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A FULLY-MIXED FINITE ELEMENT
METHOD FOR THE COUPLING
OF THE NAVIER–STOKES AND

DARCY–FORCHHEIMER EQUATIONS

POR

Felipe Octavio Sandoval Soto

Tesis presentada a la Facultad de Ciencias Fı́sicas y Matemáticas de la
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académicos, por cualquier medio o procedimiento,

incluyendo la cita bibliográfica del documento.
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Abstract

In this work we present and analyse a fully-mixed formulation for the nonlinear model

given by the coupling of the Navier–Stokes and Darcy–Forchheimer equations with the

Beavers–Joseph–Saffman condition on the interface. Our approach yields non-Hilbertian

normed spaces and a twofold saddle point structure for the corresponding operator equa-

tion. Furthermore, since the convective term in the Navier–Stokes equation forces the ve-

locity to live in a smaller space than usual, we augment the variational formulation with

suitable Galerkin type terms. The resulting augmented scheme is then written equivalently

as a fixed point equation, so that the well-known Schauder and Banach theorems, combined

with classical results on nonlinear monotone operators, are applied to prove the unique

solvability of the continuous and discrete systems. In particular, given an integer k ≥ 0,

Raviart–Thomas spaces of order k, continuous piecewise polynomials of degree ≤ k + 1

and piecewise polynomials of degree ≤ k are employed in the fluid for approximating the

pseudostress tensor, velocity and vorticity, respectively, whereas Raviart–Thomas spaces of

order k and piecewise polynomials of degree ≤ k for the velocity and pressure, constitute a

feasible choice in the porous medium. A priori error estimates and associated rates of con-

vergence are derived, and several numerical examples illustrating the good performance of

the method are reported.
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Resumen

En este trabajo presentamos y analizamos una formulación completamente mixta para

el modelo no lineal que se obtiene al acoplar las ecuaciones de Navier–Stokes y Darcy–

Forchheimer con una condición de Beavers–Joseph–Saffman en la interfaz. Nuestro en-

foque genera espacios normados no-Hilbert y una estructura de doble punto de silla para

la ecuación del operador correspondiente. Además, dado que el término convectivo en la

ecuación de Navier–Stokes obliga a la velocidad a vivir en un espacio más pequeño de lo

habitual, aumentamos la formulación variacional con adecuados términos tipo Galerkin. El

esquema resultante se escribe equivalentemente como una ecuación de punto fijo, de modo

que los conocidos teoremas de Schauder y Banach, combinados con resultados clásicos de

operadores monótonos no lineales, se utilizan para demostrar la unicidad de los problemas

continuo y discreto. En particular, dado un entero k ≥ 0, espacios de Raviart–Thomas de

orden k, polinomios continuos a trozos de grado≤ k+ 1 y polinomios a trozos de grado≤ k

se emplean en el fluido para aproximar el tensor de pseudoesfuerzo, la velocidad y la vorti-

cidad, respectivamente, mientras que espacios de Raviart–Thomas de orden k y polinomios

a trozos de grado ≤ k para la velocidad y la presión, constituyen una opción viable en el

medio poroso. Se derivan las estimaciones de error a priori y las razones de convergencia

asociadas, y se proporcionan varios ejemplos numéricos que ilustran el buen desempeño del

método.

xiii



CHAPTER 1

Introduction

The derivation of suitable mathematical and numerical models for the fluid flow between

porous media and free-flow zones has been widely studied during the last decades, mostly

due to its relevance in the fields of natural sciences, biology, and engineering branches. In

particular, physical phenomena such as vuggy porous media appearing in petroleum ex-

traction, groundwater system in karst aquifers, industrial filtrations, and blood motion in

tumors and microvessels can be modelled by the Navier–Stokes/Darcy (or Stokes/Darcy)

model (see, e.g., [5, 18, 34, 36]), which consists in a set of partial differential equations where

the Navier–Stokes (or Stokes) problem is coupled with the Darcy model through a set of

coupling equations acting on a common interface, which are given by mass conservation,

balance of normal forces, and the so called Beavers–Joseph–Saffman condition. However, in

applications such as the internal ventilation of a motorcycle helmet and reservoir wellbore

(see, e.g., [9, 13, 3]), when the fluid velocity is higher and the porosity is nonuniform, which

holds when the kinematic forces dominates over viscous forces, a better way to study this

phenomenom is modifying the Darcy model in the porous medium by adding the Forch-
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Chapter 1. Introduction

heimer term, which represents inertial effects, thus obtaining the Darcy–Forchheimer model

(see [37, 35]).

In this context, and up to the authors’ knowledge, one of the first works in analysing

the Navier–Stokes/Darcy–Forchheimer coupled problem is [3]. In there, the authors study

the coupling of a 2D reservoir model with a 1.5D vertical wellbore model, both written in

axisymmetric form. The physical problems are described by the Darcy–Forchheimer and

the compressible Navier–Stokes equations, respectively, together with an exhaustive energy

equation. Later on, motivated by the study of the internal ventilation of a motorcycle hel-

met, a penalization approach, for both 2D and 3D domains, was introduced and analysed

in [13]. In particular, the authors consider the velocity and pressure in the whole domain as

the main unknowns of the system, and the corresponding Galerkin approximation employs

piecewise quadratic and linear elements for the velocity and pressure, respectively. More re-

cently, in [10] a primal-mixed formulation of the Navier–Stokes/Darcy–Forchheimer system

is analyzed by means of a fixed-point argument and clasical results on nonlinear monotone

operators (see [38, 39]). The corresponding mixed finite element scheme employs Bernardi–

Raugel elements for the velocity in the free fluid region, Raviart–Thomas elements of lowest

order for the filtration velocity in the porous media, and piecewise constant elements for the

pressures and the Lagrange multiplier. Meanwhile, a fully-mixed finite element method is

developed and analyzed for the coupling of the Stokes and Darcy–Forchheimer problems

in [2]. This new approach yields non-Hilbertian normed spaces and a twofold saddle point

structure for the corresponding operator equation, whose continuous and discrete solvabil-

ities are analyzed by means of a suitable abstract theory developed for this purpose.

According to the above bibliographic discussion, the purpose of the present thesis is to

extend the results obtained in [10] and [2] to the coupling of the Navier–Stokes and Darcy–

Forchheimer problems with constant density and viscosity, but unlike [10], by considering

now dual-mixed formulations in both domains. We introduce the pseudostress tensor as

in [7] and subsequently eliminate the pressure unknown using the incompressibility condi-

tion. In addition, and in order to impose the symmetry of the pseudostress tensor, similarly

to [22, 2], the vorticity is introduced as an additional unknown. The transmission conditions

2



Chapter 1. Introduction

consisting of mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman

law are imposed weakly, which yields the incorporation of additional Lagrange multipliers:

the traces of the porous media pressure and the fluid velocity on the interface. Further-

more, the difficulty that the fluid velocity lives in H1 instead of L2 as usual, is resolved as

in [7] by augmenting the variational formulation with residuals arising from the constitu-

tive and equilibrium equations for the fluid flow, and the formula for the vorticity tensor.

The resulting augmented variational system of equations is then ordered so that it shows

a twofold saddle point structure. The well-posedness and uniqueness of both the continu-

ous and discrete formulation is proved employing a fixed point argument and an abstract

theory for twofold saddle point problems (see [20, 22, 2]). In particular, for the continuous

formulation, and under a smallness data assumption, we prove existence and uniqueness of

solution by means of a fixed-point strategy where the Schauder (for existence) and Banach

(for uniqueness) fixed-point theorems are employed. In addition, an a priori error analysis

is performed, and while it is possible to prove that the finite element method is convergent

with a sub-optimal rate, the numerical results suggest that the method is optimally conver-

gent provided the exact solutions are smooth enough. In particular, given an integer k ≥ 0,

we find that the interior Navier–Stokes variables: pseudostress tensor, velocity and vorticity,

can be approximated using Raviart–Thomas spaces of order k, continuous piecewise poly-

nomials of degree ≤ k + 1 and piecewise polynomials of degree ≤ k, respectively, while the

interior Darcy–Forchheimer variables: velocity and pressure, can be approximated using

Raviart–Thomas spaces of order k and piecewise polynomials of degree ≤ k.

1.1 Outline

The rest of this thesis is organized as follows. The remainder of this chapter describes stan-

dard notations and functional spaces to be employed along the thesis. In Chapter 2 we

introduce the modelling equations for the free-flow zone, the porous medium and the in-

terface, to then in Chapter 3, derive an augmented fully-mixed variational formulation that

will be written as a nonlinear operator equation with a twofold saddle point structure. In

3



Chapter 1. Introduction

Chapter 4 we develop an abstract theory for this type of problem, which includes the proper

hypotheses on the spaces and involved operators to be imposed in order to guarantee the

well-posedness of the continuous problem in rather general Banach spaces. Then, in Chap-

ter 5 we use a fixed-point strategy to establish that our variational formulation is well posed.

Next, in Chapter 6 we define the Galerkin scheme and derive general hypotheses on the dis-

crete subspaces ensuring that, on the one hand, the discrete scheme becomes well posed, and

on the other hand, it satisfies a Céa’s estimate. A specific choice of finite element subspaces

satisfying these assumptions as well as a sub-optimal rate of convergence are introduced in

Chapter 7. Then, several numerical examples illustrating the performance of the method,

confirming the theoretical sub-optimal order of convergence, but at the same time suggest-

ing an optimal rate of convergence, are reported in Chapter 8. Finally, in Chapter 9 we name

some conclusions and proposals for future work.

1.2 Preliminaries

Let O ⊆ Rn, n ∈ {2, 3}, denote a domain with Lipschitz boundary Γ. For s ≥ 0 and p ∈

[1,+∞] we denote by Lp(O) and Ws,p(O) the usual Lebesgue and Sobolev spaces endowed

with the norms ‖ · ‖Lp(O) and ‖ · ‖s,p;O, respectively. Note that W0,p(O) = Lp(O). If p = 2,

we write Hs(O) in place of Ws,2(O), and denote the corresponding Lebesgue and Sobolev

norms by ‖ ·‖0,O and ‖ ·‖s,O, respectively, and the seminorm by | · |s,O. In addition, we denote

by W1/q,p(Γ) the trace space of W1,p(O), and let W−1/q,q(Γ) be the dual space of W1/q,p(Γ)

endowed with the norms ‖·‖1/q,p;Γ and ‖·‖−1/q,q;Γ, respectively, with p, q ∈ (1,+∞) satisfying

1/p + 1/q = 1. By M and M we will denote the corresponding vectorial and tensorial

counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts, will

stand for the natural norm of either an element or an operator in any product functional

space. In turn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient,

divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

and v ⊗w := (viwj)i,j=1,n.

4



Chapter 1. Introduction

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let divτ be the

divergence operator div acting along the rows of τ , and define the transpose, the trace, the

tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will

denote the Euclidean norm in Rn or Rn×n. Additionally, we recall that

H(div;O) :=
{
τ ∈ L2(O) : divτ ∈ L2(O)

}
,

equipped with the usual norm

‖τ‖2
div;O := ‖τ‖2

0,O + ‖divτ‖2
0,O,

is a standard Hilbert space in the realm of mixed problems. On the other hand, the following

symbol for the L2(Γ) inner product

〈ξ, λ〉Γ :=

∫
Γ

ξ λ ∀ ξ, λ ∈ L2(Γ),

will also be employed for their respective extension as the duality parity between W−1/q,q(Γ)

and W1/q,p(Γ). Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes the

space of polynomial functions on S of degree≤ k. In addition, and coherently with previous

notations, we set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Finally, we end this chapter

by mentioning that, throughout the rest of the thesis, we employ 0 to denote a generic null

vector (or tensor), and use C and c, with or without subscripts, bars, tildes or hats, to denote

generic constants independent of the discretization parameters, which may take different

values at different places.
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CHAPTER 2

The model problem

In order to describe the geometry under consideration we let ΩS and ΩD be bounded and

simply connected open polyhedral domains in Rn, n = {2, 3}, such that ∂ΩS ∩ ∂ΩD = Σ 6= ∅

and ΩS∩ΩD = ∅. Then, we let ΓS := ∂ΩS \Σ, ΓD := ∂ΩD \Σ, and denote by n the unit normal

vector on the boundaries, which is chosen pointing outward from Ω := ΩS ∪ Σ ∪ ΩD and

ΩS (and hence inward to ΩD when seen on Σ). On Σ we also consider a set of unit tangent

vectors, which is given by t = t1 when n = 2 (see Figure 2.1 below), and by {t1, t2} when

n = 3. The problem we are interested in consists of the movement of an incompressible

viscous fluid occupying ΩS which flows towards and from a porous medium ΩD through

Σ, where ΩD is saturated with the same fluid. The mathematical model is defined by two

separate groups of equations and by a set of coupling terms.

6



Chapter 2. The model problem

2.1 Navier–Stokes equations

In the free fluid domain ΩS, the governing equations are those of the Navier–Stokes prob-

lem with constant density and viscosity, which are written in the following nonstandard

pseudostress-velocity-pressure formulation:

σS = −pSI + 2µe(uS)− ρ(uS ⊗ uS) in ΩS, div uS = 0 in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,

(2.1)

where σS is the nonlinear pseudostress tensor, uS is the fluid velocity and pS is the pressure.

In addition, e(uS) :=
1

2

{
∇uS + (∇uS)t

}
stands for the strain tensor of small deformations, µ

is the viscosity of the fluid, ρ is the density, and fS ∈ L2(ΩS) is a given external force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer model

Now, in order to derive our fully-mixed formulation, we first observe, owing to the fact

that tr e(uS) = div uS, that the first two equations in (2.1) are equivalent to

σS = −pSI + 2µe(uS)− ρ(uS ⊗ uS), pS = − 1

n
tr (σS + ρ(uS ⊗ uS)) in ΩS, (2.2)

and hence, eliminating the pressure pS (which anyway can be approximated later on by

the post-processed formula suggested by the second equation of (2.2)), the Navier–Stokes

problem (2.1) can be rewritten as

σd
S = 2µe(uS)− ρ(uS ⊗ uS)d in ΩS, −divσS = fS in ΩS, uS = 0 on ΓS. (2.3)

7



Chapter 2. The model problem

Next, in order to impose weakly the symmetry of the pseudostress tensor and employ the

integration by parts formula, we introduce the additional unknown

γS :=
1

2

{
∇uS − (∇uS)t

}
in ΩS, (2.4)

which represents the vorticity. In this way, instead of (2.3), in the sequel we consider the set

of equations with unknowns σS, γS and uS, given by

1

2µ
σd

S = ∇uS − γS −
ρ

2µ
(uS ⊗ uS)d in ΩS, −divσS = fS in ΩS, uS = 0 on ΓS,

(2.5)

where σS is a symmetric tensor in ΩS.

2.2 Darcy–Forchheimer equations

In the porous medium ΩD we consider a nonlinear version of the Darcy problem to approx-

imate the velocity uD and the pressure pD, which is considered when the fluid velocity is

higher and the porosity is nonuniform. More precisely, we consider the Darcy–Forchheimer

equations [37, 35]:

µ

ρ
K−1uD +

F

ρ
|uD|uD +∇pD = fD in ΩD, div uD = gD in ΩD, uD · n = 0 on ΓD,

(2.6)

where F represents the Forchheimer number of the porous medium, and K ∈ L∞(ΩD) is

a symmetric tensor in ΩD representing the intrinsic permeability κ of the porous medium

divided by the viscosity µ of the fluid. Throughout the thesis we assume that there exists

CK > 0 such that

w ·K−1(x)w ≥ CK|w|2, (2.7)

for almost all x ∈ ΩD, and for all w ∈ Rn. In turn, as will be explained below, fD and

gD are given functions in L3/2(ΩD) and L2(ΩD), respectively. In addition, according to the

compressibility conditions, the boundary conditions on uD and uS, and the principle of mass

8



Chapter 2. The model problem

conservation (cf. (2.8) below), gD must satisfy the compatibility condition:

∫
ΩD

gD = 0.

2.3 Transmission conditions

The transmission conditions that couple the Navier–Stokes and the Darcy–Forchheimer mo-

dels through the interface Σ are given by

uS · n = uD · n on Σ and σSn +
n−1∑
i=1

ω−1
i (uS · ti)ti = −pDn on Σ, (2.8)

where {ω1, ..., ωn−1} is a set of positive frictional constants that can be determined experi-

mentally. The first equation in (2.8) corresponds to mass conservation on Σ, whereas the

second one establishes the balance of the normal forces and a Beavers–Joseph–Saffman law.
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CHAPTER 3

The continuous formulation

In this chapter we proceed analogously to [10, Section 2] (see also [2, 11, 23, 22]) and derive

a weak formulation of the coupled problem given by (2.5), (2.6), and (2.8).

3.1 Preliminaries

We first introduce further notations and definitions. In what follows, given ? ∈ {S,D}, we

set

(p, q)? :=

∫
Ω?

p q, (u,v)? :=

∫
Ω?

u · v and (σ, τ )? :=

∫
Ω?

σ : τ .

In addition, in the sequel we will employ the following Banach space,

H3(div ; ΩD) :=
{

vD ∈ L3(ΩD) : div vD ∈ L2(ΩD)
}
,

endowed with the norm

‖vD‖H3(div ;ΩD) :=
(
‖vD‖3

L3(ΩD) + ‖div vD‖3
0,ΩD

)1/3

10



Chapter 3. The continuous formulation

and the following subspaces of L2(ΩS), H1(ΩS) and H3(div ; ΩD), respectively

L2
skew(ΩS) :=

{
ηS ∈ L2(ΩS) : ηt

S = −ηS

}
,

H1
ΓS

(ΩS) :=
{

vS ∈ H1(ΩS) : vS = 0 on ΓS

}
,

H3
ΓD

(div ; ΩD) :=
{

vD ∈ H3(div ; ΩD) : vD · n = 0 on ΓD

}
.

Notice that H3(div ; ΩD) = H(div ; ΩD)∩L3(ΩD), which guarantees that vD ·n is well defined

for vD ∈ H3
ΓD

(div ; ΩD) (see [10, Section 2.2] for details). In addition, analogously to [22] (see

also [11]) we need to introduce the space of traces H
1/2
00 (Σ) :=

[
H

1/2
00 (Σ)

]n
, where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1

ΓS
(ΩS)

}
.

Observe that, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ

0 on ΓS

∀ψ ∈ H1/2(Σ),

we have that

H
1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

which is endowed with the norm ‖ψ‖1/2,00;Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. The dual space of H

1/2
00 (Σ) is

denoted by H
−1/2
00 (Σ).

3.2 The augmented fully-mixed variational formulation

We now proceed with the derivation of our augmented fully-mixed variational formula-

tion for the Navier–Stokes/Darcy–Forchheimer coupled problem. To this end, we begin by

introducing two additional unknowns on the coupling boundary

ϕ := −uS|Σ ∈ H
1/2
00 (Σ), λ := pD|Σ ∈W1/3,3/2(Σ).

11



Chapter 3. The continuous formulation

Then, similarly to [24, 22] and [10], we test the first equations of (2.5) and (2.6) with arbitrary

τ S ∈ H(div; ΩS) and vD ∈ H3
ΓD

(div ; ΩD), respectively, integrate by parts, utilize the fact that

σd
S : τ S = σd

S : τ d
S, and impose the remaining equations weakly, as well as the symmetry

of σS and the transmission conditions (2.8) to obtain the variational problem: Find σS ∈

H(div; ΩS),γS ∈ L2
skew(ΩS),ϕ ∈ H

1/2
00 (Σ),uD ∈ H3

ΓD
(div ; ΩD), pD ∈ L2(ΩD), λ ∈ W1/3,3/2(Σ)

and uS in a suitable space (to be specified below), such that

1

2µ
(σd

S, τ
d
S)S + (uS,divτ S)S + 〈τ Sn,ϕ〉Σ + (γS, τ S)S +

ρ

2µ
((uS ⊗ uS)d, τ S)S = 0,

µ

ρ
(K−1uD,vD)D +

F

ρ
(|uD|uD,vD)D − (pD, div vD)D − 〈vD · n, λ〉Σ = (fD,vD)D,

−(divσS,vS)S = (fS,vS)S,

(qD, div uD)D = (gD, qD)D,

(σS,ηS)S = 0,

−〈ϕ · n, ξ〉Σ − 〈uD · n, ξ〉Σ = 0,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ · n, λ〉Σ = 0,

(3.1)

for all τ S ∈ H(div; ΩS),ηS ∈ L2
skew(ΩS),ψ ∈ H

1/2
00 (Σ),vD ∈ H3

ΓD
(div ; ΩD), qD ∈ L2(ΩD), ξ ∈

W1/3,3/2(Σ) and vS ∈ L2(ΩS), where

〈ϕ,ψ〉t,Σ :=
n−1∑
i=1

ω−1
i 〈ϕ · ti,ψ · ti〉Σ .

Notice here that the term 〈ψ · n, ξ〉Σ is well-defined for all ψ ∈ H
1/2
00 (Σ) and for all ξ ∈

W1/3,3/2(Σ) (see [2, Lemma 2.2] for details). Notice also that the fifth term in the first equation

of (3.1) requires uS to live in a smaller space than L2(ΩS). In fact, by applying the Cauchy–

Schwarz and Hölder inequalities and then the continuous injection ic of H1(ΩS) into L4(ΩS)

(see, e.g., [1, Theorem 6.3]), we find that there holds

∣∣((uS ⊗wS)d, τ S)S

∣∣ ≤ ‖uS‖L4(ΩS)‖wS‖L4(ΩS)‖τ S‖0,ΩS
≤ ‖ic‖2‖uS‖1,ΩS

‖wS‖1,ΩS
‖τ S‖div;ΩS

,

(3.2)
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Chapter 3. The continuous formulation

for all uS,wS ∈ H1(ΩS) and τ S ∈ H(div; ΩS). According to this, we propose to look for the

unknown uS in H1
ΓS

(ΩS) and to restrict the set of corresponding test functions vS to the same

space.

Next, analogously to [22] (see also [11]), it is not difficult to see that the system (3.1) is not

uniquely solvable since, given any solution (σS,γS,uS,ϕ,uD, pD, λ) in the indicated spaces,

and given any constant c ∈ R, the vector defined by (σS− cI,γS,uS,ϕ,uD, pD + c, λ+ c) also

becomes a solution. As a consequence of the above, from now on we require the Darcy–

Forchheimer pressure pD to be in L2
0(ΩD), where

L2
0(ΩD) :=

{
qD ∈ L2(ΩD) : (qD, 1)D = 0

}
.

In turn, due to the decomposition L2(ΩD) = L2
0(ΩD)⊕R, the boundary conditions uS = 0 on

ΓS and uD ·n = 0 on ΓD, the first transmission condition in (2.8), and the fact that (gD, 1)D = 0,

guarantee that the fourth equation of (3.1) is equivalent to requiring it for all qD ∈ L2
0(ΩD).

On the other hand, for convenience of the subsequent analysis, we consider the decom-

position (see, for instance, [6, 19])

H(div; ΩS) = H0(div; ΩS)⊕ RI,

where

H0(div; ΩS) :=
{
τ ∈ H(div; ΩS) : (tr τ , 1)S = 0

}
and redefine the pseudostress tensor as σS := σS + `I, with the new unknowns σS ∈

H0(div; ΩS) and ` ∈ R. In this way the first and the seventh equations of (3.1) are rewritten,

equivalently, as

1

2µ
(σd

S, τ
d
S)S + (uS,divτ S)S + 〈τ Sn,ϕ〉Σ + (γS, τ S)S +

ρ

2µ
((uS ⊗ uS)d, τ S)S = 0,

 〈ϕ · n, 1〉Σ = 0,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ · n, λ〉Σ + ` 〈ψ · n, 1〉Σ = 0,

(3.3)

13



Chapter 3. The continuous formulation

for all τ S ∈ H0(div; ΩS),  ∈ R and ψ ∈ H
1/2
00 (Σ), respectively. Finally, we augment the

resulting system through the incorporation of the following redundant Galerkin-type terms:

κ1(divσS,divτ S)S = −κ1(fS,divτ S)S ∀ τ S ∈ H0(div; ΩS),

κ2

(
e(uS)− ρ

2µ
(uS ⊗ uS)d − 1

2µ
σd

S, e(vS)

)
S

= 0 ∀vS ∈ H1
ΓS

(ΩS),

κ3

(
γS −

1

2

{
∇uS − (∇uS)t

}
,ηS

)
S

= 0 ∀ηS ∈ L2
skew(ΩS),

(3.4)

where κ1, κ2 and κ3 are positive parameters to be specified later. Notice that the foregoing

terms are nothing but consistent expressions, arising from the equilibrium and constitutive

equations, and the definition of the vorticity in terms of the velocity gradient (cf. (2.4)).

It is easy to see that each solution of the original system is also a solution of the resulting

augmented one, and hence by solving the latter we find all the solutions of the former.

Now, it is clear that there are many different ways of ordering the augmented mixed

variational formulation described above, but for the sake of the subsequent analysis, we

proceed as in [25] (see also [22, 11]), and adopt one leading to a doubly-mixed structure. For

this purpose, we group the spaces, unknowns, and test functions as follows:

X1 := H0(div; ΩS)×H1
ΓS

(ΩS)× L2
skew(ΩS), X2 := H3

ΓD
(div ; ΩD),

X := X1 ×X2, Y := H
1/2
00 (Σ)×W1/3,3/2(Σ),

H := X×Y and Q := L2
0(ΩD)× R,

σ := (σS,uS,γS) ∈ X1, τ := (τ S,vS,ηS) ∈ X1,

t := (σ,uD) ∈ X, ϕ := (ϕ, λ) ∈ Y, p = (pD, `) ∈ Q,

r := (τ ,vD) ∈ X, ψ := (ψ, ξ) ∈ Y, q = (qD, ) ∈ Q,

14



Chapter 3. The continuous formulation

where X1, X, Y, H and Q are respectively endowed with the norms

‖τ‖X1 := ‖τ S‖div;ΩS
+ ‖vS‖1,ΩS

+ ‖ηS‖0,ΩS
,

‖r‖X := ‖τ‖X1 + ‖vD‖H3(div ;ΩD),

‖ψ‖Y := ‖ψ‖1/2,00;Σ + ‖ξ‖1/3,3/2;Σ,

‖(r,ψ)‖H := ‖r‖X + ‖ψ‖Y,

‖q‖Q := ‖qD‖0,ΩD
+ ||.

Hence, the augmented fully-mixed variational formulation for the system (3.1), (3.3) and

(3.4) reads: Find ((t,ϕ),p) ∈ H×Q such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀ (r,ψ) ∈ H,

[B(t,ϕ),q] = [G,q] ∀q ∈ Q,
(3.5)

where, given wS ∈ H1
ΓS

(ΩS), the operator A(wS) : H→ H′ is defined by

[A(wS)(t,ϕ), (r,ψ)] := [a(wS)(t), r] + [b(r),ϕ] + [b(t),ψ]− [c(ϕ),ψ], (3.6)

with the operator a(wS) : X→ X′ given by

[a(wS)(t), r] := [AS(σ), τ ] + [BS(wS)(σ), τ ] + [AD(uD),vD], (3.7)

with

[AS(σ), τ ] :=
1

2µ
(σd

S, τ
d
S)S + κ1(divσS,divτ S)S + (uS,divτ S)S − (divσS,vS)S

+ (γS, τ S)S − (σS,ηS)S + κ2

(
e(uS)− 1

2µ
σd

S, e(vS)

)
S

+ κ3

(
γS −

1

2
(∇uS − (∇uS)t),ηS

)
S

,

[BS(wS)(σ), τ ] :=
ρ

2µ

(
(wS ⊗ uS)d, τ S − κ2e(vS)

)
S
,

[AD(uD),vD] :=
µ

ρ
(K−1uD,vD)D +

F

ρ
(|uD|uD,vD)D,

(3.8)
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Chapter 3. The continuous formulation

whereas the operators b : X→ Y′ and c : Y → Y′ are given, respectively, by

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD · n, ξ〉Σ , (3.9)

[c(ϕ),ψ] := 〈ϕ,ψ〉t,Σ + 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ , (3.10)

and the operator B : H→ Q′ is defined by

[B(r,ψ),q] := −(qD, div vD)D +  〈ψ · n, 1〉Σ . (3.11)

In turn, the functionals F and G are set as

[F, (r,ψ)] := −κ1(fS,divτ S)S + (fS,vS)S + (fD,vD)D and [G,q] := −(gD, qD)D. (3.12)

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding opera-

tors. In addition, we let b′ : Y → X′ and B′ : Q→ H′ be the adjoint of b and B, respectively,

which satisfy [b′(ψ), (r)] = [b(r),ψ] and [B′(q), (r,ψ)] = [B(r,ψ),q] for all r ∈ X,ψ ∈ Y

and q ∈ Q. Then, it is clear that (3.5) can be written equivalently as


a(uS) b′

b −c
B′

B O


 (t,ϕ)

p

 =

 F

G

 ,

from which the twofold saddle point structure is evident (see also Table 3.1).
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σ
S

u
S

γ
S

u
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(ϕ
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)
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iv
τ
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+
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iv
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S ,d
iv
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+
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S ⊗
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S

−
κ
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(σ
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S

κ
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S ),e
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S ))

S

−
(d

iv
σ
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S
−
κ

2
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S ⊗
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S )

d,e
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S ))
S

η
S

−
(σ

S ,η
S )

S
−
κ

32
(∇

u
S −

(∇
u

S )
t,η

S )
S

κ
3 (γ

S ,η
S )

S

v
D

µρ
(K
−

1u
D
,v

D
)
D

−
〈v

D
·n
,λ〉

Σ
−

(p
D
,d

iv
v

D
)
D

+
Fρ

(|u
D |u

D
,v

D
)
D

−
〈ϕ
,ψ
〉
t,Σ

(ψ
,ξ

)
〈σ

S n
,ψ
〉
Σ

−
〈u

D
·n
,ξ〉

Σ
+
〈ψ
·n
,λ〉

Σ
`〈ψ
·n
,1〉

Σ

−
〈ϕ
·n
,ξ〉

Σ

(q
D
,)

−
(q

D
,d

iv
u

D
)
D

〈ϕ
·n
,1〉

Σ

Table 3.1: Twofold saddle point structure.
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CHAPTER 4

An abstract theory for twofold saddle point

problems

In this chapter we develop and analyze an abstract theory motivated by the twofold saddle

point problem (3.5). To this end, a modification of what was done in [2] will be employed

(which is already a modification of what was done in [20] and [32]). First we introduce some

definitions that will be utilized next. Let X and Y be reflexive Banach spaces. Then, we say

that a nonlinear operator T : X → Y is bounded if T (S) is bounded for each bounded set

S ⊆ X . In addition, we say that a nonlinear operator T : X → X ′ is of type M if un ⇀ u,

Tun ⇀ f and lim sup [Tun, un] ≤ f(u) imply Tu = f . In turn, we say that T is coercive if

[Tu, u]

‖u‖
→ ∞ as ‖u‖ → ∞.

Now, let X1, X2, Y,Q be separable and reflexive Banach spaces, set X := X1 ×X2 and H :=

X×Y , and let X ′1, X ′2, Y ′, Q′, X ′ := X ′1×X ′2, and H ′ := X ′×Y ′, be their respective duals. Let

a : X → X ′ be a nonlinear operator and b : X → Y ′, c : Y → Y ′, and B : H → Q′ be linear
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Chapter 4. An abstract theory for twofold saddle point problems

bounded operators. We also let b′ : Y → X ′ and B′ : Q→ H ′ be the corresponding adjoints,

and define the nonlinear operator A : H → H ′ as:

A(r,ψ) :=

 a b′

b −c

 r

ψ

 ∈ H ′ ∀ (r,ψ) ∈ H.

Then, we are interested in the following nonlinear variational problem: Given (F,G) ∈ H ′×

Q′, find ((t,ϕ),p) ∈ H ×Q such that

 A B′

B O

 (t,ϕ)

p

 =

 F

G

 ,

or, equivalently, such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ H,

[B(t,ϕ),q] = [G,q] ∀q ∈ Q.
(4.1)

In what follows we proceed as in [2, 20, 22] to derive sufficient conditions under which (4.1)

is well-posed. We first let V be the kernel of B, that is

V :=
{

(r,ψ) ∈ H : [B(r,ψ),q] = 0 ∀q ∈ Q
}
,

and assume that:

(B0) H is uniformly convex.

(B1) B : H → Q′ is surjective, which means that there exists β > 0 such that

sup
(r,ψ)∈H
(r,ψ)6=0

[B(r,ψ),q]

‖(r,ψ)‖H
≥ β ‖q‖Q ∀q ∈ Q.

Then, given G ∈ Q′ there exists a unique (tG,ϕG) ∈ H such that (see [32, Lemma A.1] for
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details):

B(tG,ϕG) = G and ‖(tG,ϕG)‖H = ‖[tG,ϕG]‖H/V ≤
1

β
‖G‖Q′ , (4.2)

where [tG,ϕG] :=
{

(r,ψ) ∈ H : (tG−r,ϕG−ψ) ∈ V
}

is the equivalence class in the quotient

spaceH/V . Under the previous assumptions, we can show the following preliminary result.

Lemma 4.1 Assume that hypotheses (B0) and (B1) hold. Then, the following problems are equiva-

lent:

(a) Find ((t,ϕ),p) ∈ H ×Q such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ H. (4.3)

(b) Find (t,ϕ) ∈ H such that

[A(t,ϕ), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ V. (4.4)

More precisely, if (t,ϕ) ∈ H is solution of (4.4), we can define p ∈ Q as the unique solution of the

following problem: Find p ∈ Q such that

[B′(p), (r,ψ)] = [F − A(t,ϕ), (r,ψ)] ∀ (r,ψ) ∈ H. (4.5)

Then ((t,ϕ),p) is solution of (4.3). Conversely, if ((t,ϕ),p) ∈ H × Q is a solution of (4.3), then

(t,ϕ) is solution of (4.4) and p is solution of (4.5).

Proof. First, let (t,ϕ) ∈ H solution of (4.4) and notice that (4.5) has a unique solution. In

fact, since (t,ϕ) is solution of (4.4), then F − A(t,ϕ) ∈ ◦V :=
{
G ∈ H ′ : G(r,ψ) =

0 ∀ (r,ψ) ∈ V
}

. Hence, since assumption (B1) also guarantees that the adjoint operator B′

is an isomorphism from Q into ◦V , we deduce that there exists a unique p ∈ Q solution of

(4.5) satisfying

‖p‖Q ≤
1

β
‖B′(p)‖H′ =

1

β
‖F − A(t,ϕ)‖H′ , (4.6)

and therefore ((t,ϕ),p) is solution of (4.3). The second assertion is evident. �

Next, for the subsequent analysis, we let X̃ and Ỹ subspaces of X and Y , respectively,
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such that V := X̃ × Ỹ . In addition, since F is linear we are able to define two functionals, F1

and F2, such that [F, (r,ψ)] = [F1, r] + [F2,ψ]. In this way, we can state the following lemma.

Lemma 4.2 Assume that hypotheses (B0) and (B1) hold, and let (tG,ϕG) ∈ H satisfying (4.2).

Then, problem (4.1) is equivalent to: Find (t0,ϕ0) ∈ V such that

[A(t0 + tG,ϕ0 +ϕG), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ V, (4.7)

or equivalently, such that

[a(t0 + tG), r] + [b′(ϕ0 +ϕG), r] = [F1, r] ∀ r ∈ X̃,

[b(t0 + tG),ψ]− [c(ϕ0 +ϕG),ψ] = [F2,ψ] ∀ψ ∈ Ỹ .
(4.8)

Moreover, the problem (4.1) has a unique solution if and only if the problem (4.7) has a unique

solution.

Proof. The first assertion is evident. On the other hand, let (t0,ϕ0) ∈ V be the solution of

(4.7). Then we solve the problem (4.5) with t = t0 + tG and ϕ = ϕ0 + ϕG. Hence, if p is

the unique solution of (4.5), it follows that ((t0 + tG,ϕ0 +ϕG),p) is a solution of (4.1). Now,

for the uniqueness of solution of (4.7), we set ((t,ϕ),p) as the unique solution of (4.1), and

define (t0,ϕ0) := (t,ϕ)− (tG,ϕG) with (tG,ϕG) ∈ H satisfying (4.2). The uniform convexity

of H insures that (t0,ϕ0) is a unique solution of (4.7). �

According to the previous analysis, we focus now on analyzing the solvability of (4.8).

To that end, let us first assume the following assumptions:

(A0) X1, X2 and Y are uniformly convex.

(A1) there exists constant γ > 0 and p1, p2 ≥ 2, such that

‖a(t)− a(r)‖X′ ≤ γ

2∑
j=1

{
‖tj − rj‖Xj

+ ‖tj − rj‖Xj

(
‖tj‖Xj

+ ‖rj‖Xj

)pj−2
}
,

for all t = (t1, t2), r = (r1, r2) ∈ X .
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(A2) for each s ∈ X , the operator a(· + s) : X̃ → X̃ ′ is strictly monotone in the sense that

there exist α > 0 and p1, p2 ≥ 2, such that

[a(t + s)− a(r + s), t− r] ≥ α
{
‖t1 − r1‖p1

X1
+ ‖t2 − r2‖p2

X2

}
,

for all t = (t1, t2), r = (r1, r2) ∈ X̃ .

(A3) there exists β1 > 0 such that

sup
r∈X̃
r6=0

[b(r),ψ]

‖r‖X
≥ β1 ‖ψ‖Y ∀ψ ∈ Ỹ .

Notice that hypothesis (A0) implies (B0). Then, we can state the following preliminary

lemma.

Lemma 4.3 Assume that hypotheses (A1)− (A3) hold. Then, given ψ ∈ Ỹ and (tG,ϕG) ∈ H

satisfying (4.2) there exists a unique t0(ψ) ∈ X̃ , such that

[a(t0(ψ) + tG), r] = [F1 − b′(ψ +ϕG), r] ∀ r ∈ X̃. (4.9)

Moreover, there exists C1 > 0, depending only on α, β, γ, p1, p2 and ‖b′‖, such that

‖t0(ψ)‖X ≤ C1 max
i∈{1,2}

{(
‖ψ‖Y + ‖F1‖X′ + ‖G‖Q′ + ‖G‖p1−1

Q′ + ‖G‖p2−1
Q′ + ‖a(0)‖X′

)1/(pi−1)
}
.

(4.10)

In addition, given ψ1, ψ2 ∈ Ỹ for which t0(ψ1) and t0(ψ2)) satisfy (4.9), there exists C2 > 0,

depending only on α, p1, p2 and ‖b′‖, such that

‖t0(ψ1)− t0(ψ2)‖X ≤ C2 max
i∈{1,2}

{
‖ψ1 −ψ2‖

1/(pi−1)
Y

}
. (4.11)

Proof. We begin by noting that hypothesis (A1) implies, in particular, that the nonlinear

operator a is hemi-continuous, that is, for each t, r ∈ X , the mapping

J : R→ R, z 7→ J(z) := [a(t + zr), r]
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is continuous. In this way, as a consequence of hypotheses (A1)− (A2) we deduce the well-

posedness of the problem (4.9) (see [10, Theorem 3.1] for details). In turn, given ψ1,ψ2 ∈ Ỹ

for which t0(ψ1) and t0(ψ2) satisfy (4.9), we deduce that

[a(t0(ψ1) + tG)− a(t0(ψ2) + tG), r] = [b′(ψ2 −ψ1), r] ∀ r ∈ X̃. (4.12)

Then, if we assume that t0(ψ1) = t0(ψ2), hypotheses (A1) and (A3), and (4.12), imply that

ψ1 = ψ2. Equivalently, this shows that given ψ1,ψ2 ∈ Ỹ with ψ1 6= ψ2 the solutions t0(ψ1)

and t0(ψ2) of (4.9) are in fact different. Now, in order to obtain (4.10), we proceed similarly to

[38, Proposition 2.3] (see also [10, Theorem 3.1]). In fact, givenψ ∈ Ỹ , we take r = t0(ψ) ∈ X̃

in (4.9), and observe that

[a(t0(ψ) + tG)− a(0 + tG), t0(ψ)− 0] = [F1 − b′(ψ +ϕG)− a(tG), t0(ψ)].

Then, combining hypotheses (A1)− (A2) and (4.2), it is clear that

α
{
‖(t0(ψ))1‖p1

X1
+ ‖(t0(ψ))2‖p2

X2

}
≤
{
‖F1‖X′ + ‖b′(ψ +ϕG)‖X′ + ‖a(tG)‖X′

}
‖t0(ψ)‖X

≤ c1

{
‖ψ‖Y + ‖F1‖X′ + ‖G‖Q′ + ‖G‖p1−1

Q′ + ‖G‖p2−1
Q′ + ‖a(0)‖X′

}
‖t0(ψ)‖X ,

with c1 > 0 depending only on γ, β, p1, p2, and ‖b′‖, which, after simple algebraic manipula-

tion, yields (4.10) (see [2, Lemma 3.5] for details). In turn, in order to derive (4.11), we take

r = t0(ψ1)− t0(ψ2) in (4.12), to obtain

[a(t0(ψ1) + tG)− a(t0(ψ2) + tG), t0(ψ1)− t0(ψ2)] = [b′(ψ2 −ψ1), t0(ψ1)− t0(ψ2)], (4.13)

and proceeding analogously to (4.10), we find that

‖t0(ψ1)− t0(ψ2)‖X ≤ 2 max
i∈{1,2}

{(
2

α
‖b′(ψ2 −ψ1)‖X′

)1/(pi−1)
}
,

which clearly implies (4.11) and completes the proof. �

According to the above, and given (tG,ϕG) ∈ H satisfying (4.2), problem (4.8) is equiva-
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lent to: find ϕ0 ∈ Ỹ such that

[L(ϕ0),ψ] := −[b(t0(ϕ0)),ψ] + [c(ϕ0),ψ] = [F̃2,ψ] ∀ψ ∈ Ỹ , (4.14)

where F̃2 := b(tG) − c(ϕG) − F2. More precisely, given t0(ϕ0) ∈ X̃ solution of (4.9) with

ϕ0 ∈ Ỹ solution of (4.14), the vector (t0,ϕ0) := (t0(ϕ0),ϕ0) ∈ X̃ × Ỹ solves (4.8). The

conversely is straightforward. Hence, we now focus on proving that L is bijective. To that

end, we assume one more hypothesis:

(A4) c is positive semi-definite on Ỹ , that is,

[c(ψ),ψ] ≥ 0 ∀ψ ∈ Ỹ .

We begin with the injectivity of L.

Lemma 4.4 L is injective.

Proof. Let ψ1,ψ2 ∈ Ỹ such that L(ψ1) = L(ψ2), that is [L(ψ1) − L(ψ2),ψ] = 0 for all ψ ∈ Ỹ .

Then, from the definition of L (cf. (4.14)) and taking in particular ψ = ψ2 − ψ1, we deduce

that

[b(t0(ψ2)− t0(ψ1)),ψ2 −ψ1]− [c(ψ2 −ψ1),ψ2 −ψ1] = 0.

It follows, employing the identity (4.13) and hypothesis (A4), that

[a(t0(ψ1) + tG)− a(t0(ψ2) + tG), t0(ψ1)− t0(ψ2)] ≤ 0,

which, together with the assumption (A2), yields t0(ψ1) = t0(ψ2), and then, using similar

arguments to those in Lemma 4.3, we deduce that ψ1 = ψ2, which concludes the proof. �

Next, we show the surjectivity of L by means of classical results from nonlinear func-

tional analysis. More precisely, we will see that, under the hypotheses that have been as-

sumed for the solvability of (4.8), the operator L is continuous and monotone, and therefore,

of type M (cf. [39, Lemma II.2.1]). Then, by also proving that L is bounded and coercive [39,

Corollary II.2.2], the surjective of L is ensured. We begin with the type M property of L.
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Lemma 4.5 L is of type M.

Proof. We first prove that L is continuous. Let {ψn}n∈N ⊆ Ỹ and ψ ∈ Ỹ such that ‖ψn −

ψ‖Y → 0 as n → ∞. Thus, from the definition of L (cf. (4.14)), and using the continuity of b

and c, and the estimate (4.11), we deduce that

‖L(ψn)− L(ψ)‖ ≤ ‖b‖‖t0(ψ)− t0(ψn)‖X + ‖c‖‖ψn −ψ‖Y

≤ C2 ‖b‖ max
i∈{1,2}

{
‖ψn −ψ‖

1/(pi−1)
Y

}
+ ‖c‖‖ψn −ψ‖Y ,

where pi ≥ 2 for i ∈ {1, 2}, which gives ‖L(ψn) − L(ψ)‖ → 0 as n → ∞, thus proving the

continuity of L. On the other hand, for the monotonicity, given ψ1,ψ2 ∈ Ỹ , the definition of

L (cf. (4.14)), assumption (A4) and identity (4.13) imply

[L(ψ1)− L(ψ2),ψ1 −ψ2] = [b(t0(ψ2)− t0(ψ1)),ψ1 −ψ2] + [c(ψ1 −ψ2),ψ1 −ψ2]

≥ [a(t0(ψ2) + tG)− a(t0(ψ1) + tG), t0(ψ2)− t0(ψ1)] ,

(4.15)

whence the monotonicity of L follows from (A2). �

Lemma 4.6 L is bounded and coercive.

Proof. Let ψ ∈ Ỹ . Then, applying triangle inequality, the definition of L (cf. (4.14)), and the

continuity of b and c, we have that

‖L(ψ)‖ ≤ ‖L(ψ)− L(0)‖+ ‖L(0)‖ ≤ ‖b‖‖t0(ψ)− t0(0)‖X + ‖c‖‖ψ‖Y + ‖b‖‖t0(0)‖X .

Then, we notice from (4.10) that ‖t0(0)‖X is bounded only in terms of data, which together

with the estimate (4.11) applied to ψ1 = ψ and ψ2 = 0, allow us to conclude that L is

bounded. On the other hand, for the coercivity of L, we use again the definition of L (cf.
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(4.14)), assumption (A4) and identity (4.12), to find that

[L(ψ),ψ]

‖ψ‖Y
≥ [−b(t0(ψ)),ψ]

‖ψ‖Y
=

[b′(0−ψ), t0(ψ)]

‖ψ‖Y

=
[a(t0(ψ) + tG)− a(t0(0) + tG), t0(ψ)]

‖ψ‖Y
= T̃ (ψ) + T̂ (ψ),

(4.16)

where

T̃ (ψ) :=
[a(t0(ψ) + tG)− a(t0(0) + tG), t0(ψ)− t0(0)]

‖ψ‖Y

and

T̂ (ψ) :=
[a(t0(ψ) + tG)− a(t0(0) + tG), t0(0)]

‖ψ‖Y
.

For estimating T̃ (ψ) we combine the hypothesis (A3) and the identity (4.12), to obtain

β1‖ψ‖Y ≤ ‖a(t0(ψ) + tG)− a(t0(0) + tG)‖X′ ∀ψ ∈ Ỹ . (4.17)

Next, to simplify the notation, we set t̃ := t0(ψ) + tG and t̂ := t0(0) + tG. Then, from (4.17),

hypothesis (A1), and the inequality (a+ b)q ≤ C(q)(aq + bq), with C(q) depending only on q,

which is valid for all q ≥ 0 and a, b ≥ 0 [4, Lemma 2.2], we find that

β1‖ψ‖Y ≤ γ
2∑
i=1

{
‖(t0(ψ))i − (t0(0))i‖Xi

+ ‖(t0(ψ))i − (t0(0))i‖Xi

(
‖t̃i‖Xi

+ ‖t̂i‖Xi

)pi−2
}

≤ C

2∑
i=1

{(
1 + ‖t̂i‖pi−2

Xi

)
‖(t0(ψ))i − (t0(0))i‖Xi

+ ‖(t0(ψ))i − (t0(0))i‖pi−1
Xi

}
,

which, together with the fact that ‖t̂i‖Xi
, with i ∈ {1, 2}, is bounded (cf. (4.2) and (4.10)),

yields

‖ψ‖Y ≤ Ĉ

{
‖t0(ψ)− t0(0)‖X + max

i∈{1,2}

{
‖t0(ψ)− t0(0)‖pi−1

X

}}
, (4.18)

with Ĉ > 0 depending only on γ, β1, p1, p2, ‖F1‖X′ , ‖G‖Q′ , and ‖a(0)‖X′ . Then, it is easy to

see that ‖t0(ψ) − t0(0)‖X → ∞ as ‖ψ‖Y → ∞. In turn, from (4.18) and hypothesis (A2), we
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find that

T̃ (ψ) ≥ α

Ĉ

 min
i∈{1,2}

{
‖t0(ψ)− t0(0)‖pi−2

X

}
1 + max

i∈{1,2}

{
‖t0(ψ)− t0(0)‖pi−2

X

}
 ‖t0(ψ)− t0(0)‖X , (4.19)

where pi ≥ 2 for i ∈ {1, 2}, and hence T̃ (ψ) → ∞ as ‖ψ‖Y → ∞. On the other hand, for

T̂ (ψ) it suffices to observe from (4.17) that

T̂ (ψ) ≥ −β1 ‖t0(0)‖X , (4.20)

and, employing again (4.10), conclude that T̂ (ψ) is bounded independent of ψ. Hence,

replacing (4.19) and (4.20) back into (4.16), the coercivity of L is derived. �

Therefore, the bijective of the operator L is a straightforward consequence of Lemmas

4.4, 4.5 and 4.6, which means, equivalently, that (4.14) has a unique solution ϕ0 ∈ Ỹ . The

main result of this chapter is established now.

Theorem 4.7 Let X1, X2, Y,Q be separable and reflexive Banach spaces, being X1, X2 and Y uni-

formly convex, set X := X1 × X2 and H := X × Y , and let X ′1, X ′2, Y ′, Q′, X ′ := X ′1 × X ′2, and

H ′ := X ′× Y ′, be their respective duals. In addition, let a : X → X ′ be a nonlinear operator, and let

b : X → Y ′, c : Y → Y ′, and B : H → Q′ be linear bounded operators. We also let b′ : Y → X ′ and

B′ : Q→ H ′ be the corresponding adjoints and define the nonlinear operator A : H → H ′ as

[A(t,ϕ), (r,ψ)] := [a(t), r] + [b′(ϕ), r] + [b(t),ψ]− [c(ϕ),ψ] ∀ (t,ϕ), (r,ψ) ∈ H.

In turn, let V be the kernel of B, that is

V :=
{

(r,ψ) ∈ H : [B(r,ψ),q] = 0 ∀q ∈ Q
}
,

and let X̃ and Ỹ be subspaces of X and Y , respectively, such that V = X̃ × Ỹ . Assume that

(i) there exists constant γ > 0 and p1, p2 ≥ 2, such that

‖a(t)− a(r)‖X′ ≤ γ

2∑
j=1

{
‖tj − rj‖Xj

+ ‖tj − rj‖Xj

(
‖tj‖Xj

+ ‖rj‖Xj

)pj−2
}
,

for all t = (t1, t2), r = (r1, r2) ∈ X .
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(ii) for each s ∈ X , the operator a(· + s) : X̃ → X̃ ′ is strictly monotone in the sense that there

exist α > 0 and p1, p2 ≥ 2, such that

[a(t + s)− a(r + s), t− r] ≥ α
{
‖t1 − r1‖p1

X1
+ ‖t2 − r2‖p2

X2

}
,

for all t = (t1, t2), r = (r1, r2) ∈ X̃ .

(iii) c is positive semi-definite on Ỹ , that is,

[c(ψ),ψ] ≥ 0 ∀ψ ∈ Ỹ .

(iv) b satisfies an inf-sup condition on X̃ × Ỹ , that is, there exists β1 > 0 such that

sup
r∈X̃
r6=0

[b(r),ψ]

‖r‖X
≥ β1 ‖ψ‖Y ∀ψ ∈ Ỹ .

(v) B satisfies an inf-sup condition on H ×Q, that is, there exists β > 0 such that

sup
(r,ψ)∈H
(r,ψ)6=0

[B(r,ψ),q]

‖(r,ψ)‖H
≥ β ‖q‖Q ∀q ∈ Q.

Then, for each (F,G) ∈ H ′ ×Q′ there exists a unique ((t,ϕ),p) ∈ H ×Q, such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ H,

[B(t,ϕ),q] = [G,q] ∀q ∈ Q.
(4.21)

Moreover, there exists C > 0, depending only on α, γ, β, β1, p1, p2, ‖b‖, ‖b′‖, and ‖c‖ such that

‖((t,ϕ),p)‖H×Q ≤ CM(F,G), (4.22)

where
M(F,G) := max

{
N (F,G)1/(p1−1),N (F,G)1/(p2−1),N (F,G),

N (F,G)(p1−1)/(p2−1),N (F,G)(p2−1)/(p1−1)
}
,

and N (F,G) is defined below in (4.25).
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Proof. We begin by noting that the well-posedness of the problem (4.21) follows straightfor-

wardly from Lemmas 4.1–4.6. Now, in order to obtain (4.22), we proceed similarly to [10,

Theorem 3.1]. To that end, we first recall that ((t,ϕ),p) = ((t0 + tG,ϕ0 +ϕG),p) ∈ H ×Q is

solution of (4.21) with (t0,ϕ0) ∈ V solution of (4.7) and (tG,ϕG) ∈ H satisfying (4.2). Next,

applying (4.10) with ψ = 0, we get

‖t0(0)‖X ≤ C1 max
i∈{1,2}

{
N1(F,G)1/(pi−1)

}
, (4.23)

where N1(F,G) := ‖F1‖X′ + ‖G‖Q′ + ‖G‖p1−1
Q′ + ‖G‖p2−1

Q′ + ‖a(0)‖X′ . In turn, similarly to the

monotonicity of L (cf. (4.15)), and using the fact that t0 = t0(ϕ0), we deduce that

[a(t0 + tG)− a(t0(0) + tG), t0 − t0(0)] ≤ [L(ϕ0)− L(0),ϕ0] = [F̃2 − L(0),ϕ0],

where F̃2 = b(tG)− c(ϕG)−F2. In this way, hypothesis (ii) and the definition of the operator

L (cf. (4.14)), yield

α
{
‖(t0)1 − (t0(0))1‖p1

X1
+ ‖(t0)2 − (t0(0))2‖p2

X2

}
≤ ‖F̃2 − L(0)‖Y ′‖ϕ0‖Y ≤ C2N2(F,G)‖ϕ0‖Y ,

where N2(F,G) := ‖F2‖Y ′ + max
i∈{1,2}

{
N1(F,G)1/(pi−1)

}
. Thus, it is clear that

‖(t0)i − (t0(0))i‖Xi
≤ CN2(F,G)1/pi‖ϕ0‖

1/pi

Y for i ∈ {1, 2}.

Then, from (4.17), the foregoing inequality, the fact that the upper bound in (4.23) can be

bounded by N2(F,G), and the hypothesis (i), we find that

‖ϕ0‖Y ≤
1

β1

‖a(t0 + tG)− a(t0(0) + tG)‖X′

≤ c
2∑
i=1

{(
1 + ‖(t0(0) + tG)i‖pi−2

Xi

)
‖(t0)i − (t0(0))i‖Xi

+ ‖(t0)i − (t0(0))i‖pi−1
Xi

}
≤ C

2∑
i=1

{(
N2(F,G)1/pi +N2(F,G)(pi−1)2/pi

)
‖ϕ0‖

1/pi

Y +N2(F,G)(pi−1)/pi‖ϕ0‖
(pi−1)/pi

Y

}
,
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with C depending on α, γ, β, β1, p1, p2, ‖b‖, ‖b′‖, and ‖c‖. In turn, applying Young’s inequal-

ity conveniently allow us to deduce that

‖ϕ0‖Y ≤ C3N (F,G), (4.24)

where

N (F,G) := max
{
N2(F,G)1/(p1−1),N2(F,G)1/(p2−1),N2(F,G)p1−1,N2(F,G)p2−1

}
. (4.25)

Therefore, using that ϕ = ϕ0 +ϕG, and combining (4.2) and (4.24), we conclude that

‖ϕ‖Y ≤ ‖ϕ0‖Y + ‖ϕG‖Y ≤ c1N (F,G), (4.26)

with c1 > 0 depending only on α, γ, β, β1, p1, p2, ‖b‖, ‖b′‖, and ‖c‖. Similarly, due to t =

t0 + tG, and employing (4.2), (4.10), and (4.24), we conclude that

‖t‖X ≤ ‖t0‖X + ‖tG‖X ≤ c2 max
i∈{1,2}

{
N (F,G)1/(pi−1)

}
, (4.27)

with c2 > 0 depending only on α, γ, β, β1, p1, p2, ‖b‖, ‖b′‖, and ‖c‖. On the other hand, from

(4.6) and (i), we deduce that

‖p‖Q ≤ C
{
‖F‖H′ + ‖t‖X + ‖ϕ‖Y + ‖t1‖p1−1

X1
+ ‖t2‖p2−1

X2
+ ‖a(0)‖X′

}
, (4.28)

which, together with (4.26) and (4.27), conclude the proof. �

We remark that when p1 = p2 = 2 and ‖a(0)‖X′ is equal to zero, the previous analysis

leads to the classical estimate

‖((t,ϕ),p)‖H×Q ≤ C
{
‖F‖H′ + ‖G‖Q′

}
,

with C > 0, depending only on α, γ, β, β1, ‖b‖, ‖b′‖, and ‖c‖.
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CHAPTER 5

Analysis of the continuous formulation

In this chapter we analyze the well-posedness of the continuous problem (3.5) by using a

fixed-point strategy and the abstract theory on twofold saddle point problems developed in

Chapter 4. We begin by collecting some previous results and notations that will serve for

the forthcoming analysis.

5.1 Preliminaries

Concerning the stability properties of the operators in (3.8), (3.9), (3.10), and (3.11), we first

observe that AS,b, c, and B are all continuous, that is there exist positive constants CAS
, Cb,

Cc, and CB, such that∣∣∣[AS(σ), τ ]
∣∣∣ ≤ CAS

‖σ‖X1‖τ‖X1 ,
∣∣∣[b(r),ψ]

∣∣∣ ≤ Cb ‖r‖X‖ψ‖Y,∣∣∣[c(ϕ),ψ]
∣∣∣ ≤ Cc ‖ϕ‖Y‖ψ‖Y,

∣∣∣[B((r,ψ)),q]
∣∣∣ ≤ CB ‖(r,ψ)‖H‖q‖Q ,

(5.1)
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whereas from the definition of BS (cf. (3.8)) and (3.2) we easily obtain that

∣∣∣[BS(wS)(σ), τ ]
∣∣∣ ≤ ρ

2µ
(1 + κ2

2)1/2‖ic‖‖wS‖L4(ΩS)‖uS‖1,ΩS
‖τ‖X1 ≤ CBS

‖wS‖1,ΩS
‖σ‖X1‖τ‖X1 ,

(5.2)

with CBS
:=

ρ

2µ
(1 + κ2

2)1/2‖ic‖2. In turn, from the definition of AD (cf. (3.8)), (2.7), and the

triangle and Hölder inequalities, we deduce that there exists LAD
> 0, depending only on

µ, ρ, F,K and ΩD, such that

‖AD(uD)−AD(vD)‖(H3(div ;ΩD))′

≤ LAD

{
‖uD − vD‖H3(div ;ΩD) + ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

(5.3)

for all uD,vD ∈ H3(div ; ΩD). In addition, using the Cauchy–Schwarz and Young’s inequali-

ties, it is not difficult to see that F and G are bounded (cf. (3.12)), that is, there exist constants

CF, CG > 0, such that

‖F‖H′ ≤ CF

{
‖fS‖0,ΩS

+ ‖fD‖L3/2(ΩD)

}
(5.4)

and

‖G‖Q′ ≤ CG ‖gD‖0,ΩD
, (5.5)

which confirm the announced smoothness of fD. On the other hand, from the definition

of AD (cf. (3.8)), inequality (2.7) and [28, Lemma 5.1] (see [10, Section 2.3] for details), we

deduce that there exists αD > 0, depending only on ρ, F and ΩD, such that for each tD ∈

L3(ΩD) there holds

[AD(uD + tD)−AD(vD + tD),uD − vD] ≥ αD ‖uD − vD‖3
L3(ΩD) ∀uD,vD ∈ L3(ΩD) . (5.6)

Finally, we recall that there exist positive constants Cd(ΩS) and CKo, such that (see, [6, Propo-

sition IV.3.1] and [6, 26], respectively, for details)

Cd(ΩS) ‖τ S‖2
0,ΩS
≤ ‖τ d

S‖2
0,ΩS

+ ‖divτ S‖2
0,ΩS

∀ τ S ∈ H0(div; ΩS) (5.7)
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and

CKo ‖vS‖2
1,ΩS
≤ ‖e(vS)‖2

0,ΩS
∀vS ∈ H1

ΓS
(ΩS). (5.8)

Notice that, in particular, (5.8) is known as Korn’s inequality. Then, we establish next the

ellipticity of the operator AS.

Lemma 5.1 Assume that for δ1 ∈ (0, 4µ) and δ2 ∈ (0, 2) we choose

κ1 ∈ (0,+∞), κ2 ∈ (0, 2δ1) and κ3 ∈
(

0, 2CKoκ2δ2

(
1− δ1

4µ

))
.

Then, there exists a constant αS > 0, such that there holds

[AS(τ ), τ ] ≥ αS ‖τ‖2
X1

∀ τ ∈ X1. (5.9)

Proof. Let τ = (τ S,vS,ηS) ∈ X1. Then from (3.8) we have that

[AS(τ ), τ ] =
1

2µ
‖τ d

S‖2
0,ΩS

+ κ1‖divτ S‖2
0,ΩS

+ κ2‖e(vS)‖2
0,ΩS

+ κ3‖ηS‖2
0,ΩS

− κ2

2µ

(
τ d

S, e(vS)
)

S
− κ3

2

(
∇vS − (∇vS)t,ηS

)
S
.

Hence, we proceed similarly to the proof of [7, Lemma 3.4] and utilize the Cauchy–Schwarz

and Young inequalities to find that for any δ1, δ2 > 0, and for all τ ∈ X1, there holds

[AS(τ ), τ ] ≥ 1

2µ

(
1− κ2

2δ1

)
‖τ d

S‖2
0,ΩS

+ κ1‖divτ S‖2
0,ΩS

+ κ2

(
1− δ1

4µ

)
‖e(vS)‖2

0,ΩS
− κ3

2δ2

‖vS‖2
1,ΩS

+ κ3

(
1− δ2

2

)
‖ηS‖2

0,ΩS
.

Then, assuming the stipulated hypotheses on δ1, δ2, κ1, κ2, and κ3, and applying the inequal-

ities (5.7) and (5.8), we can define the positive constants

α0(ΩS) := min

{
1

2µ

(
1− κ2

2δ1

)
,
κ1

2

}
, α1(ΩS) := min

{
Cd(ΩS)α0(ΩS),

κ1

2

}
α2(ΩS) := CKoκ2

(
1− δ1

4µ

)
− κ3

2δ2

, α3(ΩS) := κ3

(
1− δ2

2

)
,
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which allows us to conclude that

[AS(τ ), τ ] ≥ αS ‖τ‖2
X1

∀ τ ∈ X1,

with αS := min
{
α1(ΩS), α2(ΩS), α3(ΩS)

}
. �

Now, we recall some properties from [10, Section 3] that will be used later on to prove

the inf-sup conditions for the operators b and B. Given vD ∈ H3
ΓD

(div ; ΩD), the boundary

condition vD · n = 0 on ΓD means

〈vD · n, E0,D(ξ)〉∂ΩD
= 0 ∀ ξ ∈W1/3,3/2(ΓD),

where E0,D : W1/3,3/2(ΓD)→W1/3,3/2(∂ΩD) is the extension operator defined by

E0,D(ξ) :=

 ξ on ΓD

0 on Σ
∀ ξ ∈W1/3,3/2(ΓD).

Additionally, we can identify the restriction of vD · n to Σ with an element of W−1/3,3(Σ),

namely

〈vD · n, ξ〉Σ := 〈vD · n, EΣ(ξ)〉∂ΩD
∀ ξ ∈W1/3,3/2(Σ), (5.10)

where EΣ : W1/3,3/2(Σ) → W1/3,3/2(∂ΩD) is any bounded extension operator. In turn, given

ψ ∈ W1/3,3/2(∂ΩD), there exist unique elements ψΣ ∈ W1/3,3/2(Σ) and ψΓD
∈ W1/3,3/2(ΓD)

such that

ψ = EΣ(ψΣ) + E0,D(ψΓD
), (5.11)

and there exist C1, C2 > 0, such that

C1

{
‖ψΣ‖1/3,3/2;Σ + ‖ψΓD

‖1/3,3/2;ΓD

}
≤ ‖ψ‖1/3,3/2;∂ΩD

≤ C2

{
‖ψΣ‖1/3,3/2;Σ + ‖ψΓD

‖1/3,3/2;ΓD

}
.

We end this section by remarking that the explicit expressions yielding the computation

of the ellipticity constant αS of AS, can be maximized by taking the parameters δ1, δ2, κ2 and

κ3 as the middle points of their feasible ranges, and by choosing κ1 so that it maximizes the
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minimum defining α0(ΩS). More precisely, we simply take

δ1 = 2µ, δ2 = 1, κ2 = δ1 = 2µ,

κ3 = CKoκ2δ2

(
1− δ1

4µ

)
= CKoµ, κ1 =

1

µ

(
1− κ2

2δ1

)
=

1

2µ
,

(5.12)

which yields

α0(ΩS) =
1

4µ
, α1(ΩS) =

1

4µ
min

{
Cd(ΩS), 1

}
, α2(ΩS) = α3(ΩS) =

CKoµ

2
,

and hence

αS = min

{
1

4µ
min

{
Cd(ΩS), 1

}
,
CKoµ

2

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, 2, 3}, given by (5.12), will be

employed in Chapter 8 for the corresponding numerical experiments.

5.2 A fixed-point approach

We begin the solvability analysis of (3.5) by defining the operator T : H1
ΓS

(ΩS) → H1
ΓS

(ΩS)

by

T(wS) := uS ∀wS ∈ H1
ΓS

(ΩS), (5.13)

where t := (σS,uS,γS,uD) is the first component of the unique solution (to be confirmed

below) of the nonlinear problem: Find ((t,ϕ),p) ∈ H×Q such that

[A(wS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀ (r,ψ) ∈ H,

[B(t,ϕ),q] = [G,q] ∀q ∈ Q.
(5.14)

Hence, it is not difficult to see that ((t,ϕ),p) ∈ H × Q is a solution of (3.5) if and only if

uS ∈ H1
ΓS

(ΩS) is a fixed-point of T, that is

T(uS) = uS. (5.15)
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In this way, in what follows we focus on proving that T possesses a unique fixed-point.

However, we remark in advance that the definition of T will make sense only in a closed

ball of H1
ΓS

(ΩS).

Before continuing with the solvability analysis of (5.15) (equivalently of (3.5)), we pro-

vide the hypotheses under which T is well defined. To that end, we first note that, given

wS ∈ H1
ΓS

(ΩS), the problem (5.14) has the same structure of the one in Theorem 4.7. There-

fore, in what follows we apply this abstract result to establish the well-posedness of (5.14), or

equivalently, the well-definiteness of T. We begin by observing that, thanks to the uniform

convexity and separability of Lp(Ω) for p ∈ (1,+∞), each space defining H and Q shares the

same properties, which implies that H and Q are uniformly convex and separable as well.

We continue our analysis by proving that hypothesis (i) of Theorem 4.7 is verified with

p1 = 2 and p2 = 3.

Lemma 5.2 Let wS ∈ H1
ΓS

(ΩS). Then, there exists γ > 0, depending on CAS
, CBS

and LAD
(cf.

(5.1), (5.2), (5.3)), such that

‖a(wS)(t)− a(wS)(r)‖X′ ≤ γ
{(

1 + ‖wS‖1,ΩS

)
‖σ − τ‖X1 + ‖uD − vD‖H3(div ;ΩD)

+ ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

(5.16)

for all t = (σ,uD), r = (τ ,vD) ∈ X.

Proof. The result follows straightforwardly from the definition of a(wS) (cf. (3.7)), the triangle

inequality, and the stability properties (5.1), (5.2) and (5.3). We omit further details. �

Now, let us look at the kernel of the operator B (cf. (3.11)), which can be written, equiv-

alently, as

V =
{

(r,ψ) ∈ H : [B(r,ψ),q] = 0 ∀q ∈ Q
}

= X̃× Ỹ, (5.17)

where

X̃ = X1 × X̃2 and Ỹ = H̃
1/2
00 (Σ)×W1/3,3/2(Σ),

with

X̃2 =
{

vD ∈ H3
ΓD

(div ; ΩD) : div (vD) ∈ P0(ΩD)
}
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and

H̃
1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : 〈ψ · n, 1〉Σ = 0

}
.

In addition, from a slight adaptation of [2, Lemma 4.2], we deduce that there exist a constant

Cdiv > 0 such that

Cdiv ‖vD‖3
H3(div ;ΩD) ≤ ‖vD‖3

L3(ΩD) ∀vD ∈ X̃2. (5.18)

Thus, in the following result we provide the assumptions under which operator a(wS) sat-

isfies hypothesis (ii) of Theorem 4.7.

Lemma 5.3 Suppose that the parameters κ1, κ2, κ3, satisfy the conditions required by Lemma 5.1,

and let wS ∈ H1
ΓS

(ΩS) be such that ‖wS‖1,ΩS
≤ r with r ∈ (0, r0), and

r0 :=
αS µ

ρ(1 + κ2
2)1/2‖ic‖2

, (5.19)

where ‖ic‖ is the constant in (3.2) and αS is the ellipticity constant of the operator AS (cf. (5.9)).
Then, for each s ∈ X, the nonlinear operator a(wS)( ·+ s) is strictly monotone on X̃ (cf. (5.17)).

Proof. Let s := (ζ, sD) ∈ X fixed, and let wS ∈ H1
ΓS

(ΩS) as indicated. Then, according to the

definition of a(wS) (cf. (3.7)), the linearity of AS and BS(wS), and combining (5.9), (5.6) and

(5.18), we deduce that

[a(wS)(t + s)− a(wS)(r + s), t− r] ≥ αS ‖σ − τ‖2
X1

+ αD Cdiv ‖uD − vD‖3
H3(div ;ΩD) + [BS(wS)(σ − τ ), (σ − τ )],

for all t = (σ,uD), r = (τ ,vD) ∈ X̃. In addition, similarly to [11, Lemma 3.1], we know from

the second inequality in (5.2) that∣∣∣[BS(wS)(σ − τ ),σ − τ ]
∣∣∣ ≤ ρ

2µ
(1 + κ2

2)1/2‖ic‖2‖wS‖1,ΩS
‖σ − τ‖2

X1
,

which implies

[a(wS)(t + s)− a(wS)(r + s), t− r]

≥
{
αS −

ρ

2µ
(1 + κ2

2)1/2‖ic‖2‖wS‖1,ΩS

}
‖σ − τ‖2

X1
+ αDCdiv ‖uD − vD‖3

H3(div ;ΩD).
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Consequently, by requiring ‖wS‖1,ΩS
≤ r0, with r0 defined by (5.19), the foregoing inequality

imply

[a(wS)(t + s)− a(wS)(r + s), t− r] ≥ α
{
‖σ − τ‖2

X1
+ ‖uD − vD‖3

H3(div ;ΩD)

}
, (5.20)

for all t, r ∈ X̃, with α := min
{αS

2
, αDCdiv

}
independent of wS. �

We end the verification of the hypotheses of Theorem 4.7, with the positive semi-defini-

teness of c and corresponding inf-sup conditions for the operators b and B, respectively.

Lemma 5.4 There holds

[c(ψ),ψ] ≥ 0 ∀ψ ∈ Y. (5.21)

Proof. From the definition of operator c, it readily follows that

[c(ψ),ψ] :=
n−1∑
i=1

ω−1
i ‖ψ · ti‖2

0,Σ ≥ 0 ∀ψ ∈ Y,

which clearly confirms that c is positive semi-definite. �

Lemma 5.5 There exists β1 > 0, such that

sup
r∈X̃
r6=0

[b(r),ψ]

‖r‖X
≥ β1 ‖ψ‖Y ∀ψ ∈ Ỹ. (5.22)

Proof. By using the diagonal character of the operator b (cf. (3.9)), we find that (5.22) is

equivalent to the following two independent inequalities,

sup
τS∈H0(div;ΩS)

τS 6=0

〈τ Sn,ψ〉Σ
‖τ S‖div;ΩS

≥ β1,S ‖ψ‖1/2,00;Σ ∀ψ ∈ H̃
1/2
00 (Σ) (5.23)

and

sup
vD∈X̃2
vD 6=0

〈vD · n, ξ〉Σ
‖vD‖H3(div ;Ω)

≥ β1,D ‖ξ‖1/3,3/2;Σ ∀ ξ ∈W1/3,3/2(Σ). (5.24)

Similarly to [24, Lemma 3.6], we consider τ S = τ S,0+cI ∈ H(div; ΩS) with τ S,0 ∈ H0(div; ΩS)
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and c ∈ P0(ΩS). Thus, it is clear that 〈τ Sn,ψ〉Σ = 〈τ S,0n,ψ〉Σ for all ψ ∈ H̃
1/2
00 (Σ), and

‖τ S‖2
div;ΩS

= ‖τ S,0‖2
div;ΩS

+ n c2|ΩS|. Hence, it is enough to prove the supremum (5.23) con-

sidering τ S living in H(div; ΩS) instead H0(div; ΩS). In fact, given χ ∈ H
−1/2
00 (Σ) we let

z ∈ H1(ΩS) as the unique solution of the boundary value problem

−∆z = 0 in ΩS, z = 0 on ΓS, ∇z n = χ on Σ.

Next, we set τ̃ S = ∇z in ΩS, and observe that divτ̃ S = 0 in ΩS, τ̃ Sn = χ on Σ and
‖τ̃ S‖div:ΩS

≤ C‖χ‖
H
−1/2
00 (Σ)

. It follows that

sup
τS∈H(div;ΩS)

τS 6=0

〈τ Sn,ψ〉Σ
‖τ S‖div;ΩS

≥ 〈τ̃ Sn,ψ〉Σ
‖τ̃ S‖div;ΩS

≥ 1

C

〈χ,ψ〉Σ
‖χ‖

H
−1/2
00 (Σ)

,

which, considering that χ ∈ H
−1/2
00 (Σ) is arbitrary, yields (5.23) with β1,S = 1/C. On the

other hand, in order to obtain (5.24) we proceed analogously to [10, Lemma 3.5]. In fact,

given φ ∈W−1/3,3(Σ), we define η ∈W−1/3,3(∂ΩD) as

〈η, ψ〉∂ΩD
= 〈φ, ψΣ〉Σ ∀ψ ∈W1/3,3/2(∂ΩD),

where ψΣ ∈ W1/3,3/2(Σ) is given according to the decomposition (5.11). It is not difficult to

see that η is the null extension of φ outside Σ, that is

〈η, E0,D(%)〉∂ΩD
= 0 ∀ % ∈W1/3,3/2(ΓD),

〈η, EΣ(%)〉∂ΩD
= 〈φ, %〉Σ ∀ % ∈W1/3,3/2(Σ)

(5.25)

and
‖η‖−1/3,3;∂ΩD

≤ C ‖φ‖−1/3,3;Σ. (5.26)

Next, we set ṽD := ∇z ∈ ΩD, with z ∈ W1,3(ΩD) being the unique solution of the boundary

value problem

∆z =
1

|ΩD|
〈η, 1〉∂ΩD

in ΩD, ∇z · n = η on ∂ΩD, (z, 1)D = 0.

It follows that div ṽD = 1
|ΩD|
〈η, 1〉∂ΩD

∈ P0(ΩD), ṽD · n = η on ∂ΩD, and using (5.26) we find
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that
‖ṽD‖H3(div ;ΩD) ≤ c ‖η‖−1/3,3;∂ΩD

≤ C̃ ‖φ‖−1/3,3;Σ.

In addition, employing (5.10) and (5.25), we deduce that

〈ṽD · n, ξ〉Σ = 〈ṽD · n, EΣ(ξ)〉∂ΩD
= 〈η, EΣ(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ∀ ξ ∈W1/3,3/2(Σ)

and
〈ṽD · n, E0,D(%)〉∂ΩD

= 〈η, E0,D(%)〉∂ΩD
= 0 ∀ % ∈W1/3,3/2(ΓD) ,

the latter meaning that ṽD ∈ H3
ΓD

(div ; ΩD). Thus we obtain

sup
vD∈X̃2
vD 6=0

〈vD · n, ξ〉Σ
‖vD‖H3(div ;Ω)

≥

∣∣∣〈ṽD · n, ξ〉Σ
∣∣∣

‖ṽD‖H3(div ;Ω)

≥ 1

C̃

∣∣∣ 〈φ, ξ〉Σ ∣∣∣
‖φ‖−1/3,3;Σ

for all φ ∈W−1/3,3(Σ), from which we conclude (5.24). �

Lemma 5.6 There exists β > 0 such that

sup
(r,ψ)∈H
(r,ψ) 6=0

[B(r,ψ),q]

‖(r,ψ)‖H
≥ β ‖q‖Q ∀q ∈ Q. (5.27)

Proof. Analogously to Lemma 5.5, we have that (5.27) is equivalent to:

sup
ψ∈H

1/2
00 (Σ)

ψ 6=0

 〈ψ · n, 1〉Σ
‖ψ‖1/2,00;Σ

≥ β || ∀  ∈ R, (5.28)

and

sup
vD∈X2
vD 6=0

(div vD, qD)D

‖vD‖H3(div ;ΩD)

≥ βD ‖qD‖0,ΩD
∀ qD ∈ L2

0(ΩD). (5.29)

Notice that (5.28) reduces to proving that there existsψ0 ∈ H
1/2
00 (Σ) such that 〈ψ0 · n, 1〉Σ 6= 0.

To that end, we proceed similarly to [24, Lemma 3.6] (see also [8, Lemma 3.2]). In fact, for the

two dimensional case, and given x1 and x2 two points on ∂ΩS such that the line [x1, x2] ⊆ Σ,

we let xm be the midpoint of [x1, x2], and let x3 be a point on ∂ΩS or in the interior of ΩS, in
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such a way that two triangles T1 and T2 can be constructed. Then, we let v be continuous,

linear on each side of Σ, equal to one in the vertex xm, and zero on all other ones, and define

ψ0 := vn, where n is the normal vector on [x1, x2]. Similarly, for the three dimensional case,

given x1, x2, x3 three points on Σ defining a triangle with barycentric xm, we let x4 be a point

in the interior of ΩS or on an opposite piece of boundary, chosen in such a way that below x4

three tetrahedra T1, T2, T3 can be formed. Then, we let v be continuous, linear on each side

of Σ, equal to one in the vertex xm, and zero on all other ones, and define ψ0 := vn, where

n is the normal vector on T1 ∪ T2 ∪ T3. Next, in order to prove (5.29), we proceed as in [10,

Lemma 3.5] (see also [2, Lemma 4.3]). In fact, given qD ∈ L2
0(ΩD), we set ṽD := ∇z in ΩD,

with z ∈W1,3(ΩD) being the unique solution of the boundary value problem:

∆z = qD in ΩD, ∇z · n = 0 on ∂ΩD and (z, 1)D = 0.

It follows that div ṽD = qD in ΩD and ṽD · n = 0 on ΓD, whence ṽD ∈ H3
ΓD

(div ; ΩD) and
satisfies

‖ṽD‖H3(div ;ΩD) ≤ CD‖qD‖0,ΩD
.

Thus, from the above arguments we deduce

sup
vD∈H3

ΓD
(div ;ΩD)

vD 6=0

(div vD, qD)D

‖vD‖H3(div ;ΩD)

≥ (div ṽD, qD)D

‖ṽD‖H3(div ;ΩD)

≥ 1

CD

‖qD‖0,ΩD
,

which shows (5.29) with βD = 1/CD and completes the proof. �

We are now in position of establishing the well-definiteness of T. To that end, and in

order to simplify the subsequent analysis, we first note that, given wS ∈ H1
ΓS

(ΩS), there

holds ‖a(wS)(0)‖X′ = 0. Then, by considering p1 = 2 and p2 = 3 in Theorem 4.7, we

introduce the following notation

M(fS, fD, gD) := max
{
N (fS, fD, gD)1/8,N (fS, fD, gD)1/4,N (fS, fD, gD)1/2,

N (fS, fD, gD),N (fS, fD, gD)2,N (fS, fD, gD)4
}
,
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with

N (fS, fD, gD) := ‖fS‖0,ΩS
+ ‖fD‖L3/2(ΩD) + ‖gD‖0,ΩD

+ ‖gD‖2
0,ΩD

.

The main result of this section is established now.

Lemma 5.7 Suppose that the parameters κ1, κ2, κ3, satisfy the conditions required by Lemma 5.1.

Let r ∈ (0, r0), with r0 given by (5.19) and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2
0(ΩD). Then,

the problem (5.14) has a unique solution ((t,ϕ),p) ∈ H × Q for each wS ∈ H1
ΓS

(ΩS) such that

‖wS‖ ≤ r. Moreover, there exists a constant cT > 0, independent of wS and the data fS, fD, and gD,

such that
‖T(wS)‖1,ΩS

= ‖uS‖1,ΩS
≤ ‖((t,ϕ),p)‖H×Q ≤ cTM(fS, fD, gD). (5.30)

Proof. It follows from Lemmas 5.2–5.6 and a straightforward application of Theorem 4.7. In

turn, estimate (5.30) is a direct consequence of (4.22) (cf. Theorem 4.7) and (5.4)-(5.5). �

5.3 Solvability analysis of the fixed-point equation

In this section we proceed analogously to [7, Section 3.3] (see also [15, 11, 10]), and estab-

lish existence of a fixed point of the operator T (cf. (5.13)) by means of the well known

Schauder fixed-point theorem. The uniqueness can then be established by means of the Ba-

nach fixed-point theorem by utilizing the same estimates derived for the existence. We begin

by recalling the first of the aforementioned results (see, e.g., [12, Theorem 9.12-1(b)]).

Theorem 5.8 Let W be a closed and convex subset of a Banach space X , and let T : W → W be a

continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

The verification of the hypotheses of Theorem 5.8 is provided next.

Lemma 5.9 Let r ∈ (0, r0), with r0 given by (5.19), let Wr be the closed ball defined by

Wr :=
{

wS ∈ H1
ΓS

(ΩS) : ‖wS‖1,ΩS
≤ r
}
, (5.31)

and assume that the data satisfy
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cTM(fS, fD, gD) ≤ r, (5.32)

with cT the positive constant satisfying (5.30). Then there holds T(Wr) ⊆Wr.

Proof. It is straightforward consequence of Lemma 5.7. �

We continue with the following results providing an estimate needed to derive the re-

quired continuity and compactness properties of the operator T (cf. (5.13)).

Lemma 5.10 Let r ∈ (0, r0), with r0 given by (5.19), and let Wr given by (5.31). Then there exists

a positive constant CT, depending on κ2, ‖ic‖, and αS (cf. (5.9)), such that

‖T(wS)−T(w̃S)‖1,ΩS
≤ CT‖T(w̃S)‖1,ΩS

‖wS − w̃S‖L4(ΩS) ∀wS, w̃S ∈Wr. (5.33)

Proof. Given wS, w̃S ∈Wr, we let uS := T(wS) and ũS := T(w̃S). According to the definition

of T (cf. (5.14)), it follows that

[A(wS)(t,ϕ)−A(w̃S)(̃t, ϕ̃), (r,ψ)] + [B(r,ψ),p− p̃] = 0 ∀ (r,ψ) ∈ H,

[B(t− t̃,ϕ− ϕ̃),q] = 0 ∀q ∈ Q.

In particular, taking r = t− t̃, ψ = ϕ− ϕ̃, and q = p− p̃ in the latter system, and recalling

the definition of A (cf. (3.6)), we get

[a(wS)(t)− a(w̃S)(̃t), t− t̃] + [b(t− t̃),ϕ− ϕ̃] = 0,

[b(t− t̃),ϕ− ϕ̃]− [c(ϕ− ϕ̃),ϕ− ϕ̃] = 0,

which clearly implies

[a(wS)(t)− a(w̃S)(̃t), t− t̃] = −[c(ϕ− ϕ̃),ϕ− ϕ̃], (5.34)

where t = (σ,uD) and t̃ = (σ̃, ũD). Hence, adding and subtracting BS(wS)(σ̃) in the second

term of the left-hand side of (5.34), noting that t − t̃ ∈ X̃, and using the strict monotonicity
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of a(wS) (cf. (5.20)) and the fact that c is positive semi-definite (cf. (5.21)), it follows that

αS

2
‖σ − σ̃‖2

X1
≤ [a(wS)(t)− a(wS)(̃t), t− t̃] ≤ [BS(w̃S −wS)(σ̃),σ − σ̃].

In this way, by applying the first inequality in (5.2) we deduce that

‖σ − σ̃‖2
X1
≤ ρ(1 + κ2

2)1/2‖ic‖
αSµ

‖ũS‖1,ΩS
‖wS − w̃S‖L4(ΩS)‖σ − σ̃‖X1 ,

which implies (5.33) with

CT :=
ρ(1 + κ2

2)1/2‖ic‖
αSµ

, (5.35)

thus completing the proof. �

Owing to the above analysis, we establish now the announced properties of the operator

T.

Lemma 5.11 Given r ∈ (0, r0), with r0 defined by (5.19), we let Wr as in (5.31) and assume that

the data fS, fD and gD satisfy (5.32). Then, T : Wr →Wr is continuous and T(Wr) is compact.

Proof. We proceed analogously to [7, Lemma 3.8]. In fact, from (5.33) and the continuity of

the injection ic : H1(ΩS)→ L4(ΩS), it follows that

‖T(wS)−T(w̃S)‖1,ΩS
≤ CT‖ic‖‖T(w̃S)‖1,ΩS

‖wS − w̃S‖1,ΩS
∀wS, w̃S ∈Wr,

which proves the continuity of T. Now, given a sequence {wS,k}k∈R of Wr, which is clearly

bounded, there exists a subsequence {w(1)
S,k}k∈R ⊆ {wS,k}k∈R and wS in H1(ΩS) such that

w
(1)
S,k ⇀ wS in H1(ΩS). In this way, thanks to the compactness of ic, we deduce that w

(1)
S,k → wS

in L4(ΩS), which, combined with (5.33), implies that T(w
(1)
S,k) → T(wS) in H1(ΩS). This

proves that T(Wr) is compact. �

We are now in position of establishing the main result of this chapter.

Theorem 5.12 Suppose that the parameters κ1, κ2, κ3 satisfy the conditions required by Lemma 5.1.

In addition, given r ∈ (0, r0), with r0 defined by (5.19), we let Wr as in (5.31), and assume that the
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data fS, fD and gD satisfy (5.32). Then, the augmented fully-mixed formulation (3.5) has a unique

solution ((t,ϕ),p) ∈ H×Q with uS ∈Wr, and there holds

‖((t,ϕ),p)‖H×Q ≤ cTM(fS, fD, gD). (5.36)

Proof. The equivalence between (3.5) and the fixed-point equation (5.13), together with Lem-

mas 5.9 and 5.11, confirm the existence of solution of (3.5) as a direct application of the

Schauder fixed-point Theorem 5.8. In addition, it is clear that the estimate (5.36) follows

straightforwardly from (5.30). On the other hand, from (5.33), the continuity of the compact

injection ic and the definition of CT (cf. (5.35)), we obtain

‖T(wS)−T(w̃S)‖1,ΩS
≤ r

r0

‖wS − w̃S‖1,ΩS
∀wS, w̃S ∈Wr,

which, thanks to the Banach fixed-point theorem, implies that the solution is actually uni-

que. �
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The Galerkin scheme

In this chapter we introduce the Galerkin scheme of problem (3.5) and analyze its well-

posedness by establishing suitable assumptions on the finite element subspaces involved.

6.1 Preliminaries

We first consider a set of arbitrary discrete subspaces, namely

Hh(ΩS) ⊆ H(div ; ΩS), H1
h(ΩS) ⊆ H1(ΩS), Lh(ΩS) ⊆ L2

skew(ΩS),

Hh(ΩD) ⊆ H3(div ; ΩD), ΛS
h(Σ) ⊆ H

1/2
00 (Σ), ΛD

h (Σ) ⊆W1/3,3/2(Σ), Lh(ΩD) ⊆ L2(ΩD)

(6.1)

and set

Hh(ΩS) :=
{
τ S ∈ H(div; ΩS) : ctτ ∈ Hh(ΩS) ∀ c ∈ Rn

}
, ΛS

h(Σ) := [ΛS
h(Σ)]n,

Hh,0(ΩS) := Hh(ΩS) ∩H0(div; ΩS), H1
h,ΓS

(ΩS) := H1
h(ΩS) ∩H1

ΓS
(ΩS),

Hh,ΓD
(ΩD) := Hh(ΩD) ∩H3

ΓD
(div ; ΩD), Lh,0(ΩD) := Lh(ΩD) ∩ L2

0(ΩD).

(6.2)
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Then, defining the global subspaces, unknowns, and test functions as follows

Xh,1 := Hh,0(ΩS)×H1
h,ΓS

(ΩS)× Lh(ΩS), Xh,2 := Hh,ΓD
(ΩD),

Xh := Xh,1 ×Xh,2, Yh := ΛS
h(Σ)× ΛD

h (Σ),

Hh := Xh ×Yh and Qh := Lh,0(ΩD)× R,

(6.3)

σh := (σS,h,uS,h,γS,h) ∈ Xh,1, τ h := (τ S,h,vS,h,ηS,h) ∈ Xh,1 ,

th := (σh,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈ Yh, p
h

= (pD,h, `h) ∈ Qh,

rh := (τ h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈ Yh, q
h

= (qD,h, h) ∈ Qh,

the Galerkin scheme associated with problem (3.5) reads: Find ((th,ϕh),ph) ∈ Hh×Qh such

that

[A(uS,h)(th,ϕh), (rh,ψh
)] + [B(rh,ψh

),p
h
] = [F, (rh,ψh

)] ∀ (rh,ψh
) ∈ Hh,

[B(th,ϕh),qh] = [G,q
h
] ∀q

h
∈ Qh.

(6.4)

Now, we proceed similarly to [24] (see also [22, 11]), and derive suitable hypotheses on

the spaces (6.1) ensuring the well-posedness of problem (6.4). We begin by noticing that,

in order to have meaningful subspaces Hh,0(ΩS) and Lh,0(ΩD) we need to be able to elimi-

nate multiplies of the identity matrix and constant polynomials from Hh(ΩS) and Lh(ΩD),

respectively. This requirement is certainly satisfied if we assume:

(H.0) P0(ΩS) := [P0(ΩS)]n ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD).

In particular, it follows that I ∈ Hh(ΩS) for all h, and hence there holds the decomposition

Hh(ΩS) = Hh,0(ΩS)⊕ P0(ΩS) I.

Next, we look at the discrete kernel of B, which is given by

Vh =
{

(rh,ψh
) ∈ Hh : [B(rh,ψh

),q
h
] = 0 ∀q

h
∈ Qh

}
. (6.5)

In order to have a more explicit definition of Vh, we introduce the following assumption:

(H.1) div Hh(ΩD) ⊆ Lh(ΩD).
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Then, owing to (H.1) and recalling the definition of B (cf. (3.11)), it follows that Vh =

X̃h × Ỹh, where

X̃h = Xh,1 × X̃h,2 and Ỹh = Λ̃
S

h(Σ)× ΛD
h (Σ),

with

X̃h,2 :=
{

vD,h ∈ Hh,ΓD
(ΩD) : div (vD,h) ∈ P0(ΩD)

}
and

Λ̃
S

h(Σ) :=
{
ψh ∈ ΛS

h(Σ) : 〈ψh · n, 1〉Σ = 0
}
.

In particular, it readily follows that Vh ⊆ V.

On the other hand, for the subsequent analysis we need to ensure the discrete version of

the inf-sup conditions (5.22) and (5.27) of b and B (cf. (3.9), (3.11)), respectively, namely the

existence of constants β̃1, β̃ > 0, independent of h, such that

sup
rh∈X̃h

rh 6=0

[b(rh),ψh
]

‖rh‖X
≥ β̃1‖ψh

‖Y ∀ψ
h
∈ Ỹh (6.6)

and

sup
(rh,ψh

)∈Hh

(rh,ψh
)6=0

[B(rh,ψh
),q

h
]

‖(rh,ψh
)‖H

≥ β̃ ‖q
h
‖Q ∀q

h
∈ Qh. (6.7)

For instance, applying the same diagonal argument utilized in [24, Section 3] (see also [22,

11, 10]), we deduce that b satisfies the discrete inf-sup condition (6.6) if and only if the

following hypotheses holds:

(H.2) There exist β̃1,S, β̃1,D > 0, independent of h, such that

sup
τS,h∈Hh,0(ΩS)

τS,h 6=0

〈τ S,hn,ψh〉Σ
‖τ S,h‖div;ΩS

≥ β̃1,S‖ψh‖1/2,00;Σ ∀ψh ∈ Λ̃
S

h(Σ) (6.8)

and

sup
vD,h∈X̃h,2

vD,h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖H3(div ;ΩD)

≥ β̃1,D‖ξh‖1/3,3/2;Σ ∀ ξh ∈ ΛD
h (Σ). (6.9)
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Similarly, employing the same arguments from [22, Section 5.2], we obtain that B satisfies

the discrete inf-sup condition (6.7) provided that the following hypothesis holds.

(H.3) There exist β̃D > 0, independent of h, and ψ0 ∈ H
1/2
00 (Σ), such that

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0 · n, 1〉Σ 6= 0 , (6.10)

and
sup

vD,h∈Hh,ΓD
(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖H3(div ;ΩD)

≥ β̃D‖qD,h‖0,ΩD
∀ qD,h ∈ Lh,0(ΩD). (6.11)

6.2 Solvability analysis of the discrete problem

In what follows, we assume that hypotheses (H.0), (H.1), (H.2) and (H.3) hold, and, analo-

gously to the analysis of the continuous problem, we apply a fixed-point argument to prove

the well-posedness of the Galerkin scheme (6.4). To that end, we now let Th : H1
h,ΓS

(ΩS) →

H1
h,ΓS

(ΩS) be the discrete operator defined by

Th(wS,h) := uS,h ∀wS,h ∈ H1
h,ΓS

(ΩS), (6.12)

where th := (σS,h,uS,h,γS,h,uD,h) is the first component of the unique solution (to be con-

firmed below) of the discrete nonlinear problem: Find ((th,ϕh),ph) ∈ Hh ×Qh such that

[A(wS,h)(th,ϕh), (rh,ψh
)] + [B(rh,ψh

),p
h
] = [F, (rh,ψh

)] ∀ (rh,ψh
) ∈ Hh,

[B(th,ϕh),qh] = [G,q
h
] ∀q

h
∈ Qh.

(6.13)

Then, the Galerkin scheme (6.4) can be rewritten, equivalently, as the fixed-point problem:

Find uS,h ∈ H1
h,ΓS

such that

Th(uS,h) = uS,h. (6.14)

Next, similarly to the analysis developed in Section 5.2, in what follows we provide suit-

able assumptions under which problem (6.13) is well posed or equivalently Th is well de-

fined. For this purpose, we will require a discrete version of Theorem 4.7. In fact, we let
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Xh,1, Xh,2, Yh and Qh be finite dimensional subspaces of X1, X2, Y and Q, respectively, and

set Xh = Xh,1 × Xh,2 ⊆ X = X1 × X2 and Hh = Xh × Yh ⊆ H = X × Y . Let ah : Xh → X ′h

be the discrete version of the nonlinear operator a. Thus, we define the nonlinear operator

Ah : Hh → H ′h, as:

Ah(rh,ψh) :=

 ah b′

b −c

 rh

ψh

 ∈ H ′h ∀ (rh,ψh) ∈ Hh.

Then, given (F,G) ∈ H ′ ×Q′, the Galerkin scheme reduces to: find ((th,ϕh),ph) ∈ Hh ×Qh

such that

[Ah(th,ϕh), (rh,ψh)] + [B′(ph), (rh,ψh)] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Hh,

[B(th,ϕh),qh] = [G,qh] ∀qh ∈ Qh.

(6.15)

Next, we let Vh be the discrete kernel of B, that is,

Vh :=
{

(rh,ψh) ∈ Hh : [B(rh,ψh),qh] = 0 ∀qh ∈ Qh

}
,

and let X̃h and Ỹh be subspaces of Xh and Yh, respectively, such that Vh = X̃h × Ỹh. The

following result establishes the well-posedness of (6.15).

Theorem 6.1 Assume that

(i) there exist constants γ̃ > 0 and p1, p2 ≥ 2, such that

‖ah(th)− ah(rh)‖X′ ≤ γ̃
2∑
j=1

{
‖tj,h − rj,h‖Xj

+ ‖tj,h − rj,h‖Xj

(
‖tj,h‖Xj

+ ‖rj,h‖Xj

)pj−2
}
,

for all th = (t1,h, t2,h), rh = (r1,h, r2,h) ∈ Xh.

(ii) for each sh ∈ Xh, the operator ah(· + sh) : X̃h → X̃ ′h is strictly monotone in the sense that

there exist α̃ > 0 and p1, p2 ≥ 2, such that

[ah(th + sh)− ah(rh + sh), th − rh] ≥ α̃
{
‖t1,h − r1,h‖p1

X1
+ ‖t2,h − r2,h‖p2

X2

}
,

for all th = (t1,h, t2,h), rh = (r1,h, r2,h) ∈ X̃h.
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(iii) c is positive semi-definite on Ỹh, that is,

[c(ψh),ψh] ≥ 0 ∀ψh ∈ Ỹh.

(iv) b satisfies an inf-sup condition on X̃h × Ỹh, that is, there exists β̃1 > 0 such that

sup
rh∈X̃h
rh 6=0

[b(rh),ψh]

‖rh‖X
≥ β̃1‖ψh‖Y ∀ψh ∈ Ỹh.

(v) B satisfies an inf-sup condition on Hh ×Qh, that is, there exists β̃ > 0 such that

sup
(rh,ψh)∈Hh

(rh,ψh)6=0

[B(rh,ψh),qh]

‖(rh,ψh)‖H
≥ β̃‖qh‖Q ∀qh ∈ Qh.

Then, for each (F,G) ∈ H ′ ×Q′ there exists a unique ((th,ϕh),ph) ∈ Hh ×Qh, such that

[Ah(th,ϕh), (rh,ψh)] + [B′(ph), (rh,ψh)] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Hh,

[B(th,ϕh),qh] = [G,qh] ∀qh ∈ Qh.

Moreover, there exists C̃ > 0, depending only on α̃, γ̃, β̃, β̃1, p1, p2, ‖b‖, ‖b′‖ and ‖c‖, such that

‖((th,ϕh),ph)‖H×Q ≤ C̃M(Fh, Gh),

where
M(Fh, Gh) := max

{
N (Fh, Gh)

1/(p1−1),N (Fh, Gh)
1/(p2−1),N (Fh, Gh),

N (Fh, Gh)
(p1−1)/(p2−1),N (Fh, Gh)

(p2−1)/(p1−1)
}

and N (Fh, Gh) is defined in (4.25), with Fh := F |Hh
and Gh := G|Qh

.

Proof. It reduces to a simple application of Theorem 4.7 to the present discrete setting. �

Then, similarly to the continuous case we must verify that the operators defining the

discrete problem satisfy the hypotheses of Theorem 6.1.
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Lemma 6.2 Let wS,h ∈ H1
h,ΓS

(ΩS). Then, there exists γ̃ > 0, depending on CAS
, CBS

, and LAD
(cf.

(5.1), (5.2), (5.3)), such that

‖a(wS,h)(th)− a(wS,h)(rh)‖X′ ≤ γ̃
{(

1 + ‖wS,h‖1,ΩS

)
‖σh − τ h‖X1 + ‖uD,h − vD,h‖H3(div ;ΩD)

+ ‖uD,h − vD,h‖H3(div ;ΩD)

(
‖uD,h‖H3(div ;ΩD) + ‖vD,h‖H3(div ;ΩD)

)}
,

for all th = (σh,uD,h), rh = (τ h,vD,h) ∈ Xh.

Proof. As for the continuous case, the result follows straightforwardly from the definition of

a(wS,h) (cf. (3.7)), the triangle inequality, and the stability properties (5.1), (5.2) and (5.3). We

omit further details. �

In the following result we provide the assumptions under which operator a(wS,h) verifies

hypothesis (ii) of Theorem 6.1.

Lemma 6.3 Suppose that the parameters κ1, κ2, κ3, satisfy the conditions required by Lemma 5.1.

Let wS,h ∈ H1
h,ΓS

(ΩS) such that ‖wS,h‖1,ΩS
≤ r with r ∈ (0, r0), and r0 defined by (5.19). Then, for

each sh ∈ Xh, the nonlinear operator a(wS,h)( ·+ sh) is strictly monotone on X̃h (cf. (6.5)).

Proof. The proof follows analogously to the proof of Lemma 5.3. Further details are omitted.

�

The following lemma establishes the well-definiteness of operator Th (cf. (6.12)).

Lemma 6.4 Assume that hypotheses (H.0), (H.1), (H.2) and (H.3) hold. Assume further that the

parameters κ1, κ2, κ3, satisfy the conditions required by Lemma 5.1. Let r ∈ (0, r0), with r0 defined

by (5.19), and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2
0(ΩS). Then, problem (6.13) has a unique

solution ((th,ϕh),ph) ∈ Hh × Qh for each wS,h ∈ H1
h,ΓS

(ΩS) such that ‖wS,h‖1,ΩS
≤ r. Moreover,

there exists a constant c̃T independent of wS,h and the data, such that

‖Th(wS,h)‖1,ΩS
≤ ‖((th,ϕh),ph)‖H×Q ≤ c̃TM(fS, fD, gD). (6.16)

Proof. Let wS,h ∈ H1
h,ΓS

(ΩS) such that ‖wS,h‖1,ΩS
≤ r. Recalling that Hh ⊆ H, Qh ⊆ Q and

Vh ⊆ V, a straightforward application of Lemmas 6.2, 6.3 and 5.4, implies, respectively,
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that hypotheses (i), (ii) and (iii) in Theorem 6.1, hold. In turn, the inf-sup conditions (iv)

and (v) follow from hypotheses (H.2) and (H.3), respectively. Therefore, according to the

above, a direct application of Theorem 6.1 allows us to conclude that there exists a unique

((th,ϕh),ph) ∈ Hh ×Qh solution to (6.13) which satisfies (6.16), whit c̃T independent of wS,h

and h. �

We are now in position of establishing the well posedness of (6.4)

Theorem 6.5 Assume that hypotheses (H.0), (H.1), (H.2) and (H.3) hold. Assume further that the

parameters κ1, κ2, κ3 satisfy the conditions required by Lemma 5.1. In addition, given r ∈ (0, r0),

with r0 defined by (5.19), we let Wh
r :=

{
wS,h ∈ H1

h,ΓS
(ΩS) : ‖wS,h‖1,ΩS

≤ r
}

, and assume that

the data fS, fD and gD satisfy

c̃TM(fS, fD, gD) ≤ r, (6.17)

with c̃T > 0 the constant in (6.16). Then, there exists a unique ((th,ϕh),ph) ∈ Hh×Qh solution to

(6.4), which satisfies uS,h ∈Wh
r , and

‖((th,ϕh),ph)‖H×Q ≤ c̃TM(fS, fD, gD). (6.18)

Proof. We first observe, owing to (6.16), that the assumption (6.17) guarantees that Th(W
h
r ) ⊆

Wh
r . Next, analogously to the proof of Lemma 5.10, that is, applying the strict monotonicity

of a(wS,h), for each wS,h ∈Wh
r , we find that

‖Th(wS,h)−Th(w̃S,h)‖1,ΩS
≤ CT‖ic‖‖Th(w̃S,h)‖1,ΩS

‖wS,h − w̃S,h‖1,ΩS
∀wS,h, w̃S,h ∈Wh

r ,

which, together with (5.35), (6.16), (6.17) and (5.19), implies

‖Th(wS,h)−Th(w̃S,h)‖1,ΩS
≤ r

r0

‖wS,h − w̃S,h‖1,ΩS
∀wS,h, w̃S,h ∈Wh

r ,

thus confirming that Th : Wh
r →Wh

r is a contraction mapping. Then, the Banach fixed-point

theorem and the equivalence between (6.4) and (6.14) imply the well-posedness of (6.4). In

turn, the estimate (6.18) follows directly from (6.16). �
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6.3 A priori error analysis

In this section we establish the corresponding Céa estimate. For this purpose, we first in-

troduce some notations and state a couple of previous results. We begin by recalling the

discrete inf-sup condition of B (cf. (6.7)), and a classical result on mixed methods (see, for

instance [19, Theorem 2.6]) ensuring the existence of a constant c > 0, independent of h,

such that:

dist
(
(t,ϕ),Vh

)
≤ c dist

(
(t,ϕ),Hh

)
. (6.19)

In turn, in order to simplify the subsequent analysis, we write eσ = σ − σh, euD
= uD −

uD,h, eϕ = ϕ − ϕ
h

and ep = p − p
h
. Then, proceeding similarly to [2, Section 3.3], we

consider the unique decompositions σh = σ̃h + σ̃⊥h , uD,h = ũD,h + ũ⊥D,h and ϕ
h

= ϕ̃
h

+ ϕ̃⊥
h

,

with ((σ̃h, ũD,h), ϕ̃h) ∈ Vh and ((σ̃⊥h , ũ
⊥
D,h), ϕ̃

⊥
h

) ∈ X̃⊥h × Ỹ⊥h =: V⊥h , where

V⊥h =
{

(sh,φh) ∈ Hh :
〈

(sh,φh), (rh,ψh
)
〉

= 0 ∀ (rh,ψh
) ∈ Vh

}
.

Next, given arbitrary ((τ̃ h, ṽD,h), ψ̃h) ∈ Vh and q̃h ∈ Qh, we decompose the errors into

eσ = δσ − σ̃⊥h + ησ, euD
= δuD

− ũ⊥D,h + ηuD
, eϕ = δϕ − ϕ̃⊥h + ηϕ and ep = δp + ηp,

(6.20)

with

δσ = σ − τ̃ h, ησ = τ̃ h − σ̃h, δuD
= uD − ṽD,h, ηuD

= ṽD,h − ũD,h,

δϕ = ϕ− ψ̃
h
, ηϕ = ψ̃

h
− ϕ̃

h
, δp = p− q̃

h
, ηp = q̃

h
− p

h
.

(6.21)

Consequently, the following Galerkin orthogonality property holds:

[A(uS)(t,ϕ)−A(uS,h)(th,ϕh), (rh,ψh
)] + [B(rh,ψh

), ep] = 0,

[B((eσ, euD
), eϕ),q

h
] = 0,

(6.22)

for all (rh,ψh
) := ((τ h,vD,h),ψh

) ∈ Hh and q
h
∈ Qh.
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We now establish the main result of this section.

Theorem 6.6 Assume that the hypotheses (H.0), (H.1), (H.2), and (H.3), as well as the conditions

on κ1, κ2, κ3 required by Lemma 5.1, hold. Let r ∈ (0, r0) with r0 defined by (5.19), and assume

further that the data fS, fD, and gD satisfy

cTM(fS, fD, gD) ≤ r

2
, (6.23)

with cT the constant satisfying (5.30). Let ((t,ϕ),p) := ((σ,uD,ϕ),p) ∈ H × Q with σ :=

(σS,uS,γS) and uS ∈ Wr, and ((th,ϕh),ph) := ((σh,uD,h,ϕh),ph) ∈ Hh × Qh with σh :=

(σS,h,uS,h,γS,h) and uS,h ∈ Wh
r , be the unique solutions of problems (3.5) and (6.4), respectively.

Then there exists C > 0, independent of h and the continuous and discrete solutions, such that

∥∥((t,ϕ),p
)
−
(
(th,ϕh),ph

)∥∥
H×Q

≤ C
{

dist
(
(t,ϕ),Hh

)1/2
+ dist

(
(t,ϕ),Hh

)
+ dist

(
(t,ϕ),Hh

)2
+ dist (p,Qh)

}
.

(6.24)

Proof. Given ((τ̃ h, ṽD,h), ψ̃h) ∈ Vh, and q̃h ∈ Qh, we define δσ, δuD
, δϕ, δp,ησ,ηuD

,ηϕ, and

ηp, as in (6.21). In turn, since ((σ̃h, ũD,h), ϕ̃h) ∈ Vh, it follows that ((ησ,ηuD
),ηϕ) ∈ Vh.

Thus, from the second equation in (6.22), (6.20), and the fact that [B((ησ,ηuD
),ηϕ),q

h
] = 0,

it follows that

[B((σ̃⊥h , ũ
⊥
D,h), ϕ̃

⊥
h

),q
h
] = [B((δσ, δuD

), δϕ),q
h
],

which together with the continuity and discrete inf-sup condition of B (cf. (5.1) and (6.7)),

(6.20), (6.21), and the triangle inequality, yields

‖((δσ, δuD
), δϕ)− ((σ̃⊥h , ũ

⊥
D,h), ϕ̃

⊥
h

)‖H ≤
(

1 +
CB

β̃

)
‖((δσ, δuD

), δϕ)‖H. (6.25)

On the other hand, taking (rh,ψh
) := ((ησ,ηuD

),ηϕ) ∈ Vh ⊂ Hh in the first row of (6.22),

recalling the definition of the operator A(uS) (cf. (3.6)), observing that thanks to (H.1) we
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have that Vh ⊆ V, we deduce

[a(uS)(t)− a(uS,h)(th), (ησ,ηuD
)] + [b(ησ,ηuD

), eϕ] = 0,

[b(eσ, euD
),ηϕ]− [c(eϕ),ηϕ] = 0.

(6.26)

In this way, from (6.20) and the first equation of (6.26), we find that

[b(ησ,ηuD
),ηϕ] = −

{
[a(uS)(t)− a(uS)(th), (ησ,ηuD

)] + [BS(uS − uS,h)(σh),ησ]

+ [b(ησ,ηuD
), δϕ − ϕ̃⊥h ]

}
.

Hence, noting that (ησ,ηuD
) ∈ X̃h, employing the discrete inf-sup condition of b (cf. (6.6)),

inequality (5.16), and the continuity of b and B (cf. (5.1)), and then applying the first in-

equality in (5.2) and bounding ‖uS − uS,h‖L4(ΩS) by ‖ic‖‖eσ‖X1 , we deduce that there exist a

constant C1 > 0, independent of h, such that

β̃1‖ηϕ‖Y ≤ C1

{(
1 + ‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

)
‖eσ‖X1

+
(

1 + ‖uD‖H3(div ;ΩD) + ‖uD,h‖H3(div ;ΩD)

)
‖euD

‖H3(div ;ΩD) + ‖δϕ − ϕ̃⊥h ‖Y
}
.

(6.27)

Then, recalling that both ‖uS‖1,ΩS
and ‖uS,h‖1,ΩS

are bounded by r0 (cf. (5.19)), as well as that

both ‖uD‖H3(div ;ΩD) and ‖uD,h‖H3(div ;ΩD) are bounded by data (cf. Theorems 5.12 and 6.5), the

estimate (6.27) together with (6.20), (6.21), and (6.25) allow us to conclude that

‖ηϕ‖Y ≤ C2

{
‖((δσ, δuD

), δϕ)‖H + ‖(ησ,ηuD
)‖X
}
, (6.28)

with C2 > 0 depending only on parameters, data and other constants, all of them indepen-

dent of h. In turn, noting that th = t̃h + t̃
⊥
h with t̃h = (σ̃h, ũD,h) ∈ X̃h and t̃

⊥
h = (σ̃⊥h , ũ

⊥
D,h) ∈

X̃⊥h , and combining the first and second equation of (6.26), we are able to find that

[a(uS,h)(r̃h + t̃
⊥
h )− a(uS,h)(̃th + t̃

⊥
h ), (ησ,ηuD

)] = [a(uS,h)(r̃h + t̃
⊥
h )− a(uS,h)(t), (ησ,ηuD

)]

− [BS(uS − uS,h)(σ),ησ]− [b(ησ,ηuD
), eϕ],
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where

[b(ησ,ηuD
), eϕ] = [b(ησ,ηuD

), δϕ − ϕ̃⊥h ]− [b((δσ, δuD
)− (σ̃⊥h , ũ

⊥
D,h),ηϕ]

+ [c(δϕ − ϕ̃⊥h ),ηϕ] + [c(ηϕ),ηϕ].

Next, using the second inequality in (5.2), bounding ‖uS−uS,h‖1,ΩS
by ‖δσ−σ̃⊥h ‖X1 +‖ησ‖X1 ,

recalling from (5.36) that ‖σ‖X1 ≤ cTM(fS, fD, gD), and employing assumption (6.23), we

have

[BS(uS − uS,h)(σ),ησ] ≤ αS

4

{
‖ησ‖2

X1
+ ‖δσ − σ̃⊥h ‖X1‖ησ‖X1

}
.

Hence, using the strict monotonicity of a(uS,h) (cf. Lemma 6.3), the continuity of b, c, and B

(cf. (5.1)), the inequalities (5.16) and (6.25), and the positive semi-definiteness property of c

(cf. (5.21)), we deduce that there exist C3, C4 > 0 independents of h, such that

αS

4
‖ησ‖2

X1
+ αDCdiv ‖ηuD

‖3
H3(div ;ΩD)

≤ C3

{
‖((δσ, δuD

), δϕ)‖H + ‖((δσ, δuD
), δϕ)‖2

H

}
‖(ησ,ηuD

)‖X

+ C4 ‖((δσ, δuD
), δϕ)‖H‖ηϕ‖Y,

which together with (6.28), Young’s inequality and simple algebraic manipulations, yield

‖(ησ,ηuD
)‖X ≤ c̃

{
‖((δσ, δuD

), δϕ)‖1/2
H + ‖((δσ, δuD

), δϕ)‖H + ‖((δσ, δuD
), δϕ)‖2

H

}
. (6.29)

In this way, employing (6.20), (6.25), (6.28), (6.29), and the triangle inequality, we obtain

‖((eσ, euD
), eϕ)‖H ≤ ‖((δσ, δuD

), δϕ)− ((σ̃⊥h , ũ
⊥
D,h), ϕ̃

⊥
h

)‖H + ‖((ησ,ηuD
),ηϕ)‖H

≤ C̃
{
‖((δσ, δuD

), δϕ)‖1/2
H + ‖((δσ, δuD

), δϕ)‖H + ‖((δσ, δuD
), δϕ)‖2

H

}
.

(6.30)

In turn, in order to estimate ep, we first observe from (6.20) and the first row of (6.22), that

[B(rh,ψh
),ηp] = −

{
[A(uS)(t,ϕ)−A(uS)(th,ϕh), (rh,ψh

)]

+ [BS(uS − uS,h)(σh), τ h] + [B(rh,ψh
), δp]

}
.

57



Chapter 6. The Galerkin scheme

Then, proceeding similarly to (6.27), we employ again the discrete inf-sup condition of B (cf.

(6.7)), the definition of A(uS) (cf. (3.6)), the inequality (5.16), and the continuity of b, c,B,

and BS (cf. (5.1), (5.2)), to obtain

β̃‖ηp‖Q ≤ C5

{(
1 + ‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS,h

)
‖eσ‖X1

+
(

1 + ‖uD‖H3(div ;ΩD) + ‖uD,h‖H3(div ;ΩD)

)
‖euD

‖H3(div ;ΩD) + ‖eϕ‖Y + ‖δp‖Q
}
.

Thus, using again that both ‖uS‖1,ΩS
and ‖uS,h‖1,ΩS

are bounded by r0 (cf. (5.19)), as well

as that both ‖uD‖H3(div ;ΩD) and ‖uD,h‖H3(div ;ΩD) are bounded by data (cf. Theorems 5.12 and

6.5), we find that there exist C6 > 0 depending only on parameters, data and other constants,

all of them independent of h, such that

‖ηp‖Q ≤ C6

{
‖((eσ, euD

), eϕ)‖H + ‖δp‖Q
}
.

In this way, from (6.20), the triangle inequality, the foregoing bound and (6.30), we conclude

that

‖ep‖Q ≤ ‖δp‖Q + ‖ηp‖Q

≤ Ĉ
{
‖((δσ, δuD

), δϕ)‖1/2
H + ‖((δσ, δuD

), δϕ)‖H + ‖((δσ, δuD
), δϕ)‖2

H + ‖δp‖Q
}
.

(6.31)

Finally, recalling that ((τ̃ h, ṽD,h), ψ̃h) ∈ Vh, and q̃h ∈ Qh are arbitrary, (6.30) and (6.31) give

∥∥((t,ϕ),p
)
−
(
(th,ϕh),ph

)∥∥
H×Q

≤ C
{

dist
(
(t,ϕ),Vh

)1/2
+ dist

(
(t,ϕ),Vh

)
+ dist

(
(t,ϕ),Vh

)2
+ dist (p,Qh)

}
,

which together with (6.19), concludes the proof. �
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A particular choice of finite element subspaces

We now introduce specific discrete spaces satisfying hypotheses (H.0), (H.1), (H.2), and

(H.3) in 2D and 3D. To this end, we let T S
h and T D

h be respective triangulations of the do-

mains ΩS and ΩD, which are formed by shape-regular triangles (in R2) or tetrahedra (in R3),

and assume that they match in Σ so that T S
h ∪ T D

h is a triangulation of ΩS ∪ Σ ∪ ΩD. We also

let Σh be the partition of Σ inherited from T S
h (or T D

h ). Then for each T ∈ T S
h ∪ T D

h we set the

local Raviart–Thomas space of order k as

RTk(T ) := Pk(T )⊕ Pk(T )x,

where x := (x1, ..., xn)t is a generic vector of Rn.
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7.1 Raviart–Thomas elements in 2D

We define the discrete subspaces in (6.1) as follows:

Hh(ΩS) :=
{
τS,h ∈ H(div ; ΩS) : τS,h|T ∈ RTk(T ) ∀T ∈ T S

h

}
,

H1
h(ΩS) :=

{
vS,h ∈ [C(ΩS)]2 : vS,h|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

Lh(ΩS) :=
{
ηS,h ∈ L2

skew(ΩS) : ηS,h|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

Hh(ΩD) :=
{

vD,h ∈ H3(div ; ΩD) : vD,h|T ∈ RTk(T ) ∀T ∈ T D
h

}
,

Lh(ΩD) :=
{
qD,h ∈ L2(ΩD) : qD,h|T ∈ Pk(T ) ∀T ∈ T D

h

}
.

(7.1)

In addition, in order to introduce the particular subspaces ΛS
h(Σ) and ΛD

h (Σ), we follow the

simplest approach suggested in [24] and [10], respectively. In fact, we first assume, without

loss of generality, that the number of edges of Σh is even. Then, we let Σ2h be the partition of

Σ that arises by joining pairs of adjacent edges of Σh, and denote the resulting edges still by e.

Since Σh is automatically of bounded variation (that is, the ratio of lengths of adjacent edges

is bounded) and, therefore, so is Σ2h. Now, if the number of edges of Σh is odd, we simply

reduce it to even case by joining any pair of two adjacent elements, and then construct Σ2h

from this modified partition. Hence, denoting by x0 and xN the extreme points of Σ, we

define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|e ∈ Pk+1(e) ∀ edge e ∈ Σ2h, ψh(x0) = ψh(xN) = 0

}
. (7.2)

In turn, since the space
∏

e∈Σh
W1−1/p,p(e) coincides with W1−1/p,p(Σ), without extra condi-

tions when 1 < p < 2 (in this case p = 3/2) [30, Theorem 1.5.2.3-(a)], it can be readily seen

that a conforming finite element subspace for W1/3,3/2(Σ) can be defined by

ΛD
h (Σ) :=

{
ξh : Σ→ R : ξh|e ∈ Pk(e) ∀ edge e ∈ Σh

}
. (7.3)

Then, we define the global spaces Hh and Qh (cf. (6.3)), by combining (6.2), (6.3), (7.1), (7.2),

and (7.3).
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Now, let ΠD : H3(div ; ΩD) → Hh(ΩD) be the Raviart–Thomas operator on ΩD, which is

well defined for all vD ∈ H3(div ; ΩD) (see [10, Section 4.1] and [17, Remark 3.1] for details),

and characterized by∫
e

(vD − ΠD(vD)) · nψ = 0 ∀ψ ∈ Pk(e), ∀ edge e ∈ T D
h

and ∫
T

(vD − ΠD(vD)) · η = 0 ∀η ∈ Pk−1(T ).

Furthermore, if PD denotes the L2(ΩD)-orthogonal projection, there holds

div (ΠD(vD)) = PD(div vD) ∀vD ∈ H3(div ; ΩD). (7.4)

Next, concerning hypotheses (H.0), (H.1), (H.2) and (H.3), we start mentioning that

(H.0), and (H.1) follow straightforwardly from the definitions in (7.1). Thus, for the Navier–

Stokes terms of (H.2) and (H.3), the existence of ψ0 ∈ H
1/2
00 (Σ) satisfying (6.10) follows as

explained in Lemma 5.6. In turn, similarly to [22, Section 5.3.1], we define

Φh(Σ) :=
{
φh : Σ→ R : φh|e ∈ Pk(e) ∀ edge e ∈ Σh

}
,

and employing [33, Theorem A.1] and [24, Lemma 4.1], we deduce that (6.8) is equivalent
to the existence of β̂1,S > 0, independent of h, such that,

sup
φh∈Φh(Σ)

φh 6=0

〈φh,ψh〉Σ
‖φh‖−1/2,Σ

≥ β̂1,S‖ψh‖1/2,00;Σ ∀ψh ∈ Λ̃
S

h(Σ),

which follows from [24, Lemma 5.2] and the additional hypotheses of quasi-uniformity in a
neighborhood ΩS

Σ of the interface Σ on the ΩS-side. Finally, for the Darcy–Forchheimer terms

in (H.2) and (H.3) (cf. (6.9) and (6.11), respectively) we stablish the following lemmas.

Lemma 7.1 There exists β̃1,D > 0 independent of h, such that

sup
vD,h∈X̃h,2

vD,h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖H3(div ;ΩD)

≥ β̃1,D‖ξh‖1/3,3/2;Σ ∀ ξh ∈ ΛD
h (Σ).

Proof. See [10, Lemma 4.5] for details. �
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Lemma 7.2 There exists β̃D > 0, independent of h, such that

sup
vD,h∈Hh,ΓD

(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖H3(div ;ΩD)

≥ β̃D‖qD,h‖0,ΩD
∀ qD,h ∈ Lh,0(ΩD). (7.5)

Proof. We proceed as in [10, Lemma 4.6]. In fact, let qD,h ∈ Lh,0(ΩD) ⊆ L2
0(ΩD) and apply [27,

Corollary 2.4] to deduce that there exists zD ∈ H1
0(ΩD) such that

div zD = −qD,h ∈ ΩD and ‖zD‖1,ΩD
≤ C‖qD,h‖0,ΩD

. (7.6)

Now, defining zD,h = ΠD(zD) ∈ Hh(ΩD), employing the continuity of ΠD and (7.4), we

deduce that

‖ΠD(zD)‖H3(div ;ΩD) ≤ CD‖zD‖H3(div ;ΩD) and div zD,h = −qD,h ∈ ΩD. (7.7)

Therefore, (7.6), (7.7) and the continuous embedding from H1(ΩD) into L3(ΩD) implies (7.5)

and conclude the proof. �

7.2 Raviart–Thomas elements in 3D

Let us now consider the discrete spaces:

Hh(ΩS) :=
{
τS,h ∈ H(div ; ΩS) : τS,h|T ∈ RTk(T ) ∀T ∈ T S

h

}
,

H1
h(ΩS) :=

{
vS,h ∈ [C(ΩS)]3 : vS,h|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

Lh(ΩS) :=
{
ηS,h ∈ L2

skew(ΩS) : ηS,h|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

Hh(ΩD) :=
{

vD,h ∈ H3(div ; ΩD) : vD,h|T ∈ RTk(T ) ∀T ∈ T D
h

}
,

Lh(ΩD) :=
{
qD,h ∈ L2(ΩD) : qD,h|T ∈ Pk(T ) ∀T ∈ T D

h

}
.

(7.8)

Now, proceeding analogously to the 2D case, we introduce an independent triangulation Σĥ

of Σ, by triangles K of diameter ĥ, and define ĥΣ :=
{
ĥK : K ∈ Σĥ

}
. Then, denoting by ∂Σ
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the polygonal boundary of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|K ∈ Pk+1(K) ∀K ∈ Σĥ, ψh = 0 on ∂Σ

}
. (7.9)

In turn, similarly to (7.3), we deduce now from [29, Section 2] that a conforming finite ele-

ment subspace for W1/3,3/2(Σ) can be defined by

ΛD
h (Σ) :=

{
ξh : Σ→ R : ξh|e ∈ Pk(K) ∀ face K ∈ Σh

}
. (7.10)

Then, we define the global spaces Hh and Qh (cf. (6.3)), by combining (6.2), (6.3), (7.8), (7.9)

and (7.10). Now, concerning hypotheses (H.0), (H.1), (H.2) and (H.3), we first observe that

applying the same arguments as for the 2D case, it follows that (H.0), (H.1), and (H.3) hold.

However, for the inf-sup conditions in (H.2) we employ [21, Lemma 7.5] to conclude that

there exists C0 ∈ (0, 1) such that for each pair (hΣ, ĥΣ) verifying hΣ ≤ C0ĥΣ, the inf-sup

condition (6.8) hold, whereas (6.9) follows from Lemma 7.1 taking in account now (7.10).

7.3 Rate of convergence

Now, for both cases 2D and 3D domains, we derive the theoretical rate of convergence of our

discrete scheme (6.4). To that end, we first recall recall from [10, Section 5], [19, 26] and [17],

the approximation properties of the finite element subspaces involved, which are named

after the unknowns to which they are applied later on.

(APσS
h ) For each δ ∈ (0, k + 1] and for each τ S ∈ H0(div; ΩS) ∩Hδ(ΩS) with divτ S ∈ Hδ(ΩS),

there holds

dist
(
τ S,Hh,0(ΩS)

)
:= inf

τS,h∈Hh,0(ΩS)
‖τ S − τ S,h‖div;ΩS

≤ C hδ
{
‖τ S‖δ,ΩS

+ ‖divτ S‖δ,ΩS

}
.

(APuS
h ) For each δ ∈ (0, k + 1] and for each vS ∈ H1

ΓS
(ΩS) ∩H1+δ(ΩS), there holds

dist
(
vS,H

1
h,ΓS

(ΩS)
)

:= inf
vS,h∈H1

h,ΓS
(ΩS)
‖vS − vS,h‖1,ΩS

≤ C hδ ‖vS‖1+δ,ΩS
.
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(AP
γS
h ) For each δ ∈ (0, k + 1] and for each ηS ∈ L2

skew(ΩS) ∩Hδ(ΩS), there holds

dist
(
ηS,Lh(ΩS)

)
:= inf

ηS,h∈Lh(ΩS)
‖ηS − ηS,h‖0,ΩS

≤ C hδ ‖ηS‖δ,ΩS
.

(APuD
h ) For each δ ∈ (0, k + 1] and for each vD ∈ H3

ΓD
(div ; ΩD) ∩Wδ,3(ΩD) with div vD ∈

Hδ(ΩD), there holds

dist
(
vD,Hh,ΓD

(ΩD)
)

:= inf
vD,h∈Hh,ΓD

(ΩD)
‖vD−vD,h‖H3(div ;ΩD) ≤ Chδ

{
‖vD‖δ,3;ΩD

+‖div vD‖δ,ΩD

}
.

(AP
ϕ
h ) For each δ ∈ (0, k + 1] and for each ψ ∈ H

1/2
00 (Σ) ∩H1/2+δ(Σ), there holds

dist
(
ψ,ΛS

h(Σ)
)

:= inf
ψh∈ΛS

h(Σ)

‖ψ −ψh‖1/2,00;Σ ≤ C hδ ‖ψ‖1/2+δ,Σ.

(APλ
h) For each δ ∈ (0, k + 1] and for each ξ ∈Wδ,3/2(Σ), there holds

dist
(
ξ,ΛD

h (Σ)
)

:= inf
ξh∈ΛD

h (Σ)
‖ξ − ξh‖1/3,3/2;Σ ≤ C hδ−1/3 ‖ξ‖δ,3/2;Σ.

(APpD

h ) For each δ ∈ (0, k + 1] and for each qD ∈ L2
0(ΩD) ∩ Hδ(ΩD), there holds

dist
(
qD,Lh,0(ΩD)

)
:= inf

qD,h∈Lh,0(ΩD)
‖qD − qD,h‖0,ΩD

≤ C hδ ‖qD‖δ,ΩS
.

We remark here, similarly to [10, Section 5], that the sub-optimal approximation property

(APλ
h) follows from the fact that W1/3,3/2(Σ) is the interpolation space with index 1/(3δ)

between Wδ,3/2(Σ) and L3/2(Σ), and from the estimate ‖ξ − ξh‖L3/2(Σ) ≤ Chδ‖ξ‖δ,3/2;Σ, which

is valid for all ξ ∈Wδ,3/2(Σ) and ξh := PΣ(ξ), with PΣ being the L2(Σ)-orthogonal projection

onto ΛD
h (Σ) (cf. [16, Proposition 1.135]). In fact, given ξ ∈ Wδ,3/2(Σ) there exists a constant

C > 0, depending on Σ, such that

‖ξ − ξh‖1/3,3/2;Σ ≤ c ‖ξ − ξh‖1−1/(3δ)

L3/2(Σ)
‖ξ‖1/(3δ)

δ,3/2;Σ ≤ C hδ−1/3‖ξ‖δ,3/2;Σ,

where we have used the fact that ξh is piecewise polynomial of degree≤ k and then for each

δ ∈ (0, k + 1] there holds ‖ξ − ξh‖δ,3/2;Σ ≤ C ‖ξ‖δ,3/2;Σ.
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It follows that there exist positive constants C(t), C(ϕ), and C(p), depending on the

extra regularity assumptions for t,ϕ, and p, respectively, and whose explicit expressions

are obtained from the right-hand side of the foregoing approximation properties, such that

dist (t,Xh) ≤ C(t)hδ, dist (ϕ,Yh) ≤ C(ϕ)hδ−1/3 and dist (p,Qh) ≤ C(p)hδ.

Then, we stablish the theoretical rate of convergence of our Galerkin scheme (6.4). No-

tice that, defining s := min{δ, k + 1}, at least a sub-optimal rate of convergence of order

O(h(s−1/3)/2) is confirmed.

Theorem 7.3 Assume that the hypotheses of Theorem 6.6 hold. Let
(
(t,ϕ),p

)
∈ H × Q with

uS ∈Wr and
(
(th,ϕh),ph

)
∈ Hh ×Qh with uS,h ∈Wh

r be the unique solutions of the continuous

and discrete problems (3.5) and (6.4), respectively. Assume further that there exists δ > 0, such

that σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈ H1+δ(ΩS), γS ∈ Hδ(ΩS), uD ∈ Wδ,3(ΩD), div uD ∈

Hδ(ΩD), ϕ ∈ H1/2+δ(Σ), λ ∈Wδ,3/2(Σ) and pD ∈ Hδ(ΩD). Then, defining s := min{δ, k+1}, there

exists a positive constant C((t,ϕ),p) depending on C(t), C(ϕ), and C(p), all them independent of

h and the continuous and discrete solutions, such that

∥∥((t,ϕ),p
)
−
(
(th,ϕh),ph

)∥∥
H×Q

≤ C((t,ϕ),p)
{
h(s−1/3)/2 + hs/2 + hs−1/3 + hs + h2(s−1/3) + h2s

}
.

Proof. It follows from a direct application of Theorem 6.6 and the approximation properties

of the discrete subspaces. We omit further details. �
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Numerical Results

In this chapter we present some examples illustrating the performance of our augmented

mixed finite element scheme (6.4) on a set of quasi-uniform triangulations of the correspond-

ing domains. Our implementation is based on a FreeFem++ code [31], in conjunction with

the direct linear solver UMFPACK [14].

In order to solve the nonlinear problem (6.4), given 0 6= wD ∈ H3
ΓD

(div ; ΩD) we introduce

the Gâteaux derivate associated to AD (cf. (3.8)):

DAD(wD)(uD,vD) :=
µ

ρ
(K−1uD,vD)D +

F

ρ
(|wD|uD,vD)D +

F

ρ

(
wD · uD

|wD|
,wD · vD

)
D

,

for all uD,vD ∈ H3
ΓD

(div ; ΩD). In this way, we propose the Newton-type strategy: Given
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t0
h := (σ0

h,u
0
D,h) ∈ Xh with u0

D,h 6= 0, for m ≥ 1, find ((tmh ,ϕ
m
h

),pm
h

) ∈ Hh ×Qh such that

[AS(σmS,h), τ h] + [BS(um−1
S,h )(σmS,h), τ h] + [BS(umS,h)(σ

m−1
S,h ), τ h] + DAD(um−1

D,h )(umD,h,vD,h)

+ [b(rh),ϕ
m

h
] + [b(tmh ),ψ

h
]− [c(ϕm

h
),ψ

h
] + [B(rh,ψh

),pm
h

]

= [BS(um−1
S,h )(σm−1

S,h ), τ h] +
F

ρ
(|um−1

D,h |u
m−1
D,h ,vD,h)D + [F, (rh,ψh

)],

[B(tmh ,ϕh),qh] = [G,q
h
],

(8.1)

for all ((rh,ψh
),q

h
) ∈ Hh ×Qh.

In all the numerical experiments below, the iterations are terminated once the relative

error of the entire coefficient vectors between two consecutive iterates is sufficiently small,

i.e.,
‖coeffm+1 − coeffm‖l2

‖coeffm+1‖l2
≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of

freedom defining the finite element subspaces Hh and Qh, and tol is a fixed tolerance chosen

as tol = 1E − 06. As usual, the individual errors are denoted by:

e(σS) := ‖σS − σS,h‖div,ΩS
, e(uS) := ‖uS − uS,h‖1,ΩS

, e(γS) := ‖γS − γS,h‖0,ΩS
,

e(pS) := ‖pS − pS,h‖0,ΩS
, e(uD) := ‖uD − uD,h‖H3(div ;ΩD), e(pD) := ‖pD − pD,h‖0,ΩD

,

e(ϕ) := ‖ϕ−ϕh‖(0,1),Σ, e(λ) := ‖λ− λh‖L3/2(Σ),

where pS,h is the postprocessed pressure given by

pS,h := − 1

n
tr (σS,h + (uS,h ⊗ uS,h))− `h in ΩS.

Notice that, since the natural norms to measure the error of the interface unknowns ‖λ −

λh‖1/3,3/2;Σ and ‖ϕ − ϕh‖1/2,00;Σ are not computable, we have decided to replace them re-

spectively by ‖ · ‖L3/2(Σ) and ‖ · ‖(0,1),Σ, where the last one is defined based on the fact that
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H1/2(Σ) is the interpolation space with index 1/2 between H1(Σ) and L2(Σ):

‖ψ‖(0,1),Σ := ‖ψ‖1/2
0,Σ ‖ψ‖

1/2
1,Σ ∀ψ ∈ H1(Σ).

Next, we define the experimental rates of convergence

r(σS) :=
log(e(σS)/e′(σS))

log(hS/h′S)
, r(uS) :=

log(e(uS)/e′(uS))

log(hS/h′S)
, r(γS) :=

log(e(γS)/e′(γS))

log(hS/h′S)
,

r(pS) :=
log(e(pS)/e′(pS))

log(hS/h′S)
, r(uD) :=

log(e(uD)/e′(uD))

log(hD/h′D)
, r(pD) :=

log(e(pD)/e′(pD))

log(hD/h′D)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(ĥΣ/ĥ′Σ)
, r(λ) :=

log(e(λ)/e′(λ))

log(hΣ/h′Σ)
,

where h? and h′? (? ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective

errors e and e′, respectively. In turn, we take ĥΣ as two times hΣ, which comes from the re-

striction on the mesh sizes hΣ ≤ C0ĥΣ when considering the constant C0 = 1/2. The numeric

results confirm that this choice is suitable. The examples to be considered in this chapter are

described next. In all of them, for the sake of simplicity, we choose the parameters µ = 1,

ρ = 1, ω = 1 and K = I, and according to (5.12), the stabilization parameters are taken as

κ1 = 1/(2µ), κ2 = 2µ and κ3 = CKoµ, where, similarly to [11, Section 7] we choose heuristi-

cally CKo = 1/2. Additionally, regarding the conditions (trσS,h, 1)S = 0 and (pD,h, 1)D = 0,

these are imposed via a penalization strategy.
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8.1 Example 1: Tombstone-shaped domain without source in

the porous media.

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous

square, i.e., ΩS :=
{

(x1, x2) : x2
1 + (x2 − 0.5)2 < 0.52, x2 > 0.5

}
, ΩD := (−0.5, 0.5)2 and

Σ := (−0.5, 0.5)× {0.5}. We consider the Forchheimer number F = 1 and the data fS, fD, and

gD, are adjusted so that the exact solution in the tombstone-shaped domain Ω = ΩS ∪Σ∪ΩD

is given by the smooth functions

uS(x1, x2) =

 cos(πx1) sin(πx2)

− sin(πx1) cos(πx2)

 in ΩS,

uD(x1, x2) =

 π exp(x1) sin(πx2)

exp(x1) cos(πx2)

 in ΩD,

p?(x1, x2) = sin(πx1) sin(πx2) in Ω?, with ? ∈ {S,D}.

Notice that the source of the porous media is gD = 0. Notice also that this solution satisfies

uS · n = uD · n on Σ. However, the Beavers–Joseph–Saffman condition (cf. (2.8)) is not

satisfied, the Dirichlet boundary condition on ΓS and the Neumann boundary condition on

ΓD are both non-homogeneous. In this way, the right-hand side of the resulting system must

be modified accordingly.
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DOF hS e(σS) r(σS) e(uS) r(uS) e(γS) r(γS) e(pS) r(pS)

230 0.330 2.5485 – 1.4696 – 0.5276 – 0.3729 –
800 0.191 1.2766 1.256 0.4464 2.165 0.2901 1.087 0.1590 1.549

2872 0.091 0.6185 0.983 0.1657 1.344 0.1442 0.948 0.0762 0.997
10991 0.049 0.3071 1.111 0.0774 1.209 0.0729 1.082 0.0387 1.077
43462 0.024 0.1511 1.019 0.0365 1.081 0.0336 1.112 0.0188 1.035

171401 0.013 0.0763 1.155 0.0184 1.159 0.0177 1.083 0.0094 1.175

hD ĥΣ hΣ e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter
0.373 1/2 1/4 0.7464 – 0.1748 – 0.5282 – 0.1554 – 6
0.190 1/4 1/8 0.3480 1.133 0.0639 1.495 0.2294 1.203 0.0708 1.135 7
0.095 1/8 1/16 0.1678 1.053 0.0305 1.067 0.1075 1.094 0.0351 1.012 7
0.054 1/16 1/32 0.0856 1.172 0.0151 1.219 0.0529 1.023 0.0175 1.008 8
0.025 1/32 1/64 0.0427 0.908 0.0075 0.916 0.0251 1.073 0.0087 1.004 8
0.015 1/64 1/128 0.0214 1.280 0.0037 1.293 0.0128 0.971 0.0043 1.001 8

Table 8.1: Example 1, Degrees of freedom, mesh sizes, errors, convergence history and New-
ton iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer prob-
lem with F = 1.
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Figure 8.1: Example 1. Approximated spectral norm of the pseudostress tensor components
and the skew-symmetric part of the Navier–Stokes velocity gradient (top panel), velocity
streamlines and velocity components on the whole domain (middle panel), and geometry
configuration and pressure field in the whole domain (bottom panel).
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8.2 Example 2: Inverted-L-shaped domain coupled with a

square domain.

In our second example, we consider an inverted-L-shaped domain coupled with a square,

which yields a porous medium partially surrounded by a fluid. More precisely, we consider

the domain Ω = ΩS ∪ Σ ∪ ΩD, with ΩD := (−1, 0)2, ΩS := (−1, 1)2\ΩD and Σ := (−1, 0) ×

{0} ∪ {0} × (−1, 0). The Forchheimer number is chosen as F = 1 and the data fS, fD, and gD,

are adjusted so that the exact solution in the square Ω is given by the smooth functions

uS(x1, x2) =

 −π sin(πx1) cos(πx2)

π cos(πx1) sin(πx2)

 in ΩS,

uD(x1, x2) =

 sin(πx1) exp(x2)

exp(x1) sin(πx2)

 in ΩD,

p?(x1, x2) = cos(πx1) cos(πx2) in Ω?, with ? ∈ {S,D}.

Notice that, this solution satisfies uS · n = uD · n on Σ and uD · n = 0 on ΓD. However,

the Beavers–Joseph–Saffman condition (cf. (2.8)) is not satisfied and the Dirichlet boundary

condition for the Navier–Stokes velocity on ΓS is non-homogeneous and therefore the right-

hand side of the resulting system must be modified accordingly.
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DOF hS e(σS) r(σS) e(uS) r(uS) e(γS) r(γS) e(pS) r(pS)

756 0.375 23.6030 – 5.3592 – 4.6970 – 3.3911 –
2847 0.195 11.3037 1.223 2.7705 1.006 2.5019 0.961 1.7970 0.969

10644 0.096 5.6685 0.977 1.3917 0.974 1.3373 0.886 0.8695 1.027
42043 0.052 2.7945 1.152 0.6885 1.146 0.6898 1.078 0.4231 1.173

165156 0.029 1.4040 1.198 0.3452 1.201 0.3468 1.197 0.2097 1.221
657612 0.015 0.7003 0.993 0.1728 0.988 0.1723 0.998 0.1057 0.978

hD ĥΣ hΣ e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter
0.373 1/2 1/4 0.4384 – 0.1273 – 2.0677 – 0.2560 – 4
0.190 1/4 1/8 0.1974 1.185 0.0583 1.159 1.1721 0.819 0.1151 1.154 4
0.093 1/8 1/16 0.1002 0.946 0.0306 0.900 0.5560 1.076 0.0556 1.049 4
0.051 1/16 1/32 0.0491 1.183 0.0150 1.184 0.2832 0.973 0.0277 1.007 4
0.025 1/32 1/64 0.0247 0.982 0.0074 1.004 0.1418 0.997 0.0138 1.003 4
0.014 1/64 1/128 0.0124 1.153 0.0037 1.147 0.0701 1.017 0.0069 1.001 4

Table 8.2: Example 2, Degrees of freedom, mesh sizes, errors, convergence history and New-
ton iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer prob-
lem with F = 1.
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Figure 8.2: Example 2. Approximated spectral norm of the pseudostress tensor components
and the skew-symmetric part of the Navier–Stokes velocity gradient (top panel), velocity
streamlines and velocity components on the whole domain (middle panel), and geometry
configuration and pressure field in the whole domain (bottom panel).
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8.3 Example 3: 2D helmet-shaped domain with different For-

chheimer numbers.

In our last example, and inspired by [10], we focus on the performance of the numerical

method (8.1) with respect to the number of Newton iterations required to achieve certain

tolerance given different Forchheimer numbers. Hence, we consider

F ∈
{

0, 100, 101, 102, 103, 104, 105
}
,

the 2D helmet-shaped domain described by Ω = ΩS∪Σ∪ΩD, where ΩD := (−1, 1)×(−0.5, 0),

Σ := (−1, 1)×{0}, and ΩS := (−1, 1)×(0, 1.25)\Ω̃s with Ω̃S := (−0.75, 0.75)×(0.25, 1.25). The

data fS, fD, and gD, are adjusted so that the exact solution in the 2D helmet-shaped domain

Ω is given by the smooth functions

uS(x1, x2) =

 − sin(2πx1) cos(2πx2)

cos(2πx1) sin(2πx2)

 in ΩS,

uD(x1, x2) =

 sin(2πx1) exp(x2)

exp(x1) sin(2πx2)

 in ΩD,

p?(x1, x2) = sin(πx1) exp(x2) in Ω?, with ? ∈ {S,D}.

Notice that, this solution satisfies uS · n = uD · n on Σ and uD · n = 0 on ΓD. However,

the Beavers–Joseph–Saffman condition (cf. (2.8)) is not satisfied and the Dirichlet boundary

condition for the Navier–Stokes velocity on ΓS is non-homogeneous and therefore the right-

hand side of the resulting system must be modified accordingly.
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F

h
0.200 0.100 0.050 0.026 0.014 0.007

0 4 3 3 3 3 3
100 5 5 5 5 5 5
101 7 8 8 9 9 9
102 8 9 10 10 11 11
103 9 9 10 11 11 12
104 9 9 10 11 12 12
105 9 9 10 11 12 12

Table 8.3: Example 3, Performance of the iterative method (number of Newton iterations)
upon variations of the Forchheimer number F.

DOF hS e(σS) r(σS) e(uS) r(uS) e(γS) r(γS) e(pS) r(pS)

1264 0.188 14.7840 – 2.1893 – 1.5363 – 1.4364 –
4833 0.100 7.1648 1.153 1.0943 1.104 0.7868 1.065 0.6581 1.243

17586 0.050 3.6068 0.991 0.5431 1.011 0.4149 0.923 0.3027 1.120
69327 0.026 1.7936 1.054 0.2718 1.045 0.2087 1.038 0.1477 1.083

269604 0.014 0.8992 1.183 0.1350 1.200 0.1044 1.187 0.0738 1.190
1076768 0.007 0.4490 0.932 0.0674 0.932 0.0523 0.926 0.0368 0.935

hD ĥΣ hΣ e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter
0.200 1/4 1/8 1.2761 – 0.1131 – 1.1300 – 0.2569 – 7
0.095 1/8 1/16 0.6135 0.984 0.0388 1.438 0.4481 1.335 0.0744 1.787 8
0.049 1/16 1/32 0.3115 1.037 0.0151 1.447 0.2129 1.074 0.0302 1.300 8
0.026 1/32 1/64 0.1566 1.081 0.0067 1.283 0.1003 1.086 0.0142 1.089 9
0.013 1/64 1/128 0.0784 0.968 0.0033 0.999 0.0502 0.997 0.0070 1.026 9
0.007 1/128 1/256 0.0393 1.204 0.0016 1.221 0.0249 1.011 0.0035 1.010 9

Table 8.4: Example 3, Degrees of freedom, mesh sizes, errors, convergence history and New-
ton iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer prob-
lem with F = 10.

76



Chapter 8. Numerical Results

2.5 5.1 7.6 10.    0   13
.

2.8 5.6 8.4 11.    0   14
.

-3.8 -1.3 1.3 3.8 -6.3  6.3
.

0.54 1.1 1.6 2.2    0  2.7
.

-0.66 -0.22 0.22 0.66-1.1  1.1
.

-2.0 -1.2 -0.43 0.34-2.7  1.1
.

-1.5 -0.50 0.50 1.5 -2.5  2.5
.

Figure 8.3: Example 3. Approximated spectral norm of the pseudostress tensor components
and the skew-symmetric part of the Navier–Stokes velocity gradient (top panel), velocity
streamlines and velocity components on the whole domain (middle panel), and geometry
configuration and pressure field in the whole domain (bottom panel).
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8.4 Summary of examples

In Tables 8.1, 8.2 and 8.4 we summarize the convergence history for a sequence of quasi-

uniform triangulations, considering the finite element spaces introduced in Section 7.1 with

k = 0, and solving the nonlinear problem (8.1), which require around eight, four and nine

Newton iterations for the Examples 1, 2 and 3, respectively. We observe that the sub-optimal

rate of convergence O(h(k+2/3)/2) provided by Theorem 7.3 (when δ = k + 1) is attained in

all the cases (with k = 0). Even more, the numerical result suggest that there exist a way

to prove optimal rate of convergence O(hk+1). In Table 8.3 we show the behaviour of the

iterative method (8.1) as a function of the Forchheimer number F, considering different mesh

sizes h := max{hS, hD}, and a tolerance tol = 1E − 06. Here we observe that the higher the

parameter F the higher the number of iterations as it occurs also in the Newton method for

the Navier–Stokes/Darcy–Forchheimer coupled problem. Notice also that when F = 0 the

Darcy–Forchheimer equations reduce to the classical linear Darcy equations and as expected

the iterative Newton method (8.1) is faster.

On the other hand, the approximated spectral norm of the pseudostress tensor compo-

nents, the skew-symmetric part of the Navier–Stokes velocity gradient, the velocity stream-

lines, the velocity components on the whole domain, the geometry configuration and the

pressure field in the whole domain of the approximate solutions for the three examples are

displayed in Figures 8.1, 8.2 and 8.3. All the figures were obtained with 171401, 657612, and

1076768 degrees of freedom for the Examples 1, 2, and 3, respectively. In particular, we

can observe in Figures 1 and 3 that the second components of uS and uD coincide on Σ as

expected, and hence, the continuity of the normal components of the velocities on Σ is pre-

served. In turn, we can see that the velocity streamlines are higher in the Darcy–Forchheimer

domain. Moreover, it can be seen that the pressure is continuous in the whole domain and

preserves the sinusoidal behaviour. Finally, similarly to Figures 1 and 3, in Figure 2 we

can also observe the continuity of the normal components of the velocities on Σ since their

first component of uS and uD coincide on {0} × (−1, 0), whereas their second components

coincide on (−1, 0)× {0}.
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CHAPTER 9

Conclusions and future work

9.1 Conclusions

In this thesis we developed an augmented fully-mixed finite element method for the cou-

pling of the Navier–Stokes and Darcy–Forchheimer equations. We proved solvability of

both continuous and discrete problems as well as their convergence, all illustrated by means

of examples and numerical simulations. The main conclusions of this work are:

1. We obtained an extension of the works done in [2] and [10]. Unlike [2] we consider

the Navier–Stokes equations in the free fluid, and a mixed formulation in this region

instead of the standard velocity-pressure formulation as in [10].

2. A fully-mixed augmented formulation was developed for the problem as well as suf-

ficient conditions to guarantee its continuous and discrete well-posedness by utilizing

classical theory of monotone operators and fixed-point arguments.

3. The fully-mixed finite element method proposed here was shown to be sub-optimally
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convergent. However, the numerical examples presented shows an optimal conver-

gence suggesting that there should exist a way to prove such result.

9.2 Future work

The methods developed and the results obtained in this thesis have motivated several on-

going and future projects. Some of them are described below:

1. As a natural continuation, we are interested in carrying out an a posteriori error analy-

sis for the fully-mixed formulation of the Navier–Stokes/Darcy–Forchheimer coupled

problem in order to improve its robustness in the presence of complex geometries or

solutions with high gradients and singularities.

2. As a complement and motivated by [11], we are interested in analyzing the coupling

of the Navier–Stokes and Darcy Forchheimer equations assuming non-linear viscosity

for the fluid.

3. Numerical experiments with k ≥ 1 for both cases 2D and 3D, are also planned.

4. The extension of this finite element method to the unsteady state case will be consid-

ering in the future as well.
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