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Abstract

We are interested in the computational simulation of the interaction between a transient acous-
tic wave and a bounded elastic solid in an unbounded fluid medium. We start by placing an
artificial boundary surrounding the solid, where we impose boundary conditions that do not
necessarily represent the physics of the problem. After applying the Laplace transform to
the original problem, we propose and analyze a coupled Hybridizable Discontinuous Galerkin
(HDG) scheme, in which two mixed variables are included (the stress tensor and the velocity
of the acoustic wave) and the symmetry of the stress tensor is imposed weakly by adding the
antisymmetric part of the strain tensor (the rotation) as an additional unknown. The optimal
convergence of the method is demonstrated theoretically and some preliminary numerical re-
sults are presented. In the last chapter, we introduce the Method of Fundamental Solutions
and use it to solve some boundary value problems in order to familiarize ourselves with this
tool and set the basis to couple the Method of Fundamental Solutions with an HDG scheme in

a future work.



Resumen

Estamos interesados en simular computacionalmente la interaccién entre una onda acustica
transitoria y un sélido elastico acotado en un medio fluido no acotado. Comenzamos colocando
una frontera artificial alrededor del sélido, en donde imponemos condiciones de contorno que
no necesariamente representan la fisica del problema. Luego de aplicar la transformada de
Laplace al problema original, proponemos y analizamos un esquema de Galerkin Discontinuo
Hibridizable (HDG) acoplado, en donde incluimos dos variables mixtas (el tensor de esfuerzos
y la velocidad de la onda actstica) y la simetria del tensor de esfuerzos es impuesta débilmente
al anadir la parte antisimétrica del tensor de deformaciones (la rotacién) como una incégnita
adicional. Se demuestra tedricamente que el método HDG acoplado propuesto posee érdenes
de convergencia Optimos y se presentan algunos resultados numéricos preliminares. En el
ultimo capitulo, introducimos el Método de Soluciones Fundamentales y lo usamos para resolver
algunos problemas de valores de contorno con el objetivo de familiarizarnos con esta herramienta
y sentar las bases para acoplar el Método de Soluciones Fundamentales con un esquema HDG

en un trabajo futuro.
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Introduction

We are interested in the computational simulation of the interaction between a transient acous-
tic wave and a homogeneous, isotropic and linearly elastic solid. The physical setting of the
problem is as follows. An incident acoustic wave v™°—propagating at constant speed c in a ho-
mogeneous, isotropic and irrotational fluid with density p; filling a region {24—impinges upon
an elastic body of density pg contained in a bounded region €2g with Lipschitz boundary I'
and exterior unit normal vector ng. Part of the energy and momentum carried by the acoustic
wave is transferred to the elastic solid, exciting an internal elastic wave w, while the remaining
momentum and energy are carried by an acoustic wave v that is scattered off the surface I' of

the elastic body. Due to the linearity of the problem, the total acoustic wave
Utot — Uinc T+

is the superposition of the known incident field v™¢ and the unknown scattered field v. The
unknowns are thus the scattered acoustic field v and the excited elastic displacement field u

that satisfy the following system of time-dependent partial differential equations [51]:

—V- (2ue (u) + A\V-ul) + pgts = f in Qp,
1
—Av+ v =f in Q4,
c
Vo' mp+4-ng =0 onT,
pr0*'ng + (2ue (u) + AV-ul)ng =0 onT,

13



ng

Figure 0.1: Physical setting of the problem.

including suitable initial and radiation conditions, where the upper dot represents differentiation
with respect to time, € (u) := $(Vu+ V) is the strain tensor, I is the identity tensor, f and
f are source terms and the Lamé constants, y (shear modulus) and A (Lamé’s first parameter),
encode the material properties of the solid. The physical setting is represented graphically in
Figure 0.1.

When viewed in full generality, the acoustic propagation region €2, is in fact unbounded and
given by Q4 := R"\ Qp. This fact introduces further computational challenges that are often
addressed either through an integral equation representation of the acoustic wave [5, 38, 39, 52],
the introduction of a perfectly matched layer [43], the use of absorbing boundary conditions
[26, 36, 37, 55] or the representation of the acoustic field through a moment expansion [2].

In Chapter I, we simplify the analysis by assuming that the acoustic domain €24 is in fact
a bounded region, and boundary conditions ensuring the well-posedness of the problem will be
imposed on the exterior boundary I'4 (see Figure 1.1).

In Chapter II, we present a brief introduction to the Method of Fundamental Solutions,
where we will solve some simple problems to familiarize ourselves with this tool. Coupling the
Method of Fundamental Solutions with the Hybridizable Discontinuous Galerkin scheme, in

order to solve the problem in the unbounded domain, will be a future work.
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Chapter 1

A Coupled HDG Discretization for the
Interaction Between Acoustic and Elastic

Waves

15



ng

Figure 1.1: Simplified physical setting of the problem.
1.1 Introduction

As mentioned in the introduction, in this memoir we will consider a simplified version of the
problem where the acoustic domain {24 is bounded and has a polygonal Lipschitz boundary
['4 (the subscript standing for “artificial”) that is divided into mutually disjoint Dirichlet and
Neumann segments (respectively T'} and T'Y) such that T'y = T'} UT¥, where appropriate
boundary conditions will be prescribed to ensure the well-posedness of the system. We empha-
size that the boundary conditions imposed on I'4 do not attempt to account for a physically
outgoing wave; the treatment of the fully unbounded problem will be left for a follow up project.
Instead, the goal of this work is to establish the well-posedness theory for the coupling of HDG
discretizations for elastic and acoustic wave propagation. This simplified physical setting is
shown in Figure 1.1.

Upon Laplace transformation, which maps time differentiation into multiplication by the
Laplace parameter s € C, and using the same symbols for the unknowns in the time domain

and in the Laplace domain, the elastic wave w and the scattered acoustic wave v satisfy the

16



coupled system of equations in mixed form

oc—Ce(u)=0 in Qp, (1.1a)
—V-o+pps’u=f in Qp, (1.1b)
g—Vu=0 in Qyu, (1.1c)
~V-q+(s/c)*v=f in Qga, (1.1d)
q-nys—su-ng=-Vo'-n, on I, (1.1e)
—ONg + prsvng = —pys V', on I (1.1f)
v=gp on I'Y, (1.1g)

q-ns=gyn on I'Y. (1.1h)

Here, s € {z € C: Re(z) > 0} is the Laplace parameter, u is the unknown displacement, o is
the Cauchy stress tensor, f € L*(Qz) and f € L?(Q,4) are source terms, gp € H'/?(I'4) and
gy € H7Y/2(T'y) are given boundary data. Hooke’s elasticity tensor C is defined by its action

on an arbitrary square matrix M as

1 A

CM :=2uM + Mr(M)I and C'(M):
where, I denotes the identity tensor, and tr(M) := > | M;;, is the matrix trace operator.

In the system above, equations (1.1a) and (1.1b) account for the Navier-Lamé or elastic
wave equation in the interior of the elastic solid Qg; similarly, equations (1.1¢) and (1.1d) are
the mixed form of the acoustic wave equation in €24. The elastic and acoustic variables are
coupled through the continuity of the normal component of the velocity field across the interface
', encoded in equation (1.1e), and the balance of normal forces at the contact surface, given
in (1.1f). The nonphysical boundary conditions (1.1g) and (1.1h) prescribed at the artificial
boundary I'4 are given to ensure the well-posedness of the problem. The imposition of the
correct outgoing wave boundary conditions will be the subject of subsequent work.

In the literature, there is a vast amount of research related to fluid-structure interaction

problems. For instance, some of them use a Mixed Finite Elements approach [25, 31] and there

17



are also couplings of this technique with Boundary Element Methods [30]. Studies on their
spectral problems [45] and an analysis of the elastoacustic problem in the time domain [3] have
been done. But most of these works assume a time-harmonic regime, so the starting equations
change.

Since two different systems of PDEs posed in different domains are being coupled across an
interface, we prefer to use a discontinuous Galerkin scheme due to its flexibility to handle the
transmission conditions. In particular, by considering the HDG method introduced in [19], it
is very easy to impose transmission conditions from the computational point of view. In fact,
let us recall that in HDG schemes the only globally coupled degrees of freedom are those of
the numerical traces on the boundaries between elements, while the remaining unknowns are
obtained by solving local problems in each element. Therefore, if we have two independent
HDG solvers, one for the acoustic problem and another one for the elasticity system, we can
couple them across the interface through the numerical traces associated with the acoustic wave
v and the elastic displacements w.

After [19] and the pioneering work [21] that set a framework that simplifies the analysis
of a family of HDG schemes by introducing a suitable projection, HDG schemes have been
developed for a wide variety of problems. For example, convection-diffusion equation [29, 46],
Stokes flow [20, 32]; Brinkman, Oseen and Navier—Stokes equations [9, 10, 28, 48]. In the
context of electromagnetism and wave propagation problems, HDG schemes have also been
introduced: Maxwell’s operator [13, 14], eddy current problems [6], Maxwell’s equations in the
frequency-domain [27, 47] and heterogeneous media [7] and Helmholtz equation [12, 34, 57].
For the elasticity problem, we refer the reader to [23, 49]. The above list of references is not
exhaustive, but provides an overview of the development of HDG schemes during the last fifteen
years.

On the other hand, in the context of coupled problems with piecewise linear interfaces,
HDG schemes have been proposed for elliptic [40] and for the Stokes interface problems [56],
and for Stokes-Darcy coupling [33]. The influence of hanging-nodes along the interface and

the use of different polynomial degree over each local space, have been analyzed in [15, 16].
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Recently, a new approach has been proposed to handle discrete interfaces that not necessarily
coincides with the true interface, as in the case of a curved interface [4, 44, 54] and it is based
on the Transfer Path Method [22, 24, 50]. This technique produces a high order method and
is closely related with our ultimate goal, where it is crucial to have a numerical scheme that
couples an HDG discretization of the problem posed in an bounded domain considering a solid
with a curved boundary, and a representation of the acoustic wave in the unbounded region.
To the best of our knowledge, the use of HDG schemes has not been analyzed for the coupled

problem (1.1), and the main contribution of this work is to provide a convergence analysis.

1.2 Preliminaries and notation

1.2.1 Sobolev spaces.

Let O be a Lipschitz continuous domain in R". We use standard notations for Lebesgue
L}(O) and Sobolev spaces WH(0), with [ > 0 and ¢ € [1,+0c). Here W2 (O) = L}Y(0),
and if t = 2 we write H/(O) instead of W“2(0), with the corresponding norm and seminorm
denoted by || - ||g1 oy and | - |gie), respectively. The spaces of vector-valued functions will
be denoted in boldface, therefore H*(O) := [H*(O)]", whereas for tensor-valued functions,
we write H*(Q) := [H*(O)]"*™. Using the same notation, we write L*(0) := [L?*(O)]" and
L2(0) = [1(O)™.

The complex L%inner products will be denoted by (-,-)o and (-,-)s;, where ¥ is either a
Lipschitz curve (n = 2) or a surface (n = 3). The associated norms will be denoted by || - ||o
and |- 5.

It is easy to verify that Hooke’s tensor satisfies the following inequalities for all n € L*(O):

1 TLQ)\ - 2 2 2
oA < <2 -
<2u - 2u(nA + 2#)) Inllo.c+ < lImllo < 2ullnlo,.c-+

Inl6.c < 2u+n*Nlnllo.

where we denote || - [|o.c-1 := (C1+, )ZQ and || - [|o,c == (C-, )}9/2
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1.2.2 Mesh and mesh-dependent inner products.

Let T4 and Tg be two families of regular triangulations of 24 and Qg, respectively. We will
assume that these triangulations are compatible on the common interface I' and that both are
characterized by a common mesh size h in their respective domains. Given an element K, hg
will denote its diameter and ng its outward unit normal. When there is no confusion, we will
simply write m instead of ng. Set t € {A, E'}, then 0Ty := {0K : K € T;} and let & denote
the set of all faces F of all elements K € T;. We will also use the following notation for L?
inner products of scalar-, vector- and tensor-valued functions, respectively, over an integration

domain D:

(u,v)p 3—/DW; (uaU)D—/DU'E (M,N)D—/DM:W,

“w.”n

where the overline denotes complex conjugation and the colon is used to denote the Frobe-

nius inner product of matrices

1,j=1

With this notation we can express the mesh-dependent L? inner products as

(u,v) 7 = Z (u, ), (w, ) = Z (w,v)g, (M,N)g = Z (M,N),,

KeTy KeTy KeTy

along with the inner products over the mesh skeleton

(u,v)or, = Z (U, V) ppc > (U, V)o7; 1= Z (u,v) 5, (M, N)or, = Z (M,N) gy -
KeT; KeT; KeTy

We denote the norms induced by these inner products by

- llm=1/C)n and - flag ==/, )or-

Finally, to avoid proliferation of unimportant constants, we will write a < b when there exists

a positive constant C, independent of the meshsize, such that a < Cb.
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1.3 An HDG discretization

For the Navier-Lamé equations (1.1a)-(1.1b), we will follow the approach from [23], where the

symmetry of the stress tensor is imposed weakly by introducing the spin tensor
~v(u) := (Vu — V'u)/2
as an additional unknown. In this setting, (1.1a) can be written as
C'l'o—Vu+vy=0 inQp. (1.3a)

For the acoustic equations (1.1¢)-(1.1d), we will consider a standard HDG discretization as in
[21]. Let us begin by introducing the notation associated with the discretization of the domain,
we will then specify the finite-dimensional spaces, and then formulate the HDG scheme.

We will make use of the discrete spaces for the HDG method proposed in [23] for simplices.
For an element K € T4 U Tg, we define the following function spaces. The set of scalar-
valued polynomials of degree at most k defined over K will be denoted by Pi(K), while the

corresponding vector and tensor product spaces are denoted respectively as
Pr(K) := [Pe(K)]|" and P, (K) = [Pr(K)]"™".

The polynomial spaces of degree ezactly k will be denoted with a tilde as Py(K), Pr(K), and
ik(K). We now define
Aij (K) = s
0 if i =7,
and use it to construct the matrix-valued space
A(K) = [Aj; (K)]"™
We will denote the space of L? integrable skew-symmetric matrices over K by

AS(K):={M c L*(K): M + M" = 0},

and will require that A(K) C AS(K).
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Now, we would like to define a divergence-free space of functions through the use of bubble
matrices or bubble scalars, depending on the dimension, as in [18, 8, 23, 35]. Let us define what
a bubble matrix is ([35]): A matrix-valued function b defined in Qg is said to be an admissible
bubble matrix if for each K € Tg the matrix by := b|, is a matrix with polynomial entries

that satisfies
1. The tangential components of each row of by vanish on all the faces of K,
2. There exists C; > 0 such that C}(v,v)x < (vbg,v)g, for all v € L*(K),
3. There exists Cy > 0 such that ||bg||gex) < Cs,

where the constants C; and Cy depend only on the shape regularity of 7Tg.
Thus, following [18, 23], if ng is the barycentric coordinate associated to the edge F' of K,

and if we define )
H s in 2D |

FCOK

Z H ne | Vnp ® Ve in 3D,

| FCOK | F'cok\{F}

the polynomial space B(K) associated to bubble functions is defined as:
B(K) :=V x ((V x A(K))bk).
We can observe that any function
veEB, ={neL*0): n;€BK),KEeTs}

is such that

Vv, =0VK €Ty and on|.=0VFecC&g.

In the three-dimensional case the curl operator acts row-wise, while in the two-dimensional

case the curl of matrices and column vectors are defined respectively by

v x My, M, . 8:0M12_6yM11 and ¥ x my - _ayml Oy

My, Moy 8$M22_8yM21 ma _ame Opmoy

22



We will also make use of the local space V(K) := P, (K) + B(K), and notice that
V(K) = Py(K) + V x ((V x A(K))bx) = Py(K) &V x (V x A(K))b),

where A(K) := A(K) NP, (K).

Finally, we define the piecewise polynomial spaces

V,={reL*Tp): 7|, € V(K), VK € Tz}, (1.4a)
Wi ={teL*(Tg): t|, € P(K), VK € Tz}, (1.4b)
A, ={neL*Te): nly € AK), VK € Tg}, (1.4c)
M), ={p € L*(Eg) : pu|, € Pu(F), VF €&}, (1.4d)
Wit ={rec L*(Ta) : r|, € PL(K), VK € Ta}, (1.4e)
Wy ={w e L*(Ta) : w|, € P(K), VK € Ta}, (1.4f)
My ={6 € L*(Ea): £|p € Pu(F), VF € Eal, (1.4g)

The method seeks a piecewise polynomial approximation
(G s Uny Y Ty Gy Uy On) € Vg X W X Ay x My, x Wit x Wy, x M,

of the exact solution (o, u,v, ul¢,_,q,v, v[¢,). The approximation must satisfy the discrete

weak formulation

(Clon, ) + (up, V- 1), + (Y4, T)7 — (Wn, TR) o7, = 0, (1.5a)
(o4, V)7 — (G110, t)ors, + ps”(un, t) 7 = (f, )75, (1.5b)

(o, m)7 =0, (1.5¢)

(@nn, woriar =0, (1.5d)

(gn. 7)1, + (U, V7)1, — (Op, 7 - M)s7, =0, (1.5e)

(@1, V)7, — (@), - 1y w)or, + (s/€)*(vn, w)r, = (f,w)7,, (1.5f)

(@, n7§>aTA\(FUF£) = <9N75>Fg, (1.5g)
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<6h7€>FfA) = <gD7€>F£7 (15h)
(G, -ma— sty -ng, &r = — (Vo™ - ny, &, (1.51)

inc

(=owmp + prsUpma, p)r = —pss (V" na, w)r (1.5))

for all test functions (7,¢, 7, u, 7, w,&) € V, x WE x A, x M, x Wit x W), x M, where

on = opn — 1g(u, — up) on OJO7g, (1.5k)
g, -n:=q, n—Ta(vy —p) on O74. (1.51)

Here, 75 and 74 are stabilization parameters whose properties will be determined when ana-

lyzing the scheme.

1.4 Analysis of the HDG scheme

1.4.1 Well-posedness.
Theorem 1. If Re(s74) > 0 and Re(sTg) > 0, then the scheme (1.5) has a unique solution.

Proof. By the Fredholm alternative, it is enough to show uniqueness of the solution. To that
end, if we assume zero sources, we will show that the solution to the corresponding system is
the trivial one.

Let

,Uinczo and (f7f7gD7gN) - (0707070)
and choose

~ ~ /ﬁh, on 87;1\F1[4)
(Tatvnvl‘l’ar:w) = (o-hauhaﬁyhvuhaqhavh) and é.:
q, m, onI}

With this choice of test functions, applying integration by parts to (1.5b) and adding its
conjugate to (1.5a) we obtain
(Clon, on)7 + (un, V- 01) 75 + (Y, 01) 75 — (Un, 1) 073
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— (V- on,un) 7 + (o0, un)or, — (Oan, un)ory, + pes?(Un, up) 7, = 0.

We know from (1.5¢) that (o4, 7)1 = 0, so the latter equation becomes

(Clon, o)1, + (onm — awn, un)or, — (Un, Thn) oty + pes(un, uy)7, = 0.

Adding and subtracting uy, in the second argument of the second term, we have that

||0'h||27E,cfl +(own — Tpn, up — Up)ory, + (RN — GRN, Up)oTy

— (U, o1n)ory, + pps? ||y, = 0.

Multiplying by s and using (1.5d), along with the definition (1.5k), we obtain

S ||Uh||3’E,C*1 + S<7’E(’U,h — ’l/ih), Up — ’l/],h>@7’E — S<’i\l,h, E'hnE>p + pE§|S|2 ||’l.l,h||3-E =0. (16)

Analogously for the acoustic terms, (1.5f) is integrated by parts and its conjugate is added to

(1.5e), yielding

9 -
thHTA +<Uh7 V- qh)TA - <Uh7 q; - n>aTA - (v qpn, Uh)TA

= s?

Adding and subtracting v, and using (1.5¢) and (1.5h), we can deduce that

— — S 52
lgnll7, + (Fa(vn = On), vn — Dn)ors — (On, @, - AT + = lonll7, = 0.

We multiply the latter equation by pys to obtain

prs lanlZ, + prsTalon — 0n).vn — Yo, — pyrs{On@n - ma)r + ps3(sl/0? fonl, = 0. (L.7)

Adding (1.6) with the conjugate of (1.7) leads to

sllonllr, o1 + 5(Te(wn — ), wp — Bn)or, — (U, Frnp)r + pesls? |unly,

+orsllanlly, + prs(Taon — Bn),vn — Dn)ors — p5(Oh, @y - ma)r + pr3(Is|/0)? Jonll7, =0
(1.8)

Notice that from (1.51) and (1.5j) we have

—8(Upn, Opnp)r — P35V, @), - Ma)r = — $(Un, Opnp — prsUpMA)T — $(Un, PrSURTLA)T
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— ps5(Uh, qp, - Ma — SUp - NE)r — pfS(Uh, sU, -

= — S(’l/zh, pfs@hnA)p — pf§<@\h, Sah . ’I’LE>F

= — s§pf(ﬁh,ﬁhnA)p + S§pf (ﬁh,ﬁhnA)p = 0.

So, (1.8) is equivalent to

sllonllz, o1 + s(re(un — @), un — @n)ors, + pesls| lluall7,

+p5s ||(Ih||27A + ps3(Ta(vn — Dn), vn — On)ory + prs(ls]/c)? ||Uh||2TA =0.
Thus, taking real part of this expression, we obtain
2 P 2
8% + 6% + prlsRe(s) |lup||5, + glsPRe(S) [onll7, =0,
where we have defined

s = [Re(s)*

S

2

i + [ Re(s7)2 (an — @)
Ti,C1 i P o

2
pi*Re(s)"’ q,,

2
- + H,O}ﬂRe(STA)1/2 (vp, — Up)

0T .

From here, we can conclude that o, = 0 in Tg, up, = 0 in Tg, q, = 0 in T4, v, = 0 in Tg,

up, = up = 0 on 07 and v, = v, = 0 on IT4.

It only remains to show that v, = 0 in Tg. This will be achieved by performing an analog

of the steps done in the proof of [8, Lemma 3.6]. We will need the two following technical

results proven in [35]:

1. [35, Lemma 2.8] Given n € A} :={nc A, : (n,v)x = 0,Vv € Py(K),VK € Tg}, there

exists v € B,, such that

Pv=n and |vlly <C%nl,.

Here P : L*(Qg) — A, is the L*-projection onto A, and C° is a positive constant

independent of h, arising from a Poincaré-type inequality and inverse estimates.
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2. [35, Proposition 2.9] Given n € Aj := A, NP,(Tg), there exists v € H (div; Q)P (Tr)
such that

V-v=0, Py =n, and o], = Clnll7, (1.9)

where P° is the L?-projection onto Af, and C* > 0 is a constant independent of h.
Let us consider the orthogonal decomposition
0 c c 1 : 0 c
Y, =n+7;, Where A% = S Y, VK € Tp  (component-wise)  and =, = v,—7;-
K

It is clear that 40 € A} and ~§ € A§.

By [35, Lemma 3.9], there exists
v’ € By :={neL’(Q): nlx € B(K),KeTg}CV,

such that
(Y2, P07 = (°, p%) 7, forall p° € A,. (1.10)

0

Taking 7 = v” in (1.5a), we obtain

(Yp + 5, 0") 7 = 0.

Now, considering p° = ¢, and the fact that the decomposition of 4, is orthogonal in L?, the

two expressions above imply

(727’00)7}: = (7277;:1>TE =0.

Hence, taking p° = 49 in (1.10), the equality above shows that (49, v°)7, = H'ngzTE =0, and
we can conclude that 49 = 0.

Finally, by the second property in (1.9), there exists v € H (div; Qg) NP, (Tg) such that
(v P) 1 = (Vh, )7, for all p© € Aj.
Taking p® = =}, in the expression above we have

c c cl12
(Vi )75 = 73l 75, - (1.11)
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Now, recalling that o, = 0 and u, = 0 in 7z and 4, = 0 on O7g, choosing 7 = v in
(1.5a), we have that (v, v°)7, = 0. Then, since 42 = 0, from (1.11) we conclude v§ = 0 in
Tg, and therefore v, = 0. [ |

1.4.2 Error Analysis.
1.4.2.1 The HDG Projections.

We will need the HDG projections defined in [21]. For the acoustic terms, the projected
function is denoted by Hf(q, v) = (H’;‘Vq, HWU), where IT4 w4a and ILyv are the components
of the projection in Wfll and W), respectively. The values of the projection on any simplex

K € T4 are fixed when the components are required to satisfy the equations

(M a,7) = (@, 7)k, Vr € Py (K),
(HWU7w>K - (va)K7 Yw - Pk_l(K),
<HWq n_TAHWU §>F q ,n’_TAPMU §> v§ Epk<F)7

for all faces F' of the simplex K € T4, where Py, is the L? projection onto F. It was shown
n [21] that, if (g,v) € H*"'(K) x H**'(K) and 74|, is nonnegative and max s > 0, the

components of the projection satisfy the estimates

HH q- qHK < b <|q|H’“+1(K) + |U|Hk+1(K)> ; (1.12a)

Mo =l $ R ([olare ) + V- @) - (1.12b)

Therefore, for the sake of simplicity, from now on we assume that 7z and 74 are positive
functions.
For the elastic terms, on each element K € 7Tg, a component-wise version of the above

projection is defined by ITF (o, u) := (Ilyo,IE,u) € P, (K) x Py(K) where

(Myo, ), = (0, 7T)k, Vr e P 1(K),

(HEWU, t)K = (’U,, t)K, vVt € Pkfl(K) s
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<(Hva)n — TEH‘IJJV'U,, p,>F = (on — TePyu, ) 1 Yu € Pr(F),

for all faces F' of the element K € Tg. Above, Py is the L? projection onto F. Analogously,
if (o,u) € H*™(K) x H*'(K), then

Iyo — ol|, < hkH (|a|ﬂk+1(m + |u|Hk+1(K)) , (1.13a)
T2 w — ul|, < KA (|u|HM(K) V- o—@(,{)) . (1.13b)

In addition, for each element K € Tz, we will denote by II4~ the L*(K)-projection of 4 on
A(K). Thus, if vy € H*"'(K), then

ITAy = Yl S AR ] g iy -

Having defined the projections, we now define the projection errors in each of the volume

unknowns by

0, =o —Ilyo, 0, :=u— H‘];Jvu, 0 =7 —IIa7,
0q:=q — H";‘Vq, 0y :=v — llyw.
The following quantity will play a fundamental role in the error estimations:
1/2
O(0,u,v,q,v) = (1017, + 10ull7, + 164117, + 116417, + dul17,) " -

The next lemma follows readily from the projection bounds (1.12) and (1.13).

Lemma 2. If (0, u, 7. q,v) € H''(Qp) x H"(Qg) x H (Qg) x H* ' (Qu) x H=1(Q),

then
O(o,u,v,q,v) S hFt! (’0'|gk+l(QE) + ’u‘H""H(QE) + |’7|gk+1(QE) + |q’Hk+1(QA) + ‘U‘Hk‘H(QA)) :

1.4.2.2 Error estimates.

Let us define the projections of the errors (not to be confused with the projection errors defined

above):
e, = Ilyo — oy, esn := Py (on) —opn, €y = Hﬁ,’u, — uy,
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eq = Py — iy, ey = Ilay — ), eq = 1Iy,q — qp,

e;-n:=Py(g-n)—gq, n, ey = v — vy, e5 := Pyv — Uy,

Direct calculations imply that, for all (7,¢,n, p,r,w,&) € V, x WE x A, x M, x Wf X

Wy x My, the projections of the errors satisfy the following system:

(Cleo, T) 73 + (ew, V- T)7, + (€4, T) 73, — (€0, TR)o7, = —(CT0,, T) 73 — (8, T)75,
(1.14a)
(€0, V)7, — (€, t)o7, + pEs’(€u, t) 7 = —prs™(Ou, t) 75, (1.14b)
(eo: M7 = — (00, M) 75, (1.14c)
(esn, w)orr =0, (1.14d)
(eq, )7, + (€0, V1)1, — (5,7 - N)or, = —(0¢,7) 74, (1.14e)
(eq, V)7, — (€g -, w)ar, + (s/c)*(ev, w) T, = —(5/¢)* (0, 0) 74, (1.14f)
(eg 1. &)ori\rurn) = 0, (1.14g)
(€3, &)rp =0, (1.14h)
(eg-ma—seq ng§r =0, (1.14i)
(—esnp +ppsesng, p)r =0 (1.14;j)

while ez and eg satisty

esn =e;n —1p(e, —ezg) on ITg,

eg-n=-e;-n—T1s(e, —e5) on dTy.

The following lemma can be proven by arguing as in the first part of the proof of Theorem 1.

Lemma 3. The projections of the errors satisfy

2 Pf 2
e} + €4 + pi|s|*Re(s) |leull5, + g|s|2Re(S) lewl7,
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== Re(s(c_15m eU)TE) + Re(s(€4,00)75;) — Re(s(d4, €5)73,)
— pi|s"Re(s(ew, 8u)7:) — pyRe(3(eq, 8¢)7,) — %|8|2Re(5(5m €)7Ta)

(1.15)

where

2

- \/HRe(s)l/2 e

ot |Be9) 7 e~ ea)

oTE ’

2

eq = \/HP}/QRG(S)UQ €eq

Applying the triangle, Cauchy-Schwarz and Young inequalities several times to the expres-

2
. + Hp}/QRe(S)l/2 7'}1/2(61) —e3)
A

0T .

sion (1.15), we can obtain the key inequality:

¢ + €4 + pels’Re(s) [eull7, + %ISFR(%(S) leu7, S ©(o,u,v,q,v). (1.16)
Using this result, it is possible to obtain bounds for the error in each unknown:
Theorem 4. If (o, u,v,q,v) € H"™(Qg) x H*(Qp) x H" (Qp) x H* 1 (Q4) x H*1(Qy),
then

o = onllz + [lw = wnllr + v = vill7e +lla — gullz + llv = wll7, S O(0,u,7,q,0).
Proof. Let us explain the bound for the norm of the error in o. Have in mind that o — o), =
€y + 04, SO
lo —aull7, = lles + 8517, < lleall7, + 1160117,
S 2 lles|T o + ©% (0, w7y, q,0) S 0% (0, u, 7, q,v).

Where we use the relation between the norms [|-[|- and |||, -1 and (1.16). In the case of

the other unknowns, the procedure is similar. [ |

1.5 Numerical Experiments

On the set of the element boundaries, for t € {A, F'}, we consider the norm
1/2

Il = { D Pl - l3xc

KeT;
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Given an unknown ¢ and two approximations ¢, and ¢; associated to two consecutive

meshes of sizes h and l~1, we compute the experimental order of convergence (e.o.c.) of the error

in ¢ in the ||||norm as log (16 — o/ — éxl) /log (h/h)

1.5.1 Acoustics problem.

To test our HDG scheme applied to the acoustics problem, we consider equations (1.1¢)-(1.1d)
complemented with Dirichlet boundary conditions v = gp on 0£24. We take a manufactured
acoustic field v(x,y) = sin(x) sin(y). The source f and boundary data gp are set in such a way
that v satisfies (1.1¢)-(1.1d) in a domain Q4 = (0,1)?, with ¢ = 1 and, for example, s = 2 — 1.

The stabilization parameter 74 is taken to be equal to one everywhere. We consider quasi-
uniform refinements of 24 and set k € {1,2,3} in the local spaces.

The Table 1.1 shows the results obtained for this problem, where N is the number of mesh
triangles. Note that for the errors in g and v the optimal theoretical order of convergence k + 1
was reached. In turn, for the numerical trace we can see an order of superconvergence k + 2.

The Figure 1.2 graphically presents the data of this table.

ke N g =gl eoc o=, eoc |lv="ullar,

4 1.86e—02 - 9.65e—03 — 5.91e—03 —
16 5.16e—03 1.85 2.48e—03 1.96 7.99¢e—-04  2.89
64 1.34e—03 195 6.40e—04 195 1.03e—04 2.95
512 1.45e—04 2.14 5.96e—05 2.28  5.02e—06 291

2048 3.62e—05 2.00 1.53e—05 196  6.29¢e—07  3.00
8192  9.04e—06 2.00 3.89¢—06 198  7.87e—08  3.00

4 1.74e—03 — 7.7le—04 — 4.09¢e—04 —

16 1.94e—04 3.16 6.76e—05 3.51 2.64e—05  3.95
64  2.33e—05 3.06 6.12e—06 3.46 1.69e—06  3.96
512 3.56e—07 4.02 4.33e—07 2.55  2.87e—08  3.92
2048 4.38e—08 3.02 5.06e—08 3.10 1.79e—09  4.00
8192  5.43e—09 3.01 6.10e—09 3.05 1.12e—10  4.00

4 2.64e—05 — 7.23e—05 — 1.92e—05 -
16 2.48e—06 3.41 4.44e—06 4.03  6.57e—07  4.87
64 1.63e—07 3.93 2.72e—-07 4.03  2.12e—08  4.96
512 3.75e—09  3.63 9.72¢—09 3.21 1.66e—10  4.66

2048 2.42e—10 395 6.06e—10 4.00 5.19e—12  5.00
8192 1.54e—11 398 3.78e—11 4.00  2.6le—13  4.31

®

O.C.

Table 1.1: Results for the acoustics problem.
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N

Figure 1.2: Discretization error as a function of the number of triangles in the domain for the
acoustic problem.
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1.5.2 Elastic problem.

Analogously to the previous subsection, let us apply the HDG scheme to the equations (1.3a)-
(1.1b) comnsidering Qg = (0,1)%,pp = 1,5 = 2 —i and 75 = 1 everywhere. The source f and

the Dirichlet boundary condition are defined such that

w(z.y) = sin(mzx) cos(my)  (eg) € (017,
cos(mx) sin(my)

is the exact solution of the problem.
It is known that the Lamé’s first parameter (A\) and the shear modulus (u) (or Lamé’s
second parameter) satisfy the following expressions in terms of the Young’s modulus (E) and

the Poisson’s ratio (v):

Ev FE

A T S T

so let us take E' =1 and two values of v: 0.3 and 0.49999 (a perfectly incompressible isotropic
material deformed elastically at small strains would have a Poisson’s ratio of exactly 0.5).
The numerical results are shown in Table 1.2 and Table 1.3. The same information is plotted
in Figure 1.3. Observe that the experimental orders of convergence of the errors in o, u and
~, k+ 1, coincide with the theoretical results. In addition, for the numerical trace of u we also

have a superconvergence of order k + 2.
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kN lo—ouln eoc |u—wunr eoc |lu—unly, eoc |v—vllm eoc
12 1.10e+00 — 5.71le—01 — 2.98e—01 — 2.92e—01 —
48 6.81le—01 0.70  2.85e—01  1.01 8.67e—02 1.78  3.14e—01 —0.10
1 192 1.80e—01 1.92  7.77e—02  1.87 1.43e—02 2.60  9.08e—02 1.79
1536  2.08e—02  2.07 1.00e—02 197 5.86e—04 3.07  8.78e—03 2.25
6144  5.22¢—03 2.00 2.53e—03 1.98 7.54e—05 2.96  2.09¢e—03 2.07
24576 1.31le—03  2.00 6.36e—04  1.99 9.53e—06 2.98 5.06e—04  2.05
12 9.76e—01 - 3.45e—01 - 1.75e—01 - 5.57e—01 -
48 9.02e—02  3.44  3.79¢e—02  3.19 8.23e—03 441 4.22e—02 3.72
9 192 1.16e—02 296 5.02e—03  2.92 5.25e—04 3.97  5.47¢—03 2.95
1536  5.43e—04  2.94 2.57e—04  2.86 8.07e—06 4.02 2.49e—-04 297
6144  6.80e—05 3.00 3.24e—05  2.99 4.97e—07 4.02  3.12e—05 3.00
24576  8.51e—06  3.00 4.07e—06  2.99 3.09e—08 4.01  3.91e—06 3.00
12 4.64e—02 — 2.53e—02 — 8.33e—03 — 1.59e—02 —
48 8.76e—03 241  3.77e—03  2.74 6.40e—04 3.70  4.70e—03 1.76
3 192 5.63e—04  3.96 2.47e—04 3.94 2.29e—05 4.81  3.23e—04 3.86
1536  1.21e—05 3.70  5.39e—06  3.68 2.02e—-07 4.55  8.15e—06 3.54
6144  7.58¢—07  3.99  3.39e—07  3.99 6.54e—09 4.95 5.22e—07  3.96
24576 4.74e—08  4.00 2.13e—08  4.00 2.07e—10 4.98  3.29e—08 3.99
Table 1.2: Results for the elastic problem, v = 0.3.
kN lo—ouln eoc |u—wunr eoc |lu—unly, eoc |v—vullm eoc
12 1.41e+04 - 5.13e+03 - 2.22¢+03 - 2.27e+03 -
48 1.03e+04 046  3.48e+03  0.56 1.39e+4-03 0.67  3.90e+03 —0.78
1 192 2.70e+03  1.93  9.39e+02 1.89 2.31e+02 2.59  1.18e+03 1.73
1536 4.26e+02  1.78  1.19e+02 1.99 1.70e+01 2.51  3.57e+02 1.15
6144  1.08e4+02 198  2.99e+01  1.99 2.24e+00 2.92  9.36e+01 1.93
24576  2.73e+01 1.99  7.51e+00  1.99 2.87e—01 2.97  2.38e+01 1.97
12 1.61e+04 — 4.53e+4-03 — 2.83e+03 — 7.32e+03 —
48 1.34e4+03  3.58  4.60e+02  3.30 1.36e+02 4.38  5.25e+02 3.80
9 192 1.67e4+02  3.00 6.03e+01  2.93 8.14e+00 4.06  4.53e+01 3.93
1536 1.10e+01  2.62  3.03e+00  2.88 2.09e—01 3.52  6.70e+00 1.84
6144 1.38¢e4+00 299 3.8le—01 299 1.29e—-02 4.02  8.49e—01 2.98
24576 1.73e—01  3.00 4.77e—02  3.00 8.05e—04 4.00 1.07e—-01 2.99
12 4.12e+02 — 1.62e4-02 — 5.97e+01 — 1.50e4-02 —
48 1.31e+02  1.66  4.54e+01  1.83 1.05e+4-01 2.51  5.20e+01 1.53
3 192 8.45e+00  3.95  2.95e+00 3.94 3.98e—01 472  3.71e+00 3.81
1536 2.58e—01 3.36 6.32¢—02  3.70 5.67e—03 4.09  2.24e-01 2.70
6144  1.63e—02 3.99 3.97e—03  3.99 1.83e—04 4.95  1.45e—02 3.96
24576  1.02e—03  3.99 2.48e—04  4.00 5.79e—06 4.98  9.15e—04 3.98

Table 1.3: Results for the elastic problem, v = 0.49999.
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v =203 v = 0.49999

Degree k =1 Degree k=1
10t 10
101} al
y - . 107 |7
5 103l ~ LE —~
/10 U 102 H-o-U
. —o—’y —o—’)f
1071 -2 i 1001 -h?
10° 10! 102 10° 10* 10° 10° 10! 102 10° 10* 10°
N N
Degree k =2 Degree k =2

FError
Error

10° 10! 102 10° 10* 10° 10  10' 102 10° 10* 10°

N N
Degree k = 3 Degree k =3

Frror
Error

Figure 1.3: Discretization error as a function of the number of elements in the domain for
Poisson’s ratio v = 0.3 (first column) and v = 0.49999 (second column).
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1.5.3 Coupled problem.

We now test our HDG scheme applied to the coupled problem (1.1a)-(1.1h) with Dirich-
let boundary conditions v = gp on I'y. We take a manufactured acoustic field v(z,y) =
sin(x) sin(y). The source f and boundary data gp are set in such a way that v satisfies (1.1c¢)-
(1.1d) in a domain Q4 = (—2,2)?, with ¢ = 1 and s = 2 — 4. For the elastic region, we consider

Qp =(—1,1)2, pg =1 and 75 = 1 everywhere. The source f is defined such that

wlz.y) = sin(mx) cos(my) (@) € (—L1),
cos(mx) sin(my)

satisfies (1.1a)-(1.1b). We set the field v'"°(z,y) = — sin(z) sin(y) and include additional terms
on the right-hand sides of (1.1e)-(1.1f) so that our manufactured solution satisfies them.

In Table 1.4 and Table 1.5 we present the numerical results obtained. As in the acoustic
and elastic problems, the experimental orders of convergence of o, 7, u, g and v coincide with
the theoretical results. We also computationally obtain the superconvergence of order k + 2 for

the numerical traces. In Figure 1.4 we graphically show the same results as in the tables.
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k' Ne |lo—oulln eoc |u—wupr eoc |lu—uyly, eoc |v—7,lln eoc

80 1.50e+00 - 8.98e—01 - 7.30e—01 - 6.07e—01 —
306 4.84e—01  1.54  2.56e—01 1.71 8.22e—02 298 1.99e—-01 1.52
1210 1.33e—01 1.92  6.57e—02  2.02 1.04e—02 3.08 6.65e—02 1.63
4824  3.25e—02  2.03 1.62e—02  2.02 1.18e—03 3.13  1.54e—02 2.11
19202  8.26e—03 1.99  4.06e—03  2.00 1.50e—04 299 3.87e—03 2.00

76638  2.10e—03  1.97 1.02¢e—03  1.99 1.93e—05 296 9.98e—04 1.96

80 5.13e—01 — 2.48e—01 — 1.11e—01 — 2.31e—01 —
306 6.67e—02  2.78  2.82e—02 297 6.73e—03 3.82  3.07e—02  2.75
1210  7.50e—03  3.24  3.77e—03  2.99 3.25e—04 450  3.38e—03  3.28

2 4824  9.28e—04  3.01  4.55e—04  3.05 1.85e—05 412  3.85e—04 3.13
19202 1.17e—04  3.00 5.76e—05  3.00 1.13e—06 4.05 4.78e—05 3.03
76638  1.52e—05 2.95 T7.28¢e—06  2.99 7.56e—08 391  6.25e—06 2.93

80 6.77e—02 — 3.43e—02 — 1.07e—02 — 3.76e—02 —
306 6.22e—03  3.26  2.78e—03  3.43 4.54e—04 431 2.83e—03  3.53
3 1210 3.75e—04 417 1.72¢e—04 4.13 1.35e—05 5.22  1.87e—04 4.03

4824  2.18e—05 4.10 1.02e—05  4.06 3.57e—07 5.23  9.96e—06  4.23
19202 1.44e—06  3.94 6.59e—07  3.98 1.21e—08 490 6.38e—07  3.99
76638  9.50e—08  3.93  4.27e—08  3.95 4.05e—10 490  4.15e—08 3.94

Table 1.4: History of convergence of the coupled problem. Elastic region with a mesh of N,
elements.

k' No |lg—gull7, eoc. |lv—wlly, eoc. |[|lv—"ly, eo.c
80 1.60e—01 — 2.41e—-02 — 1.40e—01 —

306 2.10e—02  3.02 4.98¢e—03 2.35 1.39e—-02 3.44

1210 3.69e—03  2.53 9.86e—04 2.36  1.88e—03  2.90

1 4824  8.40e—04 2.14 2.30e—04 2.10  2.16e—04  3.13
19202  2.05e—04 2.04 6.04e—05 1.94 2.83e—05 294
76638 5.17e—05 1.99 1.51le—05 2.00 3.47e—06  3.03
80 3.25e—02 — 6.63e—03 — 2.96e—02 —
306 1.81e—03 431 2.32e—04 5.00 7.76e—04  5.43

9 1210  6.41e—05 4.86 1.19e—05 4.33  2.52e—05  4.99
4824  4.11e—06 3.97 1.88e—06 2.66  5.67e—07  5.49
19202 5.48e—07 2.92 2.54e—07 2.90 1.97e—08  4.86
76638 6.66e—08  3.05 3.00e—08 3.09 8.18e—10  4.60
80 1.82e—03 — 2.45e—-04 — 1.36e—03 —
306 1.05e—04 426 1.13e—05 4.59 2.35e—05  6.05

3 1210  2.35e—06  5.53 6.27e—07 4.21 1.96e—07  6.97

4824  4.69e—08 5.66 4.48e—08 3.81 1.61e—09  6.94
19202  2.64e—09 4.17 2.71e—09 4.06  3.55e—11 5.52
76638 1.46e—10 4.18 1.77e—10 3.94 1.77e—12  4.33

Table 1.5: History of convergence of the coupled problem. Acoustic region with a mesh of N,
elements.

38



Acoustic variables Elastic variables
Degree k =1 Degree k =1
—_ —
o o
= =
8 :\\ )
- }2
10° : : :
10t 102 103 104 10°
N
Degree k =2

— —
: -
&9 =

1072
5 5 107
— —
— =
= M 106!

10'8 L

10—13 10—10
10t 102 103 104 10° 10t 102 103 104 10°
N N

Figure 1.4: Discretization error as a function of the number of elements in the domain for
the coupled acoustic/elastic problem. Acoustic variables are displayed on the first column and
elastic variables on the second column.
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Chapter 2

An Incursion in the Method of

Fundamental Solutions
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2.1 The Method of Fundamental Solutions

The Method of Fundamental Solutions (MFS) is a numerical method employed to solve bound-
ary value problems for linear partial differential equations with a known fundamental solution.
The solution to the problem is approximated as a linear combination of shifted fundamental
solutions. Let us recall that if £ is a linear partial differential operator, then ® is called a
fundamental solution if L& = ¢ in the sense of distributions, where ¢ stands for the Dirac delta
distribution centered at the origin.

Due to the linearity of the operator, it follows that any linear combination of the form

u= ial@wi, (2.1)
i=1

where a; € R and ®,, := &(- —a;) is the Green’s function shifted to the point x;, would satisfy
the PDE
Lu=0 inQ (2.2)

as long as x; ¢ € for all 1 < i < n. Therefore, if B is a linear operator imposing boundary
conditions that guarantee well-posedness, it is possible to approximate the solution to boundary

value problems of the form

Lu=0 1in €, (2.3a)

Bu=g ondQ, (2.3b)

by choosing an ansatz of the form (2.1), and using the boundary condition (2.3b) to determine
the locations x; € ¢ and the coefficients «; that would make the approximation satisfy the
problem (2.3) up to a predetermined tolerance.

The main idea is then to set some source points outside the domain, and force that a linear
combination of those solutions satisfy the boundary condition at specific collocation points.
This can be written as a linear system where the unknowns are the coefficients of the linear
combination. Once the linear system has been solved, the solution and its derivatives can be

evaluated directly at any point within the domain.
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The MFS is a meshfree method that is very easy to implement and, in numerous cases,
the error can reach machine precision. Nevertheless, this kind of method presents an —often
called— “uncertainty principle” [1, 53]: you cannot get both accurate results and good condi-
tioning.

The advent of the method gave rise to two distinct lines of development: the “fixed” one,
in which the coefficients of the linear combination are the only unknowns —sometimes referred
to as the Charge Simulation Method or the Method of Auxiliary Charges— and the “adap-
tive” one, which is based on simultaneously determining the mentioned coefficients and the
coordinates of the source points through a nonlinear optimization problem. Both the adaptive
method and some sophisticated modifications which have been proposed may be useful, but
they directly weaken one of the most attractive features of the MFS: its simplicity.

One of the main challenges associated with the method pertains to the selection of the loca-
tion of the sources. This has been the subject of study of numerous papers, e.g., [1, 11, 41, 42].
In the case of the Laplace and Helmholtz exterior problems with Dirichlet boundary condi-
tions, if the data satisfies the equation (in which case it is called harmonic or metaharmonic,
respectively), then the advice is to place the source points in a small circle near the center
of the complement of the domain [17]. This case is particularly relevant when studying wave
scattering problems. In this setting, the boundary data is assumed to come from an incident
wave that interacts with an obstacle whose boundary is precisely the boundary of the PDE
problem. In this setting, the physics of the problem dictate that the incident wave, providing
the boundary data, must indeed be a solution to the PDE in free space.

On the contrary, when the data does not satisfy the equation, the recommendation is to
place them in a curve with a shape similar to the boundary of the domain, with each source point
situated at a specific distance from the corresponding boundary collocation point [11, 17, 42].
This distance can be changed to achieve more favorable outcomes, see [17, Example 8.1].

In what follows, we present some experiments that will help us to understand both the

method itself and the results it produces.
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e In Experiment I, we will see how to apply the method explicitly and present the results
obtained when solving an exterior Helmholtz boundary value problem with metaharmonic

Dirichlet data, i.e., when the data satisfies the Helmholtz equation.

e In Experiment II, we present the method applied to an exterior acoustic scattering prob-

lem.

We start by introducing some additional notation. Given & = (x,y) € R? and p > 1, let us

consider the usual vector p-norm
1
||l == (2] + [y[") "

(if p = oo, then ||z« := max{|z|,|y|} is the Chebyshev norm) and the closed unit p-ball
around the origin

B, ={x € R?: |lxll, <1}
For p € [1,00), the boundary of these balls can be written as

B, = {(z,y) € R? : 2 = sign(cos 0)]| cos 8>/, y = sign(sin §)| sin |*?,0 < § < 27}.

2.2 Experiment I - Metaharmonic Data

This section is inspired in [17, Example 3]. Given a bounded obstacle Q = B, C R? p €
{10%,10%,10%, 00}, we are interested in solving the following boundary value problem for the

Helmholtz equation

—Au— k*u =0 in R*\Q, (2.4)
e (m/aﬁ + y2>
u = 0 on I' := 09, (2.5)
Hy (k)
Optt — KU = 0 (T_I/Z) when r = ||(z,y)||2 — oo, (2.6)

where k is the wavenumber, Hél) is the Hankel function of the first kind of order zero
HY (k1) = Jo(kr) + iYo(kr),
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Jo and Yj are the Bessel functions of the first and second kind of order zero respectively,
and (2.6) is the Sommerfeld radiation condition, which is needed for the well-posedness of the
exterior problem. Physically, this condition ensures that only outgoing waves in the radial
direction are admissible. The function

Hél) (m/xQ + y2>

HyV ()

Ueyr -—

appearing in the boundary condition (2.5) is in fact a solution to the Helmholtz equation (2.4)
in free space, thus the Dirichlet data is metaharmonic.
Given N € N, we take N different values 0; € [0,27),j € {1,..., N}, and set the collocation

points as
c; = (sign(cos 6;)| cos 0,17, sign(sin 0;)| sin 0;*7), j e {1,...,N}.

Choose the source points from a circumference of radius R € (0,1) centered at the origin:

2m(y — 1
8 = (Reos(u), Rein(yy)), where gy = 020 e (1, ).

In two dimensions, a fundamental solution of the Helmholtz equation satisfying the Som-

merfeld radiation condition (2.6) is

D(r) = SHY (rr),

with r = [|(z, y)||2. Then, for any j € {1,..., N}, the shifted fundamental solution ®,(|-||2) =

O(]| - —s;|2) verifies
—Ad, — Py, =0 in R*\(2,
0, ®,, —1kds, =0 (7"_1/2) when r = [|(z,y)l|2 — oco.

If we compare this with the exterior boundary value problem for Helmholtz (2.4) - (2.6), the
only remaining condition to be satisfied is the boundary condition (2.5). For this purpose, we

ask the linear combination

N
UN = E Oél@sl
=1
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to satisfy the boundary condition at least at the collocation points ¢;, for all j € {1,...,N}.

We can express this through the following square linear system of equations:

(1)
P ([ler —sill2)  @(lfer —s2ll2) -+ P([ler — snll2) o Hy “(lledl2)
HV (k)
O(llez — sifl2)  D(lfez = s2fl2) -+ P(llea —snll2) | | a2 ,

HyY (k] len)s)
O([len — s1lls) ®(lex — sslla) -+ @(len — snl2)) \an 7 ()

Note that there is no guarantee about the invertibility of the matrix. We will solve this
linear system with MATLAB’s \ command, even in the cases when the matrix is singular. To
compute the evaluations of the function H(()l) we use the command BESSELH.

The usual ways of measuring error when applying the MFS in these types of problems are

the normalized root mean square (RMS) error,

1 X

N mzl (Re(teg (€) — un(€m)))?

Erms =

max{Re(tes (€m))} — min{Re(uep(€m))}’

and the normalized maximum error,

Ebd . max{|Re(ue,(en) — un(en))|}
12 max{Re(ues(€n))} — min{Re(uer(€,))}

where {e,,}Ne | C T'is a set of error sampling points such that {e,,}<, N {c; }, = 0. Let us
choose N, =~ 10N. In this experiment, we know the exact solution not only in the boundary
of the obstacle but also in all R?\(), so we can measure the error wherever we want. Thus, we

will also calculate a normalized maximum error

gea . max{|Re(uc(g,) — un(g,))[}
" max{Re(uex(g,))} — min{Re(uea(g,,))}

where g, are some predetermined evaluation points. In this case, we will consider a regular
grid of the square [—8,8]?, with points separated horizontally and vertically by a distance

h = 0.025. The evaluation points g,, are all the points on the grid that fall outside the obstacle
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1 0 1 -1 0 1
X £z

Figure 2.1: Location of collocation (o) and source () points on 2 = Bjg2, with N = 28 and
R = 0.2. On the left: the collocation points are very close to each other at the corners because
of the choice of uniformly distributed ;. On the right: the collocation points obtained with
our routine.

Q. Note that we distinguish the normalized maximum errors by their superscripts: P4 stands

)

for “boundary” and 9, for “square”.
27(j — 1)
N

points would be very close to each other at the corners of the domain (see the left-hand side of

Due to the parametrization, if we take 0; = ,j € {1,...,N}, the collocation
Figure 2.1). In order to distribute the collocation points evenly around I', we have implemented
a MATLAB routine (see the right-hand side of Figure 2.1).

Let us solve the exterior Helmholtz boundary value problem (2.4) - (2.6) numerically by
applying the MFS in sixteen different configurations: taking x = 10, four problems (p €
{10%,10%,10%, 00}) will be computed for four different radii (R € {0.2,0.4,0.6,0.8}).

In Table 2.1, we show the results obtained for N = 28 and x = 10. Notice that as R
grows from 0.2 to 0.8 the results become less and less accurate. Thus, we have confirmed the
recommendation to place the source points on a circumference with small radius. Also, we can
conclude that in this experiment it did not matter how sharp the domain was, since practically
the same results were obtained for all four figures: from Bjg2 to the square B.

In Figure 2.2, we compare in more detail the experiments performed with Bq: for several
values of N, with R = 0.2 on the left and R = 0.8 on the right. The first row of images shows

the error incurred by the MFS as N increased. Note that for R = 0.2 only twenty points were

46



p R Erms Ebd Ex ‘ ‘ p R Erms Ebd B3l

0.2 6.93e—16 2.28¢—15 5.47e—15 0.2 5.45e—16 1.60e—15 5.60e—15
102 0.4 1.93e—13 6.70e—13 1.57e—12 10* 0.4 19le—13 6.67e—13 1.56e—12
0.6 3.61le—08 1.25e—07 2.95e—07 0.6 3.58e—08 1.24e—07 2.93e—07
0.8 7.71le—05 2.67e—04 6.26e—04 0.8 7.65e—05 2.65e—04 6.22e—04
0.2 6.50e—16 1.84e—15 5.63e—15 0.2 5.10e—16 1.60e—15 5.60e—15
106 0.4 19le—13 6.67e—13 1.56e—12 o 0.4 1.9le—13 6.67e—13 1.56e—12
0.6 3.58e—08 1.25e—07 2.93e—07 0.6 3.58e—08 1.25e—07 2.93e—07
0.8 7.65e—05 2.65e—04 6.22¢—04 0.8 7.65e—05 2.65e—04 6.22¢—04

Table 2.1: Results obtained varying the domain and the radius of the circle of sources, with
N = 28 and x = 10.

enough to obtain errors close to 1071%, while for R = 0.8 it only reaches 10~ with sixty points.
In the second row, we can see the absolute error of the real part of the solution when we take
twenty-eight collocation and twenty-eight source points. It is interesting to realize that the
error is accumulated near the midpoints of the domain sides when R = 0.8. This is due the
proximity of the source points to the collocation points in those parts (see Figure 2.3). The
third row presents the condition number of the matrices for the different values of N with which
the experiment was performed. For the smaller radius, the condition number grows extremely
fast as the number of point increases, while for R = 0.8 the number also grows but not as much
as in the other case. Combining the information provided by the plots in the first and third
row, we can clearly observe the aforementioned uncertainty principle. Finally, the fourth row
of Figure 2.2 shows the rank of the matrices in each case, where the dotted line indicates the

full rank matrices.
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Figure 2.2: Results for x = 10 and p = 102. R = 0.2 (left) and R = 0.8 (right).
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Figure 2.3: Zoom to the graph on the right in the second row of Figure 2.2. The source points
are represented by e.

2.3 Experiment II - Acoustic Scattering

Now, let us simulate an acoustic scattering problem using the Method of Fundamental Solutions.

We are interested in the problem

—Au — k*u =0 in R*\Q, (2.7)
u = —er@y) on [ := 09, (2.8)
Ot — 1KU = 0 (r_l/Q) when r = ||(z,y)]||2 — oo, (2.9)

where the incident wave is u"® = e*®@¥) and d is the propagation direction. Taking Q = B,
and d = 27'/2(1, 1), and placing the source points in a circle of radius 0.3 centered at the origin,
we obtain the results shown in Figure 2.4, for K = 10 and N = 524.

Note that the solution makes physical sense, since the wave hits the object and scatters,
leaving a white shadow behind the scatterer. However, we obtain an error F,,s = 1.1e — 03 at

the boundary. So, it is also future work to investigate how this approximation can be improved.
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Figure 2.4: Approximate scattered wave (top) and approximate total wave (bottom).
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Conclusions and Future Work

Let us summarize the main contributions of this work and give a brief description of eventual

future works.

2.4 Conclusions

Upon the results presented in the first chapter of this thesis, we can arrive to the following

conclusions:

e We have proposed and analyzed a coupled HDG scheme for the interaction between
acoustic and elastic waves in the Laplace domain, proving that the scheme has a unique

solution.

e Using a polynomial degree of k in the local spaces, we have showed that the errors in the

unknowns o, u, -y, q and v converge with optimal order k£ + 1.
According to the results presented in the second chapter of this work:

e We have learned about the Method of Fundamental Solutions, showing that it works

incredibly well for problems like Experiment I.

e We have confirmed the advice given in the literature about the location of the source
points for boundary value problems with metaharmonic data. In addition, we were able

to empirically confirm the so-called uncertainty principle for the MFS.
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e We have been aware of how sensitive the method is with respect to the location of source

points, which makes sense considering the number of papers dealing with this topic.

2.5 Future work

From the development of this work, we have been able to find several directions for future work:

e Since we already have the HDG codes for elasticity and acoustics, it remains to implement

the coupled scheme by linking the two programs.

e To study some modifications of the Method of Fundamental Solutions to try to obtain

better approximations for the acoustic scattering problem.

e To develop the coupling of the Method of Fundamental Solutions with the Hybridizable

Discontinuous Galerkin scheme in order to solve the problem in the unbounded domain.
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