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Abstract

This work proposes a hybridize discontinuous Galerkin (HDG) method for the linear elasticity problem
in domains (2 that are not necessarily polyhedral/polygonal. In particular, we approximate the domain
by a polyhedral/polygonal computational domain D; where the HDG solution can be computed. The
Dirichlet boundary data is suitable transferred from the boundary I' := 02 to the computational boundary
Iy, := 0Dy,. We show that the scheme is well-posed. Moreover, we prove a priori error estimates showing
that the method is optimal. In addition, we prove that the numerical trace is superconvergent with order
k + 2 if the distance between I' and T}, is of order h2. On the other hand, if this distance is of order h,
then the numerical trace superconvergences with rate k£ + 3/2. We validate our theoretical results with
numerical experiments in two-dimension.



Resumen

Este trabajo propone un método de Galerking discontinuo hibridizable (HDG) para el problema de elas-
ticidad lineal en dominios €2 no necesariamente poliédrico/poligonal. En particular, aproximamos el
dominio mediante un dominio computacional poliédrico/poligonal D), donde la solucién HDG puede ser
calculada. El dato Dirichlet de la frontera es adecuadamente traspasado desde la frontera I' := 92 a la
frontera computacional I'y, := dDj,. Mostramos que el esquema esta bien definido. También, proveeemos
estimaciones a priori del error mostrando que el método es éptimo. Ademds, probamos que la traza
numérica es superconvergente con orden k + 2 si la distancia entre I' y I';, es de orden h?%. Por otra parte,
si la distancia es de orden h, entonces la traza numérica es superconvergente con tasa k + 3/2. Validamos
nuestros resultados tedricos con experimentos numéricos en dos dimensiones.
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Chapter

Introduction

This work proposes and analyses a Hybridizable Discontinuous Galerkin (HDG) method for the isotropic
Linear Elasticity problem

Ao —e(u) =0 inQ CR", (1.1a)
V-oa=f inQQ, (1.1b)
u=g onl. (1.10)

where Q € R”, (n € {2,3}) is a bounded domain not necessarily polygonal/polyhedral. Here u is the
displacement, €(u) := 3(Vu + V7u) is the strain tensor, ¢ is the Cauchy stress tensor, f € L((2) is a
source term, g € H'/?(T') is a given boundary data, I is a piecewise C? and Lipschitz boundary and A is
a bounded symmetric positive definite tensor, i.e., there exist C 4 > 0 and C,; > 0 such that

1 AE) 2 < Call € Ip2q)pnxn for all ¢ € [L2(Q)]"" (1.2)
and
(AE): O L2 (ymxn = Cer || € 172 0pnxn for all £ € [L*()]"*". (1.3)
In applications, A~ is the elasticity tensor determined by the Hooke’s Law:
A7HE) = 2u€ + Nr(§)I forall § € [L*(Q)]™"

and also

1 A

A(§) = ﬂé_ mtr(g)l. (1.4)

Here, I denotes the identity tensor, tr(§) == >_1"; §u" A and p are the Lamé constant such that

&

=——— and \:= Ev
= o0+ T+ -2w)

where F is the Young’s modulus and v is the Poisson ratio. In the current work, where A is given by
(1.4), it is possible to show that C'4 = 1/u and A is a symmetric and positive definite tensor if £ > 0 and
v €] — 1,1/2]. Moreover, we can see that C; = (21 + An|Q["/?)~!
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One of the first HDG methods for the linear elasticity problem has been proposed in [14] for the
Formulation (1.1) in polyhedral domains. There, numerical experiments showed optimal convergence
rates of the method. However, to the best of our knowledge, its analysis study is still an open problem.

On the other hand, we introduce the rotation p(u) = (Vu — V7 u)/2 as unknown and rewrite (1.1) as

Ao —Vu+p=0 inQCR", (1.5a)
V.o=f inQ, (1.5b)
u=g onl. (1.50)

An HDG method for (1.5), in the case of a polyhedral domain, has been analysed in [5] and it has been
shown there that the HDG scheme is optimal.

This work considers an HDG formulation of (1.5) where we emphasize that € is not necessarily poly-
hedral. For this, we follow the approach in [4, 6] for the Poisson problem, which is based on transferring
the boundary condition from I' to the computational boundary I';,. More precisely, [6] used the fact
that the gradient of the pressure was part of the unknowns and the boundary condition can be obtained
integrating this gradient along a segment. In the case of lineal elasticity the same idea, can be applied
because Vu is the sum of the unknowns Ag and p. In fact, to fix ideas, let x € T', Z € T, I(x) := |T — x|
and t(x) the unit tangent vector of the segment joining « and Z, then integrating Vu between z and Z
we get

I(x)
u(x) = u(E) — /O (A + p)(@ + st(@))t(z)ds,

since u(Z) = g(Z). Defining g(x) := u(x), we obtain the following expression for the boundary data g in
th

I(z)
g(x)=9(x) — / (Ag + p)(x + st(x))t(x)ds. (1.6)
0
Then, we solve the following problem in a computational subdomain Dj, of Q:
Ao —Vu+p=0 in Dy, (1.7a)
V-o=f in Dy, (1.7b)
u = g on Fh = 8Dh. (1.7C)

As we mentioned above, the idea of transferring the boundary data from I" to I';, by integrating Vu
along a segment, was originally introduced and analysed in a one-dimensional diffusion problem [3],
where an HDG method was employed. Later, [7] generalized the method to the two-dimensional case
and developed the implementation tools. In the same direction, [8] numerically showed that the method
performs optimaly in convection-diffusion equations. Also, this technique was use in an exterior diffusion
problem in a curved domain [9]. There, the authors coupled the boundary element method to an HDG
scheme and experimentally showed that the order of convergence of the resulting method is optimal.
Then [4] analysed the method proposed in [7] using the projections-based error analysis of HDG methods
[2]. In fact, [4] provided the theoretical framework to analyse this type of techniques of transferring the
boundary data. Lately, this approach was applied also to an HDG scheme of the Stokes problem [13] and
to an elliptic interface problem where the interface is not polygonal [12].

The rest of this manuscript is organized as follows. In Chapter 2 we construct the computational
domain, set the notation associated to the mesh and define the transferring segments. Then, in Chapter
3, we present the HDG scheme and summarize the main results. Chapter 4 is devoted to the proofs
of well-posedness and the error estimates. Numerical experiments validating the theoretical results are
presented in Chapter 5.
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Chapter

Mesh construction and notation

2.1 Computational domain

Let us first construct the computational domain D;,. We follow the approach in [6]. We begin by choosing
a background polyhedral domain M D ). Then, given a sequence {T},},~¢ of triangulations of M(made
of simplexes), we define 7}, to be the set of all the elements K € T, which are totally included in 2,then
we take the set Dy, := (UgeT;, K)°. In Figure 2.1 we show a two-dimensional example, the boundary of
Dy, is denoted by I',. We assume, by simplicity the triangulation does not have hanging nodes and the
elements K are uniformly shape regular, this means, there exists a constant 3 such that hx < Sox, where
hx is the diameter of the element K and gy is the radius of the biggest ball included in K. The maximum

of the diameters hy € 7Ty, is denoted by h.

Figure 2.1: Example of a Domain 2, its boundary I', a background domain M and the polygonal subdo-
main Dy, (gray).

We call e an interior face if there are two elements K+ and K~ in 7}, such that e = KT N 0K ™.
Similarly, e is a boundary face if there is an element K € 7;, such that e = 9K NT}. Let & be the set of
inferior faces of 7y, 5,(3 the set of faces at the boundary and &), := 52 ué ,‘? .

We denote by n the outward unit normal of the elemet K. When there is no confusion, we just write
n and, when we want to emphasize that n is normal to the face e of K, we write n..

13



We use the notation n for tensor-, 9 for vector-, and 7 for scalar-valued functions. Also, given a region
D c R", we define

n n
97 = Y, 1S )7 @97 =Y mis)n and (.97 = Y (0,9)x,
i,j=1 =1 KeTy,

where (7,¢)p denotes the integral of ns over D C R™. Similarly, we write

n

n.Som, =Y (ni-si)or,  and  (n,<)o7, == D (n.<)ox.

i=1 KeTy

where (n,<)p denotes the integral of n¢ over D C R"~!. We also use the standard notation for Sobolev
spaces and the associated norms and seminorms. We define || n || ,:=[ vwn ||,» (D) and, if w = 1, we

write || n ||, . In addition we define the following norm on the skeleton

1/2

I lln={ D bl 3k
KeTy

Finally, from now on C will denote a positive constant independent of h, to simplify notation, V will
denote the usual gradient or broken-gradient, depending on the context. Similarly for V-.

2.2 Transferring paths

As we mentioned in the introduction, given a point € I';, we need to specify a point Z € I' in order to
transfer the boundary data from & to « according to (1.6). In principle, Z could be any point of T" close
enough to x. The segment joining « and & will be referred as transferring path associated to . We denote
by I(x) and t(x) the length and unit tangent vector, respectively, of the transferring path associated to x,
see Figure 2.2a. From a practical point of view, this transferring path is required to satisfy three conditions:
(1) £ and « must be as close as possible, (2) two transferring path must not intersect each other before
terminating at I' and (3) a transferring path must not intersect the interior of the computational domain
Dy,. The authors in [6], for the two dimensional case, proposed an algorithm to construct a family of
transferring paths satisfying the above mentioned condition. The construction in three dimensions can be
done using the same ideas. In practice we only need to compute the transferring paths of the quadrature
points of all boundary edges (see Figure 2.2c).

14



(b) Transferring paths as- (c) Transferring paths as-
(a) Transferring path associated to sociated to the boundary sociated to the boundary
T. vertices. quadrature points.

Figure 2.2: Examples of the transferring paths

2.3 Extrapolation regions

Now, let us introduce the notation associated to the set D§ := Q\ Dj,. For a face e € &7, we denote by K¢
the only element of 7;, having e as a face. We define

KS, :={x+st(x):0<s<l(z)zec e}

In Figure 2.3 we observe an example of a region K¢,,.

Figure 2.3: Example of K¢,,.

The HDG method will be used to compute an approximation of the solution in Dj,, which is a polyno-
mial in K¢ and can be locally extrapolated from K° to K ¢ .+ This procedure provides an approximation of
the solution in Dj, since U, ggf( &t = Dj . The subscript ext in K¢, is introduced to indicate that in those
regions the discrete solution is being extrapolated or extended.

Let p a polynomial defined on K*. The extrapolation of p from K* to K &> denoted by E},(p), is defined
by En(p)(y) := plke(y),Vy € K¢,,. To simplify notation, from now on we will just write p(y) instead of
Ey(p)(y) for y € K¢,,. The same notation will be used for tensor- and vector-valued polynomial functions
defined on K*°.

15



Chapter

The HDG method

3.1 Polynomial spaces

We now set the notation associated to the discrete spaces that we will need in the HDG method. Let
Py (K) be the set of polynomials of degree at most k over the element K. We set Py(K) := [Py(K)]",
P.(K) = [Py(K)]™" and A(K) := [A; j(K)]"*" such that

P.(K) if i<y

A j(K)=<0 if i=j

—P(K) if i>j
We notice that A(K) ¢ AS(K) := {n € L*(K) : n +n7 = 0} and it is called the space of rotation. In
addition we define the polynomial space B(K') associate to bubble functions. We proceed as in [5]. In

two dimensional case
B(K) =V x ((V x A(K))by),

where by, is a scalar-valued function. More precisely, for each edge e of the element K, let 7. be a linear
function such that . = 0 on the edge ¢ and 0 < 7, on K. Thus,

by = H Ne-

eCOK

Here, the operator V x is defined as follows:

T Ti2\ . [ —O0yTi1 + OxTi2 v [—0yv1 Ogin
VX <T21 722> o <—5y721 +3ﬂ22>’ VX (V2> o <_ay7/2 Op12)
In the three dimensional case we have
B(K):=V x ((V x A(K))by),

where the bubble function is defined by

b=y | II n|vneevne

eCOK e/ COK\{e}

16



Here the operator V x is defined as:
i1 Ti2 T3 V x (711,712, T13)
Vx| 71 ma 73| =V X (721,722,73) |-
T3l T32 T33 V x (731,732, T33)
Then, for an element K and a face e, we define the local spaces V(K ),W (K),A(K) and M (e) by

V(K) := Py(K) + B(K),
W(K) := Pi(K),
M(e) := Py(e).

Finally, we notice that
V(K) =Py(K) +V x ((V x A(K)))bx)
=P(K) ® V x ((V x A(K))by),

where A(K) = A(K) NP, (K) and P, (K) is the set of polynomials of degree k exactly.

Remark. It is not difficult to realize that any function v lying in the space B), := {n € L*(Dy) : n|k €
B(K), K € Ty} is such that

(B.1) V-v|x =0 VK €Ty,
(B.2) vn|. =0 Ve € &,.

3.2 The HDG scheme

The method we consider seeks an approximation (g, un, p, , ) of the exact solution (o, u, p, uls, ) in the
finite-dimensional space € V, x W, x A, x M}, € L*(D;,) x L*(Dy) x AS(Dy,) x L?(E,) given by

V,={veL*T) :v|lx € V(K), VK €eT,}, (3.1a)
Wy, ={we L*(T;) :w|xg e W(K), VK €T}, (3.1b)
A, ={neL*Th) :nlk € AK), VK €Ty}, (3.10)
M), = {ucL*E,) : plc € P(e), Ve€&,}. (3.1d)

The approximation (g}, up, P, 4,) is the solution of the following linear system of equations:

(Aap,v)7, + (un, V- v)7, + (p,,0)7, — (@n,vm)o7, =0, (3.2a)
(@h, Vw)7, — (@pn, w)or, = —(f,w)7,, (3.2b)

(@ m)7: =0, (3.20)

(@nn, w7, 1, =0, (3.2d)

{@n, w)r), = @Gn, w1, (3.2¢)

for all (v, w,n,p) €V, x W), x A;, x M}, where

opn =apn — alu, —ap) on OJT7y, (3.2f)

I(x)
(@) = g(7) — /O (Agy, + p, (@ + st(x) () ds (3.29)

17



and « is a positive scalar-valued stabilization function define on 97;. For a face e, we set a, := «a/.. We
observe here that (3.2g) is discrete version of (1.6).

This HDG scheme has been original introduced by [5] in the case of a polyhedral domain. In our case,
since the domain {2 is not necessarily a polyhedron, the boundary data is transferred to the computational
boundary I'j, according to (3.2g). Hence, the Dirichlet data g; on I';, depends on the unknowns g;, and

Py

18



Chapter

Analysis of the HDG method

4.1 Preliminaries

As we will see through this chapter, the analysis of the method uses several technicalities and most of the
estimates involve a large number of terms. In order to keep the proofs as clean as possible, we assume
the vector t(x) of the transferring paths associated to « € e, e € 8,? , to be normal to e, i.e., t(x) = n.. In
the general case where ¢(x) is not necessary equal to n., as it happens in the construction of transferring
paths mentioned in Section 2.2, terms of the type maxgzce t(x) -n. and maxze, W would appear in the
estimates. We emphasize that this assumption is only made to simplify the analysis and we consider that it
is not crucial to explain the theory. Moreover, in the numerical experiments we consider the construction
of transferring paths of Section 2.2 and we will see that results are optimal. Following the discussion in
Section 2.3, for each e € 5;? , let us define

K¢

xT

c={x+sm.:0<s<l(x),xc e}

In addition, we define auxiliary constants that will be used in the analysis of the HDG method. Let K°
the element with face e. We denote by h- the biggest distance of a point in K¢ to the plane determined
by the face e. Similarly, we denote by H} the biggest distance of a point of K¢, to the plane determined
by the face e, and set the ratio

re := HX/ht. 4.1

K@

ext e

K* Ih Fhl

Figure 4.1: Examples of K¢,,, H} and h.
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In Figure 4.1 we display examples of K¢, and the constant H;- and h}. Moreover, we consider the
following norms:

1/2 1/2
1
Il =3 S U012 p o Il oy =9 S B I, ¢

ecg? ecf

where || 7 ||, =] 1=/25 ||, . Finally, we define the constants:

1 "7 € 8 e
e = sup M ce = ht sup M (4.2)
Ve nev(kem{o} 111 Ik nev(kem Ao} 11 [k

The constants C¢,, and Cf,, are independent of h, but depend on the polynomial degree k£ as shown in

Lemma A.2 of [4].

4.1.1 Auxiliary estimates

In this section we will state estimates that will be used in the proof of the main results.

Definition 4.1. For any face e € £, any point « lying on e and any smooth enough function tensor v

given in K¢, ,, we define the auxiliary function
W)= i [ s m) st
=) = —= V(T + sn.) —v(x)nedas.
I(z) Jo

Lemma 4.1. For each e € 5,‘?, we have that

1
Hmwdgvgﬂ%gpMHMMﬁ for all v € P;,(K®) and | denotes |I(x)|.
Proof. It follows from Lemma 5.2 of [4] applied to each of row of v. O

Lemma 4.2. (Lemma 1.46 of [10])(Discrete Trace Inequality) Let K € T, and e a face of K. Then, for
p € Py(K) we have

19 200 < Ch 2 1 2y
where Cf,. > 0 is independent of h.

Lemma 4.3. (Lemma A.1 in [4]) For any polynomial p of degree [ in K¢ U K¢,,, we have

extr

1P e, < Clnpre? 1 p llxce -

ext

Lemma 4.4. (Lemma 2.8 in [11]) Givenn € A}, :=={n € A}, : (n,v)x =0 for allv € Py(K) and for all K € Ty},
there exists v € B, such that

7)1, = W, y)7,, foral~ye A, (4.3a)
lvllp, <Cylinlp, (4.3b)

where Cg > 0 where is independent on h.

We also need to define the auxiliary space G, := {v € H(div; Dy,) : v|x € Py(K)VK € Tj}.

20



Lemma 4.5. (Lemma 3.9 of [4] ) Givenn € Aj, := A, N Py(Ty), there exists v € G, such that

V-v=0, (4.4a)
(v, 7)7, = M,y)7, forally € Aj, (4.4b)
lvllp, <Chlinlp, (4.40)

where Cy > ( where is independent of h.

4.1.2 Auxiliary constant

We define constant involving the ratio r. that will help us to simplify the notation because most of the
estimates presented in this work depend on these quantities. Roughly speaking, they indicate how close
I';, and T must be in order to ensure the stability of the method:

R := maxr,, Ry := max{1, (1 + C4)} max Cj, re,
ecg? e€sy]

R, := max{1,C 4} maxr?C¢,Cs., Ra:=maxr.(l+Cy), Ra:=maxr.a,
ecEf ecEp ecef

4.2 Existence and uniqueness

We proceed now to show existence and uniqueness of the HDG Scheme (3.2), under the following as-
sumptions.

Assumptions C

For every face e € &, , we assume

(C.1) ht < he, (C.4) max{1,C,}C, ' *Card?ce, Ct,, < 1/10,
(C.2) max{1,C,}Cf,Coyre < V2/4, (C.5) reaeht < 1/5,

(C.3) max{(1+ Ca),C,CA}C;,"*Cs.ri* <1/10, (C.6) r. <C,

where C, is a positive constant independent of the discretization parameters that will be introduced in
Lemma 4.3.

Lemma 4.6. Let f =0 and g = 0. Then, the approximation in (3.2) satisfies
Ce ll oy 1D, + lwn — s 137, o< T,

where T := (g, 6,n)1,, -

Proof. We take v = g, w = up,n = Py 1= up, p = 6,0, in Equations (3.2a)-(3.2e), respectively. Then

(Ag),01)7, + (un, V - 0) 7, + (,,,04) 75, — (@, 0m)o7, = 0, (4.52)
(@n, Vup), — (@pm,un)or, =0, (4.5b)

(@h.0,)7 =0, (4.5¢)

(@pn, an)ar;, 1, =0, (4.5d)

(Up, 6pn)r), = (Gh, Gp0)T, - (4.5e)
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Integrating by parts Equation (4.5b), we obtain
(@h, Vun)7, — (@pn,un)or, = —(V - ap,un)7, + (@pn — 8m,up)or, = 0. (4.6)

Adding Equations (4.5a) and (4.6) and using Equation (4.5c), we get

(Agy,ap)T, + (@pn — pn,up) a7, — (@n,05n)s7, = 0.

Next, note that (@y,0,n)s7, = (Un,04n — 6,n)o7, + (Un,6,n)o7, and (4, 6,n)s7, = (Uy,6,n)r, by
Equation (4.5e). Using Equation (3.2f) we have

(Aay,,0p,)7, + (@pn — ,n,up)or, = (Un,6,10)07,,
(Ao, 04)7, + (ce(up —n), up — Up) o7, = (Un, 6n)1, -

Using the fact that Cy; || g, HzThS (Agy,,0,)T,,, we have

Ce |l an 1B, + Il wn — s |37, o< (@n,850)r, = (@n, 8101,
and the result follows from the definition of T. O

Remark. In the case of a polyhedral domain (2, the previous results holds with T = 0 since g, = g = 0,
and well-posedness of the method follows by standard arguments. In our case, T is not zero and we
proceed now to bound it.

Lemma 4.7. We have T = 3% | T, where

Tl = <l_1/2§ha l1/2(gh - Agh)n>rha I11‘12 = <l_1§h’gh>rha TS = <l_1/2§h7 ll/2AA(£h)>Fha
T, = (7%, 1"/ *A2u)r, Ty = (7%, 1"?p,n)r,,  Tg = (7%§, 1" 2a(un —a))r, -

Proof. First of all, we use Definition 4.1 and rewrite g, (x) as follows

I(x)
gn(z) = —/ (Ag;, + gh)(a: + s$ne)neds
0

I(x) ()

=— / [Ag,(x + sn.) — Agj,(x)nds — l(x)Ao,n. — / lp,(z + sne) — p, (z)|neds — U(x)p, mc
0 0

= —I(x) (AA(gh)(m) + Agyne + AP () + ghne)

and obtain )
_ ~ Ao
Agyne. = —l(w)gh(zc) — A () — APw () — P, e

By replacing the last identity in definition (3.2f), we obtain
éhne = opne — Oée('Mh - '&h)
= (a5 — Agp)ne + Agyne — ac(up — i)

L () — MA@ () — APy () — p, e — v (up — in).

()

Finally, the result is obtained replacing the last expression in the definition of T. O

= (g, — Agp)n. —
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Corollary 4.1. Let us suppose that Assumption (C.1) holds. Then,

1.
T < =5 18n lIp,

10 10
(L Ca)? Hé%X(Ctr re | an 11D, AT CA maX?“?(Cm)Q(Cfm)z lay 1B,
10 10
+E Ielé%XTg(Cext) (Czem))2 H ph HDh —I—m%x (Ctr) Te || ph ||Dh
10
+Z Hézgxreh Qe || up, — By, HFh o - 4.7)
e

Moreover, ifAssumption (C.3)-(C.5) also hold, then

Cel Cel 1 .
IT| <=3 H gn 15,11+ 1@ llb, +55 Gz AAE 12, 15, +5 Ilwn = |7, 0 (4.8)

Proof. Let ¢ > 0. We proceed to bound the terms T,,i = 1, ...,6. of Lemma 4.1. For T;, we use Cauchy-
Schwarz inequality, the fact that I(x) < H., Lemma 4.2, Assumptions (C.1), and Young’s inequality:

Ty =) (PG00 (@ — Agpne)e < D 11§ lleg-r (HDV? Il (@) — Agp)ne |

ec&? e€&?
<Y G0 ey CLEHDYPR? | 0y — Aay e < D 11 Gn llogr Chrd*(1+Ca) | @, e
e€&? e€&?
<X (0 s (o P14 Ca? e ).
6658
It is clear that T, = — || g, H%h 1. For T3, we use Cauchy-Schwarz inequality, Lemma 4.1 and Young’s
inequality
TS - Z <lil/2~ ll/QAA(ah) el 1” e 1 ﬁTB/QCACeextCienv H ap HKE
ecgf eeg" eeé'd
<Y (i oeum%%ﬁwm%)
6652

For T,, we use the same arguments as in the bound of T; and obtain
1
Tos 3 (218 1B+ (Ci? L, e )
ecg?
Analogously to the bound of T; we get
T < 3 (e 1 B+ (C8P L e )
e€&?

Finally, for T4 we use Cauchy-Schwarz inequality, the fact I(x) < H:- and the Young’s inequality

To= > (17280, 1 ac(un — p)e < Y [ Gn lloyr (HD)Y20l? [ up — i ||, g,

6653 6658
1
~ L ~ ~
< X G s 0 un = e, < X (=110 12000+ et i 2, ).
6655 6652
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We obtain (4.7) gathering all the above bounds and considering ¢ = 1/10. Moreover, considering (C.3)-
(C.5), (4.7) implies (4.8). O

Lemma 4.8. Let f =0and g =0. Then

1n 11741 < 2CA(CEu)re |l @ e +2(Ceu)?re | oy, e,

forallein &,.

Proof. To prove this Lemma we use Equation (3.2f) and the fact |(z + sn.)n.| < |z — | = I(x), for all
e € £2, by (3.2g) and Cauchy-Schwarz inequality

2
I(z)
1gn l12,-1= ‘/ [ (Ag), +p,)(z + sne)neds] dm‘ <| Agy, +p, H%(gm

Then, using the Lemma 4.3, we obtain

+2 || p,, ke, < 2C(Ceu)?re | @n ice +2(Ceut)?re |l py, Il -

O]

130 11211l Agy + p,, IIe, < 2C% || @ e

ext ext

Lemma 4.9. Let f = 0 and g = 0. Suppose that k > 1 and Assumption (C.1) holds, then there exits ¢,>0
independent of h such that

I e, 15, < 2(C)°Ch @y 1D, +2 Y (C)*(CE)Pre | Gn 12,1 -
6686

Proof. We follow the ideas in [5]. We consider the next orthogonal decomposition:

1
£y =Pyt P Pylie = |Ke|/Keph, Py =Py~ Py

where 32 € A) and p; € Aj, (we recall that AY and A§ have been introduced in Lemmas 4.4 and 4.5). We
proceed in two steps to bound the ph and py .

Step 1 Letn := p in Lemma 4.4, then there exist v € B, C V,, satisfying (4.3a) and (4.3b). Then we
rewrite the Equatlon (3.2a) as

(Agy,v)7, + (un, V- 0)7, + (0), )7, + (05, 0)7;, — (@n,vn)o7, = 0. (4.9

By property (B.1) and (B.2), we have (us,V - v)7, = 0 and (i, vn)s7, = 0. Now considering 7 := pf in
Lemma 4.4, we have that (p},v)7, = (32, p;)7, = 0, since the decomposition of p, is orthogonal in L2
Moreover, by taking v = n = p? in (4.3a) we have that (0, v)7, = p? |13, -

Thus, replacing the above terms in Equation (4.9) and using the Equation (4.3b) we get

[ Ph HDh (v, Ph) = (Ao, v)7;, <Callay lp,llv 7 < COCA | an llp,ll 82 D, -

Then, we obtain
16} 1D, < CiCa |l @y |, -
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Step 2 Let ) := py in Lemma 4.5, then there exist v € G, satisfying (4.4a)-(4.4c). Then (up,V -v)7, =0
and (@, vn)s7, = (Gn,vn)r,, thanks to Equation (3.2e) and the fact that v € H(div; Dy,) (we recall that
we are assuming k£ > 1). Thus, with the decomposition of P, Equation (3.2a) yields

(Agy,,v)7, + (0),v)7, + (P}, 0) 7, — (Gn.vn)r, = 0. (4.10)

Moreover, taking vy := p{ in (4.4b) we have (p7,v)7, =|| p ||, and then from Equation (4.10) we obtain

105 15, = —(Agn, v)7; — (), 2)7: — (Gn,vn)r,

Using Cauchy-Schwarz inequality, Lemma 4.2, the bound (4.2), Equation (4.4c) of Lemma 4.5, the fact
that [(x) < Hj and Assumption (C.1) we get

165 15, < Callan lIp,llwllp, + 1 8) Iyl 2 lip, + > i)
6652

<{Cullaylip, +C3C 1 @1 lp, + 3 Coh A HE 1 Gn loys }C5 185 1,

eEEg

Then,
165 ||, < (CaCE + CaCICE) L o lIp, + D CECErt || Gn lloyr -

6656

Finally, using Steps 1 and 2, we get

Lo, llp, < 16} llp, + 1 lp,

< CaCy | gy llp, +(CaCy+CaCYCH) Loy lip, + D ChCird | Gn oy
eEEf
< (CY+CyC+C)Callay llp, + Y CoChre? |l Gn Il -
h n-tr'e e,l
6653
We finish the proof setting C, = (Cg + CgC’TC] + Cy) and considering the fact that C) < C,. O

Corollary 4.2. Let f =0and g =0. If k > 1 and Assumption (C.2) holds, then

e, 15, < 3(C,)*(Ca)? |l @ I,

Proof. We replace the estimate given by Lemma 4.8 in the terms of the right hand side in Lemma 4.9,
obtain

| 2, 15,5 {2(C,)°C + 4(C,PCAmax(Co) (CE)r?} Nl @ I, +4max(C)(CEIACE 2 | I, -
e h e

The result follows from rearranging terms in last expression and considering Assumption (C.2). O

Theorem 4.10. If Assumptions C are satisfied and k > 1, then the scheme (3.2) has a unique solution.

Proof. We replace (4.8) in the right hand side of the estimate in Lemma 4.1 and arrange terms to obtain

29 2 1 ~ 2 1 ~ 2 Cel 1
00t 12, 5 s = VB 5 190 12,1005 5 ey L
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Then, using the inequality in Corollary 4.2, we obtain

26

1 1
2 ~ 2 ~ 2
%Cel | e D, +§ | un —bn 157, o +§ I gn lIt, ;1< 0.

Thus, we have ¢, = 0in Dy, g, = 0in I'y, and @), = uy, in I'y,. In addition, by Lemma 4.9 we conclude that
P, = 0. Finally, from (3.2a) we now have (up,V - v)7, — (up,vn)sy, = 0 for all v € V;,, which implies,
after integration by parts Vuy, is constant. However by (3.2e) u;, = 0 in I';, and then u;, = 0 in Dy,. O

4.3 Error analysis

In this section we provide detailed proofs for our a priori error estimates. We employ the projection-based
analysis of HDG method introduced for the diffusion problem [2], combined with the analysis in [4, 5].
Through this section we will use the following result

Lemma 4.11. (Lemma 5.2 in [5])For each e € é’ﬁ, we have that

1
A% et 2 1 2n(Eam) i, e

for all v smooth enough tensor function.
Similarly to Assumptions C in Section 4.2, we have to suppose the following conditions in order to
obtain optimal error estimates:

Assumptions S
For every face e € £, , we assume

(S.1) max{1,C,}C5C%re < V2/8, (8.3) max{1,C4}C;"*r¥?Ce, ce. < V/15/30,

(S.2) (1+C)C,2Cert* < /530, (S.4) reacht < 1/9.

el

4.3.1 Projection operators

On each element K, for (o,u) € H'(K) x H'(K), we consider the projection (IPg, Iyyu) € P, (K) x
P, (K) such that

(P, v)k = (0,v)K forallv € P,_,(K), (4.11a)
(Mwu,w)x = (u,w)x forallw € Py_1(K), (4.11b)
(MPon — a (M), p)e = (on — oo (Ppr), e for all p € M(e), (4.11¢)

for all faces e of the element K. Here Py denotes the L? projection onto M (e).

Lemma 4.12. On each element K, the projection (I1P¢, Myu) of (o, u) € H'(K) x H'(K) is well-defined.
Moreover, if (o,u) € H*t1(K) x H*'(K). Then, there exist C' > 0, independent of h such that,

H HDQ_ o ||K < Ch’;(+1(|u|Hk+1(K) + |Q|Ek+1(K)), (4.12a)

| Tww —u (|5 < CRE (] g 0y + |V - @l i) (4.12b)
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Proof. It follows from Theorem 2.1 in [2]. O

On the other hand, on each element K, we denote by Il4p the L?(K)-projection of p < L?*(K) into
AK).Ifpe H""1(K), we have that (Lemma 1.58 in [10])

| Tap — p || 5 < CRE |l (5 (4.13)

We define the projection of the errors

D N
e =110 — 0}, ey :=IMwu —uy, €p = HAB—Bh, €q := Pyu —up, esn :=Py(on) —ao,n

and the interpolation error,

4.3.2 Energy argument
We first present the equations of the projection of the error.

Lemma 4.13. The projection of the errors satisfy

(Aeg,v)7;, + (en, V- 0)7, + (€p,0)7;, — (€a,vn)o7;, = —(Adg,¥)7;, — (6p, V)07, (4.14a)
(ea, Vw)7, — (esn, w)o7, =0, (4.14b)

(€a:n)7, = — (8, 0)7» (4.140)

(esn, ) or, T, =0, (4.14d)

(€a, m)r), = (G — Gn, W), - (4.14€)

forall (v,w,n,u) €V, x Wy x A, x My,

Proof. Let (v,w,n,p) € V), x Wj, x A x M. We note that the exact solution (g, u, p,ule, ) also satisfies
(3.2). Then, if we do a simple algebraic manipulations, we obtain that

(APg,v)7, + (Mwu,V -v)7, + (Map,v)7, — (Pur,vn)or, = — (Ads,v)7, — (6, V -0)7,
— (8p,0)7;, + (u — Pru,vm)or,,
(0P, Vw)7, — (Pu(an), w)or, = — (f,w)7, — (8, V)7,
+ (on — Pum(an), w)or,,
TPa,n)7, = — (8o 1)7.-

In addition, by the definition of the projection Pys, we have that

(Pm(an,p)a7, /1), = 0,
<PM(U),/L>Fh = <§,#>Fh-

Let K € 7. By (4.12a) and (4.12b), we have (5, Vw)7, = 0 and (6,,V - v)7;, = 0 for any (w,v) €
P, (K) x P, (K). Here we have used by (B.1) the fact that

V- V(K) = V- (V(K)+B(K)) = V- (V(K)).
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Now, by (B.2) on each face e € 0K, we notice that
Py (K)le C Pye), V(K)n|e = Py (K)n|c + B(K)n|. = Py (K)nl. C M(e).
This implies that
(on —Pum(on), w)sr, =0, (u—Pum(u),vn)sy, =0
Using all the above identities, we have :
(APg,v)7, + (Mwu,V - v)7, + [ap,v)7, — (Pmu,vn)or, = —(Aby, )7, — (8p,0)7;,,
(HDQa vw)Th - <PM(Qnaw>3Th = _(fvw)Th’
@Pen,n)7, = (8. 1)7.,

(Pm(an),m)or;, v, =0,
<PMU’7“>F}L = <§’“>Fh

for all (v,w,n,pn) € V,, x W;, x A, x M},. Finally we subtracts (3.2) of above system and we obtain the
result. O

Lemma 4.14. We have
(Aeg,€q)7, + ((ew — €a), (eu — €a))oT, = (8.€p)T;, — (Abs.€0)T;, — (8p.€0)7;, + T,

where T = (g — gp,esn)r,, -

Proof. We take v = e, and w = e,, in Equations (4.14a), (4.14b), respectively. Then, summing both

equations and using (ey,V - €5)7;, = —(€s, Veu)7;, + (€u,€sm)s7;, We obtain
(Aeo,€0)7;, + (€p: €5) T, — (€ar €)o7, + (€, €u)oT;, — (s, u)oT;, = —(Ads,€5)7; — (8p,€0)7;,- (4.15)
Next, note that by taking n = e, in (4.14¢c), we have (eq,€p)7;, = —(d5,€p)7,- Also, taking p = ez and

p = ezn in (4.14d) and (4.14e), respectively, we have

<eﬁ, ejn>877b/l—‘h =0, <eU7 eo‘n> <g gh7 ean>F

Then,

€a,€sN)oT, /T, — (€i; €M1,
ea, (€ — €s)N) o7, /v, — (€a,eon +esn —esn)r,
8)n) ot /1, — (€a (€2 — es)n)T, — (€a,esn)r,

5)n)o7;, — (€a,€sn)r),-

—(ea, ean)oT;, = —

Thus, replacing the above identities in (4.15) we obtain

(Aeg,€0)7; + ((eu —€a), (s — €s)n)o7;, = —(Abg,€5)7;, + (05, €p)7; — (8p,€0) 7, + (G — Gn,€sn)r,-

To end the proof , we need to show that

(€u — €a,€an — €M) o7, = (€u — €4, Ac(€u — €4))o7;, -
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In fact, on each K, by the definition of the numerical trace (3.2f) and properties of projections, we have

e — €3, IPon — Pryr(on) + &0 — apn)ox

(eu — €a,eon — esn)ox = (e — ea,IPan — a,n — Ppr(an) + G,n)ox
= (
= (eu — €a, ac(llwu — Ppu + 4, — up))ox

= (

€u _eﬁaae(eu _6'&)>8K- (4.16)

We complete the proof by taking the sum of the above equation over all K € Tj,. O

Following the structure in Section 4.2, we need to rewrite the term T to facilitate the bound in the
estimate of eg.

Lemma 4.15. We have T = Y% | T, , with
.. 1 -
Ty =G~ n 7§ —3n)rs, Ty = —(G = Gn, T")r,,,

Ty = —(§ — gn, A% + A(Gp)n)r,, Ty = —(§ — gn, A")r,,
T5 = _<§ _gha a(eu - eﬁ))Fhv <g _gh)eln - A(ei)n>Fh

=
o
Il

where T? := A% (x) + Spne + A% (z) + epn.

Proof. First of all, we rewrite § — g;, as follows

I(x) ()
g(x) — gn(x) = — /o Al — a},)(x + sne)neds — /0 (p—p,) (T + snc)neds.

We define 77 := Ol(m) Al — a;,)(x + sne)neds and T* := Ol(z) (p — p,)(x + snc)ncds. We use Definition
4.1 and rewrite T as follows

I(z

i) . .
T7(z) = /0 Ale ~TI?(0))(@ + sn)neds + | AMP(0) — 0y,) (@ + sne)neds

0

I(z) I()
= / A(bg)( + sne)neds + / Aleg)(x + sne)neds
0 0
I(x)

= /0 [A(dg)(x + sne)ne — A(dg) (z)nc]ds + 1(2)A(dg) ()1

+ / Al (@ + smome — Aleo) @)nlds + 1) Aleo) (@,
= U(@) (A4 (@) + AG,) (@) + A (@) + Aleq) (@), )
Similarly for 7, we obtain
TP (z) = () (A‘Lp(m) +6pme + A%2(z) + eine> .
Thus, replacing the above terms in expression §(z) — g (), we have
§(2)—gn(x) = —1(2)[AAC) (2)+ A(bg) (2)ne+ A () + Aleg) (@)ne] —1 () (A% (a) + E,me + A% () +epne.

Since T? := A% (x) + dpne + A% (x) + epn., we obtain

Aleo)(@)ne = ——(§(x) — Gn(@)) - TV — A% (z) — A(b;)(x)n. — A= ().

29



Thanks to Equation (3.2f) we have that esn. = esn. — a.(ey — €3) for all e € &,. Then, using the last

identity we can rewrite this expression as

esne = Aeg(x)n. — Aleg(x))ne + egne — ac(ey — eq)

= Aei(x)ne — aeley —ez) + (eine - ( o )ne)(T)

= —(§(@) — Gu(x)) — T — A1) (z) — A(8y)(x)ne — A (2) — ac(en

Finally, the result is obtained replacing the last expression in the definition of T.

Corollary 4.3. Let us suppose the Assumption (C.1) holds. Then,

1oL 18
T < =518 =n I}, i+ maxacrehy || ew —ea |IF,
h

4 ec&?
18 18
+1205 maxrd(Cia? () L €2 I+
e
18 18
t15 gégXTS(Cm) (Cio)® e 1D, +T gégzg(Cfr)zre e 1D,

18 18

—€a) + (egme

(1+ CaP masx(C5)re | e [,
e€&y

18 €2 2 18 2 2
+ZCA gégg(ctr) re [ 9a |[D, +15 AT I On(Adan) (e (1) -

Moreover, if Assumption (S.2)-(S.4) also holds, then

1 1 ) Cu
TS 5 1= an s g lew—ea g e I, o

Ckl

W e €p HDh

{1 0nEpn) I3 gz + 118 I, + 11 8o I, + 1| Bn(Abom) I3 i |-

where C'is a constant independent of h.

Proof. Let ¢ > 0. We proceed to bound the terms T,,i = 1,---,6. of Lemma (4.15).

— Aleg)ne)(z).

(4.17)

O]

(4.18)

(4.19)

It is clear that

T, =—189—an H%h,l—l' For T, and T,, we use Cauchy-Schwarz inequality, Lemma 4.11, the fact that

I(x) < HY, Lemma 4.2, Assumption (C.1) and Young’s inequality:

~ o~ 6,
Ty <30 15— s {1 A2G@) g+ | pme ey + I A2(2) [y + Il egre i}

8682

<SS la—dn o {5 57 1008 e quiyp + i 11 8 e

6656
+—=r32C,Ch |l €p e +CErl? || €p Il e
\/3
1 1
~ = 2
<de 1§ =dn v, +152 Hé%XTe 1 0n(8pm) e (122 t Hézgx(ctr) re || 8p D,

1 3
o ce 2 2 e )2 2
T gé%xr 2O (Ch) Nl e 1D, +£Ié%%<( ) e |l eo D,

30



Ty < > 015 8n legs {1 A |y + || Adgme |l }

6686

<> 11— lley {\ﬂe | On(A8en) [l e (rye +CaCir 2 85 HKe}

6656

1 1
~ ~ 2 2 2 2 2 2
<2019 3n v, +152 AT | 9n(Adn) e (1) +Z€CA£2%§(CET) re | 8e 1D, -

For T,, Cauchy-Schwarz inequality, Lemma 4.2 and Young’s inequality to imply

Ty <> 1§80l Aea lloy< S 15— dn oy f r3120 0% Ca || eg | 5e
eegg 6682

1
Ci m%XTB(Ceext) (C5)* l ea D, -

<ellg—gn HFhl 1"‘12

For T, we use Cauchy-Schwarz inequality and Young’s inequality to get

1
Ts <ellg—3gn HFhJ 1 + || €y — €4 ||12“h,a .

For Tg, we use Cauchy-Schwarz inequality, the fact that [(z) < H., Lemma 4.2, Assumption (C.1) and
Young’s inequality to obtain

To< > 11§ —n oyl €ame — Aeane oy D 11§ —Gn oy (L+ Ca)CHre | € e

ec&? ecf

- - 1
<elg—agnllf, ; +=(1+ CA)QIE%(C%)% e D, -
ecey,

4e

We obtain (4.18) gathering all the above bounds and considering ¢ = 1/18. Moreover, considering (S.2)-
(S.4), (4.18) implies (4.19). O

Lemma 4.16. We have

1= 3n 12,1 < ACA(CED) re(ll g e + || €q IlFce) + 4(CE) el 8p e + |l € Iice),
forall ein &,.

Proof. We use the fact that |(z + sn.)n.| < |Z — x| = I(z) for all e in £, by (3.2g), identity (1.6) and
Cauchy-Schwarz inequality

la-au 12 = | [ 75

— ‘ / [/ A(bg + €5)(x + sne)neds + /Ol(:r:) (8p —€p)(x + sne)neds] 2 dx‘

<[l A(de +eq) + (85 +ep) Ik,

I(z) 2
/ A(g — a;,)(x + sne)neds + / (p—p,)(x+ sne)neds] dx‘
0

Then, using Lemma 4.3, we obtain
1G—3n 12,2 <2C% 1| 80+ o ke, +2 11 8p+ep IIce,,
<4C%(1 86 lkce,, + Il €a Ilice,,) + 41l 8o e, + Il €p Ile,,)
<ACU(CEL) re(ll 86 e + |l € e ACH(CE)?re(ll 8p 1o + Il €p I5ce)-
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Lemma 4.17. Suppose that k > 1 and Assumption (C.1) holds, then there exist C, > 0 independent of h
such that

lep 15, < 4(C)*Ch Il ea 1D, +4 D 4C)*(C)Pre 1| §=Gn 1121 +4(C,)°Co |l 8o 1D, +4(C)? 11 8 11D, -

6682

Proof. We follow the ideas in [5]. We consider the next orthogonal decomposition:

1

_,0 c c.__ 0 _ c
eo=e' te" &= | e e’ =€ g

where e,, € Ah and e,, € Aj (we recall that A and Aj have been introduced in Lemmas 4.4 and 4.5).
We proceed in two steps to bound the e, and e,".

Step 1 Let 9 := e‘o in Lemma 4.4, then there exists v € B;, C V, satisfying (4.3a) and (4.3b). Then we
rewrite the Equation (4.14a) as

(Aes,0)7;, + (ew, V- )7, + (65", 0)7;, + (€%, 0)7;, — (€a, vn)o7, = —(Ads, )7, — (§p,0)7;,-  (4.20)

By property (B.1) and (B.2), we have (ey,V -v)7, = 0 and (eg,vn)s7; = 0. Now considering vy := ei,C in
Lemma 4.4, we have that (e,°, v )T = (e,,o, €,°)7;, = 0, since the decomposition of e, is orthogonal in L2
Moreover, by taking y =n = e,, in (4.3a) we have that (e,, )7 =|| ep H

Thus, replacing the above terms in Equation (4.20) and using the Equation (4.3b) we get

| €° I3, = (2.€,°)7, = ~(Aeg,0)7, — (Abg,0)7, — (6. 0)T,
< C)(Calles Ip, +Call ¥ Ip, + 118 lIn,) Il €° I, -
Then, we obtain
I eo” lp, < C(Call e lIp, +Call 86 I, + 1| 8p IIp,)-

Step 2 Letn := e, in Lemma 4.5, then there exists v € G, satisfying (4.4a)-(4.4c). Then (ey, V -v)7;, =0
and (e, vn)s7, = (§ — gn,vn)1,, thanks to Equation (4.14e) and the fact that v € H(div; Dy) (we recall
that we are assuming k£ > 1). Thus, with the decomposition of p, Equation (4.14a) yields

(A, v)T, (P,, V)7, + (P} V)7, — (G — Gn,vn)r, = —(Adg, V)7, — (8p, V)7, (4.21)

Moreover, taking v := e,° in (4.4b) we have (e, v)7, =|| €,° ||p, and then from Equation (4.21) we
obtain o B B

| €p° 1%, = —(Aez.v)7; — (€% 0)7, — (Abg.0)7, + (G — G om)r,

Using Cauchy-Schwarz inequality, Lemma 4.2, the bound (4.3.2), Equation (4.4c) of Lemma 4.5, the fact
that [(x) < Hj and Assumption (C.1) we get

I e I3, <C{Ca l € I, + 1l €” I, +Ca Il 85 llp, + > @)/ | § - §
6652
<C{(1+ CDCU | €6 lIp, +(1+CCA | b lIp, +C3 118, I,
+ 3 G PHE G = 3 Dy ) e I, -

6652

el~1 } | eic HDh
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Then,
I €° Il p, <(Cs; + CCICA |l € ||y, +(Chi+ C5CCa || 8 |y, +C5CH 1 8p Dy + D CiClrd 11§ = Gn lleyr -

ecf
Finally, using Steps 1 and 2, we get
lep D, < Il € I, + Il € I,
<(Cy+ GO+ CR)Ca |l €0 b, +(Cy + CHCh+ CCall b6 I,
+(C) +CoC) 18 I, + D CrCire 113 = Gn llegr -

6652

We finish the proof recalling the definition of C;, the fact that Cj < ), and defining C' := max{C,, C, C4}.
O

Corollary 4.4. Let us suppose k > 1 and Assumption (S.1) holds, then
I ep D, < 9(C,)*(Ca)? |l € D, +9(C,)*(C) || &g [, +9(C,)* [ 8 1D, -

Proof. We replace the estimate given by Lemma 4.16 in the terms of the right hand side in Lemma 4.17
and obtain

I ep I, <{4(C,)2C% +16(C, 2% max(Ci)A(CL) 2 f (Il e I, + 1l 82 Ih,)

e€&y

+{4(C,)? + 16(C,)? max(C )X (Clan) 12} 11 6, I,

e€ly

+ 162%(0,7)2(0{’})2( E)'12 |l €p D, -

The result follows from rearranging terms in last expression and considering the Assumption (S.1). [

Let us define the following auxiliary variable related to interpolation errors:

6(a.p) =185 llp, + 11 8p I, + 1| FnBom) llpg 12 + | Bn(Ba) e 1 - 4.22)

By Lemma 3.8 of [4], we can easily show that
| nEom) g iy < C (1185 I, + el i o )
| 0n8pm) g i < C (1185 I, +h*plgins ) -
These estimates, together with (4.12a) and (4.13), allow us to conclude that
O(a,p) < ChF*! (\U|Hk+1(ﬂ) + lolgrrig) + |B|£k+1(ﬂ)) : (4.23)

Proposition 4.1. Let us suppose k > 1 and Assumptions C and S hold. Then, there exists a constant C' > 0
independent of h such that

(e, eu — €a;g — gn)lll+ |l & [p, < CO(a, p),

where,

_ - _ _ 1/2
lieasew—eag = gilll = (Il eo I, + 1l e —ea b, + 15— I,1) -
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Proof. We use Cauchy-Schwarz inequality in Lemma 4.13 to get

Cet |l € D, + Il ew — €a I37,.0<1 9 I p, Il € I, +Ca [l 8 lip, | € Ip, + 1 8 lIp, Il €c Il +ITI-

Then, using Young’s inequality, we obtain for ¢ > 0

Cl 9(C )QCA
Fy < e 2 n Fy 2
I8 I llee o, < g jag | e Iy += 3 11 8 I
2 C¢24 2
Callds lIp,ll€o lp, < €Ca HgaHDhuCelE 1 6s 11D,

1
2 2
l ‘ip HDhH €o ”Dh < eCylles HDh +@ | ‘ip HDh .

Using this result with e = 1/12, Corollary 4.4 and Assumptions S, we get

1 1 C 9C,
2 2 ~ o~ 2 l 2 l 2 l 2
Ce |l €5 D), +§ | ex —€a |57, .0 +§ G —an 57, o< Te | es D, +?8 | es 1D, +T08 | s [ID,

+ 01180 o, + 11 0nBam) e g2 + 185 11, + 1 OnBpm) I e b

which implies, after rearranging terms, that |||(es,ex — €a,§ — g1)||| < CO(g, p). Finally by Corollary 4.4
| € llp,< CO(a,p). O

Theorem 4.18. Let us suppose the same assumptions as in Proposition 4.1, then

le—aylp, +1p—p,llp,<CO(a,p).

Proof. Since ¢ — g, = €5 + 65 and p — p, =€+ dp, then the result is a direct consequence of triangle
inequality and Proposition 4.1. - O

4.3.3 Duality argument

Next we use a duality argument to get an estimate for e,. Now, we introduce the so-called dual problem:

V=60 in Q, (4.24a)
AY —Vo+£€=0 in Q, (4.24b)
¢ =0 on ON. (4.24¢)

Here § = %(Vq& — V7T¢). We assume the solution (¢, ¢) has the elliptic regularity property
1% s ) + 1 @ lges)< Creg 10 1o (4.24d)

for some s > 0. This property holds, for example, with s = 1 in the case of planar elasticity with scalar
coefficients in a convex domain; see [1].

Lemma 4.19. Suppose the Assumption (C.6) is satisfied and (4.24d) holds with s = 1, then

1T =Pum)¢ llr, 1)1 < Ch |18 [lo, (4.25a)
| (Z —Pm)Ond [Ip,; < CRR| 6 [|g, (4.25b)

| ¢+ 10nd I, -5 < C |0 |lo, (4.25¢)

1¢ [, -2 <C 18- (4.25d)
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Proof. The results follows from Lemma 5.5 in [4] applied to each component of ¢. O

Proposition 4.2. We have
(e‘llﬁa)ﬂz = (A&ﬁ 671/1)771 + (eia 571#)7’}; - (A‘sl + 6£7 HD%)T}L + (870-, 675)771 - (6707 HiAé)Th + Tu,o

where i = § - &é} 671/1 = % - HD% and TU,U = <eﬁ>£n>l—‘h - <ejn7 ¢>Fh1

Proof. By the dual equation (4.24), we can write

(eu,0)7;, =(ew,V - ¥)7, + (€0, AY — Vo + §)7;,
(eu, V-7, + (A, V)7, — (€0, VP) T, + (€5:8)T,

=(ew, V- IPY)7, + (€w, V - 8y) 7, + (Aeg, IPP) 7, + (Aes,by)7;,
- (670, VHW¢)Th - (670'7 V6¢) + (670-, §)7—h

Next, note by (4.11a) of the projection and the fact that e, € W, we have

(€u, V- 8y)7;, = (€u,yn)o7;, — (Veu,by)7;, = (€u,byn)or; -
Similarly, with the fact e, € V;, and (4.11b), we obtain
(€a, V)T, = (€an,8p)o7, — (V - €g,04) T, = (€aM,0¢)0T; -

Inserting these two results onto the first equation, we get

(eu,0)7, =(ew, V- IPY)7, + (Aeo, TP9) 7, — (€0, VIIwe)7,
+ (€0, 8)7, + (Aea, ¥) 7, + (€u,byn)o7, — (€aM,00)07T, - (4.26)

Taking v := oP ¥, and w := Il ¢, in the error Equations (4.14a) and (4.14b) , respectively, we have
Replacing these last two expression in to (4.26), we obtain
(€u,0)7, =(€5,£)7;, + (A€s,0y)7, — (o, IPW) 7, — (ASy + 6, IP9) 7,
— (eu, Byn) o, — (€an,8¢) o, + (ea, I Yn)or, — (esn, Mwe)or, .

Next, note that (e,,9)7;, = 0 since e, € AS(D},) and 9 is symmetric. Also, note that by the regularity

assumption, (¥,¢) € H'(Q) x H'(Q2), so ¥n, ¢ are single valued on each face e € £,. This implies that
<eﬂ7£’n’>a7’h = <eﬁ71£n>l_‘h = <§ _gh7ﬁn>l—‘h by (4.14e),
(esm, 9)oT, = (esm, Pmd)oT, = (esn, Pud)r, by (4.14c) and (4.24c).
Inserting these three terms onto the previous equation, we can write
(€0, IP%)7;, = (€, 1% — )7, = —(€p,09) 71,
(ea, ITPym) o7, = (ea, IP¢Yn — Yn +Yn)or, = —(€a, dyn)oT;, + (€a,Pn)r,,
(esn,Ilw@)oT, = —(esn, Puo — Nwe)or, + (esn. Mwe)r, = —(esn,dp)o7, + (€sn, Mwe)r, .
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Therefore, we have

(€u,0)7;, = (€0, 6)7;, + (Aeq, 8y)T;, + (€0, 89) T, — (Abg + 65, 1PY)7, + T + T, ,,

where,

T := (e, Syn)o7, — (€a,0yn)oT, — (€a.0p)oT, + (€an.0p)om,  Tuo = (€a, ¥n)p, —

and é4 := ¢ — IIy¢. We only need to show that

(€0,8)7, = (€0, 9¢)7;, + (90, a7, and

=1
Il
(@)

By (4.14c¢), we have

(€0, §) 7 = (€0, %) 7, + (€0, Tal) T, = (€0, )7, — (96, 1LaE) T,

Let us end the proof by showing that T = 0. Thanks by (4.16) we can write

T = (eu — €a,dyn)o7, — (€1 — €5M,0¢)o7;
= (eu — €4, 0yn)o7;, — (€an — e5n, Py — Mwe)or;,
= (eu — €q,0yn)o7, — (a(eu — €a), Puo —Mwe)or,
= (eu — €a,0yn — a(Pu¢ — Ilwé)) o7,
— 0,

by property (4.11c) we obtain the result.

Lemma 4.20. We have

14
_ § : 7
Tu,h - Tu,h?
i=1

<ejn7 ¢>Fh

where,
= (@ —3n)/1.¢ +10nd)r,, Tip=—G—Gn (T —Pm)ond)r,, Tip=(G—3n ¥ —Vén)r,,
= (A%(@),9)r,, Ton = (Gpn. 9}, Ti = (A%(x).$)r,.
TZ h = (€pn, )1, Ty = (A (). $)r,, Ton = {0 — Ado)n. $)r,,
Ttoh (0, (Z — Pm)®)1), Ty = —(ePumbu, d)r, TL2, = (A% (), ¢)p,,
= (ac(eu —€a), )1y, Ty = —((ec — Aea)n, @)1,

Proof. Replacing the term esn by (4.17) in our expression of T, »

Ty = (ea, ¥, —{(=(§ —gn) /1 = T — A" (2) - A0 (2) — ASon — are(ew —ea) +

Now, the first term here can be rewrite thanks the dual Equation (4.24b)

<e'&a Q’n’h—‘h = <eﬁ7 A%”)Fh + <eﬁ7£n - AQ”)F;L
= (ea, (Vo —En)r, — (ea, ¥ — Vo +&n)r,
= (ea, PMOnd)r, + (€4, — Vé)n)r,
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Thus, replacing the last equation into the new expression of T, ,, using the fact of eg = Py(g — g5) and
adding and subtract the term (g — gy, O,¢)r, , we get

Tyn=—1(G—9n (T —Pumn)d)r, +(3—Gn, (% — Vé)n)r, +{((@—gn)/l,¢ +10.9)r,
+ (A% (2) + 8,n + A%2(z) +epn, d)r, + (A% (2) + Adgn + A (), @),
+ (e(eu — €a), d)r, — ((€s — Aea)n, P)r,

Now using property (4.11c) we have

(01, ) = —(ely, p)e, forallp € M(e)ande € &,,.

Then, by definition of the projection Pas

(0g, )1, = (don, (T — Pm)®)1, + (0, Pud)r,
= (0on, (Z — Pm)o)r, — (aebu, Pud)r,

= < T, (I - PM)¢>Fh - (aePM5u>¢>Fh' (427)

Thus, Ton becomes:
Tyn =G —3n)/l. ¢ +10nd)r, — (G — Gn, (T —Pm)P)r, + (3 — Gn, (¥ — Vé)n)r,
+ (A%(z) + 8pn + A% (x) + epn, @), + (A% (2) — (85 — Adp)n + 8o + A (), @)r,
+ (aclew —€a) )1, — ((€s — Aeg)n, @)1,
Finally using (4.27) we complete the proof. O

Lemma 4.21. Let us suppose Assumption (C.6) is satisfied and (4.24d) holds with s = 1, then

T, < Ch (R% + R+ 3RV Y2 ¢ RhY2 4+ R, + RTh—1/2> Il(eo, €u — €a,§ — n)lll 110 [l
+ Ch'?(Re+Rr) |l ep |Ip, 1l 0 Il
n C<R1/2h1/2 | On(8m) HDg,(hl)? +RYV2RM2 | 9, (Abym) ||Dzv(hL)2 +CoRh | 6 |Ip,
+ Caoh || ée |p, +CaRah || b | p, +CaRah | bu HDh> 16 g -

Proof. By Lemma 3.6, we can write T, ;, = Z}il T! ,. Applying the Cauchy-Schwarz inequality, we get

‘Ti,h| < g—3nllr,ll /1 + Ond I, 1-1: ’Ti,h‘ <l g—3nllr, ;-1 ({d—Pm)ond |1, ;-
Tonl <G =3 llp, -1l @ = Vo) [Ir, 4, T nl <l A% p, 20l 6 llp, 42

Ton <1 éon lIr, 21l @ NI, 42 Tl <l A% |, ol @ I, -2

ol <l epn I, 2l @ NI, 42 Tl <IA i, 20l @ llr, 12

Tonl <l 0o — Ado)n Ir, szl 6 Il 12 okl <Il [l iyl @ =Par)@ I, eyt
Tonl <Il Prtdu v, o221l @ lIr, -2 T <l A4 1n ]l @, 120

‘Tfﬂ <|lex —e€a ||rh,a2,l2|| é HFh,l*?’ |Tzlf,lh| <|| (eg — Aeg)n ||rh,l2|| é HFh,l*? .

By (4.25b),(4.25¢) and the fact that

ll(x)| < H: = rcht < rohe < 7reh < Rh for all , (4.28)
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we have
Tynl < CR?E* |G —Gn I, 1110 llo, T2, <CRR | G—Gnllp, ;1110 -
Now, since

| @ = V) llp, < RY202 | (= Vg)m llp, < CRVRY (11§ g gy + 116 gagey) < CRY2012,

we get |Ti7hl < CRYV2RY2 | g — gp, Ir, -1l @ llg- On the other hand, we use the estimates in Lemma 4.1,
Lemma 4.11, (4.25¢) and (4.28) to obtain

Thal < CRYVZRY | 0n(8gm) g guiyel10 o T4l < Cmaxr2CE,Chh'’? [ € 1,10 o
ecey,

IT® | < Cmaxr2Ce,,Cf
’ 1}
ecé

e~ ext™~inv
h

Cah'’? |l ea lIp, |18 ll:  ITinl < CRYVZRY2 || 80 (Abgn) || pe (42211 6 Il -

Now, using (4.25c) and (4.28) we see that
TS, | < CRRY? || I,y 1€ Nl
T s < O+ CARRYZ | &6 I, 1yl 6 llos
T < Ch | om [l oy 116 [l -

Applying (4.25c) and (4.28) we get

Total < Cmaxaerch' | 8u llp, )10 o, To%] < Cmaxacreh || ew — ea I, ol € o -
ec€? ' ecg?

Finally, by (4.25¢), (4.28) and discrete trace inequality (Lemma 4.2) we obtain

T} 5l < Cﬂég{ngrrehm lep Il 0 1lq,  ITuhl < C(14Ca) Héggcfﬂ"eh”z I es lIp,ll 0l -
ecey, ecep,

Then, by the definition of |||(es, ex — €a,g — gr)|||, the fact

1 85m I, ) < Cah | 8 I, 1 8m [lp, iy < Coh™ | 8 Il
62 llp, ey < CahV? 11 85 |1, I8 llp, oy < Coh? [ 8 1,
(where Cq, > is a constant independent of 1) and Theorem 4.1, we obtain the result. O

Proposition 4.3. We have that
| ullp, < B/2{ ORI + Hy (R, h) + Ha(R, h) + Hy(R, ) }©(0.p) + CRah || 8u I|p,,
where,

Hy(R,h) :=C (R2h3/2 + R+3RY2 4 Ro+ RohM? + RT) ,
Hy(R,h) == C (R.+ Rr),
Hy(R,h) = (231/2 + CqRRY2 + Coh + CQRAh1/2) :

Moreover, if (C.6) holds, then

| eullp, < CHY2 ({02 + RY? + ah' RV2}0 0, p) + /2 || 84 |Ip, )
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Remark. The estimates for || &y ||, have been obtained in (4.12b). Moreover, proceeding as in the proof
of Lemma 3.8 in [4], it is possible to show that

18l 0y = € (11 8u I, +15+ uliiey ) -

Proof. Taking # = e,, in Proposition 4.2, we can write

(€5:0€) 73, — (80, Lal) 7, — (Ao, IPY) 7, + (8, IP%)7;, + T,
(€q:0¢) 7, + (90, 0¢)7;, + (Adg,bp)7;, + (6p.0p) T,

Using the dual Equation (4.24b), and the fact that , is antisymmetric and 1 is symmetric, we have

(8p,%)7;, = 0. Next, note that (Ads,¥)7, + (85.€)7, = (0, AY + &) 7, = (8o, V)7, Then, by the property
(4.11a) withv := P,V (since k > 1) we get (65, PyV@)7, = 0. Here, Py, is the L? projection onto Py (K)
on each K € Ty, then

lewlD, = (Aes,dy)7, + (€p,0y)T + (€0, 8) T + (80, 8¢)T,
+(Ag, 0y)7,, + (8p,09)7, — (0, V)7, + Ty
= (Aeqg,0y)7, + (€p,0y)7;, + (€0,0¢) T, + (05, 0¢)T;,
+(Ads,0p)7, + (8p,0p)7,, — (80, V& — PyVP) 7, + Ty .

Applying the Cauchy-Schwarz inequality, we obtain
leulh,< C (e lp, + I epllp, + 1 8 I, + 118 I, ) (118 llo + 1 8¢ llo + Il V6 = PoV@ llg) +IT,
we note that, by (4.12a)

| 8¢ o< Chl| 1 (a) and | 8y [[o< Chlgp|g(q)-

Then, using Lemma 4.21 with 6 = e,,,

lealh, < Ch(lleclln, + Il ep lp, + 118 lip, + 1185 I, ) (Wler e + lm(@) + Tu
< Ch(llelln, +llep o, + 118 lin, + 185 I, ) Il u I,
+ Ch(Rh+ R+ 3R 072 4 Roh ™2 4 Ro+ Reh ™) ||l(eq €0 — €a,5 — 0l Il € |1,
+ Ch'2(Ro+Rr) |l € lp, Il eu I,
+ C(Rl/zhm | On(8pn) HDE,W)Q +RY2RM2 || 0, (Ab,m) HDfN(hl)? +CaRh || 6p |Ip,
+ Caoh || 8 I, +CaRah || 8 |lp, +CaRah || 8 lip, ) lleu ln,

Finally using the definition |||(eq,ex — €4,9 — gn)||| and Theorem 4.1, we get

leu D, < ChO(a.p) | eullp, +Hi(R.h)O(a,p) |l eu llp, +Ha(R,h)O(c,p) || eu llp,
+ H3(R,h)O(a,p) | eu llp, +CaRah || bullp, | €u llp, -

By a simple rearrangement we obtain the result. O
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Theorem 4.22. Let us suppose the same assumptions as in Proposition 4.3, then

|| w—up HDhS C (e(q,B)+ | Ou HFh,(hL)> ’

Moreover, if r. = O(h), then
lea [ln< Ch (©(a.p)+ | bu |l p,,)

and if r. = O(1), then
lea ll,< ChY2 (O(e, p)+ [ bu I, -

1/2
— 2
Here, | eq |l= (Lxer, i llea 35)
Proof. Since u—uj, = e, +3d, , then the result is a direct consequence of triangle inequality and Proposition
4.3:

| w—wn 15, <l eullp, + | 8 llp, < CHY?6(@,p) + (Ch+1) || 8 |Ip,
< C ({24 RV + a2 RY)6(0,p)+ || 6u lIp, ) -

Moreover, if £ > 1, the estimate of || e; ||, follows from standard arguments in HDG. See, for instance
[2]. O
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Chapter

Numerical experiments

In this section we present numerical experiments for method HDG method (3.2) in the two-dimensional
case. For all the computations we consider the spaces defined in (2.2) with k£ € {1,2,3} and consider the

exact solution as
sin(mx) cos(my)
u= . .
cos(mx) sin(my)

We fix £ = 1 and take v € {0.3,0.4999} in order to see the effect of the nearly incompressible case. Here,
we obtain the following values for ;1 and A in the next table:

v 7 A
0.300 | 0.3846 | 0.5769
0.4999 | 0.3333 | 1666.444

Let us discuss the choice of the stabilization parameter «. From the estimates we know that it should be of
order one, so in some of the experiments we will take & = 1. On the other hand, let L be a characteristic
length. Since ¢ = A~ !(e(u)), (3.2g) suggests that La should be of the same order of || A~! ||. In this case,
| A7 o) C(p + ). We consider for the examples using three different domains: square domain,

circular domain and kidney-shaped domain.

5.1 Polygonal Domain

In order to validate the code, we begin by considering a square domain ) :=] — 1,1[? and a uniformly
refined family of triangulations as Figure 5.1 shows. In this case, the Assumptions C and S are all satisfied
because r. = 0. Table 5.1 displays the history of convergence of the method considering k& € {1,2,3},
N € {4,16,64,256,1024}, v = 0.3 and a = 1. We see that the L?-errors in u and ¢ goes to zero with rate
of order k£ + 1 and 4y, converges to Pyru with order k£ + 2, as Theorems 4.3 and 4.1 predict. We show in
Figure 5.2 the approximation of the first of component of u obtain in the meshes of 5.1 and k£ = 1, 2, 3.

We take now v = 0.4999. We consider o« = 1 (Table 5.2) and o« = A (Table 5.3). Here, we observe
optimal order of converges for all the variables. However, the errors in w and 4, considering o = \ are
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Figure 5.1: Meshes with N = 256 and 1024 elements.

k] N Jlu-wlp, r@)|[la—anllp, r@) [llp—p,lp, 7@ | IPru—dy[, r()|
64 || 361E—01 — | 812E—01 — | 402E—01 — | 7.70E—02 -
256 || 9.36E—02 1.95| 211E—01 194 | 1.09E—01 189 | 854E—03  3.17
1| 1024 || 235E-02 1.99 | 537E—02 1.98 | 272E—02 200| 8.I8E—04  3.38
4096 || 587E—03 200 | 1.35E—02 199 | 6.71E—03 202 | 745E—05  3.46
16384 | 1.47E—03 2.00 | 3.39E—03 2.00 | 1.66E—03 2.01| 6.66E—06  3.48
64 || 463E—02 — | LO6E—01 — | 519E—02 — | G6.96E—03 -
256 || 5.96E—03 296| 1.35E—02 297 | 649E—03 3.00| 3.09E—04  4.49
2| 1024 || 7.50E—04 299 | 1.70E—03 299 | 832E—04 296 | 1.38E—05  4.49
4096 || 9.39E—05 3.00| 213E—04 3.00 | 1.06E—04 297 | 6.13E—07  4.49
16384 | 1.17E—05 3.00 | 2.66E—05 3.00 | 1.34E—05 298 | 273E—08  4.49
64 || 453E—03 — | LO2E—02 — | 559E—03 — | 543E—04 -
256 || 2.90E—04 397 | 654E—04 397 | 3.75E—04 390 | 135E—05 533
301024 | 1.83E—05 399 | 411E—05 399 | 238E—05 3.98| 3.12E—07 543
4096 || 1.14E—06 4.00 | 258E—06 4.00 | 1.49E—06 4.00 | 7.02E—09  5.48
16384 | 7.14E—08 4.00 | 1.61E—07 4.00 | 9.30E—08 4.00 | 156E—10  5.49

Table 5.1: History of convergence of polygonal domain with » = 0.3 and « = 1.

smaller to that of a = 1. This choice of taking the stabilization parameter of the order || A~

to improve the approximation of u.

1 ”LQ(Q)

(k] N [ lu—wllp, r@)|le—aylp, r@[llp—p,lp, 0 [[IPru—anl, ()]
64 4.42F + 02 - 1.20FE + 03 — 4.70E + 02 — 1.23FE + 02 —
256 1.13E4+02 196 | 3.14E402 193 | 1.33E+02 1.82 1.42E + 01 3.12
1| 1024 283E+01 200 | 802E+01 197 | 323E401 2.04 1.42E 4+ 00 3.32
4096 7.03E+00 201 | 2.02E+01 199 | 7.58E+00 2.09 1.31F - 01 3.43
16384 1.75E+00 2.01 | 5.06E400 200 | 1.80E+00 2.08 1.18FE — 02 3.47
64 5.62EF + 01 — 1.56F + 02 — 5.97F 4 01 — 1.14F + 01 —
256 716E4+00 297 | 194E+01 3.00| 515E4+00 3.53 4.66F — 01 4.61
2| 1024 897TE —-01 3.00 | 2.43E+00 3.00 | 5.38E—-01 3.26 1.97F — 02 4.56
4096 112 -01 3.00 | 3.04£—-01 3.00 | 6.27E—02 3.10 8.61E — 04 4.52
16384 1.40FE -02 3.00 | 3.80E—-02 3.00 | 7.62E—03 3.04 3.79E — 05 4.50
64 5.48F + 00 — 1.52E + 01 - 5.97F + 00 — 8.78FE — 01 —
256 348E —-01 398 | 978E—-01 396 | 417TE—-01 3.84 2.34FE — 02 5.23
3] 1024 2188 —-02 4.00 | 6.16E—-02 399 | 257TE—-02 4.02 5.59EF — 04 5.39
4096 136 —-03 4.00 | 3.86E—-03 4.00 | 1.56E—03 4.04 1.27FE — 05 5.46
16384 || 8.49E —05 4.00 | 241F—-04 4.00 | 951E—-05 4.03 2.82F — 07 5.49

Table 5.2: History of convergence of polygonal domain with » = 0.4999 and « = 1.
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] N [ Tu—wily, @) o0l 1@ [12—p, o, @) || Pru—inll, )]
64 9.80F — 01 - 1.09E + 03 - 6.22FE + 00 — 2.32E + 00 -

256 1.67TE—-01 255 | 2.78E+02 197 | 1.80E+00 1.79 2.50F — 01 3.21
1| 1024 416 —-02 200 | 6.93E£4+01 200 | 7.82E—-01 1.21 4.45FE — 02 2.49
4096 1.03E - 02 2.01 1.72EF+01 2.01 | 348E—-01 1.17 7.83FE — 03 2.50
16384 249F —03 2.05 | 4.26EF+00 2.01 | 1.53E—-01 1.18 1.32E — 03 2.57

64 1.15F — 01 — 1.44F + 02 — 1.41E 400 — 2.79E - 01 —

256 149E-02 295 | 1.75E4+01 3.04 | 3.19E-01 2.14 2.39E — 02 3.54
2| 1024 1.66E —03 3.17| 2.16E400 3.01 | 6.35E—-02 2.33 1.79E - 03 3.74
4096 178 —-04 322 | 270E—-01 3.00 | 1.24E—-02 2.36 1.31F - 04 3.77
16384 1.87E—-05 325 | 337E—-02 3.00 | 231E—-03 242 9.34E — 06 3.81

64 9.97E - 03 - 1.38F + 01 — 1.65FE — 01 — 2.54E — 02 -

256 593F —-04 4.07 | 881E—-01 397 | 191E-02 3.10 1.09E - 03 4.54
3] 1024 3.60E—-05 4.04| 550E—-02 4.00 | 217TE-03 3.14 4.84F — 05 4.50
4096 2.09F -06 4.10 | 341E-03 4.01 | 231E-04 3.23 2.00E — 06 4.60
16384 116 —-07 417 | 212E—-04 4.01 | 2288 —-05 3.34 7.55E — 08 4.72

Table 5.3: History of convergence of polygonal domain with v = 0.4999 and o = A.

5.2 Non polygonal domain

5.2.1 Example 1

We consider the domain as Q := {(z,y) € R? : 2% + y* < 1} and the computational domain is constructed
by linearly interpolating the boundary of 2 as Figure 5.3 shows. In this case, r. is of order h , then
Assumptions S and C are satisfied for h small enough even in the nearly incompressible case. In Tables
5.4 and 5.5 we displays the history of convergences for v = 0.3 (« = 1) and v = 0.4999 (o = \). We
observe that the L?-errors of u, o, p and 4, behave as Theorems 4.3 and 4.1 predict. We show in Figure
5.4 the approximation the first component of u obtained with the meshes of 5.3 and k = 1,2, 3.

5.2.2 Example 2

We consider the same domain as in Example 1, i.e.,  := {(x,y) € R? : 22 + 32 < 1}, but we construct the
computational domain and transferring path according to the procedure described in Section 2.1 and 2.2.
Figure 5.5 shows two consecutive meshes. In this case r. is of order one, then there is no guaranty that
Assumptions C and S hold. However, we want to explore the capabilities of the method in this setting.
For v = 0.3 and o = 1 we see in Table 5.6 that order of convergence for u,o and p is of order k + 1 as
predicted by Theorems 4.1 and 4.3. In addition, the error of i, converges with order k + 2 which is half
a power more than estimate in Theorem 4.3. In Figure 5.5 we show two consecutive uniformly refined
meshes and in Figure 5.6 we display the corresponding approximation of the first component of u for
different polynomial degree.

We repeated the experiments (not reported here) with v = 0.4999 and « = A but it not was possible to
draw any conclusion about the convergence of the method. We point out that the ellipticity constant C;
is small in this case, then (S.2),(S.3),(C.3) and (C.4) are not satisfied, which explains the bad behaviour
observed when v = 0.4999.
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Figure 5.2: Approximation of the first component of u. Columns: meshes with N = 256 and 1024
elements. Rows: Polynomial degree k£ = 1,2 and 3.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

5.2.3 Example 3

Finally we consider a kidney-shape domain where its level set is defined by

2 (x4 (1/2)> + ) —2 — (1/2))° = ((z + (1/2)* + y*)) + 0.1 = 0.

4

>



Figure 5.3: Mesh of Example 1 with N = 60 and 234 elements.

(k] N [lu—wnlp, r@)[lla—aullp, r@) [lp—p,lp, ) [ Pru—dnll, r()]
1] 60 [[ 1295—01 — [ 289E-01 - | L26E—01 — | 2.16E-02 —
234 || 3.18E—02 178 | 6.38E—02 1.92 | 2.87E—02 187 | 137TE—03  3.50
918 || 8.10E—03 239 | 162E—02 239 | 7.53E-03 233 | 126E—04 416
3546 || 2.13E—-03 196 | 425E—03 197 | 1.94E—-03 199 | 120E—05  3.46
14291 || 5.24E—04 210 | 1.058-03 2.09 | 480E—04 2.09| 1.07E-06  3.62
56687 | 1.32E—04 2.08 | 2.65E—04 208 | 1.22E—04 2.06 | 9.49E—08  3.65

2 60 1.40F — 02 — 3.65E — 02 — 1.58E — 02 — 1.87E — 03 —
234 1.67TE—-03 270 | 3.32E—-03 3.04 | 1.22E—-03 3.25 4.32F — 05 4.79
918 209E —-04 3.62 | 427TE—-04 358 | 1.56E—-04 3.58 2.12FE — 06 5.26
3546 2.76E—-05 297 | 5.71E—-05 295 | 233E-05 279 1.07E — 07 4.37

14291 348E —-06 3.09 | 7.36E—-06 3.07 | 3.06E—-06 3.04 5.01E — 09 4.58

56687 || 4.35E—-07 3.14 | 9.12E-07 3.15| 3.78E—-07 3.15 2.17E - 10 4.73

3 60 1.30E - 03 — 3.34F — 03 - 1.33E - 03 - 1.38E — 04 —
234 6.44FE —-05 382 | 140E—-04 4.03| 5.63E—-05 4.02 1.63FE — 06 5.64
918 412E8—-06 479 | 899E —-06 4.78 | 3.85E —-06 4.67 3.94E — 08 6.49
3546 281E—-07 394 | 6.08E—-07 395 | 253E—-07 3.99 9.55E — 10 5.46
14291 1.74E -08 417 | 3.82E—-08 4.14 | 1.66E —08 4.08 221F —11 5.64

56687 || 1.10E—-09 4.16 | 244E—-09 4.15| 1.05E—-09 4.16 5.01E — 13 5.71

Table 5.4: History of convergence of Example 1 with » = 0.3 and o = 1.

Figure 5.7 shows two consecutively refined meshes constructed with the procedure in Chapter 2. For
these two meshes we display in Figure 5.8 the approximation of the first component of the displacement
u obtained with different polynomial degrees, v = 0.3 and o = 1.

In Table 5.7 we observe optimal convergence for £ = 1. For k = 2, the rate of convergence on the
fifth mesh is higher than expected but after that it seems to recover the optimal order. Finally, for k£ = 3
we also observe a higher order of convergence of the fifth mesh. Anyway, the rates of convergence of the
errors in 4 and 4, seems to be optimal. On the other hand, the order of convergence of the errors of o
and p are higher than three but lower than four (except on the fifth mesh).

45



kN [ lu-wlp, r@)[lle-aylp, r@ [lp—p,llp, r@) ]| [Pru—anl, r(@m) |

60 2.55F - 01 — 4.34F 402 — 1.65E 4 00 — 4.711F - 01 —
234 6.70E—-02 170 | 948E+01 193 | 7.73E—-01 0.96 8.04E — 02 2.25
918 1.58E —-02 251 | 237TE4+01 241 | 3.34E—-01 1.46 1.33E - 02 3.14
3546 3.56E—-03 219 | 6.14E+00 198 | 1.38E—-01 1.30 2.06E — 03 2.73

14291 781K —-04 227 | 151E+00 210 | 6.03£—-02 1.24 3.10E — 04 2.83
56687 1738 —-04 227 | 3.77E—-01 209 | 252E—-02 1.31 4.52E — 05 291

2 60 5.15F — 02 - 5.65EF + 01 — 6.47F — 01 - 1.11F - 01 —
234 340E—-03 345 | 513E+00 3.05| 843E—-02 259 4.64F — 03 4.04
918 3.6 —-04 389 | 642E-01 3.62| 1.65E—-02 2385 3.44F — 04 4.54
3546 4.44F —-05 3.10 | 847E—-02 297 | 3.66E—-03 221 2.95E — 05 3.60

14291 5.00E—-06 3.25 | 1.08E—-02 3.08| 7.53E—-04 237 2.26E — 06 3.84

56687 | 5.50E —07 3.34 | 135E—-03 3.14 | 151E—-04 243 1.56E — 07 4.03

3 60 4.08E — 03 — 5.14F 4+ 00 - 8.02E — 02 - 8.85E — 03 —
234 136 —-04 432 | 216E£—-01 4.03 | 526 —-03 3.46 2.06F — 04 4.78
918 818E —-06 490 | 1.38E—-02 479 | 591E—-04 3.81 9.10E — 06 5.43
3546 490E —-07 413 | 915E—-04 398 | 6.56E—-05 3.22 3.76E — 07 4.67
14291 || 2.76E—-08 430 | 5.72E—-05 4.15| 6.94E—-06 3.36 1.43E — 08 4.89

56687 || 1.49E—-09 441 | 3.68E—-06 4.14 | 6.77E—07 3.51 4.90F — 10 5.09

Table 5.5: History of convergence of Example 1 with v = 0.4999 and o = A.

k] N [ Tu—wlp, r@][lle-gylp, r@ [Ip—p,llp, r@) [ [Pruu—anl, r@m) |

96 5.46F — 02 — 1.38E - 01 — 1.13E - 01 - 1.87E — 02 —

400 142F —-02 189 | 419E-02 1.67 | 527 —-02 1.07 5.73E — 03 1.66
1| 1680 3.67TE—-03 188 | 1.06E—-02 191 | 1.76E—-02 1.53 1.49FE — 03 1.87
7000 9.39F —-04 191 | 265E—-03 194 | 523E—-03 1.70 1.77E — 04 2.99
28504 || 237E—-04 196 | 6.68E—-04 196 | 143E—-03 1.85 2.02E — 05 3.09

96 4.08£ - 03 — 1.58F — 02 — 7.17E - 03 - 5.18E — 03 —

400 5.39E —-04 284 | 215E—-03 280 | 875E—-04 295 7.06E — 04 2.80
2| 1680 6.40FE—-05 297 | 1.89E—-04 339 | 843E—-05 3.26 4.97F — 05 3.69
7000 7T93E—-06 293 | 286E—-05 265 | 234E-05 1.79 3.70E — 06 3.64
28504 || 9.86E —07 297 | 3.64E—-06 294 | 3.12E-06 2.87 1.90F — 07 4.22

96 2.05E — 04 — 1.46F — 03 — 1.36E — 03 — 3.48E — 04 —

400 1.84F —-05 338 | 1.82E—-04 292 | 1.32E—-04 3.27 4.30E — 05 2.93
3| 1680 1.93E-06 3.15| 1.38E—-05 3.60 | 913E—-06 3.72 5.10FE — 06 2.97
7000 6.80E —08 4.69 | 597E —-07 440 | 5.86E—07 3.85 1.42E — 07 5.01
28504 || 3.17TE—-09 436 | 225E—-08 4.67 | 239E—-08 4.56 3.67E — 09 5.21

Table 5.6: History of convergence of Example 2 with » = 0.3 and o = 1.
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Figure 5.4: Approximation of the first component of 4 in Example 1. Columns: meshes with NV = 256 and
1024 elements. Rows: Polynomial degree k£ = 1,2 and 3.

Figure 5.5: Meshes of the Example 2 with N = 96 and 400 elements.
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Figure 5.6: Approximation of the first component of u in Example 2. Columns: meshes with N = 400 and
1680 elements. Rows: Polynomial degree & = 1,2 and 3.

Figure 5.7: Meshes of Example 3 with N = 154 and 712 elements.
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712 elements. Rows: Polynomial degree & = 1,2 and 3.



] N [Tu—wlp, r@][le-0,lp @ [Io—p,lp, @) || Pruu—dnl, r(m)
28 5.39F — 02 — 1.66E — 01 — 1.16E — 01 — 2.97F — 02 —

154 149FE —02 1.85 | 2.94FE —02 2.50 2.02F — 02 2.53 1.96E — 03 3.92
1 712 3.99EF—-03 190 | 1.00E—02 1.56 8.34F — 03 1.27 3.78E — 04 2.38
3054 1.04E —-03 194 | 4.56E —03 1.13 4.29FE — 03 0.96 8.86E — 05 2.09
12579 2.60E —04 2.00 | 4.99E — 04 3.19 1.16E — 03 1.89 1.63E — 06 5.77
50877 || 6.54E—05 199 | 1.28E—04 1.96 3.06E — 04 1.92 2.04E - 07 2.99

28 1.18E — 02 — 6.88E — 02 — 4.64F — 02 - 1.64E — 02 —

154 9.14F —-03 037 | 1.00EF—-01 —0.54| 853E—-02 —0.88 9.33F - 03 0.81
2| T12 1.74F —-04 572 | 2.62E—03 5.26 2.21E - 03 5.27 1.14E — 04 6.35
3054 2.71E—-05 268 | 6.67TE —04 1.98 4.90F — 04 2.17 1.29EF — 05 3.15
12579 1.13E—-06 4.58 | 4.84E — 06 7.11 4.33FE — 06 6.82 3.11FE - 08 8.69
50877 || 1.41FE—-07 3.00 | 2.21F —07 4.45 1.79EF — 07 4.60 6.32F — 10 5.62

28 1.21E - 03 — 8.88E — 03 — 4.94F — 03 — 1.72E — 03 —

154 6.11F—-05 430 | 6.17E —04 3.85 5.69F — 04 3.12 6.27E — 05 4.78
3| T12 146 —-05 207 | 197E—04 1.65 1.81F — 04 1.65 1.04E — 05 2.59
3054 6.28E —07 454 | 1.61E —05 3.61 1.10E — 05 4.04 3.14E - 07 5.05
12579 || 397E—-09 730 | 1.36E —07 6.89 1.41E — 07 6.29 8.54F — 10 8.52
50877 || 2.35E —10 4.08 | 1.30E — 08 3.38 1.39EF — 08 3.33 3.14F - 11 4.77

Table 5.7: History of convergence of Example 3 with » = 0.3 and o = 1.
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Chapter

Conclusion

This work proposed and analyzed an HDG method applied to the linear elasticity problem in curved
domains. In fact, in Theorem 4.2 we showed that the scheme is well-posed under certain Assumptions
on quantities related to the length of the transferring segments. In addition, under similar assumptions,
we proved that the method is optimal. In particular, in Theorem 4.18 we showed that, under regularity
assumtpions,

le—anlp, +1lp—p, llp,< CH*.

Moreover, Theorem 4.22 will state that
lw—u, || p, < ChH!
and, if k > 1,

lea [l,< CREF,

In HDG method for the linear elasticity problem in polygonal domains [5], the error in e is order
hE+2(f k > 1), instead of h¥13/2 as we obtained here. However, our numerical experiments suggest that
the experimental order of convergences of e; is indeed of order h*+2. This phenomenon has been also
observed in HDG scheme applied to Poisson [4] and Stokes [13] problems in curved domain.
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