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Abstract

Shape optimization seeks to optimize the shape of a region where certain partial differential
equation is posed such that a functional of its solution is minimized /maximized. In this thesis we
give an introduction to shape optimization through a model problem, introducing the concepts
of shape derivative for a function and perturbation of the shape for a functional, we deduce the
optimality conditions for the problem, and then we will present a numerical method to seek the
solution via a hybridizable discontinuous Galerkin methods on curved domains. Subsequently,
we develop a rigorous treatment to analyze the well-posedness of the problems that arise from

the optimality conditions, and provide an a priori error analysis for each scheme.



Resumen

La optimizacion de forma busca optimizar la forma de una regién en la que se plantea una
determinada ecuacion diferencial parcial de manera que se minimiza/maximiza un funcional
de su solucién. En esta tesis damos una introduccién a la optimizacion de forma a través de
un problema modelo, introduciendo los conceptos de derivada de la forma para una funcién
y perturbacion de la forma para un funcional, deducimos las condiciones de optimalidad para
el problema, y luego presentamos un método numérico para buscar la solucion a través de
métodos de Galerkin discontinuo hibridizables en dominios curvos. Posteriormente, realizamos
un tratamiento riguroso para analizar la existencia y unicidad de soluciones de los problemas
que surgen de las condiciones de optimalidad, luego hacemos un analisis de error a prior: para

cada esquema.
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CHAPTER 1

Introduction

Shape optimization is an important branch of the study of optimal control theory, which was
developed extensively in the 1990s and arises from the purpose of minimizing material or
energy cost through modification of the design shape. This area has inspired the development
of a wide variety of theoretical and purely mathematical tools, and has a large number of
applications in science and engineering, such as architecture and civil engineering [5], fluid
mechanics [16,30,56], modelling of quantum chemistry phenomena [7,11], electromagnetism or
photonics [37,39], among others research fields. From a mathematical point of view, we can
see shape optimization as finding the minimum (whenever it exists) of a cost functional over a
set of admissible domains, in many cases this minimization problem is constrained by a partial

differential equation (PDE) defined on the target domain.

The first Discontinuous Galerkin (DG) method was developed in 1973 by Reed and Hill
in an article for a neutron transport equation corresponding to a linear hyperbolic equation
independent of time [47]. Since then, DG methods became one of the most widely used methods

for the numerical analysis of PDEs. However, DG methods were criticized for having too many



degrees of freedom and for having a complicated computational implementation compared to
Continuous Galerkin (CG) methods. These criticisms were resolved after the development of
Hybridizable Discontinuous Galerkin (HDG) methods, first for diffusion problems and later

presented in a unified framework [20].

During the past and present decade, HDG methods have been extensively developed for
different types of equations, for instance, diffusion equations [18,21,22, 38], convection-diffusion
equations [19,32,43], the wave equation [24], Stokes flow [13,25,34,40], Oseen and Brinkman
equations [4,14,35], Navier-Stokes equations [15,45,48], linear and nonlinear elasticity [26,44,54],
just to name a few.

In recent years, HDG methods have been developed for domains that are not necessarily
polygonal /polyhedral, the method we will use for this thesis seeks to approximate the solution
in a polygonal subdomain by transferring the data from the curved boundary to the boundary
of the polygonal subdomain while maintaining the high order of convergence. This HDG
method was introduced within the context of HDG discretizations for linear elliptic equations
in [17], subsequently completing its theoretical development in [23]. This method has been
used for solving equations, for instance, Stokes flow [52], Oseen equations [53], the Helmholtz
equation [10], convection diffusion equations [27], the Grad-Shafranov equation [49,50], among

others.

For the treatment of partial differential equations arising from the shape optimization
problem, work has been carried out using a variety of methods, for instance, Finite Element
Method (FEM) [29], Cut Finite Element Methods (CutFEM) [8,9], Boundary Element Method
(BEM) [6,42], level-set methods [1, 3], among others. For this manuscript we seek to make a
first approach for a development of HDG methods on curved domains for shape optimization
problems while maintaining the high order of convergence of these methods in this new context.
In turn, proving the existence and uniqueness of these methods and giving a rigorous analysis

for the error estimates.

The remainder of this work is organized as follows. In Chapter 2 we give an introduction to
shape optimization through our model problem, we will also give some definitions and relevant

results to the development of shape optimization problems. In Chapter 3 we present the



continuous mixed formulations of the state, adjoint and deformation field equations, which
come from the shape optimization problem. Then, in Chapter 4 we construct the computational
domain, set the notation associated to the mesh, define the transferring segments and we give
some relevant assumptions for the development of the work. In Chapter 5 we introduce the
HDG method on curved domains for approximate the solution of the state and adjoint equations
with Dirichlet data and for the deformation field equation with Neumann data. We also prove
that this schemes are well-posed. Then, in Chapter 6 we carry out the a priori error analysis of
each scheme. Finally, Chapter 7 concludes by discussing the main contributions of this thesis

and possible future directions.



CHAPTER 2

Shape optimization

This chapter presents the main tools used in shape optimization, where, through the model

problem, the definitions and results of the shape calculation are developed until the optimality

conditions are found. In order to make this manuscript self-contained in Sections 2.2, 2.3, and

2.4 we introduce some concepts of shape differential calculus that can be found in [41].

2.1 The model problem

In this thesis we will consider the following shape optimization model problem:

subject to

1

min J(Q:y(Q)) = ming | (y(Q) - §)° (2.1.1)
-V - (aVy(Q)) = f inQ, (2.1.2a)



2.1. The model problem

y(2) =g onl:=00Q, (2.1.2b)

where:

a) O is set of admissible subsets Q of R? (d = 2 or d = 3). i.e., all the domains where the
PDE is valid.

b) QCcU CR? (d=2ord=3), where U is the called universe domain, which we assume
to be closed in R? and is the domain where all the data of the model problem are defined,

for the purpose of the well posedness of the problem.
c) y € H'(U) is given,
d) a is a given positive number,
e) f € H'U) is given,
f) g € H*(U) is given,
We seek to determine the domain €2 that minimizes the shape functional J subject to (2.1.2).

Thus, we will look for the optimal domain Q°* contained in O, in other words,

QP = argmin J(Q)
Qe

subject to

-V (aVy(Q) = f inQ,
y(Q) =g onT.

Remark. We can note that the structure of our shape optimization problem is similar to the
structure of a control problem, for example [57]. If we focus on the functional, J which in
our case depends on g and y(£2), but in the case of control problems the functional J depends

on y and another unknown. Therefore, we can say that shape optimization problems can be

5



2.2. Introduction to shape differential calculus

seen as control problems but, instead of having two unknowns governed by PDEs, we have two
unknowns where one depends on a PDE and the other one is the domain which also depends

on a PDE.

2.2 Introduction to shape differential calculus

In elementary differential calculus, the derivative is an operator that measures the sensitivity
of a function with respect to changes of an independent variable, but, what happens if now
our independent variable is the domain of the function?. We must consider a new concept of
derivative, in the context of changes in the domain, more precisely, an operator will be defined
that will measure the sensitivity of a function (later it will be extended to a functional) with
respect to changes of the domain. To define a formal shape derivative, first we have to define

the concept of a perturbation of the domain.

Definition 2.2.1. Given a bounded domain 2 C U, for any € > 0 the deformation map is
defined by
() =x+eV(x) Ve, (2.2.1)

where V' : U — R? (with d the dimension of U), is a vector field over U hence, ¢ V is the
displacement of each & in U. Then, with the deformation map, we then define a deformed

domain (), as

Q=P () ={P.(x): xeQ}.
It is easy to notice that € = 2.

Definition 2.2.2. If y(©2) is a function that depends on the domain, we define the material

derivative of y in the direction V' as the following limit,

V(@) o tim M@ — @) (@)

e—0 £




2.2. Introduction to shape differential calculus

if it exists, then we have the following identity

HOV)(@) = 2 y(0)(®.(a))

e=0

The operator defined above obeys the common rules of elementary calculus as chain rule,
product rule, etc, [41,55]. Note that if y does not depend explicitly on the geometry of the
domain, we can see y as the restriction of a function defined over the set which contains all the
possible domains, that is, a function § in U, such that y(Q) = g(U) o Then, if we compute the

material derivative of y in the direction V' we get
Y V) = Vy(Q)- V.

On the other hand, if a function y depends explicitly on the geometry of the domain we introduce

the following definition

Definition 2.2.3. The shape derivative of y in the direction V is defined as
y(Q V) = g9(Q; V) — Vy(Q)-V inQ. (2.2.2)

Remark. 1t is important to notice that the material derivative does not commute with the

standard time and space derivatives but the shape derivative does [55].

Remark. Tt is important to note that the definitions 2.2.3 and 2.2.2 are the same if instead of
2 we compute the derivatives in a curve, for example the boundary I', but is not necessarily

the same as restricting derivatives over ) to I'.

The next tool that we need to introduce is the concept of shape perturbation of a shape

functional, which is defined as follows

Definition 2.2.4. Let J : O — R be a shape functional, Q € O. We define the shape

perturbation of J at 2 along the direction V as the following limit,

5J(: V) = lim 28 = T

e—0 I




2.2. Introduction to shape differential calculus

if it exists. Then, we have the following identity

d
SIQV) = Q)]

To provide a more explicit computation of the shape perturbation of a particular functional

we present the following characterization

Lemma 2.2.1. Let Q C U be a bounded Lipschitz admissible domain and V' a vector field. Let
g = g(2) be a function that depends on the domain. Let us assume that the material and shape

derivative of y both exist and belong to L'(S)). For the shape functional
J©) = [ 9@,
Q
we have that its shape perturbation is given by
(V) = [ g@V)+ [ 9@V n.
r

where n is the unit outward normal vector of .

Proof. By the definition of shape perturbation of J(2) in the direction V' we have

51 V) = [ g0

e=0

Using the change of variables theorem and the deformation map (2.2.1)

d
5J(2V) = — /Qdet(vq>5)g(95)o<1>5

e=0

— /Q jg(det(Vng) 9(Q:) 0 @)

e=0

_ /Qdet(VQE)jE(g(QE)oq)a) o /ng(det(vg))g(@e)o@

e=0

— /Qdet(vcﬁg)jg(g(ﬂs)oq)s) L + /QV-Vg(Qg)oq)s

= [[G@V) + 9@ V- V),

e=0



2.2. Introduction to shape differential calculus

whose the proof of 4 (det(V®,)) = V-V can be found in [41, Section 11.2.1]. Then, by (2.2.2)

and using the divergence theorem, finally we obtain

5J(Q; V)

(g% V) +Vyg(Q)-V + g(QV-V)
(V) + [ V(@)

JuV)+ [ 9@V n.

I
S5~

We present now a definition that will be followed by a lemma,

Definition 2.2.5. Let x; and ko be the principal curvatures of a surface, then the total cur-
vature of the surface is given by

K = K] + Kg.
For more details, see for instance [41, Section 11.2].
Remark. Tt should be emphasized that k is not necessarily constant on the surface.

Lemma 2.2.2. Let z(I") be so that the material derivative 2(I'; V') and the shape derivative
Z/(T; V') both exist and belong to L*(T'). Then we have

5 J(I;V) = /

T

S5V + /Fm(r)v-n. (2.2.3)
If 2(T') = g(Q)|r, then
§JI;V) = /Fg'(Q;V)|r + /F (a%(y + fig(Q)) V.n, (2.2.4)

where k denotes the total curvature of .

Proof. See [41, Proposition 11.9]. O



2.3. Introduction to shape optimization

2.3 Introduction to shape optimization

In optimal control problems, the goal is to minimize/maximize a functional which depends
on a function that is constrained by a PDE. In the context of shape optimization, the shape
functional also depends on the domain. In other words we want to determine the domain
2 € O that minimizes/maximize the shape functional. Consider the model problem given in
(2.1.1) subject to (2.1.2) with g, f € L*(U) and g € H*(U). Let us consider y = y(Q) to
make notation easier. Thus, by Lemma 2.2.1 and the chain rule for the shape derivative, we

can compute the shape perturbation of J in the direction V as

s1@V) = [ (w-37) + 5 [0 V-n
= [w-pv@Vv)+5 [4-9*Vn

Then, we notice that if A is an open set compactly supported in €, by testing (2.1.2) with

(2.3.1)

¢ € H}(A), and integrating by parts,

. — 1
/AaVy Vi /Afso Voe Hy(A).

We emphasize that neither the test function ¢ nor the datum f depend on the domain 2. Then,

computing the shape derivative on both sides of previous expressions
/AaVy’-w — 0 VeeH\(A).
On the other hand, if we test the boundary condition of (2.1.2) by ¢ € H}(U) we get

/F(y—g)cb:()-

Then, computing the shape derivative of both sides of this expression and using (2.2.4) and
recalling the boundary condition (2.1.2b) yields

O—/y¢+/< y—g)¢ +a((ya—g) >V n—/ygb—i-/ b =9) ‘n.

10



2.3. Introduction to shape optimization

With all of the above identities, we deduce that the shape derivative y' satisfies the following

equation
-V-(aVy) = 0 in Q,

78@ —9) V-n onl. (23.2)

/

YT T on
Therefore, we can obtain 8./ in (2.3.1) by solving (2.1.2) and (2.3.2), and look for the optimal
domain €),,; that satisfies

5J(Qopt; V) = 0.

for some admissible direction V' (which will be specified later in section 2.4).

Like in optimal control problems, in the context of shape optimization we can also employ
an adjoint problem in order to obtain a representation of 8 J that does not involve 3. In fact,
let us consider z satisfying —V - (aVz) = y — 7 in a distributional sense in 2. For any

direction V', according to (2.3.1)

510:V) = [(-0y@V) + 5 [w-5V n
= [V @y @ V) + 5 [V n
:/QaVz-Vy’—/ra(?nzy’+;/F(y—g)QV-n

= —/QZV-(aVy’) +/Fa8ny'z—/raanzy/+;/F(y—ﬂ)2v-n.

By (2.3.2) the first term vanishes. This suggests the Dirichlet condition z = 0 on I' for the

adjoint problem, in order to have that

;o1 _
5 (V) = —/Faanzy —|—§/F(y—y)2V-n

) (2.3.3)
= [atnzonly—9)Von+ 5 [y=5V n.
r 2 Jr

Therefore, in (2.3.3) we obtain an expression for the shape perturbation that does not depend

on the shape derivative ¢/, but rather on y and on 2z € H?(f2), the solution of the adjoint

11



2.4. An approximation for V'

problem,

—V-(aVz) = — 9y in Q,
(@Va) = y—4 (2.3.4)
z = 0 on .

Finally, we can deduce that the optimality conditions for (2.1.1) are the state equation (2.1.2),
the adjoint equation (2.3.4) and the condition

5V = /FG(F)V-n — 0, (2.3.5)

for the deformation field V', where

G(I') = a0nz0n(y — g) + ;(g - 7)°.

From now on G(I') will be called the shape gradient of .J.

2.4 An approximation for V

Now the question is, how to find a deformation field V' satisfying (2.3.5). It is known that shape
optimization problems generally do not have a unique solution due that there is no manner to
ensure that exists a unique V. In fact, non-uniqueness is one of the most common problems
that mathematicians have to deal with in this context [36]. Since the deformation field V' might

not be unique, we look for the one that satisfies

—AV =0 in €,
oV = —G([)n only, (2.4.1)
V =0 on ['p,

where I' is the piece of the boundary that can be deformed and I'p is the piece of the boundary
that is fixed. We assume that |[['y| # 0and |[I'p| # 0. On the other hand, the weak formulation
for (2.4.1) is given by seeking V' € [H}(€)]¢ such that

/QVV:V11J+/F GMw-n =0 Ywec[HHQ)],

12



2.4. An approximation for V'

where,
[HH ()] == {w € [H(N)]Y, w = 0onTp}.
Here for any tensor fields ¢ = (¢ij)ij=1.,» and ¢ = ((;j)ij=1n, the tensor inner product is
defined as
¢:C =D Gy
ij—=1

Thus, by letting w = V/, it follows from the weak formulation that

5 (V) = /

'y

GOV -n = — /QWVF <0. (2.4.2)

Thus, this implies that V' chosen in this way guarantees a descent direction.

The choice of problem (2.4.1) is not arbitrary. In fact, we can notice that as (2.4.1) satisfies
the maximum principle (chapter 2, theorem 4 [31]), the absolute value of V' on I is grater than
the absolute value of V' in any point of 2. Thus, the deformation will be grater in the boundary

of the domain. This argument makes finding a V' that satisfies (2.4.1) has sense.

Based on the previous analysis we propose a technique for computing an approximation for
V based on the gradient descent method: Using what we learned from (2.4.1) and (2.4.2) we

can define V*®) as the solution of the following problem

_AV® = g in Q)
9, V® = —GI®)n onl§, (2.4.3)
vk = 0 on Fg).

Then for each step we will update the domain as
QY — (I + , VI QW) = @ QW) VEkeN,

where 7, is a step size parameter to be determined and V® is the descent direction at step
k. Analogously to (2.4.2) we can prove that V*) is a descent direction for each k € N, and
therefore

JOQEDY < J(Q®) Yk eN.

13



2.4. An approximation for V'

At this point, we are able to present an algorithm (Algorithm 11.1 [41]) to solve the shape

optimization problem, as follows

Algorithm 1 Shape Optimization Algorithm

Require: Initial domain Q© and tolerance parameter tol

y(0) + y(Q2©)) by solving the state equation (2.1.2) in Q©

2(0) < 2(Q®) by solving the adjoint equation (2.3.4) in Q©

compute J(Q)

compute G(T'®)

compute a deformation field V' (©) by solving (2.4.3)

k<0

while [§J(Q®): V&) /5 J(Q©); VO)| > tol or |J(Q*®) — J(Q*=D)| > tol do
compute the step size parameter 7, with a line search routine
QU < (T + 7, VF)(QW)
y(k 4+ 1) + y(Q*+Y) by solving the state equation (2.1.2) in Q*+1)
2(k +1) + 2(Q*+D) by solving the adjoint equation (2.3.4) in Q*+1)
compute J(QF+)
compute G(I'*+1)
compute a deformation field V1) by solving (2.4.3)
k< k+1

end while

14



CHAPTER 3

Mixed formulations

In this chapter we will develop the mixed formulation for the state equation (2.1.2), adjoint
equation (2.3.4) and the velocity field equation (2.4.1), in a feasible arbitrary domain 2 € O.
First we will set some notation that will be used from now on. Given a region D C R¢, we
denote by (+,-)p and (-,-)gp the L?(D) and L?(dD) inner products respectively. The subindex

will be dropped whenever the integration domain is clear from the context.

3.1 Mixed formulation for the state equation and the
adjoint equation

Recalling the state equation (2.1.2) we have that

—V(aVy) = f inQv
y = g onl.

15



3.1. Mixed formulation for the state equation and the adjoint equation

As we want to introduce a mixed variational formulation, we define the additional unknown

p = —aVy. Thus we have the following problem

cp+Vy = 0 inQ,
V-p = f inQ, (3.1.1)
y = g onl,

where ¢ = a~!. Hence, to obtain the weak formulation, let us multiply by v; € H(div; ) the

first equation of (3.1.1) and integrate by parts:

/Cp"vl —/yv'vl+<vl‘n;y>F207
Q Q

where (-, -)p denotes the duality between H~'/2(T") x H'/?(I'). On the other hand, multiplying

by w; € H'(Q) the second equation of (3.1.1) and integrating by parts, we obtain

—/P'le + (p-n,w)r = /fw1-
Q 9]

Thus, the weak formulation for the state equation (2.1.2) reads as follows: Find (p,y) €
H(div; Q) x H*(), such that

(cp,vi)o — (¥, V-v1)o = —(vi-n,g)r, (3.1.2a)

—(p,Vwr)a + (p-n,w)r = (f,w)a, (3.1.2b)

for all vy, w; € H(div; Q) x H'(Q).

Now recalling the adjoint equation (2.3.4) we have that

—V-(aVz) = y—7g inQ,
z = 0 on I

Analogously as in the case of the state equation, we introduce an additional unknown r :=
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3.2. Mixed formulation for the deformation field equation

—aVz, thus
cr +Vz = 0 in €,
Ver = y—19y inQ, (3.1.3)
z =0 on I'.

The first equation of (3.1.3) yields
/cr-'vg + / Vz vy = /C’I”"Ug — / 2V vy + (v m,z)r =0 Vo, € H(div; Q).
Q Q Q Q
And for the second equation of (3.1.3) we have that
-/QV'T'U]Q = — /Q'I"'VU)Q -+ (p-n,w2>p = /Q(y—y])wg \V/UJQ € HI(Q)

Therefore, the weak formulation for the adjoint equation reads: Find (r,u) € H(div;Q) X
H(Q), such that

(cr,v2)a — (2, V- v2)0 =0, (3.1.4a)

— (’l", ng)g + <T’ n, w2>r = (y — g, wg)Q s (314b)
for all (vy,wy) € H(div;Q) x H'(Q).

Remark. For the well-posedness analysis of (3.1.2) and (3.1.4), we refer to [33, Section 2.4.1].

3.2 Mixed formulation for the deformation field equa-
tion

First of all we need to introduce the following notation: For any tensor fields ¢ = (¢ij)ij=1n

and ¢ = ((ij)ij=1,n, we let div(¢) be the divergence operator div acting along the rows of ¢.
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3.2. Mixed formulation for the deformation field equation

Recalling the velocity field equation (2.4.1)

—AV =0 in Q,
oV = —G[)n only,
V =0 onI' D,
To find a mixed formulation we will introduce a new unknown o := — VV then we have the

following mixed formulation of (2.4.1)

oco+VV =0 in €,

divie) = 0 in 2,
(3.2.1)

on = G(I)n only,

V =0 on FD .

Testing the first equation with ¢ € [H(div;)]%*? we obtain
/a:qb—i—/VV:q’):O
Q Q
and by Green’s identities we have that
foie— [ V-div(e) + (on. Vir, =0,

where (-, -)r, is the duality of H(;)I/Q(FN) and Hy*(Ty) (for more details on the definitions of
spaces and traces, see for instance [33, Section 2.4.2]). On the other hand, testing the second

equation by w € [H}(Q)]4, it follows that

_ /Qo-:Vw + (on,w)r = — /Qa:Vw + (G(T)n,w)r, .
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3.2. Mixed formulation for the deformation field equation

Finally, we have that the weak mixed formulation for (2.4.1) is to: Find (o, V') € [H(div; )]¢*4
x[H(Q)]4, such that

|oio— [ Vdivg) + (¢n.Vir, =0,

— /QO’ :Vw = (G(D)n,w)r, ,

for all (¢, w) € [H(div;Q)]¥*¢ x [H'(Q2)]¢. The solvability analysis of (3.1.2) and (3.1.4) can
be found in [33, Section 2.4.2].
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CHAPTER 4

Mesh construction and notation

In this chapter we present the construction of the mesh where the HDG methods will be posed,
and the notation that will be needed later for the analysis of the methods.

4.1 Computational domain

For the construction of the computational domain D, we will follow the construction done
in [23]. For this, we begin by choosing a background polyhedral domain M D €. Then, let
{Th}n>0 be a sequence of triangulations of M (the triangulations can be composed by triangles
or tetrahedrons). We define 7}, as the set of all the elements K € T}, which are totally included
in  and also we define D), := (UKeTh F)O and I'y, := 9D;,. We assume by simplicity that
the triangulation does not have hanging nodes. Moreover, we will assume that the family of
triangulation are uniformly shape regular, this is, 3 p > 0 such that, for any K € 7, and for all
hx € (0,1], we have that diam(Bgk) > p diam(K), where By is the biggest ball inscribed in

the element K and hx = diam(K). From now on we denote h as the maximum of hx € 7.
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4.1. Computational domain

We can see the Figure 4.1 as an example of the construction of Dj.

M

Figure 4.1: Example of a domain €, its boundary I', a background domain M and the con-
struction of the polygonal subdomain D, (gray) [12, Figure 2.1].

On the other hand, we will say that e is an interior edge or face if there are two elements
K* and K~ in T, such that, e = OKT NOK~. In the same way, say that e is a boundary
edge or face if there is an element K € 7T, such that e = 0K NTY,.

Let & be the set of edges or faces of the elements of 7, €7 the set of interior edges or faces

of T, and &¢ the set of exterior edges or faces of Tj,. Thus &, = &5 U &Y.

We denote by n the outward unit normal of the element K € 7;,. Whenever we want to
emphasize that n is the normal to the face e of K, we denote n.. Moreover, for each edge or

face e of K, we denote hl as the height of the element respect to that edge or face.

For later chapters we need to introduce the notions of averages and interface jumps of

functions defined in Dy,.

Definition 4.1.1. Let v : Q@ — R be a scalar-valued function, such that, VK € 7T,, the

restriction v|x of v to the open set K can be defined up to the boundary 0K. Then, for all
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4.2. Transfer paths

e € €3, the average of v is defined as

fofe = hli)r(l)rl+; (v(x + hn) + v(x — hn)) forx € e,

and the jump of v as

[v]e == hlin& (v(x + hn) — v(x — hn)) forx ce.

Whenever no confusion can arises, the subscript e can be omitted, and we simply write {v}}

and [v].
Then, we have that the following lemma, whose proof can be found in [28, Lemma 1.24].

Lemma 4.1.1. (Characterization of H(div;Q)). A function & € H(div;T,) N [HY(T3)]?, where
H(div; Ty) = {& € [LX(Q' VK € Ty, €| € H(div, K)},
belongs to H(div; Q) if and only if

[€-n]. =0 Veecé&;.

4.2 Transfer paths

Following the method developed in [23], we need to describe how to transfer the boundary data
from I'j, to I'. For this purpose, given a point & € 'y, we need to choose a specific € € I" to
transfer the data from @ to . Hereinafter the segment joining & and & will be called “transfer
path associated to &”. We will denote by [(x) and t(x) the length and unit tangent vector,
respectively, of the transfer path associated to @. See Figure 4.2a for a graphical example of
this. This transfer path must satisfy three conditions;  and x should be as close as possible,
two or more transfer paths must not intersect each other and a transfer path must not intersect
the interior of the computational domain Dj,. An algorithm for constructing a collection of

transfer paths for the two dimensional case was developed in [23]. The three dimensional case
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4.3. Extrapolation regions

can be treated following the sames ideas as in the two dimensional case. Figures 4.2a and 4.2¢

show examples of transfer paths from the computational domain to a non polygonal domain.

(a) Transfer path associated to (b) Transfer paths associated to (c) Transfer paths associated to
x. the boundary vertices. the boundary quadrature point.

Figure 4.2: Figure from [12, Figure 2.2].

4.3 Extrapolation regions

Now, we define the complement of the computational domain Dy as D§ := Q\Dj,. Also, for

each e € €Y, we denote by K* as the only element of T, that has e as a face. We define

Tre
Ke:rt

={x + st(x) : 0 <s < l(x), x€e}.

We can see an illustration in the Figure 4.3.

Figure 4.3: Example of K¢, [12, Figure 2.3).

xt
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4.4. Polynomial spaces and norms

4.4 Polynomial spaces and norms

Now, we will define the global polynomial spaces where the HDG method seeks the solution.
Let Pi(K) be the set of polynomials of degree at most k over the element K. Let us define the

following spaces

Z), = {v e LT : vlk € P(K)" VK €T}, (4.4.1a)
Wi == {w e L*(Th) : wlx € Pu(K) VK €T}, (4.4.1b)
M, = {u € L*(&) : ple €Prle) Vee Sh} . (4.4.1¢c)

On the other hand, we define the inner products associated to 7, and 07, as follows:

(w, )7, = > /Kuv and (s,t)or, = /697;18t7

KeTy

and the respective induced norms [lul, = (u,u)lT{L2 and |5y = (s,s}é/TQh. For @ > 0 on

0Ty, and on I'y, we define the weighted norms

1/2 1/2
[ollog.a = ( > <av,v>aK) and  |vflp, = (Z@w,v)e) :

KeoTy, eCI'y,

4.5 Parameters and auxiliary constants

We define H} as the length of the longest segment connecting e and I" parallel to the normal

direction m, and completely contained in K¢,. Recalling the definition of hl, then we set

HL
Te 1= hi : (4.5.1)

e

as Figure 4.4 illustrates H: and h_.
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4.6. Assumptions and previous results

Figure 4.4: Representation of H} and h} [12, Figure 4.1].

Now, for the analysis in the next chapter, we need to introduce some constants that will be

useful, which are:

1 E\ Q|| ke
Ceext — sup %, (452&)
VTe ceprkeinafor |Gl ke
On .
ce. = ht sup [9n. Cllce (4.5.2b)

celre(k)dna oy N1€l ke

Where, the extrapolation of p from K¢ to K¢

ext?
En(p)(y) == p
instead of Ej(p)(y) for y € K¢

ext’

is denoted by Ej(p), and is defined by

ke(y),Yy € K¢, To simplify notation, from now on we will just write p(y)

ext

The same notation will be used for tensor- and vector-valued

polynomial functions defined on K°.

4.6 Assumptions and previous results

We are in a position to establish our next set of assumptions, which will be used from now on

for the analysis in the following chapters. For every face e € &Y,

max(l + o) 7l(x) < 1/4, 1 (CL)** (Ch,)° < 1/2,

ext

(4.6.1)
7’67'|ehel<1/4, re. < C C >0.
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4.6. Assumptions and previous results

Since I(z) < HX Vx €e,ec &Y, the first equation of the first row of the above assumptions
implies that H Ve € € has to be controlled by 1/4, the rest of the assumptions suggest the
closeness of the curved domain to the computational mesh. For more details see the discussion
of [23, Assumptions S].

Above 7 > 0 is a stabilization parameter of the HDG method. On the other hand, for
the boundary I' we will assume that is Lipschitz and there exists I' c T closed in T, such that
IT| = 0and D\ T is C2.

Now, we need to state an auxiliary definition that will be used in the subsequent analysis

and provide some results proved in [23, Lemma 5.2].

Definition 4.6.1. For any e € &2, any point z lying on the face e and any smooth enough

function v defined in K¢ ,., we set

ext?

N(z) = l(ic) /Ol(w)(v(a: + sn) — v(x)) nds. (4.6.2)

Lemma 4.6.1. For each e € €2, we have that

. 1
A%, < 7B [0n(v-n)l e (ry2 -

Moreover, if p € [P(K°)]¢, we have that

1 e e
HAPHFh,z < =P, C 1Pl e -

— \/g e ext ~inv

We define a set of auxiliary constants to be used in subsequent analysis

Definition 4.6.2. We have the following constants

. I e 1/2 e 1/2 /L e e 2
R := maxr., Rc = maxr, (C.)°(Ca) ", Ry = max r, (Cs..Cs)7,
e€&y e€éy e€ty
D ~ (e )2 A ~e . 1/2
o = maXeego Te (Cy)”  Ce = max gy, Ry = maxr, 12 (4.6.3a)
e€ty e€ty
D - -1
R,-1 := maxr.7, .

F)
e€ly
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4.6. Assumptions and previous results

where,
K, - 1 1<1 7
Te i= —— | Co = —= sup =
| K| ' Ve ceprrennfoy 1€ ke

Finally we state some mesh assumptions. Let Cg, C),, d, 8 be nonnegative constants

independent of h and m; the outward unit normal of I'j,, such that

R

IN

Crh°, (4.6.4a)

In, — no@|,, < Cnh”. (4.6.4b)

Where (4.6.4a) gives us the information on how close the computational domain D), has to be
respect of the boundary I'; i.e. if €2 is polygonal there would be no distance between D), and
I', then Cr = 0. If I}, interpolates I', then C'r > 0 and 6 = 1 and if D}, is completely contained
in Q,ie if ,NT = @, then Cr > 0 and 6 = 0. In turn, (4.6.4b) represents the convergence
rate of the outward normal vector of I'y, to I'. If Q is polygonal, D, and €2 are the same set,
and then n;, = n, then C,, = 0. If [y interpolates I', then C,, > 0 and g = 1 and if Dy, is

completely contained in €2, then C,, > 0 and g = 0.

Finally, to avoid proliferation of constants, we will write a < b instead of a < C'b, where

C' is a constant independent of h.
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CHAPTER b

The hybridizable discontinuous Galerkin
method

In this chapter we present the hybridizable discontinuous Galerkin (HDG) scheme for the state
and adjoint equations, the schemes use the technique developed in [17,23], which allows us
to use hybridizable discontinuous Galerkin methods considering solely polyhedral elements to
numerically solve problems in domains which are not necessarily polyhedral. In a similar way,
within the context of curved domains and inspired by [46], we will furthermore present a scheme

for the deformation field equation.

5.1 HDG schemes for state and adjoint equations

Inspired by mixed formulations (3.1.1) and (3.1.3) developed in Chapter 3, and following [23],

we have the new mixed formulations for the state and adjoint equations, now posed in the
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5.1. HDG schemes for state and adjoint equations

polygonal domain Dj:

cp+ Vy =0 in Dy, (5.1.1a)
V.p=f inD,, (5.1.1b)
y =91 only, (5.1.1c)
and
cr +Vz =0 in Dy, (5.1.2a)
Ver +y =y in Dy, (5.1.2b)
z2 =y only, (5.1.2¢)

where the unknowns ¢; and ¢, correspond to the traces of y and z, respectively, on I'j,. Let
x € I';, and @ its corresponding point on I'. By integrating (5.1.1a) and (5.1.2a) along the

transferring segment joining & and &, we obtain

o1(x) == g(x) + /Ol(m)cp(w + st)-tds, (5.1.3a)

I(x)
pa(x) = / cr(xz + st)-tds. (5.1.3b)
0

The HDG method for the state equation seeks an approximation (ps,yn, yn) of the exact
solution (p,y,yle,) in the space Z; x W), x M, such that

(cpn,v1)7, — (Yn, V- 01)7, + (Gn,v1-M)a7, = 0, (5.1.4a)
— (P, Vi) 7, + (Bn-m,w)or, = (f, w17, (5.1.4b)

(Dn -, p1)orr, = 0, (5.1.4c)

(Gns p1)r, = (o1 )ry (5.1.4d)

for all (vy,wy, p1) € Zy x Wy, X M. In turn, the HDG method for the adjoint equation seeks

and approximation (7, 25, 25) of the exact solution (v, z, z|¢, ) in the space Z;, x W), x M}, such
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5.1. HDG schemes for state and adjoint equations

that
(C’I"h,’vg)Th — (Zh,v -’Ug)f& + <2h,’l)2 "I’L>37;1 = 0, (515&)
— (’I‘h, ng)Th + <'Fh n, w2>37-h = (g — Yn, wg)ﬁl s (515b)
(Th -, p2)ori\r, = 0, (5.1.5¢)
(Zn b2)ry = (9, p2)r, (5.1.5d)

for all (v, we, ua) € Zy, x Wy, x My, Moreover, gp’f and go’gl are the Dirichlet boundary conditions

on I';, which are defined at all = lying on the face 7, by

ol(x) = g(x) + /Ol(m)th(ph)(m + st(x)) - t(x)ds, (5.1.6a)

o) = /0 ) By m)(@ + st(x) - t(x) ds (5.1.6b)

where Ej(pp,) and Ej(r,) are the extrapolation of pj, and r, respectively. The numerical fluxes

pn and 7, on 0T, := {0K : K € T} are defined by

Dn =00 +7Wn — Un) 1, (5.1.7a)
Fh = Ty + T(Zh — Eh)n, (517]3)

with 7 being a positive stabilization function, whose maximum value will be denoted by 7.

Under the assumptions mentioned for I' in Chapter 4, we have the following results proven

in [23, Lemma 3.1].
Lemma 5.1.1. We have the following properties:
(1) l(x) : Ty, — R is measurable.

(1i) Kepe and K¢, are measurable sets.

i) Y g € HY2(T'), we have that o : T}, — R, is a measurable function.
Y1

(iv) o% : T, — R is also a measurable function.
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5.2. Existence and uniqueness of the state and adjoint equations schemes

5.2 Existence and uniqueness of the state and adjoint

equations schemes

We will proceed first to prove existence and uniqueness of the HDG scheme (5.1.4) and then
of (5.1.5). In the forthcoming analysis, for simplicity we will assume t(x) = n, V& € e and
e € &Y. If this is not true, terms involving t(x) - n would appear in the estimates and the

results that we will present still hold true assuming 1 — ¢(x) - n is small enough.

Theorem 5.2.1. Under the assumptions (4.6.1) and if 7 > 0, there exists a unique solution

of the HDG scheme associated to the state equation (5.1.4).

Proof. Since the linear scheme is finite dimensional, the scheme (5.1.4) will have unique solution
if and only if (pp,yn,yn) = (0,0,0) when f = g = 0. Therefore, suppose that f = g = 0,

we get

(epn,v1)7, — (Yn, V-v1)7, + (U, v1 - n)o7, = 0,

— (Pn, Vwi)7, + (Pr - m,wi)ar, = 0.
Now, testing with v; = pj and w; = y,,, we have that that
1/2 -~ _
H th Yn, V- pu)7, + (Un,Pr-M)or;, = 0,
— (Pn, V)7, + (Pr - 1y yn)or, = 0.
Then, integrating by parts the second equation
1/2 ~ _
H th (Yn, Vo)1 + (UnPr-M)or, = 0,
(Vo pryn)7 — (Pr-m,yn)or, + (Pn-m,yn)or, = 0.
Adding both equations we obtain
%

th ph'n—Ph'n7yh>aTh + @h,ph'n)an = 0.
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5.2. Existence and uniqueness of the state and adjoint equations schemes

Then, by (5.1.7a) we deduce that

H 1/2th (Pr-m—pn-n,Tn)or, + (TWh — Un)sYn — Un)or, + (Un:Pr-M)o7, = 0.

That is,
H2

[ pall. + 72 =g, + @ mdom = 0, (5.2.6)

By (5.1.4c) and (5.1.4d), it follows that
(Pr -, Tn)or, = (Pn 1, Tnoriar, + (Pr- 1, Gndr, = (Br-n,Gn)r, = (Br -, o),

Moreover, recalling the definition (5.1.6a) let us notice that

I(x)
ol (x) = / cEy(pn)(x + sn.) - n.ds
l(x)
= / Eh ph x + S’I’Le) — ph(az)] “ M, ds + /0 Cph(CU) ‘M, ds

/ ¢ [En(p)(@ + sm,) — pa(@)] -n.ds + cpi(a) -n ().

Thus,
pr-me = ¢ () pi(x) — AP (),

where, we recall (4.6.2)
B () )
APr(z) = () / [En(py)(z + sn.) — pu(@)] neds VYazece, ecé&l.
0

Then, by (5.1.7a) we have that

(Pr-mol)r, = (Pr-m,@h)r, + (7 (yn — Gn). 1)1,
= <Cil lil 90?7 @?)Fh - <Aph’ SO;ll)Fh + <T <yh N gh)’ SOIll)Fh
, -
I T
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5.2. Existence and uniqueness of the state and adjoint equations schemes

Hence, we deduce that (5.2.6) yields to

2

oTh h

Hcl/2th2 I HT1/2(yh _ gh)” I Hcfl/z -1/2 SD?HQ _ <Cl/2 [V2APH 12 71/ o
T b (5.2.7)

. <Cl/2 l1/27' (yh . ?jh), 671/2 l71/2 90}11>F

-
Now, let be €1, €5 > 0, at our disposal. Using Young’s inequality, we obtain

2

- _ _ 1
<Cl/2 11/2 APh, 12 -1/2 @?)Fh . <01/2 112+ (yh . yh)7 Y2 1-1/2 ¢?>Fh < . Hcl/z [1/2 APn -
1

| NI E e AT MY E e
Hence, choosing e; = e; = 1/4,

(22 AP TR G (M (g = ), R
<aferreaml 1 o]l o | -
e
< 2 e/t pPn ih + i etz go?Hih +2 |21 7 (g _@h)Hih .

Using this bound in (5.2.7), we obtain

ol + [ = gl + 5 e
<9 /2 112 APh ih 492 ‘01/2 11/27'(yh — @h)”ih
< 2+ 2er maxi@) | -,
< 2 ||e2 M2 AP ih + ; HT”Q (Yn —@h)Hih
< 2 |72 /2 AP ih + ; HTl/z (yn _gh)HZTh .

Thus, using the second equation of the first row of the assumptions (4.6.1)) it follows

e el + 5 I =]

2
OTn

F 3l < zfenenan

Ty
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5.3.  HDG scheme for the deformation field equation

<23 |1 e j < 26%3 P (Cl Ch) IPnl e
< % mar? (€, G, w3 Il < 12 chphﬁ < = [l
then
5 lemll + 5 2 =g, + 5l el = o,

By this equation, we deduce that p, = 0, ynlo1, = Unlo7,, ¢ = 0, hence, by (5.1.4a) we get
—(yn, V-v1)7, + (Oh,v1-m)or, =0 Vo1 € Zy,
since ynlo7, = UnloT,, integrating by parts it follows that
0= —(yn V- -vi)7 + (Yn,v1-n)or, = (Vyp,v1)7, Vo1 € Zy,

Then, setting v; = Vy, we have that [|[Vy,| . = 0. Thus y, is a constant in Dy, therefore
yp, = 0 by (5.1.4d). O

Finally we proved that the HDG scheme for the state equation has a unique solution.

Theorem 5.2.2. Under the assumptions (4.6.1) and if T > 0, there exists a unique solution

of the HDG scheme associated to the adjoint equation (5.1.5).

The proof of the above theorem is analogous to the proof of the Theorem 5.2.1, the difference
lies in setting the data y, — y = 0. Is important to note that y;, can be treated as data, because
is the solution of the HDG scheme of the state equation, which does not depend on the adjoint

problem.

5.3 HDG scheme for the deformation field equation

Now, we present the HDG scheme for the deformation field equation which is inspired by the
work done in [46]. First of all, it should be noted that the technique cannot be the same

as in the cases of the state and adjoint equations because we need to deal with a Neumann
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5.3.  HDG scheme for the deformation field equation

boundary condition. Then the technique of transferring data from the computational domain
to the curved domain will not work in this case. Based on (3.2.1), in the computational domain

Dy, this problem can be written as follows:

c+VV =0 in Dy, (5.3.1a)
div(e) = 0  in Dy, (5.3.1b)
on, = gy only (5.3.1c)

V =gp onl}. (5.3.1d)

We assume that the computational boundary Ty satisfies I, = TP U IT'V and TP N T'Y = 0,
where I'? is the part of I', with Dirichlet datum and '} is the part of I';, with Neumann datum.

On the other hand gy is defined by
gy = (GI")n)o ¢,

Hence, recalling the mixed variables Vy = —c¢p, Vz = — cr introduced in the mixed formu-

lations, we can rewrite G(I") as
1 2
GI) =r-nlep-n + dug) + 509 — 9)°

In turn, for the definition of ¢ we note first the following; let e be a boundary edge with vertices
x, and xy, we denote I'. as the part of I' determined by ®; and &, as we show in the Figure

5.1:
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5.3.  HDG scheme for the deformation field equation

Figure 5.1: Representation of IT,.

Then, let ¢ : e — I'. be a bijection. In addition, we have that gp is defined by the same

technique used for the case of the equations of state and adjoint, that is,

I(x)
gp(x) == /0 o(x + sn)nds.

Before to present the discrete scheme, we define the polynomials spaces, which are a general-

ization to higher dimensions of Zj,, Wy, and M. Indeed, they are defined as follows

Zn = {€ € [LA(TW)]™" + &l € [Pu(K)]|™, VK €Ty},
W, = {w € [IA(Th)]* : wli € [Bu(K)]*, VK €T},

M, = {p e [L*EN] : ple € [Pe(e)]?, Vee€ &),

Then, our first attempt of discrete scheme seeks an approximation (o7, V4, vh) € Zp, X Wi, x M,

of the exact solution (o, V', V¢, ), which is given by

(04 )7 — (Vin div(y))7, + (Vi na)or, = 0, (5.3.3a)
— (o, Vw) g, + (Fnnp, w)or, = 0, (5.3.3b)
(Ghnn, worr, = 0, (5.3.3¢)
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5.3.  HDG scheme for the deformation field equation

(@n i, )y = (gh ey (5.3.3d)
</‘7;17”>Ff = <g?)au’>f‘5 ) (5336)
for all (¢, w, pn) € Zy, x W), x M}, where
onny = opny, + 7(V, — XA/'h),

And g% and g% must by specified. Proceeding analogously to the case of the state and adjoint

equations, we define g7 as follows

I(x)
gn(@) ~ gh(@) = [ Bulow)(@ + st(@)) t(z)ds.
We can note that gl needs to be characterized, for this we define

1 _
Gu(l') := 7 -n(cpy-n + Ong) + 5(9 — 7).

With the above definition, instead of using equation (5.3.3d), we employ
(Fnmn, m)e = ((Gu(T)n) o @, u)e, Vee 827 Ve My, (5.3.4)

Therefore, we are able to rewrite the scheme as follows: find (o, V4, f/\h) € Zy x Wi, x M,

such that

(01, %)7, — (Vi, div($h))7, + (Vi ¥ n)ar, =0, (5.3.52)
—(on, Vw)r. + (&1 wher = 0, (5.3.5)

(n1n, wor\r, = 0, (5.3.5¢)

(nmn, pyry = (Gr()n) o @, )y, (5.3.5d)

(Vi e = (g, rp - (5.3.5¢)
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5.4. Existence and uniqueness of the deformation field equation

for all (¢, w, pu) € Z, x Wy, x M}, and it also holds

&hnh = opny + T(‘fh—/‘}h) (536)

Remark. Tt is ensured that g% is measurable, following a straightforward application of Lemma

5.1.1.

5.4 Existence and uniqueness of the deformation field

equation

We will prove the existence and uniqueness with the same strategy as in the case of state and

adjoint equations. In fact, we establish the following theorem

Theorem 5.4.1. Under the assumption (4.6.1), if 7 > 0 and t(x) = n Vz €e, z € &7,
there exists a unique solution of the HDG scheme associated to the deformation field equation

(5.3.5).

Proof. As for the case of state and adjoint equations, we will use the Fredholm alternative. Let

us start by assuming that G, (I") = 0, then (5.3.5) becomes.

(@07 — (Vi div(eh))y, + (Vi ¥m)ar, = 0, (5.4.1a)
— (op, Vw) 7, + (epnp, w)sr, = 0, (5.4.1b)

(@rnn, worr, = 0, (5.4.1c)

(onmn, p)yry =0, (5.4.1d)

</‘}haIJ’>FE = <Q%aﬂ>rf' (5.4.1e)

Now setting ¢ = o, and w = Vj, in (5.4.1a) and (5.4.1b) respectively we obtain

lowll7, — (Vi div(ow)7, + (Vi onmn)or, = 0,
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5.4. Existence and uniqueness of the deformation field equation

- (Uh7 VWL)'Th + <6-h ny, ‘/]'l>87—h = 0 .
Integrating by parts the second equation,

lowll7, — (Vi div(ow)7, + (Vi onmm)er, = 0,

(div(er), Vi), — (onnn, Vi)or, + (Gnnn, Vi)er, = 0.
Then, adding both equations we get

H"'hH% + (onnn, —onny, Viarn + (onnn, Vi)ern, = 0.
By (5.3.6) we can rewrite the above equation as

HO'hHQTh + (5'hnh—0'hnh,‘7h>an + (7 (W—‘Afh),w—vhbn + (‘Affuo'hnh)aTh =0,
which is equivalent to
lowlz + |72 (Vi —ffh)Hfm 4 (Vi anm)or = 0. (5.4.2)

On the other hand, notice that by (5.4.1¢), (5.4.1d) and (5.4.1e) we get

<5'hnh,‘7h>6’rh = <&hnh;/‘/\;z>87’h\1‘h + (5'hnh,‘7h>rh = <5'hnh,‘7h>rh

= (Gnnn, Vi)rp + (Gnmn, Viry = (81, gh)ro ,
Moreover, we have that

)
gh(@) = [ Eulo)@ + smnds
I(x)
:/ (Ep(op)(x + smy) — on(x ))nhds—i-/ n(x) ny, ds

= Eh (o) (x + smy) — op(x))nypds + op(x) nyl(x) .
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5.4. Existence and uniqueness of the deformation field equation

Thus, o, ny, = 71 gh — A" and using the above argument and (5.3.6) we have that

<5'hnh,9%>rf = <Jhnhag%>l“f + (7 (Va —‘A/h)79%>rf
= <l_19?),9?)>1“13 - <Aah7gg>rD + (T (Vh — Vh)aQ?))r,?

_ Hl 1/2 hH l1/2Ao'h [~1/2 h> rp + <l1/27_(Vh_f}h>7l71/2g%>FhD
Replacing in (5.4.2)
2
lowlly, + |72 (V= Vil + 1 g oo = (1P AT g

—(I"? 7 (Vi = Vi), 17 gl)rp .

Now, we use Young’s inequality, then, with €;, e > 0. At our disposal

(12 A, 1*1/2 h>r5 — (P (V= Vi), 17 g)ro
Hll/z

il Hlfl/z q" 2
D
rp 2 rb

|| vl
+262Hl (Vi = Vi +

3 [ abll

Setting €, = €2 = 1/4 we obtain

(2 A 1 gl — (127 (Vi = Vi), 12 gl

<z |peanl, + 5 g H v -V, + 5 [ 6,
< 2[raniy + 5 2 abll, + 2 |0 (a -l

and replacing the above inequality in (5.4.2), it can be deduced that

”UhHTh + H 1/2 V ‘/h)H Hl—l/Qgh 2

T, Dlirp

+ 3 b, + 2 e i - Vi,

<9 Hlm A"h

rp’
equivalently,

l71/2 gh

lowlZ, + 72 (Vi - V)| Blep

<2 Hll/Q Ao

_—l p 217 V=il
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5.4. Existence and uniqueness of the deformation field equation

<2 Hllﬁ A"

2 —~ 2
D + 27 max(x) HTUQ (Vi — Vi) s

a:GFh h

< 2|72 e ’

. Vi,

h

Then, from the first equation of the first row of the assumptions (4.6.1), it follows

ol + 1 3 vh—kum bl <2 pranfly <2 3 fean
< 2 Z ea:t zenv)g ||0-h|§{F ;
eCFh
and therefore,
Sl + o [P -+ S e, =0

By the above equation we deduce that o, = 0 in Dy, V;, = V, on I'? and g/, = 0 on I'?,

hence let us notice the following: recalling (5.4.1a) we have that
0 = = (Vi div(9))7, + (Vi mdor, = (VVi,$)7, — (Vi = Vi oo,
for all ¥ € V;,. Thus, setting ¥ = VYV,
VYA, =0

Therefore we have that VV, = 0, i.e. V} is constant, but (V,, p)rp = (gh, pu)r p = 0 for all
€ Mj. Hence, Vj, = 0in Dy,
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CHAPTER 6

A priori error estimates

In this chapter we will develop the analysis for the error estimates for each problem, where we

will prove under certain assumptions the following estimates for the HDG schemes

ly = wnllg < CRY 0 lp = pullg < OB, lz = anllg < CRET
Ir = rullg < CRY o = oullg < O,

and

IV - Vil < C (h + CrBPV2 4 O W%) nk

where C' is a positive constant independent of A and the values for C'r, ¢, C,,, and § will be

specified later in the analysis.

For the error estimates we will use the HDG-projection developed in [21] on the product

space Zj X W}, which is defined by
y(r,w) = (zr, [Iypw),
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where (IIz7, [Iyyw) satisfies that, for all K € T,

(Mzr,s)x = (r,8)k Vs € [Pr_y(K)]?, (6.0.1a)
(Myw,v)g = (w,v)x Vo e Py (K), (6.0.1b)
(MIzr-n + tlyw,pu)e = (r-n + 7w, 1), Ve Pyle),Ve C 0K, (6.0.1c)

This definition can be extended to the case when (o, w) € Z;, x W}, that is, matrix and vector-
valued case, where the notation is I, (r, w) := (IIzo, Iy w). Furthermore, by the work done

in [21], we have the following result.

Theorem 6.0.1. Suppose k > 0 and K € Ty, the projection (ILzr, [lyw) of (r,w) € Z, x W),
is well-defined. Moreover, there exists a real constant C' > 0 independent of hx such that if

r € H*"Y(K) and w € H*"(K),

an’f‘ — THK S Chl;;rl |r’H’V+1(K) + Chllc;rl T}k{ |w,Hk+1(K), (602&)
- hi!
ITTyyw — wHK < ChK+ |w|Hk+1(K) + CTmax |V-’I‘|Hk(K), (6.0.2b)
K

where TEY is the mazimum value on OK and Ty is the second maximum value.

Proof. See [21, Theorem 2.1]. O

On the other hand, for subsequent analysis we need to state the following two lemmas

Lemma 6.0.2. (Discrete trace inequality) Let K be a element of Ty, where h is its diameter,

let v € P(K), Then 3Cy. > 0, which depend only of k and mesh regularity, such that
W2 ), < Co vl (6.0.3)

where e is a edge or face of K.

Proof. See [28, Lemma 1.52]. O
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Lemma 6.0.3. Let K be an element of Ty, let 0 < | < k. We will denote Prayv the L?
projection of v in Py(K). Forv € H**Y(K) exist Cp2, Cyr2 > 0, which do not depend of h,

such that:
|U — PLQ(K)U|H7"(K) < CL2 h/H_l_m |’U|Hl+1(K) VYm € {07 e k} 5 (604&)
H’U - PLQ(K)UH&K < CaL2 hl+1/2 "U‘HZJA(K) . (604b)
Proof. See [28, Lemmas 1.58 and 1.59]. ]

Is important to note that the Theorem 6.0.1 and lemmas 6.0.2 and 6.0.3 can be extended
to the vector-valued case. In addition, we introduce the error and the projection of the error

of the state equation:

~

e =p—py, =y -y, €& :=y—Gn, & =1zp— ps,
e) = lwy — yn, er = Puy — Un, e, = Pup — D,

-~
z z

in the same way, we define e”, e*, e*, €}, €;, ; and €] for the adjoint equation. Here, Py,

denotes the local L?-projection over M;. We also define the interpolation errors as follows
I, = p — 1lzp, I, =y — llyy, I, = r —Ilgzr, I, =z — Ilyz.

Likewise, we introduce the notation of the error and the projection of the error for the defor-

mation field equation as follows:

-~

7 =0 — oy, eV =V -V, eV =V -V, ey = llzo — oy,

e
EV — II ‘/ ‘/ AV P P ‘7 A‘f ZT\ J— P ~
h %% h Eh T M h éh T MO ah'

In turn, let us introduce the notation of the interpolation error as:

I, =0 — IIzo, Iy =V —IIyV.
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6.1. Error estimates for the state equation

6.1 Error estimates for the state equation

In this chapter we proceed by deriving the error estimates of e? with an energy argument

strategy and then deriving the error estimates of e¥ using a duality argument.

6.1.1 Error estimates for eP

The projection of the errors of the state equation satisfies the following equations,

Lemma 6.1.1. We have that

o~

(cep,vi)7, — (€], V- -vi)7, + (eh,v1-n)o7, = — (cIp,v1)7; (6.1.1a)
— (&2, V)7, + (€F -n,w)er = 0, (6.1.1b)
<€g'n,u1>m\rh =0, (6.1.1c)

<£, ), = (o1 — ¢l m)r, (6.1.1d)

eg’-n = €f-n+7(5§’l—eg), (6.1.1e)

V('vl,wl,,ul) € Zy X Wy x My,

Proof. Beginning with (6.1.1a), let v, € Zj,, we have that

(ceh,v)m — (€, Vw7 + (e o1 n)or;
= (c(llzp — pn),v1)7, — (Mwy — yn, V- v1)7, + (Puy — Un, v1 - n)or,
= (cllzp,v1)7, — (Mwy, V-v1)7, + (Puy,v1-nor, — (cPr,v1)7, + (Un, V- 01)7,
—

Uhs V1 - M), -

Hence, using (5.1.4a) followed by (6.0.1b), and then integrating by parts,

~

(cen,vi)7, — (€, V- v1)7, + (eh,v1 Mo,
= (clzp,v1)7, — (Iwy,V -v1)7, + (Puy,v1-n)sr,

= (clzp,v1)7, — (v, V-v1)7, + (Puy, v1-n)ar,
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6.1. Error estimates for the state equation

= (CHZP, Ivl)Th + (vya’vl)Th - <y,'U1 : n>37-h + <PMy7U1 : n>37—h

= (CHZp7 vl)'ﬁb + (vyvvl)’Th .
Therefore, by (5.1.1a)

(ceh,vi)r, — (€, V-v1)7, + (e}, v1-n)oy, = (clzp,v1)7, — (cp,v1)7,

= (c(IIzp —p),v1)7, = — (cIp,v1).

Now, following with (6.1.1b), let wy € W}, we have that

— (&P, Vuwn) 1, + (€Y -n,w)or, = — (zp — pu, Vwi)7, + ((Pup — Pr) - 7, w1)ar,
= — (IIzp,Vwy)7, + (Pup-n,wi)s7, + (Pn, Vi), — (Dn - 1, w1)ar;, -

Thus, by (5.1.4b)

~

— (e}, Vwi)7, + (€], - m,wi)or, = — (Hzp,Vuwr)y, + (Pup-n,wi)or, — (f,w1)7, -
Then, using (6.0.1a) and integrating by parts

— (e}, Vw)7, + (e -m,wi)or, = — (p, Vi), + (Pup-n,wi)er, — (f,w1)7,
= (V-p,wi)7, — (p-n,wi)ar, + (Pup-n,wi)ar, — (f,w1)7,
= (V-p,wi)7, — (f,wi)7, -

Finally, by (5.1.1b)

— (e}, Vwi)7, + (e} -n,wi)or, = (f,wr)7, — (f,w)g, = 0.

Now, continuing with (6.1.1c), let p; € M}, notice that

o~

(ef - m, p)orinr, = ((PuP — D) -1, pa)orinr, = (PuP -1, pin)orar, — (Pn - M, f1)omr, -
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6.1. Error estimates for the state equation

Thus, by (5.1.4c)

~

<€£ : ’I’L,,u1>37’h\ph = <PMp 'n, M1>377L\Fh = <PMp n—p- ’I’L,,U1>a7’h\ph + <p : n7#1>3771\rh

= <p ) n’M1>5ﬁL\Fh =0.

In fact, as p € H(div; ), we get

pomor, = 3 [ ponm = 2 [l e + il Apde + X [ponm
KeTy ects € 6652 €
- <p'n7M1>Fh‘

The above expression was obtained using Lemma 4.1.1. Furthermore, since p; € Py(&), then
[11]e = 0. Now, following with (6.1.1d), recalling (5.1.1c) and (5.1.4d), for any py € My, let

us notice that

o~

(5%7H1>rh = <PMy_gha,U1>Fh = (PMZ/>M1>Fh - (ﬂh,/M)Fh = <yaM1>Fh - <90;L>M1>Fh

= <301,M1>Fh - <90'f7/11>rh = (¢1 —SO’f>Fh~

Finally to prove (6.1.1e), consider any p; € My, then

o~

(eh - m+7(ep —€h), m)on, = ((Hzp —pr) -+ 7 lwy — yn — Puy + Gn), 1)o7,

= (zp-n+ 7wy, m)er, — (TPuy, 1)o7, — Pr -1+ 7(Yn — Un), i1)o7, »

finally by (5.1.7a) and (6.0.1c)

~

(el -n+71(e) —el), m)om, D-n+ Ty, pw1)ar, — (TPuy, p)or, — (Dn -1, t1)aT;

D1, )er, + (T(Y — Puy), tn)er, — (D", 1)o7,

= (
=
= (p-n—Pn-n, )T,
= (p-n—Pyp-n,m)ey, + (Pup-n —Dn N, 1)o7,
-

p
€y -1, H’l>87ﬁ :
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0]
We will now present a result based on an energy argument.
Lemma 6.1.2. We have the following identity
—~ 12 ~
[ bl + |72 e =eb,y. + (eh e —elhe, = = (el )7 (6.1.2)
Proof. Let v1 = €} and w; = €} in (6.1.1a) and (6.1.1b) respectively. Then
(ceh.en)T, — (e, V- €p)7, + (e, el - m)or, = — (clp, €))7, (6.1.3)
—(eh, VeR)m + (eh - m.eh)or, = 0.
Then, integrating by parts the second equation
(V ) 857 5%)771 - <€£ 'n, €%>87—h + <€§z7 'n, 8%>87—h =0, (6'1‘4)
and now, adding the first equation of (6.1.3) and (6.1.4),
2 -~ -~
| 2eh], + (el -n—eh - n.elon + (el mon = — (cIp.eh)p -
Hence, by (6.1.1e),
2 o~ o~ ~ ~ o~
|2 Rl + (7 (el = eh)eh = ehom, + (eh - m — b - m.el)om + (el eh - m)om = — (cIpiel),

which is the same as

2

2 o~ ~ ~
|2 ebl + |72 et =enl,. + €k nehon = —(cIpeh).

OTh

On the other hand, notice that using (6.1.1c) and (6.1.1d), we have that

~ ~ ~

<€Z ", E%>87—h = <€§: ", €%>87—}1\Fh + <€€ "N, 5%>Fh = <€Z ", €}y7,>rh = <€§: "n, P — ()0}11>Fh :
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6.1. Error estimates for the state equation

Therefore, we deduce that

2 ~

[z e+ 2 et = <D, + (eh - mopr = éin, = = (e el
0]
Corollary 6.1.1. It holds
1 Hcl/QEZ 2T + HTI/Q((S%—eg)HZT + (eg’-n,@l — My, < chl/le 2 (6.1.5)
h h 2 Th
Proof. 1t follows from previous result and Young’s inequality. O]
Lemma 6.1.3. We have the following identity
en=c (o —pl) = AP — A —I,.n  Vxee, ectl. (6.1.6)
Proof. Let us notice that
b _ (=) ~ I(x)
01 — o = g(x) + /o cp(x+sn) -nds — g(x) — /0 cEn(py)(x+sn) -nds
= /Ol(w) c(p— En(pn))(x+sn) nds
= [ o~ Tlp + T1yp — Byp)(a + sm) s
= [T ety @+ sm)-nds
= /Ol(x) c(Ip(x+sn)—I,(x)) nds + cl(z) [,(x) -n
+ /Ol(w) c(el(x+sn)—el(x)) nds + cl(x) el (x) - n
= cl(x) (AI” +I,-n + A%+ sﬁ~n) ().
O

The proof of the following lemma can be found in [23, Lemma 5.2].
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6.1. Error estimates for the state equation

Lemma 6.1.4. For each e € €, we have that

1
Ip ‘
HA et V3 19n (e 7)llice,, 10 - (6.1.7a)
P L 59 e e »
’A " e,l S \/37’ Cea:t Cmv HehHK«'i : (617b)

Now, we establish the following error estimate

Lemma 6.1.5. Here holds

ek et —<tor =D S Mplly, + B 1Oy - )l e uiye + B - mlly, p s (6.1.8)

where

5%—5“

9 1/2
rh,clzl) )

et et = o = M| = (el + Y P

Proof. From (6.1.1e) we can deduce that

<€§L) "N, o1 — (pfll)Fh = <€§: "N, o1 — 90}11>Fh + <T(€Z}/L - 5%)7 Y1 — 90’11>Fh )

and by (6.1.6)

_ _ P
(€ m, o1 — M, = (T (o1 — @) o1 — @, — (AP 0 — o), — (A%, 01 — @),

- <]P "N, 01— 90}11>Fh + <T(Ez - 5%)’ Y1 — 90]11>Fh

_ _ 2 P
= |22 (o = eb)||. = (A e — e, — (AT o1 — o,

- <Ip "N, — 90?>Fh + <T(€ZfJL - 5%)7 Y1 - 90}11>Fh
Hence, replacing this in (6.1.5)

sl e+ It D + - b, < Sl + = e

<5l

Yy

+ (A o1 — o, + (T - 01 — @0, — (T(eY — €Y), 01 — oM,
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6.1. Error estimates for the state equation

Let €1, €9, €3, €4 > 0, by Cauchy-Schwarz and Young’s inequality we get

el Bl I,
< - H 2 H 1/2 11/2 AI,, il H ~1/27-1/2 (o1 — ‘P1) 2 2 H /2 112 ASE
€1 €9 IV
n %2 H 1/2l 12 () — 901) 2 263 H UCTUED . %3 H 12712 () 901)"12“,1
“a o R —eh> zh K H R () - )
4
H H 1/2 11/2 AI,, H /2 1/2 As H 1/2l1/2_f ‘n
261 Tp 262 Tp 263 h

+ 274 H01/2 l1/2 (ch _Eh)Hih + ;[61 + €2 + €3 + €4 HC VR (1 - @1)”1

€1 = € = €3 = ¢4 = 1/4, we have that

W”ﬂQHWW#e%; 2H” o=,
. 5 ’ : j—h Ly H 12 172 Al |2 N 49 H 1/2 1/2 Aeh 12“,1 19 H01/2l1/2]p'n 2h
Y C )

On the other hand, notice that by the first equation of the first row of the assumptions (4.6.1)

2 o0 e~ ), < 27 maxt(@) [ =D, < 5 1D
Thus, we have
H 1/2 eP 2 H 1/2 6%) erh 2 H ~1/27-1/2 (1 _SO}IL)th
< 5 H ol 19 H 1/2 1/2 A Lp|[? N 4+ 2 H /212 \€h ih 19 HC1/2 1172 I, n ih

Also, by (6.1.7)

9 Hcl/2l1/2 Al» 2
'y

= 2c¢ Z ”l1/2/\Ip
eCT),

2
.S 2c > 57" 10n(Ip - 1)l e iy

ecl'y,

2c 2
< ER [0n (Ip - n)”D}cﬂ(hlp )
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6.1. Error estimates for the state equation

and

- 92¢ Z Hp/erg 2

2
2 [/ 0172 Ak <20 Y 2 (i) R

Ty e Ke
eCl'y, eCl’y,
< 230 Ieré%‘XT (Ceeact zenv>2 “ hH'Th — 12 H 12 el j—h :
Therefore, we obtain
55 e ”H2 3 [P e = bl + 5 2 = el
< 3 Hcl/QIpH + Q?)sz%xr 10n (I n)||Dc iy T 2 Hcl/Qll/zlp-n 2h
26R

10n(Tp - )l[5e oye + 2R || Ly m

1 2
<5 e 5 ‘
=5 1° [”Th Ty bt

]

Now, to control the second term of the right side of (6.1.8), we have the following lemma.

Lemma 6.1.6. Let e be a edge or face of I'y, and C' > 0 independent of h, then
||Ip . nHFh,hL S Chk+1 |p|Hk+1(Q) + Chk+1 Tmax |y|H’9+1(Q) . (619)

Proof. Let us notice that using Lemma 6.0.2 and (6.0.4a), we have that for given e € T'j,

+ H(p — Pr2(eyp) - m

1T - nll,,, < |(TTzp — Prageep) -

eh
< G [Mzp = Pizeop| ., + [0 = Przgeorp) -m],
< Gy [Tzp = plle + Co |p — Prae
< Ci B Ipl e ey + CrhfE T y|Hk+1(Ke + Co W Thee [yl i)
< ChE plaey + CREE Thee [yl (e -
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6.1. Error estimates for the state equation

Lemma 6.1.7. There exists C' > 0 independent of h, such that

ol pe < VR Mpllp, + C (1 + v Re) B plarso).,

9yl e < VB Ml + C (L + R W4 plagsoray
Proof. The proof of this lemma can be found in [23, Lemma 3.8]. O

We are now ready to state the error estimates for p.

Lemma 6.1.8. We have that

B 1/2 )
lp = pullp, S (1 + By/Re) pllp, + 777 1 -l 0 (6.1.10)

+ R(1 + /Re) I [plppesi o) -

Proof. For this proof we follow the proof of [23, Lemma 3.9]. Using Lemma 6.1.5 and Lemma
6.1.7. Let us note that

A

lp = pullp, < Iplp, + llexlp,
S Il + RY2 (|0n(Ly - 1)

D¢ (h1)? + R |- n”ph,hL
S ||]P||Dh + R'? ”Ip ’ n”Fh,hL + R \V R/C ”IpHDh + R(l + R/C’) i |p|Hk+1(Q)

= (1 + R\ Dl + B2 il o + RO+ R Bl

O
Also we have the following estimates of the error in Dy,.
Lemma 6.1.9. There exists a constant C' > 0 independent of h such that
Ip =Pl < Wallpe + VR l€dl,
ly — thD’CL < Chp—px| Ds -
Proof. The proof of this lemma can be found in [23, Lemma 3.7]. [
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6.1. Error estimates for the state equation

Finally, we obtain the following error estimate of p in the entire domain 2.

Theorem 6.1.10. We have that

lp—pullg S Hi(R, 1) ||]p”Dh + Hy(R, h) “Ip'nHFh,hL + H3(R, h) . |P|Hk+1(§z),
(6.1.11)

where

Hi(R,h) = (1 v R+ R, + VR + R\/}N%’C\/R’C) ,
Hy(R,h) = (RV24—fﬁﬂ\/ég>,
mWﬁ%:@+w%+R+R<%+R<%+RM%M%>

Moreover, we can note that Hi(R,h) < C, H3(R,h) < C and also there exists a constant

C > 0 such that Hy(R,h) < ChY/2.

Proof. Using Lemma 6.1.8 and Lemma 6.1.9 it follows

lp = prllg = llp = Pullp, + llp—Prllpe

< (1 + RyRe) Ipllp, + RYZ |1y nllp, o + R(L 4 R B Pl o)

b + VR NIl

Then, by Lemma 6.1.5 and Lemma 6.1.7 it follows

+ [[p]

lp—pulleg S (1 + RyVRE) 1pllp, + R 1Ly mlly, 0 + R+ /Re) R [plaesa)
+ VRe Ll p, + (1 + VBEE) B Pl

+ VR (1llp, + ROy )l e + BV [ Tpmly, )
S (14 R+ Re + VR) Il + (B2 + R VRG) Iyl
4 (1 + VR, + R+ R R’C> R |pl e ) + R\RL 0n(L, - n)| D (hL)?

< (1 + R + \/Rilg + \/?6) HIPHDh + (R1/2 + R'? \/?/CJ H[P'In’HFh,hL
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6.1. Error estimates for the state equation

+ (1 + \/?’C + R+ R R’C) R 1Pl (0)

+ RV RE [, + (RVRE + RVRERE) B plivoo
= (14 R+ R + Ve + BVRARS) 11,

+ (R 4 RRG) Iy ml,

+ (1 + VR + R+ RR. + R\VE, + R@@) B |p] g

Corollary 6.1.2. There exists a constant C > 0 independent of h, such that

lp = pallg < CAT.

Proof. By a direct application of Theorem 6.1.10 and bearing in mind that |1, - n||Fh wr SRk

~Y

and || I,|| < hFHL O

6.1.2 Error estimates for ¢Y

For the estimates of e¢¥ we will proceed by following the steps done in [23] for the proof of
Lemma 3.4 of that paper. For this purpose we use a dual problem, which is defined as follows:

For any given n € L*(Q), the solution (0, ¢) of the dual problem:

c0+Vo = 0 inQ, (6.1.12a)
V-8 = n inQ, (6.1.12Db)
¢ = 0 onl. (6.1.12c)

we will assume that ¢ is in H?(Q2) and 0 is in [H*(Q)]¢. This is true for example when € is a

convex polygon or when I is of boundary C2. Thus, (6.1.12) satisfies

16l 2y + 1181l aye < C inllg (6.1.13)
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6.1. Error estimates for the state equation

where C' depends on the domain 2. Then we can establish the following lemma.

Remark. 2 = )y can be chosen arbitrarily, so it can be assumed that all the necessary regu-

larities associated with the domain €2 such as convexity and Lipschitz boundary are satisfied,

so that (6.1.13) is satisfied.

Lemma 6.1.11. We have that
lenll7 = (cIp. T1z0)7, — (eh,c(0 —20))7, + Tyu,

where

o~

T?Jyh = <8%70 ’ n>Fh - <€1fz "N, >Fh'

Proof. With n = &} in (6.1.12), notice that

(e7,V

= (1, V- 0)7, — (eb,cO)7, — (e}, VO)7,
(e, V
V

we)r, — (er, V(¢ — Uwe))7, -

Setting v; = IIz0 in (6.1.1a) and wy; = Il ¢ in (6.1.1b), implies that

(6.1.14)

(6.1.15)

TL40)7; + (€, V- (6~ T158))7, — (eF,cTLz0)7, — (€h,¢(8 — 148)),

lebll5 = (cIp, Tz0)7, + (. T120 - n)oy, — (eh - n, Mwelor, + (4, V- (6 —20))7,

— (eh,c(0 —1120))7, — (e}, V(¢ — lwe))7,
= (cIp,M20)7, — (e},c(0 —T120))7, + Typ,

where, by the moment

~

Ty = (£, 20 -n)or, — (e -1, Mwo)or, + (£1,V - (0 —T120))7 — (€7, V(¢ — o)), .
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6.1. Error estimates for the state equation

Now, integrating by parts and using the HDG-projection, particularly (6.0.1a) and (6.0.1b)

o~

Tyn = (e, 20 -n)or, — (e} - n,Uwo)ar, — (Vei, 0 —T1z0)7, + (], (0 —T120) - n)or,
(V-ep, 0 —llwo)y, — (eh - n, ¢ — llwglor,

(e, (I1z0 — 0) -n)or, + (e1,0 -n)or, — (e -n,Iwo — P)ar, — (€} - m, P)ar,

+

+ (eh, (0 —I120) - n)or;, — (e}, - m, ¢ — llwd)or,
= (el — <l (120 — 0) - n)or, — ((ef — €F) - . Two — D)o, + (1.0 m)or;
— <€P

o~ o~

;
P, or
= (e} — ¢}, (1120 — 0) - n)or, — (€] — €}) - n.Twd — Plor, + (1.0 - 7)r,

P

- <€P ' n, ¢>F;L .

The fact that (eg- n,¢)om\r, = 01s by (6.1.1c) and (5%, 0 -n)op\r, = 0 1is by the following

argument; as é‘%\ is single valued in &;, and @ € H(div;{2), note that

V9. — / Vg .
(h, 0 -m)or, Z 8K5h n

KeTy,
= 3 [l 0% + fehne 1ol + 3 [elo-n
= <€%\, 0. n)ph .

Then, by (6.1.1e) we have

~

Tyn = (i —€h, (20 — 0) - n)or, + (7 (e}, — ;). llwd — oy, + (€, 0 - n)r,, — (e}, - n, d)r,
= <€% — 6%, (Hze — 9) “n—+T (Hw¢ — ¢)>37‘h + <€%, 0 . n)ph — <€g ' n, ¢>Fh
= <53i/z7 0 - n>rh - <€£ - n, ¢>Fh 5

where the fact that (eg —ep,(IIz0 —0) -n + 7 (lwo — ¢))or, = 0 is due to (6.0.1c). O

Now, we will present a lemma that gives us a convenient identity for T ;.
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6.1. Error estimates for the state equation

Lemma 6.1.12. We have that T, = Y7, T}, ., where

T;h = — (" (o1 — ) b + clOnd)r,
Ti,h = (p1 — SO’faanGﬁ - PMan¢>Fh,
Tg,h = <AIP7¢>Fh7

T;,h = <Ip 'nv(b_ PM¢>Fh7

Tz,h = = <PM7_]ya¢>Fh
Tg,h = <A€£7 ¢>Fh )
Tyn = — (7 (e} — 1), Pud)r, -

Proof. In this proof we proceed analogously to [23, Lemma 5.4]. By (6.1.1e) and (6.1.6), let us

notice that

~

fom=efomtrl—cl) = p—gh) - A = AT = Lok (e -],

~

and as we proved in (6.1.15), we have that T, = (5%, 0-n)r, — (sg- n,d)r,. Then

~ ~

Ty,h = <€%70 ’ n>Fh - <c_1 l_l (901 - 90,11) - AIp - ASZ - Ip nm+ T (5%1 - 8%’1)7¢>Fh'

Hence, by (6.1.1d) and since 8 = — V¢ in the dual problem, it follows

-~

Ty = = (1= @1 Pund)r, — (7 (o1 = @) — AP =A% — L om0 + 7 (] — <)), O,
In turn, by (6.0.1c), we note that

(Ip-n,d)r, = (I n, ¢ — Pyud)r, + (Ip-n, Pud)r,
= <IP ' n7¢ - PM¢>Fh - <7'Iy7 PM¢>Fh
= <[p "N, O — PM¢>rh - <7' Py, ¢>Fh .

Therefore, the identity is obtained after a simple rearrangement of terms. O]
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6.1. Error estimates for the state equation

To continue with our analysis we need the following lemma, that will help us later

Lemma 6.1.13. [f the fourth equation of the second row of the assumptions (4.6.1) holds, and
if we suppose that (6.1.13) holds, then we have

1¢ — Prlly, hey—
10n¢ — PyOndllr,
¢ + clond|p, 1-s

[l .

IN

Ch nllg

IN

C R nllg ,

Clinllg
C inllg -

IA

IN

Proof. See [23, Lemma 5.5]. O

Now, we present the following lemma that gives us another tool we need for error estimates.

Lemma 6.1.14. FExists C' > 0 independent of h, such that

Tyul < C(R + R, + REW)h|(eh. el — ef o0 — 0| Inllg

+ C(R¥2 V2 ||0n(I, - n))|

e iy T I e mllp, 1) Il

+ CR; h'/? ||IyHrh7hl HnHQ ’

where H‘(sg, ey — 6%, p1 — @?)H‘ is defined as in Lemma 6.1.5.

Proof. By Lemma 6.1.12 we can rewrite T, ; = ST T;h, and applying Cauchy-Schwarz in-

equality
1 h —17-1
Tynl < o= ‘lerh,z Hc o+ ca”QSHFh,zfl ’
‘Tz,ﬂ | SplllHFh’l,l |Ondp — PMaHQSHFh,l )
|T2,h| < ||AfP Iy 22 HﬁbHrh,k2 5
Tynl < 1o nllp, e 16 = Pudllr, o)1 -

Ty nl < 1P 71y llp, g2 1€l 42 -
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6.1. Error estimates for the state equation

|’1r|s\

1llp, -2 -

Tp,l2

< [l =il om N0l aoe

g
A

Then, by the previous Lemma 6.1.13

g
A

<C H§01 - SO?HF}“I ”77”9 )
|1r2,h| < CRAfer =i, , . Inll -

C HA’P

g
A

o Il

Tyul < Chlllp-nllp, e lnllg -

T34l < CIPuLllp, e Il
P

Tyl < C Ak, Il

Tyl < C b =<l o Il -

On the other hand, let e be a edge or face of I'y, then

H: _l(z
re = 57 > ELJ‘) — I(x) < htre,

by the above argument and by Lemma 6.1.4, we get

h
|']I‘ W < C I;é%X?“eh H901 - %Hl“h,l” Inllg

Tyl < CRA H% —SO}fHF = Inllg

T, < C maxr3/2 A2 | 0n (I, - 1))

68

DE (ht)? Inllq

Tynl < Chlllp-nll, 5o 0l

|']I‘ W < C Ieré%XTeTe /2 (e th ne e

Tynl < C mas . 2 Cear Cinn 12 R, Ml

|']I‘ W < C gé%%c 71/2 reh H€h - %H 7l -
h
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6.1. Error estimates for the state equation

Then, from the definition of ‘H(ez, el — 5%, o1 — go}f)m we deduce

Tyl < O maxreh|(ef. ] —elor =D Ml -
T2, < CRA|(eh.ch — b o0 — )| lnlle -

Tynl < C reré%gri’m W2 |00 - 1)l pe oo Il

h

Tynl < Chlllp-nllp, 4 lInllg

Tyl < C maxrer 7 1, I, g ol
TS, < C maxr? CS,, Ch b2 || (63,68 — &f o1 — )| Il

ext ~inv
e€ly

[Ty 4]

IN

C reré%%(Tel/Q reh H’(eﬁﬁz — &, 01 — @?)‘H Inllg -
h

Furthermore, we get

Tyl < C(Rh|(eh et - eon - o)
4+ R3/2 L2 ||an(]p.7’L)||D}c“(,#)2
+ h || - "Hrh,hL
S L [V [
+ RE 12 |(F, el — &b o — )|
+ Reb|(ehet = el = D)) Il
= ¢ (Rh+ REW2 + Reh) [|(ehet - o — )| Il
+ C <R3/2 h'/? [0n (I - n)”U;,(hi)? + h | Lp- "Hrh,hi) Inllq
+ C R LI, e Il
= C(R+ R+ RAV2) h|(eh et~ e — )| Il
+ C <R3/2 h'/? [0n (I - n)”pg,(hi)? + h|Lp- "Hrh,hi> Inllq

+ C R, h'? ||Iy||1“7hL 7l -
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6.1. Error estimates for the state equation

O

The we obtain the following estimate for y in €.

Theorem 6.1.15. We have that

ly = wllo < Hi(R,h) 1pll, + Ha(Ro ) Lp -y, o + Hs(RB) (L],

+ Hy(R, h) W™ |pl g q)

where

o~

Hi(RoW) s= (h+ Rh+ Roho+ REBV + RyRoh + R \Roh + RR-\JRoh
+REGRG W2 4 B[R b2 4 Roh + Ry Re [Reh )

To(R,h) = (Rl/zh + R¥2h 4+ RV2R.h + RV2RL V2 + Rlﬂﬁzzh) ,

Hy(R,h) == (1 + R, h'/?)

Hu(R,h) = (h + Rh +R*h + RR b+ RELRY? + R¥?hV2 4 R\/Reh + R2\/Rih

+ RR,\/R-h + RR%\/RLBV? + R¥?\/RLW? + \JRLh + R\ R I

Moreover, we can note that there exists a constant C' > 0 such that E(R, h) < Ch for
i =1, 2, 4 and we also have that ﬁg(R, h) < C.

Proof. Let us notice that by (6.1.14) and by (6.0.1a), with 0),|x € [Pr_1(K)]4, for all K € Ty,

leblls, = (cIp.T1z0)p, — (eh,c(0 —T1z0))p, + Ty

(cIp, 1170 — O)p, + (cIp,O)p, — (P — Pn,c(6 —1120))p,
— (IIzp —p,c(60 —11260))p, + T,
= (clp,0)p, — (P —Pn,c(60 —11z0))p, + T,n

= (cIp,0 — 0n)p, — (p—pn,c(0 —T120))p, + Typ.
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6.1. Error estimates for the state equation

Then, by Cauchy-Schwarz inequality
letlls, < lelpllp, 18— 6ullp, + P —pallp, llc(6 —TIz60)|,, + Tyl
Thus, using (6.0.1) and the elliptic regularity inequality (6.1.13), we get that

2
I3, < Ch (Wpllo, + IEllo, ) Lo, + [Toal

< Ch (Ml + ||t = ehor = D) lnllg + Tyl
Then, by Lemma 6.1.14

2 _
leklD, < Ch(uprDh + ||k b — <t on —sO}f)HD Inllq
+ C(R+ Re + RN ) bR et = choor = )] Il
+ C (R3/2 h1/2 Han(Ip ’ n)”pz,(hL)? + h HIIJ ) n“F,(hl)) HnHQ

+ C R A LI gy (17l -
Now, setting 7 = ¢7 in the dual problem, we get

Ik, < Ch (Ml + ||k ek b = D)

s (R + R, + R h—1/2> h M(s’,‘l’,ez - 8% Y1 — Splf)m

+ C <R3/2 W2 ||0n (I, - m))| pehiy T+ h || - nHFh,hl)

+ C R, h'/? HIy“Fh,hL :
By (6.1.8) and Lemma 6.1.7, we notice that

I8, S b Wl + b (Wl + B 19n (- @)l e + R 1yl s, )
+ (R + R+ R h1/2> h ( 1pllp, + B 10a(p -l e + B L - nurh,(,ﬁ))

+ RYEDY2 (|00 (T )l ey + Be B2 L g
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6.1. Error estimates for the state equation

= (h+ Rh+ Bt RERP) I,

+ (Rh 4+ Rh + RR,h + RRLIV? + RY? h1/2) 10Ty - 1) | e -

)

+ (Rh + R**h + RV*R. h + RV? R, h1/2> 1 -l s

RPN, ey

'R
< (h + Rh+ Roh + RARY? + RJRoh + R*\JRLh + RR,\JRih

+ RRLJRLWV? + RY? R, W) 1l

+ <R1/2h + R¥?h 4+ RV?R.h + RV R, hl/z) Mo - I, )

+ R, h'/? HIy“Fh,(hJ-)

+ (Rh + R°h + RR.h + RR:1? + R?hY? + R\/R..h + R*\/R. h
C C C

+ RR.\JRoh + RRAJRLWV? + RY?\JRL, W) B |l s

Then, using discrete trace inequality 6.0.2 with |[Z,[[., ,. we obtain

lenllp, < <h + Rh+ R h + RLAY? + R\/Rph + R*\/Roh + RR. \/RL b
+ RR\JRLAV2 4 R3/2@h1/2> 1l

N <R1/2h + R*h + RV R, h + RV R} h1/2> Hp -, sy
+ R 'L,

+ (Rh Y Rh + RR.h + RRLW? + RY21V2 + R\JR.h + R* \JRih

v RR.\JRoh + RE2AJRLEY? + R¥2 /R h1/2) R i g -

It follows from the above that

ly = yullp, < ILllp, + lenlp,

< (h Y Rh+ Roh + RAWV? + RJR.h + R*\JRoh + RR,\JRh

© RN + 1R 1l
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6.1. Error estimates for the state equation

(R RY2h 4 R R+ R RSB -l o)
+ (1 + R, h1/2) 1y,
+ (Rh + R*h + RR.h + RRLRY? + R¥*1Y? + R\/R.h + R*\/Rh

+ RR,\JRoh + RRAJRL KV + RY? R, h1/2) R [p i gy -

Finally, by Lemmas 6.1.7, 6.1.9 and 6.1.5 we have that

ly = wllo < lly = wnllp, + ly = wallpe
< (h + Rh+ Roh + RAW? + RJRoh + R*\JRoh + RR\JR R

+ REL\JRL WV 4 R Jz?'chl/?) 1l

- <R1/2h + R¥?h + RV?R.h + RV’ R, hl/Q) 1y llp, oy

+ (1 + R, h1/2> 1y,

+ (Rh + Rh + RR.h + RELRY? + RY20Y2 4 R\/Rph + R?\JRG D
+ RE\[RG b+ REERGRY o R \[RCW2 ) HE plgs o

+ lly — wal

Dp,

< (h + Rh+ Roh + R2WY2 4 RyJRLh + R \JRoh + RR ARG D
+RRE RN 4 BB I,

+ (Rl/Qh + R**h + R'?R.h + R'? R, h1/2) 1o - 2l e

(14 R 1,

+ (Rh+ Rh+ RRob+ RELW o RPRY2 4 R\Roh o+ R R b
+ RR\JRoh + RES\JRLBY? + R @h”ﬂ B ] s
A CA

< (h + Rh+ Rih + RAWY? + RJRoh + R*\JRoh + RR,\JRih
+ RR:\JRLEV? + RY? /R, W) 1l

+ b1y
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6.1. Error estimates for the state equation

4 (Rl/Qh + RY2h + RPR.h + RV’ RS h1/2) 1o nll, o)

4 (1 v R W) 14y,

+ (Rh + R*h + RR.h + RRLWY? + R0 + R\/R.h + R*\[Rph
+ RR.\JR.h + RRZ\JRL B2 4 R @h”?) B |l s

+ VB [ pllp, +h (1 + R B [Pl o) + B h ||(€F, ¢ — el o1 — )|
< <h + Rh+ Roh + RAW? + RJRoh + R*\JRoh + RR, R R

+ RR%\/RLAY2 + RY? \/f?chl/?) 1l

+ (RY2h 4+ R+ RY2 Beb o+ RV2RER) 1y g,

+ (1 + RV I,

+ (Rh + R?h + RR.h + RRLLY? + R32hV2 4 R\/RZh + R?\/R.h
+ RR\JRoh + RES \JRLRY? + RO \/J?'Chl/?) R | g
VR L, + <h+ Rl h) W pl ey + RARG b 0u(ly 1) e i
+ RYRN T, nlly,

S (h+ R+ R+ REWZ + R\RGh + B \[Reh + RE-\[Roh
+RRERLI + B RO (1,

4 (Rl/% + Bh+ RVR h + RV’ R h1/2> 1o nll, o)

+ (14 RA2) I,

+ (Rh + Rh + RR.h + RELRY? + RY20Y2 4 R\JRph + R?\JRG D
+ RR\JRoh + REL \JRLBY? + R W?'Chl/?) B Ip i o

+ (VReh + RVEe RER) I,

+ <h + Rk + R\RLE + R@@h) WA |pl i

+ R \RG By np, e
< (h + Rh+ Roh + RAW? + RJRoh + R2\JRoh + RR\JR R
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6.2. Error estimates for the adjoint equation

+Rﬁwmwﬂ+m%mMW+w%h+mmCmem@

+ (RVQh-+.RW2h-+_RU2RTh-+.RV2Rgi#ﬂ +.RLQ\/§gh)|Ub.nHDAhH

+Q+mewm%h

+@+Rh+ﬁh+3&h+RﬁmW+meﬂ+RM%h+m Ry h

+ RR,\/R-h + RR%\/R,BV? + R¥?\ /R W2 + \JRL.h + R\/R I
+—R\UﬁM/R6h>h“4uﬂHqu.

Corollary 6.1.3. There exists a constant C' > 0 independent of h, such that
ly = wnllg < CHEE

Proof. By a direct application of Theorem 6.1.15 and bearing in mind that ||Ip[, < hk+1

R+ and 1Lyl p, < hr+L, O

~Y ~Y

H]p ) n”rh,hi S

6.2 Error estimates for the adjoint equation

In this section we proceed analogously to the case of the analysis of the state equation. But,

here we use the estimates of the state equation in the analysis of this case.

6.2.1 Error estimates for e”

The projection of the errors of the adjoint equation satisfies the following equations,

Lemma 6.2.1. We have that

(ceyn,va)7, — (67, V - v2);, + (€1, v2-N)o7, = — (¢, v9)7,, (6.2.1a)
— (er, Vwa)7, + (€} - nywa)ay, = — (€], w2)7, — (Ly, wa)7;, , (6.2.1b)
(eh 1, p2)oriar, = 0, (6.2.1c)
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6.2. Error estimates for the adjoint equation

(i 2, = (02— @3, ka)r, (6.2.1d)

o~

ep-n=¢-n+ 7 — 5%), (6.2.1e)

V (v2, wy, pi2) € Zy, X Wi, X M.

Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.1, except by the equation

(6.2.1b). Let wy € W), we have that

— (527 ng)']‘h + <€i ‘n, w2>37’h = — (Hz’l" — Th, ng)Th + <<PM’I" — ’;"\h) . ’n,w2>a7‘h
= — (Izr,Vwy) 7y, + (Pur-n,ws)ar, + (Th, Vws)7,

— (Th - M, wa)a7; -
Then, by (5.1.5b)
— (e}, Vws) 7, + (si-n,wﬁmh = — (IIzr,Vws)7, + (Pur-n,w)er, — (§ — Yn, Wa)7; -
Using (6.0.1a) and integrating by parts

— (e, Vwa)7, + (&), - n,wa)a7, = — (7, Vws)7, + (Pur-n,wa)ar, — (J — Y, w2)7;
= (V-7 wa)y, — (r-mn,wa)ar, + (Pur - n,ws)ar,

— (U — Yn, wa)7;, -
Finally, by using (5.1.2a)

— (e, Vwa)7, + (€} - mwa)ar, = — (Y — yn.w2)7, = — (€], w2)7, — (Ly, w2)7;, -

We will now present a result based on an energy argument
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6.2. Error estimates for the adjoint equation

Lemma 6.2.2.

2 2 p
HCW egHTh + HTW (ch _gz)HBTh + (eh -m, ¢ _90]11>Fh = —(clr.eh)p

— Iy eh)7s -
Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.2.
Corollary 6.2.1. It holds

5 el

<1H
=2

L3 2
+ 5 lle enlly + nyIITh :

|2 e sz)HZTh + (sZ-n, P2 = P41,

2
— llekll,

Proof. Tt follows from the previous result and an application of Young’s inequality.

Lemma 6.2.3. We have the following identity

erom =c (- h) — A" — A% —I,-m  Vxce, ecé&l.

Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.3.

The proof of the following lemma can be found in [23, Lemma 5.2].

Lemma 6.2.4. For cach e € €, we have that

1
[, = ﬁre 10 (L) e, o
A5, < 2572 C Cin |

Now, we establish the following error estimate for the energy norm.

Lemma 6.2.5. There holds

e ei =i o2 — D) S Mol + I, + lledlly,

+ R ||On(I, - n)|

pe iy t R'? [ - mlp, po
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6.2. Error estimates for the adjoint equation

Proof. From (6.2.1e) we can deduce that

o~ ~

(e} M, 00 — OV, = (€ M 00— Ph)r, + (T (g, — 1) o2 — O)r, s

and by (6.2.4)

— — 2 r
(ef - mopr = @), = (|22 (oo = ) — (AT 02— B)n, — (A — o),

- <Ir "N, P2 — 303>Fh + <T (82 - 8;)7 Y2 — S0’21>Fh

Hence, replacing this in (6.2.3)

1 2 . 2 ) ) )
5 Hcl/2 sz - + HTl/z (5h _5h) o + HC 1/2 -1/2 (@2 _ ‘pg)Hp
1 3 9 1 ) )
< g el + 3 Nk g Wl + (A 02 —en, + A% 00— i,

~

+ <Ir N, Py — (pg>Fh + <T (Elzz - 52)7 Y2 — 903>Fh

By Cauchy-Schwarz and Young’s inequality we get

Vel ZTh—i_ﬁH

5 HC e 12172

(2 — 903)"2

2 ~
- + H7'1/2 (€7 —€7)

<1Hc
-2

3 2
+ 5 Nkl + Hum+2HWWMh

+ H 1/2 11/2 Aeh

T'n
2

+2 Hcl/211/2 r + 2 Hcl/zlmT(e,i — &) -
h

On the other hand, notice that by the first equation of the first row of the assumptions (4.6.1),

we deduce
~ 2 1 ~
2 |21 (ef )| < 5 [ - <)
Iy 2

2
T

Thus, we have

; |t 52 + 3 H V2 (e —ei) ZTh + ; |2 17172 (g _S@Hih
= ; e ;) bl + llfyHQTh + 2 [|c/2 12 AR ih + [tz 172 s ih

+ Hcl/zll/QIr-n -

h
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6.2. Error estimates for the adjoint equation

Also, by Lemma 6.2.4

2 el < 23" 2 [0 1)y e (6.2.7)
and
H 1/2 11/2 Aeh . H 1/2 7' (6.2.8)
Therefore, we obtain
S eral, + -, + e —w@Hih < e,
S2 1+ LI+ 2 N0ty s + 2B [ L omf
0

Now, to control the fifth term of the right side of (6.2.6), we have the following lemma.

Lemma 6.2.6. Let e be a edge or face of I'y, and C' > 0 independent of h, then
HIT : nHFh’hl < Cthrl ”I“|Hk+1(g) + Chk+1 Tmax‘Z‘Hk-H(Q) . (629)

Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.6. m

To control the fourth term of the right side of (6.2.6), we have the following lemma

Lemma 6.2.7. There exists C' > 0 independent of h, such that

HI"'HD" < VR/ H[ ”D} + O(l + é, )hk+1|""Hk+1 Q) >

10 (L - )l pe uye < VBE el + C (L + (JRe) K e o)
Proof. The proof of this lemma can be found in [23, Lemma 3.8]. O]

We are now ready to state the error estimates for r
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6.2. Error estimates for the adjoint equation

Lemma 6.2.8. We have that

Ir = 7y, S (1+ BYVE) ILlp, + Ikl + Iyl + B2 - mly,
+ R (1 + \/R/C> S ’T’Hk-FI(Q) .

Proof. The proof of this lemma is analogous of the proof of Lemma 6.1.8, and additionally

(6.2.10)

adding the terms [|e;||. and |[1,[|. to the right side of the inequality. O

Also, we have the following estimates of the error in D,

Lemma 6.2.9. There hold,

lp = pullp; < ellp; + VEE lleglp,

|z — ZhHD}CL < Chllr — m4

Dg -
Proof. The proof of this lemma can be found in [23, Lemma 3.7]. O]

Finally obtain the following error estimate of = in the entire domain ).

Theorem 6.2.10. We have that

I = 7l S

~J

Hi(R. ) |1l p, + Ha(R,h) [yl o + Hs(Rh) R e o) + llebllp,

+ Lllp, -

where H;(R,h), i € {1,2,3} are defined the same as in Theorem 6.1.10.

Proof. The proof of this theorem is the same that the proof of Theorem 6.1.10, but additionally

adding the terms ||| 5, and ||, ]|, in the right side of the inequality. O

Corollary 6.2.2. There exists a constant C' > 0 independent of h, such that
|r — 7ull, < CAME

Proof. By a direct application of Theorem 6.2.10 and bearing in mind that || L[|, < A",

W bl S R and (|, S B =

Y

17 -l e S

~Y
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6.2. Error estimates for the adjoint equation

6.2.2 FError estimates for ¢

For the error estimates of e* we proceed in the same way as the error estimates of e¥. In fact,

we use the same dual problem strategy. Thus, we deduce the following lemma.

Lemma 6.2.11. We have that

leill5 = (1, T120)7, — (e}, c (0 —Tz6))7, — (¢, Mwo)y, + Tan, (6.2.11)
where
T.) == (c,,0 -n)r, — (€] -1, d)r, . (6.2.12)

Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.14. But in the point
of the proof when for this case the equation (6.2.1b) is used, here we have to add the term
—(e7, lIwo) 7, — (Ly, )7, = (¥, Il )7, in the right side of (6.2.11). The rest of the proce-

dure of the proof is the same as in the proof of Lemma 6.1.14. m

Now, we will present a lemma that gives us a convenient identity for T,

Lemma 6.2.12. We have that T, = SI_, T ,,, where

Top = —{c 17 (02— 95),¢ + clOnd)r, ,
Tih = (p2 — ¥, 0ndp — PrOnd)r,

T2, = (A", é)r,

Ti,h = (I, n,¢— Pyo)r,,

T2, = —{(PutL,¢)r,,

Tg,h = <A€Za¢>rh;

TZ,h = —(1(e; — 5%)7 Pyo)r, -

Proof. The proof of this Lemma is analogous to the proof of Lemma 6.1.12. O

Now, we present the following estimate for T, ;.
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6.2. Error estimates for the adjoint equation

Lemma 6.2.13. Ezists C' > 0 independent of h, such that

I T.nl < C (R + R, + R% h_1/2> h||(e.ei — €inien — oB)|| IImllg

+ C<R3/2 h'/? [|On (1 - n)HD}CL,(hi)? + b |1 - F;L,hi> Inllq

+ C R |L g, g lllg -

Now, we have the following estimate for z in (2.

Theorem 6.2.14. We have that

I2 = 2ullg < (R Inllp, + HalRh) |- nllp, o + o(RoB) L] p,

+ H\4(R, h) thrl |’I”‘Hk+1(Q) + hk+1 .

Moreover, we can note that there exists a constant C' > 0 such that ﬁi(R, h) < Ch for

i =1, 2, 4 and we also have that ﬁg(R, h) < C.
Proof. If we note first from the third term of the right side of (6.2.11) that

(e, Thwo)r, < W Inllg -

Then, proceeding analogously to the proof of Theorem 6.1.15 we prove the statement. O

Corollary 6.2.3. There exists a constant C' > 0 independent of h, such that

Iz =zl < CHE

Proof. By a direct application of Theorem 6.2.14 and bearing in mind that || L[|, < A",
||]7""||Fh,hi S WM and I p, S WL o
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6.3. Error estimates for e®

6.3 Error estimates for e

We have to mention that in this and in the following section, we use n;, to denote the unitary
normal vector for I', and m to denote the unitary normal vector for I'. To begin with the
analysis of the error for the velocity field equation, we start with a energy argument, which is

given by the following lemma

Lemma 6.3.1. We have that the projection of the errors satisfy the following identities

(7.9 — (e, div(®))y, + (eF s ¥mu)or, = — (L )7, (6.3.1a)
— (7, V)7, + (efnm, oy, = 0, (6.3.1Db)
<§gnh,ﬂ>a’rh\rh =0, (6.3.1c)

(€7mn m)ry = (Gn—Gun)o g )y, (63.1d)

(¥ vy = (ap — g )rp (6.3.1¢)

ey = eln, +7() —€Y), (6.3.1f)

for all (¢, w, u) € Zy, x Wy, x M,
Proof. First we start by proving (6.3.1a), for this let ¥ € Z;, notice that
(€f )7 — (e, div(y))7, + (e, PYnn)or,
= (zo — o4, )7, — MwV =V, div(eh))7, + (PuV — Vi, ¥nn)er,

= (zo,¥)7, — MwV,div(y))7, + (PuV, ¥m)ar,

—(on )7 + (Vi div(y))7, — (Vi ¥nn)or, ,

I0)



6.3. Error estimates for e®

hence, by (5.3.5a) followed by (6.0.1b) and then integrating by parts we obtain

(5. %) — (e¥ . div(¥h)g + (e rior,
= (Hzo,¥)y, — MwV,div(y))7, + (PMV,¢nn)er,
= (Izo,¥)7, — (V. div(y))7, + (PuV, Yo,
= (zo, )7, + (VV. )5, — (V. dbnn)or, + (PuV, mu)or,
= (Izo, )7, + (VV,9)7,,

thus, by (5.3.1a) we have that

(7, 9)7 — (€, div())7, + (Y, ¥ni)on, = (Muo — o, 9)7 = — (L, )7 -

Now following with the proof of (6.3.1b), let w € W), then

— (gZ,V'w)Th + <§Z’I’Lh,’w>37h = — (Hzo' — O'h,V'lU)Th + <PMO"I’I,h — &hnh,wah
= — (IIzo,Vw)7, + (Prong, w)sr, + (on, Vw)7,

— {On1n, W)or; |
by (5.3.5b), followed by (6.0.1a) and a integration by parts, we have that

—(ef, Vw) 7, + (gfnn, w)or, = — (Ilzo, Vw)7, + (Prong, w)osr,

= —(U,V’(U)Th + <PMO"I’Lh,’lU>37‘h
= (div(o), w)7, — (on, w)sr, + (Pmon, w)sr,

=0,

where the first term of the last equation is zero by (5.3.1b). Now, to prove (6.3.1c), let be
1 € Mj, we have that

(enmn, m)or\r, = (PMON, — GpTn, )orir, = (PMONn, omar, — (OrMh, W)aT\T, »
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6.3. Error estimates for e®

thus, by (5.3.5¢)

(ermn, worr, = (PMonw, wonar, = (ONh, 1)aT\r, -

On the other hand, let us note that

(onn, mwor, = Y ony -

KeT;, 79K
=3 [lolfuhe + fodlul + X [om-n
= (o, wr,,

hence, by Lemma 4.1.1 we have that [o]. = 0 and also as p € P(€,) we have that [u]. = 0.
Therefore (o ny, w)or\r, = 0. Now, following the proof of (6.3.1d), let u € Mj,, we have that

o~

(€F T, vy = (Promy — G, )ry = (Prro mp, p)py — (Gn non, phry

then, by (5.3.1¢) and (5.3.5d),

o~

(€ T, :U’>I‘hN = (o nh,u>F}sz — ((Gpm) o qf%#)r{j = ((Gn —Gun)o ¢,;1,>thv :

To prove (6.3.1e), let be p € My, then

~

<€hv7lv4>rg = <PMV—V\haIJJ>FhD = (PMV7N>F5 - (‘7}”#’)@-

Then, by (5.3.5¢) and (5.3.1d)

~

<€X7M>F£ = <V>IJ'>F5 - <g%7ﬂ>rf = <9D7N>F5 - <Q%7H>Ff = (9p _9%7H>FE'

Finally to prove (6.3.1f), let be pu € Mj,, let us note that

~

€F +7(ef —e)),wor, = (Mzo —ap)ny +7(MwV — Vi, — P,V + V3), phom,
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6.3. Error estimates for e®

= (sznh +THWV,N>a’rh - T<PMV,M>aTh

—{opnn+7 (Vi = Vi), wor. .

Then, by (5.3.6) and (6.0.1c), we can deduce that

-~

(en + (e —€)),wor, = Mgon, + 7wV, pwor, — 7(PuV, won — (G 1, m)oT,

on,+7V,wor, — 7(PuV, o, — (On1en, o,

(

= (

= (o nn, pwor, — (Onmn, Ko,

= (ony — Pyony, o7, + (Pyvony, — 6, ny, 1) o,
= (

€y nh,ubn

[
To continue with the analysis, we will present the following lemma
Lemma 6.3.2. We have the following identity
2 1/2 (V v |° h o
lef |7, + |71 (e} —ei)|| _ + (gp — gb.€f ma)ro
O7n (6.3.2)
+{(Gn = Gun) o b, el hen = — (Lynel),

Proof. let us note that setting ¥ = €7 and w = €) in (6.3.1a) and (6.3.1b) respectively, thus,

we have that

lef |7, — (e div(en)n, + (e} &7 na)or, = — (Lov €57,

— (7, Ve) ), + <€h n, €y )or, = 0,

integrating by parts the second equation,

lef |7, — (e¥,div(el))r + (el &f muor = — (Ly,€7)7;

(div(e]), e} )7, — (€7 n, &) Yor, + (€f M, &) o7, = 0,

78



6.3. Error estimates for e®

then, adding both equations we obtain

€717 + (€F mn — € mn, € Dor, + (e €7 mn)or, = — (Lor €77 »

then, by (6.3.1f)

~ ~ ~

7Nl + (7 (e} — &) ).ef — e )or, + (€7 mn — €5 mn, €} Vo, + (e €7 mi)or, = — (Lo €77,
equivalently
2 1/2 (_V | - 1%
7|17, + 7/ (et —eX) o T (ef nn, ey )or, = — (Lo €7)7, -
h

Furthermore, note that by (6.3.1¢c), (6.3.1d) and (6.3.1e) we obtain that

~

(€7 nns €y Jom, = (€7 mns € Domary + (€7 ns €y )ro + (€5 M€} )1y

= (gp — gh. el "h>r5 + ((Gn = Gyn) o ¢, €X>rhN -

Therefore, we conclude that

2 -
||§Z||27h + |72 (el —e)) o7 + (gp — gp. €7 o) o
h
+ <(Gn - Ghn) © ¢)7 shV>I‘}1y - (la'vgg)ﬁ :
O
Lemma 6.3.3. We have the following identity for the projection of the error,
eln, =1 (gp—gh) — Ao — ASZ — I my. (6.3.3)

Proof. Let us note that

U(z)

I(x)
gD—gﬁ) = /0 o(x+ sny)nyds — /0 Ey(on)(x + sny) ny ds

I(x)
- /O (o — Ey(on))(a + s1p) mp ds
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6.3. Error estimates for e®

/0 (0 —zo +1lzo — Eyp(on)) (@ + s 1) np ds
= [T+ e+ sm) i ds
/0 (Iy(x+smny) — L () nyds + I(x) L, (x)n,

+ /Ol(m)(EZ(w +sny) —ej (x))nyds + l(x) g7 (x) ny,

(@) (Mo + Ly, + A + el ny) (@)

Therefore the statement had been proved. O

Now we need to state the following lemma to continue with the analysis

Lemma 6.3.4. For cach e € €, we have that

1
ate], < 737 10 Lom) e e (6.3.4a)
ey 1 e e o
‘Aih el < ﬁTS/Z Cezt Cinv ”gh Ke - (634b)
Proof. See proof of in [23, Lemma 5.2]. O

Let us now introduce a key lemma for the error analysis,

Lemma 6.3.5. We have the following inequality

ez ¥ —e¥.ap—ab)|| S Mol + RV | Lgmallpp e + (G — Gin) o dp .
6.3.5
+ B 0 (Lo g e + [

where

v \%
Ep, — &y

~ 2
9 2
ek —ef.ap - ab)| = (1l + e gl )
h> ’
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Proof. First we will note the following argument, from (6.3.2) we have that

2

1/2 LV H
lefll7, + 772 € =D,

+ <gD - g}ll)véz- nh)FhD + <(GTL - Ghn) © ¢7€hV>FhN
1
o 2 o 2
< LoDyl < 2 LI, + & eI

by doing some simple algebraic arrangements, we get

~ 12 ~
T2 (e} —e))|  + (gp — gb. €7 ma)ro

o X (6.3.6)
+((Gn — Gyn) o ¢, €;Y>r;;f < B ”laHQTh :

2
> ez,

On the other hand, let us note from (6.3.1f) that

o~ -~

(€7 mn.gp — gb)rp = (€7 mngp — gp)rp + (T (e} —€),ap — gh)rp

then, by (6.3.3)

(€7 mn.gp — gb)ro = (7' (g0 — 1), 90 — gb)ro — (Mo, gp —gp)rp — (A, gp — gh)ro

v _

— Ly mn,gp — gp)rp + (T (e} —€)),9p — gp)rp

= qu/z 9o — gh HI‘D (Afe, —9?)>FD - (AgzagD_QEFE

14

— (I, 9D —QD>1“§ + (7 (e}, _sh) QD—9D>

Then, replacing the obtained above in (6.3.6), we get

1 2

2
> llegl, + |72 ey — &)

+ 1772 (g — g, + (Gn— Gan) o p.el )y
T r

1 o
<5 HLxH% + (A, gp —9115>th + (A% . gp —g%>rf + (Lo mn, 9o —Qg>r5

—(r (e} ) gp — gheo
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6.3. Error estimates for e®

equivalently we have that

1/2

||sh||7-h + el — e, + 72 ow — 95

<5 HL,H%L + (Ao, gp —g%>rg + (A, gp —glf)>th + (Lo, 9p —g$>rf

— (7 (e —€}),9p — gg)rf — ((Gn —Gyn) o ¢, EX)FQI

1 -
< 5 ||l0'||?l'h + <A£o7gD _g%>f‘,€’ + <A§hng _g?)>1"}? + <la Nnn,gp _g?)>1",?

o~ ~

—(r (e} —&).gp —gprp + (7 (e} —€)), 77" ((Gn — Gin) 0 §)))ry

(¥, (Gn — Gyn) 0 Gy

Then, let be €1, €9, €3, €4, €5 > 0, by Cauchy-Schwarz inequality and Young’s inequality we

have that

2
2 (Y — )

A o 7 e = gb)

< ; 1L |7, + 2161 | AIaHiE + 5 2 (o _gg)HiE + 2162 |ev2 st

2

L g - g, + o [0 L + S sl
v e =<, + 5 I e — bl + 5 [ et <D

+%5 |7 ((Gn — Gum) oqb)HiN 41 Hs,YHZN n 1 H(Gn— Gim) o @

1 2 1 1/2 AL
< 5 ML + oo At

’l1/2 AE7

262 ‘ rp 263 Hll/?] nhH

171 2

5 +1}
264 €5

v Ity +

% 1
(el —el)| o+ S les + 1) 1(Gn - Gin) o @l

Th
2

)
Ty

—le1 + €2 + €3 + €4 Hlil/Q (gp _Q?D)H
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hence, setting €; = €3 = €3 = ¢4 = 1/4 we get

2

g, + [ el <) Mh + 5 72 a0 - b,
< 3 Mol + 2 [P a2 Al 2 [0 Lom
LTy 12, ) 1] |(Gn—-a 24 Ly
g [t 2] e —eh)|, + 5 e+ vlGn- hn>o¢upg+§HshHFg-

On the other hand, we can note that

1 NI 1 1
— 14 + ] V27 e’ < - {4 + ]max Te’l“ehJ' 2y — eV
2{ €5 <h h)rE_Q €51 eced (h )87’h
1 1 12V |2
8 €5 Ty,

Thus, setting e5 = 1/2, we get

3 ||§h||7’h 1

3 ML, + 2 [ ake ],

i GO | I ) R —g;s>HFD

+ 2 sz A+ 2 Hll/?f nhH

- H(Gn Gin) o Bllf + 5 HsVHFN ,
Then, by Lemma 6.3.4 and taking into account the assumptions of Chapter 4, we can deduce

the following inequalities

oo =2 2 [k

eCFh

gzt’(hL)2

2 1
P2y oo on, (L)

ECFh

<2y |2 al

GCFh

2
Dz,(hl)z S §R2 Han(la,n’”

e

2 ||t/ AL

D5 (hh)?

\V)

< 5 maxry [0, (Lom)|

and

2
e<2 Zir ea:t zem))

GCFh

S Y |

e
eCl'y,

2 ||it/2 As

ig =2 2 HZWAQZ

D
eCFh

< — lefll,
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Therefore, we obtain the following inequality

12 (g s,‘?) ? 1712

(gp — g%)HW

S lelz + 5 | . v

sgmw%+ﬂWHuwD+fmthmwm@

2
2R 0n, (L)

Dc(hu+2 leX

<WHH+M@nwﬁww+|WnGm)M@

42 B 0, (L) e +

<5 IILIII?r + 2R | Lonllep e + 5 II(G" Gin) o ¢|py

3 ¥

—_

t3 2B (|0, (L)

Dinty T g H
0

Now, we see that the first term of the right side of (6.3.5) is controlled by theorem (6.0.1)

and the second term is controlled by the following result

Lemma 6.3.6. Let e be a edge or face of I'y,, and let be C' > 0 independent of h, then
||LT nh”I‘h,hi < Chk+1 |0'|Hk+1(Q) + Ohk+1 T |V|Hk+1(Q) . (637)

Proof. The proof of this lemma is analogous to the proof of Lemma 6.1.6. O]

On the other hand we can note that to compute the estimates for [lef ||, we need to state

the following lemma to control the term ||[(Gn — Gyn) o q’)HFhN.

Lemma 6.3.7. We have that

(GT)n — Gu(T)n) o dlipn S [[(r = 74) - nllpy (P = Pr) - nlpx

+rlla o) 1@ =pn) - nliox + 1Pl i) 107 =7a) - nllpy + (107 = 7ra) - 2flpy
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moreover
[P =) mllen < max o2 W72 R (R ef = efon = )|
n <char)§vr V2 =12 R ¢ RY2 o ) 1o,
+ nax g ~l/2 pm1/2 <1 + \/éb) R Pl e g
+ (14 RY2) B Iplgen e
and

|(r —rp) - n|py S max r, —1/2 =172 \/ﬁ’c

|(ehei — i oo — &b

r.cry
+(§g§r””fmv3’+fw2 )Hfm%
+ I‘n}:aF}f(V e ~1/2 h71/2 <1 + E&«) thrl ”I"‘Hk+1(9)

(14 BB e
Proof. Let us note the following

1 _ 1 N
—(g—9)* — rh-n(cpn - n+0n9) + 5(9—?/)2

GI) — Gp(I') = r-n(cp-n+0nhg) — 5

=cp-nr-n—p,-nr,-n)+ ohg(r-n—r,-n),
hence, we have that

(Gn — Gin) o @llpy = |G — Grn|lpv < [[Gh — Gllpx
Slp-nr-n—py-nry-nlepy + r-n—rpnfw

Slp-n(r-n—r-n)lw + |rn-n@-n—py-n

+ = 7n) - nllpn

[p-nlpx fIr-n =70l +[lr-n =m0l [[p-n—pp- ol

+llr-nlp, lp-n—pu-nley + lr-n =70l
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6.3. Error estimates for e®

Then, by trace inequality we obtain

[(Gn = Gin)o @llpn S [[(r —74) - nllpy (2= pn) - 2llex + 7] 1) (P = Pr) - 7lpw

+ Pl o) 1 =70) - wllpy + [[(r = ra) - nflpy

On the other hand, we will prove the bound of the statement only for ||(p — ps) - n||pw, since

the proof for the bound of ||(r —7}) - ||~ is analogous. Hence

lp-n—pn-nlpy < lp-n—Tzp-n|~ + [[Hzp-n—py-nlpx

IN

1P = Tzpllpy + |[TIzp — pallp~

lp—Mzpllw + Y |zp—ps
T.cI’'™N

Te

thus, by [10, Lemma 4], we obtain

lp-m—pun-nlow S |Pp—Tzplew + > 720 ? |Tzp — pall e
T.cI'N

Sllp—Hzpller + > r720Y? |Tzp — pal
TeCcI'N

S Y lp—Tzpllp, + > v 2h;Y? | Tzp — pyl

r.cI'N Fec'N

S S (e - )

r.cry

Dy,

Dy,

ke, T he/? /% ||V (p — Tzp))|

K«Szt )

+ Z Tgl/z hg1/2 HHZP—thDg
I.CcI’N

< N VPRV |p — Tgpl
r.cry

+ > ro 2 h ;Y2 || Tzp — pl

r.cI'N

DS + Hv<p—HZP)|D;;

Dy -

Recalling the definition of C¢

> hence, we deduce

lp-n—py-nlw < 30 72 lp — Tgpllp, + [V~ TIzp) o
T.CI'N
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6.3. Error estimates for e®

1/2
-+ ( Z 7“61/2h61/2) ( Z HHZP—ph’ %e t)
FeCFN 6682 81
< S R p—Tigpl, + 90— Tap)l,y
T.cI'V
1/2 1/2 ~ ~ 2 2 1/2
# (X 2 n ) (S R (Ce? ITzp — pall )
FeCFN 6682
S X e lp = Hgplpe + V(P —Tzp)|
T.cI'V
+ > PRSP R | Tgp —pullp, -
Tr.cry

Finally, by Lemma 6.1.5 and [10, Lemma 3]

I T Y I A

r.c’N
+ (a2 R R+ BRI,
+ max o212 <1 + \/]?2’0> [ 1P| e+

(1 RY2) B 1l g -
[

It is easy to see that from the above lemma, we have that ||[(Gn — Gpn) o ¢||pn converges

at rate h*. Moreover, we can note that the fourth term of (6.3.5) is controlled by Lemma 3.8

of [23]. Then, the unique term that is not controlled is Hs,YHFW for this purpose we will to
h

present the following result

Corollary 6.3.1. 3, > 0 independent of h, then we have that

Hé‘hVHFg < Cp 72 ey (6.3.8)

T

Proof. Let us notice that

\% \%
ey < e
H h FLV - h e

o= 2 et
h eCl'y,
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6.4. Error estimates for eV

then, by discrete trace inequality, 3 C}. > 0 independent of A, such that

ety < G 5 Jek], < Gt ey
rh K
KCTy,

-
]

With Corollary 6.3.1 we have that the term HthHrN of the right side of (6.3.5) is bounded
h
by C h=1/? HEXHT, but to control this last term we have to develop the error estimates for
h
eV, this will be done in the next chapter. Once we have performed this analysis, we will have

the error analysis done for the deformation field equation.

6.4 Error estimates for eV
In this chapter we develop the error estimates for e, for this purpose we will follow the same
strategy done for the case of the e¥ and e* estimates, this is, we will use a dual problem to find

the estimates. For any given U € [L?(02)]%, let be (v, u) solution of

¥+ Vu =0 inQ, (6.4.1a)
div(y) = U in Q, (6.4.1Db)
u=0 onl?, (6.4.1c)

yn =0 onI?V. (6.4.1d)

we will assume that w is in [H?(Q)]? and ~ is in [H(Q2)]4*¢. This is true for example when

is a convex polygon or when I is of boundary C?. Thus, (6.4.1) satisfies
[z e + [Vl @paxa < C Ul (6.4.2)

where C' > 0 depends on the domain 2. Then, we have the following identity
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6.4. Error estimates for eV

Lemma 6.4.1. We have that

(e U)p = (Lo, M) 7, — (€7,7 — Mzy)7, + Tvoa, (6.4.3)
Ty, = (gD—gg,'ynh>FE — ((Gn—=Gyn)od, u)py + (shv,'ynh)rév - (gf mp, w)pp . (6.4.4)
Proof. Let us note the following

@Xl”ﬁlz

iv(y)7, — (e7,7)7 — (7, Vu)7,

I
—~ /(T? —~
< ¥T< <
o

o

iv(dzy))7 + (e div(y — Hzy))7, — (€7, Mzy)7, — (e, 7 — 27,
— (e, VIlwu)7, — (ef, V(u — lwu))7, ,

setting ¢ = IIz7vy in (6.3.1a) and w = Ilyw in (6.3.1b), which implies that

(e U)g, = (L, Izy)7, + (&) . Mzynn)or, — (ef nu, Mwu)or, + (e, div(y — Izv))7,
— (en,y — Hzv)7, — (€7, V(u — Iwu))7,

= (lcn HZV)E - (§g77 - HZ7)7—h + P]F‘/,h7
where Ty, is defined as
Ty, = (e . Tzy np)or, — (€F nn, Owu)or, + (), div(y—Hzy))7, — (€7, V(u—IIyu))7, .

Then, integrating by parts and using the HDG-projection, particularly (6.0.1a) and (6.0.1b),
we get the following

Ty = (e, Mzyni)or, — (€] nn, Owu)or, — (Ve ,v — Owy)7,

— (g, (v = zy) n)or, + (div(e]),u — zu)y — (€] np, u — Mwu)or,

89



6.4. Error estimates for eV

o~

= (¥, (Tzy —v)ma)or; + () ymidor, — (€5 i Ty — w)or, — (€f ny w)or,;
+ (e, (v = Hzy) np)or, — (€7 nn, u — Mwudor,

= <€h‘7 — e, (Tzy — ¥) na)or;, — ((éf —ef)n,, Mwu — u)s7, + <€h‘7,’)"n’h>87’h

— (e o,

= (¥ — &V (Tzy — v) mudor, — (€5 — €9) . T — whor, + (€) 7 mu)r,

— (g,;:nh,u)rh,

the last two terms hold, because by (6.3.1c) we have that (g,;; Ny, W)s7;\r, = 0, moreover we

can note that as €} is single valued in &, and v € [H(div; Q)]¥*?, it follows

~

<€hV,’Ynh>aTh = Z/ Ehv"Ynh

= 3 [l h e + e helnle + X [eF v

= <€l‘1/>7nh>rh :

Therefore, (e,‘?,'ynman\ph = 0. In turn, by (6.3.1f) we obtain

-~

Ty = (e} —e),(zy —¥)nn)or, + (7(e) —e)), Mwu —u)sr, + (e} ,ynn)r,
- <§Z nh7u>Fh

~

= (e} —e) ,(Izy —v)ny + 7 Mwu — w))or, + (€}, y)r, — (€ o, w)r, -

We note by (6.0.1c¢) that (s,‘:’ —e), (zy —v)n, + 7 (wu — u))sr, = 0. Finally we obtain
by (6.3.1d) and (6.3.1e) that

TV,h = <€hV’7nh>Fh - <§Z’ nh7u>Fh

o~

= <€hva’)’”h>r;3 + <5hV>’Ynh>F§LV — (e nh?“)f‘f - <§Znhau>rg

= (g9p — 9?),7nh>1“5 + <€hv7’)’nh>rhN — (ef nha“)l“f — {(Gn —Guyn)o ¢au>r{y -
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6.4. Error estimates for eV

We now establish the following result, which is one of the most important obtained in this

chapter. In fact, through this lemma we can deduce the convergence rate of the scheme.

Lemma 6.4.2. There exists C' > 0 independent of h such that

(1 - 7Y (R.W) ||| < HY (R.A) LI,

+ Hy (R, 1) ||0n, (L mn)]

Dy, (h+)?

+ HY (R, h

(R, h)

+ HY (R.1) | Lyl e
(R, h) [[(Gn = Gpn) o dl|rn
(R, h)

+ HY (R [ lep e

where

HY(R,h) = C (h+ Rh + Rh |17V (ny, = (no¢))| _+ RY2h? + RY% 112
+ R R |72 (g — (no @)+ REAY? + Roh)
HY (R,h) == C (R'? + 1* + RW'? + RIV? 1712 () — (no )|+ R
+ RS (g — (nog))|  + RE + BBV
HY (R,h) == C (R21'? + Rh + R h + B*h |7 (ny — (no¢))| _ + RR W
+ RRA W |i7 (ny — (no¢)|_ + RRLWY? + RR.B)
HY (R,h) := C (h + RBP4+ R0 4 RP W2 (172 (ny — (no ¢)| _ + Rh
+ R RS b+ RPRA | (ny — (nog))|  + RV RGh + RV RE?)
HY(R,h) = C (h+ Rh + Rh [I7V2(n, = (nog))| _+ RY2h? + RYZ 12
+ R W17 (g — (no @)+ REAY? + R h)
HY (R,h) = C (R, h'?),

Proof. First we have to note that from (6.3.1f) and (6.3.3) that

~ ~ ~

ermy = efny + 7(e) —ef) = 17" (gp —gp) — Mo — A — I, my + 7(e) —e)),
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6.4. Error estimates for eV

and as we know from (6.4.1) that

~

Tvn = (9p —9%7’7nh>r5 — ((Gn — Gyn) o ¢, U)FQ’ + <€;‘L/a’)’nh>rhN — (e "hvu>rga

it follows that

I’]FV,h - <gD - ggv7nh>f‘f + <€hv’7nh>FN o <(Gn o Ghn) © ¢’u>rhN (6 4 5)
M (gp—gh) — Ale — A Loy 4 (€] D) uhp

On the other hand, keeping in mind that ym = 0 on I'"V, let us note that

~

<€IY7 Y nh>FhN

|
®

o~
™

- E]Y,ﬁ’nh>th + <€hV77nh>FhN

— eV v - (70¢')(n0¢')>r;y + (el — e (yo d)(no )

+ (&) v — (Yo d)(mo @)y + (e}, (o d)(no @)y

= (&) — el v~ (vod)(nod)ry + (e} —ef)od ™ yn)w

+ (&) v — (Yo d)(no @)y + (e} od v m)ry

= (&) — el ynn— (Yo p)(nod)ry + (e . ymy — (Yo d)(nod))y.

thus, replacing the above in (6.4.5) we obtain

Tvn = (gp —Q%a7nh>rf + <€1‘:/ — ey, Y, - (’70¢)<n0¢)>rhN
(e ymn— (Yo $)(no )y

— (7 (gp — gly) — Mo — AT — Iy + (e} —e)) o

Then, applying Cauchy-Schwarz inequality we have that

Tval < |lgo - 9Bl V—el| Iy — (o d)(no @)
+ ||eX | Iy mn = (vo d)mo @)y + Hrl 90— 9p)||.p Nullep + [|A%] L, lluelps
h h h
+ A lallep + (Lo mnwhep + |7 () =) lulep

h
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6.4. Error estimates for e

|4

On the other hand, we have to note from (6.0.1c) that

<l0' nh?“’)f‘f = <lcr nh’U_PMU’>Ff + <la'fn’haPM,u’>FhD

= <L,. ny,u — PM’U’>F€ — <va,PM’u,>F5
= <lo. Ny, u — PMu>th — <TPva,’U,>FhD

< Lo nallrp lu = Parulleo + [[7Pulv o [[wllrs -

Thus, by Lemma 6.4.1 we can deduce the following

(€i‘z/7 U)Th <
_|_

_|_

(UL Tz = (€f,7 = Tev)s + |12 (g0 = gb)| ., [Ty ma

1% 1%
Ep — €&

Iy — (vo @)(no )l

X [ v = (vo d)(mo @)y + 17" (g0 — gb) 1 Iullrp

Moy lullep + A Tullp + 2o 2allep llw = Parep
lrPatvllpe lullee + |7 (e =€) llulrp
L Fh

(Lo, Mz = ¥)7, + Lo, V)75, — (00— 0n,y — Hz)7;
Mo — 03Ty, + [ 0o~ b [,

en — €

[y nn = (yo @)(nod)ly

¥ [ v = (vo @)(mo @)y + 7" (g0 — 1) Iullrp

Ao AST

o Il + Ay lwllep + 12 il = Parulley

(el —¢))

IT Pralvllpo [lwllep + o el
h

(la'v 7)72 o (0- —On,Y — HZ7)E
g0~ gl [ rm

1% v
Ep — €

lym — (vo @)(no )l

X [ v = (vo d)(mo @)y + 17" (g0 — ) Iullrp

Ao AER

oo Ielep + Ay lllep + Lo mallep lluw = Parer
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(el —€))

+ 7 Prlvlieo (ullpp + o lelep

h

Then, as |k € [Pr_1(K)]¥? for all K € T, by HDG-projection, particularly (6.0.1c) and if the
elliptic regularity inequality (6.4.2) holds, we have that

(5}1/7 U)Th < (la'apy - 7h)7-h - (0’ —On,Y — HZV)Th
I

v v
+ ||lep, — €y

Iy — (v o $)(m 0 @)y

+ ey Ivma = (o @)mo @iy + 17 (g0 = gb)|p Iullep

+ |[ALe ASE

oo Ieliep + (A Ly lllep + Lo allep llw = Pararp

(el —¢))

+ I Palvlpo [lulirp + o el

h

IN

1L l7, 1Y =Wl + o —oully, Iy =zl
1/2 _h —-1/2
10 o b [l

+ e —ex|| lvmn — (v o d)(no )|y

- thHFhN Iy s = (vo @) mod)lpx + |1 (gp —g%)”rf lullpp

o

AT

+ ||Af

ullep + | o + Lo mallpp [l = Parwlpp

rp | rp |
\% ‘7)

+ |7 Prlvipe [lullpp + |7 (ey —¢

o Ielep

< Ch Ly, IUllg + Chllo —anlly 1U]g
1/2 _h —1/2
10 g0 gy [l

t et =¥ Ivmn — (v o g)(mo @)l

+ ey Ivma = (o @)mo @iy + 17 (gp = gb)|p 1ullep

+ |[ALe ASE

oo Iellep + | lullep + 1o mallyp 1w — Prrue]po

D
1—‘h

(el —¢))

+ 7 Prdv o fullrs + o llep

h
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and now by (6.3.1), we obtain

€ U S sy, [Ulla + 1€l [T + |1 (g0 = g) | 17727700

D
Fh

v v

L = (yod)mod)y

+ Co b el | lvmn = (v o @) (mo )l

o

Ao AER

o lullep

+ 17 (g0 = g Il + (A% Ty +

T(ey —er)

+ [lLg nallep llw = Praullpp + 17 Prlvllpp [[wllps +

S hlLelly WUllg + 7kl Ul

+ || (gp — g;’B)Hrg |72 (y = (v o B)(mo ¢))HF5

+ 172 (gp = gb) | 172 0wt ]|+ (12 (90 = gb)|p 1w

D
L oy

+ |[1Y2 (e} — eh‘?)

. |72 (ymi = (v o ) (mo ¢))Hw

v HethTh 674 Gy — (7o¢)(no¢))HFg + |gp —g]'BHF}? i

D
l—‘h

'u

+ |1 ALs tu

o
D D
1—‘h Fh

+ ||L, mp, W2

T'n rp

Db

o [P = Paw)| L+ T Pactv g 17

+ lT(shV—eh‘A/)

1
el
S WLl Ul + b llegll 1Ullg
2 (y =y od)ma|
h h

V2 (v o @) (nn — (no @)

+ (1'% (gp — g)

+ |1 (g0 — gb)

D
Fh

+ |[1¥2 (gp — gP) e (A T E)nhu)HFD + Hll/Q(gD — g%)HrD Hl_3/2 u
h h

D
Fh

+ |12 () —eX)

172 (v =y 0 ¢) nhHFév

N
l_‘h

e gim = o))

+ ||11/? (e,‘f — shV)

N
1_‘h

T

s TP =0 d) ”hHrg

bW Y| (o @) — (o @)+ lap — gbl 1w

D
1_‘h
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+ 1AL,

o,
h

D
1—‘h

1/2
+ Iy ny Y D

h

h1/2 (g — PMU’)HFE + ||lTPMfVHr5 Hl_l UHFE

+ lr(s,‘l/—sh‘?)

D
1_‘h

D
Ty

Then, by Lemma 6.1.13, [51, Lemma 2.1] and if the elliptic regularity inequality (6.4.2) holds,

we have that

(X U0 S b llLallg, 1Ullg + Bl Ul + 12 (g0 = gb)]| ., U
+ 12 (g = g 1772 = (o @) Iy o Sliep + g — b, 1T

+ |[1V2 (e} — e )

||U||Q

+ 1V (Y —€Y)

o~ Hl V2 (, — (o )| 1y o llx

+ poY2 2 HE’YHT,L HUHQ LR 2 e

2y~ (no )| o bl

+ HZAL’ rp [Ullq + h HL; Th hm”r}f Ul

wp UMl + 1457

+ 1T Pulvep Ul + |17 (e} —e))

o 101
< Ll 10l + 1l 10l + 12 (90 — ab)| . 1Tl

+ 11 (gp = gb)|p 17 (70 = (o @) 10l + [lgp = g 1U1le

+ |12 (e} — e )

HUHQ

+ 11/2( ah

” Hl Y2 (ny, — (no )| U,

F BT e | Ul + h 0 e

12 (n, — (no ¢))Hoo Ul

+ HZALG rp Ul + h HL’ Th hl/zHrf U

oo 10l + 145

+ [rPulviee [[Ullg +

ir (el =) Il -
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Then, setting U = g}, it follows that

<

o S WLl + b leflly + 0 ap - gb)|,

12 (eY — &)

+ |12 (gp — gfﬁupg |72 (= (mog)|_ + [gp - g%HFf " T

2 (e — &)

+

O I = W

+ B2 1/2 HE}‘L/

o ma o], + 1t

- T S

D
1_‘h

+h Hla”h hl/zHFD + [ Pulyviep + |17 (e} —e))
h

D
1_‘h

h
S b ollg + Il + maxreh lao =g,

msroh oo~ g, 17— o D]+ st oo b,

~

+ max /272272 (e —e))

ece? OTh
+ ma%(r;/z Te_l/Q RY/2 || 712 (e —€)) Hl1/2 (n, — (no¢))”
e€éy oTh o0

+ max ri/Q Hshv
Th 6662

7 (g — (nog))|

+ max /2 He,‘lf
eeﬁg c

Th

+ 1 r 0 WO, (L)l e + 1072 O Clos 17 Nl + MLy e
h h

T (ef —eY)

+ max 7, 7h"? || Iy ||pp 0 4 max 7.k
ecé? k> eced

3 97n

Hence, from the assumptions (4.6.1), Definition 4.6.3 and keeping in mind the definition of

v v h
H‘(i; €p —€r9D — QD)H‘ we get

[eX|| S h Loy, + b leflly, + R |go — gb

D 71—
rbo -1

+ Rh |lgp — gb| 72 (g, — (no@))|| _ + RVZRY? ||gp — Q%HFS,H

D -
rp -1

+ Eighm 2 ey — s,?)

T

FRAR PP =) i - o))

0Th
bRV Y

bRV Y

7 (i — (no @))||_ + BY? B2 100, (Lo )l s y2

Th Th
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+ BB el + b Ly mllep e + Be b2 | Iyllpp u + Ro 772 (€Y —€Y)

’Bﬁ

S b Loy, + BV ||ef 172 (ny, — (no @)

bRV Y

bRV Y

Th Th Th

o0

+ R0 |0, (Ly 7o)

piy + B Lo llpp i+ Be b [Ty o e

+ (h+ Rh+ Rh 172 (ny, — (nog)|_ + RV*AY? 4+ RS n1/2

17 (= (no @)

£ R 0u(Ly )l iy + b Lo mlleppn + Re 2 [Ty llop

SRR [y (o)) + B+ Ren) el —eFgp g

S Ll + B2 e

+ R'/? Hehv

+ R'/? Hth

Th Th Th

+ (h+ Rh+ Rh 172 (ny, — (no @)+ RV*RY? 4+ RS n12

FREWE 1702~ (o @)+ B2RY - Ren) (1Ll + RV (L malp

»)

S (h+ Rh+ R 172 (ny — (no )|+ RVAY? 4+ RS n1/2

+ [[(Gn = Gan) o Gllry + R 00, (Lo 1)l e iy + B e

+ R R (g, — (no @)+ BERY? + BB ||,

+ (R + 17 + RIV? + RV 172 (ny — (no ¢)| _ + R

1

+RA Hl_1/2 (nn, — (o ¢)>Hoo + Re + R; hl/z) Hehv Th

+ (R 1 + Rh + R*h + R*h 172 (ny, — (n o ¢))

|+ RR R
+RRAD 172 (ny = (no@))| _ + RREDY + RR:h) (00, (Lymn) | e o

+ (b + RVZEY? 4 RP R 4 BRI (g, — (no@))|  + Rh+ RV R R
+RVPRE D I7 (nn = (no @) + RV REh + RV BB | Ly mlpp

+ (h+ Rh+ Rh |17 (ny, — (nog)|_ + RVAY? 4+ RS 012

+ R |17 (i — (no ¢)| _ + REWY? + Roh) [[(Gn—Gyn) o |y

R Iy llpp e

[]

From the above lemma we can state the following corollary which gives us the convergence

rate for € on Dy,
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Corollary 6.4.1. With the same definition for HY (R, h) Vi € {1,...,6} of Lemma 6.4.2. If
0 <6 <1andp >0 on the assumptions (4.6.4a) and (4.6.4b) respectively, there ezists a
positive constant C' independent of h such that

(1 _ HY(R, h)) lev], <c (h © RBP4 Oy h5/2+5) Bk (6.4.6)

Th

Proof. We can note by Theorem 6.0.1 that ||1,]| .

||87lh (la nh)'
inequality followed by Theorem 6.0.1 that ”IV|’F£,h . < h¥1 Then, by Lemma 6.3.7 we have

< hF*1 by [23, Lemma 3.8] that

Y

D (h')? < h**1 by Lemma 6.3.6 that ||, nh”rf we S WM and by discrete trace

that

(1= By (Rw) [e¥], s (B @b + HY (RR) + HY (RoR) + HY (R.h)) 0

+ HY (R, h)h*.

Keeping in mind the assumptions (4.6.4a) and (4.6.4b), let us to note for each H;(R,h) the

following inequalities

Hlv(R, h) 5 <h + CR h(S + CR Cn h5+1/2+5 +CR h6/2+1/2 + CR Cn h&/?-{-ﬁ + CR h26+1/2

+ OR h6+1>

AN

(h 4 Ok + CrC, h5/2+5) ,

Hy (R, 1)

AN

(CR R2 4 B2 4 CphOtY2 4 CrCL WP + Cr O, hOP1248 o Op h”)

N

<h1/2 + CR h6/2 + CR Cn h6/2_1/2+6>,

HY (R, h)

N

(OR h36/2+1/2 + CR h6+1 + CR h25+1 + OR O’n h26+1/2+6 + CR C'n, h3§/2+ﬂ
+ CR h3(5+1/2>

<CR h36/2+1/2 + CR CV'n, h36/2+5) )

A

~

HX(R, h) < (h + CR h6/2+3/2 + CR h36/2+3/2 + CR Cn h35/2+1+,@ + CR h5+1

+ CR Cn h5+1/2+ﬁ 4 CR h55/2+1>
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< (h + CrI* 4 CRCy h6+1/2+5) ,
HEY(R, h) < (h £ Cph®*l o Cp O WOHY2H8 L Op hO2H12 4 0n O R84 O h25+1/2)
< (h 4+ Crh®?2 4 cpey h5/2+5> 7

HY (R,h) < Crh®tY/2.

It is necessary that HY (R, h) tends to zero when h tends to zero so that (1 — HY (R,h)) be
positive an decays slower than the right-hand side of (6.4.6) in order to obtain the estimate for
v
Hsh T

that for (1 — HY (R, h)) to be positive for a sufficiently small h, § must necessarily be greater

. To ensure the aforementioned, by the inequality found above for HY (R, h) we note

than zero. On the other hand, from the other inequalities for H;(R,h), 1 = 1,3,4,5,6 we can

deduce

(1 _ HY(R h)) |e¥

< (h + Cg {hé + p30/2+1/2 + B+l + h6+1/2}
7—h ~Y

+ CrCy, {h5/2+5 4 p3/2HB h5+1/2+5}> B+

+ (h + Crh*H2 4 crC, h5/2+6> X

S (h + Crh’ + CrChn h5/2+6) I

+ <h + CR h6/2+1/2 + CR Cn h5/2+,3> hk

< (h 4 ORI L Cop h5/2+5) ey

With the above Corollary we can now state the estimates for eV on €.

Corollary 6.4.2. Under the same assumptions of Corollary 6.4.1 we have that exists a positive

constant C' independent of h such that

IV = Vill, < C (h + CrhY*? 4 Ry h5/2+ﬁ) e
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Proof. Let us note that

IV = Villg < IV = Villp, + IV = Villpy < IIvllp, + [, + 1V =Vl .

then by Theorem 6.0.1, 6.4.1 and Lemma 3.7 of [23] we have that

IV = Villg S B0 4 (bt Crhd/102 4 CrCu 0 1 Ll + b/ B Nfl,

By (6.3.5) and due that ||(Gn — Gyn) o ¢)||FhN is the lowest order term we have that |7 ||, <
h*, thus |V — Villpe < h**+1 therefore

|V = Vilg S (h L CRh¥* 2 L opC, h6/2+/3> s

]

It is important to note that the estimates for e” are not relevant to our purpose due that for
the performance of the algorithm 1 we do not need to compute o,. However, in the following

corollary we present the estimates of e on ).

Corollary 6.4.3. With the same assumptions that Corollary 6.4.1, we have that, there exists
a constant C' > 0 such that

lo — ounllg < C h*.

Proof. Let us note that

lo = onllq = llo = anllp, +llo = onlp:. < llslp, + llilp, + llo=anlp -

Chen, by Lemma 6.3.5 and Corollary 6.4.1 we deduced that ||€} || < h* and also by [23, Lemma
h ~Y
3.7 and 3.8], we obtain that

lo = onllg S 1+ VERE) Illp, + 1+ VR W ol + h*.
Q Dy, ()
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CHAPTER [/

Conclusions and future work

7.1 Conclusions

In this work, we first developed an introduction to shape optimization problems. Based on our
model problem, we find the adjoint equation from the state equation using shape calculus tools
to later deduce the optimality conditions.

We proposed (2.4.1) to find the deformation field, where it was later shown that if V'
satisfies (2.4.1) then V' is a descent direction, thus establishing Algorithm 1 to solve the shape
optimization problem.

We proposed and analyzed HDG schemes for the state and adjoint equations based on [23],
we shown that under certain assumptions (4.6.1) the schemes are well-posed. We proved in
Theorem 6.1.10 that under the assumptions (4.6.1), then there exists a constant C' > 0 such
that

lp = pullg + lIr = rallg < CH
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Similarly, in Theorem 6.1.15 it was shown that there exists a constant C' > 0 such that
ly — wnllg + Iz — zullq < CRM.

Thus, we show that, theoretically, the convergence rate with the HDG scheme on curved do-

mains for the state and adjoint equations are optimal.

We also proposed and analyzed a HDG scheme for the deformation field equation on curved
domains. This was inspired by [46]. Under the Assumptions 4.6.1 we proved that the scheme

is well-posed and in Corollary 6.4.3 we proved that there exists a constant C' > 0 such that
lo — oull, < Ch",

On the other hand, in Corollary 6.4.2 we proved that if 0 < § < 1 and 8 > 0 on the Assumptions

4.6.4b and 4.6.4a respectively, then there exists a constant C' > 0 such that
IV = Villg < C (b + G102 4 CrCu b7 ) .

To obtain optimal convergence when the polyhedral subdomain D), is at an order h distance
from the boundary of the original domain, i.e. when H: = O(h) for each e € £¢ is impossible
to ensure because in Corollary 6.4.1 we obtained that for HY (R, h) converge, necessarily § must

be greater than zero. Therefore the method have optimal convergence when for each e € &

H} = O(h?) and H} = 0.

7.2 Future work

Based on this work, some avenues for further work that we propose are:

o Computational implementation

o Apply the methodology developed in this work to other problems such as Navier-Stokes,

elasticity problems, among others.
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7.2. Future work

Investigate other ways to characterize V. An interesting approach may be to use a level

set method such as the strategy presented in [2].

Deduce a new Neumann data transfer technique on curved domains for the HDG scheme,

in order to obtain optimal convergence rates if 6 = 0.
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