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Abstract

This work consists of two main parts. In the first part we propose and analyze a mixed
variational formulation for the Navier-Stokes equations with variable viscosity that depends
nonlinearly on the velocity gradient. Differently from previous works in which augmented
terms are added to the formulation, here we employ a technique that had been previously
applied to the stationary Boussinesq problem and the Navier-Stokes equations with constant
viscosity. Firstly, a modified pseudostress tensor is introduced involving the diffusive and
convective terms, and the pressure. Secondly, by using the incompressibility condition, the
pressure is eliminated, and the gradient of velocity is incorporated as an auxiliary unknown to
handle the aforementioned nonlinearity. As a consequence, a Banach spaces-based formulation
is obtained, which can be written as a perturbed twofold saddle point operator equation. We
address the continuous and discrete solvability of this problem by linearizing the perturbation
and employing a fixed-point approach along with a particular case of a known abstract theory.
Given an integer ¢ > 0, feasible choices of finite element subspaces include discontinuous
piecewise polynomials of degree < ¢ for each entry of the velocity gradient, Raviart-Thomas
spaces of order ¢ for the pseudostress, and discontinuous piecewise polynomials of degree < ¢
for the velocity as well. Finally, optimal a priori error estimates are derived, and several
numerical results confirming in general the theoretical rates of convergence, and illustrating the
good performance of the scheme, are reported. This part yielded the following work already
published:

I. BERMUDEZ, C.I. CORREA, G.N. GATICA AND J.P. SILvA, A perturbed twofold saddle
point-based mized finite element method for the Navier-Stokes equations with variable viscosity.

Appl. Numer. Math. 201 (2024), 465-487.

On the other hand, in the second part we propose and analyze a new fully-mixed finite
element method for the coupled model arising from the Navier-Stokes equations, with variable
viscosity, in an incompressible fluid, and the Darcy equations in an adjacent porous medium,
so that suitable transmission conditions are considered on the corresponding interface. The

approach is based on the introduction of the further unknowns in the fluid given by the veloc-

iv



ity gradient and the pseudostress tensor, where the latter includes the respective diffusive and
convective terms. The above allows the elimination from the system of the fluid pressure, which
can be calculated later on via a postprocessing formula. In addition, the traces of the fluid
velocity and the Darcy pressure become the Lagrange multipliers enforcing weakly the interface
conditions. In this way, the resulting variational formulation is given by a nonlinear perturba-
tion of a threefold saddle-point operator equation, where the saddle-point in the middle of them
is, in turn, perturbed. A fixed-point strategy along with the generalized Babuska-Brezzi the-
ory, a related abstract result for perturbed saddle-point problems, the Banach-Necas-Babuska
theorem, and the Banach fixed-point theorem, are employed to prove the well-posedness of the
continuous and Galerkin schemes. In particular, Raviart-Thomas and piecewise polynomial
subspaces of the lowest degree for the domain unknowns, as well as continuous piecewise linear
polynomials for the Lagrange multipliers on the interface, constitute a feasible choice of the
finite element subspaces. Optimal error estimates and associated rates of convergence are then
established. Finally, several numerical results illustrating the good performance of the method
in 2D and confirming the theoretical findings are reported. This part yielded the following
work, presently submitted:

I. BERMUDEZ, G.N. GATICA AND J.P. SiLvA, A new Banach spaces-based mixed finite ele-
ment method for the coupled Navier-Stokes and Darcy equations. Preprint 2025-08, Centro de
Investigacién en Ingenierfa Matematica (CI*MA), Universidad de Concepcion, Chile, (2025).
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Part 1

A perturbed twofold saddle
point-based mixed finite element
method for the Navier-Stokes

equations with variable viscosity



CHAPTER 1

Introduction

The development of Banach spaces-based mixed finite element methods for Newtonian and
non-Newtonian incompressible fluids has received special attention by the community of nu-
merical analysts of partial differential equations during the last decade. Indeed, in this paper
we are interested in the Navier-Stokes problem with nonlinear viscosity, which refers to the
mathematical description of the motion of a fluid whose viscosity coefficient is not constant but
rather varies with respect to position and/or time. This problem is certainly more complex
than the conventional Navier-Stokes problem for Newtonian fluids with constant viscosity since,
in addition to the non-linearity arising from the convective term, one has to deal now with the
one coming from the viscosity as well. In this sense, and according to what we have experienced
in some of our own related contributions, the use of nonlinear saddle point formulations in Ba-
nach spaces has shown to be much more suitable for the corresponding continuous and discrete
analyses than, for instance, classical Hilbertian approaches. In the context of augmentation
techniques, mixed finite element methods for solving the Navier-Stokes equations with a vis-

cosity that depends non-linearly on the magnitude of the velocity gradient have been recently



introduced and analyzed in [11, 9]. In the first approach, the modified pseudostress tensor used
in [10] is employed, which, like the one from [42], involves diffusive and convective terms as
well as the pressure. The second approach takes into account the dependence of the viscosity
on the strain rate tensor, resulting in a more physically relevant model that incorporates both
deformation and vorticity as auxiliary unknowns. Additionally, in both works, the pressure
unknown is eliminated through an equivalent statement implied by the incompressibility condi-
tion. In turn, due to the convective term, and in order to stay within a Hilbertian framework,
the velocity is sought in the Sobolev space of order 1, which requires to augment the variational
formulation with additional Galerkin-type terms arising from the constitutive and equilibrium
equations. While the augmented methods avoid the need of proving continuous and discrete
inf-sup conditions, thus allowing much more flexibility for choosing the finite element subspaces,
it is no less true that the resulting Galerkin schemes and their corresponding computational im-
plementations increase considerably in complexity, which leads to much more expensive discrete
systems. This is the main reason for discouraging the use of augmented procedures. Regarding
nonlinear twofold saddle point operator equations, also known as dual-dual variational formu-
lations, there has been a diverse range of theories developed over the past two decades. These
theories arose from the need of applying dual-mixed methods to a class of nonlinear boundary
value problems in continuum mechanics. In [31], the Babuska-Brezzi theory in Hilbert spaces is
generalized to a class of nonlinear variational problems, and in [32], a natural extension of the
abstract framework for continuous and discrete nonlinear twofold saddle point formulations is
derived. More recently, a fully-mixed finite element method has been developed and analyzed
for the coupling of the Stokes and Darcy-Forchheimer problems in [1]. This method was later
extended to the coupling of the Navier-Stokes and Darcy-Forchheimer problems with constant
density and viscosity in [18]. The main novelty of these works is the use of a new approach
that leads to Banach spaces and a twofold saddle point structure for the equation of the cor-
responding operator. The continuous and discrete solvabilities of this structure are analyzed
in both papers using a suitable abstract theory developed for this purpose in the context of

separable reflexive Banach spaces.

According to the previous discussion, the goal of the present paper is to extend the applica-
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bility of the Banach spaces framework discussed above by introducing a fully-mixed formulation
for the Navier-Stokes equations with constant density and variable viscosity, without any aug-
mentation procedure. The analysis and results from [18] are used to achieve this goal. The
paper proves the well-posedness and uniqueness of both the continuous and discrete formula-
tions using a fixed point argument and an abstract theory for twofold saddle point problems.
An a priori analysis is also performed, and optimal rates of convergence are derived. Given an
integer ¢ > 0, discontinuous piecewise polynomials of degree < ¢ for each entry of the velocity
gradient, Raviart-Thomas spaces of order ¢ for the pseudostress, and discontinuous piecewise
polynomials of degree < / for the velocity are feasible choices. The paper is structured as
follows. In the rest of this chapter, we provide an overview of the standard notation and func-
tional spaces that will be utilized throughout the paper. In Chapter 2 we introduce the model
problem of interest and define the unknown to be considered in the variational formulation.
Subsequently, in Chapter 3 we identify the twofold saddle-point structure of the corresponding
variational system. We then proceed to analyze the continuous solvability and the equivalent
fixed point setting in Chapter 4, and present the corresponding well-posedness result, assuming
sufficiently small data. In Chapter 5, we investigate the associated Galerkin scheme by utilizing
a discrete version of the fixed point strategy developed in Chapter 4 for the continuous case.
Additionally, we derive the associated a priori error estimate in the same chapter. Furthermore,
in Chapter 6 we specify particular choices of discrete subspaces that satisfy the hypotheses from
Chapter 4 and provide the rates of convergence of the Galerkin schemes. Finally, we present
several numerical examples in Chapter 7, which illustrate the good performance of the fully

mixed finite element method and confirm the theoretical rates of convergence.

1.1 Preliminary notations

Let Q < R™,n € {2,3}, be a bounded domain with polyhedral boundary I'; and let n be the
outward unit normal vector on I'. Standard notation will be adopted for Lebesgue spaces L?(2)
and Sobolev spaces W*P(Q), with s € R and p > 1, whose corresponding norms, either for the

scalar, vectorial, or tensorial case, are denoted by || o .0 and |- | s p.q, respectively. In particular,
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given a non-negative integer m, W™2(02) is also denoted by H™(2), and the notations of its
norm and seminorm are simplified to || - ||,n.0 and | - |,,.q, respectively. In addition, HY?(T) is
the space of traces of functions of H'(2), and H~'/2(I') denotes its dual. On the other hand,
given any generic scalar functional space S, we let S and S be the corresponding vectorial and
tensorial counterparts, whereas | - ||, with no subscripts, will be employed for the norm of any
element or operator whenever there is no confusion about the space to which they belong. Also,
| - | denotes the Euclidean norm in both R™ and R"*", and as usual, I stands for the identity
tensor in R™*". In turn, for any vector fields v = (v;)i—1, and w = (w;)i=1,, We set the

gradient, divergence, and tensor product operators, as

Vv := <8vi) , div(v) = Z ] and VW 1= (v;w;)ij=1n-
ij=1n ]

8xj

Additionally, for any tensor fields 7 = (7;)i =1, and ¢ = ((ij)ij=1n, we let div(7) be the
divergence operator div acting along the rows of 7, and define the transpose, the trace, the

tensor inner product operators, and the deviatoric tensor, respectively, as

n

n
1
’7't = (sz’)i,jzl,na tI‘(T) = Z Tiis T . C L= Z TijCz'ja and Td =T — *tI‘(T)]I
: . n
=1 i,j=1

On the other hand, given t € (1, +o0), we also introduce the Banach spaces

H(div,; Q) := {T cL(Q): div(r) e Lt(Q)},

H(div,; Q) = {T eL2(Q): div(r)e Lt(Q)},

which are endowed with the natural norms defined, respectively, by

ITlavee == lTloe + [div(T)lore V7 e H(divi;Q),

||T||divt;Q = H’T 0,0 + HdiV(‘T)”Qt@ VT1e H(dlvt,Q)
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Then, proceeding as in [30, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [20, Section
(1, +o0] if n =2

3.1]), it is easy to show that for each t € , there holds
[6/5,+00] if n =3

o) = |

) {T Vo + vdiV(T)} v (1, 0) € H(divy; Q) x HY(Q), (1.1)

and analogously

(tv,v) = J {T Vv + v div(T)} Y (7,v) € H(div; Q) x H'(Q), (1.2)

Q

where (-, -) stands for the duality pairing between H~Y/2(I") and HY?(T), as well as between
H~Y%(T") and H/2(T"). We find it important to stress here, as explained in the aforementioned
references, that the second term on the right-hand side of (1.1) (resp. (1.2)) is well-defined
because of the continuous embedding of H!(2) (resp. H!(£2)) into L¥ () (resp. L¥(2)), where
t' is the conjugate of ¢, that is ¢’ € [1, +00) such that % + ;1/ = 1, which reduces to

[1,+00) if n =2

)

[1,6] if n =3

t e



CHAPTER 2

The model problem

In what follows we consider the Navier-Stokes problem with variable viscosity consists of finding

the velocity u and the pressure p of a fluid occupying the region 2, such that

—div(p(|Vu|)Vu) + (Va)u+Vp = f in Q,
(2.1)
diviu) =0 in Q, u=g on I, Jsz,
Q

where the given data are a function p : R™ — R™ describing the nonlinear viscosity, a volume
force f, and the boundary velocity g. The right spaces to which f and g need to belong are
specified later on. Note that g must formally satisfy the compatibility condition

Lgv =0, (2.2)



which arises from the incompressibility condition of the fluid. In addition, for the uniqueness

of the pressure p in (2.1) we seek this unknown in the space

12(Q2) — {qeL2(Q): JQq _ 0} | (2.3)

Furthermore, we assume that y is of class C', and that there exist constants p;, pe > 0, such

that
pn < p(s) < pooand g < p(s) +spl(s) < pe s =0, (2.4)

which, according to the result provided by [40, Theorem 3.8|, imply Lipschitz continuity and
strong monotonicity of the nonlinear operator induced by p, which is defined later on (cf.
(3.8)). We will go back to this fact in Chapter 4. Also, it is important to remark here that the
assumptions in (2.4) constitute the most commonly used sufficient conditions guaranteeing the
aforementioned nonlinear operator to be Lipschitz-continuous and strongly monotone, which
are, actually, the properties to be employed in our analysis. Some examples of nonlinear p

satisfying (2.4) are the following:

and  u(s) 1= ag + ar(1+ s3)FD/2 (2.5)

+ s

where ag, a3 > 0 and § € [1,2]. The first example is basically academic but the second one
corresponds to a particular case of the well-known Carreau law in fluid mechanics. It is easy to
see that they both satisfy (2.4) with (u, pe) = (2,3) and (p1, 12) = (o, g+ aq), respectively.
The forthcoming analysis also applies to the slightly more general case of a viscosity function
acting on 2 x RT. Next, proceeding similarly as in [11], we introduce the pseudostress tensor

unknown, which is defined by

o:= u(|Vu))Vu— (u®u) —pl in Q. (2.6)



In this way, noting that div(u® u) = (Vu)u, which makes uses of the fact that div(u) = 0,

we find that the first equation of (2.1) can be rewritten as
—div(e) = f in Q.

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (2.6),
which can be understood as the constitutive equation expressing o in terms of u, that the

latter and the incompressibility condition are equivalent to the pair

o’ = p(|[Vu))Vu— (u®@u)® in Q, and
1 ‘ (2.7)
p = —ﬁtr(cr + (u®u)) n Q.

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by
the postprocessed formula suggested in (2.7), we arrive, at first instance, at the following system

of equations with unknowns u and o

o’ = p(|[Vu))lVu— (u®@u)® in Q,
(2.8)
—div(e) =f in Q, u=g on T, Ltr(a + (u®u)) = 0.

Finally, since we are interested in a mixed variational formulation of our nonlinear problem,
and in order to employ the integration by parts formula typically required by this approach,
we introduce the auxiliary unknown t := Vu in Q. Consequently, instead of (2.8), we consider

from now the set of equations with unknowns t, u, and o, given by

t=Vu in Q, o%=pu(tht—(u®u)?® in Q,
(2.9)
—div(e) =f in Q, u=g on T, J tr(o + (u®u)) = 0.
Q
Note that the incompressibility condition 0 = div(u) = tr(t) is implicitly contained in the
second equation of the first row of (2.9) since the matrix trace of each deviatoric tensor is 0.
We end this chapter by noticing that the formulation described by (2.9) is restricted to

Dirichet boundary conditions only. In the case of Neumann boundary conditions, for instance,
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one would need either to consider a symmetric stress tensor instead of the present pseudostress,
or use the latter to rewrite the condition in terms of it. However, it is not clear in advance
a physical justification for having both tensors an advective component when imposing that

condition.



CHAPTER 3

The fully mixed formulation

In this chapter we derive a Banach spaces-based fully-mixed formulation of (2.9). The integra-

tion by parts formula provided by (1.2), along with the Cauchy-Schwarz and Holder inequalities,

play a key role in this derivation. We begin by looking originally for u € H'(2). Then, mul-
(1,400) if n =2

[6/5,+o0) if n =3
applying the integration by parts formula (1.2), and using the Dirichlet boundary conditions

tiplying the first equation of (2.9) by 7 € H(div; ), with t €

for u, which implicity assumes that g € HY2(T'), we find
J T:t+ J u-div(t) = (rv,gr V1 e H(divy; Q). (3.1)
Q Q

It is clear from (3.1) that its first term is well defined for t € L?(€2), which, along with the free

trace property of t, suggests to look for t € L2 (Q), where

L2(Q) = {SGLZ(Q): tr(s) = o}. (3.2)

11



12

In addition, knowing that div(7) € L*(Q2), we realize from the second term and Holder’s
inequality that it suffices to look for u e LY (), where ¢’ is the conjugate of ¢. Next, it follows
from the second equation of (2.9), that formally

Lu(|t|)t ; s—Lad;s— L(u@u)d:s _ 0 ¥selZ(0), (3.3)

from which we notice that the first term is well-defined, whereas the second one makes sense if

o is sought in L?(2). In turn, for the third one there holds

L(U®U) .

which, necessarily yields ' = 4, and thus ¢t = 4/3.

L<u®u>d -

< [ullose lufoso lsloq, (3.4)

Certainly, one could also consider arbitrary indexes ¢, j € (1,400) conjugate to each other,
and then take s € L}(Q) (defined analogously to (3.2)) instead of s € L2(Q) in (3.4), thus
obtaining

< Jullozea [ufozeq Isllo,jio -

L(u@u) 'S

However, this would force all the remaining spaces involved to be modified, and particularly,
because of the first term in (3.3), one would have to look for t in IL§(£2). As a consequence, the
associated non-linear operator would not act from a Banach space onto its dual, which stops us
of applying monotone operators theory, as we know it, to perform the corresponding analysis.

This is the main reason for adopting here the simplest choice ¢ = j = 2.

Finally, looking for o in the same space of its corresponding test function 7, that is o €

H(divy/s; ©2), the equilibrium equation in (2.9) is tested as

_JQv.div(a) — Lf-v VveL'Q)), (3.5)

which forces f to belong to L*3(Q2). Now we consider the decomposition

H(diV4/3; Q) = Ho(diV4/3; Q) ® R]I,
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where

Ho(divy: ) 1= {7 € H(divys: ) : L w(r) = 0}.

It follows that o can be uniquely decomposed as o = o + ¢ll, where, according to the third

equation of the second row of (2.9),

. 1 1
oo € Hy(divys;Q) and ¢y := ol JQtr(o') = — ] L trlu®u) . (3.6)

In this way, the constant ¢y can be computed once the velocity is known, and hence it only
remains to obtain o(. In this regard, we notice that (3.3) and (3.5) remain unchanged if
o is replaced by y. In addition, thanks to the fact that t is sought in L2 (), and using
the compatibility condition (2.2), we realize that testing (3.1) against 7 € H(divy/s;(2) is
equivalent to doing it against 7 € Ho(divy/s; Q). Thus, redenoting from now on oy as simply
o € Hy(divys;€2), and suitably gathering (3.1), (3.3) and (3.5), we arrive at the following
mixed formulation: Find (t, o, u) € L2 () x Hy(divys; Q) x L*(2) such that

| utehess | otis — | mowts —0 Vs e L2(Q),

—LTd:t —Lu-div(‘r)

_Lv.div(a) - Lf~v Vv e LY(Q).

—(tv,g)r V1 e Hy(divys; Q), (3.7)

Next, we observe that (3.7) has a perturbed twofold saddle point structure. Indeed, we first

define the Banach spaces
Hy = L3(Q), Hy := Hy(divys;Q), and Q := LY(Q),

which are endowed with the norms | - o0, || - [div, 50, and | - [loa0, respectively. Next, we

introduce the nonlinear operator A : H; — H, and the bounded linear operators B; : H; — H,
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and B : Hy, — Q’, given by

[A(r),s] := L,u(\r])r:s Vr,seH,
[Bi(s), 7] := —L 748 V (s, 7)€ Hy x Hy, (3.8)
BO)v]i= = [ vediv(() V(Cv) e xQ

Hereafter, [-, -] stands for the duality pairing between the corresponding Banach space involved

and its dual. In turn, G € Hj,, and F € Q' are the bounded linear functionals defined by
G, 7] = —(rv,g)r VTeH,,
and
[F,v] := Lf-v VveQ.

Regarding the boundedness of G and F, we first observe, using the identity (1.2) and the
continuous injection iy : H'(Q) — L4(Q), that

G, 7]| < [8ly2r ITlav,0 V7 eHs. (3.9)
with g := max {1, is|} g. In addition, it follows by Holder’s inequality that
‘[F, V]’ < HfH0,4/3;Q HVHOA;Q Vve Q . (310)

According to the above, the fully mixed formulation (3.7) can be rewritten as: Find (t,o,u) €



H; x Hy x Q such that
[A(t).s]  +[Bi(s), o] — L(u@u)d s

[Bi(t), 7] +[B(7),u]

15



CHAPTER 4

The continuous solvability analysis

In this chapter, we analyze the solvability of (3.11) by applying a particular case of the more
general result provided by [18, Theorem 3.4].

4.1 The fixed-point strategy

We begin by rewriting (3.11) as an equivalent fixed point equation. To this end, we proceed to
linearize the perturbation (third term of the first equation of (3.11)) defining for each w € Q
the functional Hy, : H; — R by

(Ha,s] = JQ(W@)W)d:s VseH, (41)

and let T : Q — Q be the operator given by

16
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where (t,0,u) € H; x Hy x Q is the unique solution (to be proved later on) of the following

system of equations:

[A(t),s]  +[Bi(s), o] = [Hw,s] VseHy,
[Bi(t), 7] + [B(T),u] = [G,T] V7 e H,, (4.3)
[B(a), V] = [F,v] VveQ.

Thus, we realize that solving (3.11) is equivalent to finding a fixed point of T, that is u € Q
such that
T(u) = u.

4.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem
(4.3) is well-posed. To this end, and as already announced, we make use of the following

theorem.

Theorem 4.1. Let H,, Hs, and Q be separable and reflexive Banach spaces, and let A : H; —
H) be a nonlinear operator, and By : H; — H, and B : Hy — Q' be bounded linear operators.

In addition, let K := N(B) and assume that

i) A:H;, — H) is Lipschitz continuous, that is there ezists a constant v > 0 such that

|A(r) = A(s)ls, < 7l —sfw, VrseH,

ii) for each s € Hy, the family of operators A(-+s) : Hy — H) is strictly monotone with a

monotonicity constant o > 0, independent of s, that is

[A(t+s)—A(r+s),t —1] > aft—rf, Vt,reH,
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iii) there exists a positive constant 8 such that

o [BT).¥]

Teky H HHz
T#0

> flvllq YveQ, and

iv) there exists a positive constant By such that

Bi(s),
up BOLT) o 5 g, vr ek
sely ”SHH1
s#0

Then, for each (H,G,F) e H| x H), x Q' there exists a unique (t,o,u) € H; x Hy x Q solution
of

[A(t),s] + [Bi(s),o] = [H, ] VseH,,
[Bi(t), 7] + [B(T),u] =[G, 7] V1 e H,, (4.4)
[B(o), V] = [F,v] VveQ.

Moreover, there exists a constant C > 0, depending only on vy, a, 5, 1, |Bi|, and |B;|, such

that
I(t W) s < © {IHlig + [Glagy + [Fllgr + A} (4.5)

Proof. Tt follows from a straightforward application of [18, Theorem 3.4] to the particular case
p1 = pa = 2 of exponents py, ps = 2 that appear there when specifying more general continuity

and monotonicity properties. Il

Now, if A becomes linear, the above theorem is simplified by keeping iii) and iv) as such,
but assuming, instead of i) and ii), that A : Hy — H is bounded and H-elliptic, which means

that there exist constants v, o > 0 such that
[AG) sy < vlsle,  and  [A(s),s] > as|i, VseH,.

Then, noting that the above certainly implies that A is Lipschitz continuous and strongly
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monotone, and that A(0) = 0, we conclude from Theorem 4.1 that for each (H,G,F) €
H) x Hj, x Q' there exists a unique (t,o,u) € Hy x Hy x Q solution of (4.4). Moreover, there
exists a constant C' > 0, depending only on v, «, 8, 81, |Bi|, and |B]|, such that

I(6,0, ) sy xiian < € { 1Ml + Gl + [Flar} (4.6

We remark here that (4.6) can be proved to be equivalent to an inf-sup condition involving
the left-hand sides of (4.4) in the linear case of A. Indeed, setting the notations r := (r, p, w),

§:= (s, 7,v) € H; x Hy x Q, introducing the bounded bilinear form
S(r,8) := [A(r),s]+[Bu(s), p]+[Bi(r), 7]+ [B(7), w]+[B(p), v] VT, seHixHyxQ, (4.7)
and defining the functionals Hg € H}, G € H, and Fz e Q' given by
Hi(s) := S(F,(s,0,0)) VseH;, Gg(r):= S(F,(0,7,0)) V7eH,,
and Fe(v) = S(F, (0, O,V)) VveQ,
we readily observe that & can be decomposed as

S(F,8) = Hi(s) + Ge(r) + Fe(v) VF §eH, xH, x Q.

Thus, it is not difficult to realize (see [21, Section 3.1, egs. (3.6) - (3.8)] for a similar estimate)

that there holds the equivalence

1 S(¥,8

9 {HHFHHQ + ||GFHH’2 + HFFHQ’} < sup _;(7’)

3 SeHj xHg xQ ”SHHleng 48
§#0 (4.8)

< {HHF”H’I + HGFHH’Q + HFFHQ/} VreH; x Hy x Q.

Consequently, noting that r € H; x Hj x Q is certainly the solution of the linear version of (4.4)
with the right-hand side given by the functionals Hy € H}, G € H),, and Fz € Q’, we deduce

from (4.6) and the lower bound of (4.8) that there exists a constant C > 0, depending only on
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v, a, B, 1, |Bi], and |B]|, such that

S(r,s ~ .
sup 4(7’) > C||1] g, xm.xQ VrieH;, x H, x Q. (4.9)
§eHy xHo xQ HsHHleng
S§#0

Conversely, it is easy to see that (4.6) follows from (4.9) and the upper bound of (4.8).

We now verify that problem (4.3) satisfies the hypotheses of Theorem 4.1. To this end, in
what follows we establish the Lipschitz continuity and strong monotonicity of A, as well as the

continuous inf-sup conditions for B and B;.

Lemma 4.2. Let vy, := max{uq, 2u2 — i1}, where p11 and po are the bounds of p given in (2.4).
Then, for each r,s € L2(Q), there hold the following inequalities:

[A(r) = A(s) ey, < v lr = s,

and

[A(r) — A(s),r —s] = ju |r — s, - (4.10)
Proof. See [40, Theorem 3.8] for details. O

Lemma 4.3. There exists a constant B > 0, such that

B(T),v
sup B 2 g1 vveq
Teky H HHz
T7#0
Proof. See [35, Lemma 2.9] or [8, Lemma 3.5] for details. O

In turn, in order to prove that B; satisfies hypothesis iv), we need to employ a useful
estimate for tensors in Ho(diva/s; €2). Indeed, suitably modifying the proof of [30, Lemma 2.3],

one can show that there exists a positive constant c4/3, depending only on €2, such that

C4/3 HTHQQ < HTdHQQ + HdiV(T)HOA/B;Q VT1e Ho(diV4/3, Q) . (411)

Moreover, while (4.11) was first established in [8, Lemma 3.1], for sake of completeness we
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prove next a result that includes this inequality as a particular case.

(1, +0) if n =2
Lemma 4.4. For eacht € , there exists a constant ¢, > 0, depending
[6/5,+0) if n =3

only on ), such that
et | Tloa < 7o + |div(T)]os0 V1 e Hy(divy; Q) . (4.12)

Proof. We begin by stressing that, exactly as for [30, Lemma 2.3] and [8, Lemma 3.1], the
proof of (4.12) is based on the fact that the divergence operator div is an isomorphism from
the closed subspace of H}(Q2) given by W+, where W := {V e Hi(Q) :  div(v) = O}, onto
L2(Q) (cf. (2.3)). In this way, given 7 € Hy(divy; ), that is 7 € H(divy; ) and tr(7) € L(Q),

we let v be the unique element in W+ such that div(v) = tr(7) and ||v|1.q < Colltr(T)

0,95
with a positive constant C independent of v and 7. Then, as stated a few lines after [30, eq.

(2.53)], it readily follows that

[tr(r) 2 = —n Lv-div(T) —nf T Vv, (4.13)

Q

On the other hand, we let ¢’ be the conjugate of ¢, and denote by iy the continuous injection
of H'(Q) into L¥(Q), which holds for #' € [1,+o0) in 2D and ¢’ € [1,6] in 3D (as stated at
the end of Chapter 1 as well). Hence, applying the Holder and Cauchy-Schwarz inequalities in
(4.13), and employing the boundedness of iy, as well as the estimate bounding ||v|; ¢ in terms

of [tr(7)]o.q, we find that

() Ba < nCo {iel 1div() oo + [7nn} 16r(m)oe

that is
Itr(m)loe < 0 Co {liel 1div(T)losa + I7%loa} - (1.14)

Finally, the fact that |7[3q = [79]5 o + 2 [[tr(7)[5 .o along with (4.14) yield (4.12). O
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Lemma 4.5. There exists a constant 31 > 0, such that

supM > 6i|7m, VTEK. (4.15)
ol

Proof. In order to satisfy the continuous inf-sup condition for By, it is necessary to first realize

that I := N(B) (cf. (3.8)), is given by
K = {TEHO(diV4/3;Q)i div(T) = 0 in Q}

Then, given 7 € K such that 7¢ # 0, we have that 79 € L2 (Q), so that bounding the supremum
in (4.15) by below with s = —7¢, it follows that

[Bu(s), 7] _L s > L T

sup ————— = sup = g
sty 8] sel2 () Isllo.c Il
s#0 S£0

= |00

which, using (4.11) and the fact that div(7) = 0, implies that B; satisfies the inf-sup condition
with a constant 1 = c4/3. On the other hand, if 7¢ = 0, it is clear from (4.11) that 7 = 0,
and so (4.15) is trivially satisfied. O

Consequently, the well-definedness of the operator T can be stated as follows.

Theorem 4.6. For each w € Q there exists a unique (t,o,u) € Hy x Hy x Q solution to
(4.3), and hence we can define T(w) := u € Q. Moreover, there exists a positive constant Cr,

depending only on vy, pu, B, b1, |Bi|, |Bil, and |i4|, and hence independent of w, such that

ITW) o0 = lulq < (0,0l mxe < Cr {IWlan + [&lar + Elossa}.  (416)

Proof. 1t follows from Lemmas 4.2-4.5 and a straightforward application of Theorem 4.1. In

turn, estimate (4.16) is a direct consequence of (4.5) (cf. Theorem 4.1) and the boundedness

of G (cf. (3.9)) and F (cf. (3.10)). O
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4.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T is well-defined, in this section we address the solvability of the
fixed-point equation (4.2). To this end, in what follows we first derive sufficient conditions on
T to map a closed ball of Q into itself, and then we apply the Banach Theorem to conclude

the unique solvability of (4.2). Indeed, given § > 0, from now on we let

W(5) = {weQ; Iwloso < 5}.

Lemma 4.7. Assume that there holds

-

and § < (4.17)

N

Cr {[&lor + [floasa} <

(\]
S

Then T(W(0)) = W(4).

Proof. Given w € W(0), we know from Theorem 4.6 that T(w) is well defined and that there
holds

~ )
ITW)loae < Cr {HW||3,4;Q + (8l + Hf||0,4/3;9} < Ord*+ 5 <4,

which confirms that T(w) € W(J). O

We continue with the continuity property of the operator T.

Lemma 4.8. There exists a positive constant Ly, depending only on B, ||B1||, and pq, such that
IT(W) = T(@)ose < Lr {IWloaa + [¥lose } 1w — W00 (4.18)

for all w,w € Q.

Proof. Given w,w € Q, we let T(w) := u and T(w) := u, where (t,o,u) € H; x Hy x Q

and (f, o,u) € Hy x Hy x Q are the corresponding unique solutions of (4.3). Then, subtracting
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both systems, we obtain

[A(t) — At),s] +[Bi(s),o —&] — [Hy, — Hg,s] VseH,,
[Bi(t —t), 7] +[B(T),u—1] = 0 VreH,  (4.19)
[B(o — o), V] =0 VveQ.

In particular, takings = t —tand 7 = o — &, we realize from the second and third equations
of (4.19) that
[Bi(t —t),0 —&] = —[B(e —&),u—1] =0,

which, along with the first equation of (4.19), yields

A~ A~ A

[A(t) — A(t),t — t] =[Hw — Hg,t —t],

whence, using the stric monotonicity of A (cf. (4.10)) and the definition of Hy, (cf. (4.1)), we
find that

~ 1 ~ ~
I~ Boq < - {IWlose + ¥losa f 1w = ¥l (4.20)
1

In turn, from Lemma 4.3 and the second equation of (4.19), we bound |u — uljo 4. as follows:

I [Blr)u-a] 1 [Bi(t—t)7] _ |Bi

. I
Ju—tfose < 7 sup = - sup < It —tloo.  (4.21)
7 [, B T, s

B

TeHy
T7#0

Finally, by combining (4.20) and (4.21), we have that

AN A~ B AN AN
D) = T(@)lose = [u=tlosa < 21 {Iwlosa+ [ Floso} [w = Foso.
1
B
which confirms the announced property on T (cf. (4.18)) with Ly := 3 1 . O
M1
Owing to the above analysis, we now establish the main result of this section.

1 1
Theorem 4.9. Assume that § < 3 min {— B

Cr' |B ‘} and the data are sufficiently small so that
T 1
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the hypothesis of Lemma 4.7 holds, that is

g . (4.22)

Cr{IElar + Ifloasa} <
Then, the operator T has a unique fized point u € W(0). Equivalently, the problem (3.11) has

a unique solution (t,o,u) € Hy x Hy x Q. Moreover, there holds

I(t, o, )|, xm.xq < 2CT{H§H1/2,F + HfHo,4/3;ﬂ}- (4.23)

Proof. We first recall that the choice of ¢ and assumption (4.22) guarantee, thanks to Lemma
4.7, that T maps W(J) into itself. Then, bearing in mind the Lipschitz-continuity of T :
W(5) — W(J) (cf. (4.18)), a straightforward application of the classical Banach theorem yields
the existence of a unique fixed point u € W(J) of this operator, and hence a unique solution of

(3.11). Finally, regarding the a priori estimate, we first observe from (4.16) that

IT@los0 = falosa < (60,0l eq < Cr {[ulq + [@lar + [Eloysol

from which, using that

1

ﬁ ||(t7 o, u)”Hl xH2xQ 5

[ulf o < dufosn <

we arrive at
IT(W)los0 = lulose <t 0, u)|m <mxq

1

< 5160 Wl cirea + Cr {[Elar + [Eloasal

which yields (4.23) and concludes the proof. O



CHAPTER b

The Galerkin scheme

In order to approximate the solution of our fully-mixed variational formulation (3.11), we now
introduce the associated Galerkin scheme, analyze its solvability by applying a discrete version
of the fixed-point approach adopted in the previous chapter, and derive the corresponding a

priori error estimate.

5.1 Preliminaries

We begin by considering arbitrary finite element subspaces Hj , ]IT]IM, and Qy, of the spaces
L2.(2), H(divys; ), and L*(Q2), respectively. Specific subspaces satisfying the assumptions
and stability conditions to be indicated along the discussion, will be introduced later on in
Chapter 6. Hereafter, h := max{hx : K € T} denotes the size of a regular triangulation 7y,
of 2 made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hy.

26
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Then, letting
th = HQ(diV4/3; Q) M ]ﬁb’h, (51)

the Galerkin scheme associated with (3.11) reads: Find (t;, o, up) € Hyj, x Hop, x Qp, such

that
[.A(th>, Sh] + [Bl(Sh>, O'h] — J (uh ® llh)d > Sp =0 Vs, € Hl,m
Q
[B1(t1), 7] + [B(mh), up] — (G, 7] V7 eHy, (5.2)
[B(on), Vil = [F,vn]  Vvi,eQ

Then, we adopt the discrete version of the strategy employed in Section 4.2 to analyse the

solvability of (5.2). To this end, we let T}, : Q; — Q, be the discrete operator defined by

Th(wg) = uy Vwy € Qp,

where (tp, o, up) € Hyp x Hyjp x Qp is the unique solution (to be confirmed below) of the

following system of equations:

[A(th),sn] +[Bi(sn), on] = [Hw,,sn]  VspeH,,
[Bi(tn), 7] + [B(mn),uy] = [G, 1] V1, € Hyp, (5.3)
[B(on), vil = [F,v4] Vv, € Q.

Then, similarly as in the continuous case, we realize that solving (5.2) is equivalent to finding

a fixed point of T}, that is u, € Qy, such that

Th(un) = up. (5.4)
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5.2 Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness
of the discrete system (5.2), equivalently of (5.4). To this end, we need to introduce certain
hypotheses concerning the arbitrary spaces H ,, ﬁ27h, and Q, and the discrete kernel associated

with the linear operator B, that is
Ky = {TheHZ,h: [B(),vi] = 0 Vv e Qh}. (5.5)

More precisely, from now on we assume that:

(H.1) ﬁlgﬁ contains the multiplies of the identity tensor I,
(H.2) div(H,yp) < Qp,

(H.3) K¢ := {T;f S = ICh} < H, 4, and

(H.4) there exists a positive constant B4, independent of h, such that

B(m,), v
sup 7[ (h), vl > Ba|vilq Yvhe Q.
TheHy p H hHHz
T #0

We highlight here that as a consequence of (H.1) we can employ the discrete version of
the decomposition H(divy/s; Q) = Ho(divys; ) @ RI, namely ]I?]IQJL = Hy, @ RI, thanks to
which Hyp, (cf. (5.1)) can be used as the subspace where the unknown o, is sought. However,
for the computational implementation of (5.2), which is addressed later on in Chapter 7, we
actually look for o} in ﬁgyh, impose the null mean value of tr(e},) through an additional
equation tested against arbitrary n, € R, and keep the symmetry of the resulting system by
introducing an artificial unknown &, € R, also known as Lagrange multiplier, which is shown

in advance to be 0. In other words, we replace (5.2) by the modified Galerkin scheme: Find
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(th,on, up, &) € Hyp ]ﬁb,h x Qp x R such that

[A(tr),;sn]  +[Bi(sn),on] — J (up ®@uy)? - s =0 Vsp€H,
0
[Bi(th), Ta] + [B(1h), us] + §hf tr(m,) = [G,m] Vme ﬁzm
. (5.6)
[B(ah), vh] = [F,vn]  VvieQu,
thgtl"(o'h) =0 Vo, eR.

Clearly, the same modifications apply to (5.3). Note that when taking 7, = I in the second
row of (5.6), and using in particular (2.2), all the terms, except the third one on the left-hand
side, vanish, so that this row becomes n|€2| &, = 0, from which we clearly deduce, as previously
announced, that &, = 0. In addition, it is clear that the second row of (5.2) is recovered from the
second row of (5.6) by simply taking 75, € Ha ,. The above allows to prove that (5.2) and (5.6)
are equivalent. Indeed, if (t;, oy, up) € Hy j, x Hy , x Qy, is solution of (5.2), then (ts, o4, u,,0) €
H, 5 x ]ﬁIQ,h x Qp x R solves (5.6). Conversely, if (ty, o, up, &) € Hy j x HT]IM x Qp x R is solution
of (5.6), then o, € Hyp, &, = 0, and (ty, o, up) € Hy , x Hop, x Qp solves (5.2).

In turn, according to the definition of B (cf. (3.8)), it follows from (5.5) and (H.2) that
Ky = {TheHQ,h; div(r,) = 0 in Q} (5.7)

which yields the discrete analogue of (4.15), that is, given 73, € Kj, such that 7 # 0, we realize

that s, = —74 € H;, (which follows from (H.3)), and thus

Bi(sy), T
sup BN g 53)
sheHy b HshHth
sp#0

with constant 14 = cu/3 (cf. (4.11)). On the other hand, if 777 = 0, it is clear from (4.11)

that 7, = 0, and so the discrete inf-sup condition for B; (cf. (5.8)) is trivially satisfied.

In addition, we recall that the Lipschitz-continuity and strict monotonicity of A (cf. Lemma
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4.2), are also valid at the discrete level, that is, with the same constants -, and 4, there hold

[A(rn) — A(sh), Th]

< ")/u HI’h — ShH]Hh Vrh, Sy € Hl,h R (59)

|A(rs) — Alsa) i, == sup

Frety p H?hHIHh
T, +0
and
[A(I‘h) — A(Sh), ry, — Sh] = M1 HI‘h — Sh”]%h VI‘h, Sy € Hl,h . (510)

In this way, bearing the above discussion in mind, we are now in a position to establish the

discrete analogue of Theorem 4.6.

Theorem 5.1. For each wy, € Qy, there exists a unique (tp, op,up) € Hyp x Hyp x Qp solution
to (5.3), and hence we can define Tp(wy) = u, € Qn. Moreover, there exists a positive
constant Cre, depending only on Yy i1, Be, Bra, |Bal, B, and [ia], and hence independent of

wp,, such that

ITh(wWi)lose = llunlq < [(tr, on, un) |5, <1<
< Crga {||Wh\|374;9 + |8l1j2r + Hf\|o,4/3;ﬂ}-

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.4)) and B; (cf. (5.8)), and the
inequalities (5.9) and (5.10), the proof follows from a direct application of Theorem 4.1. We
omit further details. O

Having established that the discrete operator T}, is well defined, we now address the solv-
ability of the corresponding fixed point equation (5.4). Then, letting d4 be an arbitrary radius,

we now set

W(a) = {wie Qui [waloso < 0}

Then, reasoning analogously to the derivation of Lemma 4.7, we deduce that T} maps W (d,)

into itself under the analogue discrete assumptions, namely

1

—. A1
2014 (5:11)

~ 1)
Cra{[&lor + [flogsaf <5 and & <

We emphasize that the above is exactly the same as for the continuous case (cf. Lemma

4.7), except that the constant Ct and the radius 0 are replaced by Ct 4 and dq4, respectively.
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Moreover, employing similar arguments to those from the proof of Lemma 4.8, we are able to

prove the discrete version of (4.18) with constant L4 := f;,),u’l, that is
1
ITu(wi) = Ta(a)lose < Lra {Wnloo + [Wulosaf Iwn = Waloae  (5.12)

for all wy, , Wy, € Qy,, which proves the continuity of T},.

According to the above, the main result of this section is established as follows.

Theorem 5.2. Assume that 04 and the data are sufficiently small so that they satisfy (5.11).
Then, the operator Ty, has at least one fized point u, € W(dq). Equivalently, the problem (5.2)

has at least one solution (tp, op,up) € Hy p xHs j, x Qp,. Moreover, under the further assumption

1 ﬁd/vbl}’

) 513
Cra’ IBI] (5:13)

1
0g < §min{

this solution is unique. In addition, there holds

H(thaahauh)HHleng < ZCT,d{HgHI/Q,F + Hf|o,4/3;9}-

Proof. The fact that T}, maps W(d4) into itself, together with the continuity of T}, (cf. (5.12)),
allow to apply the Brouwer Theorem to conclude the existence of a solution to (5.4), and
hence to (5.2). Next, the assumption (5.13) and the Banach fixed-point Theorem imply the
uniqueness. Finally, the a priori estimate is a consequence of Theorem 4.1 and analogue

algebraic manipulations to those utilized in the proof of Theorem 4.9. [

5.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in

Section 5.2, and derive the Céa estimate for the Galerkin error

[t —tulx = [t —tx

0.0+ o — 0'h”0,4/3,9 + |u—unlosq,
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where t := (t,o,u) e X := H; x Hy x Q and t, = (th,on,u) € Xy, = H, , x Hy p, x Qp, are
the unique solutions of (3.11) and (5.2) respectively, with u € W(0) and u, € W(d4). In what

follows, given a subspace Z; of an arbitrary Banach space (Z, |-l Z), we set

dist(z, Z),) := iggh |z — zn|z Vze Z.

z

In turn, in order to simplify our analysis, we recall a previous result concerning the operator

A. More precisely, we employ the following lemma.

Lemma 5.3. The operator A defined in (3.8) has a first-order Gateauzr derivative DA. More-
over, for any s; € Hy, DA(s1) is a bounded and H;-elliptic bilinear form, with boundedness and

ellipticity constants given by 7y, and p, respectively.
Proof. See [32, Lemma 3.1]. O

We begin by introducing the global operator P : X — X', and for each w € Q the linear

functional Fy, : X — R associated with the variational formulation (3.11), that is

[P(r,p,w), (s, 7,v)] := [Alr),s] + [Bi(s), p] + [Bi(r), 7] + [B(7), w] + [B(p), v], (5.14)

[Fw, (s, 7,Vv)] := JQ(W@W)d s+ [G, 7] + [F,v],

for all (r, p,w), (s, 7,v) € X. In this way, we realize from (3.11) and (5.2) that there holds

[P(t), §h] = [P(th), gh] + [Fu — Fuh 7§h] V§h € Xh , (515)
whereas the triangle inequality gives for each 1), := (v, pn, wy) € X},
It —thlx < [t —Fulx + [T — talx - (5.16)

In order to establish a connection between the second term on the right-hand side of the above

inequality and the operator P, we proceed almost verbatim as in [32, Theorem 3.3]. In fact,
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given Sy, Tj € X3, we can write
[PW%%}{P®J$]=JCWHHMm+O—Mﬁ%%H@
0

. (5.17)
= f DP(/Lth + (1 — [}J)f"h)(th — Fiugh) dp,,
0

where DP : X — £(X, X') is the first-order Gateaux derivative of the operator P : X — X'.
More precisely, for any §; := (sy,7,v1), ¥ := (r,p,w), § := (s,7,v) € X, DP(s;)(r,s) is

obtained from (5.14) by replacing [A(r), s] by D.A(s1)(r,s), that is
DP(sy)(r,s) := DA(s1)(r,s) + [Bi(s), p] + [Bi(r), 7] + [B(T),w] + [B(p), V] (5.18)

Thus, for any §; € X, (5.18) induces the definition of an operator in £(X,X’) (equivalently, a
bilinear form as the one in (4.7)), which, according to Lemma 5.3, satisfies the hypotheses of the
discrete version of the estimate (4.6) with constants independent of h and of §;. Consequently,
bearing in mind that the aforementioned estimate is equivalent to the discrete version of (4.9),

we conclude that there exists C' > 0, depending only on 7, i1, 1, |Bill, and 3, such that

S A~ DP(8,)(ty — Ty, §n)

SpeXp ”thX

On the other hand, the continuity of DA implies the same property for DP, and hence there
exists o € (0, 1) such that (5.17) becomes

[P(th), §h] - [P(Fh), §h] = DP(MOEh + (1 - ,uo)Fh)(Eh - Fh, §h) . (520)

It follows from (5.19) (with §; := poty + (1 — 110)T) and (5.20) that

i Ful < O sup P05 (P55

SpeXy thHX
5, #0

(5.21)

Next, since P is Lipschitz continuous, with a constant 4, depending only on v, , |B:|| and ||B;],
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we subtract and add P(t), and use (5.15), to find that

—

— [Fu, ~ Fu, 8] + [P(E) ~ P(5%), 5]
< {(Iulq + lula) = wilq + 7 = Fulx } I5ilx

which, replaced back into (5.21), gives
6~ Falx < Cf (Iullq + i) o= wilq +7 €~ Fiulx } (5:22)

Finally, the triangle inequality (cf. (5.16)) along with (5.22) and the fact that |ufq and |uslq

are bounded by d and 4, respectively, yield
[t —tulx < (1+73C) inf €~ 8ilx + C(6+6,) [u—uq. (5.23)
Sh

In this way, our main result for the error |t — t,]x is stated as follows.

Theorem 5.4. Assume that the hypotheses of Theorems 4.9 and 5.2 hold, and lett = (t,o,u) e
X and t, = (tn,on,up) € Xy, be the unique solutions of (3.11) and (5.2), respectively. Assume

further that

(0+6da) < —, (5.24)

N)‘r—*
()

where C is the global inf-sup constant of DP. Then, there exists a positive constant C, inde-
pendent of h, such that
It —th|x < Cdist(t,X,). (5.25)

Proof. 1t suffices to use (5.24) in (5.23), which yields (5.25) with C' := 2(1 + QyCA') O

Regarding the feasibility of (5.24), as compared with the previous assumptions on § and dq

given by (4.17) (cf. Lemma 4.7) and (5.11), we first notice that the latter can be rephrased,
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equivalently, as

~ 1
2Cr {[Elar + [floase) <0 < 5 and (5.26)
2Cr
~ 1
2CT,d{Hng/z,F + Hf\|o,4/3;ﬂ} < < 5A— (5.27)
T,d

respectively. In turn, it is clear that (5.24) holds, in particular, if both § and d4 are bounded
1
above by Vil which, along with (5.26) and (5.27), yield the unified restrictions

. (11
QCT{HgHUZF + ||f|\074/3;g} <0d < mln{m,m} and (5.28)
20 {[Blar + Ilnana) < 0 < min{ 55— | o
. ~ ~ min A ' ’
T4 I8l1/2r 0,4/3;2 d QCT,d 4C

Hence, in order to be able to ensure that it is possible to have ¢ and d4 satisfying (5.28) and
(5.29), it suffices to impose that

. (11
2Cr {[Blar + Iflosan) < mm{ 207 40} . o
e {H“’H . 1] } o 11 (5.31)
_ < min y A - '
Td\ 18l1/27 0,4/3;2 2Ctq 4C

In other words, sufficiently small data g and f (according to (5.30) and (5.31)) guarantee that

the restrictions on § and d4 are achievable.

We end this section by remarking that (2.7) and (3.6) suggest the following postprocessed

approximation for the pressure p

1
ph = —ﬁtr<ah + (uh®uh)> —¢op in Q, (5.32)

where

1
Co,n = —m J;) tr(Uh®Uh) . (533)

Then, applying the Cauchy-Schwarz inequality, performing some algebraic manipulations,

and employing the a priori bounds for |ufos.q and |upfos.0, we deduce the existence of a
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positive constant C', depending on data, but independent of h, such that
Ip = paloe < C{lo = aulos + [0 = wlosaf. (5.34)

Thus, combining (5.25) and (5.34), we conclude the existence of a positive constant C, inde-

pendent of h, such that

[t —tnlm + [0 — onlm + [u—wlq + [P — prfoe
(5.35)

<C {dist(t, H, 5) + dist(o, Hy p,) + dist(u, Qh)} :



CHAPTER 6

Specific finite element subspaces

In this chapter, we introduce specific finite element subspaces H; , ]ﬁllh, and Qy, of the spaces
LZ(Q), H(divys; Q), and L*(Q), respectively. These subspaces satisfy the hypotheses (H.1),
(H.2), (H.3), and (H.4), which were introduced in Section 5.2 to ensure the well-posedness of

our Galerkin scheme.

Preliminaries

In what follows, given an integer ¢ > 0 and K € T, we let P¢(K') be the space of polynomials of
degree < ¢ defined on K, whose vector and tensor versions are denoted by Py(K) := [P,(K)]"
and Py(K) := [P,(K)]™*", respectively. Next, we define the corresponding local Raviart-

Thomas spaces of order ¢ as

RT@(K) = Pg(K)@Pg(K)X VKE'];L,

37



38

and its associated tensor counterpart RT,(K), which is defined row-wise by RT,(K), where x is
a generic vector in R := R". In turn, we let P,(7;), P,(75) and RT,(7,) be the global versions
of Py(K), P,(K) and RT,(K), respectively, that is

P(Ty) = {vheLQ(Q): Valx € Py(K) VKen},
Py(T5) = {TheLQ(Q): i € Po(K) VKeTh},

RT(Tx) = {‘rh e H(div;Q): Tu|x e RT(K) VKe ﬁl} .

We stress here that there hold Py(7,) < L*(2) and RTy(7,) < H(divys; ), inclusions
that are implicitly utilized below to introduce the announced specific finite element subspaces.

Indeed, we now define

Hyp, = L2(Q) nP(Th), Hayp = RTY(T5),

Hyy = Ho(divys; Q) nHyp, and Qp := LAQ) A Py(Th).

Verification of the hypotheses (H.1) - (H.4)

We now confirm that the subspaces defined by (6.1) satisfy the hypotheses (H.1) - (H.4).
Indeed, it is easily seen that ]ﬁlg’h satisfy (H.1) and (H.2). Next, in order to check (H.3), we
recall from (5.7) that

Ky = {TheHQ,h: div(m,) = 0 in Q},

from which, using that the divergence free tensors of RT,(7}) are contained in P,(7y) (cf. [30,
Lemma 3.6]), it follows that K, < Py(7y,). Hence, noting that certainly tr(7) = 0, for all
74 € Kp, we deduce that (KCp)? < L2(Q) n Py(T,) = Hyy,, which proves (H.3). Finally, (H.4)

is proved precisely in [16, Lemma 5.1] (see also [22, Lemma 6.1]).
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The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (5.2) with the specific finite
element subspaces introduced in Chapter 6, for which we previously collect the respective
approximation properties. In fact, thanks to [27, Proposition 1.135] and its corresponding
vector version, along with interpolation estimates of Sobolev spaces, those of H; 5, Hy j, and

Qp, are given as follows:

(AP}:L) there exists a positive constant C, independent of h, such that for each I € [0,¢ + 1],
and for each s € H'(Q) n L2(Q), there holds

diSt(S,HLh) = inf HS — Sh”O,Q < Chl HSH[}Q,

ShGHl,h

(APY) there exists a positive constant C', independent of h, such that for each [ € [0,¢ + 1],

and for each 7 € H'(Q) n Hy(divyys; ) with div(7) € WH4/3((), there holds

dist(‘r,th) = inf |7 — Tldiv, e < Ch {HTH[Q + ||diV<T>Hl74/3;Q},

ThEH2,h

(AP}) there exists a positive constant C', independent of h, such that for each [ € [0,¢ + 1],

and for each v € W4(Q), there holds

dist(v, Q) = Vig(gh v = viloso < Ch|v]iaa-

The rates of convergence of (5.2) are now established by the following theorem.

Theorem 6.1. Let (t,a‘,u) € H; x Hy x Q and (th, a'h,uh) e Hy 5, x Hyjp x Qp, be the unique
solutions of (3.11) and (5.2) with uw € W(0) and uy, € W(dy), whose existences are guaranteed by
Theorems 4.9 and 5.2, respectively. In turn, let p and py, given by (2.7) and (5.32), respectively.
Assume the hypotheses of Theorem 5.4, and that there exists | € [1,0 4+ 1] such that t €
H(Q) n LA(Q), o € H(Q) n Hy(divys; Q), div(o) € WH3(Q), and u € WH(Q) . Then,
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there exists a positive constant C', independent of h, such that
I((6,0,0) = (tn, o, W) [y <1 xQ + IP = Prlloe
< Cn {HU-HZA;Q + tle + lofie + HdiV(U)HlA/s;Q}-

Proof. 1t follows straightforwardly from the Céa estimate (5.35), and the approximation prop-
erties (AP}), (APY), and (AP}). O



CHAPTER [/

Computational results

We now turn to the computational results, which mainly refer to the numerical verification
of the rates of convergence anticipated by Theorem 6.1. The examples in 2D and 3D to be
reported below have been developed with the finite element library FEniCS [2]. In all of them,
the linear systems emanating from the Newton-Raphson linearisation, with the zero vector as
initial guess and iterations stopped once the absolute or relative residual drops below 1078,
have been solved with the multifrontal massively parallel sparse direct method MUMPS [4].
In turn, the null mean value of tr(o},) is imposed via a real Lagrange multiplier as already
described by (5.6). Then, o}, is complemented by adding to it the expression ¢ I, where cqp,

is the constant defined by (5.33). Subsequently, errors are defined as follows:

e(t) = [t —tufoo,  e(0) =lo—onfaiv,.0;

e(u) = lu—wfosa,  ep)=lp—rulog,

41
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whereas convergence rates are set as

r(x) = M

N v t? b ) b
log(h/h) w e o)

where e and € denote errors computed on two consecutive meshes of sizes h and h. In addition,
we refer to the number of degrees of freedom and the number of Newton iterations as dof and

iter, respectively.

7.1 Example 1: 2D smooth solution

In our first numerical test, we consider the computational domain Q = (0,1)?, and set the

nonlinear viscosity to

p(s) =2+ Vs=0.

1+s

In addition, we define the manufactured exact solution:

— cos(mx) sin(m
p— P ue (mz) sin(ry)  t—vu
sin(mx) cos(my)

and o = p(|Vu|)Vu— (u®u) —pl,

so that the load function f and the Dirichlet datum g are computed accordingly. Table 7.1
shows the convergence history for a sequence of quasi-uniform mesh refinements, including the
number of Newton iterations for the approximations. The experiments confirm the theoretical
rate of convergence O(h*1) for £ e {0, 1}, provided by Theorem 6.1. In addition, the number of
Newton-Raphson iterations required to reach the convergence criterion based on the residuals
with a tolerance of le — 8, was less than or equal to 4 in all runs. Sample of approximate

solutions with ¢ = 1 and dof = 279041 are shown in Figure 7.1.
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| P, — RT, - P,
dof h e(t) r(t) e(o) (o) e(u) r(u) e(p) r(p) | iter
121 0.7071 | 1.26e + 00 | = 1.71e + 01 * 4.11e — 01 * 7.55e — 01 * 3
465 0.3536 | 6.20e — 01 | 1.02 | 8.99e 4+ 00 | 0.93 | 2.26e — 01 | 0.86 | 3.69e — 01 | 1.03 3
1825 | 0.1768 | 3.10e — 01 | 1.00 | 4.59¢ 4+ 00 | 0.97 | 1.16e — 01 | 0.96 | 1.82e — 01 | 1.02 4
7233 | 0.0884 | 1.55e — 01 | 1.00 | 2.31e + 00 | 0.99 | 5.84e — 02 | 0.99 | 8.86e — 02 | 1.04 4

4

4

28801 | 0.0442 | 7.77e — 02 | 1.00 | 1.16e + 00 | 1.00 | 2.92e — 02 | 1.00 | 4.33e — 02 | 1.03
114945 | 0.0221 | 3.89¢ — 02 | 1.00 | 5.79¢ — 01 | 1.00 | 1.46e — 02 | 1.00 | 2.15e — 02 | 1.01

| P, —RT, — P,
dof h e(t) r(t) e(o) r(o) e(u) r(u) e(p) r(p) | iter
289 | 0.7071 | 2.75e — 01 | = |4.46e+00| =+ |1.55e—01| = |2.60e—01]| =
1121 | 0.3536 | 7.35e — 02 | 1.90 | 1.22¢ 4+ 00 | 1.87 | 4.11e — 02 | 1.91 | 5.62¢ — 02 | 2.21
4417 1 0.1768 | 1.93e —02 | 1.93 | 3.58¢ — 01 | 1.77 | 1.05e — 02 | 1.97 | 1.30e — 02 | 2.11
17537 | 0.0884 | 4.93e — 03 | 1.97 | 1.02e — 01 | 1.82 | 2.64e —03 | 1.99 | 3.17e — 03 | 2.04
69889 | 0.0442 | 1.24e — 03 | 1.99 | 2.76e — 02 | 1.88 | 6.62e — 04 | 2.00 | 7.84e — 04 | 2.01
279041 | 0.0221 | 3.12e — 04 | 1.99 | 7.31e — 03 | 1.92 | 1.66e — 04 | 2.00 | 1.95e — 04 | 2.01

Table 7.1: Example 1, convergence history and Newton iteration count for the P, — RT, — P,
approximations of the Navier-Stokes model with variable viscosity, and convergence of the
P,—approximation of the postprocessed pressure field, with ¢ € {O, 1}.

7.2 Example 2: 2D smooth solution in a non-convex do-
main

Now we illustrate the accuracy of our method in the non-convex domain Q := (—1,1)%\ [0, 1]*.
The data f and g are computed so that the manufactured exact solution is defined as:
' — cos(2my) sin(27x)
p = sin(mz)exp(y), u= , t=Vu,
sin(2my) cos(2mx)
and o = p(|Vu|)Vu— (u®u) — pl.

The variable viscosity is defined in the same way as in Example 1. The convergence history for
a sequence of quasi-uniform mesh refinements with ¢ = 1 is shown in Table 7.2. We observe
there that all variables, except o, converge optimally with O(h?). Indeed, the non-convexity of
the domain and the consequent lack of regularity of this unknown is the most probable reason,

in our opinion, for its lower rate of convergence. Selected components of the numerical solution,
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Figure 7.1: Example 1, P; — RT; — P; approximation with dof = 279041 of velocity gradi-
ent components (top panels), pseudostress components (center panels), and viscosity, velocity
component with vector directions, and postprocessed pressure field (bottom row).
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which were obtained using the P; — RT; — P, approximation with dof = 238603, are displayed
in Figure 7.2.

| P, —RT, — P, |
dof h e(t) r(t) e(o) r(o) e(u) r(u) e(p) r(p) | iter
383 1.1180 | 8.59¢ +00 | = | 2.07e + 02 * 8.07e — 01 * 4.63e+00 | =
941 ] 0.6212 | 3.93e + 00 | 1.33 | 9.23e 4+ 01 | 1.38 | 4.15¢ — 01 | 1.13 | 2.46¢e + 00 | 1.08
3646 | 0.3171 | 1.13e +00 | 1.85 | 2.40e + 01 | 2.00 | 1.29¢ — 01 | 1.74 | 5.48e — 01 | 2.23
15233 | 0.1582 | 2.85e — 01 | 1.98 | 6.25¢ +00 | 1.94 | 3.29¢ — 02 | 1.96 | 1.29¢ — 01 | 2.08
09869 | 0.0795 | 7.40e — 02 | 1.96 | 1.94e¢ + 00 | 1.70 | 8.50e — 03 | 1.97 | 3.38¢ — 02 | 1.95
238603 | 0.0398 | 1.85e — 02 | 2.00 | 6.03e — 01 | 1.69 | 2.16e — 03 | 1.98 | 8.50e — 03 | 1.99

= s e e

Table 7.2: Example 2, convergence history and Newton iteration count for the fully-mixed Py —
RT; — Py approximations of the Navier-Stokes model with variable viscosity, and convergence
of the Py-approximation of the postprocessed pressure field.

7.3 Example 3: 2D non-smooth solution in a non-convex

domain

The third example is devoted to show that the rates of convergence are affected when the exact
solution does not have enough regularity, in particular if it has a singularity near the vertex
with major angle of a non-convex domain. In fact, here we consider again the L-shaped domain

Q:=(—1,1)%\ [0, 1], define the manufactured exact solution:

l—=z — cos(mx) sin(my)

, u = )
2(x —0.02)2 4+ 2(y — 0.02)? sin(mx) cos(my)

p: tzvu,

and o = p(|Vu|)Vu— (u®u) — pl,

and compute the data f and g accordingly. The variable viscosity is defined in the same way
as in Example 1. The convergence history for a sequence of quasi-uniform mesh refinements
with ¢ = 1 is shown in Table 7.3. As announced, suboptimal rates arise in this case, which
is explained by the fact that the pressure exhibits high gradients near the corner region of

the L-shaped domain. This is observed in Figure 7.3 below where selected components of the
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Figure 7.2: Example 2, P,

— RT,

15.94 2.76 -1.61 -0.25 1.01

— P, approximation with dof = 238603 of the fluid velocity

magnitude, velocity gradient magnitude, pseudostress component, and postprocessed pressure

field.

numerical solution, obtained with the P; — RT; — P; approximation and dof = 238603, are

displayed.
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| P, _ RT, — P, |
dof h e(t) r(t) e(o) r(o) e(u) r(u) e(p) r(p) | iter
383 1.1180 | 1.10e + 01 # 5.58e + 02 # 1.20e + 00 | 4.26e+01| = 3
941 0.6212 | 6.98e +00 | 0.77 | 3.72e+02 | 0.69 | 5.67e —01 | 1.27 | 2.35e + 01 | 1.01
3646 | 0.3171 | 7.23e + 00 | —0.05 | 4.57e¢ + 02 | —0.31 | 3.66e — 01 | 0.65 | 1.88e¢ + 01 | 0.33
15233 | 0.1582 | 4.50e + 00 | 0.68 | 3.74e +02 | 0.29 | 1.43e—01| 1.35 | 1.17e + 01 | 0.68
99869 | 0.0795 | 2.57e +00 | 0.82 | 1.83e+02 | 1.04 | 6.60e —02 | 1.12 | 6.21e 4+ 00 | 0.92
238603 | 0.0398 | 1.22e +00 | 1.07 | 749e+01 | 1.29 | 2.05e—02 | 1.68 | 2.64e 400 | 1.23

Tt W W Ww w

Table 7.3: Example 3, convergence history and Newton iteration count for the P; — RT; — P,
approximations of the Navier-Stokes model with variable viscosity, and convergence of the P;-
approximation of the postprocessed pressure field.

7.4 Example 4: 3D smooth solution

Next we illustrate a three-dimensional problem. In this case, we consider the cube domain

Q2 = (0,1)3, and define the nonlinear viscosity as
p(s) == apg+ (1 + 52)(572)/2 ,

with ag = 2/5, a1 = 1/2, and § = 1. The data are suitably adjusted according to the exact

solution defined by the functions:

sin(7 ) cos(m y) cos(7 2)
p=sin(zyz), u=|-2cos(rx)sin(ry) cos(rz) |, t=Vu,
cos(m x) cos(my) sin(7 z)
and o = p(|Vu|)Vu - (u®u) — pl.

The convergence history for a sequence of quasi-uniform mesh refinements with ¢ = 0 is shown
in Table 7.4, while some components of the approximate solutions with dof = 3360769 are
displayed in Figure 7.4. We observe that the Newton method exhibits a behavior independent
of the meshsize, achieving the tolerance of 1le — 8 in four iterations in all cases. Again, the

mixed finite element method converges optimally with O(h), as it was proved by Theorem 6.1.



7.5. EXAMPLE 5: 3D CAVITY PROBLEM 48
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Figure 7.3: Example 3, P; — RT; — P; approximation with dof = 238603 of the fluid velocity
magnitude, velocity gradient magnitude, pseudostress component, and postprocessed pressure
field.

7.5 Example 5: 3D cavity problem

To conclude the set of numerical examples, we apply our mixed method with ¢ = 0 to the driven
cavity flow problem in the cube domain © = (0, 1)® by using the same sequence of quasi-uniform

mesh refinements from Example 4. Again, the viscosity is taken as the Carreau law (2.5) with
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| P, — RT, — P,
dof h e(t) r(t) e(o) r(o) e(u) r(u) e(p) r(p) | iter
889 0.8660 | 2.61e +00 | = | 8.08e + 00 * 5.65e — 01 # 2.6le —01 | =
6817 | 0.4330 | 1.41e +00 | 0.89 | 4.21e 4+ 00 | 0.94 | 3.01le —01 | 0.91 | 2.02e — 01 | 0.37

53377 | 0.2165 | 7.31e — 01 | 0.95 | 2.14e + 00 | 0.97 | 1.55e — 01 | 0.96 | 1.15e — 01 | 0.82

422401 | 0.1083 | 3.71e — 01 | 0.98 | 1.07e + 00 | 1.00 | 7.79¢ — 02 | 0.99 | 5.34e — 02 | 1.10

3360769 | 0.0541 | 1.87e — 01 | 0.99 | 5.36e — 01 | 1.00 | 3.90e — 02 | 1.00 | 2.40e — 02 | 1.15

NN SN SN SN

Table 7.4: Example 4, convergence history and Newton iteration count for the Py — RTy — Py
approximation of the Navier-Stokes model with variable viscosity, and convergence of the P-
approximation of the postprocessed pressure field.

ag =1, a; = 0.1, and = 1. The external body force is zero, and the three-dimensional flow
patterns are determined by the boundary conditions only: a unidirectional Dirichlet velocity
is set on the top lid g := (1,0,0)", and no-slip velocity u = 0 are imposed elsewhere on
I'. Some approximate solutions obtained with dof = 3360769 are depicted in Figure 7.5. As
expected, abrupt changes are observed near the top corners of the domain, where the Dirichlet
datum is discontinuous, and where the pseudostress is concentrated. The maximum number
of iterations required over the course of the Newton-Raphson loop was 3. On the other hand,
if we wondered about the eventual influence of a Reynolds number Re in the present example,
we would expect at least two different scenarios. Firstly, and similarly to what happens with a
constant viscosity, we might have Re to be inversely proportional to either the lower bound
or the upper bound s of v (cf. (2.4)), in which case a large Re will certainly affect our stability
estimates. Secondly, if Re is involved in the definition of the nonlinear viscosity p in such a way
that both p; and uy are independent of this number, then we might expect a robust method
not being affected by the range of Re.

We end this section by remarking that the mesh independence of the Newton iterations,
observed in all the examples, except possibly in the non-smooth one given by Example 3, was
actually to be expected. In fact, this property has been proved theoretically and is known to

hold for a large class of problems (see, e.g. [45] and the references therein).
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01 2.55

0. 5.10 7.64
[t ' e

3.29 4.83 0.45 0.92

0.22 1.75 -0.49 -0.02
Tni - Pr W

Figure 7.4: Example 4, numerical solutions using Py — RTy — P, approximations with dof =
3360769 of the fluid velocity magnitude, velocity gradient magnitude, pseudostress component,
and postprocessed pressure field.
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0.31 0.61 10.67 21.33 32.00

U G

-956.93 -26.34 43.26 112.85 -97 96 —47 31 3 54 00

O e — P

Figure 7.5: Example 5, numerical solutions using Py — RTy — P, approximations with dof =
3360769 of the fluid velocity magnitude, velocity gradient magnitude, pseudostress component,
and postprocessed pressure field.
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CHAPTER 8

Introduction

The study of coupled fluid systems, particularly those involving free and porous media flows,
governed by the Navier—Stokes and Darcy equations, respectively, and connected through a set
of suitable interface conditions, has received significant attention because of their wide range
of applications. In particular, the latter includes environmental, biological, and industrial
processes, such as the interaction of surface and subsurface flows, modeling of blood flow, and
others. Over the years, several papers have been devoted to numerical modeling and analysis of
the Navier—Stokes/Darcy and related coupled problems (see, e.g.,[6, 17, 24, 25, 34, 37, 38, 39,
43]). In the context of the Stokes—Darcy coupled problem, the first theoretical results go back
to [43] and [24]. In [24] the authors introduce an iterative subdomain method that employs the
standard velocity-pressure formulation for the Stokes equation and the primal one in the Darcy
domain, whereas in [43] they apply the primal method in the fluid and the dual-mixed one in
the porous medium, which means that only the original velocity and pressure unknowns are
considered in the Stokes domain, whereas a further unknown (velocity) is added in the Darcy

region. In turn, a conforming mixed finite element discretization of the variational formulation

93
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from [43] was introduced and analyzed in [34]. In this work, the porous medium is assumed to
be entirely enclosed within a fluid region, and, as in [43], the corresponding interface conditions
refer to mass conservation, balance of normal forces, and the Beavers—Joseph—Saffman (BJS)
law. As a consequence, the trace of the porous medium pressure needs to be introduced as a
suitable Lagrange multiplier. In addition, Bernardi-Raugel and Raviart—Thomas elements for
the velocities, piecewise constants for the pressures, and continuous piecewise-linear elements
for the aforementioned multiplier, yield a stable Galerkin scheme. The results from [34] are
then improved in [39] where a classical result on projection methods for Fredholm operators
of index zero is employed to show that the use, not only of the one in [34], but of any pair
of stable Stokes and Darcy elements, implies the stability of the corresponding Stokes-Darcy
Galerkin scheme. Later one, a fully-mixed finite element method was proposed and analyzed
in [37] for the Stokes-Darcy coupled problem, where the Babuska-Brezzi theories were used to
derive sufficient conditions for the unique solvability of the resulting continuous and discrete
formulations. Subsequently, in [38] the authors extend the previous results in [37] to the case
of a two-dimensional nonlinear Stokes—Darcy coupled problem. Both a priori and a posteriori
error analyses were developed in this work. As part of augmentation approaches, a fully-mixed
finite element method for the Navier—Stokes/Darcy coupled problem with nonlinear viscosity
has been introduced and analyzed in [17]. We also refer to [25] for the analysis of a conforming
mixed finite element method for the Navier-—Stokes/Darcy coupled problem. In both works,
and in order to stay within a Hilbertian framework, the velocity is sought in the Sobolev space
of order 1, which requires to augment the variational formulation with additional Galerkin-type

terms arising from the constitutive and equilibrium equations.

Although augmented methods are effective in ensuring stability, they significantly increase
complexity and computational cost. This issue motivates the exploration of alternative ap-
proaches, such as those based on Banach spaces, whose main advantage is that no augmen-
tation is required, and hence the spaces to which the unknowns belong are the natural ones
arising from the application of the Cauchy—-Schwarz and Hoélder inequalities to the tested and
eventually integrated by parts equations. A significant number of works have demonstrated

the advantage of using this approach to analyze the continuous and discrete formulation of
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diverse problems (see, e.g, [5, 6, 16, 20, 22]). In particular a non-augmented mixed finite ele-
ment method for the Navier—Stokes equations with variable viscosity was studied in [6]. More
recently, a mass conservative finite element method for the Navier—Stokes/Darcy coupled sys-
tem, which revisits the original primal-mixed approach from [25], was proposed in [13], whereas
a conforming finite element method for a nonisothermal fluid-membrane interaction problem,
modeled by the Navier-Stokes/heat system in the free-fluid region, and a Darcy-heat coupled

system in the membrane, was introduced and analyzed in [14].

According to the above bibliographic discussion, the goal of this work is to extend the
applicability of the Banach spaces framework by introducing a fully—mixed formulation for the
coupling of fluid flow with porous media flow, without any augmentation procedure. To this
end, we consider a similar approach to the one presented in [6] for the Navier-Stokes domain and
adapt it to the coupled Navier-Stokes/Darcy problem. The remainder of this paper is organized
as follows. In Chapter 9 we introduce the governing equations and the mathematical model.
Subsequently, in Chapter 10 we present the fully-mixed variational formulation within a Banach
space framework and prove the well-posedness of the continuous problem. The corresponding
Galerkin system is introduced and analyzed in Chapter 11, where a discrete version of the
fixed-point strategy developed in Chapter 10 is used. In addition, we derive the associated a
priori error estimate in the same chapter. In Chapter 12 we specify particular choices of discrete
subspaces, in 2D and 3D, that satisfy the hypotheses from Chapter 11 and establish the rates
of convergence. Finally, in Chapter 13 we report on 2D numerical examples that validate the

method and showcase its practical applications.

Preliminary notations

Throughout the paper, €2 is a bounded Lipschitz-continuous domain of R", n € {2,3}, whose
outward normal at ' := 0 is denoted by n. Standard notation will be adopted for Lebesgue
spaces L!(Q) and Sobolev spaces WH(Q), with [ > 0 and t € [1, +c0), whose corresponding
norms, either for the scalar or vectorial case, are denoted by | - [o+0 and || - ||+, respectively.

Note that W% (Q) = L!(Q), and if t = 2 we write H(Q) instead of W'?(Q), with the corre-
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sponding norm and seminorm denoted by | - [;q and | - |;q, respectively. On the other hand,
given any generic scalar functional space M, we let M and M be the corresponding vectorial and
tensorial counterparts, whereas | - || will be employed for the norm of any element or operator
whenever there is no confusion about the spaces to which they belong. Furthermore, as usual, 1
stands for the identity tensor in R : = R™*" and |- | denotes the Euclidean norm in R : = R™.
Also, for any vector fields v = (v;);=1, and W = (w;);=1.,, we set the gradient, divergence,

and tensor product, respectively, as

ov; =y 0v;
i= . di D= — d = (VW)= 1 -
Vv <0wj>i,j_1,n , iv(v) ]Zl 3z; and VQWwW (vw;)ij=1,

Additionally, for any tensor fields 7 = (7;)i =1, and ¢ = (Gj)ij=1n, We let div(7) be the
divergence operator div acting along the rows of 7, and define the transpose, the trace, the

tensor inner product and the deviatoric tensor, respectively, as

n

n
1
‘Tt = (Tji)i,j:l,na tr(‘r) = Z Tiis T . C L= Z Tij<ija and Td =T — Etr(‘r)]l
i=1 1,7=1

On the other hand, given t € (1, +o0), we also introduce the Banach spaces
H(div;; Q) := {7 e L*(Q): div(r)eLY(Q)},

H(div,; Q) := {7 €L*Q): div(r)eL(Q)},

which are endowed with the natural norms defined, respectively, by
ITlaivie == |7loe + [div(T)lose V7 e H(divy; ),

ITlaivee == [7loo + [div(T)fose V7 e H(div,; Q).
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Then, proceeding as in [30, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [20, Section

(1,+00) if n =2
3.1]), it is easy to show that for each t € , there holds
[6/5,+0) if n =3

(T n,v)y = L {1 Vv + vdiv(T)} V(7,v) e H(div; Q) x H(Q), (8.1)
and analogously
(tTn,v) = JQ {(T:Vv + v-div(T)} VY(7,v)eH(div;Q) x H(Q), (8.2)

where (-, -) stands for the duality pairing between H=%2(T") and HY2(I'), as well as between
H~2(I") and HY?(T). We find it important to stress here, as explained in the aforementioned
references, that the second term on the right-hand side of (8.1) (resp. (8.2)) is well-defined
because of the continuous embedding of H'(Q) (resp. H(Q)) into L¥(Q) (resp. L¥(Q)),
where t' is the conjugate of ¢, that is ¢’ € [1,+0o0) such that % + tl, = 1, which holds for
[1,+00) if n =2

t e )
[1,6] if n =3



CHAPTER 9

The model problem

In this chapter we introduce the model of interest, namely the coupled Navier-Stokes and Darcy
equations with variable viscosity. To this end, we first let 25 and 2p be bounded and simply
connected open polyhedral domains in R", such that 25 " Qp = & and 0005 N 00Qp = X # .
The parts of the boundaries are I'g := Qg \_ 3, I'p := dQp 3, and n denotes the unit
normal vector on them, which is chosen pointing outward from Q := Qg U ¥ U Qp and Qg
(and hence inward to Qp when seen on ). On X we also consider unit tangent vectors, which
are given by t = t; when n = 2 and by {t;,ts} when n = 3 (see Fig. 9.1 below for a 2D
illustration of the geometry involved). The mathematical model is defined by two separate
groups of equations and by a set of coupling terms. Here, {0g and €2p represent the domains in

the free and porous media, respectively.

The governing equations in (g are those of the Navier-Stokes problem with constant density p

and variable viscosity p, which are written in terms of the velocity ug and the pressure pg of

o8
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Figure 9.1: geometry of the coupled model

the fluid, that is

—div(uVug) + p(Vug)us + Vpg = f5  in Qg, 0.1)
9.1
diviug) =0 in Qg¢, ugs=g on Iy,

where the given data are a function u : g — R™ describing the viscosity, a volume force fg,
and the boundary velocity g. The right spaces to which fs and g need to belong are specified
later on. Furthermore, the function p is supposed to be bounded, which means that there exist

constants puq, po > 0, such that

pr < p(x) < pp VxeQg. (9.2)

Next, we introduce the pseudostress tensor unknown

Og .= ,uVuS - p(lls ® 115) — psH in QS s (93)

so that, nothing that div(us®ug) = (Vug)ug, which makes use of the fact that div(ug) = 0,

we find that the first equation of (9.1) can be rewritten as

—diV(O’S) = fS in QS-

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (9.3), that
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the latter along with the incompressibility condition are equivalent to the pair

0% = uVus —p(us®ug)® in Qg, and
1 (9.4)
pPs = —Etr(ds + p(ug®u5)) in QS.

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by the

postprocessed formula suggested in (9.4), the Navier—Stokes problem (9.1) can be rewritten as:

o = pVug —p(us®ug)® in Qg,
(9.5)
—div(eg) = fs in Qg, us =g on Ig.

Next, since we are interested in a mixed variational formulation of our problem, and in order
to employ the integration by parts formula typically required by this approach, we introduce
the auxiliary unknown tg := Vug in Qg. Consequently, instead of (9.5), we consider from now

the set of equations with unknowns tg, ug, and og, given by

ts = Vllg in QS, O'g = Mts—ﬂ(ﬂs@lls)d in Qs,

(9.6)
—div(eg) =fs in Qg¢, us =g on Ig.
On the other hand, in {2p we consider the linearized Darcy model:
up = —Kva in QD, div(uD) = fD in QD,
(9.7)

up-n=0 on Ip,

where up and pp denote the velocity and pressure, respectively, in the porous medium, fp €
L?(Q2p) is a source term and K € [L®(Qp)]"*" is a positive definite symmetric tensor describing
the permeability of 2p divided by a constant approximation of the viscosity, satisfying with
Ck >0

w-K ' (x)w > Ck|w]* V(ae)x eQp, VweR".
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Finally, following [43] and [34], the transmission conditions on ¥ are given by

ug-n = up-n on X,
n—1 (98)
~1
osn + Z w, (ug-t)t;, = —ppn on X,
=1
where {w, ...,w,_1} is a set of positive frictional constants that can be determined experimen-
tally. The first equation in (9.8) corresponds to mass conservation on ¥, whereas the second

one establishes the balance of normal forces and Beavers—Joseph—Saffman law. In addition, g

and fp must formally satisfy the compatibility condition

J gn+ | fo—o0. (9.9)
I's Qp



CHAPTER 10

The continuous analysis

In this chapter we derive a Banach spaces-based fully-mixed variational formulation of the
coupled problem described by (9.6), (9.7), and (9.8), and then perform its solvability analysis
by means of a fixed-point strategy.

10.1 Preliminaries

Here we introduce further notations and definitions. We begin with the spaces

Hy(div; Qp) := {VDEH(diV;QD): vp-n=0 on FD},

L2(Qg) = {rseﬂﬁ(@s): tr(rg) = o}.
Furthermore, for each = € {S,D}, and given I'c 0€),, we denote the space of traces

Hio' () = {olp: veH(Q), v=0 on Q).

62
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~

and its vector version Héég(f) = [Hé{f(f)]n Observe that, if Fj , : HY2(T') — L2(08),) is the

extension operator defined by

(0 on T ~
By () = . Ve eHVAD),
0 on QN

we have, alternatively, that
HA(T) = {w eHAT): B (v)e HW(GQ*)} 7

which is endowed with the norm [, go5 = [ B, (1)]1/2.00,. The dual of Hy*(T) (respec-
tively Hé{f(f)) is denoted by Haom(f) (respectively Haom(f’)), and [ - ||, 5 ooz Is set as the
corresponding norms. Next, in order to deduce the variational formulation of the Navier—Stokes
problem, we first look originally for ug € H!(Qyg), for which we assume from now on, for sim-

plicity, that g € H(l)(/)Q(F s). Equivalently, letting

g on I'g
gs = EFS,S(g) = ;
0 on X
there holds g, € H'/2(0(2g), and hence, using the trace operator o : H'(Qg) — HY2(0%5) (see

[30, Section 1.3.1]), we can write y(ug) = g, + (Y0(us) — g,), where

0 on I'g 12
Yo(us) — g5 = = Fy s(7o(us)|x) e H/(0Qg) ,
Yo(ug) on X

which proves that
¢ = —0(us)ls € Hy'(%).
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As a consequence, for each y € H™/2(00g) we get

OG0(s)ens = (X6 8sraas + G 70(Us) — 8s)aas
= X Erg s(8))oas — X Bx s(@))eas (10.1)

= <X|Fs7g>Fs - <X|Ea §0>E )

where (-, -)r (respectively (-, -)x) stands for the duality pairing between Haol/ *(Tg) (respectively
H601/2(Z)) and H(l)éQ(FS) (respectively H(l)éQ(E)).

10.2 The fully-mixed formulation

Having established the above, we now multiply the first equation of (9.6) by 75 € H(divy; Qg),

(1,+%) if n =2
with t € , apply the integration by parts formula (8.2), and use (10.1)
[6/5,+0) if n =3

with x = Tsn, to find that

J T tg + J ug - div(ts) = (tsn,gr, —{(tsn,p)x V71 e H(divy; Qg). (10.2)
Qs Qs

It is clear from (10.2) that its first term is well-defined for tg € L?*(€0s), which, along with
the free trace property of tg, suggests to look for tg € LZ(Qg). In addition, knowing that
div(71s) € L!(Qs), we realize from the second term and Hoélder’s inequality that it suffices to
look for ug € L (Q2g), where #' is the conjugate of . Next, it follows from the second equation

of (9.6), that formally

J /Ltsirg—f ag:rg—pf (u5®us)d:r5 =0 VI‘SG]Lfr(Qs), (103)
Qs Qs Qs

from which we notice that the first term is well-defined, whereas the second one makes sense if

o is sought in L?(Qg). In turn, for the third one there holds

< Juslloaos lusloses [rsloes

J (us ®ug)? : rg J (us®@ug) : rg
Qg Qg
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which, necessarily yields ' = 4, and thus t = 4/3. Finally, looking for o5 in the same space of
its corresponding test function g, that is og € H(divys; €2g), it follows from the third equation

of (9.6) that
—J Vg - diV(O’S) = J fS Vg VVS € L4(Qs) s (104)
Qg

Qg
which forces fs to belong to L*?(Qg). Now for the Darcy equations given in (9.7) and the
transmission conditions specified in (9.8), we proceed similarly as in [17], so that introducing

the auxiliary unknown

A= pD‘E € H1/2(Z) s

we obtain the variational problem: Find tg € L2 (Qg), us € L*(Qg), o5 € H(divys; Qg),
up € Hy(div; Qp), pp € L2(Qp), A € HV2(T) and ¢ € HE (), such that

J ts:Tg + J ug - div(rg) + (Tsn, p)s, = {(Tsn, LHr, ,
Qg Qs

K_luD *Vp — f PD diV(VD) — <VD -1, )\>2 = 0,

QD QD
f Mtsl[‘g—f a%:rs—pf (u5®u5)d:r5 =0,
QS Qg QS
—J Vg - le(Us) = f fS Vg, (105)
Qg Qs
J gpdiv(up) = foap,
Qp Qp

_<(P -n, §>E - <uD -1, §>E = U,
(osn, P)s =P, Pex + <P -n, Ny =0,
for all rs € Lgr(QS>7 Vg € L4(Qs), Ts € H(diV4/3;Qs), Vp € H()(diV;QD), dp € LQ(Ql)),

¢ € H2() and ¥ € HY (), where:

n—1
<S0> w>t,2 = Z wl_1<90 ’ tla ¢ : tl>2 .
=1

It is not difficult to see that the system (10.5) is not uniquely solvable since, given any solution

(ts,us,o5,up,pp, A, ) in the indicated spaces, and given any constant ¢ € R, the vector
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defined by (tg,ug, o5 — cl,up,pp — ¢, A + ¢, ¢) also becomes a solution. In order to avoid this

non-uniqueness, from now on we require the Darcy pressure pp to be in L23(2p), where

Lg(QD) = {QD € LQ(QD) . J gdp = 0} .
Qp

On the other hand, for convenience of the subsequent analysis, we consider the decomposition

H(diV4/3; Qs) = Ho(diV4/3; Qs) &) RI y (106)
where

Ho(divys; Qs) = {‘r € H(divys; Qs) : f tr(r) = O} )
Qg

It follows that og can be uniquely decomposed as s = ogg + lI, where

1

= tr(og). 10.7
28] Jo, "7 1o

Oso € Ho(diV4/3;Qg> and [ :

In this regard, we notice that (10.3) and (10.4) remain unchanged if og is replaced by ogp.
In this way, using the compatibility condition (9.9), the first and last equations of (10.5) are

rewritten equivalently as

J ts:Tg + f ug - div(ts) + (Tsn, )y, = (Tsn,g)r, YV Ts € Hy(divys; Qg),
Qs Qs

j<l,0'11,1>2 = j<g'n>1>FS VjER,
(osn, )y — (@) + @0, Vs +13p -1, 1)y =0 v e Hy'(X) .

As a consequence of the above, we find that the resulting variational formulation reduces
to: Find ts € ]L%r(Qs), Uup € Ho(diV; QD), Og € Ho(diV4/3;Qs), A€ H1/2(Z), Ug € L4(QS),
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pE HééQ(E), pp € L3(Qp) and [ € R, such that

f pts :irg *j b irg —Pj (us®ug)t:irs =0
Qg Qg Qg
J K 'up-vp —(vp 0, \x —J pp div(vp) =0
Qp 2p
[, s Hrsnes [ ugedivrs) = (remeirg
{up 'n, &% +{p n, EHxn -0
(10.8)
{ogn,¢P)s +{(p - n, Ax e, Prr s HUKpon, s =0
[ vg -div(og) :_J fg-vg
JOg Qg
i n, s =j{g n, Drg
—J qp div(up) = —J fpap
Qp 2p

for all rg € L2(Qs), vp € Ho(div;Qp), 75 € Hoy(divys; Qs), & € HYA(D), vs € L4(Qy),
P e H(%Q(Z), qp € LE(Qp) and j € R. Now, we group the spaces, unknowns, and test functions

as follows:

X =Lz (Qg) x Ho(div; Qp), Y = Hy(divys; Qs) x H1/2(E)

L4(Qg) x HYA(Y), H:=XxYxZ,

Q:=13(p) xR,

E::(tS;uD)eXa &::<USaA)€Ya ﬁ::(uSaSo)EZ’ ﬁ::(pD7l)eQ7
r:=(rs,vp)eX, T:i=(15,§)€Y, V:i=(vs,¥)eZ, ¢:=(qp,j)€Q,
6::<CS;ZD)EX7 ﬁiZ(ns,ﬁ)EY, £Z=(ZS,¢)€Z, §I=(5D,/€)EQ,

where X, Y, Z, H and Q are respectively endowed with the norms

I¥lx = [rsfoas + IVplav.ap I7ly = I7slaiv s0s + 1€l2s

V) a = IElx + [7ly + [¥V]z,

N

¥z == [[vsloaes + 1912005, [I(F,

Idllq = laplo.cp, + 1]

Hence, using the same colors from (10.8), this formulation can be rewritten as: Find
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((Ev &7 ﬁ)aﬁ) e H x Q, such that

[a(E), 7] +b1 (), 5] ~ [ ppdivivp) +busiusirs) =0
Qp
(b2 (E), 7] +[B(, 7), dl — (ren@rg
[B(F,6),7] —[C(),¥]  +Kw-n, iy -] fsvs (10.9)
g
+ilp - n, Dy =jlg - n, Drg
—J qp div(up) = —J fpap
Qp Qp

for all ((¥,7,V),q) €e Hx Q, where a : X x X - R, b : X XY - R, by : X xY — R,
B:H — R, and C:Z x Z — R, are the bilinear forms defined by

G TIEE N S véFeX,
Qs Qp
[b1(F), 7] := —<vD~n,£>z—fQ TS 1s V(F,7)eXxY,
[b2(F), 7] := —[b1(F), 7] V(F 7 eXxY, (10.10)

[B(F F)"ﬂ = <7v/) : n7£>23 + <TSH>¢>E + f Vs - diV(TS) v (F 7?7 ‘7) € H?

Qs

[C(2), V] = (&%) s, VZ vVvel,

whereas for each wg € L*(Qg), b(wg; -, -) : L*(Qs) x L2 (Qs) — R is the bilinear form given by

b(Ws; Vs, Is) = —pf (Ws®@vg)! i rg. (10.11)
Qg

As announced in the abstract, we notice here that (10.9) can be seen as a nonlinear perturbation,
given by the term b(ug;ug,rg), of a threefold saddle point operator equation, whose main

operator A, to be introduced below, shows a perturbed saddle-point structure (cf. [21]). Indeed,

b
letting A : (X xY) x (X xY) — R be the bilinear form that arises from the block !

by
by adding the first two equations of (10.9), that is

— —, —

[A(C, ), (F,7)] = [ald), F] + [a (8),77] + [02(C), 7] YV (Eo), (7)) e X x Y, (10.12)
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~ A B
and letting A : H x H — R be the bilinear form that is derived from the block by

B -C
adding the first three equations from (10.9), that is

— —

[A(C. 1, 2), (£, 7.9)] := [A(C. 7). (. 7)] + [B(F, 7). 2] + [B(C, %), V] — [C(2).¥] ~ (10.13)

[A(t,¢,10),(F,7 V)] + [B(E#V).p + bus;ug,rs) = [G,(F7 V)],

(10.14)
[B(t,&,ﬁ),ﬂ = [Faq]a
for all (¥, 7,V) € H, for all ¢ € Q, where
[E(F, T,V),q| == — f gpdiv(vp) + j<{¥ -n, )y,
Qp
(G, (F,7,¥)] = (rom, g)r, — J fg-vs and [F.q] = — | fogo+ g n, Dr..
Q Q

’ ) (10.15)

Moreover, letting now P : (H x Q) x (H x Q) — R be the bilinear that arises from the block

A

~

B

by adding both equations of (10.14), that is

—

[P(C. 7, 2,5), (¥, 7.V.9)] = [A((, 7, 2), (F, 7, V)] + [B(F, 7,¥),8] + [B({.%.2).4] (10.16)

for all ((,7,2),8), (F,7,V),q) € H x Q, we deduce that (10.14) (and hence (10.9)) can be
stated, equivalently as well, as: Find ((E, o,u),p) € H x Q such that

[P(E.&,1,9), (F, 7.V, )] + blug; us,rs) = [H, (F,79.@)] ¥(E79),d)eHxQ, (10.17)

where H € (H x Q)’ is defined by [H, (¥, 7,V,q)] = [G, (¥, 7, V)] + [F, g]. Furthermore, let us
introduce the operator T : L*(Qg) — L*(s) defined as

T(ws) := ug YwgeLYQg), (10.18)
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where ug is the first component of U € Z, which, in turn, is the third component of the unique
solution ((E, o,u), ﬁ) € H x Q (to be proved later on) of the linearized problem arising from

(10.17) after replacing b(ug;ug,rs) by b(wgs; ug,rs), namely:

[P(t,&,4,p), (F,7,V,q)] + b(ws;us,rs) = [H, (¥, 7, V,@)] V(I 7,V),q)cHxQ.
(10.19)
Thus, we realize that solving (10.14) (or (10.17)) is equivalent to finding a fixed-point of T,
that is ug € L*(Qg) such that
T(us) = ug. (10.20)

10.3 Solvability analysis

In this section we analyze the solvability of (10.17) (which is equivalent to (10.9) or (10.14)),
by means of the fixed-point strategy that was depicted at the end of the previous section. To

this end, we first recall next some theoretical results to be applied later on.

10.3.1 Some useful abstract results

We begin with the generalized Babuska-Brezzi theory.

Theorem 10.1. Let Hy, Hy, ()1 and Q5 be reflexive Banach spaces, and letb; : H; xQ; — R,i €
{1,2}, be bounded bilinear forms with boundedness constants given by |al and |b;|, 7 € {1, 2},
respectively. In addition, for each i € {1,2}, let IC; be the kernel of the operator induced by b;,
that is

K; = {veHl-: bi(v,q) =0 vqul},

and assume that

i) there exists a positive constant o such that

a(w,v)

sup > a|wl|ly, YwekKs,

veky HUHHl
v#0
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ii) there holds
sup a(w,v) > 0 YveK,v#0, and

’LUEICQ

iii) for each i € {1,2} there exists a positive constant B; such that

bi(“?Q)
v|u

i

Q; quQi-

> Bilql

veEH;

v#0

Then, for each (F,G) € H] x QY there exists a unique (u,p) € Hy x Q1 such that

a(u,v)+ bi(v,p) = Fv) VYwveH,

(10.21)
bQ(u7 Q) = G(Q) Vq € QQ )
and the following a priori estimates hold
1 1 a]
lullm < ¥ ]a; + 3 (1 + ) IGle, (10.22)

1 Jal lal Jal

o < 5 (14 120 15 + 4 (1412 16y

Moreover, 1), ii) and iii) are also necessary conditions for the well-posedness of (10.21).

Proof. See [7, Theorem 2.1, Corollary 2.1, Section 2.1] for the original version and its proof.
For the particular case given by H; = Hay, 1 = Q2, and by = by, we also refer to [30, Theorem
2.34]. 0

We remark here that the roles of Ky and Ky in the assumptions i) and ii) of Theorem
10.1 can be exchanged without altering the joint meaning of these hypotheses. In addition, it
is important to stress that (10.22) is equivalent to an inf-sup condition for the bilinear form
arising after adding the left-hand sides of (10.21), which means that there exists a constant

C > 0, depending only on «, 81, 52 and |al, such that

sup a(wv U) + bl(vv 7”) + b2(w7 Q)

(v,9)€H] X Q2 H(?), Q)”Hl X Q2
(v,q)#0

> C H(w7T)HH2><Q1 v (w,r) € Hy x Ql . (1023)
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Next, we recall from [36, Theorem 3.2] (see also [21, Theorem 3.4] for the original version
of it) a result providing sufficient conditions for the well-posedness of a perturbed saddle-point

problem.

Theorem 10.2. Let H and () be reflexive Banach spaces, andleta: HxH — R, b: Hx(@Q — R
and ¢ : Q x Q — R be given bounded bilinear forms. In addition, let B : H — Q' be the bounded

linear operator induced by b, and let V := N(B) be the respective null space. Assume that:

i) a and c are positive semi-definite, that is

a(r,7) =20 VreH and c(v,0)=0 VYoveQ, (10.24)

and that c is symmetric,

ii) there exists a constant o > 0 such that

A1) S W loly voeV, and (10.25)
rev ||
T7#0
9
WT) S il VreV, (10.26)
sev U]

iii) and there exists a constant 5 > 0 such that

o 270)

ren |7
T7#0

> vl Vve@.

Then, for each pair (f,g) € H x Q' there exists a unique (o,u) € H x @ such that

a(o,7) + b(r,u) = f(r) VreH,
blo,v) — clu,v) = g(v) Voeq@.

(10.27)

Moreover, there exists a constant C' > 0, depending only on |al, ||c|, a, and 8, such that

o wluxe < C{Iflmw + lglo'}. (10.25)
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As announced before, we stress here that the foregoing theorem is referred to as a slight
variant of the original version given by [21, Theorem 3.4], which requires a to be symmetric
as well. Indeed, the proof reduces basically to show that there exists a positive constant C ,
depending on |a|, ||c|, o, and 3, such that the bilinear form arising from adding the left hand
sides of (10.27), say A: (H x Q) x (H x Q) — R, satisfies the inf-sup condition

p AGw). (r0)

coerixa  [(T:0)] Hxq
(T,0)#0

> Ol(¢w)|uxg Y(Cw)eHxQ. (10.29)

In this way, thanks to the symmetry of a and ¢, A is obviously symmetric, and thus (10.29) is
sufficient to conclude, using the Banach-Necas-Babuska Theorem (cf.[27, Theorem 2.6], also
known as the generalized Lax—Milgram Lemma, the well-posedness of (10.27). However, if the
symmetry assumption on a (and consequently on A) is dropped, as done in the present Theorem
10.2, the same conclusion is attained if additionally (10.29) is also satisfied by the bilinear form
A that arises from A after exchanging its components. Thus, noting that the above reduces to
fixing the second component of A and taking the supremum in (10.29) with respect to the first
one, we realize that in order to prove this further inf-sup condition, the assumption (10.25)
needs to be added, as we did in Theorem 10.2. Needless to say, and because of the same
constant « in (10.24) and (10.25), the aforementioned further condition holds with the same

constant C' from (10.29).

10.3.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem
(10.19) is well-posed. To this end, we first state the boundedness of all the variational forms
involved by employing the Cauchy—Schwarz and Hoélder inequalities, the upper bounds of u,
the continuity of the normal trace operator in H(divy/s;€2g) (which follows from (8.2)), the
boundedness of the injection iy : H(Qg) — L*(Qg), the boundedness of a suitable extension
operator Ep : HY/2(X) — HY2(052p) to be defined later on in (10.37) - (10.38), and the existence
of a positive constant c,, depending only on df2g, such that [|los < cs|9pi2s Vi € HV2(D),
which yields, in particular, |9[os < ¢s|¥]1/2005 VP € H 2 () (see [5, Appendix A.1]). In
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this way, we deduce the existence of positive constants, denoted and given as:

laf == max{pus, [K~ oo}, o] = [ba] := max {1, |Ep]},

[A] = llal +2[bafl, B[ = max{l, [i], c},

(10.30)
|C| == c(n — 1) max{w; ", ...w, 1}, |A]:=|A]+2|B| + |C],
|]§H = max{l,cS|Z]1/2}, and |[H|| := H§H1/2,oo;rs + Hfs\|o,4/3;95 + | foloap
with g := max{1, |is], c;|2|"/?}g, such that
[a(¢), ]| < lal [¢]x/IF]x V¢ reX,
[6:(F), Tl < 6] [¥]x 7]y V(r,T)e X xY,
I[A(C,7), (5, 7)< [A[[(C ) |xxv (T, T)xxy V(¢ %), (F,T)e X xY,
[B(¥,7),v]| < [B[[(T)|xxvy|V[z V(r,7,V) e H,
(10.31)
[C®). 2] < [C][¥]x]Z]x Y, ¢ e Hy,' (%),
[A(C, 7, 2), &, 7, V)] < [A][(, 7, 2)|ul|7V)|a V(7 2), T T V)eH,
[B(T,7,V),q]| < |B|[(X7,V)|xldlq V((r,7,v),q) e Hx Q,
H, (T, 7, V,9)]| < [H||ET,V,dluxq V((r,7,V),q) e Hx Q.
In turn, employing the Cauchy—Schwarz inequality twice, we find that
b(Ws; Vs, Ts)| < pWslloans [Vslosos [Ts]oas
(10.32)

\ (WS,VS,rs) € L4(QS) X L4(QS) X Lfr(QS) .

~

A
B

symmetric case of Theorem 10.1. In particular, in order to derive the inf-sup conditions of the

In what follows, and as suggested by the matrix representation , we apply the

o
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~ A
bilinear form A, and according to its structure given by (cf. (10.13)), we employ
—-C
a bl
Theorem 10.2. In turn, and due to the corresponding structure of A (cf. (10.12)),
by 0

we employ Theorem 10.1 to establish the required assumptions on A. For the above purposes,

we begin by deducing from the definition (10.15) that the kernel V of B reduces to

~

V= {E7 V) eH: [BERV).q-0 ¥deQ}l-XxYxZ, (10.33)

where

X = L2(Qg) x Ho(div: Qp),  Z=LYQg) x HiF (D), (10.34)

with
H, (div; Qp) := {VD € Hy(div;Qp) :  div(vp) € PO(QD)} )

Hif'(2) = {9y e H'(2): (@pom s = 0f.

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form

as the kernel of the latter. Then we let V be the kernel of Bl;, that is
V=XxY,
where
Voo [Fim e Y ongs s ranps+ [ verdivirs) =0 (vsp) <2,
s

— {F = (15,6) €Y : div(ts) =0, (¢ n,Ex = —(rsn, )y, Vope ﬁg{f(z)}.
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Then for each i € {1,2} we let K; be the kernel of b;|y, that is
K; = {f’ = (rs,vp) eX:  [0i(f), 7] =0 V7= (r5,6) € ?} ,
which, recalling from (10.10) that b; = —by, yields
Ki=K;=KcX.

At this point we recall, for later use, that there exist positive constants c4/3(§2g) and Cgiy, such

that (see, [6, Lemma 4.4] and [37, Lemma 3.2}, respectively, for details)
ca3(Q) [Tsloes < [76logs + [div(rs)loasas ¥V 7s € Ho(divas; Qs) (10.35)

and

HVDH(Z),QD = CdiVHVD”chiv,QD Vvp € ﬁo(diVQ Qp). (10.36)

We now follow [38] to recall some preliminary results concerning boundary conditions and

extension operators. Given vp € Hy(div;Qp), the boundary condition vp-n = 0 on I'p means
o1, By p(Caa, =0 V¢ e Hp'(Tn).

As a consequence, it is not difficult to show (see [29, Section 2]) that the restriction of vp - n

to ¥ can be identified with an element of H~/2(X), namely

(vp1n,Es = (vp 0 Ep(€)ea, VEeHYAY),

where Ep : HY?(X) — HY2(0Qp) is any bounded extension operator. In particular, given
¢ e HY2(X), one could define Ep(€) := z|a0,,, where z € HY(2p) is the unique solution of the

boundary value problem:

Az=0 in Qp, z=& on X, Vz-n=0 on Ip, (10.37)
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whose continuous dependence estimate yields Ep € £(HY?(X),H/2(6Qp)), and hence

1Ep(©)lh2.000 < [Ep[[€]125- (10.38)

In addition, one can show (see [29, Lemma 2.2]) that for all ¢ € H/2(0Qp) there exist unique
elements (x, € HY2(X) and ¢, € Hy) (I'p) such that

(= Ep((s) + Erp,n(Crp) (10.39)
and
Cy {HCEHl/z,E + ||CFDH1/2,00;FD} < [ Cliz00, < Co {”CZHl/Q,E + HCFD||1/2,00;FD} )
with positive constants C; and Cs, independent of X.
Then, we are in position to prove the results stated by the following lemmas.

Lemma 10.3. For each i € {1,2} there exists a positive constant [3; such that

[6:(r), 7]

sup —-— > B |7y VTeY. (10.40)
ex T
r#0

Proof. Since by = — by, it suffices to show for one of these bilinear forms, so that we stay with

b:. Moreover, considering that Y < ﬁo(div4/3; Qg) x HY2(X), with
Ho(divys; Qs) == {75 € Ho(divys; Q) : div(rs) = 0},

we need to prove that there exists a positive constant 3; such that

o 7
o Il
r#0

> 6 |7y V7 e Hy(divys; Q) x H2(X). (10.41)

In addition, due to the diagonal character of b; (cf. (10.10)), the proof of (10.41) reduces to
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establishing the following two independent inf-sup conditions

<VD -1, €>E

sup > Bis €y YEeHYAR), and (10.42)
vDeﬁO(div;QD) HVDHCthQD
vD;ﬁO
f TS TS
sup S > Bis | Tslaivyz0s VTs € IPHO(C“VZ%; ), (10.43)
rgel? (9g) ||rSH0,Qs
rg#0

with (15, f1s > 0. Indeed, for (10.42) we refer to [38, Lemma 3.3]. However, for sake of
completeness, most details are given in what follows. Given ¢ € H™Y2(X), we define n €
H=12(00p) as

1, Qoap = (6, Gy V(e HA(0p), (10.44)

where (x; is given by the decomposition (10.39). Tt is not difficult to see that

1, Brp.p(p))ean =0 ¥pe Hy(Tp), (10.45)
(0, Ep(&)Yea, = (¢, &)s V€ e HYA(X) (10.46)

and
1nl-1/2.005 < Clld]-1/2,5 - (10.47)

Hence, we now define wp := Vz € Qp, where z € H(2p) is the unique solution of the boundary

value problem
1 :
Az = =, o, in QOp, Vz-n=n on 0dQp, J 2=0.
19991 o

It follows that div(wp) = @@, Doa,, € Po(Q2p), wp - n = n on 0Qp, and, using the estimate
(10.47), |wpllaivior, < Clnl-1/2.00, < C|é|-1/2x. In addition, according to (10.44), (10.45)
and (10.46), we find, respectively, that

Wp 10,85 = (Wp -0, Ep(§))sap = (0, Ep(€))an, = (0,5)s
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and

(Wp -1, Erp p(p))ean = 1, Erpp(p))ea, =0 ¥pe Hy)' (Tn),

which implies that wp € ﬁo(div; Qp). In this way, we conclude that

wp  omOs  KwonOnl KOO8 gy
epetipvap) |VDdiviap Wb llaiv:ap 1] -1/2.5
vp#0
and hence
Vp-1n
sup M > (C sup M = Cl¢|12x,
vpeHq(diviQp) HVDHdiV;QD seH—1/2(x) H(bH—l/ZE
VD750 ¢7£0

which confirms (10.42). On the other hand, given 75 € ﬁo(div4/3; Qg) such that 7 # 0, we
have that 74 € L2 (), so that bounding the supremum in (10.43) by below with rg = —74,

it follows that

d . d . d
Qs

Qg d
sup > =5 = |7slos
eserz g ITllo.qs I78lo0.0s
rg#0

which, using (10.35) and the fact that div(7rs) = 0, implies that (10.43) is satisfied with
constant By 5 = c4/3(€2s). On the other hand, if 7§ = 0, it is clear from (10.35) that 7¢ = 0,
and so (10.43) is trivially satisfied. O

Lemma 10.4. There exists a positive constant o such that
[a(F), 7] = oo |F|x VEeX.

Proof. Given T := (rg,vp) € X, we use the definition of a (cf. (10.10)), (9.2), and (10.36), to

obtain

[a(¥),7] = | prsirs+ | K''vp-vp = i rs[5o, + Cx [volia, = aaltlx.
QS QD

1
with o, := B min{uy, CaiyCk }, thus confirming the required property on a. In particular, since
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K c )NC, it is clear that a is KC-elliptic. ]
As a consequence of Lemma 10.3 and Lemma 10.4, we conclude that a, b; and b, satisfy the

hypotheses of Theorem 10.1, and hence, a straightforward application of this abstract result

yields the existence of a positive constant «aa, depending on |a, o, and (i, such that

A C?ﬁ ) I_‘)a? R =2
sp LAED D] o & ey ¥ eV, (10.48)
ey (5 T)llxxy
(¥, 7)#0
a b1 a bg
Moreover, if we swap the roles of b; and by, changing the matrix from to ,
by O by O

we can reapply Theorem 10.1 and (10.23) to conclude that, with the same constant aa from

(10.48), there holds

sup = = ap (T, 7)|xxy V(F,T)eV.

Furthermore, it is evident from (10.12) and the ellipticity of a in X, that
A7), (7, 7)] = [a®),7] > au|flx V(EF)eXxY,

which proves that A is positive semi-definite.

Lemma 10.5. There holds
[C(V),V] =0 VveZ.

Proof. From the definition of the operator C (cf. (10.10)), it readily follows that
n—1
[C¥). 91 = X wi' | tlfs >0 Vez,
=1

which confirms that C is positive semi-definite. O]

In this way, we have demonstrated that A and C satisfy hypotheses i) and ii) of Theorem
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10.2, and hence it only remains to show the corresponding assumption iii), which is the contin-
uous inf-sup condition for B with respect to the third component 7 of the kernel V of B (cf.
(10.33), (10.34)).

Lemma 10.6. There exists a positive constant Bg such that

B 7). v N
sup [_,(12,77-)"1] > BS H‘_’:HZ V\_;EZ. (10.49)

(¥, 7)eXxY H<r7T)HX><Y

(¥, 7)+#0

Proof. Given v := (vg, %) € Z := L*(Qg) x ﬁééQ(Z), we first realize, taking ¥ := (rg,vp) = 0
and T := (75,§) = (75,0), that

sup [B (f, f)’ ‘_;] > sup [B(Ga (TS7 0))7 ‘7]
(¥, 7)€l H (I‘, T) HH Tg€H(divy/3;02g) HT5'||diV4/3§QS
(I‘,‘F)#O T5#0
. 10.50
(ronys + [ vs-divimy (1050)
= sup s
TSEHO(div4/3;QS) HTS‘|diV4/3;QS
T5#0
Next, setting 79 := 790 + cl € H(divys;Qg) with the respective components ¢ € R and
Ts0 € Ho(divys; Qg), we observe that
J vs - div(Tg) = J vs - div(Tsp), (Tsn, P)s = (Tson,v¥)s, and
Qg Qg
Hence, noting that ||’T5Hdiv4/3;gs > | Ts0[ divys0s, We find that
<T570 n, ’l,b>2 + f Vg - diV(Tgyo) <T5n, ’l,b>2 + J Vg - diV(TS)
Qg Qg
sup = sup ,
T5,0€Ho(divy 3:25) HTS,O |diV4/3;Qs Tg€eH(divy 3:0g) ”TSHdiV4/3;QS
Ts,07#0 7570

which, along with (10.50), implies that in order to conclude (10.49), it suffices to show that
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there exists a positive constant Bg, independent of the given v := (vg, ) € Z, such that

(Tsn, )y, + J vs - div(Ts)

sup s > Bs {lwh200m + Ivsloaos . (1051)
Tgel(divy/3;029) HTS Hdiv4/3;QS
T5#0
To this end, we now set Vg := |vg|?vs and notice that \\95\\3@3;95 = |vslg4.0. Which says
that {\’S € L4/3(Qs), and
J Vs Vs = [Vsloaas [Vsloasas - (10.52)
Qs

Then, we let z € H!(Qg) be the unique solution of
—Az =Vg in Qg z=0 on I's, and Vzn=0 on X,
whose variational formulation reads: Find z € Hy_(Qg) such that
J Vz-Vw=| Vg-w VweH (Q), (10.53)
Qs Qs
where

Hy (Qs) = {W eH'(Qs): w=0 on FS}.

In fact, we first notice that the left-hand side of (10.53) defines an Hf._ (Qg)-elliptic bilinear form.
In addition, Holder’s inequality and the continuous injection iy from H'(Qg) into L*(Qg) guar-
antee that the right-hand side of (10.53) constitutes a functional in Hp_(Qg)". Consequently,
a straightforward application of the classical Lax—Milgram Lemma implies the existence of a

unique z € Hy_(Qg) solution to (10.53). Moreover, it follows from (10.53) that

|Z|1,QS < ¢ |4l ||‘AfSH0,4/3;QS ) (10.54)

where ¢, is the positive constant, depending only on g, provided by the Poincaré inequality,
that is such that [v]10s < ¢ |V]1,04 for all v e Hp (Qg). Then, defining 75 := —Vz € L*(Qy),

we see that div(Ts) = Vg in Qg, which says that actually T € H(divy;, Qs), and that Tsn = 0
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on X, so that using (10.54), we get
1%slaivymas = |2lias + [Vsloamas < (1 + ¢ [ia]) [Vsloamas - (10.55)
In this way, bounding by below with Tg, and employing (10.52) and (10.55), we deduce that

(Tsn, VY)s + J vg - div(Ts) L vg - div(Ts)

sup Us > ~
TgeH(divy3i0g) HTS Hdiv4/3;Qs HTS HdiV4/3;QS
7640 (10.56)
J vs s %]
= AS:ZS = ”VS O,:leS s 0.4/5:0s = ﬁS,l ‘VS 0,4;Q5 >
1T ldivy/:05 1T ldivys:05

with Bs1 = (1 + ¢ Hi4H)_1. On the other hand, given 5 € Hyl/*(X), we let 2 € Hj (Qs) be

the unique solution of
—Az =0 in Q¢, 2=0 on I's, Vzn=n on X,

and define Ts := Vz in Qg. It follows that div(Ts) =0 in Qg, Tsn=n on Ig, and

0,0s S C |1/ -1/2,00;2, which yields

||?5HdiV4/3§QS = H$S

(Tsm, P)s + J v - div(Ty)
Q

sup s > <A7'5n, Y)s > B, M :
TgeH(divy 3 05) HTSHdiv4/3;QS HTS||div4/3;QS HTIHfl/Q,OO;E
T5#0

with Bgo = C—1. Since ne Haol/ 2(Z) is arbitrary, the foregoing inequality leads to

{Tsn, )y + L vg - div(Ty)

sup = = Bsa Y1200
rgeH(divg 3:0g) |75 ldivy 500
T5#0

which, along with (10.56), shows (10.51), and hence (10.49), with B¢ := % min {Bg1,Bs2}. O

Consequently, having the bilinear forms A, B, C satisfied the three hypotheses of Theorem
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10.2, a straightforward application of this abstract result yields the existence of a positive

constant &, depending on |A|, |C||, aa, and Bg such that

A&, 7. 2), (7, 7,V R o IS
sup [ ( >, _’)7_(}7 ) )] > 04”( ’n’z)HH v(c)n’z)e\/,
(F,7,9)eV ‘KraTaV)mH
(F,7,¥)#0
and -
A = 2\ (v R ~
sip BETDETIN 51wz o), w79V,
(CmZ)ev 1(€. 77, 2)|m
(¢,7,2)#0

which means that A satisfies the assumptions i) and ii) of Theorem 10.1. Thus, it only remains

to demonstrate the corresponding assumption iii), which is the continuous inf-sup condition for

~

B.

Lemma 10.7. There exists a positive constant E such that

> Gldlq  VdeQ. (10.57)

Proof. We first observe that the diagonal character of B (cf. (10.15)) says that proving (10.57)

is equivalent to establishing the following two independent inf-sup conditions

J;Z 4D diV(VD) R

sup D > fp |anloo, Yap € Lg(Qp), (10.58)
vpergivap)  ||VD|ldiven
vp#0
(¢ -n,1 ~
sup M > Bs|j| VjeR. (10.59)
weHééz(z]) H,lle/Q,OO;E
P#0

To this end, we proceed similarly to the proof of [37, Lemma 3.6]. We define v, := Vz, where

z € HL(Qp) is the unique solution of the boundary value problem:

Az =qp in Qp, 2z=0 on X, Vz:n=0 on Ip.

It follows that vp € Ho(div; Qp) and div(vp) = ¢p, which yields the surjectivity of the operator
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div : Hy(div; Qp) — LE(Qp), which is (10.58). On the other hand, the inf-sup condition (10.59)
reduces to the surjectivity of the operator ¢ — (2 - n, 1)y, from H/2(X) — R, which in turn is
equivalent to showing the existence of 4y € H/2(X) such that (1, -n, 1) # 0. In fact, we pick
one corner point of ¥ and define a function v that is continuous, linear on each side of ¥, equal
to one in the chosen vertex, and zero on all other ones. If n; and n, are the normal vectors on
the two sides of ¥ that meet at the corner point, then g := v(n; + ny) satisfies the required

property. Finally, the required inequality (10.57) is obtained with 5 ‘= min {ES, ED}. O]

Now, having the bilinear forms A and B satisfied the assumptions of Theorem 10.1, a direct
application of this abstract result guarantees the global inf-sup condition for P (cf. (10.16)),

that is the existence of a positive constant ap, depending on @, E , and HAH, such that

—

PC7ﬁ7Z_)7§7F77:’7‘776 g 2 o —
ap PCAZETVD] & 2 g V(E 72,8 cHxQ. (1060
7,9),3)eHxQ H(I‘,T,V, q)HHXQ

(¥,
((¥,7,¥),q)#0

In turn, if we consider the transpose of P, which simply reduces to exchange the bilinear forms
by and by in (10.12), we conclude that inf-sup conditions are satisfied by P with respect to the

other component, that is

P 7_’7275‘7[_:77_-)7‘_;7_’ - = = = - = —
sup G728 ( D - op |79, D leeq ¥ (FF9),d) < HxQ. (1061)
(€712 8)erxQ 1€ 71, Z,8)[mxq
((¢,77,2),8)#0

Moreover, employing (10.60) and the boundedness property of b (cf. (10.32)), it readily follows
that, given wg € L*(Qg), there holds

) H(Cv ﬁ? 2) §)||H><Q

> (ap —p]

ap
—, We

for all (€, 7, 2),8) € H x Q, and hence, for each wg € L*(Qs) such that |[wg|os0s < 5
p
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get
Pé:ﬁagvga f:7‘7_-‘7‘77q_) ‘f‘bWS;uSarS ap g
p  PETHEET YD)+ 1 ) > O e (1062)
((F.7.9),9)eHxQ (¥, 7, v, Q)HHxQ 2
((¥,7,¥),4)#0

for all ((5 ,1,2),8) € Hx Q . Similarly, but now using (10.61), and under the same assumption

on wg, we arrive at

P 7_’7_)7_'7_'7_:7_’—’_[) ; ’ ¥ 2 v
[P(¢,7,2,9), (¥, T :1)] (Ws;ug,rg) > O‘7P |(F, 7, ¥, q) |uxq (10.63)

for all ((¥,7,V),q) € H x Q.
Consequently, the well-definedness of the operator T can be stated as follows.

Theorem 10.8. For each wg € L*(Qg) such that |wglosns < (;—P, there exists a unique
solution ((f,&,ﬁ),ﬁ) € H x Q solution to (10.19), and hence we can define T(wg) := ug €

L*(Qg). Moreover, there holds

—

IT(ws)loaos = usfoses < [(t, 6,1, D) |rxq

) (10.64)

gi
ap

{1&l200rs + [Esloamas + Ifploas} -

Proof. Given wg as indicated, the existence of a unique solution to (10.19) follows from (10.62),
(10.63), and a direct application of the Banach—Necas—Babuska Theorem (see [27, Theorem
2.6]). In turn, the corresponding a priori estimate and the boundedness of H (cf. (10.31)) yield
(10.64). O

10.3.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T (cf. (10.18)) is well-defined, in this section we proceed to establish
the existence of a unique solution of the fixed-point equation (10.20). To this end, in what

follows we will first derive sufficient conditions on T to map a closed ball of L*(Q2g) into itself.
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This will allow us to apply the Banach Theorem later on. Indeed, from now on we let

(6%
W = {WS € L4(QS) : HWSH(]A;QS < 21;} .

Lemma 10.9. Assume that

2
Op

18120005 + Ifsloames + [folooy, < I (10.65)

Then, there holds T(W) c W.

Proof. Given wg € W, we know from Theorem 10.8 that T(wg) is well-defined and that there

holds

2 - Q
IT(Ws)oans < — 1 1&l/200rs + [Esloamsa + [foloet < . (10.66)
ap 2p

which shows that T(wg) € W. O

We continue with the following result providing the required continuity of T.
Lemma 10.10. There holds

4p (.~
IT(ws) = T(ws)osns < & {[Blz00rs + [Esloamas + [Fploas | [ws —wsloa, (10.67)
P

for allwg,wg e W.

Proof. Given wg,wg € L*(Qg), we let T(wg) := ug and T(wg) := ug, where ((t,&,1d),p) €

H x Q and ((t, &, i), p) € H x Q are the corresponding unique solutions of (10.19), that is

[P(t,&,14,p), (T, 7V, )] + b(ws; us,rs) = [H, (F, 7,¥,9)] Y ((F,7,V),q) e HxQ (10.68)

),q) e Hx Q. (10.69)

as]
TerL
Qi
1=y
sy
=l
u
<l
2y
_|_
=
<
“a,
=
“a
L]
X
I
=
G
!
<l
2y
<C
G
Rl
<l
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Then, applying the inf-sup condition (10.62) to (¢, 7, Z,s) = (t, &, 4, p)— (£, &, 4, p), we obtain

?

_"))7 (F ?7V @] + b(WSa Uus — HS)I‘S)

< sup E——
((F,7,9),q)eHxQ H 77-7V7Q)HH><Q

((7,7,¥),q)#0

from which, employing (10.68) and (10.69), we arrive at

e b(wg — Wg;Ug,Tg)
t,a,u,p) - (L)Qag)p)HH < — sup S o (1070)
It Dlxq < o0 8P IEE Y Dlang
((¥,7,v),q)#0

In turn, using the boundedness of b (cf. (10.32)) and the a priori estimate for

lusloses = IT(Ws)lloa0s

given by (10.64) (cf. Theorem 10.8), it follows from (10.70) that

2p
IT(wWs) = T(Ws)loaes = [us — usloses < —=[ws = Wslosas [us]osas

4 ~
- {18lz00rs + Ifsloasos + 1Foloas } ws = wslo s

P
[]

which confirms the announced property on T (cf. (10.67)).
The main result concerning the solvability of the fixed-point equation (10.20) is stated as

follows.

Theorem 10.11. Assume that

2
Op

18120005 + Ifsloames + [foloos, < 1

Then, the operator T has a unique fized-point ug € W. Equivalently, problem (10.17) has a
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unique solution ((t,&,1),p) € H x Q with ug € W. Moreover, there holds

L 2 (o
I(t, 6,4, P)|uxq < on {Hng/zoo;Fs + [fs]oa30s + HfDHo,QD}~ (10.71)

Proof. Thanks to Lemma 10.9, we have that T maps W into itself. Then, bearing in mind the
Lipschitz-continuity of T : W — W (cf. (10.67)) and the assumption (10.65), a straightforward
application of the classical Banach theorem yields the existence of a unique fixed-point ug e W
of this operator, and hence a unique solution to (10.14). Finally, it is easy to see that the a

priori estimate is provided by (10.28) (cf. Theorem 10.1), which finishes the proof. O



CHAPTER 11

The discrete analysis

In order to approximate the solution of (10.9), we now introduce its associated Galerkin scheme,
analyze its solvability by applying a discrete version of the fixed-point approach introduced for

the continuous analysis, and derive the corresponding a priori error estimates.

11.1 The Galerkin scheme

We first consider a set of arbitrary discrete subspaces, namely

Li(Q) c L2(%) =€ {S,D}, Hu(Qp) c H(div;Qp), Hu(Qs) = H(divys; Qs), )
(11.1
Li(Qs) c LYQs),  AS(Z) c Hgy'(¥), and AP(X) c HYA(R),

90
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so that, denoting by 7g; the i-th row of a tensor ¢, we set
Len(2s) := [La(Qs)™" nLE(Qs) . Hio(2p) := Hiu(2p) n Ho(div; Qp),

H,,(Qs) = {TSeH(div4/3;QS); 7o, € Hy(Qs) Vz}, AS(E) = [AS)]",  (11.2)

Hh?g(QS) = Hh(Qs) M Hg(diV4/3; Qs) s and L%L,()(QD) = L%L(QD) N Lg(QD> .
Then, defining the global spaces, unknowns, and test functions as follows

Xh = L§r7h(ﬂs) X Hh70(QD), Yh = Hhﬂ(QS) X AhD(E), Zh = L%(Qs) X AE(Z),

HhZ: XhXYh X Zh, QhZ: L%“()(QD) XR,
(11.3)

t), := (tsp,upp) € Xp, &= (osn, M) € Yy, 1y = (usp ¢n) € Zn,
T = (ton, Vou) € Xy, Th = (Tspn: &) € Y, Vo= (Vsn, ¥n) € Zy,
Chi= (Com zpn) € Xny T = Mon, ) € Yo, Zn:= (Zsn, o) € Zn,

Dn = Ponln) € Qn,  Gn:=(qon 7)€ Qn, Sh:=(spn k) Qn,

the Galerkin scheme associated with (10.9) reads: Find ((’Eh, O, Up), pr) € Hy x Qp such that

[a(€n), Tl +[b1(Fp), Fn] *LZD pp,pdiv(vp,p) —blugpiugp,rsp) =0
[b2(ER), 741 +[B(Fh, Th), Gn] ={T5,h0, Prg
[B(Eh,r):¥1]  —[C(¥n), dp] +i{pp -0, Ly =- s fs - vs,n (11.4)
+ilen - n, Uy =j{g-n, Drg
*LZD ap,n div(up x) = *L}D fpap,n

for all ((¥h, Th, Vi), @n) € Hp x Qp. Similarly, the ones associated with (10.14) and (10.17), which
are certainly equivalent to (11.4), become, respectively: Find ((ty, &, dr), pr) € Hj, x Qp, such

that
[A(Eha&h:ﬁh)a(Fha¥havh)] + [ﬁ(Fh,Fh,Vh)>ﬁh] + b(uS,h;uS,harS,h) = [Ga(f:hvi:h:‘_;h)]

[B(th, &, 1), Gi] — [F, Gy]
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for all ((Th, Th, Vn), qn) € Hy x Qp, and: Find ((’Eh,&h, uy), Pr) € Hy x Qp such that
[P(th, Gn, Gn, Bh), (Fns Tos Vo Gn)] + b(Us i sp, sp) = [H, (T, To, Vi )] (11.5)

for all ((Fh,Fh,Vh),(jh) € Hh X Qh-

In what follows, we adopt the discrete version of the fixed-point strategy employed in Chap-
ter 10 (at the end of Section 10.2) to study the solvability of (11.5). For this purpose, we now
let T}, : L} (Qs) — L3 (Qs) be the operator defined by

Th(WS,h) = Ush VW&h € Li(Qs), (116)

where ug, is the first component of ), € Zj, which in turn is the third component of the unique
solution (ty,, &, 1)) (to be proved later on) of the linearized problem arising from (11.5) after

replacing b(Ws i Usp, Tspn) by b(WspiUsp, T'sp), namely:

[P(’Eh,a'h, ﬁmﬁh), (Fh,?h,vh,lfh)] + b(WS,h;uS,hvrS,h) = [H, (Fh,Fh,Vh>th)], (11-7)

for all ((¥}, Th, V1), q@n) € Hj, x Qp,. Thus, we realize that solving (11.5) is equivalent to finding

a fixed-point of T}, that is ugy, € Lj;(Q2s) such that

Th(usy) = usp - (11.8)

11.2 Solvability analysis

Similarly to Section 10.3, in what follows we address the solvability of (11.5) by means of the
corresponding analysis of (11.8).
11.2.1 Preliminaries

In addition to the finite dimensional versions of the Babuska-Brezzi theory in Banach spaces

(cf. Theorem 10.1) and the Banach-Necas-Babuska theorem, here we will also need the discrete
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version of Theorem 10.2, which is stated next.

Theorem 11.1. Let H and Q) be reflexive Banach spaces, and leta: HxH — R, b: Hx@Q — R
and ¢ : Q x Q — R be given bounded bilinear forms. In addition, let {Hp}p0 and {Qn}r=o be
families of finite dimensional subspaces of H and @), respectively, and let V;, be the kernel of

blm, xq, that is

V, = {Th € Hy,: b(m,v,) =0 Vo, e Qh}-
Assume that

i) a and c are positive semi-definite, and that ¢ is symmetric,

ii) there exists a constant ag > 0 such that

Y
sup a(Fn, Th) > ag|[9nlw VO € Vi,
TheVh HThHH
T #0

iii) and there exists a constant B4 > 0 such that

b(1y,, v
sup (7h, V1) > Ballvnlle Yon € Qn.
ThEH}, HThHH
Th#0

Then, for each pair (f,g) € H' x Q' there exists a unique (o, up) € Hy x Qp, such that

a(on, ) + b(mw,un) = f(m) V7€ Hy, (11.9)

blop,vp) — clun,vn) = g(vp) Vo, eQy.

Moreover, there exists a constant Cy > 0, depending only on |al|, |c|, aq, and Ba, such that

(o, un)|mxq < Ca{lfla + lgle} -

We stress here that the discrete analogue of (10.26) is not required for Theorem 11.1. Indeed,
since Hy x @, is the space to which both the unknowns and test functions of (11.9) belong,
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the corresponding finite dimensional version of the Banach-Necas-Babuska Theorem (cf. [27,
Theorem 2.22]) only requires the discrete analogue of (10.29), for which the already described
hypotheses of Theorem 11.1 suffice.

11.2.2 Well-definedness of the operator T}

We begin by providing the preliminary results that are necessary to show that (11.7) is uniquely
solvable. Once this is established, we address later on the well-posedness of (11.8), and conse-
quently of (11.5). Indeed, following a similar procedure to that of Section 10.3.2, we first note

that the kernel V,, of ]§|HhXQh reduces to
\~/h :=)~(h><Yh><Zh,

where

Xy = Lfr,h(Qs) X ﬁh,0<QD) and 7, = L;(Qs) x Kf@)a

with

ﬁh,O(QD) = {VD € Hh,0<QD) . J dp diV(VD’h) =0 VqD € L%L,O(QD)} s and
p (11.10)

~

K39 = {wn e AJ(E): b s =0f.
Then, the kernel V;, of B|\~,h reduces to
Vi = X, x Y,

where

Y, = {'Fh = (Tsn,&n) € Yo : f Vsn-div(Tgn) = 0 and
Qg

Pn 1,6y = —Top, Yr)s VVgy = (Vs ¥n) € Zh} -
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At this point, we notice that Y, < Hj,0(Qs) x AP(X), where

ﬂh70<QS) = {Tg,h € Hh@(Qs) : J VS h- diV(Tsyh) =0 VVSJL € L%(QS)} . (1111)
Qg

We now proceed similarly to [17], and introduce suitable hypotheses on the spaces defined
in (11.3) to ensure the well-posedness of (11.7). We begin by noticing that, in order to have
meaningful spaces Hj, o(€2s) and L,%,O(QD), we need to be able to eliminate multiples of the
identity matrix and constant polynomials from Hy(Qs) and L o(Qp), respectively. This is

certainly satisfied if we assume:

(H.0) Po(Qp) < L2(Q2p) and T € H,, ().

In addition, we consider the following further hypotheses
(H.1) div(H,(Q2p)) < L2(Qp),

(H.2) div(H,(Qs) < L} (Qs),

(H.3) B, = {8, 7onc o} < L2,(09),

(H.4) there holds the discrete analogue of (10.42), that is there exists a positive constant (7 ;,
independent of A, such that

<VD,h -1, fh>z
sup _

vp.nef, 0(2p) IVD,hldivep
vp,n#0

= 5(11,2 nl12x VEE AR (%), (11.12)

(H.5) there holds the discrete analogue of (10.51), that is there exists a positive constant 33,

independent of h, such that

(Tpn, Pp)s + f Vs - div(Tss)

sup 2 > 6% {HVS,h”oA;QS + Hlbhul/z,oo;z}, (11.13)
75,n€Hp (25) HTS,thiVAL/?ﬁQS
T5,n7#0

for all Vg, := (Vsn, ¥n) € Li(Qs) x A7 (D),
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(H.6) there hold the discrete analogue of (10.58) and a sufficient condition for the discrete
analogue of (10.59), that is there exist a positive constant g%, independent of h, and ¥, €

H{/?(2), such that

J qp,n div(vp) N
Sup = > B9 lapnloas, Yapn € Lio(2p), and (11.14)
vp,h€Hp 0(2p) ||VD,h||diV;QD
vp,h#0
Woe AR(X) Vh,  (gho-m 1y #0. (11.15)

We highlight here that as a consequence of (H.0) we can employ the discrete version of
the decomposition H(divas; Qg) = Ho(divas; Qs) @ RI, namely Hj,(Qg) = Hyo(2s) @ RT,
thanks to which Hj, ¢(€2s) can be used as the subspace where the unknown o) is sought.
However, for the computational implementation of the Galerkin scheme (11.7), which will be
addressed later on in Chapter 13, we will utilize a real Lagrange multiplier to impose the mean
value condition on the trace of the unknown tensor lying in Hy;(£2g). In turn, it follows from

(H.1) and (11.10) that Hj,o(€2p) reduces to
Fijo(20) == {voae Hio(@p) i div(vp) € Po(p)}.
Similarly, thanks to (H.2) and (11.11), ]ﬁIW(QS) becomes
Hio(Qs) i= {Tsn € Huo(§2) : div(rss) = 0f, (11.16)

which yields the discrete analogue of (10.43) with constant f{ g. In fact, given 75 € IFH;L’O(Q s)
such that 7§, # 0, we realize, thanks to (H.3), that rg, := —7g, € L, ,(Qs), and hence,
along with the inf-sup condition from (H.4), we deduce the discrete version of (10.40) holds,

that is, the existence of positive constants /37, i € {1, 2}, independent of A, such that

bi T ) T
sup [0:(Th), 7]

aex,  ITnlx
Fh;éo

= 6? HF}LHY V?he?h.
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Furthermore, we remark that, similarly to the analyses in the proofs of Lemmas 10.6 and
10.7, (11.13) (cf. (H.5)) is a sufficient condition for the discrete version of (10.49), whereas
(11.14) and (11.15) (cf. (H.6)) are equivalent to the discrete version of (10.57). We denote the

constants involved in these discrete inf-sup conditions by B4 and Bd, respectively.

Thus, having A and B satisfied for the present discrete scheme the hypotheses of Theorem
10.1 with constants ay and Ed, we conclude, similarly to the continuous case, the existence of

a positive constant ap 4, depending on dy, Ed, and HAH, and hence independent of h, such that

P ug — — — — — — —
sup [ (Chunh7'zhash)7(rh77—h7vh7qh)]

Fp, T Vp),dp ) €Hp xQp, ‘|((Fh,Fh,vh),§h)||HxQ
( (Fhv;hzvh)zq‘h)#()

(G Tins 20y 80) [, (11.17)

=2 apg
((

for all ((Fy, T, Vi), @n) € Hy x Qp, and thus, for each wg, € L (Qs) such that [|[wep[os0s <

OPd , there holds
2p

[P<5h7 Mhy ZhsSh), (T, Thy, Vi, @h)] + O(Wen; Ush, Tsp)

sup Lo Thy Vi 4
(T T )T ) X S (T, Th, Vi, Gh) [ 1 q
((Fhv_‘hvvh)quh)#o (].1]_8)
a - N >, S = = — —
= ;vd H(Ch,nh, Zh,sh,)HHxQ v((rmTh,Vh),qh) eH, x Q.

According to the above, we are now in a position to present the discrete analogues of Theorem
10.8, Lemma 10.9, and Theorem 10.11, whose proofs follow almost verbatim to those for the
continuous case, and hence only some remarks are provided. We begin with the well-posedness

of (11.7), which is the same as establishing that T, is well-defined.

ap g
B 2p
((tn, &n,Un),gn) € H x Q to (11.7), and hence we can define Th(wsp) = usy € Li(Qs).

Lemma 11.2. For each wgy, € L}(Qg) such that |[wgy| < , there exists a unique solution

Moreover, there holds

ITh(wsi)loans = lusaloass < | G . 5)lmeq
5 (11.19)
< ——{I8lz200rs + Isllowses + Ifplos }-
ap g
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Proof. Given wg, as indicated, and bearing in mind (11.18), it suffices to apply the discrete
version of the Banach—Necas—Babuska Theorem (cf. [27, Theorem 2.22]) and its corresponding

a priori error estimate. L]

We continue with the discrete analogue of Lemma 10.9, that is the result ensuring that T},

maps a ball of L} (€Qg) into itself.

Lemma 11.3. Let Wy, be the ball

ap,
Wy, = {Ws,h eLy(Qs):  |wsplloaes < 2;} ,

and assume that

~ v
1&l1/200rs + |fsloamoas + [ folog, < —22. (11.20)

Then, there holds T,(Wp,) € Wy,.

Proof. 1t follows straightforwardly from (11.19) and (11.20). O

The discrete analogue of Theorem 10.11, that is the unique solvability of (11.8), and hence,
equivalently that of (11.5), is stated next.

Theorem 11.4. Assume that

2
ap 4

4p

I€ly200ms + Ifsloasas + Ifplloq, <
Then, the operator T}, has a unique fized-point ugy € Wy,. FEquivalently, problem (11.5) has a
unique solution ((Eh, O, Up), Pr) € Hy x Q with ugy € Wy,. Moreover, there holds

2

ap g

|, G, B ixq <~ {IBlz00rs + [Esloasmos + [fploa, }- (11.21)

Proof. Similarly to the proof of Theorem 10.11, it reduces to employ (10.32), (11.7), (11.18) and
(11.19) to prove that Tj, : W, — W), is a contraction, and then apply the Banach fixed-point

theorem. ]
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We end this section by providing sufficient conditions for (11.12) and the particular case

arising from (11.13) when vg; = 0, that is for the existence of positive constants {5, and 3§ ,,

such that

VD nagh
Sup M = 5?,2 1€nll1/2,5 V&, e AP(X), and (11.22)

vp,n€Hp 0(2p) HVD,thiv;QD

vp,n#0
TS7hn7 wh
Sup M = ,332 H"/"h”l/zpo;z YV, € AE(E)’ (11.23)
TS,hE]ﬁIh(QS> HTSvthin;/g;QS
Ts,n7#0

where ]ﬁlh(QS) = {Ts’h e H,(Qg) :  div(rsy) = 0}. In this regard, we first notice that the
above inequalities, which deal with how the normal components of elements of ﬁh,o(Q p) and
Hj,(Qs) are tested against AP(X) and A$(X), respectively, are shown below to be related to
the eventual existence of a stable discrete lifting of the normal traces on ¥. Indeed, in order to
establish (11.22) and (11.23), it suffices to prove that for each = € {D, S} there exists a positive

constant f33 y;, such that

Vp -1, gh
sup  EBEWE g e s VEeAL(S), (11.24)
vi,eH Q) ”VthiV;Q*

vy #0

where

~

T, (Qp) = {vheHh,o(QD): div(vh)ePo(QD)}, and

~

H,(Qs) = {vheHh(QS): div(vy) = o}.

Next, for each = € {D, S} we define
P¥(X) = {vh ‘nls: vhe ﬁh(Q*)} , (11.25)

and assume that the linear operator v, — vy, - n from H,(Q,) to ®#(X) has a uniformly

bounded right inverse, which means that there exists a linear operator £} : ®%(3) — Hy(€,)
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and a constant ¢, > 0, independent of A, such that

|£5(0n)llaivies < ¢ lonl-12x, and
(11.26)

Ly(¢n) n = ¢, on X Ve,ePpX).

Such a uniformly bounded right inverse L£; of the normal trace will henceforth be referred
to as a stable discrete lifting to Q.. Note that by [26], existence of L} satisfying (11.26)
is equivalent to the existence of a Scott—Zhang type linear and uniformly bounded operator

7 H(div; Q) — H,(9,), such that

T (vp) = v VvpeHu(Q,), and v.m=0 on Y= (7i(v))-n=0 on X.

The following lemma, taken from [37, Lemma 4.2], reduces (11.24) to the inherited interac-

tion between the elements of @7 (X) and Aj(2).

Lemma 11.5. Assume that there exists a stable discrete lifting to Q. Then (11.24) is equivalent

to the existence of a positive constant 5S, independent of h, such that

sup o Gnn > 65 I€nllyes VéL e A (D). (11.27)
PREPT (D) H¢h||71/2,2
¢n#0

We have thus proved that the existence of stable discrete liftings to Q2 and 2p together with
the inf-sup condition (11.27) constitute sufficient conditions for (11.24) to hold. In this respect,
we find it important to emphasize that (11.27) deals exclusively with spaces of functions defined

on ..
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11.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in

Section 11.2.2, and derive the Céa estimate for the Galerkin error
It = tilaq = | —talx + & — Gnly + [ — dnlz + |5 — Bulla,

where t := (1?, o,u,p) e Hx Q and t;, := (fh, O, Up, Pr) € Hy, x Qp are the unique solutions of
(10.17) and (11.5) respectively, with ug € W and ugj, € W;. In what follows, given a subspace
Zy, of an arbitrary Banach space (Z, |- Z), we set

dist(z, Z,) = inf |z — 2|z Vze Z.

ZhEZh

We begin by observing from (10.16) that for each r;, := ((¥h, T, V1), Gn) € Hj, x Qy, there holds
[P(t),r] + b(us; us, rsp) = [H, ],
which combined with (11.5), yields for each r; € Hj, x Qp,
[P(t —tp), ] = b(usp; ugy, rsp) — b(ug; ug, rgp) . (11.28)
Now, the triangle inequality gives for each ¢, € Hj, x Qp
It — thllaxq < [t —¢,luxq + [€, — talmxq, (11.29)

and then, applying (11.17) to ¢ , — tn, subtracting and adding t in the first component of P,
using the boundedness of P with constant |P|, and employing the identity (11.28), we find
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that

[P(C - Lh)a ih]
apa ¢, —thllaxq < sup =h
el xQp |rsllHxq

E}ﬁﬁo
P(t—-t;),r
< [Pl —¢, lixq + sup (EEEn) I
r,€Hp xQp, thHHXQ
r,#0
b(ugn;usp, rsy) — b(ug;ug, rep)
< [Pt =¢, [mxq + sup T 2,
SR T eyl < Q
gh;éO

(11.30)

In this way, replacing the bound for ||{, — t,|mxq that arises from (11.30) back into (11.29),
5 Q

and taking infimum with respect to r;, € Hj, x Q, we deduce that

P”) dist(t, Hj, x Qp)

t —t,|uxq < (1+
It — thlluxq ape

! sup b(usn; Wsh, Tsp) — b(us; U, rsp) (11.31)
AP 4 r,el,xQy HEhHHxQ
r;, #0

_|_

)

which basically constitutes the Strang-type estimate for the joint setting formed by (10.17)
and (11.5). Next, in order to estimate the consistency term given by the supremum in (11.31),
we subtract and add ug in the second component of b(ugp;usps,rsy), and then invoke the
boundedness property of b (10.32), and the a priori estimates (10.71) and (11.21) for ||us|o.4;04

and |ug o404, respectively, thanks to all of which we obtain

b(ugn;usp, rsy) — blus;ug,rgp) = blugp;usy, —ug, rsy) + b(ugy, —ug;us, rgp)

4 (11.32)
P (i~
< 21D amrs + IEslosas + 1fnlons | s —usaloaas Iesilons
where ap := min {ap, Oép7d}. Hence, replacing (11.31) in (11.32), we conclude that
_ IPIY ..
It —thlmxq < [ 1+ . dist(t, Hy, x Qp)
e (11.33)
4p (,~
t {Hng/z,oo;rs + [fsloasas + /o o,QD} Jus = usnfos0s -
P

We are then in position to state the following result.
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Theorem 11.6. Assume that for some § € (0,1) there holds

) a%d
4p

18l12.00ms + [fsloassos + [foloon < (11.34)

Then, there exists a positive constant Cy, depending only on |P|, apa4, and 0, and hence

independent of h, such that
HL - LhHHXQ < Cd diSt(L, Hh X Qh) . (1135)

Proof. 1t suffices to use (11.34) in (11.33), which yields (11.35) with Cy := (1 —¢&)7* (1 +
IP[/ap,q)- O

In particular, taking 6 = 1/2, we get Cy := 2(1 + |P|/apq) in the proof of Lemma 11.6,
and (11.34) becomes

2
~ (@]
I8/l /20005 + [fslloasas + [foloes < 81;;d~ (11.36)

We end this section by remarking that (9.4) and (10.7) suggest the following postprocessed

approximation for the pressure pg

1 .
Psh = —gtr(ds,h + (u57h®u5,h)) — 1, in Qg, (11.37)
where
z Y [
h = T r'\osn) -
n || Qs

Then, applying the Cauchy—Schwarz inequality, performing some algebraic manipulations, and
employing the a priori bounds for |ug|os0s and |ugnos0q, We deduce the existence of a

positive constant C, depending on data, but independent of h, such that

Ip = mloss < C{los = osulon + lus = usnlosos |- (11.38)

Thus, combining (11.35) and (11.38), we conclude the existence of a positive constant Ci,
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independent of h, such that

[t = tulixq + [P = palons < Cadist(t, Hy x Qu) . (11.39)



CHAPTER 12

Specific finite element subspaces

In what follows we proceed similarly to [37] (see also [15]) and specify discrete spaces satisfying
the hypotheses (H.0) up to (H.6) in 2D and 3D, thus ensuring the well-posedness of the
Galerkin scheme (11.5). Their approximation properties and associated rates of convergence

are also established.

12.1 Preliminaries

We begin by letting 7,° and T,P be respective triangulations of the domains Qg and Qp, which
are formed by shape-regular triangles (in R?) or tetrahedra (in R?) of diameter hz, and assume
that they match in ¥ so that 7,7 U T;P is a triangulation of Qg U ¥ U Qp. We also let X, be the
partition of ¥ inherited from 7,% (or T;P). Then, given T € T;° U T, ", we let Po(T') be the space
of polynomials of degree = 0 defined on 7', whose vector and tensor versions are denoted by

Po(T) := [Po(T)]™ and Po(T) := [Po(T)]"*", respectively. Next, we define the corresponding

105
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local Raviart-Thomas spaces of order 0 as

RTo(T) := Po(T) @ Po(T)x

and its associated tensor counterpart RTy(7"), where x is a generic vector in R := R". In turn,
given = € {S, D}, we let Po(7,*), Po(7;*) and RT¢(7,*) be the global versions of Po(T"), Po(T),
Po(T), RTo(T) and RTy(T'), respectively, that is

Po(Th*) == {va e L*(): valrePo(T) VT eT},

Po(Th*) == {m e L*(%): mlrePo(T) VTeT},

Po(T:*) = {Th eL?(Q): TrePy(T) VTe 771*} ,
RT(7,*) := {7, € H(div; Q) : Tu|lre RTy(T) VYT eTS},
RTo(7,*) := {mn € H(div; Q) : 7n|lr e RTo(T) VT €T’}

Then, we introduce the corresponding discrete subspaces in (11.1) as
L7 () = Po(Th*), Hi() := RTo(T*), and L}(Qg) := LY(Qs) nPo(T7), (12.1)

so that the associated global spaces L, ;,(Qs), Huo(Qp), Hx(Qs), Hio(Qs), and L o(Qp), are
defined according to (11.2). The interface spaces A7 (X) and AP () will be specified later on

by separating the 2D and 3D cases.

Next, for the verification of the hypotheses introduced in Section 11.2.2, we first realize
that (H.0), (H.1), and (H.2) follow straightforwardly from the definitions in (12.1). In turn,
regarding (H.3), we now recall that the divergence free tensors of RT((7;) are contained in
Po(Tn) (cf. [30, Lemma 3.6]), so that, invoking (11.16), we deduce that ﬁhp(Qs) < Po(Tn)-
In this way, noting that certainly tr() = 0 for all 7, € Hy (), we find that ]IN-}/I‘}L’O(QS) =
LZ(Q) nPy(Tn) = L., (Q), thus confirming the occurrence of (H.3).

We now turn partially to (H.5) and (H.6) and establish first an inequality aiming to
accomplish (11.13), and then the discrete inf-sup condition (11.14). More precisely, we have
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the following results taken from [22] and [30], respectively.

Lemma 12.1. There exists a positive constant 35, independent of h, such that

VS,h . diV(TS,h>

sup = > B8 [vilowos  Vvsn e Ly(Qs). (12.2)
rsncbno©@s) || TSl divysas
T5,n 70

Proof. See [22, Lemma 6.1]. We just stress that it is mainly based on the introduction of a
suitable auxiliary boundary value problem, and the utilization of the elliptic regularity result

provided by [28, Corollary 1]. O

Lemma 12.2. There exists a positive constant E%, independent of h, such that

qp.n div(vpp)
Qp

sup = BD lap,nllo.op Yapn € L%,O(QD) . (12.3)

vD,h€Hp (D) ”VDJL”diV@D
vp,n#0

Proof. We refer to [30, Chapter IV, Section 4.2] for full details. It basically reduces to the
verification of the hypotheses of Fortin’s lemma (cf. [30, Lemma 2.6]), which makes use of an
elliptic regularity result in convex domains, and the main properties of the Raviart-Thomas

interpolation operator. O]

We complete the accomplishment of the hypothesis (H.6) by remarking that the existence
of 1o € H(l)éZ(Z) satisfying (11.15) is guaranteed at the beginning of [37, Section 5.3]. In
particular, this holds if the sequence of subspaces {A5(2)}s~0 is nested, which is confirmed
below when defining A7 (X). Thus, 104 can be constructed as indicated in the proof of Lemma

10.7. A similar procedure applies to the 3D case.
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12.2 The spaces A7 (X) and AP (X) and the remaining hy-

potheses in 2D

We now introduce the particular subspaces A% (¥) and AP(X) in 2D by following the simplest
approach suggested in [37]. Indeed, we first assume, without loss of generality, that the number
of edges of ¥, is even, and let ¥g;, be the partition of ¥ arising by joining pairs of adjacent edges
of ;. Since ¥, is inherited from the interior triangulations, it is automatically of bounded
variation, which means that ratio of lengths of adjacent edges is bounded, and, therefore, so
is Yop. Now, if the number of edges of ¥, were odd, we simply reduce it to the even case by
joining any pair of two adjacent elements, and then construct g, from this reduced partition.

In this way, denoting by xy and xy the extreme points of ¥, we set

AS(®) = {6 eC(D): €leePile) VedgeeeSu, &lwo) = &lon) = 0},
AP (D) = {ﬁh eC(X): &uleePi(e) VYV edgeee Egh} :
We now aim to establish the discrete inf-sup conditions (11.22) (or (11.12)) and (11.23)
by applying Lemma 11.5. To this end, we suppose from now on that {7715}]»0 and {771D}h>0
are quasi-uniform in a neighborhood of . More precisely, we assume that there is an open

neighborhood of X, say s, with Lipschitz-continuous boundary 02y, such that the elements

intersecting that region are roughly of the same size. In other words, defining
Ths = {Tefr,fuﬁf; TmQEsé@}, (12.5)
there exists a positive ¢, independent of h, such that

max hy < ¢ min hp. (12.6)
TeTh,x T€Th,s

Under this quasi-uniformity condition, it was proved in [37, Lemma 5.1 that there exist

stable discrete lifting operators L} to ,, = € {S,D}, satisfying (11.26). Moreover, as a
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consequence of this result, it is easy to see that both ®%(X) and ®P(X2) (cf. (11.25)) coincide
with

O(%) = {gbh e12(X):  dul e Pole) V¥ edgeee zh} . (12.7)
Hence, a straightforward application of Lemma 11.5 implies that, in order to conclude (11.24),

which in turn yields (11.22) and (11.23), it suffices to show (11.27). In fact, this latter result,

taken from [37], is stated as follows.

Lemma 12.3. There exists a positive constant 3% > 0, independent of h, such that

sup <¢h7 €h>2

oncen |On]—1/2,5
on#0

> B5&nlhzs Ve e AJ(D) U AL(D).

Proof. See [37, Lemma 5.2] for details. O

As previously remarked, Lemma 12.3 yields, in particular, the verification of (11.22), which
is the same as (11.12), and thus (H.4) is accomplished. Similarly, having as well (11.23), a
suitable combination of this inequality with the discrete inf-sup condition provided by Lemma
12.1 leads to (H.5), that is to (11.13), with a constant 8§ depending only on 8§, (cf. Lemma
12.1) and 85, (cf. (11.23)).

12.3 The spaces A7 (X)) and A”(Y) and the remaining hy-

potheses in 3D

In order to set the particular subspaces A (3) and AP (X)) in the 3D case, we need to introduce
an independent triangulation X; of ¥, made up of triangles K of diameter }ALK, so that we set
the meshsize 7 := max {?LK . Ke 22}' Then, denoting by 0% the polygonal boundary of X,

we define

AS(D) = {gﬁeC(z); GlePy(K) YKeX;, & =0 on az},

AP(R) = {gﬁe(J(z): & i € Pr(K) VKGE@}.
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Next, as in Section 12.2, we assume here that the families {’ELS } oo and {ED } Lo € quasi-
uniform as well in a neighborhood of ¥. Hence, proceeding similarly to the proof of [37, Lemma
5.1], it was proved in [3, Lemma 4.4] that there exist stable discrete lifting operators L} to €2,
* € {S,D}, satisfying the 3D version of (11.26). Moreover, since ¥ is the partition of X
inherited from 7,;° (or 7,”), made up of triangles K of diameter hg, we set the respective
meshsize hy, := max {hx : K € 5,}, and observe, as for the 2D case, that both ®3(X) and
PP (3) (cf. (11.25)) coincide with the 3D version of (12.7), that is

O, (%) = {gbh eL2(D): ol € Po(K) Vtriangle K € Eh} . (12.8)

Consequently, applying again Lemma 11.5 we conclude, by means of (11.24), that (11.22) and
(11.23) follow from the 3D version of (11.27), which is stated below.

Lemma 12.4. There exist positive constants s and Cy, independent of h, such that for all

hy < CngL there holds

¢ 7§A
sup On Gz > B5 &Gy V&€ AS(E) v AED(E) .
e (o |Pnl-1/25

h

Proof. We refer to [3, Lemma 4.5] for full details (see also part of the proof of [33, Lemma
7.5)). O

The discussion regarding the consequent accomplishment of (H.4) and (H.5) in the present
3D case is analogous to the one given at the end of Section 12.2, the only difference being now

the incorporation of the restriction hy < Cj h in the respective statements.

12.4 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (11.4) with the specific finite
element subspaces introduced in Sections 12.1, 12.2, and 12.3. For this purpose, we collect next
the respective approximation properties (cf. [27], [30]) under the notational convention that in

2D, h, AS(E), and AS(Z) mean h, AP(X), and A7 (), respectively:
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(AP;;LS ) there exists a positive constant C, independent of h, such that for each ¢ € [0, 1], and
for each rg € H2(Qg) n L2 (Qg), there holds

dist(rs, L2, ,(25)) < Ch?rs] 0,

(AP,”) there exists a positive constant C, independent of h, such that for each ¢ € (0, 1], and

for each vp € He(Qp) n Hy(div; Qp) with div(vp) € H?(2p), there holds

dist(vp, Hio(@)) < Ch¢{IVnlan, + ldiv(vo)loa, }

(AP7*) there exists a positive constant C', independent of h, such that for each g € (0,1], and

for each 75 € H?(Qg) N Hy(divys; Qs) with div(rs) € We43(Qg), there holds

dist (s, Ho(2s)) < Ch? {|mslpes + [div(rs)lpamos }

(AP%) there exists a positive constant C', independent of h and ?L, such that for each p € [0, 1],

and for each ¢ € H/27¢(X), there holds

dist(&,AP(2)) < CR|€] 1240,

(AP,*) there exists a positive constant C', independent of h, such that for each g € [0, 1], and
for each vg € We4(Q), there holds

dist (Vs, Li(Qs)) < Ch?|vs|ouns

(AP%‘O > there exists a positive constant C', independent of h and /l%, such that for each p € [0, 1],

and for each 1 € H/2¢(%) n H(l)éQ(E), there holds

dist(v, AS (%)) < CR2 )15
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(AP?P) there exists a positive constant C', independent of h, such that for each ¢ € [0, 1], and

for each gp € H?(Q2p) n L2(Q2p), there holds

dist (qD, LZ7O(QD)) < Ch?|gplleap -

The rates of convergence of (11.4) are now established by the following theorem.

Theorem 12.5. Let ((t,&,d),p) € H x Q and ((ty, &, 6y, )Pr) € Hy x Q be the unique
solutions of (10.9) (or (10.17)) and (11.4) (or (11.5)), with ug € W and ugy, € W;,, whose
existences are gquaranteed by Theorems 10.11 and 11.4, respectively. In turn, let p and p, given
by (9.4) and (11.37), respectively. Assume the hypotheses of Theorem 11.6, and that there exists
o€ (0,1] such that ts € He(Qs) n L2 (Qs), up € H2(Qp) n Ho(div; Qp), div(up) € He(Qp),
os € H(Qs) n Hy(divys; Qs), div(os) € We3(Qg), A € H/2¢(T), ug € W4 (Qg),
o € HV/2e(S) A HYZ(S), and pp € Ho(Qp) n L2(Qp). Then, there exists a positive constant
C, independent of h, such that

“(€7&a u,p) — (Eh, &h7ﬁhaﬁh)HHxQ + |lps _pS,hHO,QS
< C{n? (Itslons + unlon, + [div(un)lpe, + losloos + 1Aiv(es) | psos

+ Juslosos + polaan ) + 3¢ (INhasas + lelyzras) |

Proof. 1t follows straightforwardly from the Céa estimate (11.39) and the approximation prop-
erties (AP, (APIP), (APJS), (APY), (AP}, (AP%) and (AP??). O



CHAPTER 13

Computational results

In this chapter we present numerical results that illustrate the behavior of the Galerkin scheme
(11.4). The computational implementation is based on a FreeFem++ code (cf. [41]) and the use
of the direct linear solvers UMFPACK (cf. [23]). The iterative method comes straightforwardly
from the discrete fixed-point strategy along with a Newton-type method. Then, as a stopping
criteria, we finish the algorithm when the relative error between two consecutive iterations of

the complete coefficient vector coeff is small enough, that is

coe — coe 2
ﬂ'erl ﬂ'm
|lcoeff™ |2

< tol,

where | - |2 stands for the usual Euclidean norm in R%® with dof denoting the total num-

ber of degrees of freedom defining the finite element subspaces L, ,(Qs), Hro(Qs), Li(Qs),

113
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H, o(div; Qp), A%(E), Af(E), and L3 ,(Qp). Subsequently, errors are defined as follows:

e(ts) := [ts —tsnlons. elos) == [os —osnlaivizns, e(us) == [us —usnlosos,
e(up) := [up —uppfavia,, eN) == [A=Nlips, elp) = le— @il
e(pp) == |pp —PD,hHo,QD-

Again, hereafter, ﬁ, Af(E), and Ag(Z) mean h, AP(X), and A (X), respectively, in 2D. Notice
that, for ease of computation, and owing to the fact that H/?(X) is the interpolation space with
index 1/2 between H'(X) and L?(X), the interface norm [A—\; 12,5 is replaced by [|A—\;[|0.1),5,

where

1/2 1/2
1€l ons = [€lo= [€]Ve Ve e HY(E).

Similarly, the interface norm | — s 1/2,00;x is replaced by [l —@p(0,1),=- In turn, convergence

rates are set as

_ log(e(x)/e'(*)

r(*) = log(h/h) Vx e {ts,os,us,up,, A\, pp},

where e and ¢’ denote errors computed on two consecutive meshes of sizes h and b/, respectively.
In addition, we refer to the number of degrees of freedom and the number of Newton iterations

as dof and iter, respectively.

13.1 Example 1: Tombstone-shaped domain.

In our first example, a minor modification of [17, Example 1], we consider a porous unit square,

coupled with a semi-disk-shaped fluid domain, that is,

Qp = (-0.5,0.5)> and Qg := {(ml,xg): r] + (22 — 0.5) < 0.25, x5 > 0.5}.
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We set the model parameters

K := 1071, p:=1, w = 1.0,

and choose the data fg, gg, and fp such that the variable viscosity is defined as

1
Vug) =2 + ———,
M( S) 1+ |Vllg’
where the exact solution in the domain 2 := Qg U ¥ U Qp is given by the smooth functions

. _ sin(mzy) cos(mzs)
ps(x) = sin(mzy)sin(rzs), ug(x) = Vx = (21,22) € Qg,
— cos(mxy) sin(mwzs)

pp(x) = cos(mzy) exp(za — 0.5), and up(x) = —KVpp(x) YVx:=(z1,22) €Qp.

Notice that ug, being the curl of a smooth function, satisfies the incompressibility condition,
and also ug-n = 0 on I'p. Table 13.1 shows the convergence history for a sequence of quasi-
uniform mesh refinements, including the resulting number of Newton iterations. According to
the polynomial degree employed, the respective sets of finite element subspaces are denoted
Py — RTy — Py — P; and RTy, — Py — Py, for the fluid and the porous medium, respectively.
This example confirms the theoretical rate of convergence O(h) provided by Theorem 12.5
with ¢ = 1. In addition, the aforementioned number of Newton iterations required to reach the
convergence criterion based on the residuals with a tolerance of le — 8, was equal to 4 in all

runs. Finally, samples of approximate solutions are shown in Figure 13.1.

13.2 Example 2: air flow through a filter.

This example is similar to the one presented in [44, Section 4] (see also [19]). More precisely,
we apply our mixed method to simulate air flow through a filter. To this end, we consider a
two-dimensional channel with lenght 0.75m and width 0.25m which is partially blocked by a
rectangular porous medium of length 0.25m and width 0.2m as shown in Figure 13.2, with

boundaries I's = [ U TP U [ U Thettem and Thytom .= ', The permeability tensor in the
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IPO — RTO — PO — Pl and RTO — PO - P1
e(ts) |r(ts)| elos) |r(os)| e(us) |r(us) | elp) |r(p)| elps) |rps)

3.18e — 01 * 1.75e + 00 * 1.27e — 01 * 3.24e — 01 * 2.65e — 01 *
1.63e —01 | 1.08 | 8.83e—01| 1.11 | 6.2le—02| 1.15 | 1.64e—01 | 1.10 | 1.26e — 01 | 1.21
8.32e —02 | 0.96 | 4.46e—01| 0.98 | 3.12e—02 | 0.98 | 8.28¢e—02| 0.98 | 6.31e —02 | 0.98
4.16e — 02 | 1.05 | 2.23e—01 | 1.05 | 1.57e —02 | 1.05 | 4.16e —02 | 1.05 | 3.24e — 02 | 1.01
2.06e —02 | 1.01 | 1.10e—=01| 1.02 | 7.78—03 | 1.01 | 2.08e —02 | 1.00 | 1.58e — 02 | 1.03
1.04e — 02 | 1.08 | 5.54e—02 | 1.09 | 3.89¢ —03 | 1.10 | 1.05e —02 | 1.09 | 7.78¢ — 03 | 1.08

e(up) r(up) e(pp) r(pp) e(N) r(A) | dof | iter

2.28e — 04 * 5.23e — 02 * 2.50e — 01 * 731

1.06e —04 | 1.23 |229¢—02 | 1.26 | 1.26e —01 | 1.02 | 2659
425 —-05] 1.36 | 1.05e—02 | 1.16 | 4.99¢e —02 | 1.38 | 10460
2.00e — 05 | 1.08 | 5.00e —03 | 1.05 | 2.33e —02 | 1.09 | 41804
9.94e —06 | 1.58 | 2.53e—03 | 1.54 | 1.19e — 02 | 1.52 | 167808
4.95e —06 | 0.93 | 1.27e —03 | 0.93 | 5.79¢ — 03 | 0.97 | 660726

[ N

Table 13.1: Example 1, convergence history and Newton iteration count for the fully-mixed
approximations of the Navier—Stokes/Darcy equations with variable viscosity, and convergence
of the Pg-approximation of the postprocessed pressure field.

[us r]2

-0.0
-0.2:I

04—

-0.6

-0.8

-1.0

[up, ]2

E—

Ps,n |ts, nl ! los,nl
. -1.0 -0.5 0.0 0.5 1.0 s.hl 004 110 220 330 4.44 S.hl 040 2.00 4.00 6.00 800 9.86

Figure 13.1: Example 1, domain configuration, approximated velocity component, Darcy pres-
sure field, Navier—Stokes pressure field, spectral norm of the Navier—Stokes velocity gradient
and pseudo-stress tensor.
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porous medium is given as

sk 0 . ' cos(f) —sin(6)
K = R(0) R™(0), with R(0) =
0 & sin(f)  cos(6)
where the angle & = —45°, the anisotropy ratio § = 100, and = 107°m2.  In turn,

p = 1225 x107° Mg/m3, wy; = 1.0, and the top and bottom of the domain are impermeable
walls. The flow is driven with an inlet mean velocity of 0.25 m/s. The force terms fg and fp

are set to zero. As motivated again by [17], the viscosity follows the Carreau law given by
po= 1.81 +1.81(1 + |tg]?) " x 107° Pas, (13.1)

whereas the boundary conditions are

Ug = [6 Uin, S E(l - E), 0] on Fg} , Ug = 0 on FSOP U Fgottom ,
osn =0 on F%ut’ up-n =0 on F%ottom’

with u;, s = 0.25 m/s and d = 0.2 m. We stress here that, because of the fully nonlinear
character of p (cf. (13.1)), which depends on the unknown fluid velocity gradient tg := Vug, the
use of the Newton method to solve the corresponding Galerkin scheme (11.4) implies linearizing
not only the convective term given by the form b (cf. (10.11)), but also the one arising from
the form a (cf. (10.10)). In addition, we remark that the analysis developed in the previous
chapters can be extended, with minor modifications, to the case of mixed boundary conditions
considered in this example. Now, using again a sequence of quasi-uniform mesh refinements, we
find that the number of Newton iterations required to reach the convergence criterion, based
on the residuals with a tolerance of le — 8, is 7. In Fig. 13.2 we display various components
of the computed solution. As we expected, the top-left panel shows an increment in air flow
in the surrounding region above the filter. This is caused by the flow resistance in the porous
medium. The effect of anisotropy is also evident, as the air flow that passes through the porous

block aligns with the angle § = —45°. In other words, the flow follows the inclined principal
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B N

|los,nla]

0000 0.009 0018 0027 0.037

"A “
L

\
|[(’5’1]2|000 001 002 003 004 005

Ps.h 0005 0006 0016 0027 0037PD”

Figure 13.2: Example 2, approximated magnitude of the velocities (top-left), first rows (top-
right) and second rows (bottom-left) of the pseudostress tensor with vector directions, and
pressure fields (bottom-right).

direction of the permeability tensor. Furthermore, a continuous normal velocity is observed
across all three interfaces, whereas the tangential velocity is discontinuous, especially at the
interfaces with higher fluid velocity. This observation aligns with the continuity of flux and the
BJS interface conditions. We also observe that the pressure drop is visible through the domain.
Again, the effect of anisotropy is visible due to the inclined pressure drop in the porous domain.
The pseudostress tensor ogy, is larger along the I'® boundary and zero at the I'd* boundary,

which is consistent with the boundary condition ogn =0 on I'g™.



CHAPTER 14

Conclusions and Future Works

In this chapter we summarize the main contributions of this work and give a brief description

of eventual future works.

14.1 Conclusions

Upon the results presented in the first part of this thesis, we arrive at the following conclusions:

o We developed a new mixed formulation for the Navier-Stokes equations with variable
viscosity that depends nonlinearly on the velocity gradient, whose analysis made use of

diverse tools and abstract results in Banach spaces.

o We proved that is not necessary to use an augmented formulation to provide well posed-

ness of the continuous and discrete formulations.

o The well-posedness of the continuous formulation was proved using a fixed point strategy

in combination with the Banach theorem.

119
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« An analogous approach is employed to conclude the existence and uniqueness of a solution

for the associated Galerkin scheme. In addition, a priori error estimates are derived.

o We used Raviart-Thomas elements of order ¢ with their respective convergence rates,

followed by several numerical experiments that confirmed the theoretical error bounds.

According to the results presented in the second part of this work, we can state the following

conclusions:

o We develop a new mixed formulation in Banach spaces for the coupled problem given by

Navier—Stokes and Darcy equations.

o We consider a similar approach to that presented in the first part for the Navier-Stokes

domain and adapt it to the coupled Navier-Stokes/Darcy problem.

o Finally, several numerical results illustrating the good performance of the method in 2D

and confirming the theoretical findings are reported.

14.2 Future Works

The methods developed and the results obtained here have motivated some possibilities of

future work, which are described below:

o To extend the analysis of the coupled Navier—Stokes and Darcy equations with nonlinear

viscosity.
e To develop the corresponding a posteriori error analyses for some of the above models.

o To extend the analysis and results to the time dependent case.
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