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Abstract

In this thesis we analyze a primal-mixed finite element method for the coupling of quasi-
Newtonian fluids with porous media in 2D and 3D. The flows are governed by a class of
nonlinear Stokes and linear Darcy equations, respectively, and the transmission conditions
on the interface between the fluid and the porous medium are given by mass conserva-
tion, balance of normal forces and the Beavers-Joseph-Saffman law. We apply a primal
formulation in the Stokes domain and a mixed formulation in the Darcy formulation.
The “strong coupling” concept means that the conservation of mass across the interface
is introduced as an essential condition in the space where the velocity unknowns live. In
this way, under some assumptions on the nonlinear kinematic viscosity, a generalization
of the Babuska-Brezzi theory is utilized to show the well posedness of our primal-mixed
formulation. Then, we introduce a Galerkin scheme in which the discrete conservation
of mass is imposed approximately through an orthogonal projector. The unique solvabil-
ity of this discrete system and its Strang-type error estimate follow from the generalized
Babuska-Brezzi theory as well. In particular, the feasible finite element subspaces include
Bernadi-Raugel elements for the Stokes flow, and either the Raviart-Thomas elements of
lowest order or the Brezzi-Douglas-Marini elements of first order for the Darcy flow, which
yield non-conforming and conforming Galerkin schemes, respectively. In turn, piecewise
constant functions are employed to approximate in both cases the global pressure field
in the Stokes and Darcy domain. Finally, several numerical results illustrating the good
performance of both discrete methods and confirming the theoretical rates of convergence,

are provided.
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Chapter 1

Introduction

The development of suitable numerical methods to solve the Stokes-Darcy and related
coupled problems, including porous media with cracks, the incorporation of the Brinkman
equation in the model, and linear as well as nonlinear behaviors, has become a very active
research area during the last decade (see, e.g., [5], [L1], [12], [13], [14], [15], [19], [26], [28],
[32], [35], [36] and the references therein). In particular, a mixed finite element method for
a class of nonlinear Stokes-Darcy coupled problem arising in industrial filtring application
and involving a non-Newtonian fluid, is introduced and analized in [I3]. Up to the authors’
knowledge, this is the first work dealing with the fully-coupled problem for non-Newtonian
Stokes and Darcy flows. In fact, the fluid is modeled there by the generalized nonlinear
Darcy equation in the porous medium. In addition, the approach in [I3] employs the
primal method in the Stokes domain and the dual-mixed method in the Darcy region,
which means that only the original velocity and pressure unknowns are considered in
the fluid, whereas a further unknown (velocity) is added in the porous medium. The
corresponding interface conditions are given by the mass conservation, balance of normal
forces, and the Beavers-Joseph-Saffman law, and since one of them becomes essential, the
trace of the Darcy pressure on the interface needs also to be incorporated as an additional
Lagrange multiplier. More recently, the model from [13] is recasted in [14] as a reduced
matching problem on the interface by using a mortar space approach. As a consequence,
a parallel algorithm for the problems in both regions is derived, which allows to solve the
coupled problem utilizing existing codes for Stokes and Darcy simulations.

On the other hand, the a priori error analyses of a primal-mixed finite element method

for 2D Stokes-Darcy coupled problem, in which primal and mixed formulations are em-



ployed in the Stokes and Darcy domains, respectively, were developed in [19] and [30]. This
approach allows, on the one hand, to consider the natural unknowns, that is, the velocity
vector fields and the pressure field in both domains, and on the other hand, the utilization
of different families of finite element subspaces in each media. The model considered in
[19] refers to a linearized Stokes equations coupled with a linearized Darcy equations. In
addition, since the approach in [19] leads to essential transmission conditions, these are
imposed weakly and hence the trace of the porous medium pressure becomes the corre-
sponding Lagrange multiplier. However, in [30], the mass conservation across the interface
between both domains was included as an essential condition in the velocity unknowns
space, and hence the resulting primal-mixed formulation does not need the trace of the
porous media pressure as an additional unknown.

The purpose of the present work is to extend the analysis and results from [30] to the
model problem from [I3], that is to the coupling of quasi-Newtonian fluids with porous
media. To this end, and following a similar approach from [I3] (see also [19] and [30]),
we apply a primal formulation in the fluid domain while a mixed formulation is applied
in the porous medium. In addition, the balance of normal forces and Beavers-Joseph-
Saffman law are imposed weakly (exactly as in [I9] and [30]), but following the idea
introduced in [30], the mass conservation across the interface is imposed as an essential
condition in the velocity unknowns space. All these equations yield a nonlinear primal-
mixed formulation, whose well-posedness is proved by applying the generalization of the
Babusgka-Brezzi theory developed in [17] (see also [18]). In addition, since the insertion
of the mass conservation as an essential condition in the velocity unknowns space leads
to a nonconforming Galerkin scheme, we need to modify the generalized Babuska-Brezzi
theory from [I7] to be able to show the uniqueness of the discrete scheme and derive the
corresponding a priori Strang-type estimate.

The rest of this work is organized as follows: In Chapter 2 we describe a general-
ization of the classical Babuska-Brezzi theory and we introduce basic properties of the
Bernardi-Raugel finite element subspace, Raviart-Thomas finite element subspace of low-
est order and Brezzi-Douglas-Marini finite element subspace of first order. In Chapter
3 we introduce the model problem and derive the primal-mixed variational formulation,
which shows a nonlinear mixed formulation structure. A slight modification of the usual
Babuska-Brezzi theory developed in [34] is also given here to analyze the solvability of

our continuous formulation. Next, in Chapter 4 we provide the discrete analogue of the



abstract theory developed in [17] (see also [I8]), which allows us to establish the solvabil-
ity and stability of nonconforming Galerkin schemes associated with weak formulations of
nonlinear mixed problems. This abstract framework is then applied, under some general
assumptions on the finite element subspaces, to prove the well-posedness of the noncon-
forming discrete scheme associated with our continuous problem. Specific choices of finite
element subspaces satisfying these assumptions are also described here. Finally, several
numerical results illustrating the performance of the method and confirming the theoretical

rates of convergence, are reported in Chapter 5.



Chapter 2

Preliminaries

We begin this chapter by introducing some notations to be used throughout this work.

2.1 Notations

In what follows, given d € {2,3}, R?*? denotes the space of tensors (or matrices) T := (7;)
with real entries, and I is the identity tensor (or identity matrix) of R??. Also, in this
space we consider the tensorial inner product given by
d
o:T = Z 0ijTij Vo, T € R,
ij=1

with induced norm

d 1/2
lo| := { Z afj} Vo € R4,

ij=1
In turn, given H and @ Hilbert spaces with induced norms H . H g and H . H o’ respectively,
we endow the product space H x Q with the product norm H . HHXQ = H . HH + H . HQ In

addition, we denote by H and H the spaces H? and H%*?, respectively. Also, If H' denotes
the dual space of the Hilbert space H, we let [-, ] 1« D€ the duality pairing between H !
and H. Furthermore, we utilize the standard simplified terminology for Sobolev spaces
and norms. In particular, given s € R, a domain U C R%, and an open or closed surface

I' C R?, we consider the Sobolev spaces
H*(U) := [H*(U)]? and H*(T) := [H3(D)]".

However, when s = 0 we usually write L?(U) and L?(T) instead of H°(U) and H’(T),
respectively, as well as L2(U) and L?(T") instead of H°(U) and H%(T'), respectively. The



corresponding norms are denoted by H : and H . H p for the respective space on U and

Hs,U s,
I, respectively. In addition, given u,v € L?(U), u,v € L2(U), and o, T € L2(U), we set

(1) ;:/qu, (V)0 ::/ v

U

and

(0.7 = /Ua 7.

We also need to introduce the space

LiU) = {u e L2(U) : /Uu = 0}. (2.1.1)

Further, <-, '>r denotes the duality pairing between H~'/2(I') and H'/?(I'), and between
H~'/2(I) and H'/2(I") with respect to the L?(I') and L?(T) inner products, respectively.
When T is an open surface of R? and ¥ is a closed surface in R? such that I' C ¥, we

introduce the extension operator Eq : HY/?(I') — L?(X) defined by

Bw={" """ wemrm)

0 on X\T,

and the space

Hy*(0) = {w e HYAT): Bo(w) € HYA(D)},

which is endowed with the norm kul/zoo,r = HEg(w)Hl/w, Vi € HOIéQ(I‘). The expres-

sion <-, '>1‘ is also employed in this case to denote the duality pairing between Hééz(I’) and
H&)l/Z(F), where H&)lm(F) is the dual space of H%Q(F). In particular, note that given
n € H=Y2(%), its restriction to I' defined by

ey ¥)p = (0, Bo(v))y  Yab € Hog (T,

is an element of H&)I/Z(F). The corresponding vector versions of Héf(f‘) and H&Jlm(f‘)

are denoted by Hééz(F) and Haol/ 2(F), respectively, and <-, > is also employed to refer

r
to the respective duality pairing.

On the other hand, with div denoting the usual divergence operator, the Hilbert space
H(div;U) == {T cL2(U): divr e LQ(U)},

is standard in the realm of mixed problems (see [9], [23]). The norm of this space is

denoted by H . Moreover, given a nonempty set S of R? and a nonnegative integer

Hdiv,U'



k, we denote by Pj(S) the space of polynomials defined in S with total degree at most k.
Also, Py(S) denotes the corresponding vector version of Py(S). Finally, we employ 0 to
denote a generic null vector, the null functional or the null operator, and we use C' with
or without subscripts, bars, tildes or hats, to denote generic constants independent of the

discretization parameters, which may take different values at different places.

2.2 A class of nonlinear mixed formulations

Let H and @ be Hilbert spaces with dual spaces H and @', and let A : H — H' be a
nonlinear operator, and B : H — @’ be a linear operator with adjoint B’ : Q — H’. Then,
given ' € H' and G € ', we are interested in the following variational problem: Find

(u,p) € H x @ such that

[A(U’)’U}H’XH + [B(U)’p]Q’XQ = [F7U]H’><H Vu € H’

(2.2.1)
[B(u)’q]Q’xQ - [G7q]Q/><Q VQGQ-

In order to analyze the unique solvability of (2.2.1]), we need to introduce some as-

sumptions on the operators A: H — H' and B: H — Q.

(H.1) There exists v > 0 such that A is Lipschitz continuous, that is

HA(u) - A(U)HH, < vHu - UHH Vu,v € H.

(H.2) There exists a > 0 such that for any z € H, the nonlinear operator A(z + -) is

strongly monotone in the null space of the linear operator B, that is
alu - UHZ <[A(z+u) —A(z+v),u—v] 4,y Yu,veV,

where V := {v € H: [B(v),q]Q,XQ =0 Vge Q}.
(H.3) There exists 8 > 0 such that the following continuous inf-sup condition holds

[B(v), 4]y

— @@ s Blgll . Vg e Q.
o, Pl

We now recall from [23] a result establishing equivalent statements for (H.3).
Lemma 2.2.1. The following are equivalent:

i) (H.3) is satisfied.



ii) B’ is an isomorphism from Q onto V°, where

vei{Fenr' s [Fu]y,, =0 wev)

1s the polar set of V', and there holds

1B'(a)]

w20l vaea
iii) B is an isomorphism from V1 onto Q' and there holds

1B()]

o =Bl Yeevh

iv) B: H — Q' is surjective.
Proof. See [23, Chapter 1, Section 4] for details. O

While the solvability analysis of (2.2.1]) follows as a particular case of [34, Proposition
2.3], we provide next an alternative proof by adapting the arguments from [18]. Indeed,

for each G € H', we first set

VG = {'UGHI [B(U)’q}Q’XQ: [G’q]Q’XQ VQGQ}

In particular, when G = 0, we just write V instead of Vg to denote the null space of the
linear operator B. Obviously, since B is linear and bounded, V' becomes a closed subspace

of H. Then, we associate with (2.2.1)) the following problem: Find u € Vi such that
[A(u),v] gy = [Fo0] gy Y0 EV. (2:2.2)
The next result establishes the connection between ([2.2.1)) and (2.2.2]).

Lemma 2.2.2. Let (u,p) € H x Q be a solution of (2.2.1). Then, u € Vi and u is a

solution of (2.2.2). Conversely, let u € Vi be a solution of the problem (2.2.2)). Then,
there exists p € Q such that (u,p) € H x Q is a solution of (2.2.1)).

Proof. Let (u,p) € H x @ be a solution of (2.2.1)). Then, from the second equation in
(2.2.1) we have that u € Vi, and clearly u is a solution of 1) since [B(v),p]
0 Vv e V. Conversely, let u € Vi be a solution of 1) It follows that [B (u), q] oxQ =
[G, q] 0'%Q VYq € (), which says that the second equation in 1} is satisfied. In turn,
from Lemma we know that B’ is an isomorphism from @ onto V°, and since F —

QxQ —

A(u) € V°, we deduce that there exists a unique p € @ such that B'(p) = F — A(u). In
this way, the pair (u,p) € H x @ solves (2.2.1)). O

7



Now, given G € @', we know from Lemma that there exists a unique ug € V+
such that B(ug) = G. Tt follows that for each u € Viz there holds u — ug € V, that is
u = ug + ug, with ug € V and hence problem (2.2.2) can be re-stated, equivalently, as:
Find ug € V such that

[A(uo + ug), v) HixH = [F,v] ey VVEV. (2.2.3)

According to the foregoing analysis, we have the following result, which states that prob-

lems (2.2.2]) and (2.2.3) are equivalent.

Lemma 2.2.3. Given ug € Vg, we let ug € V' be a solution of (2.2.3). Then, u :=
uo + ug € Vi is a solution of (2.2.2). Conversely, let u € Vg be a solution of (2.2.2)).

Then, there exist ug € V+ and ug € V such that w = ug + ug, and ug € V is solution of

©.2.3).
The next result establishes the unique solvability of problem ([2.2.3)).
Theorem 2.2.1. (H.1) and (H.2) imply that problem ({2.2.3) is well posed.

Proof. 1t follows from a classical result in nonlinear functional analysis (see, e.g. [31,

Chapter 3, Section 3]. O

Moreover, we remark from this last result that the solution ug + ug € Vi of (2.2.3)) is
independent of the election of ug € V- NVg. In fact, given other tg € Vi, we let 49 € V

be the unique solution of

[A(ﬂo +?~LG)’U]H’><H = [F,U]H,XH Yo e V.

Since [A(tg + g), v] i = [A((@o + te — ug) + ug),v] 1 gy for each v € V, we deduce
from Theorem with ug € Vg, that tg+ug—ug = ug, whence tg+ug = ugtug € Vg.

Now, we introduce the main result of this section.

Theorem 2.2.2. Assume that (H.1), (H.2) and (H.3) hold. Then, there exists a unique
solution (u,p) € H x Q of (2.2.1)). In addition, there exists a constant C' > 0, depending
on the constants o,y and ( provided by (H.1), (H.2) and (H.3), such that

|:2) |1 < O IE I + 1

o HA(O)HH,}. (2.2.4)



Proof. The unique solvability of (2.2.1]) follows straightforwardly from Lemmas [2.2.2) m and

and Theorem To show the estimate - we let ug € V and ug € VN g,

provided by Lemma [2.2.3] such that v = ug + ug. Then, since B is an isomorphism from

V+ onto Q' (cf. Lemma |2 , we get

Juc|ly < (2.2.5)

In turn, from (H.2) and problem (2.2.3), we have

o|uo|%, <[Aluo +ug) — A(uc).uo] v,y

:[Fv UO}H/XH + [A(O) - A(UG)vUO}H/xH - [A(0)7u0] H'xH’

which, applying (H.1) and the fact that F, A(0) € H', yields

1
fooll < 2 {1l +llclly + 14} 220
On the other hand, applying (H.3) to p € @, we get

Bl < sup e
b Tl

whence, using that

[B(U)’p]Q’XQ = [Ev] g — [AW) 0] oy Vo € H,
= [F’U]H’XH + [A(O) - A(u)7U]H’><H - [A(O)’U]H’XH

and applying (H.1), leads to
1
Ipllq < g{HFl
The proof follows by combining and with the inequality HuH g < HUOH gt

HUGH > and then replacing the resulting estimate in . O

ol + 14O 2.27)

2.3 A nonconforming discrete scheme

We begin by recalling that the unique solvability of (2.2.1]) is guaranteed by Theoremm
Now, we let H and Q be two Hilbert spaces with dual spaces H' and @', respectively, such
that H C H and Q C Q, and we consider finite dimensional subspaces Hj, C H and

Qn C Q. Also, we let A : H — H' be a nonlinear operator, and let B : H — Q' be a



linear operator with adjoint B’ : Q — H’. Then, given F' € H' and G € Q' we consider
the nonconforming discrete scheme of (2.2.1): Find (up, pp) € Hp X Qp, such that

oo

[ACun), vn] o + [
[

Note that the nonconformity of (2.3.1)) is due to the fact that Hj, and @}, are not necessarily

(Uh),ph]@x@ = [F>”h]ﬁ1'xﬁ Von € Hh, (2.3.1)

sl

(un), an) gy = [@%]@XQ Van € Q-

contained in H and @, respectively, and also because A and B dot not necessarily coincide

with the operators A and B. Now, given Ge Q’, we set

Ven = {Uh € Hy, : [B(vn), an) G'xG = (G, an] Gxg  Van € Qh}-

In particular, if G = 0, we just write Vj, instead of Vo,n to denote the discrete kernel of
the operator B. In order to establish the uniqueness, stability, and corresponding a priori

estimate for the discrete scheme ([2.3.1)) we need to introduce some hypotheses:

(H.4) There exists a constant 3 > 0, independent of h, such that

B'U y4h| Hr v 6
sup [B(vn) h]QxQ

> Bllanl s VYan € Qn
v, €EHp, H’Uth{ - ’BHQhHQ dn Qh
v 70

(H.5) The operator A is Lispchitz continuous in H with constant 4 > 0, that is

1)~ A(0),0] | <l ol ol Ve B

(H.6) For all z;, € Hp, the operator fl(zh + ) is strongly monotone in V} with constant

a > 0 independent of h, that is,
bt bt ~ 2
[A(zn + un) — Az +vn),un — ) goy g = &llun — vl Vun, v € Hp.

Applying Lemma to the present discrete scheme, we deduce from (H.4) that the
discrete version of B is an isomorphism from VhL onto @, whence we find that there

exists a unique us , € Vit such that [B(u@ h),qh] Yqn, € Q. Note

OxQ = [G, Qh}@x@
that this also says that us, € VhL N Vg ,,- Then, we associate with |) the discrete
problem: Find ugj € V} such that

[A(uﬂ,h + ué,h)7 Uh] I [F, "Uh] =097, Yoy, € Vi, (232)

which is the discrete analogue of (2.2.3). In addition, using similar arguments to those

employed in the proof of Lemma we can prove the corresponding connection between

10



(2.3.1) and (2.3.2). Further, similary as in Section 2.4 (cf. Lemma [2.2.3)), we remark that

1) is actually equivalent to the problem: Find u; € Vé,h such that
[ACun),vn) oy = [F ool g Yon € Ve
We now establish the well-posedness of .
Lemma 2.3.1. Assumptions (H.5) and (H.6) guarantee the unique solvability of ([2.3.2).
Proof. 1t follows from [31, Chapter 3, Theorem 3.3.23]. O
As for the continuous case, we remark here that the solution ugn + ug ) € Vg, of

(2.3.2)) is independent of the choice of ugy € Ve The well-posedness of 1' is stated

now.
Theorem 2.3.1. There exists a unique (up,pp) € Hp X Qp, solution of (2.3.1). In addition,

there exists a constant C > 0, independent of h, such that

ot HA(O)HH"}'

[[Cun )| s < O{HFH;}/ +|¢]

Proof. The proof follows similarly as for Theorem [2.2.2 O

We now aim to derive an a priori error estimate for and its discrete scheme
(2.3.1). Hereafter, we let (u,p) € H x Q and (up,pr) € Hp, X Qp be the unique solutions of
the weak formulation and the nonconforming Galerkin scheme , respectively,
and let ugp, € Vé,h and ug, € Vj, provided by the foregoing analysis, such that u;, =
U p, + Uo,h- The next two preliminary results show partial error estimates for Hu — UhH i
and H p— th o0 a8 well as a translation property between the discrete subspaces Vj, and

H,.

Lemma 2.3.2. Under the assumptions (H.4), (H.5), and (H.6) there hold

o= a5 < 01{ inf, o= G+ ewll + b, o= anllg

’UhEVh
- [F—A(u)—B’(p),wh]g,Xg+ sup [F—F.wn] g, 5 ’
%hhi‘gb Hwh”ﬁ] %hhi‘% HwhHﬁ
and
_ . < C - - inf — 5
[P = pnllg < 2{““ unl|g + inf lp—anllg
s [F ~ Aw) = B'®),on] it “p [F = Foon] g |
mel, [vn]| 5 vl lonl &

11



where C 1= % L max {a + 7, HB

o } and Cy = %max{/g—l— HB‘

Ql?ﬁ/’ 1}
Proof. We first estimate Hu — UhH ;- Given vy, € Vi, we have from the triangle inequality
=l = lhe = ugp + w0l < lu— G+ )l + o — wnll - (233

Now, applying (H.6) with z, = ug ,, we deduce that

aHuO h— vhHH [fl(uGh + ug h) A(u@’h + Uh),uo,h - Uh} H'xH

-1

o

(un), o — Vi) goy g — [Alug, + vh)ston = vh) oo -
Then, using that
[B(uop — Uh)a‘]h]@/x@ =0 Vg, € Qp,
and that
[Aun), uo,n — vn] HxH — = [F,uon — Uh) o i

we find, after adding and substracting appropiate terms, that

&[uon — vn|7 <[F, h] ey = [Bon = vn),an] g = [Alug y, +vn),uon = vnl gy
=[F = A(u) = B'(p),uon = vn] gy + [F = Fruon = vn] iy
+ [B(UO,h —Vp), D — Qh]Q/XQ + [A(u) - A(U@,h + Un), ok — Vh) g i
which, applying the boundedness provided by the duality parings and the assumption

(H.5), dividing by @||uo, —vn|| 7, and then combining the resulting inequality with (2.3.3)),
implies that for each (vp,qn) € Vi X @), there holds

Ju g <{(a+v)uu— (ugn+ o)l + 1Bl o= anllg 234
+ sup — A(U) i B‘/‘(p),U)h] H'xH + sup [F _‘-‘Fu U}T’f] H/xlff}

On the other hand, applying (H.4) we obtain for each ¢, € Qp

B(Uh)aph—% A s O)
Bllpn —anllg < sup [ 2%

Uﬁh;ﬁoh thHH

: (2.3.5)

12



and according to the first equation of (2.3.1]), we can write

[B(vn), pn — an] %O = [B(vh), pn) G'xG [B(vn), qn) G0

= [F’Uh]ﬁ’xﬁ - [A(uh)’vh]ﬁ’xﬁ o [B(Uh)’qh]@xé

= [F_F’Uh]f{’xﬁ_l_ [F_A(u) _B/(p)’vh]ﬁ’xﬁ

+[A(U) — A(up), vn) axig ™t [B(Uh)vp - Qh}@x@,
that is, for each (vp, qn) € Hp X Q) there holds

[B(on),ph = an] gy =[F = Fovn) gy + [F = A(w) = B'(0), vn] oo
+ [A(W - A(Uh)ﬂ/h] st [B(Uh),l? — qn) 0%

Replacing the foregoing identity back into (2.3.5)), and applying (H.5) and the boundedness

of B, we arrive at

1. ~
I~ ol < {3l -l + 1

Q/ p— qh“@
+ sup [F - A(U) - B,(p)awh]f{/xg + sup [F - F,wh]g/xg '
wneld, [[wl| wn€Hy [[wl|

Hence, applying the triangle inequality we conclude that

Hp *PhHQ SHP - QhHQ + th - %HQ

1. ~ -
<2 sl + (34181 ) - il 230
+ sup [F - A(U) i B‘/‘(p),wh] < + sup [F —(,U‘)‘h]g/xg }

Finally, the result follows applying infimum on V}, and @ in (2.3.4), and also taking
infimum on @y, in the (2.3.6)). O

which is provided by the following

It remains to estimate inf |lu— (ug, + vn)]

vRLEVR H>

lemma.

Lemma 2.3.3. There holds
[G - B(U)a Qh] O'x0

inf H“_(ué,h"'vh)uﬁ SC{ inf Hu—vhHH—i— sup

vpEVY vp€Hp, Qézhigoh thHQ
G—G,qnls.
+ sup [ qh]QXQ},
qz;f;g)h HQhHQ
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with C' = fmax {B+ HB

Q/7 }'

Proof. Given vy, € Hp, we know from (H.4) that there exists a unique wy, € VhL N Hy, such

that
[B(wh),Qh}@X@ = [Bug, — ) aloeo  Van € Qn, (2.3.7)
and there holds
B ) 3 v () B ~ — 0 5 Vv ()
HwhHQS{ sup [ (wp) Qh]Q N{o) l sup [ (UG,h Op) Qh}QXQ
Baean  lanllg B aneq, lanlg
70
:i sup [B(u_@h)_B(“_ué,h)a%]@x@
Buca, lan|
B, G~ By G- Gy
SH ~Q U—'lA)hHQ‘Fi sup [ (U) qh}Q xQ + sup [ Qh}Q XQ 7
B | aneQn HQhHQ ah€Qn H%HQ
qn#0 qn#0

where the foregoing expressions have arised after adding and substracting B (u) and G,

and realizing that [B (uG ) ahloise = G, anlgrxo  Van € Qn. Then, noting from (2.3.7)
that 0y +wp, — ugz,, € Vi, we find that

inf [|lu—(ugy +on)llg < [l = (ugp+ o0+ wn—ugp)g < lu=tullg + [wnll5

v EVY

B &
~>Hu—ﬁh g7t sup sup
B an€Qp HQhHQ an€Qn HQhHQ
qan#0 qn#0
which, taking infimum on 0, € Hp, yields the required inequality and completes the
proof. O
The main result of this section is established as follows.

Theorem 2.3.2. Under the assumptions (H.4), (H.5), and (H.6), the nonconforming
discrete scheme (2.3.1)) is stable, and there holds the Strang-type error estimate

Hw—uh,p—phwmsc{ up =l + a8 - alg

vp€Hp,
[F — A(u) = B'(p), wn] g [F—F’ W] g
+ sup + sup
Tl ud Tl
G-B 5 A1 A G — G7 Y %O
o [ (), 4] g3 o [ A
ar€Qn HQh‘ o 4n€Qn HQhHQ
qn#0 qan#0
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Proof. The proof follows from a straightforward application of Lemmas and O

It is important to observe from Theorem that if H, C H, then

[F_A(U)_B,(p),vh]glxg [F—Favh]g/xg
sup =0 and sup =0
vz}f;g)h thHH ”ghigh H”hHFI
Similarly, if Qp C @Q, then
G — B(u),qn) 5.5 G—G,qn 5.
sup [ ) qh]Q XQ _ 0 and sup [ qu xQ _
qgfﬁ)h 2] 0 ";f%h H%HQ

Therefore, when Hy, C H and @, C @, the a priori error bound provided by Theorem [2.3.2]
becomes the usual Cea error estimate. In other words, the last four terms in that estimate
constitute the consistency error for the case in which Hj; and @j, are not subspaces of H

and @, respectively.

2.4 Some finite element spaces for the Stokes-Darcy prob-

lem

Throughout this section we introduce three popular finite element subspaces for the Stokes
and Darcy problem in 2D which constitute a stable Galerkin discrete scheme for the Stokes-
Darcy coupled problem. To this end, we let  C R? be a domain (open and connected
nonempty set) with Lipschitz boundary ' := 9 and a regular triangulation 7}, of Q by
triangles, where h := max {hT :T € E} and, for each T € Ty, hr is the diameter of 7. In
addition, we denote by &, the set of all edges generated by the edges of the elements of Ty,
and given T' € Ty, we denote by £(T') the set of all edges of the triangle T'. Given e € E(T),
we simply denote by n and np the unit normal vectors on e and 97T, respectively, which
are chosen pointing outwards from 7. Also, T denotes the referential triangle of R? with
vertices 01 := (0,0), 02 := (1,0) and 03 := (0,1). For each i € {1,2,3}, we denote by é;
the edge opposite ;.

Further, we associate a family of affine applications { Fr}reT, such that
i) the application Fr : R? — R? is defined as
Fr(z) = Bri +br Vi € R?,
where By € R?*? denotes an invertible tensor and by € R2.
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i) Fp(T)=T VT €T

Then, given T" € Ty, and given a sufficiently smooth scalar and vectorial fields v and v
defined in T', we introduce the affine transformation of v and the Piola transformation of

v, denoted by ¥ and Vv, respectively, as
v:=voFr and ¥:=|detBr|B;'vo Fr.
We now recall four useful technical results.

Lemma 2.4.1. Let T' € Tj,. Given a nonnegative integer m, we let v € H™(T). Then its

affine transformation v belongs to H™(T), and there exists ¢; > 0, depending only on m,

such that

[0, < éxl det Brl 2| Br||"[o],, -

Conversely, let v € H™(T). Then v :=7To Fr! belongs to H™(T) and there exists ¢ > 0,

depending only on m, such that
(0], < xl det Brl 2| B[], -
Proof. See, e.g [16] for details (see also [23]). O

Lemma 2.4.2. Let T € Tp,. Given a nonnegative integer m, we let v.€ H™(T). Then its

~

Piola transformation v belongs to H™(T), and there exists ¢o > 0, depending only on m,

such that
9,7 < e2ldet Be|'2(| B2 ||| B[ [9],,, -

Conversely, let v € H™(T). Then v := | det Br|™'Brv o Fyt belongs to H™(T) and there

exists co > 0, depending only on m, such that

[Vl < coldet Br[ =2 Br ||| B2 [¥],,, -

Proof. See, e.g [16] for details (see also [9]). O

Lemma 2.4.3. Let T € Tj,. Then, for each v € HYT) and for each v € HY(T), there
holds

a) /V-VH—/V-V’U and
T T
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b) /’ﬁdiv@z/vdivm
T T

In addition, for each v € HY(T) and for each o € L*(9T), there holds

/ G-DT &:/ v-nr p.
T ar

Proof. See, e.g. [16]. O
Lemma 2.4.4. Given T € Ty, we set

pr = diameter of largest circle contained in T,

hy = diameter of T, and

pj := diameter of largest circle contained in T.

Then

T h
det Br| = L 1By < 2T
iy

al

hA
d ||B:| < -ZL.
and |55 < 21

Proof. See, e.g [16]. O

Finally, we recall that the shape regularity of 7; yields the existence of a constant

¢ > 0, independent of h, such that

h
L <e VTET,. (2.4.1)
pT

2.4.1 The Bernardi-Raugel subspace

Following [23], given T' € Ty, we let a1, ag, ag € R? be the vertices of T. Then we denote
by e; the side opposite a;, and we denote by n; the unit outward normal vector to e;, for

each i € {1,2,3}. Also, we define the polynomial functions p1, p2, ps € P2(T) as

P1:=mn1727m3, P2:=ngmn3 and Pp3 = nznine,

where 71, 12 and 13 are the barycentric coordinates of T'. Note here that pi|ej =0 Vi#j.

Next, we introduce the local Bernardi-Raugel space as
BR(T) =Pi(T) @ span{pl, p2, pg}. (2.4.2)

We notice that P1(T) C BR(T') C Py(T). In addition, since p;(a;) =0 Vi # j, given
p € BR(T), we see that

3

pP=q-+ Z iPi, (2.4.3)
i=1

17



where

3

a:= Y plai)m.

i=1
Note that q is actually the standard interpolant of p on P1(7). The first result below
checks the unisolvence of BR(T).

Lemma 2.4.1.1. Let p € BR(T) such that p(a;) =0 and/ p-n=0 WVie {1,2,3}.
ei

Then p=0inT.

Proof. Taking into account (2.4.3)), the definition of q and the fact that p(a;) =0 Vi €
{1,2,3}, we have that q = 0 so that

3
b= Z a;P;-
i=1
Then, since pile; =0 Vi # j, we arrive at
02/ p'ni:/ aipi'ni:/ anime  J, k # 1,
e; e; €
which proves that a; =0 Vi € {1, 2, 3}. Therefore, p=0in T ]

Thus, thanks to the result above and following [6], for each v € H'(Q), we define the
linear and bounded operator IT, : H'(Q2) — Hj, by

/Hh(v) ‘n = /v -n, Vee&y, (2.4.4)
and
IT;(v(a)) = In(v(a)) for each node a of Ty, (2.4.5)

where Iy, is the Clément regularization operator defined in [23], Appendix A, A.3] and the

finite element subspace Hy is given by
Hy = {vh €C@): wvulr € BR(T) VT e n}.
It is easy to see from that there holds
Po(divIT,(v)) = Po(divv) Vv € H(Q), (2.4.6)

where Py is the L?(Q)-orthogonal projection onto the piecewise constant functions on €.

The following result shows an interpolation error bound for ITj,.
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Theorem 2.4.1.1. Let k € {1, 2} and let v.€ H*(Q). Then there exists C > 0, indepen-
dent of h, such that

v —TI,(v MQ<0M4WMQ (2.4.7)

Proof. Let T € Tp,. We first observe from ([2.4.3)) and ( - ) that

0, (v)[r = In(v)|r + Zazpu

In addition, using (2.4.4)) and the fact that p;le; = 0 Vi # j, the coefficients a; can be

written as

/ (v—1Ix(v)) n;
o = 2o gk #i, Vie{1,2,3}. (2.4.8)

/ 75 Mk
e

According to [23, Theorem A.4], the operator Ij satisfies the following local interpolation

error estimate:

HV_Ih(VMO,T""hT‘V ‘1T < Cih|vl, A(T) (2.4.9)
where A(T) := {T" € Tj, : TNT' # 0}. Next, giveni € {1,2,3} and denoting p; := p;oFr,
Lemma [2.4.1] implies that

[Pily 7 < Cal det Br|2| By | [Bil, 1 < Coldet Byl V2| B;

I (2.4.10)

where in the last inequality we have used that ‘f)z is a constant independent of h

‘1,T
and T. In turn, using the Cauchy-Schwarz inequality and the trace theorem in HI(T ),
and denoting é; := F 1(ei) and 1n; its corresponding unit normal vector which pointing

outwards form T, we deduce that

/W—hM%mZA' @~ T(v) B,

2 \el\ ~
e\/” _Ih HO@Z

whence, from Lemmas and and applying (2.4.9), we infer that

quw»nz

4

HV HlT’

()

<@IﬂMaBﬂ1ﬂmv—nmwm¢+hﬂv—ﬂwﬂhw}

leil -
§06|é4|’detBT’ 1/2h17€’|v‘k,A(T)’
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that is

/(V—Ih(v)) n; <C'6| |]d t Bp|™ 1/2hT|V‘kA(T)' (2.4.11)

€; | |

_ |€2| ~ ~
MMk = 127 | MMk,
e; ‘e’l| e;

together with (2.4.11)) and the definition of «; (cf. (2.4.8)) yield

Then, the fact that

o] < Crldet Brl ™' 2Ry [V, 5

Hence, combining (2.4.10|) and the foregoing identity, using (2.4.9) and the Cauchy-Schwarz

inequality we conclude that
k—1
v — I (v |1T < Crhy MkA(T

The estimate (2.4.7)) follows by adding on each T' € T}, in the previous estimate, using the
fact that the number of elements of A(T") is bounded, applying hy < h VT € Tp, and
using the shape regularity of 7, (cf. (2.4.1)). O

We remark from this result that the operator ITj is actually uniformly bounded with
respect to the H!(2)-seminorm. In fact, taking & = 1 in (2.4.7) and applying the Cauchy-

Schwarz inequality we obtain that

ITT, (v — (v <clv] g YveH(Q).

‘19 | |IQ Mu)

2.4.2 The Raviart-Thomas subspace of lowest order

Following [16], given T' € T, we let RTo(T) be the local Raviart-Thomas space of lowest

order as
RTH(T) :=Po(T) & Py(T)x. (2.4.12)

Here x denotes a generic vector of R2. We notice that each element q € RTy(T) can be

written by such that

q(z) =pi(z) + po(x)x VreT,

where p; € Po(T") and pg € Py(T). From the chain rule it is easy to check that div q €
Py(T) and, since each edge of T is contained in a plane (or line) of R%, we see that

qle -n € Py(e) Ve edge of T. We now have a first result.
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Lemma 2.4.2.1. Let q € RTy(T) such that

/q ‘n=0 VYee&(). (2.4.13)

Thenq=0inT.

Proof. Since q|e -n € Py(e) Ve € E(T), (2.4.13) implies that q|s7 - ny = 0 in 9T. Also,
using the fact that div q € Py(T), (2.4.13)) yields

0:/ q-nT:/divq:T|divq7
aT T
which shows that q € RTy(T") satisfies
divg=0 inTand q-np=0 onJT.
Therefore, q =0 in 7. O

The result above implies that each polynomial q € RTy(T') is uniquely determined by
its normal components on each edge of T. Then, this fact suggests to define the local

interpolation operator II% : HY(T') — RTy(T') by
/H%(v) ‘n= /v ‘n Vv e HYT), Vec&(T). (2.4.14)
e e
The following two results state a couple of important properties of H%.
Lemma 2.4.2.2. Let P : L*(T) — Py(T) be the orthogonal projector. Then, there holds
divII)(v) = Pr(divv) Vv € HY(T).
Proof. Let v.€ HY(T). From we have that

/diVHOT(V) :/ % (v) - np :/ v-nr = / divv,
T aT aT T

that is,

/Tdiv(HOT(v) —v)p=0 Vpe R(T).

The proof follows from the fact that divq € Py(T)) Vq € RTIp(T'), and the foregoing

relation. O

Lemma 2.4.2.3. Given T € Tj, and v € H(T), there holds

—

I13.(V) = I%(v) := | det Br|B;'TI:(v) o Fr.
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—

Proof. Tt suffices to show that ¥ and TI9.(v) satisfy (2.4.14). In fact, given é € £(T') and

p € Py(é), welet p:=po Ffl and we extend p by zero to GT\é so that the resulting p

belongs to L2(8T). It follows from Lemma [2.4.3 and (2.4.14), and denoting e = Fr(é),

that

[E-®) ni= [ G- ny 5= [ (=T nor s
:/(V—H(%(V))ﬂp:(),

e

—

which shows that v and I19.(v) satisfy (2.4.14). O

We now establish a local interpolation error estimate for H%.

Lemma 2.4.2.4. There exists ¢c; > 0, depending only on T and HOT, such that

v — H(C)F(V)HO,T < clhT|v‘17T Vv € HY(T).

Proof. Let v.€ HY(T). First, from Lemmas [2.2.1| and [2.4.2.3| we have that

v =T W)l < Culdet B2 Bel B9 - W@, (2415)

Next, since H% is a linear and bounded operator from H!(T") onto L*(T"), Po(T) € RTo(T)
and H%(ﬁ) =P VP € RTy(T), the Bramble-Hilbert lemma (see, e.g. [16]) implies that

HG - HE}”({;)HO,T < CQWM,T’
whence Lemma yields

9= T0@), 1 < Cofel, 5 < Coldet Br 2| B3 B | v

. (2.4.16)

Therefore, the result follows by replacing (2.4.16)) back into (2.4.15)), applying Lemma
and from the fact that 7, is shape regular (cf. (2.4.1)). O

Now, let Z and Hg be the spaces given by
Z .= {v cL2(Q): vlr e HY(T) VIe ﬁ} (2.4.17)
and

HY = {vh € H(div;Q): v, € RTy(T) VT e n}.
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We then introduce the goblal interpolation operator H?L c Hdiv;QNZ - H 2 as the

unique function such that

/H?L(v) ‘n= /v ‘n Ve Hdiv;Q)NZ, Vecké&,. (2.4.18)

e
From the definition of I and IIY we have that II)(v)|r = II%(v|r) Vv € H(div;) N

Z, NT € Tp. The main result of this section is established now.

Theorem 2.4.2.1. Given Py the L?(Q)-orthogonal projection onto the piecewise constant
functions on Q, for each v.€ HY(Q), there holds

divIT) (v) = Po(divv). (2.4.19)
In addition, for each v € HY(Q) such that divv € H(Q), there holds
v =T g < CRY IV, g + laive], o }- (2.4.20)

Proof. Identity (2.4.19)) follows from a straightforward application of Lemma [2.4.2.2| and
the fact that II(v)|r = O%(v|r) Vv € H(div;Q) NZ VT € Tp. Now, let v € H(Q)
such that divv € H'(Q). Then, Lemma [2.4.2.4] the fact that II9(v)|r = II%(v|r) and
hr < h VT €T, imply that
0 _ 0
[v - Hh(V)HO,Q - Z [v - HT(V)HO,T < Clh“’h,ﬂ' (2.4.21)
TETh

On the other hand, applying (2.4.19)) we have that divv — divII} (v) = divv — Py(divv) in
Q). Thus, a well known approximation property of the piecewise constant functions implies

that

[divv — divITy(v) | ¢, = [|divy — Po(divy < Coh|divv], .

Mo

Hence, the result follows by combining and the above inequality, and using that
IV =T g0 = [V = TR [l + [|divy — divIT (V)| o. O

2.4.3 The Brezzi-Douglas-Marini subspace of first order

Following [9], given T" € Tj, we now introduce the local BDM subspace of first order
BDM;(T) :=P(T). (2.4.22)

We then see that the dimension of this local subspace is equal to 6. Also, given q €

BDM;(T), it is easy to check that divq € Py(T). Moreover, for each e € E(T), the
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normal trace q|. - n belongs to P;(e). In order to build from BDM;(T') an approximation
of H(div; ), it will be necessary to ensure continuity of the normal traces of elements of

BDM; through the edges of &,. Indeed, we have a first result.

Lemma 2.4.3.1. Let q € BDM;(T) such that

/q-np:() Vp € Pi(e) Vee &E(T). (2.4.23)

Then, q=0 i T.

Proof. Since q|. -n € Pi(e) Ve e E(T), property ([2.4.23|) implies that q - ny = 0 on 97T
Then using the fact that divq € Py(T) it follows that

0= / q-nr = / divq = |T'|divq,
ar T
that is, the polynomial q satisfies:
divq=0 in7T and q-np=0 onJT.
Therefore, q =0 in 7. O

The result above proves that the total number of degrees of freedom of BDM; (T') are
given by identity (2.4.23). Thus, we define the local interpolation operator Il : HY(T) —
BDM;(T) by

/(V —TIrv) - np=0 VYvecHYT) VpePle) Vec&(T). (2.4.24)
€
Now, let Pr : L2(T) — Py(T) be the orthogonal projection, the following result relates

the divergence in terms of the local interpolation Il and the orthogonal projector Pr.

Lemma 2.4.3.2. There holds
divIlp(v) = Pr(divy) Vv € HY(T).

Proof. Let v € HY(T). Since Py(e) C Pi(e), for any e € £(T), we obtain from ([2.4.24)
that

/TdiV(V—HT(V)) p=0 Vpe P(T).

Thus, the result follows by using the fact that divq € Py(T") Vq € BDM;(T). O
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The relationship between the local interpolation on 7' and the reference triangle T is

established by the following lemma.
Lemma 2.4.3.3. For each v € HY(T), IL;(V) = H/(?) := | det By|B;' Ty (v) o Fr.

Proof. Let v.€ HY(T). It suffices to prove that lﬁ(\v) and v satisfy (2.4.24). Given
p € Pi(é), welet p:=po F;l € Pi(T) and we extend p by zero to 8T\é. Then, from

Lemma [2.4.3| and ([2.4.24]), and denoting e := Fr(é), we deduce that

0V nf= [ M) ng = [ vl 5+ [ Tr(v) - vp
é oT T T

— [ @ivttn) pt [ ) Vo= [ tirte)mep

:/HT(V)-np:/v-nTp

e e

:/ V'nTp:/Av'n’f“ﬁv
oT oT

/AHT(V)‘nTﬁ:/A{’\-nTﬁ VﬁePl(é),
oT oT

that is,

which completes the proof. O

From Lemma above we establish the interpolation estimate concerning the operator

IIr.
Lemma 2.4.3.4. There exists C > 0, depending only the shape of T', such that

|v —IIp(v < Chr|v|,; Vv eHY(T). (2.4.25)

Mo,

Proof. Let v.€ HY(T). Then, applying Lemmas [2.4.2| and [2.4.3.3| we obtain that

v = Tr(v) |y, < 1 det Br| =2 Br[[|¥ = Ta(@) | 7

On the other hand, identity (2.4.24)) and Lemma [2.4.3.3|imply that for each p € BDM; (T)
there holds

/(ﬁ_nf(ﬁ)) mF=0 VpePi(e), Veeé&(d)

€

whence, applying Lemma [2.4.3.1| with q := p — IL;(p), we obtain that IL;(p) =p Vp €
BDM,(T). In addition, since I H'(T) — L*(T) is linear an bounded, the Bramble-

Hilbert Lemma (see, e.g. [16]) implies that

v =T ()l < erldet Brl2| Br[|v = T17(9)

ot = co| det BT|1/2HBTH ‘6’1,7“
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Next, using Lemma [2.4.2] again we arrive at

v =1t )l < esll Bz | Brll[v], -
Lemma and the shape regularity of 7, (cf. (2.4.1)) imply (2.4.25). O

Now, we introduce the finite element subspace
Hy = {vi € H(div; Q) : vilr € BDM\(T) VT € Ty}

and we consider the space Z defined in (2.4.17). We can then define a global interpolation
operator I, : H(div; Q)N Z — Hj, by simply setting

Hh(vh)|T = HT(Vh|T) VT € Tp,. (2426)
We next establish the main result of this section.

Theorem 2.4.3.1. Let Py be the L?(Q)-orthogonal projection onto the piecewise constant
functions on Q, and let v € H (). Then, there holds

divll,(vy) = Po(divv) Vv € H(div;Q)N Z. (2.4.27)

In addition, for each v € HY(Q) such that divv € H'(Q), the next global interpolation

error holds
v =T g < CR{ V], g + laive], o }- (2.4.28)

Proof. Indentity (2.4.27)) follows from Lemma |2.4.3.2| and by adding on each T' € Tp,. On
the other hand, let v € H'(2). Then

[v =T (v Hde < [lv -1, V)HO,Q + || divy — divITa(v Ho o (2.4.29)
By definition of IIj, (cf. ) and applying Lemma we get
[v =T (v HOQ Z [v =T (v HOT < Chlv, Kol (2.4.30)

TeTh
where the fact that hp < h VI € 7T, was used in the last inequality above. Now,
using (2.4.27) we see that divv — divIl;(v) = divv — Py(divv) in Q, whence a well known

approximation property for piecewise constant functions implies that

HleV — divIIy (v = [|divv — 770(divv)H0Q < C’h’divv’1 -

Moo =

Estimate (2.4.28) follows by combining the estimates (2.4.29)), (2.4.30) and the previous

estimate. 0
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Chapter 3

The continuous Stokes-Darcy

coupled problem

3.1 The continuous model

Let Q C R? be a Lipschitz polyhedral (polygonal if d = 2) domain with boundary I" := 9Q
which has been subdivided in two subdomains Qg and Qp such that QgNQp = 0, Q = QgU
Qp, and Qs N ONQp = ¥ is the nonempty polyhedral interface between Qg and Qp. Also,
we let I's := Qg\Y and I'p := Qp\E. On ¥ and on I we denote by n := (nq,ng, ...,ng)* the
unit normal vector which is chosen pointing outward from QgUX>UQp and (2g. Note that n
points inward from ¥ to Qp. In addition, in the 2D case we denote by t := (—ng,n1)* the
fixed unit tangent vector on ¥ (see Figure . The model problem we are interested in
consists of the movement of an incompressible quasi-Newtonian viscous fluid that occupies
the region €dg and that flows towards and from the region 2p through the interface 3,
where Qp is saturated with the same fluid.

More precisely, the governing equations in (g are those of the nonlinear Stokes problem

with homogeneous Dirichlet boundary condition on I'g, that is:
—diV{M (|Vusl|) Vus — psl} = fs in Qg,
divug = 0 in Qg, (3.1.1)
us = 0 onlyg,
where div is the usual divergence operator div applied along each row of a tensor, ug is

the velocity vector field in §g, ps is the pressure field in Qg, 4 : RT — R™ is the nonlinear

kinematic viscosity, and fg € L?(Qg) is a known volume force. In turn, in Qp we consider
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Figure 3.1.1: Layout of the geometry of the coupled problem in 2D.

the linearized Darcy model with Neumann boundary condition on I'p:

K 'up+Vpp = 0 inQp,
diVllD = fD in QD, (3.1.2)
up-n = 0 onlIp,

where up is the velocity vector field in Qp, pp is the pressure field in Qp, fp € L(Q)(QD) is
a source term, and K is a symmetric and uniformly positive definite tensor with entries in
L*°(Qp), which represents the permeability of 2p divided by a constant approximation of
the viscosity. Finally, the transmission conditions across ¥ are given by the conservation

of mass, balance of normal forces and Beavers-Joseph-Saffman law:

us-n = up-n on, (3.13)
{u(|Vus|)Vus —ps]l}n-i-l//ﬂ)_lﬂ'tuS = —ppn on X, -

where v is a constant approximation of the viscosity p on ¥, myw := w — (w - n)n and
Kk € L>®(Qp) is a given coefficient that is bounded from below by a positive constant a.e.
on Y. We remark that the kind of nonlinear Stokes problem given by appears in
the modeling of a large class of non-Newtonian fluids (see e.g. [27], [33]). In particular,
the Ladyzhenskaya law for fluids with large stresses (see [27]), also known as power law, is
given by u(t) = po+p1t?~2 VYt € RT, with g > 0, u1 > 0 and 8 > 1, and the Carreau law
for viscoplastic flows (see, e.g. [29] and [33]) reads pu(t) = po + py (14+t2)P=2/2 vt ¢ RT,
with pg > 0, g1 > 0 and 8 > 1. In what follows we let p;; : R4 _ R be the mapping
defined by

wij(0) = p(lo|)oiy; Vo := (o) € R (3.1.4)
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Throughout this work we suppose that p is of class C' and that there exist positive

constants «g and 7y such that for all o, 7 € Rdxd

a,uz'j

i@ < rolol, | T (@) <0, Vid kT (1) (3.15)
Lg%
and
Opig
Z 80;51 (0’) Tij Tkl > 040’7"2 . (316)

i7j7k7l:1

It is easy to check that the Carreau law satisfies (3.1.5)) and (3.1.6)) for all pp > 0, and for

all g € [1,2]. In particular, with 8 = 2 we recover the usual linear Stokes model.

3.2 A primal-mixed formulation

In this section we proceed as in [19] and [30], and introduce a primal-mixed formulation

of the coupled problem given by (3.1.1)), (3.1.2)) and (3.1.3). To this end, we consider the

spaces
H%S(QS) = {vs eH'(Qg): vs=0 on Fs}
and
Hr, (div;Qp) = {VD € H(div;Qp): vp-n=0 on I‘D}.
Here, H(div;Qp) is endowed with the inner product
(uD’VD)div,QD = (U‘D’VD)O,QD + (diqu’diVVD)o,QD Yup, vp € H(div;Qp),

2 . . .
H divop = (‘, ) div.Op” Next, in order to construct a primal-mixed

formulation of (3.1.1)), (3.1.2]) and (3.1.3)), we begin by testing the first equation in (3.1.1])
with vg € H%s (Qs). In this way, integrating by parts the term (div{,u (|Vug|) Vug — ps]l}, VS)

and its induced norm H .

0,2’

introducing the Dirichlet boundary condition ug = 0 on I'y, and using that pgll : Vvg =

ps div vg we obtain
(u(|Vus)Vus, Vvs) o o — (ps, divvs), o, — ({#(IVus)Vus — psIin, vs) o = (fs,vs) g o »

which, using from (3.1.3)) that

—{,u(|Vus|)Vus - pg]l}n = vk lmug +ppn on X,
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yields

u(|Vug|)Vug, Vv + (v~ mpug, TV
([ Vus)) Vs S)Oﬂs < t S t S>Z = (fS,VS)o,QS VVSEH%S(QS).
+(vs-n,pp)s. — (ps, leVs)O,QS

On the other hand, multiplying the first equation of (3.1.2)) by vp € Hrp(div;Qp),
integrating by parts, and using that —n is the unit normal vector of 3 pointing inward to

Q)p, we arrive at
(K_IUD,VD)()QD — <VD . n,pD>E — (pD, diVVD)()’QD =0 Vvp € Hr,(div; Qp).
Hence, adding the last two equations we get

(M(|VUSDV‘157VVS)O,QS + (ve~lmug, Tvs )y + (K*luD,VD)o,QD — (fs, vs)
~(ps, divvs)y o — (p0s divvD) g + (Vs — VD) 1)y e

(3.2.1)
for all v := (vg,vp) € H%S(QS) x Hrp(div; Qp). In turn, from the second equations of
(3.1.1) and (3.1.2)), we obtain

(¢.divus) g + (¢ divup) g = (fp.0)q, V€ L*(9). (3.2.2)

Now, proceeding as in [30], we introduce the first transmission condition of (3.1.3)) into

the definition of the velocities space H, that is
H:= {V := (vs, VD) € H11“S<QS) X Hr,(div;Qp): vg-m=vp-n on E}. (3.2.3)

This space is endowed with the usual norm of the product space H%S (Qs) x Hr, (div; Qp).
Note that, according to the foregoing definition, (3.2.1]) becomes
u(|Vus|)Vus, Vvs) o o + (ve™ I mus, mpvs
. oy £ OIS T (4 )0 i () € HL
+(K‘ uD’VD)O,QD — (ps,dlvvs)O,QS — (pD’dIVVD)O,QD

(3.2.4)

Then, proceeding as in [19], we find that the resulting weak formulation reduces to a

nonlinear system with three unknowns, namely

1 . pS on QS 2
us € Hp(Q2s), wup € Hry(div;Qp) and p:= € L*(Q),

pp on {Ip
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satisfying and . More precisely, our primal-mixed formulation reads: Find
(u,p) := ((us,up),p) € H x L*(Q) such that
a(u,v)+b(v,p) = [FV]g,g VveH,
b(u,q) = [G.d]g,.q Ya€L*9),
where the semilinear form a : H x H — R, the bilinear form b: H x L?(Q2) — R, and the
functionals F' € H' and G € L?()’, are defined by

(3.2.5)

a(u,v) = (u(|Vus|)Vug,VVS)O’QS + <1//<_17r1;us,7rtvs>Z + (K_luD,vD)()’QD Vu,v € H,
b(v,q) = —(q, diVVS)o,QS — (q, diva)O,QD V(v,q) € H x L*(),

[Fov]gm = (fs:vs) g, ¥WeH, and [G.q]q,q = (fp:a)oq, Ve L)

Now, it is easy to see from (3.1.5)) that, fixing the first component of a, its second com-
ponent defines a bounded linear functional. In turn, it is quite clear that b is a bounded
bilinear form. Hence, we can introduce the nonlinear operator A : H — H’ and the linear

operator B : H — [L?(Q)] given by

[A(u),v] a(u,v) VYu,veH,

H/xH '~

and

whence the primal-mixed formulation (3.2.5)) can be re-written as: Find (u, p) € Hx L?(Q)
such that

[A(u), V] Vv € H,

HxH T [B(v).p] L2(Q)xL2(Q) [T, V]H’XH (3.2.6)
[B(W),q] 2 qyure = [Gdlqug Ya€ L)

However, it is easy to show that this system is not unique solvable since, given any so-

lution (u,p) := ((us,up),p) € H x L*(Q) of (equivalently ), (u,p+c) is

also a solution for each ¢ € R. In order to overcome this non-uniqueness, we recall the

decomposition L?(Q) = L3(Q) @ R, (cf. ([2.1.1)), define Q := LZ(f2), and consider the

modified primal-mixed formulation: Find (u,p) € H x Q such that
[A(u)’V]H’XH + [B(v), 1] QxQ [F,v] axa vV EH
[B(u),Q]Q,XQ = [G’q]Q’XQ vq € Q

The following lemma shows the connection between (3.2.6)) and (3.2.7)).

(3.2.7)
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Lemma 3.2.1. Let (u,p) € H x L*(Q) be a solution of (3.2.6) and define py € LE(Q) by
1
Poi=p =g | P

Then (u,pg) € HxQ is a solution of (3.2.7). Conversely, let (u,pg) € Hx Q be a solution
of (3.2.7), and given c € R, define p := po + c. Then (u,p) € H x L%(Q) is a solution of
B2.6).

Proof. First, let (u,p) € H x L*() be a solution of (3.2.6). We define py € LZ(Q2) by
1
po:=p—c, with c:—/p.
12 Jo
Then, for any v € H we have, using the first equation in (3.2.6]),

[A(u)7V]H’><H + [B(v), o] Q'xQ =[A(u),v] HxH T [B(v),p - C]LQ(Q)’XLQ(Q)

:[F,V} C[B(V),l}

H xH L2(Q)' x L2(Q)

Now, since vg - n = vp - n on ¥ and n points inward to {p on X, we get
[B(V), 1] L2(Q)xL2(Q) = 7(1, diVVS)o,QS — (1,diVVD)079D = <VD ‘N — Vg - n, 1>E =0,
which, replaced back into the foregoing equation, gives
[A(u)’V]H’XH + [B(V),po] Q'xQ = [F’ V]H/XH Vv e H’

thus showing that the first equation in is satisfied. In turn, the second equation of
is clearly satisfied since Q C L?(12).

Conversely, let (u,pg) € H x Q be a solution of and let ¢ € R. Then, defining
p := po + ¢ we see from the first equation in that for all v € H there holds

[A(u), v] H’XH+[B(V)’p] L2(Q)xL2(Q) [A(u)’V]H’xH+[B(V)7p0] QxQT¢ [B(v),1] L2(Q)/ x L2()
= [A(u)’ V] H'xH + [B(V),po] Q' xQ = [F’ V] H' xH’
that is the first equation in (3.2.6)) is satisfied. Now, given ¢ := go+c € L?(Q) := L(Q) DR,
with go € L3(Q) and ¢ € R, we deduce, using the second equation in (3.2.7) and the identity
G(1) = 0 (which follows from the fact that fp € L3(Qp)), that
[B(u)’ Q] L2(Q)'xL2(Q) — [B(u), QO] Q'xQ +c- [B(u)’ 1] L2(Q)'xL2(Q) — G(q0) = G(q),
which proves that the second equation in (3.2.6) holds. O

According to the previous lemma, throughout the rest of the paper we consider the

primal-mixed formulation ((3.2.7)).
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3.3 Solvability of the primal-mixed formulation

In this section we show the unique solvability of (3.2.7) by checking first that (H.1), (H.2),
and (H.3) (cf. Section are satisfied, and then applying Theorem We begin our

analysis with the characterization of the null space V of the operator B.
Lemma 3.3.1. There holds,
V:{VEH: divvg=01in Qg and divvp =0 inQD}.
Proof. Given v € V, we have
—(q,divvs)qQS — (q,diVVD)QQD =0 VgeQ:= L%)(Q)-
In turn, since vs - n = vp - n on >, we get
0=(vp-n—vg-n,1), =—(1,divvp)oa, — (1,divvs)oqs.
that is,
—(¢,divvp)o,op — (¢, divvg)ons =0 Ve e R.
Then, the decomposition L?(Q2) = LZ(2) & R implies that
—(q,div VS)QQS — (q, div VD)07QD =0 Vge Lz(Q),
which yields divvg = 0 in 2g and divvp = 0 in p, thus finishing the proof. O
The continuous inf-sup condition for the operator B is shown next.

Lemma 3.3.2. There exists a constant B > 0 such that

[B(v).d]q

sup xQ > f||a]|g¥a € Q.

vert Vil
Proof. Let ¢ € Q. A well-known result (see e.g. [23]) yields the existence of z € H}(Q)
and C' > 0, independent of z, such that —divz = ¢ in © and HZHIQ < C’HqHQ Next, we
put wg := z|o, and wp := z|q,,. Then, we observe that wg-n = wp-n on ¥, that is w :=
(ws,wp) € H. Tt follows that [B(w),q]Q,XQ = Hqu and HWHH < HZH1Q < CHqHQ,

which gives

B(v).q]q B(w).q]q 1
o S 2 TR 2 gl
‘\’,#0 H H
and the proof is completed. O
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The next lemma shows that the nonlinear operator, induced by the term (,u(|VuS|)Vus, Vvs)

satisfies (H.1) and (H.2).
Lemma 3.3.3. Let Ag : H%S (Qg) — [H%s (Qg)]’ be the nonlinear operator given by
[As(us), vs] == (u(|Vus|)Vus, Vvs) o Vus, vs € Hi (Qg),

where [,] denotes the duality pairing between H%S(Qs) and [H%S(QS)]’. Then, Ag is

Lipschitz continuous, and for each zg € H%S (Qs), As(zs + -) is strongly monotone.

Proof. Let ug, vg, wg € H%S(QS). By definition of Ag we have that

[As(us) — As(vs), ws] = /Q (u(|Vus]) Vs — (| Vvs))Vvs) : Tws,

which, denoting o := Vug, 7 := Vvg, and 7 := Vwg, becomes

[Asus) = As(vs).ws] = [ (u(lol)o = u(lr)r oy / (lo))o; — uirl)mis) 7o

3,7=1
Next, using (3.1.4) and setting (m) := mo + (1 —m)T Vm € (0,1), we can write for
each i,j € {1,...,d},

pller)arsy = u(71)7is = iy () = iy / 0 ii(&
. aO'kl
Z/ Om 60’kl o)dm = Z/ ao_kl/%] )(Ok — Tr)dm,
k=1 k=1
which yields
[Ag(ug) — Ag(vg), ws] = / </ 5% ——uij(o )(akl—Tkl)dm>nJ
Qs Thi

,5,k,l=1
Hence, applying (3.1.5) and the Cauchy-Schwarz inequality, we find that

HAS(US — As(vs HHl agy = SUp [As(us) — As(vs), ws]

wseH!(Qs) HWSHLQS
wg#0

< v0l[us = vs||, o-

Similarly, given zg, ug, vg € HILS (Qs), and denoting o := Vzg, 7 := Vug, 7 := Vvg, and

~

om):=m(c+71)+(1—m)(e+7) Vme(0,1), we obtain

[As(zs + us) — As(zs + vs), s—Vs]:/ { (|a+r|)(a+7)—M(\a+ﬂ)(a++)}:(T—

Z / / 8o_klﬂzg )(Tij — Tij) (Tht — Trr)dm

,5,k,l=1

34

0,Qg’

7)



In this way, using now (3.1.6)) and the Friedrich-Poincaré inequality, we get
. 2
[As(zs + ug) — Ag(zs + vs),us — vs| > dgllug — VSHLQS,

with &g > 0 depending on «g and the constant provided by the aforementioned inequality.

O

Note now that the nonlinear operator A can be written as
[A(u),v} HxH = [As(ug),vs] + <w<a_17r1tug,ﬂ'tvs>Z + (K_luD,vD)()’QD Yu,v € H.
(3.3.1)
The following lemma shows that A satisfies (H.1) and (H.2).
Lemma 3.3.4. Let Hr (div’;Qp) = {vD € Hry(div;Qp) : divvp = o}. Then, the

nonlinear operator A is Lipschitz continuous in H%s (Qg) x Hrp(div;Qp), and for each

VRS Hllﬂs (Qs) x Hrp (div; Qp), A(z+-) is strongly monotone in H%S(Qs) x Hr, (div'; Qp).

Proof. 1t follows straightforwardly from the corresponding properties of Ag (cf. Lemma
3.3.3) and from the fact that the expressions (vk~'mug, mvs)y and (K 'up, vp)oap
induce positive semi-definite, symmetric and uniformly positive definite bilinear forms,

respectively. O
The main result of this section is established as follows.

Theorem 3.3.1. There exists a unique (u,p) € H x Q solution of the primal-mized
formulation (3.2.7) and there exists C > 0 such that

102 g < C{s g + 1ol -

Proof. Tt follows from Lemmas [3.3.1], [3.3.2] [3.3.3] and [3.3.4] and a straightforward appli-
cation of Theorem 2.2.2] O
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Chapter 4

An a priori error analysis

In this chapter we introduce and analyze a nonconforming Galerkin scheme for the primal-

mixed formulation (3.2.7)).

4.1 Solvability of the (Galerkin scheme

Let 7s and Tp be separate shape-regular families of triangulations, that is, satisfying the
minimum angle condition, of Qg and p, respectively, by triangles (or tetrahedra) T' of
diameter hp, assume that the vertices of 7g and 7p coincide on the interface X, and let
Tr = Ts U Tp, where h := max{hg, hp}, hg := max{hy : T € Ts}, and hp := max{hp :
T € Tp}. Since the triangulations 7g and 7Tp coincide on X, we let X be the set of
edges/faces inherited from 7g and Tp. Then, we let Hg j, Hp j, and Qj, be discrete finite

dimensional subspaces of H%S(QS), Hr, (div; Qp) and L?(€2), respectively, and we set

Qno = Qn N LF(Q). (4.1.1)

In addition, we denote by ®g; and ®p ; the subspaces of the normal components on X

from Hg j, and Hp j,, respectively, that is,

Bg p, = {vs,h ‘nly :vgy € H57h} and ®py = {VDJ1 ‘n|y :vpy € HD,h}-

Then, if IT;, : L?>(X) — ®p, denotes the orthogonal projector, and H), = Hg;, x Hpy,

we introduce the finite element subspace

H; = {vh = (V8,h, VD,h) € H, : y(vsp-n—vpy-n)=0 on Z}. (4.1.2)

36



From this definition we observe that the discrete subspace Hj, is not contained in H, but
the space H := H%S(Qs) x Hrp (div; Qp) contains both Hj, and H. Also, we observe that
A :H — H' is a well-defined nonlinear operator, B : H — Q' is a well-defined linear and
bounded operator, and the extension of F to H belongs to H'. Then, we now introduce
the nonconforming Galerkin scheme: Find (up,pp) € Hy, X Qp o such that
[A(an), Vi) g + [B(Vh)’ph]Q’xQ = [Fvhlgm Vv € Hy, (4.1.3)
[B(un).anlqvq = (G arlgrq Yan € Quo.
The nonconformity of this discrete scheme refers to the fact that Hy, is not contained in H.
We note from the definition of the finite element subspace Hy, that I} (vs ,-n—vp-n) =0
on ¥, for all v, € Hy, which is equivalent to saying that II5(vsgy -n) —vpp-n =0 on
Y, for all vi, € Hy. Then, since II, : L*(X) — ®py, is the orthogonal projector, the
discrete scheme becomes conforming if only if the discrete normal components on
¥ from Hg j, are contained in the discrete normal components on ¥ from Hp j, i.e., if only
if @55 C ®pp-
In what follows we need to consider some hypotheses concerning the subspaces involved
in the discrete formulation , the linear operator B, and the existence of a stable

lifting operator from ®p j, onto Hp ;. The set of assumptions is as follows.

(H.7) there holds Py(Xp) € ®p p, where Py(X}) is the space of piecewise constant functions
defined on X,

(H.8) there exists B > 0, independent of h, such that

B(vy), ,
s [B(vh), an]q

V&f;f)h thHH

Q> BH%HQ Van € Qnp-

(H.9) divHp 4, is contained in the restriction of the discrete subspace Qy, to Qp.

(H.10) there exists an operator Ly, : ®p j, — Hp p,, satisfying the following properties:

a) there exists a constant C' > 0, independent of h, such that
HLh(ngvh)Hdiv,QD = C“¢D7h“_1/2,00,2 V¢p,n € Pp,h-
b) for all ¢p j, € ®p p, there holds
Ly(¢pp) -n=¢pn on .
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We say in this case that Ly, is a stable discrete lifting of ®p j,.
It is easy to prove that (H.7) and a classical duality argument imply the following

approximation property of the projector IIj:

€ =T 1 o0 < OWlelly V€ L), (4.1

Moreover, employing Sobolev interpolation estimates we find that (see, e.g. [16 Proof of

Lemma 4.8])
e~ s < CHV2 el vE < HVAS) (115

We now establish the first result of this section.

Lemma 4.1.1. Let v, = (Vsp,vpy) € Vp = {vh e Hy, : [B(Vh)7Qh]Q/XQ =
0 Vg€ Qh,o}- Then, divvp =0 on Qp.

Proof. By definition of the linear operator B we get
—(an,divvs ) g o = (ahdivvpr) oo =0 Van € Qpo.
Also, (H.7) and the orthogonalilty condition satisfied by II;, imply
0= <Hh(VS,h ‘N —Vpy - N), 1>2 = <vs,h ‘N —Vpy - N, 1>2 = (1, divvs7h)07QS + (1, diVVDJL)O’QD,
which, together with the decomposition Qp = Qp o © R, yield
—(qh,divvsﬁ)oﬂs — (qh,diVVDyh)O’QD =0 Vqy € Qp.

In particular, (qh,divvuh)o a = 0, for all gp belonging to the restriction of Qp to Qp,

and hence (H.9) and the foregoing identity give divvp , = 0 on Qp. O

The next result establishes the well-posedness of our discrete scheme (4.1.3).

Lemma 4.1.2. There ezists a unique solution (up,pp) € Hy x Qp o of the nonconforming

discrete scheme (4.1.3). In addition, there exists C > 0, independent of h, such that

H(uh’ph)HHxQ = C{HfSHO,QS + HfDHO,QD}'
Proof. We first recall from Lemma that the nonlinear operator A is Lipschitz con-
tinuous in H. Also, it is clear from Lemma that Vj, C H%S(QS) x Hr, (div%; Qp).
Then, given z; € Hy, we know from Lemma that the nonlinear operator A(z; + -)
is strongly monotone in V},, and hence the nonlinear operator A satisfies (H.5) and (H.6)
(cf. Section 3.1). Therefore, noting also that (H.4) follows from (H.8), the proof becomes

a straightforward application of Theorem [2.3.1 ]
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4.2 Strang-type error estimates

We now show the a priori error estimate for the primal-mixed formulation (3.2.7) and the
Galerkin scheme (4.1.3]).

Lemma 4.2.1. Let (u,p) € H x Q and (up,pn) € Hy, x Qpno be the unique solutions,

guaranteed by Theorem and Lemma of the continuous problem (3.2.7) and its
nonconforming discrete scheme (4.1.3)), respectively. Then there exists C > 0, independent

of h, such that

[(a = ap, p = p) | ggyq < C{ v;glf{h [ = v + o ie%fh’o Ip = anllq

#1205}

Proof. Applying Theorem we have the estimate

100 = wnp = 1) lpgq < 01{ ot fu=vallg+ il - anlq (4.2.1)
[F - A(u) - B/(p)vvh]H/XH
+ sup ,
V‘},Lhe;f)h [vall g

where C'1 > 0 is a constant independent of h. Now, we just need to bound the consistency
term on the right hand side of the above inequality. To this end, we proceed as in [30]
and let Py : L?(X) — Py(Xn) be the orthogonal projector and Py : L%(X) — po(Xh) its
vector version. Recalling , we note that pp € H'(Qp). Then the consistency error
term in 1) yields

[F—A(u) —B'(0),Va] g i = ((Vsp — VD) - 1,pp)s, Vvi € Hy,. (4.2.2)

Now, given vj, € Hy,, we first observe that

((vs,n = VDw) -1, pD )5, = (Vs n — VD,1) - 1, D )y, — (I (Vs h -0 — VD - 1), pp )y,

= ((vs;» = VD) 1, pp)g — (In(Vsp -n) — vpp -0, pp )y

<VSh n pD> < h(VSh n pD>E
= (vs,n - m,pp — I (pp)) -

Further, from (H.7) we find that for all v € H'/2(X) there holds

<P()(VS pon),v— (v > < o(Vs.p - n),fu>E — <’P0(Vs7h . n),l‘[h(v)>Z
< 0(Vs - 1), v>2 — <Hh (Po(vs,y - m)), v>2

=0,
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that is, (Po(vs,n-n),v —Il4(v))y =0 Vo € H'Y2(%). Then, taking in particular v =
pply € H'Y/2(X), we obtain from the foregoing identity
((vsp — VD) -1,pD)5, = (Vs -1, pp — i (pp) )5 — (Po(vs,n - 1), pp — I4(pp))y,
= (vsn -n—Po(vsy - n),pp — p(pp) )y
In turn, since Po(vs ) - n € Py(X), we deduce that
(Po(vsn 1) — Po(vsy) nv—II,(0)), =0 Yoe HYA(Y),
whence
((vsp — VD) - 1,pD )y, = (Vs p -0 — Po(vsy) -1, pp — I (pp) )y

Then, from the normal trace theorem in H'(Qg), using a well known approximation esti-

mate for piecewise constant functions and the trace theorem in H'(f2g), we deduce that
((vsp = VD) - m,pD )5 < [[vsn -m—Po(vs) - HHOE oD — Hh(pD)Ho’g
< Ch1/2HVS7hH1/2,oo,z HPD - Hh(pD)HO,E
< éhl/?HVs,hHms |pp — Hh(pD)Hoz,
that is,
((vsp — VD) -1,pp)y < C'hl/2HVS,hHLQS D = a(pp)]]g s

with C > 0 a constant independent of h. Thus, dividing the previous inequality by

HVS’hHLQS’ noting that HVS,h ‘1 Qs < thHH, and taking supremum on Hjy, we conclude

that

((vs,h — VD,p) -1, PD)
sup

V&f;gh thHH

2 < Ch'2||pp — Mi(pp)f x-

The result follows by combining the previous inequality with (4.2.1]) after replacing (4.2.2))
back into (4.2.1)). O
The next result establishes an approximation property of the discrete space Hj,.

Lemma 4.2.2. There ezists C > 0, independent of h, such that for eachv := (vg,vp) € H
there holds
inf - < C inf - inf _ ,
Vhlth HV VhHH o {Vs,hnelHS,h HVS VS’hHLQS + vD,hlgHD,h HVD VD’thlV,QD

n h1/2HVS ‘n — I (vs - n)Ho,z}’

with C' > 0 a constant independent of h.
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Proof. This proof is provided in [30, Proposition 4.1]. In what follows we describe the
main aspects of it. Let Ilg, : H%S(Qs) — Hgj, and Ilp j, : Hpp (div; Qp) — Hpj, be the
orthogonal projectors with respect to the inner products L?(€2g) and L2(Qp), respectively.

Then, given v := (vg,vp) € H, we set
vsp =g u(vs) and vpj :=Ipx(vp) — Ly (Ipp(vp) - n — 1, (TIg 4 (vs) - n)) ,
where Ly, : ®p ;, = Hp , is the stable discrete lifting defined in (H.10). It follows precisely
from (H.10) that
VD,p -1 :HD,h(VD) ‘n— Ly (HD,h(VD) ‘n— Hh(HS,h(VS) ‘n))-n
=II;,(IIs p(vs) - n) = Il (vs - m) on 3,
which shows that the pair vy, := (vgp, vp ) belongs to Hy. Next, the triangle inequality
and (H.10) again imply that
IV =il = [Ivs = vsll g + VD = VDrlldiv0p

< lvsn — s (vs)||, o, +[[vD = HD,h(VD)HdiV’QD + || Lr(Mp,n(vp) - 0 = (s (vs) - 1) | g 0

B H"Sh — s n(vs H1 s T HVD —p (v Hdw Op +CHHDh vp) - n — I (TIs p(vs) - H 1/2,00,2"

Now, since vg-n = vp -n on ¥, using the normal trace theorem in H (div; Qp) we get

[ Tp 4 (vp) - n—TIh (s (vs) )|y 5 005

= HVD -n —IIpx(vp) - nHf1/2,00,2 + HVS 0 —TIlp(vs - n)H71/2,oo,2

< Cllvp — Hp(vp Hdlv o T [vs - m — T (vs, - n)H—l/z,oo,E’
whence, adding and substracting appropiate terms, employing the estimate (4.1.4)) twice,
and applying the trace theorem in H'({g), we find that

|vs - n—IL,(Ig p (vs) - < [|@=1,)(vs - n —IIx(vs - m

H 1/2,00,X — ))H71/2,00,E

H[|(T =) (vs -0 — v - n)H—1/2,00,2 +[vs n—vsp- nH_1/2,00,2
< Chl/z{HVS n— I (vs - n)Ho,z + HVS ‘= Vsh e nHo,z} + HVS "= Vsh e nH—l/Q,OO,E
< &{Jlvs = vsallyg. + B2|vs = T(vs - m) g}

which completes the proof. ]

We now summarize the unique solvability and the Strang-type a priori error estimate

for the nonconforming discrete scheme (4.1.3)) in the following theorem.
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Theorem 4.2.1. There ezists a unique (up,pp) € Hp X Qp o solution of (4.1.3)), and there
holds

Ja=p =)l < O, i, s = vl

vs,n€Hs p

- VD,hiélIf“IDyh lap — VDvthiv,QD + thergh,o lp— qhHQ (4.2.3)

+ 12l = )+ s 0~ Tagus )
where C > 0 is a constant independent of h.

Proof. The proof follows from a straightforward application of Lemmas and
4.2.2) ]

4.3 Particular choices of finite element subspaces

In this section we specify concrete 2D examples of finite element subspaces of H%S(QS),
Hr,, (div,Qp) and L3(Q) satisfying (H.7)-(H.10). Given T € Ts, we first define the local
Bernardi-Raugel space (see [6]), denoted by BR(T), as

BR(T) :=Py(T)® Span{nzﬂsnla 7171302, 771772113}, (4.3.1)

where 71, 72 and n3 are the barycentric coordinates of the triangle T', and ni, ny and ng are
the three unit normal components to the opposite sides of its corresponding vertices, which
point outwards on 97T In turn, given T' € Tp, we let RT(T) be the local Raviart-Thomas

space of lowest order, that is
RTH(T) :=Py(T) ® Py(T)x. (4.3.2)

where x denotes a generic vector of R2. Also, we consider the local Brezzi-Douglas-Marini

space of order one, which is given by
BDM,(T) :=Py(T). (4.3.3)

In what follows, we describe two different examples of finite element subspaces for the
Stokes and Darcy domains in terms of the local spaces defined in (4.3.1), (4.3.2) and
(4.3.3)), with their corresponding finite element subspaces approximating the pressure field
in €.
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4.3.1 Bernardi-Raugel + Raviart-Thomas

The subspaces Hg p,, Hp 5, Hy, (cf. (4.1.2)), and Qp, o of HILS(QS), Hr, (div; Qp), H, and
L3(9), respectively, are defined as

Hg ), == {vs,h € [C(Q8)]2 : vanlr € BR(T) VT € 7“5} N H} (),

Hp,, = {vDyh € H(div; ) : vpulr € RTy(T) VT € 7]3} N Hr, (div; Qp),
Hh = {Vh = (VS,hva,h) S HS,h X HD,h : Hh(VS,h -n — VD,h . Il) =0 on E} s (4.3.4)
and

Qno = {qh € L2(Q) : qulr € Py(T) VT € E} N L2(Q). (4.3.5)

From these particular choices of finite element subspaces, and taking into account the

definition of the local spaces BR and RT (cf. (4.3.1) and (4.3.2), respectively), we observe

that the discrete space ®g; becomes the continuous piecewise quadratic functions while
the discrete space ®pj; becomes the piecewise linear functions. Note that the discrete
space ®g is not contained in ®pj, which means that the discrete scheme is
nonconforming in this case. In turn, it is clear that (H.7) and (H.9) are satisfied. In
addition, (H.10) has been shown in the 2D case (see [30]) without any requeriment on
the meshes for both the Raviart-Thomas subspace of lowest order (cf. ) and the
Brezzi-Douglas-Marini subspaces for any nonnegative integer [ > 1. Finally, in order to
verify (H.8) we proceed similarly as in [19]. To this end, we let Ilg : H%S(QS) — Hg
be the Bernadi-Raugel interpolation operator (cf. [6], [23]), which is linear and bounded
with respect to the H!({g)-norm. More precisely, given vg € HILS(QS), this interpolation

operator is characterized by the following identities:
/HS(VS) ‘N = /vs -n., for each edge e of Tg, (4.3.6)
and
ITg(vs(a)) = In(vs(a)) for each node a of Tg,

where I}, is the Clément regularization operator defined in [23, Appendix A, A.3]. Note
that, as a consequence of (4.3.6]), there holds

/ gndivIIg(vg) = / grdivvs Vg, in the restriction of Qj, to Qs. (4.3.7)
Qg Qs
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Equivalently, if Ps denotes the L?(f)s)—orthogonal projection onto the restriction of Qy,
to Qg, then the relation (4.3.7) can be rewritten as

Ps(div(IIg(vs))) = Ps(divvg) Vvg € Hllﬂs (Qg). (4.3.8)

In turn, we let Ilp : H%D(QD) — Hp , be the Raviart-Thomas interpolation operator of

lowest order, which, given vp € H%D (Qp), is characterized by:
/HD(VD) ‘N, = /VD -ng, for each edge e of Tp. (4.3.9)
e e
Similarly as for Ilg, we find that yields
/Q qndivIIp(vp) = /Q grdivvp Vg in the restriction of Qp, to Qp. (4.3.10)
D D

Equivalently, if Pp denotes the L?(Qp)—orthogonal projection onto the restriction of Qj
to Qp, then the relation (4.3.10) can be rewritten as

div(IIp(vp)) = Pp(divvp) Vvp € HE_ (Qp). (4.3.11)

In addition, we know that the Raviart-Thomas interpolation operator Il satisfies the
following approximation property: For any vp € H'(Qp), there exists C' > 0, independent
of h, such that

[vb = Hp(vp)||g o, < Chpllvo|, g, - (4.3.12)
The next result shows that (H.8) also holds.

Lemma 4.3.1. There exists B1 > 0, independent of h, such that

B(vh), qn|q
sup [B(va) h]QxQ

V\’,ﬁ?oh thHH

> /31HQhHQ Van € Q-

Proof. Given q, € Qpp, a well-known result (see, e.g. [23]) implies the existence of

z € H}(Q) such that —divz = g, in Q and HzH1 q < CthHOQ, We define
W p = Hs(Ws) S HS,h and WD, 1= HD(WD) S HD,ha

where wg := z|g, and wp = w|q,. It is clear that w := (wg, wp) belongs to H. This

fact together with (4.3.6)) and (4.3.9) yield

/WS,h ‘N = /WS ‘N = /WD ‘N = /WD,h ‘n, Ve € Xy, (4.3.13)
e e e e
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Now, since II}, : LQ(E) — ®p p, is the orthogonal projector and ®p ; becomes the piecewise

constant functions, we obtain that

/{f - Hh(f)} =0 V¢e€L*(X), Ve edge of X

e

Then (4.3.13)) and the foregoing identity applied to £ = wgp, - n € L*(X) imply that

/Hh(wsﬁ ‘n) = /WSJL ‘n = /WD,h ‘n Ve edge of X,
e e e

and combining this last relation with the fact that IIj(wgp -n) — wpp, - n € Py(Xy), we
deduce that Iy (Ws - n) = wp ;- non 3, that is the pair wy, := (wg , Wp ) belongs to

H),. Further, yields
Ps(divwg p) = Ps(divwg) = Ps(—qn) = —qn  in Qg,

and implies that

divwp , = Pp (divwp) = Pp(—qn) = —q, in Qp.
It follows that

[B(Wn), 4] g g = ||l (4.3.14)

On the other hand, since the operator Ilg is bounded, there holds

[wsilligs < Cliwsllig, < Clizllig < ellanllog
and applying we have that

HWD?h‘HdiV,QD = HWDahHO,QD + HdiVWD»hHO,QD
< Chllwo|[; o, + [Wplloop + lanllon < callanflyq

where we used here, from the previous estimate, that HWDH1 ap = HZH1 q < CthHOQ.

Therefore, we have that HwhHH < 03thH07Q, and using we conclude that

B(vh), a1 o B(W4), a1 o 1
B e, Bl lena, Ly

sup
ng;f)h HV’ZHH

with ¢3 > 0 a constant independent of h.
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Finally, we recall from [23] (see also [6]) an approximation property for the Bernadi-
Raugel interpolation operator Ilg, that is: for each vg € H?(fg), there exists C' > 0,

independent of hg, such that

HVS — IIg(vs < ChSHVSHQ,QS' (4.3.15)

Mo
We are now in a position to establish the main result of this section.

Theorem 4.3.1. Let Hy, and Qo be the finite element subspaces defined by (4.3.4) and
(4.3.5)), respectively. Then the nonconforming discrete scheme (4.1.3)) has a unique solution

(up, pr) € Hy, x Qpo and there exists c1 > 0, independent of h, such that

Q/}?

where Fy, = Fl|g, and Gj, := Gl|q,,,- In addition, assume that the unique solution (u,p) €
H x Q of the primal-mized formulation is such that us € H?(g), us - n|y €
HY2(%), up € HY(Qp), divup € HY(Qp), and p € H'(Q). Then there exists ca > 0,
independent of h, such that

)l = ex{ 1l +

H(u — Un,p _ph)HHxQ < o {hs‘uS’zQS + hp (‘uD|1,QD + ‘diquh’QD)
+ |y + Pllus nll o

Proof. The proof follows from a straightforward application of Theorem [£.2.1] and the
approximation properties of the subspaces and projectors involved. In particular, (4.1.5)

allows to estimate the expressions HpD — I (pp and HUS ‘n — Ip(ug - n in

Mos Mos
[@.2.3). 0

4.3.2 Bernardi-Raugel + Brezzi-Douglas-Marini

The specific subspaces Hg j,, Hp p,, Hy, (cf. (4.1.2)), and Qp o of HILS (Qs), Hrp, (div; Qp),

H, and L3(9), respectively, are

Hg ), = {vs,h € [C(ﬁs)]Q :vsnlr € BR(T) VT € TS} NHp (Qs),

Hp,, = {vm € H(div; ) : vpulr € BDMy(T) VT € 75} N Hr, (div; Qp),

Hh = {Vh = (VS,h7VD,h) c HS,h X HD,h : Hh(VS,h ‘n — VD,h . Il) =0 on 2} y (4.3.16)
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and
Qno = {qh € Q) gulr € Po(T) VT € Ty} 0 L3(9). (4.3.17)

We observe that the discrete space ®gj, is formed by continuous piecewise quadratic
functions while the discrete space ®p j becomes the piecewise linear functions. Therefore,
the discrete mixed formulation is nonconforming as well. In turn, (H.7) holds
because Py(Xy) C Pi(Xy) = ®pyp. Further, it is clear that (H.9) is satisfied. Also, we
know from [30, Appendix] that (H.10) is satisfied in the 2D case with no requeriment on
the meshes around ¥ for the Raviart-Thomas subspace of lowest order (cf. ) and
for the Brezzi-Douglas-Marini subspace of any nonnegative integer order.

On the other hand, in order to prove the discrete inf-sup condition for the linear
operator B (cf. (H.8)), we introduce the BDM interpolation operator Ilp y, : HILD (Qp) —
Hp j, (cf. [8]) which, given vp € H%D(QD), is characterized by the following indentity:

/(VD —IIpp(vp)) - mep=0 Vpe Pi(e) Ve edge of Tp. (4.3.18)
e

Moreover, if we denote by Pp the L?(dp)-orthogonal onto the restriction of Qy, to Qp,

(4.3.18)) implies that
diVHDﬁ(VD) = PD(diVVD) Yvp € HllﬂD (QD) (4.3.19)

We now recall from [9] an approximation property of the interpolation operator IIp p:

there exists C' > 0, independent of h, such that for each vp € H!(€2p) there holds
HVD — HDJL(VD)HO,QD S ChDHVDHLQD' (4.3.20)

In addition, we recall from [30, Appendix] the following result summarizing the properties

of a stable lifting.

Lemma 4.3.2. There exists an operator Ly, : ®pj — Hp , with the properties indicated

in (H.10) (cf. Section 3.2). In addition, there holds

. 1
leL(¢h) = @ /2‘: ¢h V¢h € (I)D,h~ (4.3.21)
Proof. See [30, Appendix]. O

The hypothesis (H.8) is proved next.
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Lemma 4.3.3. There exists B2 > 0, independent of h, such that

B(vy), ,
sup [ (h) Qh]Q

V&fﬂ thHH

Q> 52HQhHQ Van € Qno-

Proof. Let g, € L3(2). We know that there exists z € H{(Q2) such that

—divz = ¢, in Q and HZHLQ < CthHO’Q. (4.3.22)
We let wg := z|qg, Wp = z|q,, and then we define
wg = Ig(wg) € Hg), and wpy :=IIp(wp) + Ly (HhWS,h -n — Ip (wp) - n) € Hp .

It is clear that w := (wg,wp) € H, and (H.10) implies that the pair wj, := (Wg 5, Wp p)

belongs to Hy,. In addition, (4.3.8) and (4.3.19)) yield

Ps(divws ) = Ps(divIIs(ws)) = Ps(divws) = Ps(—qn) = —gn in O,
and
divIIp p(wp) = Pp(divwp) = Pp(—qn) = —qn  in Op.
Next,

[B(Wh>, qh] Q'xQ = thH(2),Q — (qh, diVLh (HhWS,h -n — HD,h(WD) . n))O,QD. (4323)
Moreover, from (cf. Lemma[4.3.2) we get
1
divLy, (IIywsj, - n — Ip p(wp) - n) = @ /z {Hth,h -n —Ip j,(wp) - ﬂ}7

whence, using (4.3.6)), (4.3.18]) and the fact that w := (wg, wp) belongs to H, we find for
each e edge of 3 that

/thSan:/Wsﬁ-n:/ws-n:/WD~n:/HD’h(WD)~n,
e e e e e
which proves that
divLy, (HhWS,h -n —IIp p(wp) - n) =0.
The foregoing relation and (4.3.23)) lead to
2
[B(wWn). 4] qxq = llan]lo.q- (4.3.24)
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On the other hand, the boundedness of the interpolation operator Ilg and (4.3.22)) imply

that

Iwsnllog < Cllwsllgq < Cllzllq < ellanllyq- (4.3.25)
In turn, since divwp = divIIp (wp) = —qp, we have that

[wo =TI n(wb) |y 0, = [[WD = To (W)l o,

so that the above relation, the uniform boundedness of Lj (cf. (H.10)), (4.3.20) and

(4.3.22)) lead to

Iw.llaiv.0 < WD = Toa(WD)|aiy 0, + [[WDlaiy 0, + [ ML (W) - 1 = Tp (W) - 1) | g, o,
< [[wo = Tos(wo)llg g, + [Wbll; o, + ClITaTTs (Ws) -0 = o p(wb) - n 5 g9 5
< Chp||woll o+ [[woll; o, + Cl|TTTs (ws) - 1 = TIp(wo) -0 Ly g g0 5
< Cho|z, o + ||zl  + Cl[IaTTs (ws) - 1 = Tl p(wp) 0| 5 g 5

< C2HQhHQ + é“HhHS(WS) 0 —IHpx(wp) - nH—1/2,00,E’
that is
W0l < ol + Ol MTIs(ws) -~ Totwn) nl] s (1320

Now, the trace theorems on H!()s) and on H(div;{)p), the boundedness of IIj, and ITg,

and the estimates (4.3.20)) and (4.3.22]) imply that the second term on the right hand side
of (4.3.26]) can be bounded as follows

[T, s (ws) - 0 = TIp (W) - 1| 05 <O |MTIs(ws) - nl[ o + [Dpa(wp) - nf[ 5005
< C|[Ts(ws)l|y 5, + Co[ TIn (WD) ||,
< Ct [|Ts(ws) ||, o + Cof[TIn (Wp) [ 45y 0y,
< C1|[ws|, o + Cal[wp = TIn(wp) [ o, + C2l|Wb|| 45y 0
<C1|[ws|l, o + Cahpllwoll, o, + Cof woll, o

<Cs ”zHH) < C3HQhHO,Q’
ie.,

| T, 1Ts(ws) - 0 — Hp(wp) - nH_1/2,00,2 SCi”HQhHO,Q'
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Replacing this last inequality back into (4.3.26]) and combining the resulting estimate with
(4.3.25)) we can deduce that

[Wallg < [Iwsally gg + [WDallgv0 < callanlo o (4.3.27)

Thus, from (4.3.24]) and (4.3.27) we conclude that

B(vh),qn| A B(Wn),qn] o 1
sup [ ]Q xQ > [ }Q 4 2 7HQhHQ’
viheH), 1Va g W |y €4
v, #0
with ¢4 > 0 a constant independent of h. O

Then, by applying again Theorem and the approximation properties of the sub-

spaces and projectors involved, we arrive at the following main result.

Theorem 4.3.2. Let Hy and Qpo be the finite element subspaces defined by (4.3.16)
and (4.3.17)), respectively. Then, the nonconforming Galerkin scheme (4.1.3) has a unique

solution (up,pp) € Hy, X Qp o, and there exists c3 > 0, independent of h, such that

Ql}?

where Fy, = Flg, and Gj, := Gl|q,,,- In addition, assume that the unique solution (u,p) €
H x Q of the primal-mived formulation (3.2.7) is such that us € H?(g), us - n|g €
HY2(S), up € HY(Qp), divup € HY(Qp), and p € H'(Q). Then, there exists ¢4 > 0,

00l < eaf | Fallag + 1G]

independent of h, such that

H(u — Un,p _ph)HHxQ =< C4{hSHuSH2,Q + hD(‘uD‘LQD + |diqu}1,QD)

o] g+ Al -l

4.3.3 A general Approach

Irrespective of the previous analysis in Sections and we remark that the results
in [30] can be extended to the present situation in such a way that (H.8) is simplified as

follows:
(H.11) there exists B > 0, independent of h, such that
B (Vh)a dh| o

. [ Jq

wet,  |vallg
v#£0

Q> BHQhHQ Van € Q,
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where
I:Ih = [Hs,h N H(l](Qs)] X [HD,h N Ho(div; QD)]
and

thZ{QhGQhS/Q qn =0, /Qth:O}.

Indeed, it was shown in [30] that one can combine either the RT-element or the BDM-

S

element of order k, with any stable FEM for Stokes of the same order, to obtain a global
(conforming as in Table or nonconforming as in Table coupled scheme of order
of convergence k. In particular, when the BR elements are employed in the fluid, the
corresponding face bubbles do not need to be considered on the faces lying on 3, which
yields a conforming scheme (see [30, Proposition 3.1] for the respective proof). Note also

that, in spite of the foregoing modification, the associated approximation property remains

unaltered.
Stokes Velocity Press. || Darcy | Vel. | Press. || Order
MINT P1+bubbles Pt || BDM, | Py Py h
Taylor-Hood, k > 2 Py Pt || BDMy | Pr | P h*
Conf Crouzeix-Raviart P>-+bubbles P, BDM, | Py P, h?
Bernardi-Raugel P-+face bubbles Py BDM, | P, Py h

Table 4.3.1: Coupling of Stokes elements with BDM elements. The superscript “©" refers
to the demand of continuity for the discrete pressure space. The bubbles are used for
velocities in the MINI and conformal Crouzeix-Raviart elements: an internal Pgq(7T)
bubble is added to the velocity space on each element. For the Bernardi-Raugel element,
face bubbles are included on all internal faces, but no bubbles are added on faces lying on
Y. When these bubbles (not needed for stability) are added, the method stops being a

particular case of this class.
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Stokes Velocity Press. || Darcy Vel. Press. || Order
MINTI P;+bubbles Ppgont RTy RTj Py h
Taylor-Hood, &k > 2 P Pi‘fllt RI,_1 | RI}—q1 | Pr—1 hF
Bernardi-Raugel P +face bubbles Py RTy RTy Py h
P,-iso-P, P, (T3"%) Pt | BDM, | Py P h

Table 4.3.2: Coupling of Stokes elements with BDM and RT elements and their order
of convergence. The superscrip

pressure space. The bubbles are used for velocities in the MINI element. The triangulation

t cont

refers to the demand of continuity for the discrete

’Tsh/ ? is a one level refinement of TSh and Pl(TSh/ 2) is the space of piecewise linear functions

with respect to Tsh/ ?. For the Bernardi-Raugel element, face bubbles are only included on

the internal faces. Adding them to faces on ¥ does not change the convergence order. In

that case Bernardi-Raugel can be coupled with BDM; as well.
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Chapter 5

Numerical Results

In this chapter we present numerical examples in 2D illustrating the good performance
of the discrete scheme (4.1.3) on a set of uniform triangulations of the domains (2g and
Q)p. We begin by introducing additional notations. In what follows, N stands for the
number of degree of freedom defining the corresponding finite element subspaces Hy and
Qr0- Then, given the unique solutions (u,p) := ((us,up),p) € H x Q and (up,pp) =
((ug,p,upp),pn) € Hyp x Qpo of the primal-mixed formulation and the discrete
scheme , respectively, the corresponding individual and global errors are denoted
by

e(uS) = HUS - uSvhHLQS’ e(uD) = HuD - uDvthiv,QD’ and e(p) = Hp _thO,Q’

and

e(us,up,p) := {e(us)2 +e(up)? + e(p)2}1/2.

Also, we let r(ug), r(up) and r(p) be the experimental rates of convergence given by

r(ug) = log(e(ug)/e(ug)) r(up) = log(e(up) /e’ (up))
T T eg(h/y 0 P log(h/)

and

. log(e(p)/¢'(p))
" o)

where h and h' denote two consecutive meshsizes with errors e and ¢/, respectively. Further,

we let r(ug, up, p) be the experimental rate for the total error defined by

o log(e(us, up, p)/€'(us, up, p))
r(us, up,p) := log(h/h)
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In the following two sections we present several numerical examples for the nonconforming
and conforming versions of the discrete scheme (4.1.3]). For both cases, we choose k = 1,
K = I, and consider the nonlinear function p : Rt — R™ given by a particular case of the

Carreau law for viscoplastic flows, that is
pu(t) = po+ m(1+ %P2 /2 vt e R,

with pgp = p1 = 0.5 and S = 1.5. It is easy to check in this case that the assumptions

(3.1.5) and (3.1.6)) are satisfied with

-2
702M0+M1{m2’+1} and  ap = po-

5.1 The nonconforming case

Here we consider the pair of finite element subspaces Hj, and Qj, o given in Section m

(cf. (4.3.4)), (4.3.5])), which yields a nonconforming discrete scheme (4.1.3)). In what follows

we set
curlqg := Yq % '
1= 8902’ 81‘1 '

In Example 1 we set the regions Qg := (—1,1)2\[0,1)? and Qp := (0,1)? of R?, and

choose the data fg and fp so that the exact solution is given by the smooth functions

us(x) i= curl (3(a? + 23) (2% — 1)2(a3 ~ 1)?) ,

_T T 1 2|7 1
4cos( 5 ){w2+2 2 cos [2 (x2+2>}} on g

(z1 — 1)%sin® (27 (22 + 0.5)) on Qp.

and

p(x) ==

Next, in Example 2 we consider the regions Qg := (—1,1)%\(—1,0]? and Qp := (—1,0)?

of R?, and choose the data fs and fp so that the exact solutions is given by
ug(x) := curl (3(3:% + 2223 2? — 1) (22 - 1)2) ,

and
exp(z1 + x2)x122 on g
p(x) =
(z1 4+ 1)%sin® (27 (22 +0.5)) on Qp.

Note that in this example ug becomes singular at the origin.
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h N e(ug) r(ug) e(up) r(up) e(p) r(p) | e(us,up,p) 7(us,up,p)

1/17 12828 3.989E—-00 — 5.612E—00 - 2.806E—-01 - 6.891E—-00 - (5)
1/19 16114 3.509E—-00 1.153 | 5.040E—00 0.967 | 2.741E-01 0.209 | 6.147E—-00 1.027 (
1/21 19882 3.178E—-00 0.990 | 4.491E-00 1.152 | 2.573E—01 0.635 5.508E—00 1.097 (
1/25 28121 2.718E—-00 0.896 | 3.787TE—00 0.978 | 2.003E—01 1.436 | 4.666E—00 0.951 (
1/35 54222 1.9156E—00  1.040 | 2.763E—-00 0.937 | 1.331E-01 1.216 | 3.365E—00 0.971 (
1/45 91170 1.482E—-00 1.022 | 2.072E-00 1.145 | 1.007E—-01 1.109 | 2.550E—00 1.104 (
1/55 135720 | 1.201E-00 1.049 | 1.721E-00 0.925 | 8.112E—-02 1.077 | 2.100E—00 0.966 (
1/65 190019 | 1.017TE-00 0.991 | 1.461E-00 0.982 | 7.188E—-02 0.724 1.782E—-00 0.984 (5)
1/75 254402 | 8.851E—-01 0.974 | 1.244E-00 1.123 | 6.147TE—-02 1.093 1.528E—00 1.073 (
1/85 325129 | 7.754E—-01 1.057 | 1.101E-00 0.973 | 5.173E—02 1.378 1.348E—-00 1.001 (
1/95 403178 | 6.953E—01 0.981 | 9.951E—01 0.913 | 4.445E—-02 1.364 1.215E—-00 0.936 (
1/105 | 493751 | 6.296E—01  0.991 | 9.021E—01  0.980 | 4.114E—02 0.773 1.101E-00 0.984 (
1/115 | 592931 | 5.691E—01 1.111 | 8.196E—01 1.054 | 3.650E—02 1.315 9.985E—-01 1.073 (
1/125 | 705036 | 5.246E—01 0.976 | 7.469E—01 1.113 | 3.416E—02 0.796 | 9.134E—-01 1.068 (

Table 5.1.1: EXaMPLE 1, Convergence history

The numerical results shown below were obtained using a MATLAB code. In Tables
b.1.0]and we summarize the convergence history of the discrete primal-mixed scheme
as applied to Examples 1 and 2, for sequences of quasi-uniform triangulations of
the domains. We observe in Table .1.1] looking at the corresponding experimental rates
of convergence, that the O(h) predicted by Theorem is attained by all the unknowns
in Example 1. In addition, we notice that the dominant error is given by e(up). The
behavior of the experimental rates of convergence can be also checked from Figure
where we display the mesh size h and the errors e(ug), e(up) and e(p) versus the degrees
of freedom N. In particular, we realize there that e(p) is quite below the other individual
errors and that, in spite of its convergence slower than O(h) at the beginning, it rapidly
stabilizes around that order later on. Concerning Example 2, we note on the contrary
in Table that r(ug) lies around 1/2 whereas r(p) shows large oscillations, which is
certainly due to the singular behaviour of the corresponding exact solution. However,
r(up) does not seem to be affected by the lack of regularity of ug since it behaves always
as O(h). The foregoing facts are also observed in Figure where we display the mesh
size h and the errors e(ug), e(up) and e(p) versus the degrees of freedom N. This example
is certainly very suitable to explore in the future the application of an adaptive algorithm
based on a posteriori error estimates. Indeed, one would expect that by means of this

procedure the optimal rates of convergence would be recovered by all the unknowns.
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h N eus)  r(us) | e(up)  r(up) | e)  r®) | e(us,up.p) r(us,up,p)
1/17 12853 2.856E—00 — 5.560E—00 — 5.160E—-01 — 6.272E—00 — (5)
1/19 16108 2.671E—00 0.602 5.059E—00 0.848 4.950E—-01 0.372 5.743E—00 0.793 (5)
1/21 19671 2.577TE—00 0.359 4.596E—00 0.959 4.854E—01 0.196 5.292E—-00 0.817 (5)
1/25 28444 2.313E—00 0.622 3.761E—00 1.151 4.365E—01 0.609 4.437E—00 1.011 (5)
1/35 54513 2.144E—-00 0.225 2.774E—00 0.904 5.668E—01 — 3.552E—00 0.661 (5)
1/45 91225 1.767E—00 0.769 2.090E—00 1.127 3.214E—-01 2.257 2.756E—00 1.010 (5)
1/55 136347 1.704E—00 0.182 1.724E—-00 0.960 3.269E—01 — 2.446E—00 0.595 (5)
1/65 190171 1.597E—-00 0.388 1.463E—00 0.982 3.012E—-01 0.489 2.187TE—00 0.670 (5)
1/75 254577 1.493E—-00 0.469 1.257E—-00 1.063 3.224E—-01 — 1.978E—-00 0.701 (5)
1/85 324355 1.427E—-00 0.360 1.109E—-00 0.997 2.650E—01 1.567 1.827E—-00 0.635 (4)
1/95 403975 1.457E—00 — 9.954E—-01 0.973 3.119E-01 — 1.792E—-00 0.173 (4)
1/105 496126 1.359E—00 0.698 9.007TE—01 0.998 2.800E—01 1.079 1.654E—-00 0.800 (4)
1/115 595622 1.331E—-00 0.229 8.211E—-01 1.018 2.895E—01 — 1.590E—-00 0.432 (4)
1/125 707479 1.262E—00 0.634 7.532E—-01 1.034 2.328E—01 2.614 1.488E—-00 0.795 (4)

Table 5.1.2: EXAMPLE 2, Convergence history
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Figure 5.1.1: EXAMPLE 1, h and errors versus degree of freedom N

On the other hand, in Figures[5.1.3] [5.1.4] [5.1.5] and [5.1.6] we show some components
of the approximate (left) and exact (right) solutions. We notice from Figures and

that the piecewise constant functions approximate quite well the pressure in the

Darcy domain €2p and the interior of the Stokes region (g, whereas this approximation
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Figure 5.1.2: EXAMPLE 2, h and errors versus degree of freedom N

deteriorates a bit near by 0Qg\X¥. In turn, in Figures [5.1.5| and [5.1.6| we see that the

Bernardi-Raugel subspace provides a quite good approximation of the velocity in the

Stokes domain (g.

Figure 5.1.3: EXAMPLE 1, Stokes pressure with N = 54222
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Figure 5.1.4: EXAMPLE 1, Darcy pressure with N = 54222

Figure 5.1.5: EXAMPLE 2, First component of the Stokes velocity with N = 54513
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Figure 5.1.6: EXAMPLE 2, Second component of the Stokes velocity with N = 54513

5.2 The conforming case

We now consider the pair of finite element subspaces Hj, and Qy, o given in Section
(cf. (4.3.16)), (£.3.17)), but with the modification explained at the end of Section [4.3.3]so
that the resulting scheme becomes conforming. Then, for the Example 3 we set
the regions Qg := (—1,1) x (=1,0) and Qp := (—1,1) x (0,1) of R?, and choose the data

fs and fp so that the exact solution is given by the smooth functions

us(x) := curl (sin(ras + 7/4) sin®(27z1) (1 + 22)?) |

and
exp(z1 + z2)x122 on Qg
p(x) = ]
3 (1 — Ty — — sin(mm)) sin?(7x1) cos(mzy) on Qp.
T

The numerical results shown below were also obtained using a MATLAB code. In Table
we summarize the convergence history of the discrete primal-mixed scheme
as applied to Example 3, for sequences of quasi-uniform triangulations of the domains.
Similarly as for Example 1, we observe there, looking at the corresponding experimental
rates of convergence, that the order O(h) predicted by Theorem is attained by all
the unknowns. In addition, the individual errors e(ug) and e(up) are the dominant ones
in this example. This fact is even more clear in Figure where one sees that e(ug)

and e(up) are quite above e(p). Moreover, we observe there that e(p) seems to converge
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a bit faster than O(h) at the beginning but then it rapidly stabilizes around that order.
Finally, in Figures and we show some components of the approximate (left) and

exact (right) solutions for this example. In particular, we remark that the Raviart-Thomas

subspace reconstructs quite accurately the velocity in the porous medium Qp.

h N e(us) r(us) e(up) r(up) e(p) r(p) | e(us,up,p) r(us,up,p)
1/32 7923 | 6.372E-00  — 1.260E+01 - 6.352E—01  — 1.413E+01 - (6)
1/64 | 31203 | 3.188E—00 0.999 | 6.319E—00 0.996 | 2.411E—01 1.398 | 7.082E—00  0.997 (5)
1/96 | 69843 | 2.124E—00 1.002 | 4.215E—00 0.999 | 1.472E—01 1.216 | 4.722E—00  0.999 (5)
1/128 | 123843 | 1.592E—00 1.001 | 3.162E—00 0.999 | 1.062E—01 1.136 | 3.542E—00  1.000 (5)
1/160 | 193203 | 1.274E—00 1.001 | 2.530E—00 1.000 | 8.292E—02 1.107 | 2.833E—00  1.000 (5)
1/192 | 277923 | 1.061E—00 1.001 | 2.108E—00 1.000 | 6.813E—02 1.077 | 2.361E—00  1.000 (5)
1/224 | 378003 | 9.094E—01 1.001 | 1.807E—00 1.000 | 5.776E—02 1.071 | 2.024E—00  1.000 (5)
1/256 | 493443 | 7.956E—01 1.001 | 1.581E—00 1.000 | 5.017E—02 1.056 | 1.771E—00  1.000 (5)
1/288 | 624243 | 7.072E—01 1.001 | 1.406E—00 1.000 | 4.433E—02 1.050 | 1.574E—00  1.000 (5)
1/320 | 770403 | 6.364E—01 1.001 | 1.265E—00 1.000 | 3.973E—02 1.041 | 1.417E—00  1.000 (5)
1/352 | 931923 | 5.785E—01 1.001 | 1.150E—00 1.000 | 3.597E—02 1.042 | 1.288E—00  1.000 (5)
1/384 | 1108803 | 5.303E—01  1.001 | 1.054E—00 1.000 | 3.288E—02 1.034 | 1.180E—00  1.000 (4)

Table 5.2.1: EXaMPLE 3, Convergence history
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Figure 5.2.1: EXAMPLE 3, h and errors versus degree of freedom N



Figure 5.2.2: EXAMPLE 3, First component of the Darcy velocity with N = 31203

Figure 5.2.3: EXAMPLE 3, Second component of the Darcy velocity with N = 31203
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Chapter 6

Conclusions and Future Works

In this chapter we summarize the main contributions of this thesis and give a brief de-

scription of future works.

6.1 Conclusions

The main objective of this work was analyze a primal-mixed formulation for the strong
coupling of quasi-Newtonian fluids with porous media. The flows were described by a
class of nonlinear Stokes equations and linearized Darcy equations whereas the coupling
equations on the interface between the fluid domain and the porous media are given by
the conservation of mass, balance of normal forces and the Beavers-Joseph-Saffman law.
In this work the conservation of mass has been introduced as an essential condition in the
space where the velocity unknowns live which yields a nonconforming discrete Galerkin
scheme. In this way, three unknowns has been considered: the velocity vector field in
the fluid domain, the velocity vector field in the porous media and the pressure field in
the whole domain. The balance of normal forces and the Beavers-Joseph-Saffman law has
been imposed weakly in the variational formulation.

In this case, the results provided in [30] have been extended to a class of nonlinear
Stokes equations. The continuous formulation and its discrete scheme become nonlinear
systems and then a modified Babuska-Brezzi theory was used to prove the well-posedness
in both cases. Moreover, since the conservation of mass was introduced as an essential
condition, the discrete scheme becomes nonconforming so that Strang-type a priori error

estimates were shown in this work.
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On the other hand, the particular choices of finite element subspaces considered in this
work were the Bernadi-Raugel local subspace for the velocity vector field in the fluid and
either the Raviart-Thomas elements of lowest order or the Brezzi-Douglas-Marini elements
of first order in the porous media. We employed two elections of finite element subspaces to
approximate the velocity vector field: Bernardi-Raugel + Raviart-Thomas and Bernardi-
Raugel + Brezzi-Douglas-Marini. Both elections yield nonconforming schemes. However,
a simply modification in the Bernardi-Raugel subspace provides a conforming scheme in
the second election (cf. Table . In turn, piecewise constant functions were employed
to approximate in any case the global pressure field in the whole domain.

Finally, we have provided several numerical examples in 2D which confirm the good

performance of our numerical method.

6.2 Future works

1. It will consider an a posteriori error estimator for the primal-mixed formulation

(3.2.7) and its discrete scheme (4.1.3)).

2. It will consider the strong coupling of the Navier-Stokes equations with the linearized
Darcy equations, that is, the strong coupling of the Navier-Stokes equations
—div{,uVug — psﬂ} + (us . V)US = fg in Qg,
divus = 0 in Qg,
ugs = 0 onlyg,
with the Darcy equations given in (3.1.2) and the transmission conditions given in

(3.1.3)), where p > 0 is the kinematic viscosity.

3. It will consider the strong coupling of the Brinkman equations with the linearized

Darcy equations.
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