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Abstract

This work consists of two main parts. In the first part we propose and analyze a mixed

variational formulation for the Navier-Stokes equations with variable viscosity that depends

nonlinearly on the velocity gradient. Differently from previous works in which augmented

terms are added to the formulation, here we employ a technique that had been previously

applied to the stationary Boussinesq problem and the Navier-Stokes equations with constant

viscosity. Firstly, a modified pseudostress tensor is introduced involving the diffusive and

convective terms, and the pressure. Secondly, by using the incompressibility condition, the

pressure is eliminated, and the gradient of velocity is incorporated as an auxiliary unknown to

handle the aforementioned nonlinearity. As a consequence, a Banach spaces-based formulation

is obtained, which can be written as a perturbed twofold saddle point operator equation. We

address the continuous and discrete solvability of this problem by linearizing the perturbation

and employing a fixed-point approach along with a particular case of a known abstract theory.

Given an integer ` ě 0, feasible choices of finite element subspaces include discontinuous

piecewise polynomials of degree ď ` for each entry of the velocity gradient, Raviart-Thomas

spaces of order ` for the pseudostress, and discontinuous piecewise polynomials of degree ď `

for the velocity as well. Finally, optimal a priori error estimates are derived, and several

numerical results confirming in general the theoretical rates of convergence, and illustrating the

good performance of the scheme, are reported. This part yielded the following work already

published:

I. Bermúdez, C.I. Correa, G.N. Gatica and J.P. Silva, A perturbed twofold saddle

point-based mixed finite element method for the Navier-Stokes equations with variable viscosity.

Appl. Numer. Math. 201 (2024), 465–487.

On the other hand, in the second part we propose and analyze a new fully-mixed finite

element method for the coupled model arising from the Navier-Stokes equations, with variable

viscosity, in an incompressible fluid, and the Darcy equations in an adjacent porous medium,

so that suitable transmission conditions are considered on the corresponding interface. The

approach is based on the introduction of the further unknowns in the fluid given by the veloc-
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ity gradient and the pseudostress tensor, where the latter includes the respective diffusive and

convective terms. The above allows the elimination from the system of the fluid pressure, which

can be calculated later on via a postprocessing formula. In addition, the traces of the fluid

velocity and the Darcy pressure become the Lagrange multipliers enforcing weakly the interface

conditions. In this way, the resulting variational formulation is given by a nonlinear perturba-

tion of a threefold saddle-point operator equation, where the saddle-point in the middle of them

is, in turn, perturbed. A fixed-point strategy along with the generalized Babuška-Brezzi the-

ory, a related abstract result for perturbed saddle-point problems, the Banach-Nečas-Babuška

theorem, and the Banach fixed-point theorem, are employed to prove the well-posedness of the

continuous and Galerkin schemes. In particular, Raviart-Thomas and piecewise polynomial

subspaces of the lowest degree for the domain unknowns, as well as continuous piecewise linear

polynomials for the Lagrange multipliers on the interface, constitute a feasible choice of the

finite element subspaces. Optimal error estimates and associated rates of convergence are then

established. Finally, several numerical results illustrating the good performance of the method

in 2D and confirming the theoretical findings are reported. This part yielded the following

work, presently submitted:

I. Bermúdez, G.N. Gatica and J.P. Silva, A new Banach spaces-based mixed finite ele-

ment method for the coupled Navier-Stokes and Darcy equations. Preprint 2025-08, Centro de

Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile, (2025).
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CHAPTER 1

Introduction

The development of Banach spaces-based mixed finite element methods for Newtonian and

non-Newtonian incompressible fluids has received special attention by the community of nu-

merical analysts of partial differential equations during the last decade. Indeed, in this paper

we are interested in the Navier-Stokes problem with nonlinear viscosity, which refers to the

mathematical description of the motion of a fluid whose viscosity coefficient is not constant but

rather varies with respect to position and/or time. This problem is certainly more complex

than the conventional Navier-Stokes problem for Newtonian fluids with constant viscosity since,

in addition to the non-linearity arising from the convective term, one has to deal now with the

one coming from the viscosity as well. In this sense, and according to what we have experienced

in some of our own related contributions, the use of nonlinear saddle point formulations in Ba-

nach spaces has shown to be much more suitable for the corresponding continuous and discrete

analyses than, for instance, classical Hilbertian approaches. In the context of augmentation

techniques, mixed finite element methods for solving the Navier-Stokes equations with a vis-

cosity that depends non-linearly on the magnitude of the velocity gradient have been recently

2
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introduced and analyzed in [11, 9]. In the first approach, the modified pseudostress tensor used

in [10] is employed, which, like the one from [42], involves diffusive and convective terms as

well as the pressure. The second approach takes into account the dependence of the viscosity

on the strain rate tensor, resulting in a more physically relevant model that incorporates both

deformation and vorticity as auxiliary unknowns. Additionally, in both works, the pressure

unknown is eliminated through an equivalent statement implied by the incompressibility condi-

tion. In turn, due to the convective term, and in order to stay within a Hilbertian framework,

the velocity is sought in the Sobolev space of order 1, which requires to augment the variational

formulation with additional Galerkin-type terms arising from the constitutive and equilibrium

equations. While the augmented methods avoid the need of proving continuous and discrete

inf-sup conditions, thus allowing much more flexibility for choosing the finite element subspaces,

it is no less true that the resulting Galerkin schemes and their corresponding computational im-

plementations increase considerably in complexity, which leads to much more expensive discrete

systems. This is the main reason for discouraging the use of augmented procedures. Regarding

nonlinear twofold saddle point operator equations, also known as dual-dual variational formu-

lations, there has been a diverse range of theories developed over the past two decades. These

theories arose from the need of applying dual-mixed methods to a class of nonlinear boundary

value problems in continuum mechanics. In [31], the Babuška-Brezzi theory in Hilbert spaces is

generalized to a class of nonlinear variational problems, and in [32], a natural extension of the

abstract framework for continuous and discrete nonlinear twofold saddle point formulations is

derived. More recently, a fully-mixed finite element method has been developed and analyzed

for the coupling of the Stokes and Darcy-Forchheimer problems in [1]. This method was later

extended to the coupling of the Navier-Stokes and Darcy-Forchheimer problems with constant

density and viscosity in [18]. The main novelty of these works is the use of a new approach

that leads to Banach spaces and a twofold saddle point structure for the equation of the cor-

responding operator. The continuous and discrete solvabilities of this structure are analyzed

in both papers using a suitable abstract theory developed for this purpose in the context of

separable reflexive Banach spaces.

According to the previous discussion, the goal of the present paper is to extend the applica-
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bility of the Banach spaces framework discussed above by introducing a fully-mixed formulation

for the Navier-Stokes equations with constant density and variable viscosity, without any aug-

mentation procedure. The analysis and results from [18] are used to achieve this goal. The

paper proves the well-posedness and uniqueness of both the continuous and discrete formula-

tions using a fixed point argument and an abstract theory for twofold saddle point problems.

An a priori analysis is also performed, and optimal rates of convergence are derived. Given an

integer ` ě 0, discontinuous piecewise polynomials of degree ď ` for each entry of the velocity

gradient, Raviart-Thomas spaces of order ` for the pseudostress, and discontinuous piecewise

polynomials of degree ď ` for the velocity are feasible choices. The paper is structured as

follows. In the rest of this chapter, we provide an overview of the standard notation and func-

tional spaces that will be utilized throughout the paper. In Chapter 2 we introduce the model

problem of interest and define the unknown to be considered in the variational formulation.

Subsequently, in Chapter 3 we identify the twofold saddle-point structure of the corresponding

variational system. We then proceed to analyze the continuous solvability and the equivalent

fixed point setting in Chapter 4, and present the corresponding well-posedness result, assuming

sufficiently small data. In Chapter 5, we investigate the associated Galerkin scheme by utilizing

a discrete version of the fixed point strategy developed in Chapter 4 for the continuous case.

Additionally, we derive the associated a priori error estimate in the same chapter. Furthermore,

in Chapter 6 we specify particular choices of discrete subspaces that satisfy the hypotheses from

Chapter 4 and provide the rates of convergence of the Galerkin schemes. Finally, we present

several numerical examples in Chapter 7, which illustrate the good performance of the fully

mixed finite element method and confirm the theoretical rates of convergence.

1.1 Preliminary notations

Let Ω Ă Rn, n P t2, 3u, be a bounded domain with polyhedral boundary Γ, and let n be the

outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces LppΩq

and Sobolev spaces Ws,ppΩq, with s P R and p ą 1, whose corresponding norms, either for the

scalar, vectorial, or tensorial case, are denoted by }¨}0,p;Ω and }¨}s,p;Ω, respectively. In particular,
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given a non-negative integer m, Wm,2pΩq is also denoted by HmpΩq, and the notations of its

norm and seminorm are simplified to || ¨ ||m,Ω and | ¨ |m,Ω, respectively. In addition, H1{2pΓq is

the space of traces of functions of H1pΩq, and H´1{2pΓq denotes its dual. On the other hand,

given any generic scalar functional space S, we let S and S be the corresponding vectorial and

tensorial counterparts, whereas } ¨ }, with no subscripts, will be employed for the norm of any

element or operator whenever there is no confusion about the space to which they belong. Also,

| ¨ | denotes the Euclidean norm in both Rn and Rnˆn, and as usual, I stands for the identity

tensor in Rnˆn. In turn, for any vector fields v “ pviqi“1,n and w “ pwiqi“1,n, we set the

gradient, divergence, and tensor product operators, as

∇v : “

ˆ

Bvi

Bxj

˙

i,j “ 1,n

, divpvq : “

n
ÿ

j “ 1

Bvj

Bxj

, and v b w : “ pviwjqi,j “ 1,n .

Additionally, for any tensor fields τ “ pτijqi,j “ 1,n and ζ “ pζijqi,j “ 1,n, we let divpτ q be the

divergence operator div acting along the rows of τ , and define the transpose, the trace, the

tensor inner product operators, and the deviatoric tensor, respectively, as

τ t
“ pτjiqi,j “ 1,n, trpτ q “

n
ÿ

i “ 1
τii, τ : ζ : “

n
ÿ

i,j “ 1
τijζij , and τ d : “ τ ´

1
n

trpτ qI .

On the other hand, given t P p1,`8q, we also introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P Lt

pΩq

)

,

Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P Lt

pΩq

)

,

which are endowed with the natural norms defined, respectively, by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq ,

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .
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Then, proceeding as in [30, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [20, Section

3.1]), it is easy to show that for each t P

$

&

%

p1,`8s if n “ 2

r6{5,`8s if n “ 3
, there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1
pΩq , (1.1)

and analogously

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1
pΩq , (1.2)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq, as well as between

H´1{2pΓq and H1{2pΓq. We find it important to stress here, as explained in the aforementioned

references, that the second term on the right-hand side of (1.1) (resp. (1.2)) is well-defined

because of the continuous embedding of H1pΩq (resp. H1pΩq) into Lt1

pΩq (resp. Lt1

pΩq), where

t1 is the conjugate of t, that is t1 P r1,`8q such that 1
t

` 1
t1 “ 1, which reduces to

t1 P

$

&

%

r1,`8q if n “ 2

r1, 6s if n “ 3
,



CHAPTER 2

The model problem

In what follows we consider the Navier-Stokes problem with variable viscosity consists of finding

the velocity u and the pressure p of a fluid occupying the region Ω, such that

´divpµp|∇u|q∇uq ` p∇uqu ` ∇p “ f in Ω ,

divpuq “ 0 in Ω , u “ g on Γ ,
ż

Ω
p “ 0 ,

(2.1)

where the given data are a function µ : R` ÝÑ R` describing the nonlinear viscosity, a volume

force f , and the boundary velocity g. The right spaces to which f and g need to belong are

specified later on. Note that g must formally satisfy the compatibility condition

ż

Γ
g ¨ ν “ 0, (2.2)

7
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which arises from the incompressibility condition of the fluid. In addition, for the uniqueness

of the pressure p in (2.1) we seek this unknown in the space

L2
0pΩq “

"

q P L2
pΩq :

ż

Ω
q “ 0

*

. (2.3)

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 ą 0, such

that

µ1 ď µpsq ď µ2 and µ1 ď µpsq ` sµ1
psq ď µ2 s ě 0 , (2.4)

which, according to the result provided by [40, Theorem 3.8], imply Lipschitz continuity and

strong monotonicity of the nonlinear operator induced by µ, which is defined later on (cf.

(3.8)). We will go back to this fact in Chapter 4. Also, it is important to remark here that the

assumptions in (2.4) constitute the most commonly used sufficient conditions guaranteeing the

aforementioned nonlinear operator to be Lipschitz-continuous and strongly monotone, which

are, actually, the properties to be employed in our analysis. Some examples of nonlinear µ

satisfying (2.4) are the following:

µpsq : “ 2 `
1

1 ` s
and µpsq :“ α0 ` α1p1 ` s2

q
pβ´2q{2, (2.5)

where α0 , α1 ą 0 and β P r1, 2s. The first example is basically academic but the second one

corresponds to a particular case of the well-known Carreau law in fluid mechanics. It is easy to

see that they both satisfy (2.4) with pµ1, µ2q “ p2, 3q and pµ1, µ2q “ pα0, α0 `α1q, respectively.

The forthcoming analysis also applies to the slightly more general case of a viscosity function

acting on Ω ˆ R`. Next, proceeding similarly as in [11], we introduce the pseudostress tensor

unknown, which is defined by

σ : “ µp|∇u|q∇u ´ pu b uq ´ pI in Ω . (2.6)
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In this way, noting that divpu b uq “ p∇uqu, which makes uses of the fact that divpuq “ 0,

we find that the first equation of (2.1) can be rewritten as

´divpσq “ f in Ω .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (2.6),

which can be understood as the constitutive equation expressing σ in terms of u, that the

latter and the incompressibility condition are equivalent to the pair

σd
“ µp|∇u|q∇u ´ pu b uq

d in Ω , and

p “ ´
1
n

tr
`

σ ` pu b uq
˘

in Ω .
(2.7)

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by

the postprocessed formula suggested in (2.7), we arrive, at first instance, at the following system

of equations with unknowns u and σ:

σd
“ µp|∇u|q∇u ´ pu b uq

d in Ω ,

´divpσq “ f in Ω , u “ g on Γ ,
ż

Ω
tr
`

σ ` pu b uq
˘

“ 0 .
(2.8)

Finally, since we are interested in a mixed variational formulation of our nonlinear problem,

and in order to employ the integration by parts formula typically required by this approach,

we introduce the auxiliary unknown t :“ ∇u in Ω. Consequently, instead of (2.8), we consider

from now the set of equations with unknowns t, u, and σ, given by

t “ ∇u in Ω , σd
“ µp|t|qt ´ pu b uq

d in Ω ,

´divpσq “ f in Ω , u “ g on Γ ,
ż

Ω
tr
`

σ ` pu b uq
˘

“ 0 .
(2.9)

Note that the incompressibility condition 0 “ divpuq “ trptq is implicitly contained in the

second equation of the first row of (2.9) since the matrix trace of each deviatoric tensor is 0.

We end this chapter by noticing that the formulation described by (2.9) is restricted to

Dirichet boundary conditions only. In the case of Neumann boundary conditions, for instance,
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one would need either to consider a symmetric stress tensor instead of the present pseudostress,

or use the latter to rewrite the condition in terms of it. However, it is not clear in advance

a physical justification for having both tensors an advective component when imposing that

condition.



CHAPTER 3

The fully mixed formulation

In this chapter we derive a Banach spaces-based fully-mixed formulation of (2.9). The integra-

tion by parts formula provided by (1.2), along with the Cauchy-Schwarz and Hölder inequalities,

play a key role in this derivation. We begin by looking originally for u P H1pΩq. Then, mul-

tiplying the first equation of (2.9) by τ P Hpdivt; Ωq, with t P

$

&

%

p1,`8q if n “ 2

r6{5,`8q if n “ 3
,

applying the integration by parts formula (1.2), and using the Dirichlet boundary conditions

for u, which implicity assumes that g P H1{2pΓq, we find

ż

Ω
τ : t `

ż

Ω
u ¨ divpτ q “ xτ ν,gyΓ @ τ P Hpdivt; Ωq . (3.1)

It is clear from (3.1) that its first term is well defined for t P L2pΩq, which, along with the free

trace property of t, suggests to look for t P L2
trpΩq, where

L2
trpΩq :“

!

s P L2
pΩq : trpsq “ 0

)

. (3.2)

11
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In addition, knowing that divpτ q P LtpΩq, we realize from the second term and Hölder’s

inequality that it suffices to look for u P Lt1

pΩq, where t1 is the conjugate of t. Next, it follows

from the second equation of (2.9), that formally

ż

Ω
µp|t|qt : s ´

ż

Ω
σd : s ´

ż

Ω
pu b uq

d : s “ 0 @ s P L2
trpΩq , (3.3)

from which we notice that the first term is well-defined, whereas the second one makes sense if

σ is sought in L2pΩq. In turn, for the third one there holds

ˇ

ˇ

ˇ

ˇ

ż

Ω
pu b uq

d : s
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
pu b uq : s

ˇ

ˇ

ˇ

ˇ

ď }u}0,4;Ω }u}0,4;Ω }s}0,Ω , (3.4)

which, necessarily yields t1 “ 4, and thus t “ 4{3.

Certainly, one could also consider arbitrary indexes `, j P p1,`8q conjugate to each other,

and then take s P Lj
0pΩq (defined analogously to (3.2)) instead of s P L2

0pΩq in (3.4), thus

obtaining
ˇ

ˇ

ˇ

ˇ

ż

Ω
pu b uq : s

ˇ

ˇ

ˇ

ˇ

ď }u}0,2`;Ω }u}0,2`;Ω }s}0,j;Ω .

However, this would force all the remaining spaces involved to be modified, and particularly,

because of the first term in (3.3), one would have to look for t in L`
0pΩq. As a consequence, the

associated non-linear operator would not act from a Banach space onto its dual, which stops us

of applying monotone operators theory, as we know it, to perform the corresponding analysis.

This is the main reason for adopting here the simplest choice ` “ j “ 2.

Finally, looking for σ in the same space of its corresponding test function τ , that is σ P

Hpdiv4{3; Ωq, the equilibrium equation in (2.9) is tested as

´

ż

Ω
v ¨ divpσq “

ż

Ω
f ¨ v @ v P L4

pΩq , (3.5)

which forces f to belong to L4{3pΩq. Now we consider the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I ,
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where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :
ż

Ω
trpτ q “ 0

)

.

It follows that σ can be uniquely decomposed as σ “ σ0 ` c0I, where, according to the third

equation of the second row of (2.9),

σ0 P H0pdiv4{3; Ωq and c0 :“ 1
n|Ω|

ż

Ω
trpσq “ ´

1
n |Ω|

ż

Ω
trpu b uq . (3.6)

In this way, the constant c0 can be computed once the velocity is known, and hence it only

remains to obtain σ0. In this regard, we notice that (3.3) and (3.5) remain unchanged if

σ is replaced by σ0. In addition, thanks to the fact that t is sought in L2
trpΩq, and using

the compatibility condition (2.2), we realize that testing (3.1) against τ P Hpdiv4{3; Ωq is

equivalent to doing it against τ P H0pdiv4{3; Ωq. Thus, redenoting from now on σ0 as simply

σ P H0pdiv4{3; Ωq, and suitably gathering (3.1), (3.3) and (3.5), we arrive at the following

mixed formulation: Find pt,σ,uq P L2
trpΩq ˆ H0pdiv4{3; Ωq ˆ L4pΩq such that

ż

Ω
µp|t|qt : s ´

ż

Ω
σd : s ´

ż

Ω
pu b uq

d : s “ 0 @ s P L2
trpΩq,

´

ż

Ω
τ d : t ´

ż

Ω
u ¨ divpτ q “ ´xτν,gyΓ @ τ P H0pdiv4{3; Ωq,

´

ż

Ω
v ¨ divpσq “

ż

Ω
f ¨ v @ v P L4

pΩq.

(3.7)

Next, we observe that (3.7) has a perturbed twofold saddle point structure. Indeed, we first

define the Banach spaces

H1 :“ L2
trpΩq , H2 :“ H0pdiv4{3; Ωq , and Q :“ L4

pΩq ,

which are endowed with the norms } ¨ }0,Ω, } ¨ }div4{3;Ω, and } ¨ }0,4;Ω, respectively. Next, we

introduce the nonlinear operator A : H1 ÝÑ H1
1, and the bounded linear operators B1 : H1 ÝÑ H1

2
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and B : H2 ÝÑ Q1, given by

rAprq, ss :“
ż

Ω
µp|r|qr : s @ r, s P H1,

rB1psq, τ s :“ ´

ż

Ω
τ d : s @ ps, τ q P H1 ˆ H2,

rBpζq,vs :“ ´

ż

Ω
v ¨ divpζq @ pζ,vq P H2 ˆ Q.

(3.8)

Hereafter, r¨ , ¨s stands for the duality pairing between the corresponding Banach space involved

and its dual. In turn, G P H1
2, and F P Q1 are the bounded linear functionals defined by

rG, τ s :“ ´xτν,gyΓ @ τ P H2 ,

and

rF,vs :“
ż

Ω
f ¨ v @ v P Q .

Regarding the boundedness of G and F, we first observe, using the identity (1.2) and the

continuous injection i4 : H1pΩq ÝÑ L4pΩq, that

ˇ

ˇrG, τ s
ˇ

ˇ ď }rg}1{2,Γ }τ }div4{3;Ω @ τ P H2 . (3.9)

with rg :“ max
 

1, }i4}
(

g. In addition, it follows by Hölder’s inequality that

ˇ

ˇrF,vs
ˇ

ˇ ď }f}0,4{3;Ω }v}0,4;Ω @ v P Q . (3.10)

According to the above, the fully mixed formulation (3.7) can be rewritten as: Find pt,σ,uq P
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H1 ˆ H2 ˆ Q such that

rAptq, ss ` rB1psq,σs ´

ż

Ω
pu b uq

d : s “ 0 @ s P H1,

rB1ptq, τ s ` rBpτ q,us “ rG, τ s @ τ P H2,

rBpσq,vs “ rF,vs @ v P Q.

(3.11)



CHAPTER 4

The continuous solvability analysis

In this chapter, we analyze the solvability of (3.11) by applying a particular case of the more

general result provided by [18, Theorem 3.4].

4.1 The fixed-point strategy

We begin by rewriting (3.11) as an equivalent fixed point equation. To this end, we proceed to

linearize the perturbation (third term of the first equation of (3.11)) defining for each w P Q

the functional Hw : H1 Ñ R by

rHw, ss :“
ż

Ω
pw b wq

d : s @ s P H1, (4.1)

and let T : Q Ñ Q be the operator given by

Tpwq “ u @ w P Q, (4.2)

16
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where pt,σ,uq P H1 ˆ H2 ˆ Q is the unique solution (to be proved later on) of the following

system of equations:

rAptq, ss ` rB1psq,σs “ rHw, ss @ s P H1,

rB1ptq, τ s ` rBpτ q,us “ rG, τ s @ τ P H2,

rBpσq,vs “ rF,vs @ v P Q.

(4.3)

Thus, we realize that solving (3.11) is equivalent to finding a fixed point of T, that is u P Q

such that

Tpuq “ u.

4.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem

(4.3) is well-posed. To this end, and as already announced, we make use of the following

theorem.

Theorem 4.1. Let H1, H2, and Q be separable and reflexive Banach spaces, and let A : H1 ÝÑ

H1
1 be a nonlinear operator, and B1 : H1 ÝÑ H1

2 and B : H2 ÝÑ Q1 be bounded linear operators.

In addition, let K :“ NpBq and assume that

i) A : H1 ÝÑ H1
1 is Lipschitz continuous, that is there exists a constant γ ą 0 such that

}Aprq ´ Apsq}H1
1

ď γ }r ´ s}H1 @ r, s P H1 ,

ii) for each s P H1, the family of operators Ap¨ ` sq : H1 ÝÑ H1
1 is strictly monotone with a

monotonicity constant α ą 0, independent of s, that is

rApt ` sq ´ Apr ` sq, t ´ rs ě α }t ´ r}
2
H1 @ t, r P H1 ,
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iii) there exists a positive constant β such that

sup
τPH2
τ‰0

rBpτ q,vs

}τ }H2

ě β }v}Q @ v P Q , and

iv) there exists a positive constant β1 such that

sup
sPH1
s‰0

rB1psq, τ s

}s}H1

ě β1 }τ }H2 @ τ P K .

Then, for each pH,G,Fq P H1
1 ˆ H1

2 ˆ Q1 there exists a unique pt,σ,uq P H1 ˆ H2 ˆ Q solution

of
rAptq, ss ` rB1psq,σs “ rH, ss @ s P H1,

rB1ptq, τ s ` rBpτ q,us “ rG, τ s @ τ P H2,

rBpσq,vs “ rF,vs @ v P Q.

(4.4)

Moreover, there exists a constant C ą 0, depending only on γ, α, β, β1, }B1}, and }B1
1}, such

that

}pt,σ,uq}H1ˆH2ˆQ ď C
!

}H}H1
1

` }G}H1
2

` }F}Q1 ` }Ap0q}H1
1

)

. (4.5)

Proof. It follows from a straightforward application of [18, Theorem 3.4] to the particular case

p1 “ p2 “ 2 of exponents p1, p2 ě 2 that appear there when specifying more general continuity

and monotonicity properties.

Now, if A becomes linear, the above theorem is simplified by keeping iii) and iv) as such,

but assuming, instead of i) and ii), that A : H1 Ñ H1
1 is bounded and H1-elliptic, which means

that there exist constants γ, α ą 0 such that

}Apsq}H1
1

ď γ }s}H1 and rApsq, ss ě α }s}
2
H1 @ s P H1 .

Then, noting that the above certainly implies that A is Lipschitz continuous and strongly
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monotone, and that Ap0q “ 0, we conclude from Theorem 4.1 that for each pH,G,Fq P

H1
1 ˆ H1

2 ˆ Q1 there exists a unique pt,σ,uq P H1 ˆ H2 ˆ Q solution of (4.4). Moreover, there

exists a constant C ą 0, depending only on γ, α, β, β1, }B1}, and }B1
1}, such that

}pt,σ,uq}H1ˆH2ˆQ ď C
!

}H}H1
1

` }G}H1
2

` }F}Q1

)

. (4.6)

We remark here that (4.6) can be proved to be equivalent to an inf-sup condition involving

the left-hand sides of (4.4) in the linear case of A. Indeed, setting the notations ~r :“ pr,ρ,wq,

~s :“ ps, τ ,vq P H1 ˆ H2 ˆ Q, introducing the bounded bilinear form

Sp~r,~sq :“ rAprq, ss`rB1psq,ρs`rB1prq, τ s`rBpτ q,ws`rBpρq,vs @~r, ~s P H1ˆH2ˆQ , (4.7)

and defining the functionals H~r P H1
1, G~r P H1

2, and F~r P Q1 given by

H~rpsq :“ S
`

~r, ps,0,0q
˘

@ s P H1 , G~rpτ q :“ S
`

~r, p0, τ ,0q
˘

@ τ P H2 ,

and F~rpvq :“ S
`

~r, p0,0,vq
˘

@ v P Q ,

we readily observe that S can be decomposed as

Sp~r,~sq “ H~rpsq ` G~rpτ q ` F~rpvq @~r, ~s P H1 ˆ H2 ˆ Q .

Thus, it is not difficult to realize (see [21, Section 3.1, eqs. (3.6) - (3.8)] for a similar estimate)

that there holds the equivalence

1
3

!

}H~r}H1
1

` }G~r}H1
2

` }F~r}Q1

)

ď sup
~sPH1ˆH2ˆQ

~s‰0

Sp~r,~sq

}~s}H1ˆH2ˆQ

ď

!

}H~r}H1
1

` }G~r}H1
2

` }F~r}Q1

)

@~r P H1 ˆ H2 ˆ Q .

(4.8)

Consequently, noting that ~r P H1 ˆH2 ˆQ is certainly the solution of the linear version of (4.4)

with the right-hand side given by the functionals H~r P H1
1, G~r P H1

2, and F~r P Q1, we deduce

from (4.6) and the lower bound of (4.8) that there exists a constant rC ą 0, depending only on
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γ, α, β, β1, }B1}, and }B1
1}, such that

sup
~sPH1ˆH2ˆQ

~s‰0

Sp~r,~sq

}~s}H1ˆH2ˆQ
ě rC }~r}H1ˆH2ˆQ @~r P H1 ˆ H2 ˆ Q . (4.9)

Conversely, it is easy to see that (4.6) follows from (4.9) and the upper bound of (4.8).

We now verify that problem (4.3) satisfies the hypotheses of Theorem 4.1. To this end, in

what follows we establish the Lipschitz continuity and strong monotonicity of A, as well as the

continuous inf-sup conditions for B and B1.

Lemma 4.2. Let γµ :“ maxtµ2, 2µ2 ´µ1u, where µ1 and µ2 are the bounds of µ given in (2.4).

Then, for each r, s P L2pΩq, there hold the following inequalities:

}Aprq ´ Apsq}H1
1

ď γµ }r ´ s}H1 ,

and

rAprq ´ Apsq, r ´ ss ě µ1 }r ´ s}
2
H1 . (4.10)

Proof. See [40, Theorem 3.8] for details.

Lemma 4.3. There exists a constant β ą 0, such that

sup
τPH2
τ‰0

rBpτ q,vs

}τ }H2

ě β }v}Q @ v P Q.

Proof. See [35, Lemma 2.9] or [8, Lemma 3.5] for details.

In turn, in order to prove that B1 satisfies hypothesis iv), we need to employ a useful

estimate for tensors in H0pdiv4{3; Ωq. Indeed, suitably modifying the proof of [30, Lemma 2.3],

one can show that there exists a positive constant c4{3, depending only on Ω, such that

c4{3 }τ }0,Ω ď }τ d
}0,Ω ` }divpτ q}0,4{3;Ω @ τ P H0pdiv4{3; Ωq . (4.11)

Moreover, while (4.11) was first established in [8, Lemma 3.1], for sake of completeness we
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prove next a result that includes this inequality as a particular case.

Lemma 4.4. For each t P

$

&

%

p1,`8q if n “ 2

r6{5,`8q if n “ 3
, there exists a constant ct ą 0, depending

only on Ω, such that

ct }τ }0,Ω ď }τ d
}0,Ω ` }divpτ q}0,t;Ω @ τ P H0pdivt; Ωq . (4.12)

Proof. We begin by stressing that, exactly as for [30, Lemma 2.3] and [8, Lemma 3.1], the

proof of (4.12) is based on the fact that the divergence operator div is an isomorphism from

the closed subspace of H1
0pΩq given by WK, where W :“

!

v P H1
0pΩq : divpvq “ 0

)

, onto

L2
0pΩq (cf. (2.3)). In this way, given τ P H0pdivt; Ωq, that is τ P Hpdivt; Ωq and trpτ q P L2

0pΩq,

we let v be the unique element in WK such that divpvq “ trpτ q and }v}1,Ω ď C0 }trpτ q}0,Ω,

with a positive constant C0 independent of v and τ . Then, as stated a few lines after [30, eq.

(2.53)], it readily follows that

}trpτ q}
2
0,Ω “ ´n

ż

Ω
v ¨ divpτ q ´ n

ż

Ω
τ d : ∇v . (4.13)

On the other hand, we let t1 be the conjugate of t, and denote by it1 the continuous injection

of H1pΩq into Lt1

pΩq, which holds for t1 P r1,`8q in 2D and t1 P r1, 6s in 3D (as stated at

the end of Chapter 1 as well). Hence, applying the Hölder and Cauchy-Schwarz inequalities in

(4.13), and employing the boundedness of it1 , as well as the estimate bounding }v}1,Ω in terms

of }trpτ q}0,Ω, we find that

}trpτ q}
2
0,Ω ď nC0

!

}it1} }divpτ q}0,t;Ω ` }τ d
}0,Ω

)

}trpτ q}0,Ω ,

that is

}trpτ q}0,Ω ď nC0

!

}it1} }divpτ q}0,t;Ω ` }τ d
}0,Ω

)

. (4.14)

Finally, the fact that }τ }2
0,Ω “ }τ d}2

0,Ω ` 1
n

}trpτ q}2
0,Ω along with (4.14) yield (4.12).
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Lemma 4.5. There exists a constant β1 ą 0, such that

sup
sPH1
s‰0

rB1psq, τ s

}s}H1

ě β1 }τ }H2 @ τ P K . (4.15)

Proof. In order to satisfy the continuous inf-sup condition for B1, it is necessary to first realize

that K :“ NpBq (cf. (3.8)), is given by

K “

!

τ P H0pdiv4{3; Ωq : divpτ q “ 0 in Ω
)

.

Then, given τ P K such that τ d ‰ 0, we have that τ d P L2
trpΩq, so that bounding the supremum

in (4.15) by below with s “ ´τ d, it follows that

sup
sPH1
s‰0

rB1psq, τ s

}s}H1

“ sup
sPL2

trpΩq

s‰0

´

ż

Ω
τ d : s

}s}0,Ω
ě

ż

Ω
τ d : τ d

}τ d}0,Ω
“ }τ d

}0;Ω ,

which, using (4.11) and the fact that divpτ q “ 0, implies that B1 satisfies the inf-sup condition

with a constant β1 “ c4{3. On the other hand, if τ d “ 0, it is clear from (4.11) that τ “ 0,

and so (4.15) is trivially satisfied.

Consequently, the well-definedness of the operator T can be stated as follows.

Theorem 4.6. For each w P Q there exists a unique pt,σ,uq P H1 ˆ H2 ˆ Q solution to

(4.3), and hence we can define Tpwq :“ u P Q. Moreover, there exists a positive constant CT,

depending only on γµ, µ1, β, β1, }B1}, }B1
1}, and }i4}, and hence independent of w, such that

}Tpwq}0,4;Ω “ }u}Q ď }pt,σ,uq}H1ˆH2ˆQ ď CT

!

}w}
2
0,4;Ω ` }rg}1{2,Γ ` }f}0,4{3;Ω

)

. (4.16)

Proof. It follows from Lemmas 4.2-4.5 and a straightforward application of Theorem 4.1. In

turn, estimate (4.16) is a direct consequence of (4.5) (cf. Theorem 4.1) and the boundedness

of G (cf. (3.9)) and F (cf. (3.10)).
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4.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T is well-defined, in this section we address the solvability of the

fixed-point equation (4.2). To this end, in what follows we first derive sufficient conditions on

T to map a closed ball of Q into itself, and then we apply the Banach Theorem to conclude

the unique solvability of (4.2). Indeed, given δ ą 0, from now on we let

Wpδq :“
!

w P Q : }w}0,4;Ω ď δ
)

.

Lemma 4.7. Assume that there holds

CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď
δ

2 and δ ď
1

2CT
. (4.17)

Then T
`

Wpδq
˘

Ď Wpδq.

Proof. Given w P Wpδq, we know from Theorem 4.6 that Tpwq is well defined and that there

holds

}Tpwq}0,4;Ω ď CT

!

}w}
2
0,4;Ω ` }rg}1{2,Γ ` }f}0,4{3;Ω

)

ď CTδ
2

`
δ

2 ď δ,

which confirms that Tpwq P W pδq.

We continue with the continuity property of the operator T.

Lemma 4.8. There exists a positive constant LT, depending only on β, }B1}, and µ1, such that

}Tpwq ´ Tppwq}0,4;Ω ď LT

!

}w}0,4;Ω ` }pw}0,4;Ω

)

}w ´ pw}0,4;Ω (4.18)

for all w, pw P Q.

Proof. Given w, pw P Q, we let Tpwq :“ u and Tppwq :“ pu, where pt,σ,uq P H1 ˆ H2 ˆ Q

and ppt, pσ, puq P H1 ˆH2 ˆ Q are the corresponding unique solutions of (4.3). Then, subtracting
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both systems, we obtain

rAptq ´ Apptq, ss `rB1psq,σ ´ pσs “ rHw ´ H
pw, ss @ s P H1,

rB1pt ´ptq, τ s `rBpτ q,u ´ pus “ 0 @ τ P H2,

rBpσ ´ pσq,vs “ 0 @ v P Q.

(4.19)

In particular, taking s “ t ´pt and τ “ σ´ pσ, we realize from the second and third equations

of (4.19) that

rB1pt ´ptq,σ ´ pσs “ ´rBpσ ´ pσq,u ´ pus “ 0 ,

which, along with the first equation of (4.19), yields

rAptq ´ Apptq, t ´pts “ rHw ´ H
pw, t ´pts ,

whence, using the stric monotonicity of A (cf. (4.10)) and the definition of Hw (cf. (4.1)), we

find that

}t ´pt}0,Ω ď
1
µ1

!

}w}0,4;Ω ` }pw}0,4;Ω

)

}w ´ pw}0,4;Ω . (4.20)

In turn, from Lemma 4.3 and the second equation of (4.19), we bound }u ´ pu}0,4;Ω as follows:

}u ´ pu}0,4;Ω ď
1
β

sup
τPH2
τ‰0

rBpτ q,u ´ pus

}τ }H2

“
1
β

sup
τPH2
τ‰0

rB1pt ´ptq, τ s

}τ }H2

ď
}B1}

β
}t ´pt}0,Ω . (4.21)

Finally, by combining (4.20) and (4.21), we have that

}Tpwq ´ Tppwq}0,4;Ω “ }u ´ pu}0,4;Ω ď
}B1}

βµ1

!

}w}0,4;Ω ` }pw}0,4;Ω

)

}w ´ pw}0,4;Ω ,

which confirms the announced property on T (cf. (4.18)) with LT :“ }B1}

βµ1
.

Owing to the above analysis, we now establish the main result of this section.

Theorem 4.9. Assume that δ ă
1
2 min

! 1
CT

,
βµ1

}B1}

)

and the data are sufficiently small so that
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the hypothesis of Lemma 4.7 holds, that is

CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď
δ

2 . (4.22)

Then, the operator T has a unique fixed point u P Wpδq. Equivalently, the problem (3.11) has

a unique solution pt,σ,uq P H1 ˆ H2 ˆ Q. Moreover, there holds

}pt,σ,uq}H1ˆH2ˆQ ď 2CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

. (4.23)

Proof. We first recall that the choice of δ and assumption (4.22) guarantee, thanks to Lemma

4.7, that T maps Wpδq into itself. Then, bearing in mind the Lipschitz-continuity of T :

Wpδq Ñ Wpδq (cf. (4.18)), a straightforward application of the classical Banach theorem yields

the existence of a unique fixed point u P Wpδq of this operator, and hence a unique solution of

(3.11). Finally, regarding the a priori estimate, we first observe from (4.16) that

}Tpuq}0,4;Ω “ }u}0,4;Ω ď }pt,σ,uq}H1ˆH2ˆQ ď CT

!

}u}
2
0,4;Ω ` }rg}1{2,Γ ` }f}0,4{3;Ω

)

,

from which, using that

}u}
2
0,4;Ω ď δ }u}0,4;Ω ď

1
2CT

}pt,σ,uq}H1ˆH2ˆQ ,

we arrive at
}Tpuq}0,4;Ω “ }u}0,4;Ω ď }pt,σ,uq}H1ˆH2ˆQ

ď
1
2 }pt,σ,uq}H1ˆH2ˆQ ` CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

,

which yields (4.23) and concludes the proof.



CHAPTER 5

The Galerkin scheme

In order to approximate the solution of our fully-mixed variational formulation (3.11), we now

introduce the associated Galerkin scheme, analyze its solvability by applying a discrete version

of the fixed-point approach adopted in the previous chapter, and derive the corresponding a

priori error estimate.

5.1 Preliminaries

We begin by considering arbitrary finite element subspaces H1,h, rH2,h, and Qh of the spaces

L2
trpΩq, Hpdiv4{3; Ωq, and L4pΩq, respectively. Specific subspaces satisfying the assumptions

and stability conditions to be indicated along the discussion, will be introduced later on in

Chapter 6. Hereafter, h :“ maxthK : K P Thu denotes the size of a regular triangulation Th

of Ω made up of triangles K (when n “ 2) or tetrahedra K (when n “ 3q of diameter hK .

26
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Then, letting

H2,h :“ H0pdiv4{3; Ωq X rH2,h , (5.1)

the Galerkin scheme associated with (3.11) reads: Find pth,σh,uhq P H1,h ˆ H2,h ˆ Qh such

that

rApthq, shs ` rB1pshq,σhs ´

ż

Ω
puh b uhq

d : sh “ 0 @ sh P H1,h,

rB1pthq, τhs ` rBpτhq,uhs “ rG, τhs @ τh P H2,h,

rBpσhq,vhs “ rF,vhs @ vh P Qh.

(5.2)

Then, we adopt the discrete version of the strategy employed in Section 4.2 to analyse the

solvability of (5.2). To this end, we let Th : Qh Ñ Qh be the discrete operator defined by

Thpwhq “ uh @ wh P Qh,

where pth,σh,uhq P H1,h ˆ H2,h ˆ Qh is the unique solution (to be confirmed below) of the

following system of equations:

rApthq, shs `rB1pshq,σhs “ rHwh
, shs @ sh P H1,h,

rB1pthq, τhs ` rBpτhq,uhs “ rG, τhs @ τh P H2,h,

rBpσhq,vhs “ rF,vhs @ vh P Qh.

(5.3)

Then, similarly as in the continuous case, we realize that solving (5.2) is equivalent to finding

a fixed point of Th, that is uh P Qh such that

Thpuhq “ uh. (5.4)
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5.2 Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness

of the discrete system (5.2), equivalently of (5.4). To this end, we need to introduce certain

hypotheses concerning the arbitrary spaces H1,h, rH2,h, and Qh, and the discrete kernel associated

with the linear operator B, that is

Kh :“
!

τh P H2,h : rBpτhq,vhs “ 0 @ vh P Qh

)

. (5.5)

More precisely, from now on we assume that:

(H.1) rH2,h contains the multiplies of the identity tensor I,

(H.2) div
`

rH2,h

˘

Ď Qh,

(H.3) Kd
h :“

!

τ d
h : τh P Kh

)

Ď H1,h, and

(H.4) there exists a positive constant βd, independent of h, such that

sup
τhPH2,h
τh‰0

rBpτhq,vhs

}τh}H2

ě βd }vh}Q @ vh P Qh .

We highlight here that as a consequence of (H.1) we can employ the discrete version of

the decomposition Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , namely rH2,h “ H2,h ‘ R I , thanks to

which H2,h (cf. (5.1)) can be used as the subspace where the unknown σh is sought. However,

for the computational implementation of (5.2), which is addressed later on in Chapter 7, we

actually look for σh in rH2,h, impose the null mean value of trpσhq through an additional

equation tested against arbitrary ηh P R, and keep the symmetry of the resulting system by

introducing an artificial unknown ξh P R, also known as Lagrange multiplier, which is shown

in advance to be 0. In other words, we replace (5.2) by the modified Galerkin scheme: Find
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pth,σh,uh, ξhq P H1,h ˆ rH2,h ˆ Qh ˆ R such that

rApthq, shs ` rB1pshq,σhs ´

ż

Ω
puh b uhq

d : sh “ 0 @ sh P H1,h ,

rB1pthq, τhs ` rBpτhq,uhs ` ξh

ż

Ω
trpτhq “ rG, τhs @ τh P rH2,h ,

rBpσhq,vhs “ rF,vhs @ vh P Qh ,

ηh

ż

Ω
trpσhq “ 0 @ ηh P R .

(5.6)

Clearly, the same modifications apply to (5.3). Note that when taking τh “ I in the second

row of (5.6), and using in particular (2.2), all the terms, except the third one on the left-hand

side, vanish, so that this row becomes n |Ω| ξh “ 0, from which we clearly deduce, as previously

announced, that ξh “ 0. In addition, it is clear that the second row of (5.2) is recovered from the

second row of (5.6) by simply taking τh P H2,h. The above allows to prove that (5.2) and (5.6)

are equivalent. Indeed, if pth,σh,uhq P H1,h ˆH2,h ˆQh is solution of (5.2), then pth,σh,uh, 0q P

H1,h ˆ rH2,h ˆQh ˆR solves (5.6). Conversely, if pth,σh,uh, ξhq P H1,h ˆ rH2,h ˆQh ˆR is solution

of (5.6), then σh P H2,h, ξh “ 0, and pth,σh,uhq P H1,h ˆ H2,h ˆ Qh solves (5.2).

In turn, according to the definition of B (cf. (3.8)), it follows from (5.5) and (H.2) that

Kh :“
!

τh P H2,h : divpτhq “ 0 in Ω
)

, (5.7)

which yields the discrete analogue of (4.15), that is, given τh P Kh such that τ d
h ‰ 0, we realize

that sh “ ´τ d
h P H1,h (which follows from (H.3)), and thus

sup
shPH1,h
sh‰0

rB1pshq, τhs

}sh}H1

ě β1,d }τh}H2 , (5.8)

with constant β1,d “ c4{3 (cf. (4.11)). On the other hand, if τ d
h “ 0, it is clear from (4.11)

that τh “ 0, and so the discrete inf-sup condition for B1 (cf. (5.8)) is trivially satisfied.

In addition, we recall that the Lipschitz-continuity and strict monotonicity of A (cf. Lemma
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4.2), are also valid at the discrete level, that is, with the same constants γµ and µ1, there hold

}Aprhq ´ Apshq}H1
1,h

:“ sup
rrhPH1,h

rrh ­“0

rAprhq ´ Apshq,rrhs

}rrh}H1

ď γµ }rh ´ sh}H1 @ rh, sh P H1,h , (5.9)

and

rAprhq ´ Apshq, rh ´ shs ě µ1 }rh ´ sh}
2
H1 @ rh, sh P H1,h . (5.10)

In this way, bearing the above discussion in mind, we are now in a position to establish the

discrete analogue of Theorem 4.6.

Theorem 5.1. For each wh P Qh there exists a unique pth,σh,uhq P H1,h ˆH2,h ˆ Qh solution

to (5.3), and hence we can define Thpwhq :“ uh P Qh. Moreover, there exists a positive

constant CT,d, depending only on γµ, µ1,βd, β1,d, }B1}, }B1
1}, and }i4}, and hence independent of

wh, such that
}Thpwhq}0,4;Ω “ }uh}Q ď }pth,σh,uhq}H1ˆH2ˆQ

ď CT,d

!

}wh}
2
0,4;Ω ` }rg}1{2,Γ ` }f}0,4{3;Ω

)

.

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.4)) and B1 (cf. (5.8)), and the

inequalities (5.9) and (5.10), the proof follows from a direct application of Theorem 4.1. We

omit further details.

Having established that the discrete operator Th is well defined, we now address the solv-

ability of the corresponding fixed point equation (5.4). Then, letting δd be an arbitrary radius,

we now set

Wpδdq :“
!

wh P Qh : }wh}0,4;Ω ď δd

)

.

Then, reasoning analogously to the derivation of Lemma 4.7, we deduce that Th maps Wpδdq

into itself under the analogue discrete assumptions, namely

CT,d

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď
δd

2 and δd ď
1

2CT,d
. (5.11)

We emphasize that the above is exactly the same as for the continuous case (cf. Lemma

4.7), except that the constant CT and the radius δ are replaced by CT,d and δd, respectively.
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Moreover, employing similar arguments to those from the proof of Lemma 4.8, we are able to

prove the discrete version of (4.18) with constant LT,d :“ βdµ1

}B1}
, that is

}Thpwhq ´ Thppwhq}0,4;Ω ď LT,d

!

}wh}0,4;Ω ` }pwh}0,4;Ω

)

}wh ´ pwh}0,4;Ω (5.12)

for all wh , pwh P Qh, which proves the continuity of Th.

According to the above, the main result of this section is established as follows.

Theorem 5.2. Assume that δd and the data are sufficiently small so that they satisfy (5.11).

Then, the operator Th has at least one fixed point uh P Wpδdq. Equivalently, the problem (5.2)

has at least one solution pth,σh,uhq P H1,h ˆH2,h ˆQh. Moreover, under the further assumption

δd ă
1
2 min

! 1
CT,d

,
βdµ1

}B1}

)

, (5.13)

this solution is unique. In addition, there holds

}pth,σh,uhq}H1ˆH2ˆQ ď 2CT,d

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

.

Proof. The fact that Th maps Wpδdq into itself, together with the continuity of Th (cf. (5.12)),

allow to apply the Brouwer Theorem to conclude the existence of a solution to (5.4), and

hence to (5.2). Next, the assumption (5.13) and the Banach fixed-point Theorem imply the

uniqueness. Finally, the a priori estimate is a consequence of Theorem 4.1 and analogue

algebraic manipulations to those utilized in the proof of Theorem 4.9.

5.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in

Section 5.2, and derive the Céa estimate for the Galerkin error

}~t ´~th}X “ }t ´ th}0,Ω ` }σ ´ σh}0,4{3,Ω ` }u ´ uh}0,4;Ω ,
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where ~t :“ pt,σ,uq P X :“ H1 ˆH2 ˆ Q and ~th :“ pth,σh,uhq P Xh :“ H1,h ˆH2,h ˆ Qh are

the unique solutions of (3.11) and (5.2) respectively, with u P Wpδq and uh P Wpδdq. In what

follows, given a subspace Zh of an arbitrary Banach space
`

Z, } ¨ }Z

˘

, we set

dist
`

z, Zh

˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z .

In turn, in order to simplify our analysis, we recall a previous result concerning the operator

A. More precisely, we employ the following lemma.

Lemma 5.3. The operator A defined in (3.8) has a first-order Gâteaux derivative DA. More-

over, for any s1 P H1, DAps1q is a bounded and H1-elliptic bilinear form, with boundedness and

ellipticity constants given by γµ and µ1, respectively.

Proof. See [32, Lemma 3.1].

We begin by introducing the global operator P : X Ñ X1, and for each w P Q the linear

functional Fw : X Ñ R associated with the variational formulation (3.11), that is

rPpr,ρ,wq, ps, τ ,vqs :“ rAprq, ss ` rB1psq,ρs ` rB1prq, τ s ` rBpτ q,ws ` rBpρq,vs , (5.14)

rFw, ps, τ ,vqs :“
ż

Ω
pw b wq

d : s ` rG, τ s ` rF,vs,

for all pr,ρ,wq, ps, τ ,vq P X. In this way, we realize from (3.11) and (5.2) that there holds

rPp~tq,~shs “ rPp~thq,~shs ` rFu ´ Fuh
,~shs @~sh P Xh , (5.15)

whereas the triangle inequality gives for each ~rh :“ prh,ρh,whq P Xh

}~t ´~th}X ď }~t ´~rh}X ` }~rh ´~th}X . (5.16)

In order to establish a connection between the second term on the right-hand side of the above

inequality and the operator P, we proceed almost verbatim as in [32, Theorem 3.3]. In fact,
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given ~sh, ~rh P Xh, we can write

rPp~thq,~shs ´ rPp~rhq,~shs “

ż 1

0

d

dµ
trPpµ~th ` p1 ´ µq~rhq,~shsu dµ

“

ż 1

0
DPpµ~th ` p1 ´ µq~rhqp~th ´~rh,~shq dµ ,

(5.17)

where DP : X Ñ LpX,X1
q is the first-order Gâteaux derivative of the operator P : X Ñ X1.

More precisely, for any ~s1 :“ ps1, τ1,v1q, ~r :“ pr,ρ,wq, ~s :“ ps, τ ,vq P X, DPp~s1qp~r,~sq is

obtained from (5.14) by replacing rAprq, ss by DAps1qpr, sq, that is

DPp~s1qp~r,~sq :“DAps1qpr, sq ` rB1psq,ρs ` rB1prq, τ s ` rBpτ q,ws ` rBpρq,vs . (5.18)

Thus, for any ~s1 P X, (5.18) induces the definition of an operator in LpX,X1
q (equivalently, a

bilinear form as the one in (4.7)), which, according to Lemma 5.3, satisfies the hypotheses of the

discrete version of the estimate (4.6) with constants independent of h and of ~s1. Consequently,

bearing in mind that the aforementioned estimate is equivalent to the discrete version of (4.9),

we conclude that there exists pC ą 0, depending only on γµ, µ1, β1, }B1}, and β, such that

}~th ´~rh}X ď pC sup
~shPXh
~sh‰0

DPp~s1qp~th ´~rh,~shq

}~sh}X
@~s1 P X. (5.19)

On the other hand, the continuity of DA implies the same property for DP, and hence there

exists µ0 P p0, 1q such that (5.17) becomes

rPp~thq,~shs ´ rPp~rhq,~shs “ DPpµ0~th ` p1 ´ µ0q~rhqp~th ´~rh,~shq . (5.20)

It follows from (5.19) (with ~s1 :“ µ0~th ` p1 ´ µ0q~rhq and (5.20) that

}~th ´~rh}X ď pC sup
~shPXh
~sh‰0

rPp~thq,~shs ´ rPp~rhq,~shs

}~sh}X
. (5.21)

Next, since P is Lipschitz continuous, with a constant pγ, depending only on γµ , }B1} and }B1
1},
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we subtract and add Pp~tq, and use (5.15), to find that

rPp~thq,~shs ´ rPp~rhq,~shs “ rPp~thq ´ Pp~tq,~shs ` rPp~tq ´ Pp~rhq,~shs

“ rFuh
´ Fu,~shs ` rPp~tq ´ Pp~rhq,~shs

ď

!´

}u}Q ` }uh}Q

¯

}u ´ uh}Q ` pγ }~t ´~rh}X

)

}~sh}X ,

which, replaced back into (5.21), gives

}~th ´~rh}X ď pC
!´

}u}Q ` }uh}Q

¯

}u ´ uh}Q ` pγ }~t ´~rh}X

)

. (5.22)

Finally, the triangle inequality (cf. (5.16)) along with (5.22) and the fact that }u}Q and }uh}Q

are bounded by δ and δd, respectively, yield

}~t ´~th}X ď
`

1 ` pγ pC
˘

inf
~shPX

}~t ´~sh}X ` pC
`

δ ` δd

˘

}u ´ uh}Q . (5.23)

In this way, our main result for the error }~t ´~th}X is stated as follows.

Theorem 5.4. Assume that the hypotheses of Theorems 4.9 and 5.2 hold, and let ~t “ pt,σ,uq P

X and ~th “ pth ,σh ,uhq P Xh be the unique solutions of (3.11) and (5.2), respectively. Assume

further that

pδ ` δdq ď
1

2 pC
, (5.24)

where pC is the global inf-sup constant of DP. Then, there exists a positive constant C, inde-

pendent of h, such that

}~t ´~th}X ď C distp~t,Xhq . (5.25)

Proof. It suffices to use (5.24) in (5.23), which yields (5.25) with C :“ 2
`

1 ` pγ pC
˘

.

Regarding the feasibility of (5.24), as compared with the previous assumptions on δ and δd

given by (4.17) (cf. Lemma 4.7) and (5.11), we first notice that the latter can be rephrased,
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equivalently, as

2CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď δ ď
1

2CT
and (5.26)

2CT,d

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď δd ď
1

2CT,d
, (5.27)

respectively. In turn, it is clear that (5.24) holds, in particular, if both δ and δd are bounded

above by 1
4 pC

, which, along with (5.26) and (5.27), yield the unified restrictions

2CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď δ ď min
"

1
2CT

,
1

4 pC

*

and (5.28)

2CT,d

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď δd ď min
"

1
2CT,d

,
1

4 pC

*

. (5.29)

Hence, in order to be able to ensure that it is possible to have δ and δd satisfying (5.28) and

(5.29), it suffices to impose that

2CT

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď min
"

1
2CT

,
1

4 pC

*

and (5.30)

2CT,d

!

}rg}1{2,Γ ` }f}0,4{3;Ω

)

ď min
"

1
2CT,d

,
1

4 pC

*

. (5.31)

In other words, sufficiently small data g and f (according to (5.30) and (5.31)) guarantee that

the restrictions on δ and δd are achievable.

We end this section by remarking that (2.7) and (3.6) suggest the following postprocessed

approximation for the pressure p

ph :“ ´
1
n

tr
´

σh ` puh b uhq

¯

´ c0,h in Ω , (5.32)

where

c0,h :“ ´
1

n |Ω|

ż

Ω
trpuh b uhq . (5.33)

Then, applying the Cauchy-Schwarz inequality, performing some algebraic manipulations,

and employing the a priori bounds for }u}0,4;Ω and }uh}0,4;Ω, we deduce the existence of a
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positive constant C, depending on data, but independent of h, such that

}p ´ ph}0,Ω ď C
!

}σ ´ σh}0,Ω ` }u ´ uh}0,4;Ω

)

. (5.34)

Thus, combining (5.25) and (5.34), we conclude the existence of a positive constant rC, inde-

pendent of h, such that

}t ´ th}H1 ` }σ ´ σh}H2 ` }u ´ uh}Q ` }p ´ ph}0,Ω

ď rC
!

distpt,H1,hq ` distpσ,H2,hq ` distpu,Qhq

)

.

(5.35)



CHAPTER 6

Specific finite element subspaces

In this chapter, we introduce specific finite element subspaces H1,h, rH2,h, and Qh of the spaces

L2
trpΩq, Hpdiv4{3; Ωq, and L4pΩq, respectively. These subspaces satisfy the hypotheses (H.1),

(H.2), (H.3), and (H.4), which were introduced in Section 5.2 to ensure the well-posedness of

our Galerkin scheme.

Preliminaries

In what follows, given an integer ` ě 0 and K P Th, we let P`pKq be the space of polynomials of

degree ď ` defined on K, whose vector and tensor versions are denoted by P`pKq :“ rP`pKqsn

and P`pKq :“ rP`pKqsnˆn, respectively. Next, we define the corresponding local Raviart-

Thomas spaces of order ` as

RT`pKq :“ P`pKq ‘ P`pKqx @K P Th ,

37
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and its associated tensor counterpart RT`pKq, which is defined row-wise by RT`pKq, where x is

a generic vector in R :“ Rn. In turn, we let P`pThq, P`pThq and RT`pThq be the global versions

of P`pKq, P`pKq and RT`pKq, respectively, that is

P`pThq :“
!

vh P L2
pΩq : vh|K P P`pKq @K P Th

)

,

P`pThq :“
!

τh P L2
pΩq : τh|K P P`pKq @K P Th

)

,

RT`pThq :“
!

τh P Hpdiv; Ωq : τh|K P RT`pKq @K P Th

)

.

We stress here that there hold P`pThq Ď L4pΩq and RT`pThq Ď Hpdiv4{3; Ωq, inclusions

that are implicitly utilized below to introduce the announced specific finite element subspaces.

Indeed, we now define

H1,h :“ L2
trpΩq X P`pThq , rH2,h :“ RT`pThq,

H2,h :“ H0pdiv4{3; Ωq X rH2,h , and Qh :“ L4pΩq X P`pThq .

(6.1)

Verification of the hypotheses (H.1) - (H.4)

We now confirm that the subspaces defined by (6.1) satisfy the hypotheses (H.1) - (H.4).

Indeed, it is easily seen that rH2,h satisfy pH.1q and (H.2). Next, in order to check pH.3q, we

recall from (5.7) that

Kh :“
!

τh P H2,h : divpτhq “ 0 in Ω
)

,

from which, using that the divergence free tensors of RT`pThq are contained in P`pThq (cf. [30,

Lemma 3.6]), it follows that Kh Ď P`pThq. Hence, noting that certainly trpτ d
h q “ 0, for all

τh P Kh, we deduce that pKhqd Ď L2
trpΩq X P`pThq “ H1,h , which proves pH.3q. Finally, pH.4q

is proved precisely in [16, Lemma 5.1] (see also [22, Lemma 6.1]).
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The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (5.2) with the specific finite

element subspaces introduced in Chapter 6, for which we previously collect the respective

approximation properties. In fact, thanks to [27, Proposition 1.135] and its corresponding

vector version, along with interpolation estimates of Sobolev spaces, those of H1,h, H2,h, and

Qh, are given as follows:

`

APt
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, ` ` 1s,

and for each s P HlpΩq X L2
trpΩq, there holds

dist
`

s,H1,h

˘

:“ inf
shPH1,h

}s ´ sh}0,Ω ď C hl
}s}l,Ω ,

pAPσ
h q there exists a positive constant C, independent of h, such that for each l P r0, ` ` 1s,

and for each τ P HlpΩq X H0pdiv4{3; Ωq with divpτ q P Wl,4{3pΩq, there holds

dist
`

τ ,H2,h

˘

:“ inf
τhPH2,h

}τ ´ τh}div4{3;Ω ď C hl
!

}τ }l,Ω ` }divpτ q}l,4{3;Ω

)

,

pAPu
hq there exists a positive constant C, independent of h, such that for each l P r0, ` ` 1s,

and for each v P Wl,4pΩq, there holds

dist
`

v,Qh

˘

:“ inf
vhPQh

}v ´ vh}0,4;Ω ď C hl
}v}l,4;Ω .

The rates of convergence of (5.2) are now established by the following theorem.

Theorem 6.1. Let
`

t,σ,uq P H1 ˆ H2 ˆ Q and
`

th,σh,uh

˘

P H1,h ˆ H2,h ˆ Qh be the unique

solutions of (3.11) and (5.2) with u P Wpδq and uh P Wpδdq, whose existences are guaranteed by

Theorems 4.9 and 5.2, respectively. In turn, let p and ph given by (2.7) and (5.32), respectively.

Assume the hypotheses of Theorem 5.4, and that there exists l P r1, ` ` 1s such that t P

HlpΩq X L2
trpΩq, σ P HlpΩq X H0pdiv4{3; Ωq, divpσq P Wl,4{3pΩq, and u P Wl,4pΩq . Then,
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there exists a positive constant C, independent of h, such that

}ppt,σ,uq ´ pth,σh,uhq}H1ˆH2ˆQ ` }p ´ ph}0,Ω

ď C hl
!

}u}l,4;Ω ` }t}l,Ω ` }σ}l,Ω ` }divpσq}l,4{3;Ω

)

.

Proof. It follows straightforwardly from the Céa estimate (5.35), and the approximation prop-

erties
`

APt
h

˘

, pAPσ
h q, and pAPu

hq.



CHAPTER 7

Computational results

We now turn to the computational results, which mainly refer to the numerical verification

of the rates of convergence anticipated by Theorem 6.1. The examples in 2D and 3D to be

reported below have been developed with the finite element library FEniCS [2]. In all of them,

the linear systems emanating from the Newton-Raphson linearisation, with the zero vector as

initial guess and iterations stopped once the absolute or relative residual drops below 10´8,

have been solved with the multifrontal massively parallel sparse direct method MUMPS [4].

In turn, the null mean value of trpσhq is imposed via a real Lagrange multiplier as already

described by (5.6). Then, σh is complemented by adding to it the expression c0,h I, where c0,h

is the constant defined by (5.33). Subsequently, errors are defined as follows:

eptq “ }t ´ th}0,Ω , epσq “ }σ ´ σh}div4{3;Ω ,

epuq “ }u ´ uh}0,4;Ω , eppq “ }p ´ ph}0,Ω ,

41
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whereas convergence rates are set as

rp‹q “
logpep‹q{pep‹qq

logph{phq
@ ‹ P

 

t,σ,u, p
(

,

where e and pe denote errors computed on two consecutive meshes of sizes h and ph. In addition,

we refer to the number of degrees of freedom and the number of Newton iterations as dof and

iter, respectively.

7.1 Example 1: 2D smooth solution

In our first numerical test, we consider the computational domain Ω “ p0, 1q2, and set the

nonlinear viscosity to

µpsq :“ 2 `
1

1 ` s
@ s ě 0 .

In addition, we define the manufactured exact solution:

p “ x2
´ y2, u “

¨

˝

´ cospπxq sinpπyq

sinpπxq cospπyq

˛

‚ , t “ ∇u,

and σ “ µp|∇u|q∇u ´ pu b uq ´ pI ,

so that the load function f and the Dirichlet datum g are computed accordingly. Table 7.1

shows the convergence history for a sequence of quasi-uniform mesh refinements, including the

number of Newton iterations for the approximations. The experiments confirm the theoretical

rate of convergence Oph``1q for ` P
 

0, 1
(

, provided by Theorem 6.1. In addition, the number of

Newton-Raphson iterations required to reach the convergence criterion based on the residuals

with a tolerance of 1e ´ 8, was less than or equal to 4 in all runs. Sample of approximate

solutions with ` “ 1 and dof “ 279041 are shown in Figure 7.1.
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P0 ´ RT0 ´ P0

dof h eptq rptq epσq rpσq epuq rpuq eppq rppq iter
121 0.7071 1.26e ` 00 ˚ 1.71e ` 01 ˚ 4.11e ´ 01 ˚ 7.55e ´ 01 ˚ 3
465 0.3536 6.20e ´ 01 1.02 8.99e ` 00 0.93 2.26e ´ 01 0.86 3.69e ´ 01 1.03 3
1825 0.1768 3.10e ´ 01 1.00 4.59e ` 00 0.97 1.16e ´ 01 0.96 1.82e ´ 01 1.02 4
7233 0.0884 1.55e ´ 01 1.00 2.31e ` 00 0.99 5.84e ´ 02 0.99 8.86e ´ 02 1.04 4
28801 0.0442 7.77e ´ 02 1.00 1.16e ` 00 1.00 2.92e ´ 02 1.00 4.33e ´ 02 1.03 4
114945 0.0221 3.89e ´ 02 1.00 5.79e ´ 01 1.00 1.46e ´ 02 1.00 2.15e ´ 02 1.01 4

d
P1 ´ RT1 ´ P1

dof h eptq rptq epσq rpσq epuq rpuq eppq rppq iter
289 0.7071 2.75e ´ 01 ˚ 4.46e ` 00 ˚ 1.55e ´ 01 ˚ 2.60e ´ 01 ˚ 4
1121 0.3536 7.35e ´ 02 1.90 1.22e ` 00 1.87 4.11e ´ 02 1.91 5.62e ´ 02 2.21 4
4417 0.1768 1.93e ´ 02 1.93 3.58e ´ 01 1.77 1.05e ´ 02 1.97 1.30e ´ 02 2.11 4
17537 0.0884 4.93e ´ 03 1.97 1.02e ´ 01 1.82 2.64e ´ 03 1.99 3.17e ´ 03 2.04 4
69889 0.0442 1.24e ´ 03 1.99 2.76e ´ 02 1.88 6.62e ´ 04 2.00 7.84e ´ 04 2.01 4
279041 0.0221 3.12e ´ 04 1.99 7.31e ´ 03 1.92 1.66e ´ 04 2.00 1.95e ´ 04 2.01 4

Table 7.1: Example 1, convergence history and Newton iteration count for the P` ´ RT` ´ P`

approximations of the Navier-Stokes model with variable viscosity, and convergence of the
P`´approximation of the postprocessed pressure field, with ` P

 

0, 1
(

.

7.2 Example 2: 2D smooth solution in a non-convex do-

main

Now we illustrate the accuracy of our method in the non-convex domain Ω :“ p´1, 1q2 z r0, 1s2.

The data f and g are computed so that the manufactured exact solution is defined as:

p “ sinpπxq exppyq, u “

¨

˝

´ cosp2πyq sinp2πxq

sinp2πyq cosp2πxq

˛

‚ , t “ ∇u ,

and σ “ µp|∇u|q∇u ´ pu b uq ´ pI .

The variable viscosity is defined in the same way as in Example 1. The convergence history for

a sequence of quasi-uniform mesh refinements with ` “ 1 is shown in Table 7.2. We observe

there that all variables, except σ, converge optimally with Oph2q. Indeed, the non-convexity of

the domain and the consequent lack of regularity of this unknown is the most probable reason,

in our opinion, for its lower rate of convergence. Selected components of the numerical solution,
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Figure 7.1: Example 1, P1 ´ RT1 ´ P1 approximation with dof “ 279041 of velocity gradi-
ent components (top panels), pseudostress components (center panels), and viscosity, velocity
component with vector directions, and postprocessed pressure field (bottom row).
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which were obtained using the P1 ´RT1 ´ P1 approximation with dof “ 238603, are displayed

in Figure 7.2.

P1 ´ RT1 ´ P1

dof h eptq rptq epσq rpσq epuq rpuq eppq rppq iter
383 1.1180 8.59e ` 00 ˚ 2.07e ` 02 ˚ 8.07e ´ 01 ˚ 4.63e ` 00 ˚ 4
941 0.6212 3.93e ` 00 1.33 9.23e ` 01 1.38 4.15e ´ 01 1.13 2.46e ` 00 1.08 4
3646 0.3171 1.13e ` 00 1.85 2.40e ` 01 2.00 1.29e ´ 01 1.74 5.48e ´ 01 2.23 4
15233 0.1582 2.85e ´ 01 1.98 6.25e ` 00 1.94 3.29e ´ 02 1.96 1.29e ´ 01 2.08 4
59869 0.0795 7.40e ´ 02 1.96 1.94e ` 00 1.70 8.50e ´ 03 1.97 3.38e ´ 02 1.95 4
238603 0.0398 1.85e ´ 02 2.00 6.03e ´ 01 1.69 2.16e ´ 03 1.98 8.50e ´ 03 1.99 4

Table 7.2: Example 2, convergence history and Newton iteration count for the fully-mixed P1 ´

RT1 ´ P1 approximations of the Navier-Stokes model with variable viscosity, and convergence
of the P1-approximation of the postprocessed pressure field.

7.3 Example 3: 2D non-smooth solution in a non-convex

domain

The third example is devoted to show that the rates of convergence are affected when the exact

solution does not have enough regularity, in particular if it has a singularity near the vertex

with major angle of a non-convex domain. In fact, here we consider again the L-shaped domain

Ω :“ p´1, 1q2 z r0, 1s2, define the manufactured exact solution:

p “
1 ´ x

2px ´ 0.02q2 ` 2py ´ 0.02q2 , u “

¨

˝

´ cospπxq sinpπyq

sinpπxq cospπyq

˛

‚ , t “ ∇u ,

and σ “ µp|∇u|q∇u ´ pu b uq ´ pI ,

and compute the data f and g accordingly. The variable viscosity is defined in the same way

as in Example 1. The convergence history for a sequence of quasi-uniform mesh refinements

with ` “ 1 is shown in Table 7.3. As announced, suboptimal rates arise in this case, which

is explained by the fact that the pressure exhibits high gradients near the corner region of

the L-shaped domain. This is observed in Figure 7.3 below where selected components of the
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Figure 7.2: Example 2, P1 ´ RT1 ´ P1 approximation with dof “ 238603 of the fluid velocity
magnitude, velocity gradient magnitude, pseudostress component, and postprocessed pressure
field.

numerical solution, obtained with the P1 ´ RT1 ´ P1 approximation and dof “ 238603, are

displayed.
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P1 ´ RT1 ´ P1

dof h eptq rptq epσq rpσq epuq rpuq eppq rppq iter
383 1.1180 1.10e ` 01 ˚ 5.58e ` 02 ˚ 1.20e ` 00 ˚ 4.26e ` 01 ˚ 3
941 0.6212 6.98e ` 00 0.77 3.72e ` 02 0.69 5.67e ´ 01 1.27 2.35e ` 01 1.01 3
3646 0.3171 7.23e ` 00 ´0.05 4.57e ` 02 ´0.31 3.66e ´ 01 0.65 1.88e ` 01 0.33 3
15233 0.1582 4.50e ` 00 0.68 3.74e ` 02 0.29 1.43e ´ 01 1.35 1.17e ` 01 0.68 3
59869 0.0795 2.57e ` 00 0.82 1.83e ` 02 1.04 6.60e ´ 02 1.12 6.21e ` 00 0.92 3
238603 0.0398 1.22e ` 00 1.07 7.49e ` 01 1.29 2.05e ´ 02 1.68 2.64e ` 00 1.23 5

Table 7.3: Example 3, convergence history and Newton iteration count for the P1 ´ RT1 ´ P1
approximations of the Navier-Stokes model with variable viscosity, and convergence of the P1-
approximation of the postprocessed pressure field.

7.4 Example 4: 3D smooth solution

Next we illustrate a three-dimensional problem. In this case, we consider the cube domain

Ω “ p0, 1q3, and define the nonlinear viscosity as

µpsq :“ α0 ` α1p1 ` s2
q

pβ´2q{2 ,

with α0 “ 2{5, α1 “ 1{2, and β “ 1. The data are suitably adjusted according to the exact

solution defined by the functions:

p “ sinpxyzq , u “

¨

˚

˚

˚

˝

sinpπ xq cospπ yq cospπ zq

´2 cospπ xq sinpπ yq cospπ zq

cospπ xq cospπyq sinpπ zq

˛

‹

‹

‹

‚

, t “ ∇u ,

and σ “ µp|∇u|q∇u ´ pu b uq ´ pI .

The convergence history for a sequence of quasi-uniform mesh refinements with ` “ 0 is shown

in Table 7.4, while some components of the approximate solutions with dof “ 3360769 are

displayed in Figure 7.4. We observe that the Newton method exhibits a behavior independent

of the meshsize, achieving the tolerance of 1e ´ 8 in four iterations in all cases. Again, the

mixed finite element method converges optimally with Ophq, as it was proved by Theorem 6.1.
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Figure 7.3: Example 3, P1 ´ RT1 ´ P1 approximation with dof “ 238603 of the fluid velocity
magnitude, velocity gradient magnitude, pseudostress component, and postprocessed pressure
field.

7.5 Example 5: 3D cavity problem

To conclude the set of numerical examples, we apply our mixed method with ` “ 0 to the driven

cavity flow problem in the cube domain Ω “ p0, 1q3 by using the same sequence of quasi-uniform

mesh refinements from Example 4. Again, the viscosity is taken as the Carreau law (2.5) with
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P0 ´ RT0 ´ P0

dof h eptq rptq epσq rpσq epuq rpuq eppq rppq iter
889 0.8660 2.61e ` 00 ˚ 8.08e ` 00 ˚ 5.65e ´ 01 ˚ 2.61e ´ 01 ˚ 4
6817 0.4330 1.41e ` 00 0.89 4.21e ` 00 0.94 3.01e ´ 01 0.91 2.02e ´ 01 0.37 4
53377 0.2165 7.31e ´ 01 0.95 2.14e ` 00 0.97 1.55e ´ 01 0.96 1.15e ´ 01 0.82 4
422401 0.1083 3.71e ´ 01 0.98 1.07e ` 00 1.00 7.79e ´ 02 0.99 5.34e ´ 02 1.10 4
3360769 0.0541 1.87e ´ 01 0.99 5.36e ´ 01 1.00 3.90e ´ 02 1.00 2.40e ´ 02 1.15 4

Table 7.4: Example 4, convergence history and Newton iteration count for the P0 ´ RT0 ´ P0
approximation of the Navier-Stokes model with variable viscosity, and convergence of the P0-
approximation of the postprocessed pressure field.

α0 “ 1, α1 “ 0.1, and β “ 1. The external body force is zero, and the three-dimensional flow

patterns are determined by the boundary conditions only: a unidirectional Dirichlet velocity

is set on the top lid g :“ p1, 0, 0qt , and no-slip velocity u “ 0 are imposed elsewhere on

Γ. Some approximate solutions obtained with dof “ 3360769 are depicted in Figure 7.5. As

expected, abrupt changes are observed near the top corners of the domain, where the Dirichlet

datum is discontinuous, and where the pseudostress is concentrated. The maximum number

of iterations required over the course of the Newton-Raphson loop was 3. On the other hand,

if we wondered about the eventual influence of a Reynolds number Re in the present example,

we would expect at least two different scenarios. Firstly, and similarly to what happens with a

constant viscosity, we might have Re to be inversely proportional to either the lower bound µ1

or the upper bound µ2 of µ (cf. (2.4)), in which case a large Re will certainly affect our stability

estimates. Secondly, if Re is involved in the definition of the nonlinear viscosity µ in such a way

that both µ1 and µ2 are independent of this number, then we might expect a robust method

not being affected by the range of Re.

We end this section by remarking that the mesh independence of the Newton iterations,

observed in all the examples, except possibly in the non-smooth one given by Example 3, was

actually to be expected. In fact, this property has been proved theoretically and is known to

hold for a large class of problems (see, e.g. [45] and the references therein).
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Figure 7.4: Example 4, numerical solutions using P0 ´ RT0 ´ P0 approximations with dof “

3360769 of the fluid velocity magnitude, velocity gradient magnitude, pseudostress component,
and postprocessed pressure field.
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Figure 7.5: Example 5, numerical solutions using P0 ´ RT0 ´ P0 approximations with dof “

3360769 of the fluid velocity magnitude, velocity gradient magnitude, pseudostress component,
and postprocessed pressure field.
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CHAPTER 8

Introduction

The study of coupled fluid systems, particularly those involving free and porous media flows,

governed by the Navier–Stokes and Darcy equations, respectively, and connected through a set

of suitable interface conditions, has received significant attention because of their wide range

of applications. In particular, the latter includes environmental, biological, and industrial

processes, such as the interaction of surface and subsurface flows, modeling of blood flow, and

others. Over the years, several papers have been devoted to numerical modeling and analysis of

the Navier–Stokes/Darcy and related coupled problems (see, e.g.,[6, 17, 24, 25, 34, 37, 38, 39,

43]). In the context of the Stokes–Darcy coupled problem, the first theoretical results go back

to [43] and [24]. In [24] the authors introduce an iterative subdomain method that employs the

standard velocity-pressure formulation for the Stokes equation and the primal one in the Darcy

domain, whereas in [43] they apply the primal method in the fluid and the dual-mixed one in

the porous medium, which means that only the original velocity and pressure unknowns are

considered in the Stokes domain, whereas a further unknown (velocity) is added in the Darcy

region. In turn, a conforming mixed finite element discretization of the variational formulation

53
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from [43] was introduced and analyzed in [34]. In this work, the porous medium is assumed to

be entirely enclosed within a fluid region, and, as in [43], the corresponding interface conditions

refer to mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman (BJS)

law. As a consequence, the trace of the porous medium pressure needs to be introduced as a

suitable Lagrange multiplier. In addition, Bernardi–Raugel and Raviart–Thomas elements for

the velocities, piecewise constants for the pressures, and continuous piecewise-linear elements

for the aforementioned multiplier, yield a stable Galerkin scheme. The results from [34] are

then improved in [39] where a classical result on projection methods for Fredholm operators

of index zero is employed to show that the use, not only of the one in [34], but of any pair

of stable Stokes and Darcy elements, implies the stability of the corresponding Stokes-Darcy

Galerkin scheme. Later one, a fully-mixed finite element method was proposed and analyzed

in [37] for the Stokes–Darcy coupled problem, where the Babuška-Brezzi theories were used to

derive sufficient conditions for the unique solvability of the resulting continuous and discrete

formulations. Subsequently, in [38] the authors extend the previous results in [37] to the case

of a two-dimensional nonlinear Stokes–Darcy coupled problem. Both a priori and a posteriori

error analyses were developed in this work. As part of augmentation approaches, a fully-mixed

finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity

has been introduced and analyzed in [17]. We also refer to [25] for the analysis of a conforming

mixed finite element method for the Navier-–Stokes/Darcy coupled problem. In both works,

and in order to stay within a Hilbertian framework, the velocity is sought in the Sobolev space

of order 1, which requires to augment the variational formulation with additional Galerkin-type

terms arising from the constitutive and equilibrium equations.

Although augmented methods are effective in ensuring stability, they significantly increase

complexity and computational cost. This issue motivates the exploration of alternative ap-

proaches, such as those based on Banach spaces, whose main advantage is that no augmen-

tation is required, and hence the spaces to which the unknowns belong are the natural ones

arising from the application of the Cauchy–Schwarz and Hölder inequalities to the tested and

eventually integrated by parts equations. A significant number of works have demonstrated

the advantage of using this approach to analyze the continuous and discrete formulation of
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diverse problems (see, e.g, [5, 6, 16, 20, 22]). In particular a non-augmented mixed finite ele-

ment method for the Navier–Stokes equations with variable viscosity was studied in [6]. More

recently, a mass conservative finite element method for the Navier–Stokes/Darcy coupled sys-

tem, which revisits the original primal-mixed approach from [25], was proposed in [13], whereas

a conforming finite element method for a nonisothermal fluid-membrane interaction problem,

modeled by the Navier-Stokes/heat system in the free-fluid region, and a Darcy-heat coupled

system in the membrane, was introduced and analyzed in [14].

According to the above bibliographic discussion, the goal of this work is to extend the

applicability of the Banach spaces framework by introducing a fully–mixed formulation for the

coupling of fluid flow with porous media flow, without any augmentation procedure. To this

end, we consider a similar approach to the one presented in [6] for the Navier-Stokes domain and

adapt it to the coupled Navier-Stokes/Darcy problem. The remainder of this paper is organized

as follows. In Chapter 9 we introduce the governing equations and the mathematical model.

Subsequently, in Chapter 10 we present the fully-mixed variational formulation within a Banach

space framework and prove the well-posedness of the continuous problem. The corresponding

Galerkin system is introduced and analyzed in Chapter 11, where a discrete version of the

fixed-point strategy developed in Chapter 10 is used. In addition, we derive the associated a

priori error estimate in the same chapter. In Chapter 12 we specify particular choices of discrete

subspaces, in 2D and 3D, that satisfy the hypotheses from Chapter 11 and establish the rates

of convergence. Finally, in Chapter 13 we report on 2D numerical examples that validate the

method and showcase its practical applications.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n P t2, 3u, whose

outward normal at Γ :“ BΩ is denoted by n. Standard notation will be adopted for Lebesgue

spaces LtpΩq and Sobolev spaces Wl,tpΩq, with l ě 0 and t P r1,`8q, whose corresponding

norms, either for the scalar or vectorial case, are denoted by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively.

Note that W0,tpΩq “ LtpΩq, and if t “ 2 we write HlpΩq instead of Wl,2pΩq, with the corre-
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sponding norm and seminorm denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. On the other hand,

given any generic scalar functional space M, we let M and M be the corresponding vectorial and

tensorial counterparts, whereas } ¨ } will be employed for the norm of any element or operator

whenever there is no confusion about the spaces to which they belong. Furthermore, as usual, I

stands for the identity tensor in R : “ Rnˆn, and | ¨ | denotes the Euclidean norm in R : “ Rn.

Also, for any vector fields v “ pviqi “ 1,n and w “ pwiqi “ 1,n, we set the gradient, divergence,

and tensor product, respectively, as

∇v : “

ˆ

Bvi

Bxj

˙

i,j “ 1,n

, divpvq : “

n
ÿ

j “ 1

Bvj

Bxj

, and v b w : “ pviwjqi,j “ 1,n .

Additionally, for any tensor fields τ “ pτijqi,j “ 1,n and ζ “ pζijqi,j “ 1,n, we let divpτ q be the

divergence operator div acting along the rows of τ , and define the transpose, the trace, the

tensor inner product and the deviatoric tensor, respectively, as

τ t
“ pτjiqi,j “ 1,n, trpτ q “

n
ÿ

i “ 1
τii, τ : ζ : “

n
ÿ

i,j “ 1
τijζij , and τ d : “ τ ´

1
n

trpτ qI .

On the other hand, given t P p1,`8q, we also introduce the Banach spaces

Hpdivt; Ωq :“
 

τ P L2
pΩq : divpτ q P Lt

pΩq
(

,

Hpdivt; Ωq :“
 

τ P L2
pΩq : divpτ q P Lt

pΩq
(

,

which are endowed with the natural norms defined, respectively, by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq ,

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .
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Then, proceeding as in [30, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [20, Section

3.1]), it is easy to show that for each t P

$

&

%

p1,`8q if n “ 2

r6{5,`8q if n “ 3
, there holds

xτ ¨ n, vy “

ż

Ω
tτ ¨ ∇v ` v divpτ qu @ pτ , vq P Hpdivt; Ωq ˆ H1

pΩq , (8.1)

and analogously

xτ n,vy “

ż

Ω
tτ : ∇v ` v ¨ divpτ qu @ pτ ,vq P Hpdivt; Ωq ˆ H1

pΩq , (8.2)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq, as well as between

H´1{2pΓq and H1{2pΓq. We find it important to stress here, as explained in the aforementioned

references, that the second term on the right-hand side of (8.1) (resp. (8.2)) is well-defined

because of the continuous embedding of H1pΩq (resp. H1pΩq) into Lt1

pΩq (resp. Lt1

pΩq),

where t1 is the conjugate of t, that is t1 P r1,`8q such that 1
t

` 1
t1 “ 1, which holds for

t1 P

$

&

%

r1,`8q if n “ 2

r1, 6s if n “ 3
.



CHAPTER 9

The model problem

In this chapter we introduce the model of interest, namely the coupled Navier-Stokes and Darcy

equations with variable viscosity. To this end, we first let ΩS and ΩD be bounded and simply

connected open polyhedral domains in Rn, such that ΩS X ΩD “ H and BΩS X BΩD “ Σ ‰ H.

The parts of the boundaries are ΓS :“ BΩS å Σ, ΓD :“ BΩD å Σ, and n denotes the unit

normal vector on them, which is chosen pointing outward from Ω :“ ΩS Y Σ Y ΩD and ΩS

(and hence inward to ΩD when seen on Σ). On Σ we also consider unit tangent vectors, which

are given by t “ t1 when n “ 2 and by {t1, t2} when n “ 3 (see Fig. 9.1 below for a 2D

illustration of the geometry involved). The mathematical model is defined by two separate

groups of equations and by a set of coupling terms. Here, ΩS and ΩD represent the domains in

the free and porous media, respectively.

The governing equations in ΩS are those of the Navier-Stokes problem with constant density ρ

and variable viscosity µ, which are written in terms of the velocity uS and the pressure pS of

58
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ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 9.1: geometry of the coupled model

the fluid, that is
´divpµ∇uSq ` ρp∇uSquS ` ∇pS “ fS in ΩS ,

divpuSq “ 0 in ΩS , uS “ g on ΓS ,
(9.1)

where the given data are a function µ : ΩS Ñ R` describing the viscosity, a volume force fS,

and the boundary velocity g. The right spaces to which fS and g need to belong are specified

later on. Furthermore, the function µ is supposed to be bounded, which means that there exist

constants µ1, µ2 ą 0, such that

µ1 ď µpxq ď µ2 @ x P ΩS. (9.2)

Next, we introduce the pseudostress tensor unknown

σS : “ µ∇uS ´ ρpuS b uSq ´ pSI in ΩS , (9.3)

so that, nothing that divpuS buSq “ p∇uSquS, which makes use of the fact that divpuSq “ 0,

we find that the first equation of (9.1) can be rewritten as

´divpσSq “ fS in ΩS .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (9.3), that
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the latter along with the incompressibility condition are equivalent to the pair

σd
S “ µ∇uS ´ ρ puS b uSq

d in ΩS , and

pS “ ´
1
n

tr
`

σS ` ρ puS b uSq
˘

in ΩS .
(9.4)

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by the

postprocessed formula suggested in (9.4), the Navier–Stokes problem (9.1) can be rewritten as:

σd
S “ µ∇uS ´ ρ puS b uSq

d in ΩS ,

´divpσSq “ fS in ΩS , uS “ g on ΓS .
(9.5)

Next, since we are interested in a mixed variational formulation of our problem, and in order

to employ the integration by parts formula typically required by this approach, we introduce

the auxiliary unknown tS :“ ∇uS in ΩS. Consequently, instead of (9.5), we consider from now

the set of equations with unknowns tS, uS, and σS, given by

tS “ ∇uS in ΩS , σd
S “ µ tS ´ ρ puS b uSq

d in ΩS ,

´divpσSq “ fS in ΩS , uS “ g on ΓS .
(9.6)

On the other hand, in ΩD we consider the linearized Darcy model:

uD “ ´K∇pD in ΩD, divpuDq “ fD in ΩD ,

uD ¨ n “ 0 on ΓD ,
(9.7)

where uD and pD denote the velocity and pressure, respectively, in the porous medium, fD P

L2pΩDq is a source term and K P rL8pΩDqsnˆn is a positive definite symmetric tensor describing

the permeability of ΩD divided by a constant approximation of the viscosity, satisfying with

CK ą 0

w ¨ K´1
pxq w ě CK |w|

2
@ pa.e.q x P ΩD, @ w P Rn .
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Finally, following [43] and [34], the transmission conditions on Σ are given by

uS ¨ n “ uD ¨ n on Σ ,

σSn `

n´1
ÿ

l“1
ω´1

l puS ¨ tlqtl “ ´pDn on Σ ,
(9.8)

where tω1, ..., ωn´1u is a set of positive frictional constants that can be determined experimen-

tally. The first equation in (9.8) corresponds to mass conservation on Σ, whereas the second

one establishes the balance of normal forces and Beavers–Joseph–Saffman law. In addition, g

and fD must formally satisfy the compatibility condition

ż

ΓS

g ¨ n `

ż

ΩD

fD “ 0 . (9.9)



CHAPTER 10

The continuous analysis

In this chapter we derive a Banach spaces-based fully-mixed variational formulation of the

coupled problem described by (9.6), (9.7), and (9.8), and then perform its solvability analysis

by means of a fixed-point strategy.

10.1 Preliminaries

Here we introduce further notations and definitions. We begin with the spaces

H0pdiv; ΩDq :“
!

vD P Hpdiv; ΩDq : vD ¨ n “ 0 on ΓD

)

,

L2
trpΩSq :“

!

rS P L2pΩSq : trprSq “ 0
)

.

Furthermore, for each ˚ P tS,Du, and given rΓ Ă BΩ˚, we denote the space of traces

H1{2
00 prΓq :“

!

v|
rΓ : v P H1

pΩ˚q, v “ 0 on BΩ˚zrΓ
)

.

62
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and its vector version H1{2
00 prΓq “

”

H1{2
00 prΓq

ın

. Observe that, if E
rΓ,˚ : H1{2prΓq Ñ L2pBΩ˚q is the

extension operator defined by

E
rΓ,˚pψq :“

$

&

%

ψ on rΓ

0 on BΩ˚zrΓ
@ψ P H1{2

prΓq ,

we have, alternatively, that

H1{2
00 prΓq “

!

ψ P H1{2
prΓq : E

rΓ,˚pψq P H1{2
pBΩ˚q

)

,

which is endowed with the norm }ψ}1{2,00;rΓ :“ }E
rΓ,˚pψq}1{2,BΩ˚

. The dual of H1{2
00 prΓq (respec-

tively H1{2
00 prΓqq is denoted by H´1{2

00 prΓq (respectively H´1{2
00 prΓqq, and } ¨ }

´1{2,00;rΓ is set as the

corresponding norms. Next, in order to deduce the variational formulation of the Navier–Stokes

problem, we first look originally for uS P H1pΩSq, for which we assume from now on, for sim-

plicity, that g P H1{2
00 pΓSq. Equivalently, letting

g
S

:“ EΓS ,Spgq “

$

&

%

g on ΓS

0 on Σ
,

there holds g
S

P H1{2pBΩSq, and hence, using the trace operator γ0 : H1pΩSq Ñ H1{2pBΩSq (see

[30, Section 1.3.1]), we can write γ0puSq “ g
S

` pγ0puSq ´ g
S
q, where

γ0puSq ´ g
S

“

$

&

%

0 on ΓS

γ0puSq on Σ
“ EΣ,Spγ0puSq|Σq P H1{2

pBΩSq ,

which proves that

ϕ :“ ´γ0puSq|Σ P H1{2
00 pΣq .
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As a consequence, for each χ P H´1{2pBΩSq we get

xχ, γ0puSqyBΩS
“ xχ,g

S
yBΩS

` xχ, γ0puSq ´ g
S
yBΩS

“ xχ,EΓS ,SpgqyBΩS
´ xχ,EΣ,SpϕqyBΩS

“ xχ|ΓS
,gyΓS

´ xχ|Σ,ϕyΣ ,

(10.1)

where x¨, ¨yΓS
(respectively x¨, ¨yΣ) stands for the duality pairing between H´1{2

00 pΓSq (respectively

H´1{2
00 pΣq) and H1{2

00 pΓSq (respectively H1{2
00 pΣq).

10.2 The fully-mixed formulation

Having established the above, we now multiply the first equation of (9.6) by τS P Hpdivt; ΩSq,

with t P

$

&

%

p1,`8q if n “ 2

r6{5,`8q if n “ 3
, apply the integration by parts formula (8.2), and use (10.1)

with χ “ τS n, to find that

ż

ΩS

τS : tS `

ż

ΩS

uS ¨ divpτSq “ xτS n,gyΓS
´ xτS n,ϕyΣ @ τS P Hpdivt; ΩSq . (10.2)

It is clear from (10.2) that its first term is well-defined for tS P L2pΩSq, which, along with

the free trace property of tS, suggests to look for tS P L2
trpΩSq. In addition, knowing that

divpτSq P LtpΩSq, we realize from the second term and Hölder’s inequality that it suffices to

look for uS P Lt1

pΩSq, where t1 is the conjugate of t. Next, it follows from the second equation

of (9.6), that formally

ż

ΩS

µ tS : rS ´

ż

ΩS

σd
S : rS ´ ρ

ż

ΩS

puS b uSq
d : rS “ 0 @ rS P L2

trpΩSq , (10.3)

from which we notice that the first term is well-defined, whereas the second one makes sense if

σS is sought in L2pΩSq. In turn, for the third one there holds

ˇ

ˇ

ˇ

ˇ

ż

ΩS

puS b uSq
d : rS

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

ΩS

puS b uSq : rS

ˇ

ˇ

ˇ

ˇ

ď }uS}0,4;ΩS
}uS}0,4;ΩS

}rS}0,ΩS
,
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which, necessarily yields t1 “ 4, and thus t “ 4{3. Finally, looking for σS in the same space of

its corresponding test function τS, that is σS P Hpdiv4{3; ΩSq, it follows from the third equation

of (9.6) that

´

ż

ΩS

vS ¨ divpσSq “

ż

ΩS

fS ¨ vS @ vS P L4
pΩSq , (10.4)

which forces fS to belong to L4{3pΩSq. Now for the Darcy equations given in (9.7) and the

transmission conditions specified in (9.8), we proceed similarly as in [17], so that introducing

the auxiliary unknown

λ :“ pD|Σ P H1{2
pΣq ,

we obtain the variational problem: Find tS P L2
trpΩSq, uS P L4pΩSq, σS P Hpdiv4{3; ΩSq,

uD P H0pdiv; ΩDq, pD P L2pΩDq, λ P H1{2pΣq and ϕ P H1{2
00 pΣq, such that

ż

ΩS

tS : τ d
S `

ż

ΩS

uS ¨ divpτSq ` xτSn,ϕyΣ “ xτSn,gyΓS
,

ż

ΩD

K´1uD ¨ vD ´

ż

ΩD

pD divpvDq ´ xvD ¨ n, λyΣ “ 0 ,
ż

ΩS

µ tS : rS ´

ż

ΩS

σd
S : rS ´ ρ

ż

ΩS

puS b uSq
d : rS “ 0 ,

´

ż

ΩS

vS ¨ divpσSq “

ż

ΩS

fS ¨ vS ,

ż

ΩD

qD divpuDq “

ż

ΩD

fD qD ,

´xϕ ¨ n, ξyΣ ´ xuD ¨ n, ξyΣ “ 0 ,

xσSn,ψyΣ ´ xϕ,ψyt,Σ ` xψ ¨ n, λyΣ “ 0 ,

(10.5)

for all rS P L2
trpΩSq, vS P L4pΩSq, τS P Hpdiv4{3; ΩSq, vD P H0pdiv; ΩDq, qD P L2pΩDq,

ξ P H1{2pΣq and ψ P H1{2
00 pΣq, where:

xϕ,ψyt,Σ “

n´1
ÿ

l“1
w´1

l xϕ ¨ tl,ψ ¨ tlyΣ .

It is not difficult to see that the system (10.5) is not uniquely solvable since, given any solution

ptS,uS,σS,uD, pD, λ,ϕq in the indicated spaces, and given any constant c P R, the vector
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defined by ptS,uS,σS ´ cI,uD, pD ´ c, λ` c,ϕq also becomes a solution. In order to avoid this

non-uniqueness, from now on we require the Darcy pressure pD to be in L2
0pΩDq, where

L2
0pΩDq :“

"

qD P L2
pΩDq :

ż

ΩD

qD “ 0
*

.

On the other hand, for convenience of the subsequent analysis, we consider the decomposition

Hpdiv4{3; ΩSq “ H0pdiv4{3; ΩSq ‘ R I , (10.6)

where

H0pdiv4{3; ΩSq :“
"

τ P Hpdiv4{3; ΩSq :
ż

ΩS

trpτ q “ 0
*

.

It follows that σS can be uniquely decomposed as σS “ σS,0 ` lI, where

σS,0 P H0pdiv4{3; ΩSq and l :“ 1
n|ΩS|

ż

ΩS

trpσSq . (10.7)

In this regard, we notice that (10.3) and (10.4) remain unchanged if σS is replaced by σS,0.

In this way, using the compatibility condition (9.9), the first and last equations of (10.5) are

rewritten equivalently as

ż

ΩS

tS : τ d
S `

ż

ΩS

uS ¨ divpτSq ` xτSn,ϕyΣ “ xτSn,gyΓS
@ τS P H0pdiv4{3; ΩSq ,

jxϕ ¨ n, 1yΣ “ jxg ¨ n, 1yΓS
@ j P R ,

xσSn,ψyΣ ´ xϕ,ψyt,Σ ` xψ ¨ n, λyΣ ` lxψ ¨ n, 1yΣ “ 0 @ψ P H1{2
00 pΣq .

As a consequence of the above, we find that the resulting variational formulation reduces
to: Find tS P L2

trpΩSq, uD P H0pdiv; ΩDq, σS P H0pdiv4{3; ΩSq, λ P H1{2pΣq, uS P L4pΩSq,
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ϕ P H1{2
00 pΣq, pD P L2

0pΩDq and l P R, such that

ż

ΩS

µtS : rS ´

ż

ΩS

σ
d
S : rS ´ρ

ż

ΩS

puS b uS q
d : rS “ 0

ż

ΩD

K´1uD ¨ vD ´xvD ¨ n, λyΣ ´

ż

ΩD

pD divpvDq “ 0

ż

ΩS

τ
d
S : tS `xτSn,ϕyΣ `

ż

ΩS

uS ¨ divpτS q “ xτSn, gyΓS

xuD ¨ n, ξyΣ `xϕ ¨ n, ξyΣ “ 0

xσSn,ψyΣ `xψ ¨ n, λyΣ ´xϕ,ψyt,Σ `lxψ ¨ n, 1yΣ “ 0

ż

ΩS

vS ¨ divpσS q “ ´

ż

ΩS

fS ¨ vS

jxϕ ¨ n, 1yΣ “ jxg ¨ n, 1yΓS

´

ż

ΩD

qD divpuDq “ ´

ż

ΩD

fDqD

(10.8)

for all rS P L2
trpΩSq, vD P H0pdiv; ΩDq, τS P H0pdiv4{3; ΩSq, ξ P H1{2pΣq, vS P L4pΩSq,

ψ P H1{2
00 pΣq, qD P L2

0pΩDq and j P R. Now, we group the spaces, unknowns, and test functions

as follows:

X :“ L2
trpΩSq ˆ H0pdiv; ΩDq , Y :“ H0pdiv4{3; ΩSq ˆ H1{2pΣq

Z :“ L4pΩSq ˆ H1{2
00 pΣq , H :“ X ˆ Y ˆ Z ,

Q :“ L2
0pΩDq ˆ R ,

~t :“ ptS,uDq P X , ~σ :“ pσS, λq P Y , ~u :“ puS,ϕq P Z , ~p :“ ppD, lq P Q ,

~r :“ prS,vDq P X , ~τ :“ pτS, ξq P Y , ~v :“ pvS,ψq P Z , ~q :“ pqD, jq P Q ,

~ζ :“ pζS, zDq P X , ~η :“ pηS, ϑq P Y , ~z :“ pzS,φq P Z , ~s :“ psD, kq P Q ,

where X, Y, Z, H and Q are respectively endowed with the norms

}~r}X :“ }rS}0,ΩS
` }vD}div,ΩD

, }~τ }Y :“ }τS}div4{3;ΩS
` }ξ}1{2,Σ ,

}~v}Z :“ }vS}0,4;ΩS
` }ψ}1{2,00;Σ , }p~r, ~τ , ~vq}H :“ }~r}X ` }~τ }Y ` }~v}Z ,

}~q}Q :“ }qD}0,ΩD
` |j| .

Hence, using the same colors from (10.8), this formulation can be rewritten as: Find
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pp~t, ~σ, ~uq, ~pq P H ˆ Q, such that

rap~tq,~rs `rb1p~rq, ~σs ´

ż

ΩD

pD divpvDq ` bpuS ; uS , rS q “ 0

rb2p~tq, ~τ s `rBp~r, ~τq, ~us “ xτSn, gyΓS

rBp~t, ~σq, ~vs ´rCp~uq, ~vs `lxψ ¨ n, 1yΣ “ ´

ż

ΩS

fS ¨ vS

`jxϕ ¨ n, 1yΣ “ jxg ¨ n, 1yΓS

´

ż

ΩD

qD divpuDq “ ´

ż

ΩD

fD qD

(10.9)

for all pp~r, ~τ , ~vq, ~qq P H ˆ Q, where a : X ˆ X Ñ R, b1 : X ˆ Y Ñ R, b2 : X ˆ Y Ñ R,

B : H Ñ R, and C : Z ˆ Z Ñ R, are the bilinear forms defined by

rap~ζq,~rs :“
ż

ΩS

µ ζS : rS `

ż

ΩD

K´1zD ¨ vD @ ~ζ,~r P X ,

rb1p~rq, ~τ s :“ ´xvD ¨ n, ξyΣ ´

ż

ΩS

τ d
S : rS @ p~r, ~τ q P X ˆ Y ,

rb2p~rq, ~τ s :“ ´rb1p~rq, ~τ s @ p~r, ~τ q P X ˆ Y ,

rBp~r, ~τ q, ~vs :“ xψ ¨ n, ξyΣ ` xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq @ p~r, ~τ , ~vq P H ,

rCp~zq, ~vs :“ xφ,ψyt,Σ, @ ~z, ~v P Z ,

(10.10)

whereas for each wS P L4pΩSq, bpwS; ¨, ¨q : L4pΩSq ˆL2
trpΩSq Ñ R is the bilinear form given by

bpwS; vS, rSq :“ ´ρ

ż

ΩS

pwS b vSq
d : rS . (10.11)

As announced in the abstract, we notice here that (10.9) can be seen as a nonlinear perturbation,

given by the term bpuS; uS, rSq, of a threefold saddle point operator equation, whose main

operator rA, to be introduced below, shows a perturbed saddle-point structure (cf. [21]). Indeed,

letting A : pX ˆ Yq ˆ pX ˆ Yq Ñ R be the bilinear form that arises from the block

¨

˝

a b1

b2

˛

‚

by adding the first two equations of (10.9), that is

rAp~ζ, ~ηq, p~r, ~τ qs :“ rap~ζq,~rs ` rb1p~rq, ~ηs ` rb2p~ζq, ~τ s @ p~ζ, ~ηq, p~r, ~τ q P X ˆ Y , (10.12)
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and letting rA : H ˆ H Ñ R be the bilinear form that is derived from the block

¨

˝

A B

B ´C

˛

‚ by

adding the first three equations from (10.9), that is

rrAp~ζ, ~η, ~zq, p~r, ~τ , ~vqs :“ rAp~ζ, ~ηq, p~r, ~τ qs ` rBp~r, ~τ q, ~zs ` rBp~ζ, ~ηq, ~vs ´ rCp~zq, ~vs (10.13)

for all p~ζ, ~η, ~zq, p~r, ~τ , ~vq P H, we find that (10.9) becomes: Find pp~t, ~σ, ~uq, ~pq P HˆQ such that

rrAp~t, ~σ, ~uq, p~r, ~τ , ~vqs ` rrBp~r, ~τ , ~vq, ~ps ` bpuS; uS, rSq “ rG, p~r, ~τ , ~vqs ,

rrBp~t, ~σ, ~uq, ~qs “ rF, ~qs ,
(10.14)

for all p~r, ~τ , ~vq P H, for all ~q P Q, where

rrBp~r, ~τ , ~vq, ~qs :“ ´

ż

ΩD

qD divpvDq ` j xψ ¨ n, 1yΣ ,

rG, p~r, ~τ , ~vqs :“ xτSn,gyΓS
´

ż

ΩS

fS ¨ vS and rF, ~qs :“ ´

ż

ΩD

fDqD ` jxg ¨ n, 1yΓS
.

(10.15)

Moreover, letting now P : pH ˆ Qq ˆ pH ˆ Qq Ñ R be the bilinear that arises from the block
¨

˝

rA rB
rB

˛

‚ by adding both equations of (10.14), that is

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs :“ rrAp~ζ, ~η, ~zq, p~r, ~τ , ~vqs ` rrBp~r, ~τ , ~vq,~ss ` rrBp~ζ, ~η, ~zq, ~qs (10.16)

for all pp~ζ, ~η, ~zq,~sq, pp~r, ~τ , ~vq, ~qq P H ˆ Q, we deduce that (10.14) (and hence (10.9)) can be

stated, equivalently as well, as: Find pp~t, ~σ, ~uq, ~pq P H ˆ Q such that

rPp~t, ~σ, ~u, ~pq, p~r, ~τ , ~v, ~qqs ` bpuS; uS, rSq “ rH, p~r, ~τ , ~v, ~qqs @ pp~r, ~τ , ~vq, ~qq P H ˆ Q , (10.17)

where H P pH ˆ Qq1 is defined by rH, p~r, ~τ , ~v, ~qqs “ rG, p~r, ~τ , ~vqs ` rF, ~qs. Furthermore, let us

introduce the operator T : L4pΩSq Ñ L4pΩSq defined as

TpwSq :“ uS @ wS P L4
pΩSq , (10.18)
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where uS is the first component of ~u P Z, which, in turn, is the third component of the unique

solution
`

p~t, ~σ, ~uq, ~p
˘

P H ˆ Q (to be proved later on) of the linearized problem arising from

(10.17) after replacing bpuS; uS, rSq by bpwS; uS, rSq, namely:

rPp~t, ~σ, ~u, ~pq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq “ rH, p~r, ~τ , ~v, ~qqs @ pp~r, ~τ , ~vq, ~qq P H ˆ Q .

(10.19)

Thus, we realize that solving (10.14) (or (10.17)) is equivalent to finding a fixed-point of T,

that is uS P L4pΩSq such that

TpuSq “ uS. (10.20)

10.3 Solvability analysis

In this section we analyze the solvability of (10.17) (which is equivalent to (10.9) or (10.14)),

by means of the fixed-point strategy that was depicted at the end of the previous section. To

this end, we first recall next some theoretical results to be applied later on.

10.3.1 Some useful abstract results

We begin with the generalized Babuška-Brezzi theory.

Theorem 10.1. Let H1, H2, Q1 and Q2 be reflexive Banach spaces, and let bi : HiˆQi Ñ R, i P

t1, 2u, be bounded bilinear forms with boundedness constants given by }a} and }bi}, i P t1, 2u,

respectively. In addition, for each i P t1, 2u, let Ki be the kernel of the operator induced by bi,

that is

Ki :“
!

v P Hi : bipv, qq “ 0 @ q P Qi

)

,

and assume that

i) there exists a positive constant α such that

sup
vPK1
v‰0

apw, vq

}v}H1

ě α }w}H2 @w P K2 ,
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ii) there holds

sup
wPK2

apw, vq ą 0 @ v P K1, v ‰ 0 , and

iii) for each i P t1, 2u there exists a positive constant βi such that

sup
vPHi
v‰0

bipv, qq

}v}Hi

ě βi }q}Qi
@ q P Qi .

Then, for each pF,Gq P H 1
1 ˆ Q1

2 there exists a unique pu, pq P H2 ˆ Q1 such that

apu, vq` b1pv, pq “ Fpvq @ v P H1 ,

b2pu, qq “ Gpqq @ q P Q2 ,
(10.21)

and the following a priori estimates hold

}u}H2 ď
1
α

}F}H 1
1

`
1
β

ˆ

1 `
}a}

α

˙

}G}Q1
2

(10.22)

}p}Q1 ď
1
β

ˆ

1 `
}a}

α

˙

}F}H 1
1

`
}a}

β1β1

ˆ

1 `
}a}

α

˙

}G}Q1
2
.

Moreover, i), ii) and iii) are also necessary conditions for the well-posedness of (10.21).

Proof. See [7, Theorem 2.1, Corollary 2.1, Section 2.1] for the original version and its proof.

For the particular case given by H1 “ H2, Q1 “ Q2, and b1 “ b2, we also refer to [30, Theorem

2.34].

We remark here that the roles of K1 and K2 in the assumptions i) and ii) of Theorem

10.1 can be exchanged without altering the joint meaning of these hypotheses. In addition, it

is important to stress that (10.22) is equivalent to an inf-sup condition for the bilinear form

arising after adding the left-hand sides of (10.21), which means that there exists a constant

C ą 0, depending only on α, β1, β2 and }a}, such that

sup
pv,qqPH1ˆQ2

pv,qq‰0

apw, vq ` b1pv, rq ` b2pw, qq

}pv, qq}H1ˆQ2

ě C }pw, rq}H2ˆQ1 @ pw, rq P H2 ˆ Q1 . (10.23)
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Next, we recall from [36, Theorem 3.2] (see also [21, Theorem 3.4] for the original version

of it) a result providing sufficient conditions for the well-posedness of a perturbed saddle-point

problem.

Theorem 10.2. Let H and Q be reflexive Banach spaces, and let a : HˆH Ñ R, b : HˆQ Ñ R

and c : QˆQ Ñ R be given bounded bilinear forms. In addition, let B : H Ñ Q1 be the bounded

linear operator induced by b, and let V :“ NpBq be the respective null space. Assume that:

i) a and c are positive semi-definite, that is

apτ, τq ě 0 @ τ P H and cpv, vq ě 0 @ v P Q, (10.24)

and that c is symmetric,

ii) there exists a constant α ą 0 such that

sup
τPV
τ‰0

apϑ, τq

}τ}H

ě α }ϑ}H @ϑ P V , and (10.25)

sup
ϑPV

ϑ‰0

apϑ, τq

}ϑ}H

ě α }τ}H @ τ P V, (10.26)

iii) and there exists a constant β ą 0 such that

sup
τPH
τ‰0

bpτ, vq

}τ}H

ě β }v}Q @ v P Q .

Then, for each pair pf, gq P H 1 ˆ Q1 there exists a unique pσ, uq P H ˆ Q such that

apσ, τq ` bpτ, uq “ fpτq @ τ P H ,

bpσ, vq ´ cpu, vq “ gpvq @ v P Q .
(10.27)

Moreover, there exists a constant rC ą 0, depending only on }a}, }c}, α, and β, such that

}pσ, uq}HˆQ ď rC
!

}f}H 1 ` }g}Q1

)

. (10.28)
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As announced before, we stress here that the foregoing theorem is referred to as a slight

variant of the original version given by [21, Theorem 3.4], which requires a to be symmetric

as well. Indeed, the proof reduces basically to show that there exists a positive constant pC,

depending on }a}, }c}, α, and β, such that the bilinear form arising from adding the left hand

sides of (10.27), say A : pH ˆ Qq ˆ pH ˆ Qq Ñ R, satisfies the inf-sup condition

sup
pτ,vqPHˆQ

pτ,vq‰0

Appζ, wq, pτ, vqq

}pτ, vq}HˆQ

ě pC }pζ, wq}HˆQ @ pζ, wq P H ˆ Q . (10.29)

In this way, thanks to the symmetry of a and c, A is obviously symmetric, and thus (10.29) is

sufficient to conclude, using the Banach–Nečas–Babuška Theorem (cf.[27, Theorem 2.6], also

known as the generalized Lax–Milgram Lemma, the well-posedness of (10.27). However, if the

symmetry assumption on a (and consequently on A) is dropped, as done in the present Theorem

10.2, the same conclusion is attained if additionally (10.29) is also satisfied by the bilinear form
rA that arises from A after exchanging its components. Thus, noting that the above reduces to

fixing the second component of A and taking the supremum in (10.29) with respect to the first

one, we realize that in order to prove this further inf-sup condition, the assumption (10.25)

needs to be added, as we did in Theorem 10.2. Needless to say, and because of the same

constant α in (10.24) and (10.25), the aforementioned further condition holds with the same

constant pC from (10.29).

10.3.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem

(10.19) is well-posed. To this end, we first state the boundedness of all the variational forms

involved by employing the Cauchy–Schwarz and Hölder inequalities, the upper bounds of µ,

the continuity of the normal trace operator in Hpdiv4{3; ΩSq (which follows from (8.2)), the

boundedness of the injection i4 : H1pΩSq Ñ L4pΩSq, the boundedness of a suitable extension

operator ED : H1{2pΣq Ñ H1{2pBΩDq to be defined later on in (10.37) - (10.38), and the existence

of a positive constant cs, depending only on BΩS, such that }ψ}0,Σ ď cs}ψ}1{2,Σ @ψ P H1{2pΣq,

which yields, in particular, }ψ}0,Σ ď cs}ψ}1{2,00;Σ @ψ P H1{2
00 pΣq (see [5, Appendix A.1]). In
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this way, we deduce the existence of positive constants, denoted and given as:

}a} :“ maxtµ2, }K´1}8u , }b1} “ }b2} :“ max
 

1, }ED}
(

,

}A} “ }a} ` 2}b1} , }B} “ maxt1, }i4}, c2
su ,

}C} :“ c2
spn ´ 1q maxtω´1

1 , ..., ω´1
n´1u , }rA} :“ }A} ` 2}B} ` }C} ,

}rB} :“ maxt1, cs|Σ|1{2u , and }H} :“ }rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
,

(10.30)

with rg :“ maxt1, }i4}, cs|Σ|1{2ug, such that

|rap~ζq,~rs| ď }a} }~ζ}X}~r}X @ ~ζ,~r P X ,

|rbip~rq, ~τ s| ď }bi} }~r}X}~τ }Y @ p~r, ~τ q P X ˆ Y ,

|rAp~ζ, ~ηq, p~r, ~τ qs| ď }A} }p~ζ, ~ηq}XˆY}p~r, ~τ q}XˆY @ p~ζ, ~ηq, p~r, ~τ q P X ˆ Y,

|rBp~r, ~τ q, ~vs| ď }B} }p~r, ~τ q}XˆY}~v}Z @ p~r, ~τ , ~vq P H ,

|rCp~vq, ~zs| ď }C} }~v}X}~z}X @ψ,φ P H1{2
00 pΣq,

|rrAp~ζ, ~η, ~zq, p~r, ~τ , ~vqs| ď }rA} }p~ζ, ~η, ~zq}H}p~r, ~τ , ~vq}H @p~ζ, ~η, ~zq, p~r, ~τ , ~vq P H ,

|rrBp~r, ~τ , ~vq, ~qs| ď }rB} }p~r, ~τ , ~vq}H}~q}Q @ pp~r, ~τ , ~vq, ~qq P H ˆ Q ,

|rH, p~r, ~τ , ~v, ~qqs| ď }H} }p~r, ~τ , ~v, ~qq}HˆQ @ pp~r, ~τ , ~vq, ~qq P H ˆ Q .

(10.31)

In turn, employing the Cauchy–Schwarz inequality twice, we find that

|bpwS; vS, rSq| ď ρ }wS}0,4;ΩS
}vS}0,4;ΩS

}rS}0,ΩS

@ pwS,vS, rSq P L4
pΩSq ˆ L4

pΩSq ˆ L2
trpΩSq .

(10.32)

In what follows, and as suggested by the matrix representation

¨

˝

rA rB
rB 0

˛

‚, we apply the

symmetric case of Theorem 10.1. In particular, in order to derive the inf-sup conditions of the
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bilinear form rA, and according to its structure given by

¨

˝

A B

B ´C

˛

‚ (cf. (10.13)), we employ

Theorem 10.2. In turn, and due to the corresponding structure

¨

˝

a b1

b2 0

˛

‚ of A (cf. (10.12)),

we employ Theorem 10.1 to establish the required assumptions on A. For the above purposes,

we begin by deducing from the definition (10.15) that the kernel rV of rB reduces to

rV :“
!

p~r, ~τ , ~vq P H : rrBp~r, ~τ , ~vq, ~qs “ 0 @ ~q P Q
)

“ rX ˆ Y ˆ rZ , (10.33)

where
rX “ L2

trpΩSq ˆ rH0pdiv; ΩDq, rZ “ L4
pΩSq ˆ rH1{2

00 pΣq , (10.34)

with

rH0pdiv; ΩDq :“
!

vD P H0pdiv; ΩDq : divpvDq P P0pΩDq

)

,

rH1{2
00 pΣq :“

!

ψ P H1{2
00 pΣq : xψ ¨ n, 1yΣ “ 0

)

.

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form

as the kernel of the latter. Then we let V be the kernel of B|
rV, that is

V “ rX ˆ Y ,

where

Y :“
"

~τ :“ pτS, ξq P Y : xψ ¨ n, ξyΣ ` xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq “ 0 @ pvS,ψq P rZ
*

,

“

!

~τ :“ pτS, ξq P Y : divpτSq “ 0, xψ ¨ n, ξyΣ “ ´xτSn,ψyΣ, @ψ P rH1{2
00 pΣq

)

.
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Then for each i P t1, 2u we let Ki be the kernel of bi|V, that is

Ki :“
!

~r :“ prS,vDq P rX : rbip~rq, ~τ s “ 0 @ ~τ :“ pτS, ξq P Y
)

,

which, recalling from (10.10) that b1 “ ´b2, yields

K1 “ K2 “ K Ď rX .

At this point we recall, for later use, that there exist positive constants c4{3pΩSq and Cdiv, such

that (see, [6, Lemma 4.4] and [37, Lemma 3.2], respectively, for details)

c4{3pΩq }τS}0,ΩS
ď }τ d

S}0,ΩS
` }divpτSq}0,4{3;ΩS

@ τS P H0pdiv4{3; ΩSq (10.35)

and

}vD}
2
0,ΩD

ě Cdiv}vD}
2
div,ΩD

@ vD P rH0pdiv; ΩDq . (10.36)

We now follow [38] to recall some preliminary results concerning boundary conditions and

extension operators. Given vD P H0pdiv; ΩDq, the boundary condition vD ¨ n “ 0 on ΓD means

xvD ¨ n, EΓD,DpζqyBΩD
“ 0 @ ζ P H1{2

00 pΓDq .

As a consequence, it is not difficult to show (see [29, Section 2]) that the restriction of vD ¨ n

to Σ can be identified with an element of H´1{2pΣq, namely

xvD ¨ n, ξyΣ :“ xvD ¨ n, EDpξqyBΩD
@ ξ P H1{2

pΣq ,

where ED : H1{2pΣq Ñ H1{2pBΩDq is any bounded extension operator. In particular, given

ξ P H1{2pΣq, one could define EDpξq :“ z|BΩD
, where z P H1pΩDq is the unique solution of the

boundary value problem:

∆z “ 0 in ΩD , z “ ξ on Σ , ∇z ¨ n “ 0 on ΓD , (10.37)
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whose continuous dependence estimate yields ED P L
`

H1{2pΣq,H1{2pBΩDq
˘

, and hence

}EDpξq}1{2,BΩD
ď }ED} }ξ}1{2,Σ . (10.38)

In addition, one can show (see [29, Lemma 2.2]) that for all ζ P H1{2pBΩDq there exist unique

elements ζΣ P H1{2pΣq and ζΓD
P H1{2

00 pΓDq such that

ζ “ EDpζΣq ` EΓD,DpζΓD
q , (10.39)

and

C1

!

}ζΣ}1{2,Σ ` }ζΓD
}1{2,00;ΓD

)

ď }ζ}1{2,BΩD
ď C2

!

}ζΣ}1{2,Σ ` }ζΓD
}1{2,00;ΓD

)

,

with positive constants C1 and C2, independent of Σ.

Then, we are in position to prove the results stated by the following lemmas.

Lemma 10.3. For each i P t1, 2u there exists a positive constant βi such that

sup
~rPĂX
~r‰0

rbip~rq, ~τ s

}~r}X
ě βi }~τ }Y @ ~τ P Y . (10.40)

Proof. Since b1 “ ´ b2, it suffices to show for one of these bilinear forms, so that we stay with

b1. Moreover, considering that Y Ď rH0pdiv4{3; ΩSq ˆ H1{2pΣq, with

rH0pdiv4{3; ΩSq :“
 

τS P H0pdiv4{3; ΩSq : divpτSq “ 0
(

,

we need to prove that there exists a positive constant β1 such that

sup
~rPĂX
~r‰0

rb1p~rq, ~τ s

}~r}X
ě β1 }~τ }Y @ ~τ P rH0pdiv4{3; ΩSq ˆ H1{2

pΣq . (10.41)

In addition, due to the diagonal character of b1 (cf. (10.10)), the proof of (10.41) reduces to
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establishing the following two independent inf-sup conditions

sup
vDPĂH0pdiv;ΩDq

vD‰0

xvD ¨ n, ξyΣ

}vD}div;ΩD

ě β1,Σ }ξ}1{2,Σ @ ξ P H1{2
pΣq , and (10.42)

sup
rS PL2

trpΩS q

rS‰0

ż

ΩS

τ d
S : rS

}rS}0,ΩS

ě β1,S }τS}div4{3;ΩS
@ τS P rH0pdiv4{3; ΩSq , (10.43)

with β1,Σ, β1,S ą 0. Indeed, for (10.42) we refer to [38, Lemma 3.3]. However, for sake of

completeness, most details are given in what follows. Given φ P H´1{2pΣq, we define η P

H´1{2pBΩDq as

xη, ζyBΩD
:“ xφ, ζΣyΣ @ ζ P H1{2

pBΩDq , (10.44)

where ζΣ is given by the decomposition (10.39). It is not difficult to see that

xη, EΓD,DpρqyBΩD
“ 0 @ ρ P H1{2

00 pΓDq , (10.45)

xη, EDpξqyBΩD
“ xφ, ξyΣ @ξ P H1{2

pΣq (10.46)

and

}η}´1{2,BΩD
ď C}φ}´1{2,Σ . (10.47)

Hence, we now define wD :“ ∇z P ΩD, where z P H1pΩDq is the unique solution of the boundary

value problem

∆z “
1

|ΩD|
xη, 1yBΩD

in ΩD, ∇z ¨ n “ η on BΩD,

ż

BΩD

z “ 0 .

It follows that divpwDq “ 1
|ΩD|

xη, 1yBΩD
P P0pΩDq, wD ¨ n “ η on BΩD, and, using the estimate

(10.47), }wD}div;ΩD
ď C}η}´1{2,BΩD

ď C}φ}´1{2,Σ. In addition, according to (10.44), (10.45)

and (10.46), we find, respectively, that

xwD ¨ n, ξyΣ “ xwD ¨ n, EDpξqyBΩD
“ xη, EDpξqyBΩD

“ xφ, ξyΣ
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and

xwD ¨ n, EΓD,DpρqyBΩD
“ xη, EΓD,DpρqyBΩD

“ 0 @ ρ P H1{2
00 pΓDq ,

which implies that wD P rH0pdiv; ΩDq. In this way, we conclude that

sup
vDPĂH0pdiv;ΩDq

vD‰0

xvD ¨ n, ξyΣ

}vD}div;ΩD

ě
|xwD ¨ n, ξyΣ|

}wD}div;ΩD

ě C

ˇ

ˇxφ, ξyΣ
ˇ

ˇ

}φ}´1{2,Σ
@φ P H´1{2

pΣq ,

and hence

sup
vDPĂH0pdiv;ΩDq

vD‰0

xvD ¨ n, ξyΣ

}vD}div;ΩD

ě C sup
φPH´1{2pΣq

φ‰0

ˇ

ˇxφ, ξyΣ
ˇ

ˇ

}φ}´1{2,Σ
“ C }ξ}1{2,Σ ,

which confirms (10.42). On the other hand, given τS P rH0pdiv4{3; ΩSq such that τ d
S ‰ 0, we

have that τ d
S P L2

trpΩSq, so that bounding the supremum in (10.43) by below with rS “ ´τ d
S ,

it follows that

sup
rS PL2

trpΩS q

rS‰0

ż

ΩS

τ d
S : rS

}rS}0,ΩS

ě

ż

ΩS

τ d
S : τ d

S

}τ d
S}0,ΩS

“ }τ d
S}0;ΩS

,

which, using (10.35) and the fact that divpτSq “ 0, implies that (10.43) is satisfied with

constant β1,S “ c4{3pΩSq. On the other hand, if τ d
S “ 0, it is clear from (10.35) that τS “ 0,

and so (10.43) is trivially satisfied.

Lemma 10.4. There exists a positive constant α such that

rap~rq,~rs ě αa }~r}
2
X @~r P rX .

Proof. Given ~r :“ prS,vDq P rX, we use the definition of a (cf. (10.10)), (9.2), and (10.36), to

obtain

rap~rq,~rs “

ż

ΩS

µ rS : rS `

ż

ΩD

K´1vD ¨ vD ě µ1 }rS}
2
0,ΩS

` CK }vD}
2
0,ΩD

ě αa }~r}X ,

with αa :“ 1
2 mintµ1, CdivCKu, thus confirming the required property on a. In particular, since
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K Ă rX, it is clear that a is K-elliptic.

As a consequence of Lemma 10.3 and Lemma 10.4, we conclude that a, b1 and b2 satisfy the

hypotheses of Theorem 10.1, and hence, a straightforward application of this abstract result

yields the existence of a positive constant αA, depending on }a}, αa and β1, such that

sup
p~r,~τqPV

p~r,~τ q‰0

rAp~ζ, ~ηq, p~r, ~τ qs

}p~r, ~τ q}XˆY
ě αA }p~ζ, ~ηq}XˆY @ p~ζ, ~ηq P V . (10.48)

Moreover, if we swap the roles of b1 and b2, changing the matrix from

¨

˝

a b1

b2 0

˛

‚ to

¨

˝

a b2

b1 0

˛

‚,

we can reapply Theorem 10.1 and (10.23) to conclude that, with the same constant αA from

(10.48), there holds

sup
p~ζ,~ηqPV

p~ζ,~ηq‰0

rAp~ζ, ~ηq, p~r, ~τ qs

}p~ζ, ~ηq}XˆY
ě αA }p~r, ~τ q}XˆY @ p~r, ~τ q P V .

Furthermore, it is evident from (10.12) and the ellipticity of a in rX, that

rAp~r, ~τ q, p~r, ~τ qs “ rap~rq,~rs ě αa }~r}X @ p~r, ~τ q P rX ˆ Y ,

which proves that A is positive semi-definite.

Lemma 10.5. There holds

rCp~vq, ~vs ě 0 @~v P Z .

Proof. From the definition of the operator C (cf. (10.10)), it readily follows that

rCp~vq, ~vs “

n´1
ÿ

l“1
w´1

l }ψ ¨ tl}
2
0,Σ ě 0 ~v P Z ,

which confirms that C is positive semi-definite.

In this way, we have demonstrated that A and C satisfy hypotheses i) and ii) of Theorem
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10.2, and hence it only remains to show the corresponding assumption iii), which is the contin-

uous inf-sup condition for B with respect to the third component rZ of the kernel rV of rB (cf.

(10.33), (10.34)).

Lemma 10.6. There exists a positive constant βS such that

sup
p~r,~τqPĂXˆY

p~r,~τ q‰0

rBp~r, ~τ q, ~vs

}p~r, ~τ q}XˆY
ě βS }~v}Z @~v P rZ . (10.49)

Proof. Given ~v :“ pvS,ψq P rZ :“ L4pΩSq ˆ rH1{2
00 pΣq, we first realize, taking ~r :“ prS,vDq “ ~0

and ~τ :“ pτS, ξq “ pτS, 0q, that

sup
p~r,~τqPH

p~r,~τ q‰0

rBp~r, ~τ q, ~vs

}p~r, ~τ q}H
ě sup

τS PH0pdiv4{3;ΩS q

τS‰0

rBp~0, pτS, 0qq, ~vs

}τS}div4{3;ΩS

“ sup
τS PH0pdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

.

(10.50)

Next, setting τS :“ τS,0 ` cI P Hpdiv4{3; ΩSq with the respective components c P R and

τS,0 P H0pdiv4{3; ΩSq, we observe that

ż

ΩS

vS ¨ divpτSq “

ż

ΩS

vS ¨ divpτS,0q , xτSn,ψyΣ “ xτS,0n,ψyΣ , and

}τS}
2
div4{3;ΩS

“ }τS,0}
2
div4{3;ΩS

` 2 c2
|ΩS| .

Hence, noting that }τS}div4{3;ΩS
ě }τS,0}div4{3;ΩS

, we find that

sup
τS,0PH0pdiv4{3;ΩS q

τS,0‰0

xτS,0 n,ψyΣ `

ż

ΩS

vS ¨ divpτS,0q

}τS,0}div4{3;ΩS

ě sup
τS PHpdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

,

which, along with (10.50), implies that in order to conclude (10.49), it suffices to show that
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there exists a positive constant βS, independent of the given ~v :“ pvS,ψq P rZ, such that

sup
τS PHpdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

ě βS

!

}ψ}1{2,00;Σ ` }vS}0,4;ΩS

)

. (10.51)

To this end, we now set pvS :“ |vS|2 vS and notice that }pvS}
4{3
0,4{3;ΩS

“ }vS}4
0,4;ΩS

, which says

that pvS P L4{3pΩSq, and
ż

ΩS

vS ¨ pvS “ }vS}0,4;ΩS
}pvS}0,4{3;ΩS

. (10.52)

Then, we let z P H1pΩSq be the unique solution of

´∆z “ pvS in ΩS, z “ 0 on ΓS , and ∇z n “ 0 on Σ ,

whose variational formulation reads: Find z P H1
ΓS

pΩSq such that

ż

ΩS

∇z ¨ ∇w “

ż

ΩS

pvS ¨ w @ w P H1
ΓS

pΩSq , (10.53)

where

H1
ΓS

pΩSq :“
!

w P H1
pΩSq : w “ 0 on ΓS

)

.

In fact, we first notice that the left-hand side of (10.53) defines an H1
ΓS

pΩSq-elliptic bilinear form.

In addition, Hölder’s inequality and the continuous injection i4 from H1pΩSq into L4pΩSq guar-

antee that the right-hand side of (10.53) constitutes a functional in H1
ΓS

pΩSq1. Consequently,

a straightforward application of the classical Lax–Milgram Lemma implies the existence of a

unique z P H1
ΓS

pΩSq solution to (10.53). Moreover, it follows from (10.53) that

|z|1,ΩS
ď cs }i4} }pvS}0,4{3;ΩS

, (10.54)

where cs is the positive constant, depending only on ΩS, provided by the Poincaré inequality,

that is such that }v}1,ΩS
ď cs |v|1,ΩS

for all v P H1
ΓS

pΩSq. Then, defining rτS :“ ´∇z P L2pΩSq,

we see that divprτSq “ pvS in ΩS, which says that actually rτS P Hpdiv4{3,ΩSq, and that rτSn “ 0
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on Σ, so that using (10.54), we get

}rτS}div4{3;ΩS
“ |z|1,ΩS

` }pvS}0,4{3;ΩS
ď

`

1 ` cs }i4}
˘

}pvS}0,4{3;ΩS
. (10.55)

In this way, bounding by below with rτS, and employing (10.52) and (10.55), we deduce that

sup
τS PHpdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

ě

ż

ΩS

vS ¨ divprτSq

}rτS}div4{3;ΩS

“

ż

ΩS

vS ¨ pvS

}rτS}div4{3;ΩS

“
}vS}0,4;ΩS

}pvS}0,4{3;ΩS

}rτS}div4{3;ΩS

ě βS,1 }vS}0,4;ΩS
,

(10.56)

with βS,1 :“
`

1 ` cs }i4}
˘´1. On the other hand, given η P H´1{2

00 pΣq, we let pz P H1
ΓS

pΩSq be

the unique solution of

´ ∆pz “ 0 in ΩS , pz “ 0 on ΓS , ∇pz n “ η on Σ ,

and define pτS :“ ∇pz in ΩS. It follows that divppτSq “ 0 in ΩS, pτS n “ η on ΓS, and

}pτS}div4{3;ΩS
“ }pτS}0,ΩS

ď pC }η}´1{2,00;Σ, which yields

sup
τS PHpdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

ě
xpτSn,ψyΣ

}pτS}div4{3;ΩS

ě βS,2

ˇ

ˇxη,ψyΣ
ˇ

ˇ

}η}´1{2,00;Σ
,

with βS,2 :“ pC´1. Since η P H´1{2
00 pΣq is arbitrary, the foregoing inequality leads to

sup
τS PHpdiv4{3;ΩS q

τS‰0

xτSn,ψyΣ `

ż

ΩS

vS ¨ divpτSq

}τS}div4{3;ΩS

ě βS,2 }ψ}1{2,00;Σ ,

which, along with (10.56), shows (10.51), and hence (10.49), with βS :“ 1
2 min tβS,1,βS,2u.

Consequently, having the bilinear forms A, B, C satisfied the three hypotheses of Theorem
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10.2, a straightforward application of this abstract result yields the existence of a positive

constant rα, depending on }A}, }C}, αA, and βS such that

sup
p~r,~τ ,~vqP rV

p~r,~τ ,~vq‰0

rrAp~ζ, ~η, ~zq, p~r, ~τ , ~vqs

}p~r, ~τ , ~vq}H
ě rα }p~ζ, ~η, ~zq}H @ p~ζ, ~η, ~zq P rV ,

and

sup
p~ζ,~η,~zqP rV

p~ζ,~η,~zq‰0

rrAp~ζ, ~η, ~zq, p~r, ~τ , ~vqs

}p~ζ, ~η, ~zq}H
ě rα }p~r, ~τ , ~vq}H @ p~r, ~τ , ~vq P rV ,

which means that rA satisfies the assumptions i) and ii) of Theorem 10.1. Thus, it only remains

to demonstrate the corresponding assumption iii), which is the continuous inf-sup condition for
rB.

Lemma 10.7. There exists a positive constant rβ such that

sup
p~r,~τ ,~vqPH

p~r,~τ ,~vq‰0

rrBp~r, ~τ , ~vq, ~qs

}p~r, ~τ , ~vq}H
ě rβ }~q}Q @ ~q P Q . (10.57)

Proof. We first observe that the diagonal character of rB (cf. (10.15)) says that proving (10.57)

is equivalent to establishing the following two independent inf–sup conditions

sup
vDPH0pdiv;ΩDq

vD‰0

ż

ΩD

qD divpvDq

}vD}div,ΩD

ě rβD }qD}0,ΩD
@ qD P L2

0pΩDq , (10.58)

sup
ψPH1{2

00 pΣq

ψ‰0

j xψ ¨ n, 1yΣ

}ψ}1{2,00;Σ
ě rβS |j| @ j P R . (10.59)

To this end, we proceed similarly to the proof of [37, Lemma 3.6]. We define vD :“ ∇z, where

z P H1
ΣpΩDq is the unique solution of the boundary value problem:

∆z “ qD in ΩD , z “ 0 on Σ , ∇z ¨ n “ 0 on ΓD .

It follows that vD P H0pdiv; ΩDq and divpvDq “ qD, which yields the surjectivity of the operator
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div : H0pdiv; ΩDq Ñ L2
0pΩDq, which is (10.58). On the other hand, the inf-sup condition (10.59)

reduces to the surjectivity of the operator ψ Ñ xψ ¨ n, 1yΣ from H1{2pΣq Ñ R, which in turn is

equivalent to showing the existence of ψ0 P H1{2pΣq such that xψ0 ¨ n, 1yΣ ‰ 0. In fact, we pick

one corner point of Σ and define a function v that is continuous, linear on each side of Σ, equal

to one in the chosen vertex, and zero on all other ones. If n1 and n2 are the normal vectors on

the two sides of Σ that meet at the corner point, then ψ0 :“ νpn1 ` n2q satisfies the required

property. Finally, the required inequality (10.57) is obtained with rβ :“ min
 

rβS, rβD

(

.

Now, having the bilinear forms rA and rB satisfied the assumptions of Theorem 10.1, a direct

application of this abstract result guarantees the global inf-sup condition for P (cf. (10.16)),

that is the existence of a positive constant αP, depending on rα, rβ, and }rA}, such that

sup
pp~r,~τ ,~vq,~qqPHˆQ
pp~r,~τ ,~vq,~qq‰0

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs

}p~r, ~τ , ~v, ~qq}HˆQ
ě αP }p~ζ, ~η, ~z,~sq}HˆQ @ pp~ζ, ~η, ~zq,~sq P HˆQ . (10.60)

In turn, if we consider the transpose of P, which simply reduces to exchange the bilinear forms

b1 and b2 in (10.12), we conclude that inf-sup conditions are satisfied by P with respect to the

other component, that is

sup
pp~ζ,~η,~zq,~sqPHˆQ

pp~ζ,~η,~zq,~sq‰0

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs

}p~ζ, ~η, ~z, sq}HˆQ
ě αP }p~r, ~τ , ~v, ~qq}HˆQ @ pp~r, ~τ , ~vq, ~qq P HˆQ . (10.61)

Moreover, employing (10.60) and the boundedness property of b (cf. (10.32)), it readily follows

that, given wS P L4pΩSq, there holds

sup
pp~r,~τ ,~vq,~qqPHˆQ
pp~r,~τ ,~vq,~qq‰0

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq

}p~r, ~τ , ~v, ~qq}HˆQ
ě

`

αP ´ ρ }wS}0,4;ΩS

˘

}p~ζ, ~η, ~z,~sq}HˆQ

for all pp~ζ, ~η, ~zq,~sq P H ˆ Q, and hence, for each wS P L4pΩSq such that }wS}0,4;ΩS
ď

αP

2ρ , we
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get

sup
pp~r,~τ ,~vq,~qqPHˆQ
pp~r,~τ ,~vq,~qq‰0

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq

}p~r, ~τ , ~v, ~qq}HˆQ
ě

αP

2 }p~ζ, ~η, ~z,~sq}HˆQ (10.62)

for all pp~ζ, ~η, ~zq,~sq P Hˆ Q . Similarly, but now using (10.61), and under the same assumption

on wS, we arrive at

sup
pp~ζ,~η,~zq,~sqPHˆQ

pp~ζ,~η,~zq,~sq‰0

rPp~ζ, ~η, ~z,~sq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq

}p~ζ, ~η, ~z,~sq}HˆQ
ě

αP

2 }p~r, ~τ , ~v, ~qq}HˆQ (10.63)

for all pp~r, ~τ , ~vq, ~qq P H ˆ Q.

Consequently, the well-definedness of the operator T can be stated as follows.

Theorem 10.8. For each wS P L4pΩSq such that }wS}0,4;ΩS
ď

αP

2ρ , there exists a unique

solution
`

p~t, ~σ, ~uq, ~p
˘

P H ˆ Q solution to (10.19), and hence we can define TpwSq :“ uS P

L4pΩSq. Moreover, there holds

}TpwSq}0,4;ΩS
“ }uS}0,4;ΩS

ď }p~t, ~σ, ~u, ~pq}HˆQ

ď
2
αP

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

.

(10.64)

Proof. Given wS as indicated, the existence of a unique solution to (10.19) follows from (10.62),

(10.63), and a direct application of the Banach–Nečas–Babuška Theorem (see [27, Theorem

2.6]). In turn, the corresponding a priori estimate and the boundedness of H (cf. (10.31)) yield

(10.64).

10.3.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T (cf. (10.18)) is well-defined, in this section we proceed to establish

the existence of a unique solution of the fixed-point equation (10.20). To this end, in what

follows we will first derive sufficient conditions on T to map a closed ball of L4pΩSq into itself.
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This will allow us to apply the Banach Theorem later on. Indeed, from now on we let

W :“
"

wS P L4
pΩSq : }wS}0,4;ΩS

ď
αP

2ρ

*

.

Lemma 10.9. Assume that

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ď

α2
P

4ρ . (10.65)

Then, there holds T
`

W
˘

Ď W.

Proof. Given wS P W, we know from Theorem 10.8 that TpwSq is well-defined and that there

holds

}TpwSq}0,4;ΩS
ď

2
αP

!

}rg}1{2,00;ΓS
` }fS}0,4{3;Ω ` }fD}0,Ω

)

ď
αP

2ρ , (10.66)

which shows that TpwSq P W.

We continue with the following result providing the required continuity of T.

Lemma 10.10. There holds

}TpwSq ´ TpwSq}0,4:ΩS
ď

4ρ
α2

P

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

}wS ´ wS}0,4;ΩS
(10.67)

for all wS,wS P W.

Proof. Given wS,wS P L4pΩSq, we let TpwSq :“ uS and TpwSq :“ uS, where pp~t, ~σ, ~uq, ~pq P

H ˆ Q and pp~t, ~σ, ~uq, ~pq P H ˆ Q are the corresponding unique solutions of (10.19), that is

rPp~t, ~σ, ~u,pq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq “ rH, p~r, ~τ , ~v, ~qqs @ pp~r, ~τ , ~vq, ~qq P H ˆ Q (10.68)

and

rPp~t, ~σ, ~u, ~pq, p~r, ~τ , ~v, ~qqs ` bpwS; uS, rSq “ rH, p~r, ~τ , ~v, ~qqs @ pp~r, ~τ , ~vq, ~qq P H ˆ Q . (10.69)
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Then, applying the inf-sup condition (10.62) to p~ζ, ~η, ~z, sq “ p~t, ~σ, ~u, ~pq´p~t, ~σ, ~u, ~pq, we obtain

αP

2 }p~t, ~σ, ~u, ~pq ´ p~t, ~σ, ~u, ~pq}HˆQ

ď sup
pp~r,~τ ,~vq,~qqPHˆQ
pp~r,~τ ,~vq,~qq‰0

rPpp~t, ~σ, ~u, ~pq ´ p~t, ~σ, ~u, ~pqq, p~r, ~τ , ~v, ~qqs ` bpwS; uS ´ uS, rSq

}p~r, ~τ , ~v, ~qq}HˆQ
,

from which, employing (10.68) and (10.69), we arrive at

}p~t, ~σ, ~u, ~pq ´ p~t, ~σ, ~u, ~pq}HˆQ ď
2
αP

sup
pp~r,~τ ,~vq,~qqPHˆQ
pp~r,~τ ,~vq,~qq‰0

bpwS ´ wS; uS, rSq

}p~r, ~τ , ~v, ~qq}HˆQ
. (10.70)

In turn, using the boundedness of b (cf. (10.32)) and the a priori estimate for

}uS}0,4;ΩS
“ }TpwSq}0,4;ΩS

given by (10.64) (cf. Theorem 10.8), it follows from (10.70) that

}TpwSq ´ TpwSq}0,4;ΩS
“ }uS ´ uS}0,4;ΩS

ď
2ρ
αP

}wS ´ wS}0,4;ΩS
}uS}0,4;ΩS

ď
4ρ
α2

P

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

}wS ´ wS}0,4;ΩS
,

which confirms the announced property on T (cf. (10.67)).

The main result concerning the solvability of the fixed-point equation (10.20) is stated as

follows.

Theorem 10.11. Assume that

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ă

α2
P

4ρ .

Then, the operator T has a unique fixed-point uS P W. Equivalently, problem (10.17) has a
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unique solution pp~t, ~σ, ~uq, ~pq P H ˆ Q with uS P W. Moreover, there holds

}p~t, ~σ, ~u, ~pq}HˆQ ď
2
αP

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

. (10.71)

Proof. Thanks to Lemma 10.9, we have that T maps W into itself. Then, bearing in mind the

Lipschitz-continuity of T : W Ñ W (cf. (10.67)) and the assumption (10.65), a straightforward

application of the classical Banach theorem yields the existence of a unique fixed-point uS P W

of this operator, and hence a unique solution to (10.14). Finally, it is easy to see that the a

priori estimate is provided by (10.28) (cf. Theorem 10.1), which finishes the proof.



CHAPTER 11

The discrete analysis

In order to approximate the solution of (10.9), we now introduce its associated Galerkin scheme,

analyze its solvability by applying a discrete version of the fixed-point approach introduced for

the continuous analysis, and derive the corresponding a priori error estimates.

11.1 The Galerkin scheme

We first consider a set of arbitrary discrete subspaces, namely

L2
hpΩ˚q Ă L2

pΩ˚q ˚ P tS,Du , HhpΩDq Ă Hpdiv; ΩDq , HhpΩSq Ă Hpdiv4{3; ΩSq ,

L4
hpΩSq Ă L4

pΩSq , ΛS
hpΣq Ă H1{2

00 pΣq , and ΛD
h pΣq Ă H1{2

pΣq ,
(11.1)

90
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so that, denoting by τS,i the i-th row of a tensor τS, we set

L2
tr,hpΩSq :“ rL2

hpΩSqs
nˆn

X L2
trpΩSq , Hh,0pΩDq :“ HhpΩDq X H0pdiv; ΩDq ,

HhpΩSq :“
!

τS P Hpdiv4{3; ΩSq : τS,i P HhpΩSq @ i
)

, ΛS
hpΣq :“ rΛS

hpΣqs
n ,

Hh,0pΩSq :“ HhpΩSq X H0pdiv4{3; ΩSq , and L2
h,0pΩDq :“ L2

hpΩDq X L2
0pΩDq .

(11.2)

Then, defining the global spaces, unknowns, and test functions as follows

Xh :“ L2
tr,hpΩSq ˆ Hh,0pΩDq , Yh :“ Hh,0pΩSq ˆ ΛD

h pΣq , Zh :“ L4
hpΩSq ˆ ΛS

hpΣq ,

Hh :“ Xh ˆ Yh ˆ Zh , Qh :“ L2
h,0pΩDq ˆ R ,

(11.3)
~th :“ ptS,h,uD,hq P Xh , ~σh :“ pσS,h, λhq P Yh , ~uh :“ puS,h,ϕhq P Zh ,

~rh :“ prS,h,vD,hq P Xh , ~τh :“ pτS,h, ξhq P Yh , ~vh :“ pvS,h,ψhq P Zh ,

~ζh :“ pζS,h, zD,hq P Xh , ~ηh :“ pηS,h, ϑhq P Yh , ~zh :“ pzS,h,φhq P Zh ,

~ph :“ ppD,h, lhq P Qh , ~qh :“ pqD,h, jq P Qh , ~sh :“ psD,h, kq P Qh ,

the Galerkin scheme associated with (10.9) reads: Find pp~th, ~σh, ~uhq, ~phq P Hh ˆ Qh such that

rap~thq,~rhs `rb1p~rhq, ~σhs ´

ż

ΩD

pD,h divpvD,hq ´bpuS,h; uS,h, rS,hq “ 0

rb2p~thq, ~τhs `rBp~rh, ~τhq, ~uhs “ xτS,hn, gyΓS

rBp~th, ~σhq, ~vhs ´rCp~vhq, ~uhs `lxψh ¨ n, 1yΣ “ ´

ż

ΩS

fS ¨ vS,h

`jxϕh ¨ n, 1yΣ “ jxg ¨ n, 1yΓS

´

ż

ΩD

qD,h divpuD,hq “ ´

ż

ΩD

fD qD,h

(11.4)

for all pp~rh, ~τh, ~vhq, ~qhq P HhˆQh. Similarly, the ones associated with (10.14) and (10.17), which

are certainly equivalent to (11.4), become, respectively: Find pp~th, ~σh, ~uhq,phq P Hh ˆ Qh such

that

rrAp~th, ~σh, ~uhq, p~rh, ~τh, ~vhqs ` rrBp~rh, ~τh, ~vhq, ~phs ` bpuS,h; uS,h, rS,hq “ rG, p~rh, ~τh, ~vhqs

rrBp~th, ~σh, ~uhq, ~qhs “ rF, ~qhs
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for all pp~rh, ~τh, ~vhq, ~qhq P Hh ˆ Qh and: Find pp~th, ~σh, ~uhq, ~phq P Hh ˆ Qh such that

rPp~th, ~σh, ~uh, ~phq, p~rh, ~τh, ~vh, ~qhqs ` bpuS,h; uS,h, rS,hq “ rH, p~rh, ~τh, ~vh, ~qhqs , (11.5)

for all pp~rh, ~τh, ~vhq, ~qhq P Hh ˆ Qh.

In what follows, we adopt the discrete version of the fixed-point strategy employed in Chap-

ter 10 (at the end of Section 10.2) to study the solvability of (11.5). For this purpose, we now

let Th : L4
hpΩSq Ñ L4

hpΩSq be the operator defined by

ThpwS,hq :“ uS,h @ wS,h P L4
hpΩSq , (11.6)

where uS,h is the first component of ~uh P Zh, which in turn is the third component of the unique

solution p~th, ~σh, ~uhq (to be proved later on) of the linearized problem arising from (11.5) after

replacing bpuS,h; uS,h, rS,hq by bpwS,h; uS,h, rS,hq, namely:

rPp~th, ~σh, ~uh, ~phq, p~rh, ~τh, ~vh, ~qhqs ` bpwS,h; uS,h, rS,hq “ rH, p~rh, ~τh, ~vh, ~qhqs , (11.7)

for all pp~rh, ~τh, ~vhq, ~qhq P Hh ˆ Qh. Thus, we realize that solving (11.5) is equivalent to finding

a fixed-point of Th, that is uS,h P L4
hpΩSq such that

ThpuS,hq “ uS,h . (11.8)

11.2 Solvability analysis

Similarly to Section 10.3, in what follows we address the solvability of (11.5) by means of the

corresponding analysis of (11.8).

11.2.1 Preliminaries

In addition to the finite dimensional versions of the Babuška-Brezzi theory in Banach spaces

(cf. Theorem 10.1) and the Banach-Nečas-Babuška theorem, here we will also need the discrete



11.2. SOLVABILITY ANALYSIS 93

version of Theorem 10.2, which is stated next.

Theorem 11.1. Let H and Q be reflexive Banach spaces, and let a : HˆH Ñ R, b : HˆQ Ñ R

and c : Q ˆ Q Ñ R be given bounded bilinear forms. In addition, let tHhuhą0 and tQhuhą0 be

families of finite dimensional subspaces of H and Q, respectively, and let Vh be the kernel of

b|HhˆQh
that is

Vh :“
!

τh P Hh : bpτh, vhq “ 0 @ vh P Qh

)

.

Assume that

i) a and c are positive semi-definite, and that c is symmetric,

ii) there exists a constant αd ą 0 such that

sup
τhPVh
τh‰0

apϑh, τhq

}τh}H

ě αd }ϑh}H @ϑh P Vh,

iii) and there exists a constant βd ą 0 such that

sup
τhPHh
τh‰0

bpτh, vhq

}τh}H

ě βd }vh}Q @ vh P Qh .

Then, for each pair pf, gq P H 1 ˆ Q1 there exists a unique pσh, uhq P Hh ˆ Qh such that

apσh, τhq ` bpτh, uhq “ fpτhq @ τh P Hh ,

bpσh, vhq ´ cpuh, vhq “ gpvhq @ vh P Qh .
(11.9)

Moreover, there exists a constant rCd ą 0, depending only on }a}, }c}, αd, and βd, such that

}pσh, uhq}HˆQ ď rCd t}f}H 1 ` }g}Q1u .

We stress here that the discrete analogue of (10.26) is not required for Theorem 11.1. Indeed,

since Hh ˆ Qh is the space to which both the unknowns and test functions of (11.9) belong,
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the corresponding finite dimensional version of the Banach–Nečas–Babuška Theorem (cf. [27,

Theorem 2.22]) only requires the discrete analogue of (10.29), for which the already described

hypotheses of Theorem 11.1 suffice.

11.2.2 Well-definedness of the operator Th

We begin by providing the preliminary results that are necessary to show that (11.7) is uniquely

solvable. Once this is established, we address later on the well-posedness of (11.8), and conse-

quently of (11.5). Indeed, following a similar procedure to that of Section 10.3.2, we first note

that the kernel rVh of rB|HhˆQh
reduces to

rVh :“ rXh ˆ Yh ˆ rZh ,

where
rXh :“ L2

tr,hpΩSq ˆ rHh,0pΩDq and rZh :“ L4
hpΩSq ˆ rΛS

hpΣq ,

with

rHh,0pΩDq :“
"

vD P Hh,0pΩDq :
ż

ΩD

qD divpvD,hq “ 0 @ qD P L2
h,0pΩDq

*

, and

rΛS
hpΣq :“

!

ψh P ΛS
hpΣq : xψh ¨ n, 1yΣ “ 0

)

.

(11.10)

Then, the kernel Vh of B|
rVh

reduces to

Vh “ rXh ˆ Yh ,

where
Yh :“

"

~τh :“ pτS,h, ξhq P Yh :
ż

ΩS

vS,h ¨ divpτS,hq “ 0 and

xψh ¨ n, ξhyΣ “ ´xτS,hn,ψhyΣ @~vS,h :“ pvS,h,ψhq P Zh

*

.
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At this point, we notice that Yh Ď rHh,0pΩSq ˆ ΛD
h pΣq, where

rHh,0pΩSq :“
"

τS,h P Hh,0pΩSq :
ż

ΩS

vS,h ¨ divpτS,hq “ 0 @ vS,h P L4
hpΩSq

*

. (11.11)

We now proceed similarly to [17], and introduce suitable hypotheses on the spaces defined

in (11.3) to ensure the well-posedness of (11.7). We begin by noticing that, in order to have

meaningful spaces Hh,0pΩSq and L2
h,0pΩDq, we need to be able to eliminate multiples of the

identity matrix and constant polynomials from Hh,0pΩSq and L2
h,0pΩDq, respectively. This is

certainly satisfied if we assume:

(H.0) P0pΩDq Ď L2
hpΩDq and I P HhpΩSq.

In addition, we consider the following further hypotheses

(H.1) divpHhpΩDqq Ď L2
hpΩDq,

(H.2) divpHhpΩSq Ď L4
hpΩSq,

(H.3) rHd
h,0 :“

!

τ d
S,h : τS,h P rHh,0

)

Ď L2
tr,hpΩSq,

(H.4) there holds the discrete analogue of (10.42), that is there exists a positive constant βd
1,Σ,

independent of h, such that

sup
vD,hPĂHh,0pΩDq

vD,h‰0

xvD,h ¨ n, ξhyΣ

}vD,h}div;ΩD

ě βd
1,Σ }ξh}1{2,Σ @ ξ P ΛD

h pΣq , (11.12)

(H.5) there holds the discrete analogue of (10.51), that is there exists a positive constant βd
S,

independent of h, such that

sup
τS,hPHhpΩS q

τS,h‰0

xτS,hn,ψhyΣ `

ż

ΩS

vS,h ¨ divpτS,hq

}τS,h}div4{3;ΩS

ě βd
S

!

}vS,h}0,4;ΩS
` }ψh}1{2,00;Σ

)

, (11.13)

for all ~vS,h :“ pvS,h,ψhq P L4
hpΩSq ˆ ΛS

hpΣq,
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(H.6) there hold the discrete analogue of (10.58) and a sufficient condition for the discrete

analogue of (10.59), that is there exist a positive constant rβd
D, independent of h, and ψ0 P

H1{2
00 pΣq, such that

sup
vD,hPHh,0pΩDq

vD,h‰0

ż

ΩD

qD,h divpvD,hq

}vD,h}div;ΩD

ě rβd
D }qD,h}0,ΩD

@ qD,h P L2
h,0pΩDq , and (11.14)

ψ0 P ΛS
hpΣq @h, xψ0 ¨ n, 1yΣ ‰ 0 . (11.15)

We highlight here that as a consequence of (H.0) we can employ the discrete version of

the decomposition Hpdiv4{3; ΩSq “ H0pdiv4{3; ΩSq ‘ R I , namely HhpΩSq “ Hh,0pΩSq ‘ R I ,

thanks to which Hh,0pΩSq can be used as the subspace where the unknown σS,h is sought.

However, for the computational implementation of the Galerkin scheme (11.7), which will be

addressed later on in Chapter 13, we will utilize a real Lagrange multiplier to impose the mean

value condition on the trace of the unknown tensor lying in H0,hpΩSq. In turn, it follows from

(H.1) and (11.10) that rHh,0pΩDq reduces to

rHh,0pΩDq :“
!

vD,h P Hh,0pΩDq : divpvD,hq P P0pΩDq

)

.

Similarly, thanks to (H.2) and (11.11), rHh,0pΩSq becomes

rHh,0pΩSq :“
!

τS,h P Hh,0pΩSq : divpτS,hq “ 0
)

, (11.16)

which yields the discrete analogue of (10.43) with constant βd
1,S. In fact, given τS,h P rHh,0pΩSq

such that τ d
S,h ‰ 0, we realize, thanks to (H.3), that rS,h :“ ´τ d

S,h P L2
tr,hpΩSq, and hence,

along with the inf-sup condition from (H.4), we deduce the discrete version of (10.40) holds,

that is, the existence of positive constants βd
i , i P

 

1, 2
(

, independent of h, such that

sup
~rhPĂXh
~rh‰0

rbip~rhq, ~τhs

}~rh}X
ě βd

i }~τh}Y @ ~τh P Yh .



11.2. SOLVABILITY ANALYSIS 97

Furthermore, we remark that, similarly to the analyses in the proofs of Lemmas 10.6 and

10.7, (11.13) (cf. (H.5)) is a sufficient condition for the discrete version of (10.49), whereas

(11.14) and (11.15) (cf. (H.6)) are equivalent to the discrete version of (10.57). We denote the

constants involved in these discrete inf-sup conditions by βd and rβd, respectively.

Thus, having rA and rB satisfied for the present discrete scheme the hypotheses of Theorem

10.1 with constants rαd and rβd, we conclude, similarly to the continuous case, the existence of

a positive constant αP,d, depending on rαd, rβd, and }rA}, and hence independent of h, such that

sup
pp~rh,~τh,~vhq,~qhqPHhˆQh

p p~rh,~τh,~vhq,~qhq‰0

rPp~ζh, ~ηh, ~zh,~shq, p~rh, ~τh, ~vh, ~qhqs

}pp~rh, ~τh, ~vhq, ~qhq}HˆQ
ě αP,d }p~ζh, ~ηh, ~zh,~shq}HˆQ , (11.17)

for all pp~rh, ~τh, ~vhq, ~qhq P Hh ˆ Qh, and thus, for each wS,h P L4
hpΩSq such that }wS,h}0,4;ΩS

ď

αP,d

2ρ , there holds

sup
pp~rh,~τh,~vhq,~qhqPHhˆQh

p p~rh,~τh,~vhq,~qhq‰0

rPp~ζh, ~ηh, ~zh,~shq, p~rh, ~τh, ~vh, ~qhqs ` bpwS,h; uS,h, rS,hq

}p~rh, ~τh, ~vh, ~qhq}HˆQ

ě
αP,d

2 }p~ζh, ~ηh, ~zh,~shq}HˆQ @ pp~rh, ~τh, ~vhq, ~qhq P Hh ˆ Qh .

(11.18)

According to the above, we are now in a position to present the discrete analogues of Theorem

10.8, Lemma 10.9, and Theorem 10.11, whose proofs follow almost verbatim to those for the

continuous case, and hence only some remarks are provided. We begin with the well-posedness

of (11.7), which is the same as establishing that Th is well-defined.

Lemma 11.2. For each wS,h P L4
hpΩSq such that }wS,h} ď

αP,d

2ρ , there exists a unique solution

pp~th, ~σh, ~uhq, ~qhq P H ˆ Q to (11.7), and hence we can define ThpwS,hq “ uS,h P L4
hpΩSq.

Moreover, there holds

}ThpwS,hq}0,4;ΩS
“ }uS,h}0,4;ΩS

ď }p~th, ~σh, ~uh, ~phq}HˆQ

ď
2

αP,d

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

.

(11.19)
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Proof. Given wS,h as indicated, and bearing in mind (11.18), it suffices to apply the discrete

version of the Banach–Nečas–Babuška Theorem (cf. [27, Theorem 2.22]) and its corresponding

a priori error estimate.

We continue with the discrete analogue of Lemma 10.9, that is the result ensuring that Th

maps a ball of L4
hpΩSq into itself.

Lemma 11.3. Let Wh be the ball

Wh :“
"

wS,h P L4
hpΩSq : }wS,h}0,4;ΩS

ď
αP,d

2ρ

*

,

and assume that

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ď

α2
P,d

4ρ . (11.20)

Then, there holds ThpWhq Ď Wh.

Proof. It follows straightforwardly from (11.19) and (11.20).

The discrete analogue of Theorem 10.11, that is the unique solvability of (11.8), and hence,

equivalently that of (11.5), is stated next.

Theorem 11.4. Assume that

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ď

α2
P,d

4ρ .

Then, the operator Th has a unique fixed-point uS,h P Wh. Equivalently, problem (11.5) has a

unique solution pp~th, ~σh, ~uhq, ~phq P Hh ˆ Q with uS,h P Wh. Moreover, there holds

}p~th, ~σh, ~uh, ~phq}HˆQ ď
2

αP,d

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

. (11.21)

Proof. Similarly to the proof of Theorem 10.11, it reduces to employ (10.32), (11.7), (11.18) and

(11.19) to prove that Th : Wh Ñ Wh is a contraction, and then apply the Banach fixed-point

theorem.
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We end this section by providing sufficient conditions for (11.12) and the particular case

arising from (11.13) when vS,h “ 0, that is for the existence of positive constants βd
1,Σ and βd

S,2,

such that

sup
vD,hPĂHh,0pΩDq

vD,h‰0

xvD,h ¨ n, ξhyΣ

}vD,h}div;ΩD

ě βd
1,Σ }ξh}1{2,Σ @ ξh P ΛD

h pΣq , and (11.22)

sup
τS,hPrHhpΩS q

τS,h‰0

xτS,hn,ψhyΣ

}τS,h}div4{3;ΩS

ě βd
S,2 }ψh}1{2,00;Σ @ψh P ΛS

hpΣq , (11.23)

where rHhpΩSq :“
!

τS,h P HhpΩSq : divpτS,hq “ 0
)

. In this regard, we first notice that the

above inequalities, which deal with how the normal components of elements of rHh,0pΩDq and
rHhpΩSq are tested against ΛD

h pΣq and ΛS
hpΣq, respectively, are shown below to be related to

the eventual existence of a stable discrete lifting of the normal traces on Σ. Indeed, in order to

establish (11.22) and (11.23), it suffices to prove that for each ˚ P
 

D,S
(

there exists a positive

constant βd
˚,Σ, such that

sup
vhPĂHhpΩ˚q

vh‰0

xvh ¨ n, ξhyΣ

}vh}div;Ω˚

ě βd
˚,Σ }ξh}1{2,Σ @ ξ P Λ˚

hpΣq , (11.24)

where
rHhpΩDq :“

!

vh P Hh,0pΩDq : divpvhq P P0pΩDq

)

, and

rHhpΩSq :“
!

vh P HhpΩSq : divpvhq “ 0
)

.

Next, for each ˚ P
 

D,S
(

we define

Φ˚
hpΣq :“

!

vh ¨ n|Σ : vh P rHhpΩ˚q

)

, (11.25)

and assume that the linear operator vh Ñ vh ¨ n from rHhpΩ˚q to Φ˚
hpΣq has a uniformly

bounded right inverse, which means that there exists a linear operator L˚
h : Φ˚

hpΣq Ñ rHhpΩ˚q
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and a constant c˚ ą 0, independent of h, such that

}L˚
hpφhq}div;Ω˚

ď c˚ }φh}´1{2,Σ , and

L˚
hpφhq ¨ n “ φh on Σ @φh P Φ˚

hpΣq .

(11.26)

Such a uniformly bounded right inverse L˚
h of the normal trace will henceforth be referred

to as a stable discrete lifting to Ω˚. Note that by [26], existence of L˚
h satisfying (11.26)

is equivalent to the existence of a Scott–Zhang type linear and uniformly bounded operator

π˚
h : Hpdiv; Ω˚q Ñ rHhpΩ˚q, such that

π˚
hpvhq “ vh @ vh P rHhpΩ˚q , and v ¨ n “ 0 on Σ ùñ pπ˚

hpvqq ¨ n “ 0 on Σ .

The following lemma, taken from [37, Lemma 4.2], reduces (11.24) to the inherited interac-

tion between the elements of Φ˚
hpΣq and Λ˚

hpΣq.

Lemma 11.5. Assume that there exists a stable discrete lifting to Ω˚. Then (11.24) is equivalent

to the existence of a positive constant βd
˚, independent of h, such that

sup
φhPΦ˚

h
pΣq

φh‰0

xφh, ξhyΣ

}φh}´1{2,Σ
ě βd

˚ }ξh}1{2,Σ @ ξh P Λ˚
hpΣq . (11.27)

We have thus proved that the existence of stable discrete liftings to ΩS and ΩD together with

the inf-sup condition (11.27) constitute sufficient conditions for (11.24) to hold. In this respect,

we find it important to emphasize that (11.27) deals exclusively with spaces of functions defined

on Σ.
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11.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in

Section 11.2.2, and derive the Céa estimate for the Galerkin error

}t ´ th}HˆQ “ }~t ´~th}X ` }~σ ´ ~σh}Y ` }~u ´ ~uh}Z ` }~p´ ~ph}Q ,

where t :“ p~t, ~σ, ~u, ~pq P Hˆ Q and th :“ p~th, ~σh, ~uh, ~phq P Hh ˆ Qh are the unique solutions of

(10.17) and (11.5) respectively, with uS P W and uS,h P Wh. In what follows, given a subspace

Zh of an arbitrary Banach space
`

Z, } ¨ }Z

˘

, we set

dist
`

z, Zh

˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z .

We begin by observing from (10.16) that for each rh :“ pp~rh, ~τh, ~vhq, ~qhq P Hh ˆQh there holds

rPptq, rhs ` bpuS; uS, rS,hq “ rH, rhs ,

which combined with (11.5), yields for each rh P Hh ˆ Qh

rPpt ´ thq, rhs “ bpuS,h; uS,h, rS,hq ´ bpuS; uS, rS,hq . (11.28)

Now, the triangle inequality gives for each ζ
h

P Hh ˆ Qh

}t ´ th}HˆQ ď }t ´ ζ
h
}HˆQ ` }ζ

h
´ th}HˆQ , (11.29)

and then, applying (11.17) to ζ
h

´ th, subtracting and adding t in the first component of P,

using the boundedness of P with constant }P}, and employing the identity (11.28), we find
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that

αP,d }ζ
h

´ th}HˆQ ď sup
rhPHhˆQh

rh‰0

rPpζ
h

´ thq, rhs

}rh}HˆQ

ď }P} }t ´ ζ
h
}HˆQ ` sup

rhPHhˆQh
rh‰0

rPpt ´ thq, rhs

}rh}HˆQ

ď }P} }t ´ ζ
h
}HˆQ ` sup

rhPHhˆQh
rh‰0

bpuS,h; uS,h, rS,hq ´ bpuS; uS, rS,hq

}rh}H ˆ Q
.

(11.30)

In this way, replacing the bound for }ζ
h

´ th}HˆQ that arises from (11.30) back into (11.29),

and taking infimum with respect to rh P Hh ˆ Qh we deduce that

}t ´ th}HˆQ ď

ˆ

1 `
}P}

αP,d

˙

distpt,Hh ˆ Qhq

`
1

αP,d
sup

rhPHhˆQh
rh‰0

bpuS,h; uS,h, rS,hq ´ bpuS; uS, rS,hq

}rh}HˆQ
,

(11.31)

which basically constitutes the Strang-type estimate for the joint setting formed by (10.17)

and (11.5). Next, in order to estimate the consistency term given by the supremum in (11.31),

we subtract and add uS in the second component of bpuS,h; uS,h, rS,hq, and then invoke the

boundedness property of b (10.32), and the a priori estimates (10.71) and (11.21) for }uS}0,4;ΩS

and }uS,h}0,4;ΩS
, respectively, thanks to all of which we obtain

bpuS,h; uS,h, rS,hq ´ bpuS; uS, rS,hq “ bpuS,h; uS,h ´ uS, rS,hq ` bpuS,h ´ uS; uS, rS,hq

ď
4ρ
αP

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

}uS ´ uS,h}0,4;ΩS
}rS,h}0,ΩS

,

(11.32)

where αP :“ min
 

αP, αP,d
(

. Hence, replacing (11.31) in (11.32), we conclude that

}t ´ th}HˆQ ď

ˆ

1 `
}P}

αP,d

˙

distpt,Hh ˆ Qhq

`
4ρ
α2

P

!

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD

)

}uS ´ uS,h}0,4;ΩS
.

(11.33)

We are then in position to state the following result.
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Theorem 11.6. Assume that for some δ P p0, 1q there holds

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ď

δ α2
P,d

4ρ . (11.34)

Then, there exists a positive constant Cd, depending only on }P}, αP,d, and δ, and hence

independent of h, such that

}t ´ th}HˆQ ď Cd distpt,Hh ˆ Qhq . (11.35)

Proof. It suffices to use (11.34) in (11.33), which yields (11.35) with Cd :“ p1 ´ δq´1 `1 `

}P}{αP,d
˘

.

In particular, taking δ “ 1{2, we get Cd :“ 2
`

1 ` }P}{αP,d
˘

in the proof of Lemma 11.6,

and (11.34) becomes

}rg}1{2,00;ΓS
` }fS}0,4{3;ΩS

` }fD}0,ΩD
ď

α2
P,d

8ρ . (11.36)

We end this section by remarking that (9.4) and (10.7) suggest the following postprocessed

approximation for the pressure pS

pS,h :“ ´
1
n

tr
`

σS,h ` puS,h b uS,hq
˘

´ lh in ΩS , (11.37)

where

lh :“ ´
1

n |ΩS|

ż

ΩS

trpσS,hq .

Then, applying the Cauchy–Schwarz inequality, performing some algebraic manipulations, and

employing the a priori bounds for }uS}0,4;ΩS
and }uS,h}0,4;ΩS

, we deduce the existence of a

positive constant C, depending on data, but independent of h, such that

}p ´ ph}0,ΩS
ď C

!

}σS ´ σS,h}0,Ω ` }uS ´ uS,h}0,4;ΩS

)

. (11.38)

Thus, combining (11.35) and (11.38), we conclude the existence of a positive constant rCd,
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independent of h, such that

}t ´ th}HˆQ ` }p ´ ph}0,ΩS
ď rCd distpt,Hh ˆ Qhq . (11.39)



CHAPTER 12

Specific finite element subspaces

In what follows we proceed similarly to [37] (see also [15]) and specify discrete spaces satisfying

the hypotheses (H.0) up to (H.6) in 2D and 3D, thus ensuring the well-posedness of the

Galerkin scheme (11.5). Their approximation properties and associated rates of convergence

are also established.

12.1 Preliminaries

We begin by letting T S
h and T D

h be respective triangulations of the domains ΩS and ΩD, which

are formed by shape-regular triangles (in R2) or tetrahedra (in R3) of diameter hT , and assume

that they match in Σ so that T S
h Y T D

h is a triangulation of ΩS Y Σ Y ΩD. We also let Σh be the

partition of Σ inherited from T S
h (or T D

h ). Then, given T P T S
h YTh

D, we let P0pT q be the space

of polynomials of degree “ 0 defined on T , whose vector and tensor versions are denoted by

P0pT q :“ rP0pT qsn and P0pT q :“ rP0pT qsnˆn, respectively. Next, we define the corresponding

105
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local Raviart-Thomas spaces of order 0 as

RT0pT q :“ P0pT q ‘ P0pT q x

and its associated tensor counterpart RT0pT q, where x is a generic vector in R :“ Rn. In turn,

given ˚ P tS,Du, we let P0pT ˚
h q, P0pT ˚

h q and RT0pTh
˚
q be the global versions of P0pT q, P0pT q,

P0pT q, RT0pT q and RT0pT q, respectively, that is

P0pTh
˚
q :“

 

vh P L2
pΩ˚q : vh|T P P0pT q @T P T ˚

h

(

,

P0pTh
˚
q :“

 

τh P L2
pΩ˚q : τh|T P P0pT q @T P T ˚

h

(

,

P0pTh
˚
q :“

 

τh P L2
pΩ˚q : τh|T P P0pT q @T P T ˚

h

(

,

RT0pTh
˚
q :“ tτh P Hpdiv; Ω˚q : τh|T P RT0pT q @T P T ˚

h u ,

RT0pTh
˚
q :“ tτh P Hpdiv; Ω˚q : τh|T P RT0pT q @T P T ˚

h u .

Then, we introduce the corresponding discrete subspaces in (11.1) as

L2
hpΩ˚q :“ P0pTh

˚
q , HhpΩ˚q :“ RT0pTh

˚
q , and L4

hpΩSq :“ L4
pΩSq X P0pT S

h q , (12.1)

so that the associated global spaces L2
tr,hpΩSq, Hh,0pΩDq, HhpΩSq, Hh,0pΩSq, and L2

h,0pΩDq, are

defined according to (11.2). The interface spaces ΛS
hpΣq and ΛD

h pΣq will be specified later on

by separating the 2D and 3D cases.

Next, for the verification of the hypotheses introduced in Section 11.2.2, we first realize

that (H.0), (H.1), and (H.2) follow straightforwardly from the definitions in (12.1). In turn,

regarding (H.3), we now recall that the divergence free tensors of RT0pThq are contained in

P0pThq (cf. [30, Lemma 3.6]), so that, invoking (11.16), we deduce that rHh,0pΩSq Ď P0pThq.

In this way, noting that certainly trpτ d
h q “ 0 for all τh P rHh,0pΩSq, we find that rHd

h,0pΩSq Ď

L2
trpΩq X P0pThq “ L2

tr,hpΩq, thus confirming the occurrence of (H.3).

We now turn partially to (H.5) and (H.6) and establish first an inequality aiming to

accomplish (11.13), and then the discrete inf-sup condition (11.14). More precisely, we have
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the following results taken from [22] and [30], respectively.

Lemma 12.1. There exists a positive constant βd
S,1, independent of h, such that

sup
τS,hPHh,0pΩS q

τS,h‰0

ż

ΩS

vS,h ¨ divpτS,hq

}τS,h}div4{3;ΩS

ě βd
S,1 }vh}0,4;ΩS

@ vS,h P L4
hpΩSq . (12.2)

Proof. See [22, Lemma 6.1]. We just stress that it is mainly based on the introduction of a

suitable auxiliary boundary value problem, and the utilization of the elliptic regularity result

provided by [28, Corollary 1].

Lemma 12.2. There exists a positive constant rβd
D, independent of h, such that

sup
vD,hPHh,0pΩDq

vD,h‰0

ż

ΩD

qD,h divpvD,hq

}vD,h}div,ΩD

ě rβD }qD,h}0,ΩD
@ qD,h P L2

h,0pΩDq . (12.3)

Proof. We refer to [30, Chapter IV, Section 4.2] for full details. It basically reduces to the

verification of the hypotheses of Fortin’s lemma (cf. [30, Lemma 2.6]), which makes use of an

elliptic regularity result in convex domains, and the main properties of the Raviart-Thomas

interpolation operator.

We complete the accomplishment of the hypothesis (H.6) by remarking that the existence

of ψ0,d P H1{2
00 pΣq satisfying (11.15) is guaranteed at the beginning of [37, Section 5.3]. In

particular, this holds if the sequence of subspaces tΛS
hpΣquhą0 is nested, which is confirmed

below when defining ΛS
hpΣq. Thus, ψ0,d can be constructed as indicated in the proof of Lemma

10.7. A similar procedure applies to the 3D case.
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12.2 The spaces ΛS
hpΣq and ΛD

h pΣq and the remaining hy-

potheses in 2D

We now introduce the particular subspaces ΛS
hpΣq and ΛD

h pΣq in 2D by following the simplest

approach suggested in [37]. Indeed, we first assume, without loss of generality, that the number

of edges of Σh is even, and let Σ2h be the partition of Σ arising by joining pairs of adjacent edges

of Σh. Since Σh is inherited from the interior triangulations, it is automatically of bounded

variation, which means that ratio of lengths of adjacent edges is bounded, and, therefore, so

is Σ2h. Now, if the number of edges of Σh were odd, we simply reduce it to the even case by

joining any pair of two adjacent elements, and then construct Σ2h from this reduced partition.

In this way, denoting by x0 and xN the extreme points of Σ, we set

ΛS
hpΣq :“

!

ξh P CpΣq : ξ|e P P1peq @ edge e P Σ2h, ξhpx0q “ ξhpxN q “ 0
)

,

ΛD
h pΣq :“

!

ξh P CpΣq : ξh|e P P1peq @ edge e P Σ2h

)

.

(12.4)

We now aim to establish the discrete inf-sup conditions (11.22) (or (11.12)) and (11.23)

by applying Lemma 11.5. To this end, we suppose from now on that
 

T S
h

(

hą0 and
 

T D
h

(

hą0

are quasi-uniform in a neighborhood of Σ. More precisely, we assume that there is an open

neighborhood of Σ, say ΩΣ, with Lipschitz-continuous boundary BΩΣ, such that the elements

intersecting that region are roughly of the same size. In other words, defining

Th,Σ :“
!

T P T S
h Y T D

h : T X ΩΣ ‰ H

)

, (12.5)

there exists a positive c, independent of h, such that

max
T PTh,Σ

hT ď c min
T PTh,Σ

hT . (12.6)

Under this quasi-uniformity condition, it was proved in [37, Lemma 5.1] that there exist

stable discrete lifting operators L˚
h to Ω˚, ˚ P

 

S,D
(

, satisfying (11.26). Moreover, as a
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consequence of this result, it is easy to see that both ΦS
hpΣq and ΦD

h pΣq (cf. (11.25)) coincide

with

ΦhpΣq :“
!

φh P L2
pΣq : φh|e P P0peq @ edge e P Σh

)

. (12.7)

Hence, a straightforward application of Lemma 11.5 implies that, in order to conclude (11.24),

which in turn yields (11.22) and (11.23), it suffices to show (11.27). In fact, this latter result,

taken from [37], is stated as follows.

Lemma 12.3. There exists a positive constant βd
Σ ą 0, independent of h, such that

sup
φhPΦhpΣq

φh‰0

xφh, ξhyΣ

}φh}´1{2,Σ
ě βd

Σ }ξh}1{2,Σ @ ξh P ΛS
hpΣq Y ΛD

h pΣq .

Proof. See [37, Lemma 5.2] for details.

As previously remarked, Lemma 12.3 yields, in particular, the verification of (11.22), which

is the same as (11.12), and thus (H.4) is accomplished. Similarly, having as well (11.23), a

suitable combination of this inequality with the discrete inf-sup condition provided by Lemma

12.1 leads to (H.5), that is to (11.13), with a constant βd
S depending only on βd

S,1 (cf. Lemma

12.1) and βd
S,2 (cf. (11.23)).

12.3 The spaces ΛS
hpΣq and ΛD

h pΣq and the remaining hy-

potheses in 3D

In order to set the particular subspaces ΛS
hpΣq and ΛD

h pΣq in the 3D case, we need to introduce

an independent triangulation Σ
ph of Σ, made up of triangles K of diameter phK , so that we set

the meshsize ph :“ max
 

phK : K P Σ
ph

(

. Then, denoting by BΣ the polygonal boundary of Σ,

we define

ΛS
ph

pΣq :“
!

ξ
ph P CpΣq : ξ

ph|K P P1pKq @K P Σ
ph, ξ

ph “ 0 on BΣ
)

,

ΛD
ph

pΣq :“
!

ξ
ph P CpΣq : ξ

ph|K P P1pKq @K P Σ
ph

)

.
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Next, as in Section 12.2, we assume here that the families
 

T S
h

(

hą0 and
 

T D
h

(

hą0 are quasi-

uniform as well in a neighborhood of Σ. Hence, proceeding similarly to the proof of [37, Lemma

5.1], it was proved in [3, Lemma 4.4] that there exist stable discrete lifting operators L˚
h to Ω˚,

˚ P
 

S,D
(

, satisfying the 3D version of (11.26). Moreover, since Σh is the partition of Σ

inherited from T S
h (or T D

h ), made up of triangles K of diameter hK , we set the respective

meshsize hΣ :“ max
 

hK : K P Σh

(

, and observe, as for the 2D case, that both ΦS
hpΣq and

ΦD
h pΣq (cf. (11.25)) coincide with the 3D version of (12.7), that is

ΦhpΣq :“
!

φh P L2
pΣq : φh|K P P0pKq @ triangle K P Σh

)

. (12.8)

Consequently, applying again Lemma 11.5 we conclude, by means of (11.24), that (11.22) and

(11.23) follow from the 3D version of (11.27), which is stated below.

Lemma 12.4. There exist positive constants βd
Σ and C0, independent of h, such that for all

hΣ ď C0 ph there holds

sup
φhPΦhpΣq

φh‰0

xφh, ξphyΣ

}φh}´1{2,Σ
ě βd

Σ }ξ
ph}1{2,Σ @ ξ

ph P ΛS
ph

pΣq Y ΛD
ph

pΣq .

Proof. We refer to [3, Lemma 4.5] for full details (see also part of the proof of [33, Lemma

7.5]).

The discussion regarding the consequent accomplishment of (H.4) and (H.5) in the present

3D case is analogous to the one given at the end of Section 12.2, the only difference being now

the incorporation of the restriction hΣ ď C0 ph in the respective statements.

12.4 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (11.4) with the specific finite

element subspaces introduced in Sections 12.1, 12.2, and 12.3. For this purpose, we collect next

the respective approximation properties (cf. [27], [30]) under the notational convention that in

2D, ph, ΛD
ph

pΣq, and ΛS
ph

pΣq mean h, ΛD
h pΣq, and ΛS

hpΣq, respectively:
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`

APtS
h

˘

there exists a positive constant C, independent of h, such that for each % P r0, 1s, and

for each rS P H%pΩSq X L2
trpΩSq, there holds

dist
`

rS,L2
tr,hpΩSq

˘

ď C h%
}rS}%,ΩS

,

pAPuD
h q there exists a positive constant C, independent of h, such that for each % P p0, 1s, and

for each vD P H%pΩDq X H0pdiv; ΩDq with divpvDq P HρpΩDq, there holds

dist
`

vD,Hh,0pΩDq
˘

ď C h%
!

}vD}%,ΩD
` }divpvDq}%,ΩD

)

,

pAPσS
h q there exists a positive constant C, independent of h, such that for each % P p0, 1s, and

for each τS P H%pΩSq X H0pdiv4{3; ΩSq with divpτSq P W%,4{3pΩSq, there holds

dist
`

τS,Hh,0pΩSq
˘

ď C h%
!

}τS}%,ΩS
` }divpτSq}%,4{3;ΩS

)

,

`

APλ
ph

˘

there exists a positive constant C, independent of h and ph, such that for each % P r0, 1s,

and for each ξ P H1{2`%pΣq, there holds

dist
`

ξ,ΛD
ph

pΣq
˘

ď C ph%
}ξ}1{2`%,Σ ,

pAPuS
h q there exists a positive constant C, independent of h, such that for each % P r0, 1s, and

for each vS P W%,4pΩq, there holds

dist
`

vS,L4
hpΩSq

˘

ď C h%
}vS}%,4;ΩS

,

´

APϕ
ph

¯

there exists a positive constant C, independent of h and ph, such that for each % P r0, 1s,

and for each ψ P H1{2`%pΣq X H1{2
00 pΣq, there holds

dist
`

ψ,ΛS
ph

pΣq
˘

ď C ph%
}ψ}1{2`%,Σ ,
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pAPpD
h q there exists a positive constant C, independent of h, such that for each % P r0, 1s, and

for each qD P H%pΩDq X L2
0pΩDq, there holds

dist
`

qD,L2
h,0pΩDq

˘

ď C h%
}qD}%,ΩD

.

The rates of convergence of (11.4) are now established by the following theorem.

Theorem 12.5. Let pp~t, ~σ, ~uq, ~pq P H ˆ Q and pp~th, ~σh, ~uh, q~phq P Hh ˆ Qh be the unique

solutions of (10.9) (or (10.17)) and (11.4) (or (11.5)), with uS P W and uS,h P Wh, whose

existences are guaranteed by Theorems 10.11 and 11.4, respectively. In turn, let p and ph given

by (9.4) and (11.37), respectively. Assume the hypotheses of Theorem 11.6, and that there exists

% P p0, 1s such that tS P H%pΩSq X L2
trpΩSq, uD P H%pΩDq X H0pdiv; ΩDq, divpuDq P H%pΩDq,

σS P H%pΩSq X H0pdiv4{3; ΩSq, divpσSq P W%,4{3pΩSq, λ P H1{2`%pΣq, uS P W%,4pΩSq,

ϕ P H1{2`%pΣq X H1{2
00 pΣq, and pD P H%pΩDq X L2

0pΩDq. Then, there exists a positive constant

C, independent of h, such that

}p~t, ~σ, ~u, ~pq ´ p~th, ~σh, ~uh, ~phq}HˆQ ` }pS ´ pS,h}0,ΩS

ď C
!

h%
´

}tS}%,ΩS
` }uD}%,ΩD

` }divpuDq}%,ΩD
` }σS}%,ΩS

` }divpσSq}%,4{3;ΩS

` }uS}%,4;ΩS
` }pD}%,ΩD

¯

` ph%
´

}λ}1{2`%,Σ ` }ϕ}1{2`%,Σ

¯)

.

Proof. It follows straightforwardly from the Céa estimate (11.39) and the approximation prop-

erties
`

APtS
h

˘

, pAPuD
h q, pAPσS

h q,
`

APλ
ph

˘

, pAPuS
h q,

´

APϕ
ph

¯

and pAPpD
h q.



CHAPTER 13

Computational results

In this chapter we present numerical results that illustrate the behavior of the Galerkin scheme

(11.4). The computational implementation is based on a FreeFem++ code (cf. [41]) and the use

of the direct linear solvers UMFPACK (cf. [23]). The iterative method comes straightforwardly

from the discrete fixed-point strategy along with a Newton-type method. Then, as a stopping

criteria, we finish the algorithm when the relative error between two consecutive iterations of

the complete coefficient vector coeff is small enough, that is

}coeff m`1
´ coeff m

}l2

}coeff m`1
}l2

ď tol ,

where } ¨ }l2 stands for the usual Euclidean norm in Rdof with dof denoting the total num-

ber of degrees of freedom defining the finite element subspaces L2
tr,hpΩSq, Hh,0pΩSq, L4

hpΩSq,

113
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Hh,0pdiv; ΩDq, ΛS
ph

pΣq, ΛD
ph

pΣq, and L2
h,0pΩDq. Subsequently, errors are defined as follows:

eptSq :“ }tS ´ tS,h}0,ΩS
, epσSq :“ }σS ´ σS,h}div4{3;ΩS

, epuSq :“ }uS ´ uS,h}0,4;ΩS
,

epuDq :“ }uD ´ uD,h}div;ΩD
, epλq :“ }λ ´ λ

ph}1{2,Σ , epϕq :“ }ϕ´ϕ
ph}1{2,00;Σ ,

eppDq :“ }pD ´ pD,h}0,ΩD
.

Again, hereafter, ph, ΛD
ph

pΣq, and ΛS
ph

pΣq mean h, ΛD
h pΣq, and ΛS

hpΣq, respectively, in 2D. Notice

that, for ease of computation, and owing to the fact that H1{2pΣq is the interpolation space with

index 1{2 between H1pΣq and L2pΣq, the interface norm }λ´λ
ph}1{2,Σ is replaced by }λ´λ

ph}p0,1q,Σ,

where

}ξ}p0,1q,Σ :“ }ξ}
1{2
0,Σ }ξ}

1{2
1,Σ @ξ P H1

pΣq .

Similarly, the interface norm }ϕ´ϕ
ph}1{2,00;Σ is replaced by }ϕ´ϕh}p0,1q,Σ. In turn, convergence

rates are set as

rp‹q :“ logpep‹q{e1p‹q

logph{h1q
, @ ‹ P ttS,σS,uS,uD,ϕ, λ, pDu ,

where e and e1 denote errors computed on two consecutive meshes of sizes h and h1, respectively.

In addition, we refer to the number of degrees of freedom and the number of Newton iterations

as dof and iter, respectively.

13.1 Example 1: Tombstone-shaped domain.

In our first example, a minor modification of [17, Example 1], we consider a porous unit square,

coupled with a semi-disk-shaped fluid domain, that is,

ΩD :“ p´0.5, 0.5q
2 and ΩS :“

!

px1, x2q : x2
1 ` px2 ´ 0.5q

2
ă 0.25, x2 ą 0.5

)

.
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We set the model parameters

K :“ 10´3 I , ρ :“ 1 , ω1 :“ 1.0 ,

and choose the data fS, gS, and fD such that the variable viscosity is defined as

µp∇uSq :“ 2 `
1

1 ` |∇uS|
,

where the exact solution in the domain Ω :“ ΩS Y Σ Y ΩD is given by the smooth functions

pSpxq “ sinpπx1q sinpπx2q , uSpxq “

¨

˝

sinpπx1q cospπx2q

´ cospπx1q sinpπx2q

˛

‚ @ x :“ px1, x2q P ΩS ,

pDpxq “ cospπx1q exppx2 ´ 0.5q , and uDpxq “ ´ K ∇pDpxq @ x :“ px1, x2q P ΩD .

Notice that uS, being the curl of a smooth function, satisfies the incompressibility condition,

and also uS ¨ n “ 0 on ΓD. Table 13.1 shows the convergence history for a sequence of quasi-

uniform mesh refinements, including the resulting number of Newton iterations. According to

the polynomial degree employed, the respective sets of finite element subspaces are denoted

P0 ´ RT0 ´ P0 ´ P1 and RT0 ´ P0 ´ P1, for the fluid and the porous medium, respectively.

This example confirms the theoretical rate of convergence Ophq provided by Theorem 12.5

with % “ 1. In addition, the aforementioned number of Newton iterations required to reach the

convergence criterion based on the residuals with a tolerance of 1e ´ 8, was equal to 4 in all

runs. Finally, samples of approximate solutions are shown in Figure 13.1.

13.2 Example 2: air flow through a filter.

This example is similar to the one presented in [44, Section 4] (see also [19]). More precisely,

we apply our mixed method to simulate air flow through a filter. To this end, we consider a

two-dimensional channel with lenght 0.75 m and width 0.25 m which is partially blocked by a

rectangular porous medium of length 0.25 m and width 0.2 m as shown in Figure 13.2, with

boundaries ΓS “ Γin
S Y Γtop

S Y Γout
S Y Γbottom

S and Γbottom
D :“ ΓD. The permeability tensor in the
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P0 ´ RT0 ´ P0 ´ P1 and RT0 ´ P0 ´ P1

eptSq rptSq epσSq rpσSq epuSq rpuSq epϕq rpϕq eppSq rppSq

3.18e ´ 01 ˚ 1.75e ` 00 ˚ 1.27e ´ 01 ˚ 3.24e ´ 01 ˚ 2.65e ´ 01 ˚

1.63e ´ 01 1.08 8.83e ´ 01 1.11 6.21e ´ 02 1.15 1.64e ´ 01 1.10 1.26e ´ 01 1.21
8.32e ´ 02 0.96 4.46e ´ 01 0.98 3.12e ´ 02 0.98 8.28e ´ 02 0.98 6.31e ´ 02 0.98
4.16e ´ 02 1.05 2.23e ´ 01 1.05 1.57e ´ 02 1.05 4.16e ´ 02 1.05 3.24e ´ 02 1.01
2.06e ´ 02 1.01 1.10e ´ 01 1.02 7.78e ´ 03 1.01 2.08e ´ 02 1.00 1.58e ´ 02 1.03
1.04e ´ 02 1.08 5.54e ´ 02 1.09 3.89e ´ 03 1.10 1.05e ´ 02 1.09 7.78e ´ 03 1.08

epuDq rpuDq eppDq rppDq epλq rpλq dof iter
2.28e ´ 04 ˚ 5.23e ´ 02 ˚ 2.50e ´ 01 ˚ 731 4
1.06e ´ 04 1.23 2.29e ´ 02 1.26 1.26e ´ 01 1.02 2659 4
4.25e ´ 05 1.36 1.05e ´ 02 1.16 4.99e ´ 02 1.38 10460 4
2.00e ´ 05 1.08 5.00e ´ 03 1.05 2.33e ´ 02 1.09 41804 4
9.94e ´ 06 1.58 2.53e ´ 03 1.54 1.19e ´ 02 1.52 167808 4
4.95e ´ 06 0.93 1.27e ´ 03 0.93 5.79e ´ 03 0.97 660726 4

Table 13.1: Example 1, convergence history and Newton iteration count for the fully-mixed
approximations of the Navier–Stokes/Darcy equations with variable viscosity, and convergence
of the P0-approximation of the postprocessed pressure field.

-1.0

-0.0

-0.8

-0.6

-0.4

-0.2-0.2

0.0 1.00.2 0.5 0.8

-1.0 1.0-0.5 0.0 0.5 0.04 4.441.10 2.20 3.30 0.40 9.862.00 4.00 6.00 8.00

Figure 13.1: Example 1, domain configuration, approximated velocity component, Darcy pres-
sure field, Navier–-Stokes pressure field, spectral norm of the Navier–-Stokes velocity gradient
and pseudo-stress tensor.
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porous medium is given as

K “ Rpθq

¨

˝

1
δ
κ 0

0 κ

˛

‚ R´1
pθq , with Rpθq “

¨

˝

cospθq ´ sinpθq

sinpθq cospθq

˛

‚ ,

where the angle θ “ ´45˝, the anisotropy ratio δ “ 100, and κ “ 10´6 m2. In turn,

ρ “ 1.225 ˆ 10´5 Mg/m3, ω1 “ 1.0, and the top and bottom of the domain are impermeable

walls. The flow is driven with an inlet mean velocity of 0.25 m/s. The force terms fS and fD

are set to zero. As motivated again by [17], the viscosity follows the Carreau law given by

µ “ 1.81 ` 1.81 p1 ` |tS|
2
q

´1{2
ˆ 10´5 Pa s , (13.1)

whereas the boundary conditions are

uS “

”

6 uin,S
x2

d
p1 ´

x2

d
q, 0

ı

on Γin
S , uS “ 0 on Γtop

S Y Γbottom
S ,

σSn “ 0 on Γout
S , uD ¨ n “ 0 on Γbottom

D ,

with uin,S “ 0.25 m/s and d “ 0.2 m. We stress here that, because of the fully nonlinear

character of µ (cf. (13.1)), which depends on the unknown fluid velocity gradient tS :“ ∇uS, the

use of the Newton method to solve the corresponding Galerkin scheme (11.4) implies linearizing

not only the convective term given by the form b (cf. (10.11)), but also the one arising from

the form a (cf. (10.10)). In addition, we remark that the analysis developed in the previous

chapters can be extended, with minor modifications, to the case of mixed boundary conditions

considered in this example. Now, using again a sequence of quasi-uniform mesh refinements, we

find that the number of Newton iterations required to reach the convergence criterion, based

on the residuals with a tolerance of 1e ´ 8, is 7. In Fig. 13.2 we display various components

of the computed solution. As we expected, the top-left panel shows an increment in air flow

in the surrounding region above the filter. This is caused by the flow resistance in the porous

medium. The effect of anisotropy is also evident, as the air flow that passes through the porous

block aligns with the angle θ “ ´45˝. In other words, the flow follows the inclined principal
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0.00 1.870.47 0.95 1.45 0.000 0.0370.009 0.018 0.027

0.00 0.050.01 0.02 0.03 0.04 -0.005 0.0370.006 0.016 0.027

Figure 13.2: Example 2, approximated magnitude of the velocities (top-left), first rows (top-
right) and second rows (bottom-left) of the pseudostress tensor with vector directions, and
pressure fields (bottom-right).

direction of the permeability tensor. Furthermore, a continuous normal velocity is observed

across all three interfaces, whereas the tangential velocity is discontinuous, especially at the

interfaces with higher fluid velocity. This observation aligns with the continuity of flux and the

BJS interface conditions. We also observe that the pressure drop is visible through the domain.

Again, the effect of anisotropy is visible due to the inclined pressure drop in the porous domain.

The pseudostress tensor σS,h is larger along the Γin
S boundary and zero at the Γout

S boundary,

which is consistent with the boundary condition σS n “ 0 on Γout
S .



CHAPTER 14

Conclusions and Future Works

In this chapter we summarize the main contributions of this work and give a brief description

of eventual future works.

14.1 Conclusions

Upon the results presented in the first part of this thesis, we arrive at the following conclusions:

• We developed a new mixed formulation for the Navier-Stokes equations with variable

viscosity that depends nonlinearly on the velocity gradient, whose analysis made use of

diverse tools and abstract results in Banach spaces.

• We proved that is not necessary to use an augmented formulation to provide well posed-

ness of the continuous and discrete formulations.

• The well-posedness of the continuous formulation was proved using a fixed point strategy

in combination with the Banach theorem.
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• An analogous approach is employed to conclude the existence and uniqueness of a solution

for the associated Galerkin scheme. In addition, a priori error estimates are derived.

• We used Raviart-Thomas elements of order ` with their respective convergence rates,

followed by several numerical experiments that confirmed the theoretical error bounds.

According to the results presented in the second part of this work, we can state the following

conclusions:

• We develop a new mixed formulation in Banach spaces for the coupled problem given by

Navier–Stokes and Darcy equations.

• We consider a similar approach to that presented in the first part for the Navier-Stokes

domain and adapt it to the coupled Navier-Stokes/Darcy problem.

• Finally, several numerical results illustrating the good performance of the method in 2D

and confirming the theoretical findings are reported.

14.2 Future Works

The methods developed and the results obtained here have motivated some possibilities of

future work, which are described below:

• To extend the analysis of the coupled Navier–Stokes and Darcy equations with nonlinear

viscosity.

• To develop the corresponding a posteriori error analyses for some of the above models.

• To extend the analysis and results to the time dependent case.
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