E−01 2.754E−01 7.772E−01 0.959 0.8099
195155 0.063 1.757E−01 5.871E−01 1.930E−01 2.459E−01 6.880E−01 1.039 0.8068
247607 0.063 1.563E−01 5.214E−01 1.708E−01 2.176E−01 6.106E−01 1.002 0.8089
305215 0.063 1.393E−01 4.701E−01 1.526E−01 1.982E−01 5.504E−01 0.993 0.8072

Table 12. Example 3, adaptive fully-augmented scheme (13.1)
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Figure 18.7. Example 3, e(t,σ,u,γ) vs. N for fully-augmented scheme (13.1)

Figure 18.8. Example 2 (augmented), adapted meshes for N ∈
{14792, 23877, 36300, 69790}
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ẽ(t,σ,u,γ)

κ0

non-augmented scheme (κ0 = 0)
♦

♦
augmented scheme

+

+
++ + + + + + + + + +

+

Figure 18.9. Example 2, ẽ(t,σ,u,γ) vs. κ0 for N = 215506
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Figure 18.10. Example 3 (fully-augmented), adapted meshes for N ∈
{9694, 16637, 38405, 94214}
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Figure 18.11. Example 2, ê(t,σ,u,γ) vs. κ3 for N = 214624
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Figure 18.12. Example 2, σ22 and t11 (N = 174543) for adaptive augmented scheme

Figure 18.13. Example 2, u1 and u2 (N = 185623) for adaptive fully-
augmented scheme

Figure 18.14. Example 3, σ12 and u2 (N = 195155) for adaptive fully-
augmented scheme
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