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Departamento de Ingenieŕıa Matemática
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School of Mathematics, Monash University, Melbourne, Australia.

Sergio Caucao

Departamento de Matematica y Fisica Aplicadas, Universidad Católica de la Sant́ısima
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Abstract

This work is divided in two main parts. In the first part we provide sufficient conditions for

perturbed saddle-point formulations in Banach spaces and their associated Galerkin schemes to

be well-posed. Our approach, which extends a similar procedure employed with Hilbert spaces,

proceeds in two slightly different ways depending on whether the kernel of the adjoint operator

induced by one of the bilinear forms is trivial or not. The applicability of the continuous

solvability is illustrated with a mixed formulation for the decoupled Nernst-Planck equation.

This part yielded the following work already published:

C.I. Correa and G.N. Gatica, On the continuous and discrete well-posedness of

perturbed saddle-point formulations in Banach spaces. Comput. Math. Appl. 117 (2022),

14–23.

On the other hand, in the second part we employ a Banach spaces-based framework to intro-

duce and analyze new mixed finite element methods for the numerical solution of the coupled

Stokes and Poisson–Nernst–Planck equations, which is a nonlinear model describing the dy-

namics of electrically charged incompressible fluids. The pressure of the fluid is eliminated from

the system (though computed afterwards via a postprocessing formula) thanks to the incom-

pressibility condition and the incorporation of the fluid pseudostress as an auxiliary unknown.

In turn, besides the electrostatic potential and the concentration of ionized particles, we use

the electric field (rescaled gradient of the potential) and total ionic fluxes as new unknowns.

The resulting fully mixed variational formulation in Banach spaces can be written as a coupled

system. the well-posedness of the continuous formulation is a consequence of a fixed point

strategy in combination with the Banach theorem, the Babuška–Brezzi theory, the solvability

of abstract perturbed saddle point problem that will be developed in the first part of this thesis,

and the Banach–Nečas–Babuška theorem. For this we also employ smallness assumptions on

the data. An analogous approach, but using now both the Brouwer and Banach theorems,

and invoking suitable stability conditions on arbitrary finite element subspaces, is employed to

conclude the existence and uniqueness of solution for the associated Galerkin scheme. A priori

vi



vii

error estimates are derived, and examples of discrete spaces that fit the theory, include, e.g.,

Raviart–Thomas elements of order k along with piecewise polynomials of degree ď k. Finally,

rates of convergence are specified and several numerical experiments confirm the theoretical

error bounds. These tests also illustrate the balance-preserving properties and applicability of

the proposed family of methods. This part yielded the following work, presently submitted:

C.I. Correa, G.N. Gatica and R. Ruiz-Baier, New mixed finite element methods

for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces. Preprint

2022-26, Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de

Concepción, (2022).
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CHAPTER 1

Introduction

The purpose of this note in to analyze the solvability of the continuous and discrete schemes

arising from perturbed saddle-point problems formulated in terms of Banach spaces. More

precisely, given reflexive Banach spaces H and Q, bounded bilinear forms a : H ˆ H Ñ R,

b : H ˆ Q Ñ R, and c : Q ˆ Q Ñ R and functionals f P H1 and g P Q1, the formulation of

interest consists of seeking pσ, uq P H ˆ Q such that

apσ, τq ` bpτ, uq “ fpτq @ τ P H ,

bpσ, vq ´ cpu, vq “ gpvq @ v P Q .

(1.1)

In the particular case in which H and Q are Hilbert spaces, the well posedness of (1.1) and its

associated Galerkin scheme is very well established nowadays. We refer to [10, Theorem 1.2,

Section II.1.2] and [10, Proposition 2.11, Section II.2.4] for a through analysis of it, including

the derivation of the corresponding Cea estimate. While several possible cases of the bilinear

form c, which constitutes the so-called perturbation, are considered, the most frequent ones

in applications are those in which, either the null space of the adjoint of the operator induced

2
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by b is trivial, or the bilinear form c is coercive on that kernel. Certainly, the non-perturbed

formulation, that is when c vanishes, has already been fully studied, first in [9], then in [42]

where two different bilinear forms b are assumed, and finally in [6] for the same abstract problem

from [42], but within a Banach framework.

Going back to (1.1), we stress that an alternative setting is introduced in [8], where c is

defined on a dense subspace Qc of Q, and then multiplied by the square of a small parameter

usually arising from the underlying physical model. For instance, in the case of the Reissner-

Mindlin plate, which is used in [8] to illustrate the theory, the thickness of it defines that

parameter. The approach in there assumes that Qc is Hilbert with a c-dependent inner product,

and then extends the classical results from [9] to the aforedescribed saddle point problem with

penalty. Some of the tools employed in [8], particularly those regarding the handling of the inf-

sup conditions involved, resemble the ones to be utilized below in Chapter 3 to prove our main

theorems. On the other hand, Similar results to those in [10], though with slightly different

proofs and providing further details, but still within a Hilbertian framework, are discussed

in [7, Theorem 4.3.1, Sections 4.3.1] and [7, Theorem 5.5.1, Proposition 5.5.2, Section 5.5.1].

In turn, denoting by V and W the null spaces of the operator induced by b and its adjoint,

respectively, we stress that a key result for the solvability analysis of (1.1) in the Hilbertian

context is given by the identity (see, e.g. [7, eq. (4.3.18)])

inf
τPVK

τ ­“0

sup
vPQ
v ­“0

bpτ, vq

}τ}H }v}Q
“ inf

vPWK

v ­“0

sup
τPH
τ ­“0

bpτ, vq

}τ}H }v}Q
ą 0 , (1.2)

whose discrete version is also satisfied (see, e.g. [7, eq. (5.5.12)]).

According to the above discussion, and since the respective results do not seem to be avail-

able in the literature, the present work aims to extend the aforementioned theory to the Banach

case. In this regard, we warn in advance that (1.2) is not going to hold for the continuous for-

mulation nor for the discrete one, and hence the analysis and results to be presented below

will take this fact into consideration, mainly when we deal with the Galerkin scheme of (1.1).

Indeed, in this case the discrete inf-sup conditions arising from both sides of (1.2) require to be

assumed separately with constants independent of the meshsizes. However, in the particular,
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though very frequent case in which W is the null subspace, we are able to apply a suitable

characterization of closed range injective adjoint operators, so that for the solvability analysis

it suffices to assume only the inf-sup condition arising from the right-hand side of (1.2). An

analogous reasoning is valid if the discrete version of W, say Wh, is the null subspace as well.

The rest of the first part is organized as follows. In Chapter 2 we present some preliminary

results on the spaces H and Q and the operators induced by the bilinear form b. In particular,

we address here a key equivalence result between the inf-sup conditions involving b. Next, in

Chapter 3 we establish the theorems providing the unique solvability of (1.1) and its associated

Galerkin scheme. The presentation considers first a general situation in which nothing is said

about W, and then the particular case in which it is assumed that W “
␣

0
(

. We proceed

analogously for the discrete solvability. Finally, an application of the continuous theory to

mixed variational formulation of the decoupled Nernst-Planck equation for a single ionic species,

is discussed in Chapter 4.



CHAPTER 2

Preliminary results

In this Chapter we present some previous results concerning the spaces and operators involved,

which will be employed later on. To this end, we first let B : H Ñ Q1 and Bt : Q Ñ H1 be the

bounded linear operators induced by b, that is

Bpτqpvq :“ bpτ, vq @ τ P H , @ v P Q and Bt
pvqpτq :“ bpτ, vq @ v P Q , @ τ P H , (2.1)

and introduce the respective null spaces

V :“ NpBq :“
!

τ P H : bpτ, vq “ 0 @ v P Q
)

(2.2)

and

W :“ NpBt
q :“

!

v P Q : bpτ, vq “ 0 @ τ P H
)

. (2.3)

5
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Next, we assume that V and W admit topological complements, which means that there exist

closed subspaces VK and WK of H and Q, respectively,such that

H “ V ‘ VK and Q “ W ‘ WK , (2.4)

and let i : VK Ñ H and j : WK Ñ Q be the respective injections. Notice that these comple-

ments are denoted using the symbol K just to keep the analogy with the orthogonal decompo-

sition theorem in the Hilbert spaces case, but certainly we are aware of the fact that in the

present discussion we have no inner products and hence no orthogonality concepts.

Furthermore, a direct application of the open mapping theorem implies the existence of

positive constants CH and CQ, depending only on H and Q, respectively, such that

}τ0}H ` }τ̄}H ď CH }τ}H and }v0}Q ` }v̄}Q ď CQ }v}Q (2.5)

for all τ “ τ0 ` τ̄ P V ‘ VK, and for all v “ v0 ` v̄ P W ‘ WK. As a consequence of these

boundedness properties, we have the following result.

Lemma 2.1. There hold

1
CH

}τ}H ď distpτ, Vq ď }τ}H @ τ P VK , (2.6)

and
1

CQ
}v}Q ď distpv, Wq ď }v}H @ v P WK . (2.7)

Proof. We begin by noticing that the upper bounds of (2.6) and (2.7) are straightforward, and

that they are actually valid for all pτ, vq P HˆQ. In addition, being the respective lower bounds

proved analogously, it suffices to provide the proof for one of them, say (2.6). To this end, we

first recall that if X is a reflexive Banach space and T is a closed subspace of X1, there holds

distpx,˝ Tq “ sup
FPT
F­“0

|Fpxq|

}F}X 1

@ x P X .

Thus, applying this identity to X “ H and T “ V˝, and using that ˝
`

V˝
˘

“ V, we deduce that
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distpτ, Vq “ sup
FPV˝

F­“0

|Fpτq|

}F}H1

@ τ P H . (2.8)

Next, we restrict to τ P VK. Then, given G P H1, we define the functional g : H Ñ R by

gpζq :“ Gpζ̄q for all ζ “ ζ0 ` ζ̄ P H “ V ‘ VK. It follows that g is linear, g|V ” 0, and, using

(2.5),

|gpζq| “ |Gpζ̄q| ď }G}H1 }ζ̄}H ď CH }G}H1 }ζ}H @ ζ P H ,

which says that g is bounded, with }g}H1 ď CH }G}H1 , and hence g P V˝. In this way, according

to (2.8), and noting that gpτq “ Gpτq, we find that

distpτ, Vq ě
|gpτq|

}g}H1

ě
|Gpτq|

CH }G}H1

from which, taking supremum with respect to G P H1, we conclude that

distpτ, Vq ě
1

CH
}τ}H @ τ P VK ,

thus finishing the proof of (2.6).

Some equivalence properties connecting B and Bt are established next.

Lemma 2.2. The following statements are equivalent:

i) Bt ˝ j : WK Ñ H1 is injective and of closed range, that is there exists a constant rβ ą 0

such that

}Bt
pvq}H1 :“ sup

τPH
τ ­“0

bpτ, vq

}τ}H
ě rβ }v}Q @ v P WK . (2.9)

ii) j1 ˝ B : H Ñ
`

WK
˘1 is surjective.

iii) B ˝ i : VK Ñ Q1 is injective and of closed range, that is there exists a constant pβ ą 0 such

that
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}Bpτq}Q1 :“ sup
vPQ
v ­“0

bpτ, vq

}v}Q
ě pβ }τ}H @ τ P VK . (2.10)

iv) i1 ˝ Bt : Q Ñ
`

VK
˘1 is surjective.

Proof. Let JH : H Ñ H2 and JQ : Q Ñ Q2 be the isometric and bijective linear mappings

given by

JHpτqpFq :“ Fpτq @ τ P H , @ F P H1 and JQpvqpGq :“ Gpvq @ v P Q , @ G P Q1 ,

and observe, as suggested by the diagrams

H JH
ÝÑ H2 pBtq1

ÝÑ Q1 and Q JQ
ÝÑ Q2 B1

ÝÑ H1 ,

that there holds

B “ pBt
q

1
˝ JH and Bt

“ B1
˝ JQ . (2.11)

Indeed, given τ P H and v P Q, we obtain

`

pBt
q

1
˝ JH

˘

pτqpvq “ pBt
q

1
`

JHpτq
˘

pvq “ JHpτq
`

Bt
pvq

˘

“ Bt
pvqpτq “ Bpτqpvq ,

which proves the first identity of (2.11). The second one proceeds similarly or as a consequence

of the first one after exchanging B with Bt and the roles of the spaces H and Q. It follows

from (2.11) that

j1
˝ B “

`

j1
˝ pBt

q
1
˘

˝ JH “
`

Bt
˝ j

˘1
˝ JH , (2.12)

and hence, bearing in mind the bijectivity of JH, we deduce that j1˝B : H Ñ
`

WK
˘1 is surjective

if and only if
`

Bt ˝j
˘1 : H2 Ñ

`

WK
˘1 is surjective as well, which, in turn, is equivalent to stating

that Bt˝j : WK Ñ H1 is injective and of closed range. The above shows the equivalence between

i) and ii). Analogously, employing from the second identity in (2.11) that

i1
˝ Bt

“
`

i1
˝ B1

˘

˝ JQ “
`

B ˝ i
˘1

˝ JQ , (2.13)
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we are able to prove that iii) and iv) are equivalent. In order to conclude the proof, it suffices

to see, for instance, that i) and iii) share the same property, which is addressed in what follows.

Indeed, let us assume now that i) holds. Then, knowing that Bt ˝ j has closed range, we have

that RpBt ˝ jq “ ˝N
`

pBt ˝ jq1
˘

, where, according to (2.12), N
`

pBt ˝ jq1
˘

“ JH
`

Npj1 ˝ Bq
˘

. A

simple computation yields

Npj1
˝ Bq “

!

τ P H : j1
`

Bpτq
˘

pvq “ Bpτqpvq “ 0 @ v P WK
)

“ V ,

and hence RpBt ˝ jq “ ˝JHpVq “ V˝. In this way, we conclude that Bt ˝ j : WK Ñ V˝ is

bijective, and (2.9) implies that }pBt ˝ jq´1} ď 1
rβ
. It follows that pBt ˝ jq1 : pV˝q1 Ñ pWKq1 is

bijective as well, and

}
`

pBt
˝ jq

1
˘´1

} “ }
`

pBt
˝ jq

´1˘1
} “ }pBt

˝ jq
´1

} ď
1
rβ

,

which says, equivalently, that

}pBt
˝ jq

1
pGq}pWKq1 ě rβ }G}pV˝q1 @ G P pV˝

q
1 . (2.14)

In particular, taking G “ JHpτq|V˝ , with τ P H, we obtain

}pBt
˝ jq

1
pGq}pWKq1 “ sup

vPWK

v ­“0

pBt ˝ jq1pJHpτqqpvq

}v}Q
“ sup

vPWK

v ­“0

JHpτq
`

Btpvq
˘

}v}Q
“ sup

vPWK

v ­“0

bpτ, vq

}v}Q
, (2.15)

whereas, making use of (2.8) in the last equality below, we find that

}JHpτq|V˝}pV˝q1 :“ sup
FPV˝

F­“0

JHpτqpFq

}F}H1

“ sup
FPV˝

F­“0

Fpτq

}F}H1

“ distpτ, Vq . (2.16)

In this way, replacing (2.15) and (2.16) back into (2.14), we conclude that

}Bpτq}Q1 ě sup
vPWK

v ­“0

bpτ, vq

}v}Q
ě rβ distpτ, Vq @ τ P H , (2.17)
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which, together with the lower bound of (2.6), yields iii) (cf. (2.10)) with pβ :“ rβ
CH

. Conversely,

let us assume that iii) holds. Then, in order to prove i), we proceed analogously to the opposite

implication. In particular, using now (2.13) one deduces that RpB ˝ iq “ W˝, so that B ˝ i :

VK ÝÑ W˝ and pB ˝ iq1 :
`

W˝
˘1

ÝÑ
`

VK
˘1 are bijective with }

`

pB ˝ iq1
˘´1

} “ }
`

B ˝ i
˘´1

} ď 1
pβ
.

In this way, we get the analogue of (2.17), that is

}Bt
pvq}H1 ě sup

τPVK

τ ­“0

bpτ, vq

}τ}H
ě pβ distpv, Wq @ v P Q , (2.18)

from which, along with (2.7), we arrive at (2.9) with rβ :“ pβ
CQ

. Further details are omitted.

We find it important to emphasize here, as announced in Chapter 1, that the equivalence

between the inf-sup conditions (2.9) (cf. i)) and (2.10) (cf. iii)) holds with different constants rβ

and pβ. Indeed, from the proof of Lemma 2.2 we notice that, starting from i), we first derive the

inequality (2.17) with the same constant rβ, thus yielding the partial implication summarized

as
$

&

%

sup
τPH
τ ­“0

bpτ, vq

}τ}H
ě rβ }v}Q @ v P WK

,

.

-

ñ

$

&

%

sup
vPQ
v ­“0

bpτ, vq

}v}Q
ě rβ distpτ, Vq @ τ P H

,

.

-

. (2.19)

Similarly, starting from iii), we obtain (2.18) with the same constant pβ, which gives rise to the

partial implication

$

&

%

sup
vPQ
v ­“0

bpτ, vq

}v}Q
ě pβ }τ}H @ τ P VK

,

.

-

ñ

$

&

%

sup
τPH
τ ­“0

bpτ, vq

}τ}H
ě pβ distpv, Wq @ v P Q

,

.

-

. (2.20)

However, as observed in the aforementioned proof, the expressions given by rβ distpτ, Vq in (2.19)

and pβ distpv, Wq in (2.20) are then bounded below, respectively, by pβ }τ}H for each τ P VK, with
pβ “

rβ
CH

, and by rβ }v}Q for each v P WK, with rβ “
pβ

CQ
. These estimates explain the above use

of the concept “partial”, which refers to the fact that, in order to obtain the same constant in

both sides of each implication, the latter must be stated up to as indicated in (2.19) and (2.20).

Differently from this case, when H and Q are Hilbert spaces, full implications are achieved in
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the sense that there hold distpτ, Vq “ ||τ ||H for each τ P V K, and distpv, W q “ ||v||Q for each

v P W K, so that now the equivalence between i) and iii) does hold with the same constant
rβ “ pβ, as it has already been established in the available bibliography (see, e.g. [7, eq. (4.3.18),

Theorem 4.3.1], [26, Lemma 2.1], and [10, Proposition 1.2 and eqs. (1.15) and (1.16), Chapter

II]). Moreover, this fact can be written, equivalently, as

inf
τPVK

τ ­“0

sup
vPQ
v ­“0

bpτ, vq

}τ}H }v}Q
“ inf

vPWK

v ­“0

sup
τPH
τ ­“0

bpτ, vq

}τ}H }v}Q
“ rβ ą 0 ,

which is exactly what what was highlighted in (1.2) (cf. Chapter 1).



CHAPTER 3

The main results

In this chapter we address the well-posedness of (1.1) and its associated Galerkin scheme.

3.1 An equivalent setting

We begin by observing that the perturbed saddle-point formulation (1.1) can be re-stated,

equivalently, as: Find pσ, uq P H ˆ Q such that

A
`

pσ, uq, pτ, vq
˘

“ Fpτ, vq @ pτ, vq P H ˆ Q , (3.1)

where A : pH ˆ Qq ˆ pH ˆ Qq Ñ R and F : H ˆ Q Ñ R are the bounded bilinear form and

linear functional, respectively, defined by

A
`

pζ, wq, pτ, vq
˘

:“ apζ, τq ` bpτ, wq ` bpζ, vq ´ cpw, vq @ pζ, wq, pτ, vq P H ˆ Q , (3.2)

12
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and

Fpτ, vq :“ fpτq ` gpvq @ pτ, vq P H ˆ Q . (3.3)

Throughout the rest of this part we consider the product norm

}pτ, vq}HˆQ :“ }τ}H ` }v}Q @ pτ, vq P H ˆ Q .

Thus, resorting to the Banach-Nečas-Babuška theorem (cf. [23, Theorem 2.6]), also known as

the generalized Lax-Milgram lemma, we deduce that (1.1) (equivalently (3.1)) is well-posed if

and only if the following hypotheses are satisfied:

1) there exists a constant α ą 0 such that

Spζ, wq :“ sup
pτ,vqPHˆQ
pτ,vq­“0

A
`

pζ, wq, pτ, vq
˘

}pτ, vq}HˆQ
ě α }pζ, wq}HˆQ @ pζ, wq P H ˆ Q . (3.4)

2) for each pτ, vq P H ˆ Q, pτ, vq ­“ 0:

sup
pζ,wqPHˆQ

A
`

pζ, wq, pτ, vq
˘

ą 0 . (3.5)

Certainly, when A is symmetric, which is equivalent to assume that a and c are, 2) is

redundant and hence it suffices to prove 1). In this regard, we stress that the supremum in

(3.4) is equivalent to the expression }Fpζ,wq}H1 ` }Gpζ,wq}Q1 , where

Fpζ,wqpτq :“ A
`

pζ, wq, pτ, 0q
˘

@ τ P H , (3.6)

and

Gpζ,wqpvq :“ A
`

pζ, wq, p0, vq
˘

@ v P Q . (3.7)

More precisely, it is easy to see that

1
2

!

}Fpζ,wq}H1 ` }Gpζ,wq}Q1

)

ď Spζ, wq ď }Fpζ,wq}H1 ` }Gpζ,wq}Q1 @ pζ, wq P H ˆ Q . (3.8)
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Consequently, a necessary and sufficient condition for 1) is given by the existence of a constant
rC ą 0 such that

}pζ, wq}HˆQ ď rC
!

}Fpζ,wq}H1 ` }Gpζ,wq}Q1

)

@ pζ, wq P H ˆ Q . (3.9)

The above is basically the same procedure that was utilized in the proof of [10, Theorem 1.2,

Chapter II] for the Hilbert version of (1.1), as well as the one that, except for some necessary

modifications, we adopt below in Chapter 3.2 for the proof of the main theorem.

From now on we denote by }a}, }b}, and }c}, the smallest positive constants such that

|apζ, τq| ď }a} }ζ}H }τ}H @ pζ, τq P H ˆ H ,

|bpτ, vq| ď }b} }τ}H }v}Q @ pτ, vq P H ˆ Q ,

|cpw, vq| ď }c} }w}Q }v}Q @ pw, vq P Q ˆ Q .

(3.10)

3.2 Continuous solvability

The main result providing sufficient conditions for the solvability of (1.1) is established now.

While some of the definitions and hypotheses have already been introduced, for sake of clearness

we include them again in its statement.

Theorem 3.1. Let H and Q be reflexive Banach spaces, and let a : HˆH Ñ R, b : HˆQ Ñ R,

and c : Q ˆ Q Ñ R be given bounded bilinear forms (cf. (3.10)). In addition, let B : H Ñ Q1

and Bt : Q Ñ H1 be the bounded linear operators induced by b (cf. (2.1)), and let V :“ NpBq

and W :“ NpBtq be the respective null spaces (cf. (2.2), (2.3)). Assume that:

i) there exist closed subspaces VK and WK of H and Q, respectively, such that H “ V ‘ VK

and Q “ W ‘ WK,

ii) a and c are symmetric and positive semi-definite, the latter meaning that

apτ, τq ě 0 @ τ P H and cpv, vq ě 0 @ v P Q , (3.11)
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iii) there exists a constant rα ą 0 such that

sup
τPV
τ ­“0

apϑ, τq

}τ}H
ě rα }ϑ}H @ ϑ P V , (3.12)

iv) there exists a constant rβ ą 0 such that (cf. (2.9))

sup
τPH
τ ­“0

bpτ, vq

}τ}H
ě rβ }v}Q @ v P WK , (3.13)

v) and there exists a constant rγ ą 0 such that

sup
vPW
v ­“0

cpz, vq

}v}Q
ě rγ }z}Q @ z P W . (3.14)

Then, for each pair pf, gq P H1 ˆ Q1 there exists a unique pσ, uq P H ˆ Q solution to (1.1)

(equivalently (3.1)). Moreover, there exists a constant rC ą 0, depending only on }a}, }c}, rα, rβ,

CH (cf. (2.5)), and rγ, such that

}pσ, uq}HˆQ ď rC
!

}f}H1 ` }g}Q1

)

. (3.15)

Proof. Because of the assumed symmetry of a and c (cf. ii)), and as previously remarked, the

proof reduces to show (3.9). In turn, it is easy to see that the assumptions on c allow to show

that

cpw, vq ď cpw, wq
1{2cpv, vq

1{2
@w, v P Q, (3.16)

which constitutes a kind of Cauchy-Schwarz inequality for c, and hence | ¨ |c :“ cp¨, ¨q1{2 defines

a semi-norm in Q. Now, given pζ, wq P H ˆ Q, we first define the functionals Fpζ,wq P H1 and

Gpζ,wq P Q1 according to (3.6) and (3.7), respectively, that is

Fpζ,wqpτq :“ apζ, τq ` bpτ, wq @ τ P H , (3.17)
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and

Gpζ,wqpvq :“ bpζ, vq ´ cpw, vq @ v P Q . (3.18)

Now, according to i), we decompose ζ and w as

ζ “ ζ0 ` ζ̄ and w “ w0 ` w̄ , (3.19)

with ζ0 P V, ζ̄ P VK, w0 P W, and w̄ P WK. Therefore, the rest of the proof consists of bounding

each one of the four components specified in (3.19). We begin by observing from (3.17) that

Fpζ,wqpτq “ apζ, τq for all τ P V, so that applying (3.12) (cf. iii)) to ϑ “ ζ0, we get

rα }ζ0}H ď sup
τPV
τ ­“0

apζ0, τq

}τ}H
“ sup

τPV
τ ­“0

Fpζ,wqpτq ´ apζ̄ , τq

}τ}H
,

from which it readily follows that

}ζ0}H ď
1
rα

}Fpζ,wq}H1 `
}a}

rα
}ζ̄}H . (3.20)

In turn, in order to bound ζ̄, we employ the equivalence between i) and iii) of Lemma 2.2,

thanks to which and (3.13) (cf. iv)), there holds (cf. (2.10))

pβ }τ}H ď sup
vPQ
v ­“0

bpτ, vq

}v}Q
@ τ P VK ,

with pβ :“ rβ
CH

. Thus, noting from (3.18) that Gpζ,wqpvq “ bpζ̄ , vq ´ cpw, vq for all v P Q, and

applying the foregoing inequality to τ “ ζ̄ P VK, we find that

pβ }ζ̄}H ď sup
vPQ
v ­“0

bpζ̄ , vq

}v}Q
“ sup

vPQ
v ­“0

Gpζ,wqpvq ` cpw, vq

}v}Q
,

from which, using thanks to (3.16) and the boundedness of c, that cpw, vq ď }c}1{2 |w|c }v}Q,

we deduce that

}ζ̄}H ď
1
pβ

}Gpζ,wq}Q1 `
}c}1{2

pβ
|w|c . (3.21)
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Thus, as a direct consequence of (3.20) and (3.21), we have the following preliminary bound

}ζ}H ď
1
rα

}Fpζ,wq}H1 `

´

1 `
}a}

rα

¯ 1
pβ

}Gpζ,wq}Q1 `

´

1 `
}a}

rα

¯

}c}1{2

pβ
|w|c . (3.22)

Certainly, it remains to bound |w|c in terms of }Fpζ,wq}H1 and }Gpζ,wq}Q1 , which will be done

later on. Meanwhile, we address the estimate of }w}Q. In fact, from the definition of Gpζ,wq (cf.

(3.18)) we have Gpζ,wqpvq “ ´cpw, vq “ ´cpw0, vq ´ cpw̄, vq for all v P W, and hence, applying

(3.14) (cf. v)) to z “ w0 P W, we get

rγ }w0}Q ď sup
vPW
v ­“0

cpw0, vq

}v}Q
“ sup

vPW
v ­“0

´Gpζ,wqpvq ´ cpw̄, vq

}v}Q
, (3.23)

which yields

}w0}Q ď
1
rγ

}Gpζ,wq}Q1 `
}c}

rγ
}w̄}Q . (3.24)

Furthermore, it is clear from (3.17) that Fpζ,wqpτq “ apζ, τq ` bpτ, w̄q for all τ P H, so that

making use of (3.13) (cf. iv)) with v “ w̄ P WK, we arrive at

rβ }w̄}Q ď sup
τPH
τ ­“0

bpτ, w̄q

}τ}H
“ sup

τPH
τ ­“0

Fpζ,wqpτq ´ apζ, τq

}τ}H
, (3.25)

which implies that

}w̄}Q ď
1
rβ

}Fpζ,wq}H1 `
}a}

rβ
}ζ}H . (3.26)

In this way, (3.24) and (3.26) give

}w}Q ď

´

1 `
}c}

rγ

¯ 1
rβ

}Fpζ,wq}H1 `
1
rγ

}Gpζ,wq}Q1 `

´

1 `
}c}

rγ

¯

}a}

rβ
}ζ}H . (3.27)

On the other hand, we now aim to bound |w|2c :“ cpw, wq. Indeed, evaluating Fpζ,wq (cf. (3.17))

and Gpζ,wq (cf. (3.18)) in ζ and w, respectively, and subtracting the resulting expressions, we

obtain

apζ, ζq ` cpw, wq “ Fpζ,wqpζq ´ Gpζ,wqpwq ,
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from which, according to the positive semi-definiteness of a (cf. ii)), it follows that

|w|
2
c ď }Fpζ,wq}H1 }ζ}H ` }Gpζ,wq}Q1 }w}Q . (3.28)

Moreover, employing the bounds for }ζ}H and }w}Q provided by (3.22) and (3.27), using Young’s

inequality conveniently, and performing several algebraic manipulations, we deduce from (3.28)

that

|w|
2
c ď C1 }Fpζ,wq}

2
H1 ` C2 }Gpζ,wq}

2
Q1 `

1
2 |w|

2
c , (3.29)

where C1 and C2, positive constants depending on }a}, }c}, rα, rβ, pβ, and rγ, are given explicitly

as

C1 :“
´

1 `
}a}

rα

¯

"

´

1 `
}a}

rα

¯

}c}

pβ2
`

´

1 `
}c}

rγ

¯ 1
2rβ

`
1

2pβ

*

`
1
rα

(3.30)

and

C2 :“
´

1 `
}a}

rα

¯´

1 `
}c}

rγ

¯

"

´

1 `
}a}

rα

¯´

1 `
}c}

rγ

¯

}a}2}c}

rβ2pβ2
`

}a}

rβpβ
`

1
2rβ

*

`

´

1 `
}a}

rα

¯ 1
2pβ

`
1
rγ

.

(3.31)

Finally, it is easy to see from (3.29) that

|w|c ď

´

2 max
␣

C1, C2
(

¯1{2 !
}Fpζ,wq}H1 ` }Gpζ,wq}Q1

)

, (3.32)

which, replaced back into (3.22), completes the upper bound of }ζ}H. In turn, employing the

latter in (3.27) leads to the respective estimate for }w}Q, and the proof is concluded.

Bearing in mind the equivalence (3.8), we notice here that the proof of the previous theorem

establishes, equivalently, that the global inf-sup condition for A holds, namely

sup
pτ,vqPHˆQ
pτ,vq­“0

A
`

pζ, wq, pτ, vq
˘

}pτ, vq}HˆQ
ě

1
2 rC

}pζ, wq}HˆQ @ pζ, wq P H ˆ Q . (3.33)

On the other hand, and related to a previous remark (right after the proof of Lemma 2.2)
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on the constants rβ and pβ that appear in the inf-sup conditions (2.9) and (2.10), respectively, we

stress here that the fact that they do not coincide does not yield any difficulty in the solvability

result provided by Theorem 3.1. The reason is certainly because the difference between them

is determined only by the reciprocals of the constants CH and CQ, which depend on the con-

tinuous spaces H and Q, which are fixed. However, this issue becomes a delicate point for the

associated Galerkin scheme, to be addressed next, since the finite element subspaces employed

are varying, and hence, the respective constants could vary as well with them, particularly with

their dimensions. According to it, in this case we can not employ the equivalence between i)

and iii) from Lemma 2.2 as such, but rather assume (which means proving when dealing with

specific subspaces) that both discrete inf-sup conditions are satisfied with constants indepen-

dent of those dimensions.

3.3 Discrete solvability

We now let
␣

Hh

(

hą0 and
␣

Qh

(

hą0 be families of finite dimensional subspaces of H and Q,

respectively, and introduce the Galerkin scheme associated with (1.1): Find pσh, uhq P H ˆ Qh

such that
apσh, τhq ` bpτh, uhq “ fpτhq @ τh P Hh ,

bpσh, vhq ´ cpuh, vhq “ gpvhq @ vh P Qh .

(3.34)

Then, we let Bh : Hh Ñ Q1
h and Bt

h : Qh Ñ H1
h be the discrete versions of the bounded linear

operators induced by b (cf. (2.1)), and define the respective discrete null spaces

Vh :“ NpBhq :“
!

τh P Hh : bpτh, vhq “ 0 @ vh P Qh

)

(3.35)

and

Wh :“ NpBt
hq :“

!

vh P Qh : bpτh, vhq “ 0 @ τh P Hh

)

. (3.36)

In this case, the existence of closed subspaces VK
h and WK

h of Hh and Qh, respectively, satisfying

the decompositions Hh “ Vh ‘ VK
h and Qh “ Wh ‘ WK

h , is guaranteed by the fact that both
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Hh and Qh are finite dimensional. As a consequence, the solvability result for (3.34), which is

stated next, does not need to incorporate the aforementioned existence as an assumption (see

hypothesis i) in Theorem 3.1) but rather as a fact. In this way, the discrete version of that

theorem reads as follows. Hereafter, the expression “independent of h” means independent of

the finite element subspaces Hh and Qh.

Theorem 3.2. In addition to the previous notations and definitions, assume that:

i) a and c are symmetric and positive semi-definite (cf. (3.11)),

ii) there exists a constant rαd ą 0, independent of h, such that

sup
τhPVh
τh ­“0

apϑh, τhq

}τh}H
ě rαd }ϑh}H @ ϑh P Vh , (3.37)

iii) there exists a constant rβd ą 0, independent of h, such that

sup
τhPHh
τh ­“0

bpτh, vhq

}τh}H
ě rβd }vh}Q @ vh P WK

h , (3.38)

iv) there exists a constant pβd ą 0, independent of h, such that

sup
vhPQh
vh ­“0

bpτh, vhq

}vh}Q
ě pβd }τh}H @ τh P VK

h , (3.39)

v) and there exists a constant rγd ą 0, independent of h, such that

sup
vhPWh
vh ­“0

cpzh, vhq

}vh}Q
ě rγd }zh}Q @ zh P Wh . (3.40)

Then, for each pair pf, gq P H1 ˆ Q1 there exists a unique pσh, uhq P Hh ˆ Qh solution to (3.34).

Moreover, there exists a constant rCd ą 0, depending only on }a}, }c}, rαd, rβd, pβd, and rγd, such

that

}σh}H ` }uh}Q ď rCd

!

}f}H1 ` }g}Q1

)

. (3.41)
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Proof. It follows analogously to the proof of Theorem 3.1, except for the fact that, instead of

considering iv) as a consequence of iii), the former is assumed here independently. Alterna-

tively, this proof follows from a direct application of a slight modification of Theorem 3.1 in

which a continuous version of the present hypothesis iv) is added.

Similarly as noticed right after the proof of Theorem 3.1, we stress here that the previous

theorem provides, equivalently, the global discrete inf-sup condition for A, that is

sup
pτh,vhqPHhˆQh

pτh,vhq­“0

A
`

pζh, whq, pτh, vhq
˘

}pτh, vhq}HˆQ
ě

1
2 rCd

}pζh, whq}HˆQ @ pζh, whq P Hh ˆ Qh . (3.42)

Having established the well-posedness of the continuous and discrete formulations of interest,

we now prove the respective Cea estimate. In what follows, given a subspace Xh of a generic

Banach space pX, } ¨ }Xq, we set distpx, Xhq :“ inf
xhPXh

}x ´ xh}X for each x P X.

Theorem 3.3. Assume the hypotheses of Theorems 3.1 and 3.2, and let pσ, uq P H ˆ Q and

pσh, uhq P Hh ˆ Qh be the unique solutions of (1.1) and (3.34), respectively. Then, there exists

a constant pCd ą 0, depending only on }a}, }b}, }c}, rαd, rβd, pβd, and rγd, such that

}σ ´ σh}H ` }u ´ uh}Q ď pCd

!

distpσ, Hhq ` distpu, Qhq

)

. (3.43)

Proof. Due to the equivalence between (1.1) and (3.1), it is clear that (3.34) can be, equivalently,

rewritten as: Find pσh, uhq P Hh ˆ Qh such that

A
`

pσh, uhq, pτh, vhq
˘

“ Fpτh, vhq @ pτh, vhq P Hh ˆ Qh , (3.44)

and hence, the derivation of (3.43) proceeds in the usual way for formulations of this kind.

More precisely, we first apply the triangle inequality to obtain

}pσ, uq ´ pσh, uhq}HˆQ ď }pσ, uq ´ pζh, whq}HˆQ ` }pσh, uhq ´ pζh, whq}HˆQ ,

for each pζh, whq P Hh ˆ Qh, then we employ the global discrete inf-sup condition (3.42), which
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gives

}pσh, uhq ´ pζh, whq}HˆQ ď 2 rCd sup
pτh,vhqPHhˆQh

pτh,vhq­“0

A
`

pσh, uhq ´ pζh, whq, pτh, vhq
˘

}pτh, vhq}HˆQ
,

and finally we use that A
`

pσh, uhq, pτh, vhq
˘

“ A
`

pσ, uq, pτh, vhq
˘

for each pτh, vhq P Hh ˆ Qh,

along with the boundedness of A. In this way, we readily arrive at (3.43) with pCd :“ 1 `

2 rCd }A}. Alternatively, we can also derive (3.43) by proceeding similarly to [26, Theorem 2.5],

that is by employing the corresponding Galerkin projection.

3.4 Continuous solvability when W “
␣

0
(

We now assume the particular case W “
␣

0
(

, equivalently WK “ Q, which means that the

hypothesis iv) of Theorem 3.1 reduces to the existence of a constant rβ ą 0 such that

}Bt
pvq}H1 :“ sup

τPH
τ ­“0

bpτ, vq

}τ}H
ě rβ }v}Q @ v P Q . (3.45)

Moreover, recalling from (2.11) that Bt “ B1 ˝ JQ, and using the reflexivity of Q and the fact

that JQ is an isometry, we observe that (3.45) can be rewritten, equivalently, as

}B1
pGq}H1 ě rβ }G}Q2 @ G P Q2 . (3.46)

Note that the above establishes that B1 : Q2 Ñ H1 is injective and of closed range, which is

equivalent to saying that B : H Ñ Q1 is surjective. Thus, applying the converse implication of

the characterization provided in [23, Lemma A.42], which is originally proved in [3], we deduce

from (3.46) that for each G P Q1 there exists ϑ P H such that

Bpϑq “ G and }ϑ}H ď
1
rβ

}G}Q1 . (3.47)

In this way, having the above result to our disposal in the present case, we can improve the

statement of Theorem 3.1 as follows, highlighting in advance that no topological complement

of V nor a continuous inf-sup condition for c are needed now.
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Theorem 3.4. Let H and Q be reflexive Banach spaces, and let a : HˆH Ñ R, b : HˆQ Ñ R,

and c : Q ˆ Q Ñ R be given bounded bilinear forms (cf. (3.10)). In addition, let B : H Ñ Q1 be

one of the bounded linear operators induced by b (cf. (2.1)), and let V :“ NpBq be the respective

null space (cf. (2.2)). Assume that:

i) a and c are symmetric and positive semi-definite, the latter meaning that

apτ, τq ě 0 @ τ P H and cpv, vq ě 0 @ v P Q , (3.48)

ii) there exists a constant rα ą 0 such that

sup
τPV
τ ­“0

apϑ, τq

}τ}H
ě rα }ϑ}H @ ϑ P V , (3.49)

iii) and there exists a constant rβ ą 0 such that

sup
τPH
τ ­“0

bpτ, vq

}τ}H
ě rβ }v}Q @ v P Q , (3.50)

Then, for each pair pf, gq P H1 ˆ Q1 there exists a unique pσ, uq P H ˆ Q solution to (1.1)

(equivalently (3.1)). Moreover, there exists a constant rC ą 0, depending only on }a}, }c}, rα,

and rβ, such that

}pσ, uq}HˆQ ď rC
!

}f}H1 ` }g}Q1

)

. (3.51)

Proof. We proceed analogously to the proof of Theorem 3.1, though with a key difference in

the decomposition to be introduced below. Indeed, given pζ, wq P H ˆ Q, we first define the

functionals Fpζ,wq P H1 and Gpζ,wq P Q1 as we did in (3.17) and (3.18), respectively, and aim

to establish the inequality (3.9). To this end, and bearing in mind iii), we apply (3.47) to

G :“ Bpζq P Q1, thus yielding the existence of ζ̄ P H such that

Bpζ̄q “ Bpζq and }ζ̄}H ď
1
rβ

}Bpζq}Q1 “
1
rβ

}Bpζ̄q}Q1 . (3.52)
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As a consequence, ζ can be decomposed as

ζ “ ζ0 ` ζ̄ , (3.53)

with ζ0 :“ ζ ´ ζ̄ P V. As previously announced, we stress here that there is no need to identify a

topological complement to which ζ̄ belongs, but rather to be able to bound }ζ̄}H, which is indeed

guaranteed by the inequality from (3.52). Then, observing from (3.17) that Fpζ,wqpτq “ apζ, τq

for all τ P V, and applying (3.49) (cf. ii)) to ϑ “ ζ0, we deduce, exactly as for the derivation

of (3.20), that

}ζ0}H ď
1
rα

}Fpζ,wq}H1 `
}a}

rα
}ζ̄}H . (3.54)

Next, noting from (3.18) that bpζ̄ , vq “ Gpζ,wqpvq ` cpw, vq for all v P Q, it follows from the

inequality in (3.52) that

}ζ̄}H ď
1
rβ

}Bpζ̄q}Q1 “
1
rβ

sup
vPQ
v ­“0

bpζ̄ , vq

}v}Q
“

1
rβ

sup
vPQ
v ­“0

Gpζ,wqpvq ` cpw, vq

}v}Q
,

from which, similarly to the derivation of (3.21), we arrive at

}ζ̄}H ď
1
rβ

}Gpζ,wq}Q1 `
}c}1{2

rβ
|w|c , (3.55)

and hence, thanks to (3.54) and (3.55), the analogue of (3.22) becomes

}ζ}H ď
1
rα

}Fpζ,wq}H1 `

´

1 `
}a}

rα

¯ 1
rβ

}Gpζ,wq}Q1 `

´

1 `
}a}

rα

¯

}c}1{2

rβ
|w|c . (3.56)

Furthermore, we know from (3.17) that bpτ, wq “ Fpζ,wqpτq ´ apζ, τq for all τ P H, so that

applying (3.50) (cf. iii)) with v “ w P Q, we readily deduce that

}w}Q ď
1
rβ

}Fpζ,wq}H1 `
}a}

rβ
}ζ}H . (3.57)

The rest of the proof proceeds exactly as the one of Theorem 3.1. In particular, we obtain (cf.
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(3.28))

|w|
2
c ď }Fpζ,wq}H1 }ζ}H ` }Gpζ,wq}Q1 }w}Q , (3.58)

and then, employing the bounds for }ζ}H and }w}Q provided by (3.56) and (3.57), and applying

Young’s inequality conveniently, we arrive at

|w|c ď

´

2 max
␣

rC1, rC2
(

¯1{2 !
}Fpζ,wq}H1 ` }Gpζ,wq}Q1

)

, (3.59)

where
rC1 :“ 1

rα
`

1
rβ

´

1 `
}a}

rα

¯

`
}c}

rβ2

´

1 `
}a}

rα

¯2
(3.60)

and
rC2 :“ 1

rβ

´

1 `
}a}

rα

¯

"

1 `
}a}

rβ
`

}a}2 }c}

rβ3

´

1 `
}a}

rα

¯

*

. (3.61)

Finally, (3.59), (3.56), and (3.57) complete the proof.

3.5 Discrete solvability when Wh “
␣

0
(

In what follows we consider the same notations and definitions given at the beginning of Chapter

3.3. Then, similarly to the analysis in Chapter 3.3, we now assume that Wh “
␣

0
(

, which

means that the hypothesis iii) of Theorem 3.2 reduces to the existence of a constant rβd ą 0,

independent of h, such that

}Bt
hpvhq}H1

h
:“ sup

τhPHh
τh ­“0

bpτh, vhq

}τh}H
ě rβd }vh}Q @ vh P Qh . (3.62)

Therefore, noting that the discrete version of the respective identity in (2.11) becomes Bt
h “

B1
h ˝ JQh

, we realize that (3.62) is equivalent to stating

}B1
hpGhq}H1

h
ě rβd }Gh}Q2

h
@ Gh P Q2

h , (3.63)

so that applying again the converse implication of [23, Lemma A.42], we conclude that for each

Gh P Q1
h there exists ϑh P Hh such that
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Bhpϑhq “ Gh and }ϑh}H ď
1
rβd

}Gh}Q1
h

. (3.64)

Consequently, we are now in position to present the discrete version of Theorem 3.4.

Theorem 3.5. Assume that:

i) a and c are symmetric and positive semi-definite (cf. (3.11)),

ii) there exists a constant rαd ą 0, independent of h, such that

sup
τhPVh
τh ­“0

apϑh, τhq

}τh}H
ě rαd }ϑh}H @ ϑh P Vh , (3.65)

iii) and there exists a constant rβd ą 0, independent of h, such that

sup
τhPHh
τh ­“0

bpτh, vhq

}τh}H
ě rβd }vh}Q @ vh P Qh . (3.66)

Then, for each pair pf, gq P H1 ˆ Q1 there exists a unique pσh, uhq P Hh ˆ Qh solution to (3.34).

Moreover, there exists a constant rCd ą 0, depending only on }a}, }c}, rαd, and rβd, such that

}σh}H ` }uh}Q ď rCd

!

}f}H1 ` }g}Q1

)

. (3.67)

Proof. It proceeds analogously to the proof of Theorem 3.4, bearing in mind that, instead of

(3.47), we now apply (3.64). In this way, given pζh, whq P Hh ˆ Qh, we deduce the existence of

ζ̄h P Hh such that

Bhpζ̄hq “ Bhpζhq and }ζ̄h}H ď
1
rβd

}Bhpζhq}Q1 “
1
rβd

}Bhpζ̄hq}Q1 , (3.68)

so that ζh can be decomposed as

ζh “ ζ0,h ` ζ̄h , (3.69)
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with ζ0,h :“ ζh ´ ζ̄h P Vh. The rest of the proof is as the one of Theorem 3.4. Further details

are omitted.

Needless to say, we remark that the global inf-sup conditions stated in (3.33) and (3.42) are

also consequence of the proofs of Theorems 3.4 and 3.5, respectively. We end this chapter with

the corresponding Cea estimate, whose proof is exactly as that of Theorem 3.3.

Theorem 3.6. Assume the hypotheses of Theorems 3.4 and 3.5, and let pσ, uq P H ˆ Q and

pσh, uhq P Hh ˆ Qh be the unique solutions of (1.1) and (3.34), respectively. Then, there exists

a constant pCd ą 0, depending only on }a}, }b}, }c}, rαd, and rβd, such that

}σ ´ σh}H ` }u ´ uh}Q ď pCd

!

distpσ, Hhq ` distpu, Qhq

)

. (3.70)

We end this chapter by emphasizing the main aspects of the present analysis that differ

from those of the Hilbertian case. First of all, and regarding the proof of Theorem 3.1, we

stress that instead of the identity (1.2), which is not valid in the Banach case, here we have

to use Lemma 2.1 to be able to apply the equivalence (though with different constants rβ and
pβ) between the statements i) and iii) of Lemma 2.2. A second difference is determined by the

need of having to assume the existence of topological complements for the closed subspaces

V and W, which, on the contrary, is for granted in the Hilbert case thanks to the orthogonal

decomposition theorem. In addition, we do not make use of any ellipticity properties of a nor

of c, but only of the respective inf-sup conditions. Furthermore, and concerning the solvability

result provided by Theorem 3.2 for the associated Galerkin scheme, we notice that the lack

of the finite dimensional version of (1.2) as well in the Banach case, forces us to assume two

independent discrete inf-sup conditions instead of just one, as in the Hilbert case. On the other

hand, when W “ Wh “ 0, in which case nor the identity (1.2) or its discrete version are valid

either, we observe that the corresponding Theorems 3.4 and 3.5 make use of the characterization

of surjective operators provided in [23, Lemma A.42], and more specifically of its consequences

given by (3.47) and (3.64), respectively. In this way, and differently from the Hilbert case and

the continuous and discrete Banach cases analyzed in Chapter 3.2 and 3.3, we do not need to

identify any topological complements of V nor Vh in the proofs of the aforementioned theorems.



CHAPTER 4

Application to the decoupled Nernst Planck

equation

The coupling of the Stokes and Poisson-Nernst-Planck equations is an electrohydrodinamic

model describing the stationary flow of a Newtonian and incompressible fluid occupying a

domain Ω Ď Rn, n P
␣

2, 3
(

, with polygonal (resp. polyhedral) boundary Γ in R2 (resp R3)

(see, e.g. [31], [32]). The dynamics of it is determined by the concentration of ionized particles ξ1

and ξ2, the electric current field φ, and the velocity u and pressure p of the fluid. In particular,

knowing the vector fields φ and u, a simplified version of the decoupled Nernst-Planck equation

for a single ionic species, whose concentration is denoted ξ, and for which the diffusion and

dielectric coefficients are assumed to be equal to 1, is expressed in mixed form as

σ “ ∇ξ ` ξ pφ ´ uq in Ω ,

ξ ´ divpσq “ f in Ω , ξ “ g on Γ ,

(4.1)

28
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where ∇ and div are the usual gradient and divergence operators acting on scalar and vector

fields, respectively, and f and g are given data belonging to suitable function spaces. On

purpose of this, in what follows we adopt standard notation for Lebesgue spaces LtpΩq, with

t P p1, `8q, and Sobolev spaces HmpΩq and Hm
0 pΩq, with integer m ě 0, whose corresponding

norms and seminorms (in the case of the latter), either for the scalar or vectorial case, are

denoted by } ¨ }0,t;Ω, } ¨ }m,Ω, and | ¨ |m,Ω, respectively. Furthermore, as usual we let H1{2pΓq

and H´1{2pΓq be the space of traces of H1pΩq and its dual, with norms } ¨ }1{2,Γ and } ¨ }´1{2,Γ,

respectively, and denote by x¨, ¨yΓ the corresponding duality pairing. On the other hand, given

any generic scalar functional space S, we let S be its vector counterpart.

Now, in order to derive the variational formulation of (4.1), we stress that the right spaces

where the unknowns are going to be sought is mainly determined by the term depending on φ

and u. Indeed, using the Cauchy-Schwarz and Hölder inequalities, we observe that

ˇ

ˇ

ˇ

ˇ

ż

Ω
ξ pφ ´ uq ¨ τ

ˇ

ˇ

ˇ

ˇ

ď }ξ}0,ρ;Ω
`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}τ }0,Ω (4.2)

for all ξ P LρpΩq, for all φ, u P LrpΩq, and for all τ P L2pΩq, where ρ “ 2ℓ and r “ 2j, with

ℓ, j P p1, `8q conjugate to each other, that is such that 1
ℓ

` 1
j

“ 1. Next, we let ϱ P p1, `8q

be the conjugate of ρ, introduce the Banach space

Hpdivϱ; Ωq :“
!

τ P L2
pΩq : divpτ q P Lϱ

pΩq

)

, (4.3)

which is endowed with the norm

}τ }divϱ;Ω :“ }τ }0,Ω ` }divpτ q}0,ϱ;Ω @ τ P Hpdivϱ; Ωq ,

and recall from [17, Section 3.1] (see also [12, Section 4.1] or [29, eq. (2.11)]) that for ϱ ě 2n
n`2

there holds

xτ ¨ ν, vyΓ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivϱ; Ωq ˆ H1
pΩq , (4.4)

where ν stands for the unit outward normal on Γ. Note that the integration by parts formula
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(4.4) states implicitly that τ ¨ ν P H´1{2pΓq for each τ P Hpdivϱ; Ωq. In addition, being

ρ “ 2ℓ ą 2, it follows that ϱ P p1, 2q, and hence the feasible range for ϱ becomes
` 2n

n`2 , 2
˘

. Thus,

testing the first equation of (4.1) against τ P Hpdivϱ; Ωq, and then applying (4.4) with v “ ξ,

which requires to assume that, originally ξ P H1pΩq, and that g P H1{2pΓq, we obtain

ż

Ω
σ ¨ τ `

ż

Ω
ξ divpτ q ´

ż

Ω
ξ pφ ´ uq ¨ τ “ xτ ¨ ν, gyΓ . (4.5)

In turn, assuming that f P LϱpΩq, and testing the second equation of (4.1) against η P LρpΩq,

we get

ż

Ω
η divpσq ´

ż

Ω
ξ η “ ´

ż

Ω
f η . (4.6)

In this way, placing together (4.5) and (4.6), we arrive at the following mixed variational

formulation for (4.1): Find pσ, ξq P H ˆ Q such that

apσ, τ q ` bpτ , ξq ´

ż

Ω
ξ pφ ´ uq ¨ τ “ Fpτ q @ τ P H ,

bpσ, ηq ´ cpξ, ηq “ Gpηq @ η P Q ,

(4.7)

where

H :“ Hpdivϱ; Ωq , Q :“ Lρ
pΩq , (4.8)

and the bilinear forms a : H ˆ H Ñ R, b : H ˆ Q Ñ R, and c : Q ˆ Q Ñ R, and the functionals

F : H ÝÑ R and G : Q ÝÑ R, are defined, respectively, as

apζ, τ q :“
ż

Ω
ζ ¨ τ @ pζ, τ q P H ˆ H , (4.9)

bpτ , ηq :“
ż

Ω
η divpτ q @ pτ , ηq P H ˆ Q , (4.10)

cpλ, ηq :“
ż

Ω
λ η @ pλ, ηq P Q ˆ Q , (4.11)

Fpτ q :“ xτ ¨ ν, gy @ τ P H , (4.12)
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and

Gpηq :“ ´

ż

Ω
f η @ η P Q . (4.13)

Equivalently, introducing the bilinear forms A, Aφ,u : pH ˆ Qq ˆ pH ˆ Qq Ñ R given by

A
`

pζ, λq, pτ , ηq
˘

:“ apζ, τ q ` bpτ , λq ` bpζ, ηq ´ cpλ, ηq (4.14)

and

Aφ,u
`

pζ, λq, pτ , ηq
˘

:“ A
`

pζ, λq, pτ , ηq
˘

´

ż

Ω
λ pφ ´ uq ¨ τ (4.15)

for all pζ, λq, pτ , ηq P H ˆ Q, we deduce that (4.7) can be re-stated as: Find pσ, ξq P H ˆ Q

such that

Aφ,u
`

pσ, ξq, pτ , ηq
˘

“ Fpτ q ` Gpηq @ pτ , ηq P H ˆ Q . (4.16)

According to the above, in what follows we show first that the bilinear forms forming part

of A satisfy the assumptions of Theorem 3.4. Later on, we combine this fact with the effect of

the extra term completing the definition of Aφ,u to conclude the solvability of (4.7) (or (4.16)).

We begin by observing that the reflexivity of L2pΩq, LϱpΩq, and LρpΩq, imply that H and

Q are both reflexive Banach spaces. In addition, straightforward applications of the Cauchy-

Schwarz and Hölder inequalities show that a, b, and c, are all bounded with }a} ď 1, }b} ď 1,

and }c} ď |Ω|pρ´2q{ρ. Also, it is clear from (4.9) and (4.11) that a and b are symmetric and

positive semi-definite (assumption i) of Theorem 3.4). Next, bearing in mind the definitions of

b (cf. (4.10)) and the null space V of the operator B induced by b (cf. (2.2)), we find that

V “

!

τ P Hpdivϱ; Ωq : divpτ q “ 0
)

, (4.17)

and thus

apτ , τ q “ }τ }
2
0,Ω “ }τ }

2
divϱ;Ω @ τ P V ,

from which it readily follows that a satisfies the continuous inf-sup condition (3.49) with con-

stant rα “ 1 (assumption ii) of Theorem 3.4). It remains to show that b satisfies the continuous
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inf-sup condition (3.50) (assumption iii) of Theorem 3.4). While the corresponding proof is ac-

tually available in the literature (see, e.g. [29, Lemma 2.9] and the references mentioned there),

we provide it again below for sake of completeness of the presentation.

Lemma 4.1. There exists a constant rβ ą 0, depending only on Ω and ρ, such that

sup
τPH
τ ­“0

bpτ , ηq

}τ }H
ě rβ }η}Q @ η P Q . (4.18)

Proof. Given η P Q :“ LρpΩq, we first define ηϱ :“ |η|ρ´2 η and observe, thanks to simple

algebraic computations, that ηϱ P LϱpΩq and

ż

Ω
η ηϱ “ }η}0,ρ;Ω }ηϱ}0,ϱ;Ω . (4.19)

Then, we let rτ :“ ∇z P L2pΩq, where z P H1
0pΩq is the unique solution of the variational

problem
ż

Ω
∇z ¨ ∇w “ ´

ż

Ω
ηϱ w @ w P H1

0pΩq . (4.20)

Indeed, Hölder’s inequality and the continuous injection iρ of H1pΩq into LρpΩq guarantee that

the right hand side of (4.20) constitutes a functional in H1
0pΩq1, so that the classical Lax-Milgram

Lemma confirms the unique solvability of this problem. In turn, it follows from (4.20) that

divprτ q “ ηϱ in Ω , (4.21)

which yields rτ P Hpdivϱ; Ωq. Moreover, according to the continuous dependence result for

(4.20) and the resulting bound for the norm of the aforementioned functional, we deduce the

existence of a constant cρ ą 0, depending on }iρ}, such that }z}1,Ω ď cρ }ηϱ}0,ϱ;Ω, and hence

}rτ }divϱ;Ω “ |z|1,Ω ` }ηϱ}0,ϱ;Ω ď
`

1 ` cρ

˘

}ηϱ}0,ϱ;Ω . (4.22)

Finally, according to the definition of b (cf. (4.10)), and employing (4.21), (4.19), and (4.22),
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we obtain

sup
τPH
τ ­“0

bpτ , ηq

}τ }H
ě

bprτ , ηq

}rτ }H
“

}η}0,ρ;Ω }ηϱ}0,ϱ;Ω

}rτ }H
ě rβ }η}0,ρ;Ω ,

with rβ :“
`

1 ` cρ

˘´1, thus proving the required continuous inf-sup condition (4.18).

Having proved that a, b, and c verify the hypotheses of Theorem 3.4, we deduce that the

global inf-sup condition (3.33) also holds for the present bilinear form A (cf. (4.14)), which

means in this case that there exists a constant pc ą 0, depending only on }a} (ď 1), }c}

(ď |Ω|pρ´2q{ρ), rα “ 1, and rβ “
`

1 ` cρ

˘´1, such that

sup
pτ ,ηqPHˆQ
pτ ,ηq­“0

A
`

pζ, λq, pτ , ηq
˘

}pτ , ηq}HˆQ
ě pc }pζ, λq}HˆQ @ pζ, λq P H ˆ Q . (4.23)

Thus, it readily follows from (4.15), (4.2), and (4.23) that

sup
pτ ,ηqPHˆQ
pτ ,ηq­“0

Aφ,u
`

pζ, λq, pτ , ηq
˘

}pτ , ηq}HˆQ
ě

!

pc ´
`

}φ}0,r;Ω ` }u}0,r;Ω
˘

)

}pζ, λq}HˆQ @ pζ, λq P H ˆ Q ,

(4.24)

from which, under the assumption that, say }φ}0,r;Ω ` }u}0,r;Ω ď pc
2 , we conclude that

sup
pτ ,ηqPHˆQ
pτ ,ηq­“0

Aφ,u
`

pζ, λq, pτ , ηq
˘

}pτ , ηq}HˆQ
ě

pc

2 }pζ, λq}HˆQ @ pζ, λq P H ˆ Q . (4.25)

Similarly, using the symmetry of A and (4.23), and under the same hypothesis on φ and u, we

find that

sup
pζ,λqPHˆQ
pζ,λq­“0

Aφ,u
`

pζ, λq, pτ , ηq
˘

}pζ, λq}HˆQ
ě

pc

2 }pτ , ηq}HˆQ @ pτ , ηq P H ˆ Q . (4.26)

On the other hand, recalling from the proof of Lemma 4.1 that iρ is the continuous injection

of H1pΩq into LρpΩq, it is easy to see from (4.4) that there exists a constant Cρ ą 0, depending

on }iρ}, such that }τ ¨ν}´1{2,Γ ď Cρ }τ }divϱ;Ω for all τ P Hpdivϱ; Ωq, and hence we deduce from
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(4.12) that F P H1 with }F}H1 ď Cρ }g}´1{2,Γ. In turn, (4.13) and Hölder’s inequality yield

G P Q1 with }G}Q ď }f}0,ϱ;Ω.

In this way, we are now in position of establishing the well-posedness of (4.7) (equivalently

(4.16)).

Theorem 4.2. Let φ, u P LrpΩq such that }φ}0,r;Ω ` }u}0,r;Ω ď pc
2 . Then, there exists a

unique pσ, ξq P H ˆ Q solution to (4.7), and there holds

}σ}divϱ;Ω ` }ξ}0,ρ;Ω ď
2
pc

max
␣

1, Cρ

(

!

}g}´1{2,Γ ` }f}0,ϱ;Ω

)

.

Proof. Thanks to (4.25), (4.26), and the boundedness of F and G, it follows from a straight-

forward application of the Banach-Nečas-Babuška Theorem (also known as generalized Lax-

Milgram Lemma) (cf. [23, Theorem 2.6]).

We end this part of the thesis by remarking that the continuous and discrete analyses of the

full Poisson-Nernst-Planck and Stokes coupled model, which certainly contain those of (4.7),

will be provided next in the second part.



Part II

New mixed finite element methods for

the coupled Stokes and

Poisson-Nernst-Planck equations in

Banach spaces
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CHAPTER 5

Introduction

Fluid mixtures with electrically charged ions are critical for many industrial processes and

natural phenomena. Notable examples of current interest are efficient energy storage and

electrodialysis cells, design of nanopore sensors, electro-osmotic water purification techniques,

and even drug delivery in biological tissues [45]. One of the most well-known models for liquid

electrolytes is the Poisson–Nernst–Planck / Stokes system. It describes the isothermal dynamics

of the molar concentration of a number of charged species within a solvent. This classical model

is valid for the regime of relatively small Reynolds numbers and it is written in terms of the

concentrations, the barycentric velocity of the mixture, the pressure of the mixture, and the

electrostatic potential. The system is strongly coupled and the set of equations consist of the

transport equations for each dilute component of the electrolyte, a diffusion equation for the

electrostatic equilibrium, the momentum balance for the mixture (including a force exerted by

the electric field), and mass conservation.

Solving these systems lends itself difficult due to coupling nonlinearities of different nature. Nu-

merical methods for incompressible flow equations coupled with Poisson–Nernst–Planck equa-
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tions that are based on finite element schemes in primal formulation (also including stabilized

and goal-adaptive methods) can be found in [4, 24, 36, 39, 41, 44], finite differences in e.g. [38],

finite volume schemes in [43], spectral elements in [40], and also for virtual element methods

in [21]. Regarding formulations using mixed methods, the first works addressing Stokes/PNP

systems are relatively recent [31,32]. Mixed variational formulations are particularly interesting

when direct discrete approximations of further variables of physical relevance are required. A

recent approach to mixed methods consists in defining the corresponding variational settings in

terms of Banach spaces instead of the usual Hilbertian framework, and without augmentation.

As a consequence, the unknowns belong now to the natural spaces that are originated after car-

rying out the respective testing and integration by parts procedures, simpler and closer to the

original physical model formulations arise, momentum conservative schemes can be obtained,

and even other unknowns can be computed by postprocessing formulae. As a non-exhaustive

list of contributions taking advantage of the use of Banach frameworks for solving the aforemen-

tioned kind of problems, we refer to [5,11,13–15,17,18,29,30,33], and among the different models

considered there, we find Poisson, Brinkman–Forchheimer, Darcy–Forchheimer, Navier–Stokes,

chemotaxis/Navier–Stokes, Boussinesq, coupled flow-transport, and fluidized beds. Neverthe-

less, and up to our knowledge, no mixed methods with the described advantages seem to have

been developed so far for the coupled Stokes and Poisson–Nernst–Planck equations.

As motivated by the previous discussion, the goal of this part is to develop a Banach spaces-

based formulation yielding new mixed finite element methods for, precisely, the coupled Stokes

and Poisson–Nernst–Planck equations. The rest of the manuscript is organized as follows. Re-

quired notations and basic definitions are collected at the end of this introductory chapter. In

Chapter 6 we describe the model of interest and introduce the additional variables to be em-

ployed. The mixed variational formulation is deduced in Chapter 7. After some preliminaries,

the respective analysis is split according to the three equations forming the whole system. In

particular, the right spaces to which the trial and test functions must belong are derived in

each case by applying suitable integration by parts formulae jointly with the Cauchy–Schwarz

and Hölder inequalities. In Chapter 8 we utilize a fixed-point approach to study the solvabil-

ity of the continuous formulation. The Babuška–Brezzi theory and recent results on perturbed
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saddle-point problems, both in Banach spaces, along with the Banach–Nečas–Babuška theorem,

are utilized to prove that the corresponding uncoupled problems are well-posed. The classical

Banach fixed-point theorem is then applied to conclude the existence of a unique solution. In 9

we proceed analogously to Chapter 8 and, under suitable stability assumptions on the discrete

spaces employed, show existence and then uniqueness of solution for the Galerkin scheme by

applying the Brouwer and Banach theorems, respectively. A priori error estimates are also

derived here. Next, in Chapter 10 we define explicit finite element subspaces satisfying those

conditions, and provide the associated rates of convergence. Finally, several numerical exam-

ples confirming the latter and illustrating the good performance of the method, are reported in

Chapter 11.

Preliminary notations

Throughout the second part, Ω is a bounded Lipschitz-continuous domain of Rn, n P
␣

2, 3
(

,

which is star shaped with respect to a ball, and whose outward normal at Γ :“ BΩ is denoted

by ν. Standard notation will be adopted for Lebesgue spaces LtpΩq and Sobolev spaces Wl,tpΩq

and Wl,t
0 pΩq, with l ě 0 and t P r1, `8q, whose corresponding norms, either for the scalar and

vectorial case, are denoted by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively. Note that W0,tpΩq “ LtpΩq,

and if t “ 2 we write HlpΩq instead of Wl,2pΩq, with the corresponding norm and seminorm

denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In addition, letting t, t1 P p1, `8q conjugate to each

other, that is such that 1{t ` 1{t1 “ 1, we denote by W1{t1,tpΓq the trace space of W1,tpΩq, and

let W´1{t1,t1

pΓq be the dual of W1{t1,tpΓq endowed with the norms } ¨ }´1{t1,t1;Γ and } ¨ }1{t1,t;Γ,

respectively. On the other hand, given any generic scalar functional space M, we let M and M

be the corresponding vectorial and tensorial counterparts, whereas } ¨ } will be employed for the

norm of any element or operator whenever there is no confusion about the spaces to which they

belong. Furthermore, as usual, I stands for the identity tensor in R :“ Rnˆn, and | ¨ | denotes

the Euclidean norm in R :“ Rn. Also, for any vector field v “ pviqi“1,n we set the gradient and
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divergence operators, respectively, as

∇v :“
ˆ

Bvi

Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj

Bxj

.

Additionally, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the

divergence operator div acting along the rows of τ , and define the transpose, the trace, the

tensor inner product operators, and the deviatoric tensor, respectively, as

τ t
“ pτjiqi,j“1,n, trpτ q “

n
ÿ

i“1
τii, τ : ζ :“

n
ÿ

i,j“1
τijζij , and τ d :“ τ ´

1
n

trpτ qI .



CHAPTER 6

The model problem

We consider the nonlinear system given by the coupled Stokes and Poisson–Nernst–Planck

equations, which constitute an electrohydrodinamic model describing the stationary flow of a

Newtonian and incompressible fluid occupying the domain Ω Ď Rn, n P
␣

2, 3
(

, with polyg-

onal (resp. polyhedral) boundary Γ in R2 (resp. R3). Under the assumption of isothermal

properties, equal molar volumes and molar masses for each species, the behavior of the system

is determined by the concentrations ξ1 and ξ2 of ionized particles, and by the electric current

field φ. Mathematically speaking, and firstly regarding the fluid, we look for the barycentric

velocity u and the pressure p of the mixture, such that pu, pq is solution to the Stokes equations

´µ∆u ` ∇p “ ´ pξ1 ´ ξ2q ε´1φ ` f in Ω ,

divpuq “ 0 in Ω , u “ g on Γ ,

ż

Ω
p “ 0 ,

(6.1)

where µ is the constant viscosity, ε is the dielectric coefficient, also known as the electric

conductivity coefficient, f is a source term, g is the Dirichlet datum for u on Γ, and the null
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mean value of p has been incorporated as a uniqueness condition for this unknown. In addition,

φ, ξ1 and ξ2 solve the Poisson–Nernst–Planck equations, which depend on the velocity u and

are given by
φ “ ε ∇χ in Ω , ´ divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,

(6.2)

where χ is the electrostatic potential, and for each i P
␣

1, 2
(

ξi ´ div
`

κip∇ξi ` qi ξi ε´1φq ´ ξi u
˘

“ fi in Ω ,

ξi “ gi on Γ ,

(6.3)

where κ1 and κ2 are the diffusion coefficients, qi :“

$

&

%

1 if i “ 1

´1 if i “ 2
, f , f1, and f2 are external

source/sink terms, and g, g1 and g2 are Dirichlet data for χ, ξ1 and ξ2, respectively, on Γ. The

systems (6.2) and (6.3) correspond to the Poisson and Nernst–Planck equations, respectively.

We end the description of the model by remarking that ε, κ1, and κ2 are all assumed to be

bounded above and below, which means that there exist positive constants ε0, ε1, κ, and sκ,

such that

ε0 ď εpxq ď ε1 and κ ď κipxq ď sκ for almost all x P Ω , @ i P
␣

1, 2
(

. (6.4)

We stress that in order to solve (6.3), u and φ are needed. In turn, (6.1) requires ξ1, ξ2

and φ, whereas (6.2) makes use of ξ1 and ξ2. This multiple coupling is illustrated through

the graph provided in Figure 6.1, where the vertexes represent the aforementioned equations

and the arrows, properly labeled with the unknowns involved, show the respective dependence

relationships.

Furthermore, since we are interested in employing a fully mixed variational formulation for

the coupled model (6.1) – (6.3), we introduce the auxiliary variables of pseudostress

σ :“ µ ∇u ´ p I in Ω , (6.5)
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Stokes/Poisson/
Nernst–Planck

coupling

Poisson
problem

(6.2)

Nernst–
Planck

equations
(6.3)

Stokes
equations

(6.1)

φ

ξ1, ξ2

φ

u

ξ1, ξ2

Figure 6.1: Illustrative graph of the coupling mechanisms connecting the three sub-problems
(6.1), (6.2) and (6.3).

and, for each i P
␣

1, 2
(

, the total (diffusive, cross-diffusive, and advective) ionic fluxes

σi :“ κi p∇ξi ` qi ξi ε´1φq ´ ξi u in Ω . (6.6)

Thus, applying the matrix trace in (6.5) and using the incompressibility condition, we deduce

that

p “ ´
1
n

trpσq , (6.7)

so that, incorporating the latter expression into (6.5), p is eliminated from the system (6.1) -

(6.3), which can then be rewritten in terms of the unknowns σ, u, φ, χ, σi and ξi, i P
␣

1, 2
(

,
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as
1
µ
σd

“ ∇u in Ω , divpσq “ pξ1 ´ ξ2q ε´1φ´ f in Ω ,

u “ g on Γ ,

ż

Ω
trpσq “ 0 ,

1
ε
φ “ ∇χ in Ω , ´divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,

1
κi

σi :“ ∇ξi ` qi ξi ε´1φ ´ κ´1
i ξi u in Ω ,

ξi ´ divpσiq “ fi in Ω , ξi “ gi on Γ , i P
␣

1, 2
(

.

(6.8)

We notice here that the uniqueness condition for p has been rewritten equivalently as the null

mean value constraint for trpσq.



CHAPTER 7

The fully mixed formulation

In this chapter we derive a suitable Banach spaces-based variational formulation for (6.8) by

splitting the analysis in four chapters. The first one collects some preliminary discussions and

known results, and the remaining three deal with each one of the pairs of equations forming

the whole nonlinear coupled system (6.8), namely Stokes, Poisson, and Nernst-Planck.

7.1 Preliminaries

We begin by noticing that there are three key expressions in (6.8) that need to be looked

at carefully before determining the right spaces where the unknowns must be sought, namely

pξ1´ξ2q ε´1φ, qi ξi ε´1φ and κ´1
i ξi u in the first and fifth rows of (6.8). More precisely, ignoring

the bounded above and below functions ε´1 and κ´1
i , as well as the constant qi, and given test

functions v and τi associated with u and σi, respectively, straightforward applications of the

44
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Cauchy–Schwarz and Hölder inequalities yield

ˇ

ˇ

ˇ

ˇ

ż

Ω
pξ1 ´ ξ2qφ ¨ v

ˇ

ˇ

ˇ

ˇ

ď }ξ1 ´ ξ2}0,2ℓ;Ω }φ}0,2j;Ω }v}0,Ω , (7.1a)

ˇ

ˇ

ˇ

ˇ

ż

Ω
ξiφ ¨ τi

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }φ}0,2j;Ω }τi}0,Ω , (7.1b)

and similarly
ˇ

ˇ

ˇ

ˇ

ż

Ω
ξi u ¨ τi

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }u}0,2j;Ω }τi}0,Ω , (7.1c)

where ℓ, j P p1, `8q are conjugate to each other. In this way, denoting

ρ :“ 2ℓ , ϱ :“ 2ℓ

2ℓ ´ 1 (conjugate of ρ) , r :“ 2j , and s :“ 2j

2j ´ 1 (conjugate of r) ,

(7.2)

it follows that the above expressions make sense for ξi P LρpΩq, φ, u P LrpΩq, and v, τi P L2pΩq.

The specific choice of ℓ, and hence of j, ρ, r and the respective conjugates ϱ and s, will be

addressed later on, so that meanwhile we consider generic values for the indexes defined in

(7.2).

Having set the above preliminary choice for the space to which φ belongs, we deduce from

the first equation in the third row of (6.8) that χ should be initially sought in W1,rpΩq. In

turn, using that H1pΩq is embedded in LtpΩq for t P r1, `8q in R2 (resp. t P r1, 6s in R3),

and for reasons that will become clear below, the unknowns ξi, i P
␣

1, 2
(

, and u are initially

sought in H1pΩq and H1pΩq, respectively, certainly assuming that ρ and r verify the indicated

ranges, namely ρ, r P p2, `8q in R2, and ρ, r P p2, 6s in R3. Note that in terms of ℓ the latter

constraint becomes ℓ P r3
2 , 3s, which yields ρ P r3, 6s. Equivalently, j P r3

2 , 3s and r P r3, 6s,

though going through the respective intervals in the opposite direction to ℓ and ρ, respectively.

In turn, in order to derive the variational formulation of (6.8), we need to invoke a couple

of integration by parts formulae, for which, given t P p1, `8q, we first introduce the Banach

spaces

Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P Lt

pΩq

)

, (7.3a)

Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P Lt

pΩq

)

, (7.3b)
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Ht
pdivt; Ωq :“

!

τ P Lt
pΩq : divpτ q P Lt

pΩq

)

, (7.3c)

which are endowed with the natural norms defined, respectively, by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (7.4a)

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (7.4b)

}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Ht
pdivt; Ωq . (7.4c)

Then, proceeding as in [26, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [17, Section

3.1]), it is easy to show that for each t ě 2n
n`2 there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1
pΩq , (7.5)

and analogously

xτ ν, vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1
pΩq , (7.6)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq, as well as between

H´1{2pΓq and H1{2pΓq. Furthermore, given t, t1 P p1, `8q conjugate to each other, there also

holds (cf. [23, Corollary B. 57])

xτ ¨ ν, vyΓ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Ht
pdivt; Ωq ˆ W1,t1

pΩq , (7.7)

where x¨, ¨yΓ stands for the duality pairing between W´1{t,tpΓq and W1{t,t1

pΓq.

7.2 The Stokes equations

Let us first notice that, applying (7.6) with t “ s to τ P Hpdivs; Ωq and u P H1pΩq, and using

the Dirichlet boundary condition on u, for which we assume from now on that g P H1{2pΩq, we
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obtain
ż

Ω
τ : ∇u “ ´

ż

Ω
u ¨ divpτ q ` xτ ν, gy ,

and thus, the testing of the first equation in the first row of (6.8) against τ yields

1
µ

ż

Ω
σd : τ d

`

ż

Ω
u ¨ divpτ q “ xτ ν, gy . (7.8)

Note from the second term on the left-hand side of (7.8) that, knowing that divpτ q P LspΩq,

it actually suffices to look for u in LrpΩq, which is coherent with a previous discussion on the

space to which this unknown should belong. In addition, testing the second equation in the

first row of (6.8) against v P LrpΩq, for which we require that f P LspΩq, we get

ż

Ω
v ¨ divpσq “

ż

Ω
pξ1 ´ ξ2q ε´1φ ¨ v ´

ż

Ω
f ¨ v , (7.9)

which makes sense for divpσq P LspΩq. Hence, due to the last equation in the second row of

(6.8), it follows that we should look for σ in H0pdivs; Ωq, where

H0pdivs; Ωq :“
!

τ P Hpdivs; Ωq :
ż

Ω
trpτ q “ 0

)

.

Moreover, it is easily seen that there holds the decomposition

Hpdivs; Ωq “ H0pdivs; Ωq ‘ RI , (7.10)

and that the incompressibility of the fluid forces the compatibility condition on g given by

ż

Γ
g ¨ ν “ 0 .

As a consequence of the above, we realize that imposing (7.8) for each τ P Hpdivs; Ωq is

equivalent to doing it for each τ P H0pdivs; Ωq. Furthermore, since r ą 2 it follows that LrpΩq

is embedded in L2pΩq, which, along with the estimate (7.1a), confirms that the first term on

the right-hand side of (7.9) is also well-defined. In this way, denoting from now on ξ :“ pξ1, ξ2q,

and joining (7.8) and (7.9), we arrive at the following mixed variational formulation for the
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Stokes equations (given by the first two rows of (6.8)): Find pσ, uq P H ˆ Q such that

apσ, τ q ` bpτ , uq “ Fpτ q @ τ P H ,

bpσ, vq “ Gξ,φpvq @ v P Q ,

(7.11)

where

H :“ H0pdivs; Ωq , Q :“ Lr
pΩq , (7.12)

and the bilinear forms a : H ˆ H Ñ R and b : H ˆ Q Ñ R, and the functional F : H ÝÑ R,

are defined, respectively, as

apζ, τ q :“ 1
µ

ż

Ω
ζd : τ d

@ ζ, τ P H , (7.13a)

bpτ , vq :“
ż

Ω
v ¨ divpτ q @ pτ , vq P H ˆ Q , (7.13b)

Fpτ q :“ xτ ν, gy @ τ P H , (7.13c)

whereas, given η :“ pη1, η2q P LρpΩq and ϕ P LrpΩq, the functional Gη,ϕ : Q ÝÑ R is set as

Gη,ϕpvq :“
ż

Ω
pη1 ´ η2q ε´1ϕ ¨ v ´

ż

Ω
f ¨ v @ v P Q . (7.13d)

It is readily seen that, endowing H with the corresponding norm from (7.4b), that is

}τ }H :“ }τ }divs;Ω @ τ P H , (7.14)

and recalling that } ¨ }0,r;Ω is that of Q, the bilinear forms a and b, and the linear functionals

F and Gη,ϕ, are all bounded. Indeed, applying the Cauchy–Schwarz and Hölder inequalities,

noting that }τ d}0,Ω ď }τ }0,Ω for all τ P H, invoking the identity (7.6) along with the continuous

injection ir : H1pΩq Ñ LrpΩq, using (7.1a) together with the fact that }¨}0,Ω ď |Ω|pr´2q{2r }¨}0,r;Ω,

and bounding ε´1 according to (6.4), we deduce the existence of positive constants, denoted
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and given as
}a} :“ 1

µ
, }b} :“ 1 , }F} :“

`

1 ` }ir}
˘

}g}1{2,Γ ,

and }G} :“ max
␣

ε´1
0 |Ω|

pr´2q{2r, 1
(

,

(7.15)

such that

|apζ, τ q| ď }a} }ζ}H }τ }H @ ζ, τ P H ,

|bpτ , vq| ď }b} }τ }H }v}Q @ pτ , vq P H ˆ Q ,

|Fpτ q| ď }F} }τ }H @ τ P H , and

|Gη,ϕpvq| ď }G}

!

}η1 ´ η2}0,ρ;Ω }ϕ}0,r;Ω ` }f}0,s;Ω

)

}v}Q @ v P Q .

(7.16)

7.3 The electrostatic potential equations

We begin the derivation of the mixed formulation for the Poisson equation by testing the first

equation in the third row of (6.8) against ψ P Hspdivs; Ωq. In this way, applying (7.7) with

t “ s and t1 “ r to the given ψ and χ P W1,rpΩq, and employing the Dirichlet boundary

condition on χ, for which we assume that g P W1{s,rpΓq, we get

ż

Ω

1
ε
φ ¨ψ `

ż

Ω
χ divpψq “ xψ ¨ ν, gyΓ . (7.17)

In turn, testing the second equation in the third row of (6.8) against λ P LspΩq, which requires

to assume that f P LrpΩq, we obtain

ż

Ω
λ divpφq “ ´

ż

Ω
λ pξ1 ´ ξ2q ´

ż

Ω
f λ , (7.18)

which certainly makes sense for divpφq P LrpΩq. Thus, recalling from (7.1a) and (7.1b) that

φ must belong to LrpΩq, it follows from the above that this unknown should be sought then

in Hrpdivr; Ωq. Furthermore, bearing in mind from (7.1a) - (7.1c) that ξ1 and ξ2 must belong

to LρpΩq, we notice that in order for the first term on the right-hand side of (7.18) to make
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sense, we require that ρ ě r, which is assumed from now on. Therefore, placing together (7.17)

and (7.18), we obtain the following mixed variational formulation for the electrostatic potential

equations (given by the third and fourth rows of (6.8)): Find pφ, χq P X2 ˆ M1 such that

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @ λ P M2 ,

(7.19)

where

X2 :“ Hr
pdivr; Ωq , M1 :“ Lr

pΩq , X1 :“ Hs
pdivs; Ωq , M2 :“ Ls

pΩq , (7.20)

and the bilinear forms a : X2 ˆ X1 Ñ R and bi : Xi ˆ Mi Ñ R, i P
␣

1, 2
(

, and the functional

F : X1 Ñ R, are defined, respectively, as

apϕ,ψq :“
ż

Ω

1
ε
ϕ ¨ψ @ pϕ,ψq P X2 ˆ X1 , (7.21a)

bipψ, λq :“
ż

Ω
λ divpψq @ pψ, λq P Xi ˆ Mi , (7.21b)

Fpψq :“ xψ ¨ ν, gyΓ @ψ P X1 , (7.21c)

whereas, given η :“ pη1, η2q P LρpΩq, the functional Gη : M2 Ñ R is defined by

Gηpλq :“ ´

ż

Ω
λ pη1 ´ η2q ´

ż

Ω
f λ @ λ P M2 . (7.21d)

We end this chapter by establishing the boundedness of a, bi, i P
␣

1, 2
(

, F, and Gη, for which

we recall that the norms of X1 and X2 are defined by (7.4c) with t “ s and t “ r, respectively,

whereas those of M1 and M2 are certainly given by } ¨ }0,r;Ω and } ¨ }0,s;Ω, respectively. Then,

employing again the Cauchy–Schwarz and Hölder inequalities, bounding ε´1 according to (6.4),

and using that } ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω, which follows from the fact that ρ ě r, we find
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that there exist positive constants

}a} :“ 1
ε0

, }b1} “ }b2} :“ 1 , and }G} :“ max
␣

1, |Ω|
pρ´rq{ρr

(

, (7.22)

such that

|apϕ,ψq| ď }a} }ϕ}X2 }ψ}X1 @ pϕ,ψq P X2 ˆ X1 ,

|bipψ, λq| ď }bi} }ψ}Xi
}λ}Mi

@ pψ, λq P Xi ˆ M1 , @ i P
␣

1, 2
(

, and

|Gηpλq| ď }G}

!

}η1 ´ η2}0,ρ;Ω ` }f}0,r;Ω

)

}λ}0,s;Ω @ λ P M2 .

(7.23)

Regarding the boundedness of F, we need to apply [23, Lemma A.36], which, along with the

surjectivity of the trace operator mapping W1,rpΩq onto W1{s,rpΓq, yields the existence of a

fixed positive constant Cr, such that for the given g P W1{s,rpΓq, there exists vg P W1,rpΩq

satisfying vg|Γ “ g and

}vg}1,r;Ω ď Cr }g}1{s,r;Γ .

Hence, employing (7.7) with pt, t1q “ ps, rq and pτ , vq “ pψ, vgq, and then using Hölder’s

inequality, we arrive at

|Fpψq| ď }F} }ψ}X1 @ψ P X1 , (7.24)

with

}F} :“ Cr }g}1{s,r;Γ . (7.25)

7.4 The ionized particles concentration equations

We now deal with the Nernst-Planck equations, that is the fifth and sixth rows of (6.8), for

which we proceed analogously as we did for the Stokes equations in Chapter 7.2. More precisely,

applying (7.5) with t “ ϱ to τi P Hpdivϱ; Ωq and ξi P H1pΩq, and using the Dirichlet boundary
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condition on ξi, for which we assume from now on that gi P H1{2pΓq, we obtain

ż

Ω
∇ξi ¨ τi “ ´

ż

Ω
ξi divpτiq ` xτi ¨ ν, giy ,

so that the testing of the equation in the fifth row of (6.8) against τi, yields

ż

Ω

1
κi

σi ¨ τi `

ż

Ω
ξi divpτiq ´

ż

Ω

!

qi ξi ε´1φ ´ κ´1
i ξi u

)

¨ τi “ xτi ¨ ν, giy . (7.26)

Since divpτiq P LϱpΩq, we notice from the second term on the left-hand side of (7.26) that

it suffices to look for ξi in LρpΩq, which, similarly as for Stokes, is coherent with a previous

discussion on where to seek this unknown. In fact, as already commented, the corresponding

estimates (7.1b) and (7.1c) confirm that the third term on the left-hand side of (7.26) is well-

defined as well. We end this derivation by testing the first equation of the sixth row of (6.8)

against a function in the same space to which ξi belongs, that is ηi P LρpΩq, which gives

ż

Ω
ηi divpσiq ´

ż

Ω
ξi ηi “ ´

ż

Ω
fi ηi . (7.27)

We remark that the above requires to assume that both fi and divpσiq belong to LϱpΩq, which

is coherent with the fact that ξi is sought in LρpΩq since, being ρ ą 2, it follows that ρ ą ϱ, and

hence LρpΩq Ď LϱpΩq. Consequently, we arrive at the following mixed variational formulation

for the ionized particles concentration equations: Find pσi, ξiq P Hi ˆ Qi such that

aipσi, τiq ` cipτi, ξiq ´ cφ,upτi, ξiq “ Fipτiq @ τi P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi ,

(7.28)

where

Hi :“ Hpdivϱ; Ωq , Qi :“ Lρ
pΩq , (7.29)
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and the bilinear forms ai : Hi ˆ Hi Ñ R, ci : Hi ˆ Qi Ñ R, and di : Qi ˆ Qi Ñ R, and the

functionals Fi : Hi ÝÑ R and Gi : Qi ÝÑ R, are defined, respectively, as

aipζi, τiq :“
ż

Ω

1
κi

ζi ¨ τi @ pζi, τiq P Hi ˆ Hi , (7.30a)

cipτi, ηiq :“
ż

Ω
ηi divpτiq @ pτi, ηiq P Hi ˆ Qi , (7.30b)

dipϑi, ηiq :“
ż

Ω
ϑi ηi @ pϑi, ηiq P Qi ˆ Qi , (7.30c)

Fipτiq :“ xτi ¨ ν, giy @ τi P Hi , (7.30d)

Gipηiq :“ ´

ż

Ω
fi ηi @ ηi P Qi , (7.30e)

whereas, given pϕ, vq P X2 ˆ Q “ Hrpdivr; Ωq ˆ LrpΩq, the bilinear form cϕ,v : Hi ˆ Qi Ñ R is

set as

cϕ,vpτi, ηiq :“
ż

Ω

!

qi ηi ε´1ϕ ´ κ´1
i ηi v

)

¨ τi @ pτi, ηiq P Hi ˆ Qi . (7.30f)

Similarly to the analysis at the end of Chapter 7.2 (cf. (7.15) and (7.16)), we conclude here that

ai, ci, di, Fi, Gi, and cϕ,v are all bounded with the norm defined by (7.4a) with t “ ϱ for Hi, and

certainly the norm }¨}0,ρ;Ω for Qi. Indeed, applying the Cauchy–Schwarz and Hölder inequalities,

bounding both ε´1 and κ´1
i according to (6.4), noting that }¨}0,Ω ď |Ω|pρ´2q{2ρ }¨}0,ρ;Ω, invoking

the identity (7.5) and the continuous injection iρ : H1pΩq Ñ LρpΩq, and utilizing (7.1b) and

(7.1c), we find that there exist positive constants

}ai} :“ 1
κ

, }ci} :“ 1 , }di} :“ |Ω|
pρ´2q{ρ , }Fi} :“

`

1 ` }iρ}
˘

}gi}1{2,Γ ,

}Gi} :“ }fi}0,ϱ;Ω , and }c} :“ max
␣

ε´1
0 , κ´1( ,

(7.31)
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such that

|aipζi, τiq| ď }ai} }ζi}Hi
}τi}Hi

@ pζi, τiq P Hi ˆ Hi ,

|cipτi, ηiq| ď }ci} }τi}Hi
}ηi}Qi

@ pτi, ηiq P Hi ˆ Qi ,

|dipϑi, ηiq| ď }di} }ϑi}Qi
}ηi}Qi

@ pϑi, ηiq P Qi ˆ Qi ,

|Fipτiq| ď }Fi} }τi}Hi
@ τi P Hi ,

|Gipηiq| ď }Gi} }ηi}Qi
@ ηi P Qi , and

|cϕ,vpτi, ηiq| ď }c}

!

}ϕ}0,r;Ω ` }v}0,r;Ω

)

}ηi}0,ρ;Ω }τi}0,Ω @ pτi, ηiq P Hi ˆ Qi .

(7.32)

Throughout the rest of the part we will use indistinctly either }η}Q1ˆQ2 or }η}0,ρ;Ω, where

}η}0,ρ;Ω :“ }η1}0,ρ;Ω ` }η2}0,ρ;Ω @η :“ pη1, η2q P Q1 ˆ Q2 .

Summarizing, and putting together (7.11), (7.19), and (7.28), we find that, under the as-

sumptions that f P LspΩq, g P H1{2pΓq, f P LrpΩq, g P W1{s,rpΓq, fi P LϱpΩq, gi P H1{2pΓq,

and ρ ě r, the mixed variational formulation of (6.8) reduces to: Find pσ, uq P H ˆ Q,

pφ, χq P X2 ˆ M1, and pσi, ξiq P Hi ˆ Qi, i P
␣

1, 2
(

, such that

apσ, τ q ` bpτ , uq “ Fpτ q @ τ P H ,

bpσ, vq “ Gξ,φpvq @ v P Q ,

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @ λ P M2 ,

aipσi, τiq ` cipτi, ξiq ´ cφ,upτi, ξiq “ Fipτiq @ τi P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi .

(7.33)



CHAPTER 8

The continuous solvability analysis

In this chapter we proceed as in several related previous contributions (see, e.g. [13] and the

references therein), and employ a fixed-point strategy to address the solvability of (7.33).

8.1 The fixed-point strategy

In order to rewrite (7.33) as an equivalent fixed point equation, we introduce suitable operators

associated with each one of the three problems forming the whole nonlinear coupled system.

Indeed, we first let pT : pQ1 ˆ Q2q ˆ X2 Ñ Q be the operator defined by

pTpη,ϕq :“ pu @ pη,ϕq P pQ1 ˆ Q2q ˆ X2 ,

55
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where ppσ, puq P H ˆ Q is the unique solution (to be confirmed below) of problem (7.11) (equiv-

alently, the first two rows of (7.33)) with pη,ϕq instead of pξ,φq, that is

appσ, τ q ` bpτ , puq “ Fpτ q @ τ P H ,

bppσ, vq “ Gη,ϕpvq @ v P Q .

(8.1)

In turn, we let sT : Q1 ˆ Q2 Ñ X2 be the operator given by

sTpηq :“ sφ @η P Q1 ˆ Q2 ,

where p sφ, sχq P X2 ˆ M1 is the unique solution (to be confirmed below) of problem (7.19)

(equivalently, the third and fourth rows of (7.33)) with η instead of ξ, that is

ap sφ,ψq ` b1pψ, sχq “ Fpψq @ψ P X1 ,

b2p sφ, λq “ Gηpλq @ λ P M2 .

(8.2)

Similarly, for each i P
␣

1, 2
(

, we let rTi : X2 ˆ Q Ñ Qi be the operator defined by

rTipϕ, vq :“ rξi @ pϕ, vq P X2 ˆ Q ,

where prσi, rξiq P Hi ˆ Qi is the unique solution (to be confirmed below) of problem (7.28)

(equivalently, the fifth and sixth rows of (7.33)) with pϕ, vq instead of pφ, uq, that is

aiprσi, τiq ` cipτi, rξiq ´ cϕ,vpτi, rξiq “ Fipτiq @ τi P Hi ,

ciprσi, ηiq ´ dip
rξi, ηiq “ Gipηiq @ ηi P Qi ,

(8.3)

so that we can define the operator rT : X2 ˆ Q Ñ pQ1 ˆ Q2q as:

rTpϕ, vq :“
`

rT1pϕ, vq, rT2pϕ, vq
˘

“ pξ1, ξ2q “: rξ @ pϕ, vq P X2 ˆ Q . (8.4)
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Finally, defining the operator T : pQ1 ˆ Q2q Ñ pQ1 ˆ Q2q as

Tpηq :“ rT
`

sTpηq, pT
`

η, sTpηq
˘˘

@η P Q1 ˆ Q2 , (8.5)

we observe that solving (7.33) is equivalent to seeking a fixed point of T, that is: Find ξ P

Q1 ˆ Q2 such that

Tpξq “ ξ . (8.6)

8.2 Well-posedness of the uncoupled problems

In this chapter we establish the well-posedness of the problems (8.1), (8.2), and (8.3), defining

the operators pT, sT, and rTi, respectively. To this end, we apply the Babuška–Brezzi theory

in Banach spaces for the general case (cf. [6, Theorem 2.1, Corollary 2.1, Section 2.1]), and

for a particular one [23, Theorem 2.34], as well as a recently established result for perturbed

saddle point formulations in Banach spaces (cf. Theorem 3.4, [19, Theorem 3.4]) along with

the Banach–Nečas–Babuška Theorem (also known as the generalized Lax–Milgram Lemma)

(cf. [23, Theorem 2.6]).

8.2.1 Well-definedness of the operator pT

Here we apply [23, Theorem 2.34] to show that, given an arbitrary pη,ϕq P
`

Q1 ˆ Q2
˘

ˆ X2,

(8.1) is well-posed, equivalently that pT is well-defined. We remark that pη,ϕq only influences

the functional Gη,ϕ, and that the boundedness of all the bilinear forms and linear functionals

defining (8.1), has already been established in (7.15) and (7.16). Hence, the discussion below

just refers to the remaining hypotheses to be satisfied by a and b. We begin by letting V be

the kernel of the operator induced by b, that is

V :“
!

τ P H : bpτ , vq “ 0 @ v P Q
)

,
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which, according to the definitions of H, Q, and b (cf. (7.12), (7.13b)), along with the fact

that LspΩq is isomorphic to the dual of LrpΩq, yields

V :“
!

τ P H0pdivs; Ωq : divpτ q “ 0
)

. (8.7)

Next, we recall that a slight modification of the proof of [26, Lemma 2.3] allows to prove that

for each t ě 2n
n`2 (see, e.g., [11, Lemma 3.1] for the case t “ 4{3, which is extensible almost

verbatim for any t in the indicated range) there exists a constant Ct, depending only on Ω,

such that

Ct }τ }
2
0,Ω ď }τ d

}
2
0,Ω ` }divpτ q}

2
0,t;Ω @ τ P H0pdivt; Ωq . (8.8)

Then, assuming that s ě 2n
n`2 , and using (8.8), we deduce from the definition of a (cf. (7.13a)),

and similarly to [11, Lemma 3.2], that

apτ , τ q ě α }τ }
2
divs;Ω @ τ P V , (8.9)

with α :“ Cs{µ. Hence, thanks to (8.9), it is straightforward to see that a satisfies the

hypotheses specified in [23, Theorem 2.34, eq. (2.28)] with the foregoing constant α. In order

to fulfill all the hypotheses of the latter theorem, and knowing from (7.15) and (7.16) that

the boundedness of the corresponding bilinear forms and linear functionals has already been

established, it only remains to show the continuous inf-sup condition for b. Moreover, being

this result already proved for the particular case s “ 4{3 (cf. [11, Lemma 3.3] and [30, Lemma

3.5] for a closely related one), and arising no significant differences for an arbitrary s ě 2n
n`2 ,

we provide below, and for sake of completeness, only the main aspects of its proof.

Indeed, given v P Q :“ LrpΩq, we first recall from (7.2) that r ą 2, and set vs :“ |v|r´2 v,

which is easily seen to satisfy

vs P Ls
pΩq and

ż

Ω
v ¨ vs “ }v}0,r;Ω }vs}0,s;Ω .

In what follows, we make use of both, the Poincaré inequality, which refers to the existence

of a positive constant cP, depending on Ω, such that cP }z}2
1,Ω ď |z|21,Ω @ z P H1

0pΩq, and the
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continuous injection ir : H1pΩq Ñ LrpΩq for the indicated range of s. Then, we let w P H1
0pΩq

be the unique solution of:
ş

Ω ∇w¨∇z “ ´
ş

Ω vs ¨z for all z P H1
0pΩq, which is guaranteed by the

classical Lax–Milgram Lemma, and notice, thanks to the corresponding continuous dependence

estimate, that }w}1,Ω ď
}ir}

cP
}vs}0,s;Ω. Hence, defining ζ :“ ∇w P L2pΩq, we deduce that

divpζq “ vs in Ω, so that ζ P Hpdivs; Ωq, and }ζ}divs;Ω ď
`

1`
}ir}

cP

˘

}vs}0,s;Ω. Finally, letting ζ0

be the H0pdivs; Ωq-component of ζ, it is clear that divpζ0q “ vs and that }ζ0}divs;Ω ď }ζ}divs;Ω,

whence bounding by below with τ :“ ζ0 P H, and using the definition of b (cf. (7.13b)) along

with the above identities and estimates, we conclude that

sup
τPH
τ ­“0

bpτ , vq

}τ }H
ě β }v}Q @ v P Q , (8.10)

with β :“
`

1 `
}ir}

cP

˘´1. The foregoing inequality (8.10) proves [23, Theorem 2.34, eq. (2.29)]

and completes the hypotheses of this theorem.

Consequently, the well-definedness of the operator pT is stated as follows.

Theorem 8.1. For each pη,ϕq P pQ1 ˆ Q2q ˆ X2 there exists a unique ppσ, puq P H ˆ Q solution

to (8.1), and hence one can define pTpη,ϕq :“ pu P Q. Moreover, there exists a positive constant

C
pT, depending only on µ, }ir}, ε0, |Ω|, α, and β, and hence independent of pη,ϕq, such that

}pTpη,ϕq}Q “ }pu}Q ď C
pT

!

}g}1{2,Γ ` }f}0,s,Ω ` }η}0,ρ;Ω }ϕ}0,r;Ω

)

. (8.11)

Proof. Given pη,ϕq P pQ1 ˆ Q2q ˆ X2, a direct application of [23, Theorem 2.34] guarantees

the existence of a unique ppσ, puq P H ˆ Q solution to (8.1). Then, the corresponding a priori

estimate in [23, Theorem 2.34, eq. (2.30)] gives

}pu}Q ď
1
β

´

1 `
}a}

α

¯

}F}H1 `
}a}

β2

´

1 `
}a}

α

¯

}Gη,ϕ}Q1 , (8.12)

which, according to the identities and estimates given by (7.15) and (7.16), along with some

algebraic manipulations, yields (8.11) and finishes the proof.

Regarding the a priori bound for the component pσ of the unique solution to (8.1), it follows
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from [23, Theorem 2.34, eq. (2.30)] that

}pσ}H ď
1
α

}F}H1 `
1
β

´

1 `
}a}

α

¯

}Gη,ϕ}Q1 ,

which yields the same inequality as (8.11), but with a different constant. Hence, choosing the

largest of the respective constants, and still denoting it by C
pT, we can summarize the a priori

estimates for pu and pσ by saying that both are given by the right-hand side of (8.11).

8.2.2 Well-definedness of the operator sT

We now employ [6, Theorem 2.1, Section 2.1] to prove that, given an arbitrary η P Q1ˆQ2, (8.2)

is well-posed, equivalently that sT is well-defined. Similarly as for Chapter 8.2.1, we first stress

that η is utilized only to define the functional Gη, and that the boundedness of all the bilinear

forms and functionals defining (8.2), was already established by (7.22) and (7.23). In this way,

it only remains to show that a, b1, and b2 satisfy the corresponding hypotheses from [6, Theorem

2.1, Section 2.1]. To this end, and because of the evident similarities, we follow very closely the

analysis in [13, Section 3.2.3], which, in turn, suitably adopts the approach from [29, Section

2.4.2]. Indeed, we begin by letting Ki be the kernel of the operator induced by the bilinear

form bi, for each i P
␣

1, 2
(

, that is

Ki :“
!

ψ P Xi : bipψ, λq “ 0 @ λ P Mi

)

, (8.13)

which, according to the definitions of Xi and Mi (cf. (7.20)), and bi (cf. (7.21b)), along again

with the fact that LrpΩq and LspΩq can be isomorphically identified with
`

LspΩq
˘1 and

`

LrpΩq
˘1,

respectively, gives

K1 :“
!

ψ P Hs
pdivs; Ωq : divpψq “ 0 in Ω

)

, (8.14)

and

K2 :“
!

ψ P Hr
pdivr; Ωq : divpψq “ 0 in Ω

)

. (8.15)
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Next, in order to establish the inf-sup conditions required for the bilinear form a (cf. [6, eqs.

(2.8) and (2.9)]), we resort to [13, Lemma 3.3], which is recalled below.

Lemma 8.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n P t2, 3u, and let

t, t1 P p1, `8q conjugate to each other with t (and hence t1) lying in

$

’

&

’

%

r4{3, 4s if n “ 2

r3{2, 3s if n “ 3
.

Then, there exists a linear and bounded operator Dt : LtpΩq Ñ LtpΩq such that

divpDtpwqq “ 0 in Ω @ w P Lt
pΩq . (8.16)

In addition, for each z P Lt1

pΩq such that divpzq “ 0 in Ω, there holds

ż

Ω
z ¨ Dtpwq “

ż

Ω
z ¨ w @ w P Lt

pΩq . (8.17)

Proof. It reduces to a minor modification of the proof of [29, Lemma 2.3], for which one needs to

apply the well-posedness in W1,tpΩq of a Poisson problem with homogeneous Dirichlet boundary

conditions (see [27, Theorem 3.2] or [34, Theorems 1.1 and 1.3] for the vector version of it). The

specified ranges for t and t1 are precisely forced by the latter result. We omit further details

and refer to the proof of [13, Lemma 3.3].

We are now in position to prove the required hypotheses on a.

Lemma 8.3. Assume that s (and hence r) satisfy the ranges specified in Lemma 8.2. Then,

there exists a positive constant sα such that

sup
ψPK1
ψ ­“0

apϕ,ψq

}ψ}X1

ě sα }ϕ}X2 @ϕ P K2 . (8.18)

In addition, there holds

sup
ϕPK2

apϕ,ψq ą 0 @ψ P K1, ψ ­“ 0 . (8.19)

Proof. Being almost verbatim to that of [13, Lemma 3.4], we just proceed to sketch it. Indeed,

given ϕ P K2, we recall from (7.2) that r ą 2 and set ϕs :“ |ϕ|r´2ϕ, which belongs to LspΩq
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and satisfies
ż

Ω
ϕ ¨ ϕs “ }ϕ}0,r,Ω }ϕs}0,s,Ω . (8.20)

In this way, bounding by below with ψ :“ Dspϕsq, which, according to Lemma 8.2, belongs to

K1, and then using (8.17), (8.20), the boundedness of Ds, and the upper bound of ε (cf. (6.4)),

we arrive at (8.18) with sα :“
`

}Ds} ε1
˘´1. On the other hand, given now ψ P K1, ψ ­“ 0, we

define ψr :“

$

’

&

’

%

|ψ|s´2ψ if ψ ­“ 0

0 if ψ “ 0
, which lies in LrpΩq and satisfies

ż

Ω
ψ ¨ψr “ }ψ}

s
0,s;Ω ą

0. Thus, bounding by below with ϕ :“ Drpψrq P K2, and proceeding similarly as for (8.18),

we deduce (8.19) and conclude the proof.

Before continuing with the continuous inf-sup conditions for the bilinear forms bi, i P
␣

1, 2
(

,

we now check the feasibility of the indexes employed so far, according to the different constraints

that have arisen along the analysis. In fact, from the preliminary discussion provided in Chapter

7.1, we have the following initial ranges

$

’

&

’

%

l, j P p1, `8q and ρ, r P p2, `8q if n “ 2 ,

l, j P r3{2, 3s and ρ, r P r3, 6s if n “ 3 ,
(8.21)

which, being added the request ρ ě r, equivalently l ě j, becomes

$

’

&

’

%

l P r2, `8q , j P p1, 2s , ρ P r4, `8q , r P p2, 4s if n “ 2 ,

l P r2, 3s , j P r3{2, 2s , ρ P r4, 6s , r P r3, 4s if n “ 3 .
(8.22)

Finally, imposing to r (and hence to s) the ranges required by Lemma 8.2, and guaranteeing

that s ě 2n
n`2 , we arrive at the final feasible choices

$

’

&

’

%

l P r2, `8q , j P p1, 2s , ρ P r4, `8q , ϱ P p1, 4{3s , r P p2, 4s , s P r4{3, 2q if n “ 2 ,

l “ 3 , j “ 3{2 , ρ “ 6 , ϱ “ 6{5 , r “ 3 , s “ 3{2 if n “ 3 .

(8.23)

Note that in (8.23) we have included the consequent ranges for ϱ :“ ρ
ρ´1 and s :“ r

r´1 as well.
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However, we remark that the above indexes are not chosen independently, but once l (or its

conjugate j) is chosen, then all the remaining ones are fixed.

We now go back to the well-definedness of sT by establishing the continuous inf-sup conditions

for the bilinear forms bi, i P
␣

1, 2
(

. While the corresponding proofs are similar to those

of [29, Lemma 2.7] and [13, Lemma 3.6], and very close to that of [28, Lemma 3.5], for sake of

completeness we provide below the main details of them.

Lemma 8.4. For each i P t1, 2u there exists a positive constant sβi such that

sup
ψPXi
ψ ­“0

bipψ, λq

}ψ}Xi

ě sβi }λ}Mi
@ λ P Mi . (8.24)

Proof. We begin by noticing that the values of r and s specified in (8.23) are compatible

with the range r 2n
n`1 , 2n

n´1s required by [28, Theorem 3.2], an existence result to be applied

below. According to it, and since the pairs
`

X1, M1
˘

and
`

X2, M2
˘

result from each other

exchanging r and s, it suffices to prove (8.24) either for i “ 1 or for i “ 2. In what follows

we consider i “ 1, so that, given λ P M1 :“ LrpΩq, we set λs :“ |λ|r´2 λ, which belongs

to LspΩq and satisfies
ş

Ω λ λs “ }λ}0,r;Ω }λs}0,s;Ω. Thus, a straightforward application of the

scalar version of [28, Theorem 3.2] yields the existence of a unique z P W1,s
0 pΩq such that

∆z “ λs in Ω, z “ 0 on Γ. Moreover, the corresponding continuous dependence result

reads }z}1,s;Ω ď sCs }λs}0,s;Ω, where sCs is a positive constant depending on s. Next, defining

ϕ :“ ∇z P LspΩq, it follows that divpϕq “ λs in Ω, whence ϕ P Hspdivs; Ωq “: X1, and

there holds }ϕ}X1 “ }ϕ}s,divs;Ω ď
`

1 ` sCs

˘

}λs}0,s;Ω. In this way, bounding by below with

ψ :“ ϕ P X1, and bearing in mind the definition of b1 (cf. (7.21b)) along with the foregoing

identities and estimates, we arrive at (8.24) for i “ 1 with β1 :“
`

1 ` sCs

˘´1. The proof for

i “ 2 proceeds analogously, except for the fact that, given λ P M2 :“ LspΩq, and since s ă 2,

one needs to define λr :“

$

’

&

’

%

|λ|s´2 λ if λ ­“ 0 ,

0 if λ “ 0 .
Further details are omitted.

As a consequence of Lemmas 8.3 and 8.4, and the boundedness properties given by (7.22),

(7.23), (7.24), and (7.25), we are able to conclude now that the operator sT is well-defined.
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Theorem 8.5. For each η P Q1 ˆ Q2 there exists a unique p sφ, sχq P X2 ˆ M1 solution to (8.2),

and hence one can define sTpηq :“ sφ P X2. Moreover, there exists a positive constant C
sT,

depending only on ε0, Cr, |Ω|, sα, and sβ2, such that

}sTpηq}X2 “ } sφ}X2 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }η}0,ρ;Ω

)

. (8.25)

Proof. Given η P Q1 ˆQ2, a straightforward application of [6, Theorem 2.1, Section 2.1] implies

the existence of a unique p sφ, sχq P X2 ˆ M1 solution to (8.2). In turn, the a priori estimate

provided in [6, Corollary 2.1, Section 2.1, eq. (2.15)] establishes

} sφ}X2 ď
1
sα

}F}X1
1

`
1
sβ2

´

1 `
}a}

sα

¯

}Gη}M1
2
, (8.26)

which, along with the aforementioned boundedness properties, yields (8.25) and ends the proof.

Similarly as for pT, and employing now [6, Corollary 2.1, Section 2.1, eq. (2.16)], we observe

that the a priori bound for the sχ component of the unique solution to (8.2) reduces to

}sχ}M1 ď
1
sβ1

´

1 `
}a}

sα

¯

}F}X1
1

`
}a}

sβ1 sβ2

´

1 `
}a}

sα

¯

}Gη}M1
2
,

which yields the same inequality as (8.25), but with a different constant, in particular depending

additionally on sβ1. Therefore, as before, we still denote the largest of them by C
sT, and simply

say that the right hand-side of (8.25) constitutes the a priori estimate for both sφ and sχ.

8.2.3 Well-definedness of the operator rT

In this section we employ the solvability result for perturbed saddle point formulations in

Banach spaces provided by [19, Theorem 3.4], along with the Banach–Nečas–Babuška Theorem

(cf. [23, Theorem 2.6]), to show that, given an arbitrary pϕ, vq P X2 ˆ Q, (8.3) is well-posed for

each i P
␣

1, 2
(

, equivalently that Ti is well-defined. Since this result was already derived in [19,

Theorem 4.2] as an application of the abstract theory developed there, and more specifically
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of [19, Theorem 3.4], we just discuss in what follows the main aspects of its proof.

To begin with, we introduce the bilinear forms A, Aϕ,v : pHi ˆ Qiq ˆ pHi ˆ Qiq Ñ R given

by

A
`

pζi, ϑiq, pτi, ηiq
˘

:“ aipζi, τiq ` cipτi, ϑiq ` cipζi, ηiq ´ dipϑi, ηiq , (8.27)

and

Aϕ,v
`

pζi, ϑiq, pτi, ηiq
˘

:“ A
`

pζi, ϑiq, pτi, ηiq
˘

´ cϕ,vpτi, ϑiq , (8.28)

for all pζi, ϑiq, pτi, ηiq P Hi ˆQi, and realize that (8.3) can be re-stated as: Find p rσi, rξiq P Hi ˆQi

such that

Aϕ,vpprσi, rξiq, pτi, ηiqq “ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi . (8.29)

In this way, the proof reduces to show first that the bilinear forms forming part of A satisfy

the hypotheses of [19, Theorem 3.4], and then to combine the consequence of this result with

the effect of the extra term given by cϕ,vp¨, ¨q, to conclude that Aϕ,v satisfies a global inf-sup

condition.

Indeed, it is clear from (7.30a), (7.30c), and the upper bound of κi (cf. (6.4)) that ai and di

are symmetric and positive semi-definite, which proves the assumption i) of [19, Theorem 3.4].

Next, bearing in mind the definitions of ci (cf. (7.30b)) and the spaces Hi and Qi (cf. (7.29)),

and using again that LρpΩq is isomorphic to the dual of LϱpΩq, we readily find that the null

space Vi of the operator induced by ci becomes

Vi :“
!

τi P Hi : divpτiq “ 0
)

, (8.30)

and thus

aipτi, τiq ě
1
sκ

}τi}
2
0,Ω “

1
sκ

}τi}
2
divϱ;Ω @ τi P Vi , (8.31)

from which the assumption ii) of [19, Theorem 3.4], namely the continuous inf-sup condition

for ai, is clearly satisfied with constant rα :“ sκ´1.

In turn, while the continuous inf-sup condition for rci was already established in [29, Lemma

2.9] (see also [19, Lemma 4.1]), for sake of clearness we provide below the main steps of its proof,

which follows similarly to the one yielding the continuous inf-sup condition for b in the present
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Chapter 8.2.1. More precisely, given ηi P Qi :“ LρpΩq, we set ηi,ϱ :“ |ηi|
ρ´2 ηi, which uses from

(8.23) that ρ ě 2, and notice that there hold ηi,ϱ P LϱpΩq and
ş

Ω ηi ηi,ϱ “ }ηi}0,ρ;Ω }ηi,ϱ}0,ϱ;Ω.

Then, we let ζi :“ ∇z P L2pΩq, where z P H1
0pΩq is the unique solution of the variational

formulation:
ş

Ω ∇z ¨ ∇w “ ´
ş

Ω ηi,ϱ w for all w P H1
0pΩq, and deduce from the latter that

divpζiq “ ηi,ϱ in Ω, which yields ζi P Hi :“ Hpdivϱ; Ωq. In turn, denoting by cP the positive

constant guaranteeing the Poincaré inequality: cP }w}2
1,Ω ď |w|21,Ω @ w P H1

0pΩ, and letting

again iρ : H1pΩq Ñ LρpΩq be the continuous injection, we find that }z}1,Ω ď
}iρ}

cP
}ηi,ϱ}0,ϱ;Ω,

and hence }ζi}Hi
ď

`

1 `
}iρ}

cP

˘

}ηi,ϱ}0,ϱ;Ω. In this way, bounding by below with τi :“ ζi P Hi,

recalling the definition of ci (cf. (7.30b)), and employing the foregoing identities and estimates,

we arrive at

sup
τiPHi
τi ­“0

cipτi, ηiq

}τi}Hi

ě rβ }ηi}Qi
@ ηi P Qi , (8.32)

with rβ :“
`

1 `
}iρ}

cP

˘´1, thus confirming the verification of assumption iii) of [19, Theorem 3.4].

Consequently, having shown that ai, ci, and di verify all the hypotheses of [19, Theorem

3.4], we conclude that A satisfies the global inf-sup condition, which means that there exists a

positive constant rαA, depending only on }ai}, }ci}, rα, and rβ, such that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

A
`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě rαA }pζi, ϑiq}HiˆQi
@ pζi, ϑiq P Hi ˆ Qi . (8.33)

Moreover, invoking the upper bound of cϕ,v (cf. (7.31), (7.32)), it follows from (8.28) and (8.33)

that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

Aϕ,v
`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě

!

rαA ´ }c}

´

}ϕ}0,r,Ω ` }v}0,r,Ω

¯)

}pζi, ϑiq}HiˆQi
(8.34)

for all pζi, ϑiq P Hi ˆ Qi, from which, under the assumption that, say

}ϕ}0,r,Ω ` }v}0,r,Ω ď
rαA

2 }c}
, (8.35)
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we conclude that

sup
pτi,ηiqPHiˆQi

pτi,ηiq­“0

Aϕ,v
`

pζi, ϑiq, pτi, ηiq
˘

}pτi, ηiq}HiˆQi

ě
rαA

2 }pζi, ϑiq}HiˆQi
@ pζi, ϑiq P Hi ˆ Qi . (8.36)

Similarly, using the symmetry of A and (8.33), and assuming again (8.35), we find that

sup
pζi,ϑiqPHiˆQi

pζi,ϑiq­“0

Aϕ,v
`

pζi, ϑiq, pτi, ηiq
˘

}pζi, ϑiq}HiˆQi

ě
rαA

2 }pτi, ηiq}HiˆQi
@ pτi, ηiq P Hi ˆ Qi . (8.37)

In this way, we are now in position of establishing that, for each i P
␣

1, 2
(

, (8.3) is well-

posed, which means, equivalently, that rTi is well-defined.

Theorem 8.6. For each i P
␣

1, 2
(

, and for each pϕ, vq P X2 ˆ Q such that (8.35) holds, there

exists a unique prσi, rξiq P HiˆQi solution to (8.3), and hence one can define rTipϕ, vq :“ rξi P Qi.

Moreover, there exists a positive constant C
rT, depending only on }iρ} and rαA, such that

}rTipϕ, vq}Qi
“ }rξi}Qi

ď }prσi, rξiq}HiˆQi
ď C

rT

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (8.38)

Proof. Thanks to (8.36), (8.37), and the boundedness of Fi and Gi (cf. (7.31), (7.32)), the

unique solvability of (8.3) follows from a straightforward application of [23, Theorem 2.6]. In

turn, the a priori estimate given by [23, Theorem 2.6, eq. (2.5)] reads

}prσi, rξiq}HiˆQi
ď

2
rαA

!

}Fi}H1
i

` }Gi}Q1
i

)

,

which, along with the upper bounds for }Fi}H1
i

and }Gi}Q1
i

derived from (7.31) and (7.32), yields

(8.38) with C
rT :“ 2

rαA

`

1 ` }iρ}
˘

.

We end this chapter by observing from the definition of rT (cf. (8.4)) and the priori estimates

given by (8.38) for each i P
␣

1, 2
(

, that

}rTpϕ, vq}Q1ˆQ2 :“
2
ÿ

i“1
}rTipϕ, vq}Qi

ď C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

(8.39)
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for each pϕ, vq P X2 ˆ Q satisfying (8.35).

8.3 Solvability analysis of the fixed-point scheme

Knowing that the operators pT, sT, rT, and hence T as well, are well defined, we now address

the solvability of the fixed-point equation (8.5). For this purpose, and in order to finally apply

the Banach Theorem, we first derive sufficient conditions under which T maps a closed ball of

Q1 ˆ Q2 into itself. Thus, letting δ be an arbitrary radius to be properly chosen later on, we

define

Wpδq :“
!

η :“ pη1, η2q P Q1 ˆ Q2 : }η}Q1ˆQ2 ď δ
)

. (8.40)

Then, given η P Wpδq, we have from the definition of T (cf. (8.5)) and the a priori estimate

for rT (cf. (8.39)) that, under the assumption (cf. (8.35))

Spηq :“ }sTpηq}0,r,Ω ` }pT
`

η, sTpηq
˘

}0,r,Ω ď
rαA

2 }c}
, (8.41)

there holds

}Tpηq}Q1ˆQ2 “ }rT
`

sTpηq, pT
`

η, sTpηq
˘˘

}Q1ˆQ2 ď C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (8.42)

In turn, applying the a priori estimates for pT (cf. (8.11)) and sT (cf. (8.25)), we find that

Spηq ď
`

1 ` C
pT }η}

˘

}sTpηq} ` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď C0
`

1 ` }η}
˘

}η} ` C0
`

1 ` }η}
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

,

with C0 :“ max
␣

1, C
pT
(

C
sT, so that, bounding }η} by δ, we deduce that a sufficient condition

for (8.41) reduces to

C0
`

1 ` δ
˘

δ ` C0
`

1 ` δ
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA

2 }c}
. (8.43)
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For instance, defining

δ :“ min
!

1,
rαA

8C0}c}

)

, (8.44)

letting C1 :“ 2C0, and imposing

C1

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA

4 }c}
, (8.45)

it is easily seen that (8.43) holds. We have therefore proved the following result.

Lemma 8.7. Assume that δ and the data are sufficiently small so that there hold (8.43) and

C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

ď δ . (8.46)

Then, T
`

Wpδq
˘

Ď Wpδq. In particular, with the definition (8.44) of δ, and under the assump-

tions (8.45) and (8.46), the same conclusion is attained.

We now address the continuity properties of pT, sT, rT, and hence of T. We begin with that

of pT.

Lemma 8.8. There exists a positive constant L
pT, depending only on ε0, |Ω|, α, β, and }a},

such that

}pTpη,ϕq ´ pTpϑ,ψq}Q ď L
pT

!

}η}0,ρ,Ω }ϕ´ψ}0,r,Ω ` }η ´ ϑ}0,ρ,Ω }ψ}0,r,Ω

)

(8.47)

for all pη,ϕq, pϑ,ψq P
`

Q1 ˆ Q2
˘

ˆ X2.

Proof. Given pη,ϕq, pϑ,ψq P
`

Q1 ˆ Q2
˘

ˆ X2, we let pTpη,ϕq :“ pu and pTpϑ,ψq :“ pw, where

ppσ, puq P H ˆ Q and ppζ, pwq P H ˆ Q are the corresponding unique solutions of (8.1). Then,

subtracting both systems, we obtain

appσ ´ pζ, τ q ` bpτ , pu ´ pwq “ 0 @ τ P H ,

bppσ ´ pζ, vq “
`

Gη,ϕ ´ Gϑ,ψ

˘

pvq @ v P Q ,

(8.48)
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which says that ppσ ´ pζ, pu ´ pwq P H ˆ Q is the unique solution of a system like (8.1), but with

F “ 0 and Gη,ϕ ´ Gϑ,ψ instead of just Gη,ϕ. Hence, similarly as for the derivation of (8.11),

that is employing [23, Theorem 2.34, eq. (2.30)] (see also (8.12)), we deduce that

}pTpη,ϕq ´ pTpϑ,ψq}Q “ }pu ´ pw}Q ď
}a}

β2

´

1 `
}a}

α

¯

}Gη,ϕ ´ Gϑ,ψ}Q1 . (8.49)

In turn, it is clear from (7.13d), and then subtracting and adding ψ to the factor ϕ in the first

term, that for each v P Q there holds

`

Gη,ϕ ´ Gϑ,ψ

˘

pvq “

ż

Ω
ε´1

!

`

η1 ´ η2
˘

ϕ´
`

ϑ1 ´ ϑ2
˘

ψ
)

¨ v

“

ż

Ω
ε´1

!

`

η1 ´ η2
˘ `

ϕ´ψ
˘

`
`

pη1 ´ ϑ1q ´ pη2 ´ ϑ2q
˘

ψ
)

¨ v ,

from which, proceeding as for the boundedness of Gη,ϕ (cf. (7.15), (7.16)), that is employing

the lower bound of ε (cf. (6.4)), (7.1a), and the fact that }¨}0,Ω ď |Ω|pr´2q{2r}¨}0,r;Ω, we conclude

that

}Gη,ϕ ´ Gϑ,ψ}Q1 ď ε´1
0 |Ω|

pr´2q{2r
!

}η}0,ρ,Ω }ϕ´ψ}0,r,Ω ` }η ´ ϑ}0,ρ,Ω }ψ}0,r,Ω

)

. (8.50)

In this way, replacing (8.50) back into (8.49), we arrive at (8.47) and finish the proof.

The next result establishes the continuity of sT, whose proof follows similarly to that of

Lemma 8.8.

Lemma 8.9. There exists a positive constant L
sT, depending only on |Ω|, sα, sβ2, and }a}, such

that

}sTpηq ´ sTpϑq}X2 ď L
sT }η ´ ϑ}0,ρ;Ω @η, ϑ P Q1 ˆ Q2 . (8.51)

Proof. Given η, ϑ P Q1 ˆ Q2, we let sTpηq :“ sφ and sTpϑq :“ sϕ, where p sφ, sχq P X2 ˆ M1

and p sϕ, sωq P X2 ˆ M1 are the corresponding unique solutions of (8.2). Then, subtracting both
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systems, we get

ap sφ´ sϕ,ψq ` b1pψ, sχ ´ sωq “ 0 @ψ P X1 ,

b2p sφ´ sϕ, λq “
`

Gη ´ Gϑ

˘

pλq @ λ P M2 ,

(8.52)

which states that p sφ´ sϕ, sχ ´ sωq P X2 ˆ M1 is the unique solution of a problem like (8.2) with

G “ 0 and Gη ´ Gϑ instead of Gη. In this way, proceeding as for the derivation of (8.25),

which means applying the a priori estimate given by [6, Corollary 2.1, Section 2.1, eq. (2.15)]

(see also (8.26)), we find that

}sTpηq ´ sTpϑq}X2 “ } sφ´ sϕ}X2 ď
1
sβ2

´

1 `
}a}

sα

¯

}Gη ´ Gϑ}M1
2
. (8.53)

Now, it is clear from (7.21d) that for each λ P M2 there holds

`

Gη ´ Gϑ

˘

pλq “ Gη´ϑpλq “ ´

ż

Ω
λ
␣

pη1 ´ ϑ1q ´ pη2 ´ ϑ2q
(

,

from which, applying Hölder’s inequality, as we did for the boundedness of Gη (cf. (7.22),

(7.23)), and using that } ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω, we deduce that

}Gη ´ Gϑ}M1
2

ď |Ω|
pρ´rq{ρr

}η ´ ϑ}0,ρ;Ω . (8.54)

Finally, employing (8.54) in (8.53), we obtain (8.51) and conclude the proof.

It remains to prove the continuity of rT, which is provided by the following lemma.

Lemma 8.10. There exists a positive constant L
rT, depending only on ε0, κ, rαA, and C

rT, such

that

}rTpϕ, vq ´ rTpψ, wq}Q1ˆQ2 ď L
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}pϕ, vq ´ pψ, wq}X2ˆQ (8.55)

for all pϕ, vq, pψ, wq P X2 ˆ Q satisfying (8.35).

Proof. Given pϕ, vq and pψ, wq as indicated, we let, for each i P
␣

1, 2
(

, rTipϕ, vq :“ rξi P Qi
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and rTipψ, wq :“ rϑi P Qi, where prσi, rξiq P Hi ˆ Qi and prζi, rϑiq P Hi ˆ Qi are the corresponding

unique solutions of (8.3), equivalently (cf. (8.29))

Aϕ,v
`

prσi, rξiq, pτi, ηiq
˘

“ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi , (8.56)

and

Aψ,w
`

prζi, rϑiq, pτi, ηiq
˘

“ Fipτiq ` Gipηiq @ pτi, ηiq P Hi ˆ Qi . (8.57)

It follows from (8.56) and (8.57), along with the definitions of the bilinear forms Aϕ,v (cf.

(8.28)) and cϕ,v (cf. (7.30f)), that

Aϕ,v
`

prσi, rξiq ´ prζi, rϑiq, pτi, ηiq
˘

“ Aϕ,v
`

prσi, rξiq, pτi, ηiq
˘

´ Aϕ,v
`

prζi, rϑiq, pτi, ηiq
˘

“ Aψ,w
`

prζi, rϑiq, pτi, ηiq
˘

´ Aϕ,v
`

prζi, rϑiq, pτi, ηiq
˘

“ cϕ´ψ,v´wpτi, rϑiq ,

(8.58)

so that applying the global inf-sup condition (8.36) to prσi, rξiq ´ prζi, rϑiq, and then using (8.58)

and the boundedness of cϕ,v (cf. (7.31), (7.32)), we conclude that

}rξi ´ rϑi}Qi
ď }prσi, rξiq ´ prζi, rϑiq}HiˆQi

ď
2 }c}

rαA

!

}ϕ´ψ}0,r;Ω ` }v ´ w}0,r;Ω

)

}rϑi}Qi
.

Next, invoking the a priori bound (8.38) for }rϑi}Qi
, the foregoing inequality yields

}rTipϕ, vq ´ rTipψ, wq}Qi
ď

2 }c} C
rT

rαA

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

}pϕ, vq ´ pψ, wq}X2ˆQ ,

from which, summing over i P
␣

1, 2
(

, we arrive at (8.55) and end the proof.

Having proved Lemmas 8.8, 8.9, and 8.10, we now aim to derive the continuity property of

the fixed point operator T. To this end, given η, ϑ P Wpδq (cf. (8.40)), we first recall from the

definition of T (cf. (8.5)) and Theorem 8.6 that, in order to define Tpηq and Tpϑq, we need

that the pairs
`

sTpηq, pTpη, sTpηqq
˘

and
`

sTpϑq, pTpϑ, sTpϑqq
˘

satisfy (8.35). Then, according to

the discussion at the beginning of the present chapter, we know that a sufficient condition for

the latter is given by (8.43), which we assume in what follows. Alternatively, and as indicated

there as well, (8.44) and (8.45) are in turn sufficient for (8.43).
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Thus, under the aforementioned assumption on δ and the data, a direct application of (8.55)

(cf. Lemma 8.10) yields

}Tpηq ´ Tpϑq}Q1ˆQ2 “ }rT
`

sTpηq, pTpη, sTpηqq
˘

´ rT
`

sTpϑq, pTpϑ, sTpϑqq
˘

}Q1ˆQ2

ď L
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)!

}sTpηq ´ sTpϑq}X2 ` }pTpη, sTpηqq ´ pTpϑ, sTpϑqq}Q

)

.

(8.59)

In addition, employing now (8.51) (cf. Lemma 8.9) and (8.47) (cf. Lemma 8.8), we obtain

}sTpηq ´ sTpϑq}X2 ď L
sT }η ´ ϑ}Q1ˆQ2 , (8.60)

and
}pTpη, sTpηqq ´ pTpϑ, sTpϑqq}Q

ď L
pT

!

}η}Q1ˆQ2 }sTpηq ´ sTpϑq}X2 ` }η ´ ϑ}Q1ˆQ2 }sTpϑq}X2

)

,

(8.61)

respectively, whereas the a priori estimate for sTpϑq (cf. (8.25), Theorem 8.5) states

}sTpϑq}X2 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ϑ}Q1ˆQ2

)

. (8.62)

In this way, using (8.60) in both (8.59) and (8.61), and then replacing the resulting (8.61) along

with (8.62) in (8.59), as well as recalling that }η}Q1ˆQ2 and }ϑ}Q1ˆQ2 are bounded by δ, we

deduce the existence of a positive constant LT, depending only on L
rT, L

sT, L
pT, and C

sT, such

that

}Tpηq ´ Tpϑq}Q1ˆQ2

ď LT

´

1 ` δ ` }g}1{s,r;Γ ` }f}0,r;Ω

¯
2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}η ´ ϑ}Q1ˆQ2 ,

(8.63)

for all η, ϑ P Wpδq. We are thus in position to establish the main result of this chapter.

Theorem 8.11. In addition to the hypotheses of Lemma 8.7, that is (8.43) and (8.46), or
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alternatively (8.44), (8.45), and (8.46), assume that

LT

´

1 ` δ ` }g}1{s,r;Γ ` }f}0,r;Ω

¯
2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

ă 1 . (8.64)

Then, the operator T has a unique fixed point ξ P Wpδq. Equivalently, the coupled problem

(7.33) has a unique solution pσ, uq P HˆQ, pφ, χq P X2 ˆM1, and pσi, ξiq P Hi ˆQi, i P
␣

1, 2
(

,

with ξ :“ pξ1, ξ2q P Wpδq. Moreover, there hold the following a priori estimates

}pσ, uq}HˆQ ď C
pT

!

}g}1{2,Γ ` }f}0,s,Ω ` }ξ}0,ρ;Ω }φ}0,r;Ω

)

,

}pφ, χq}X2ˆM1 ď C
sT

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξ}0,ρ;Ω

)

, and

}pσi, ξiq}HiˆQi
ď C

rT

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

i P t1, 2u .

(8.65)

Proof. We first recall that the assumptions of Lemma 8.7 guarantee that T maps Wpδq into

itself. Then, bearing in mind the Lipschitz-continuity of T : Wpδq Ñ Wpδq (cf. (8.63)) and

the assumption (8.64), a straightforward application of the classical Banach theorem yields the

existence of a unique fixed point ξ P Wpδq of this operator, and hence a unique solution of

(7.33). Finally, it is easy to see that the a priori estimates provided by (8.11) (cf. Theorems

8.1), (8.25) (cf. Theorem 8.5), and (8.38) (cf. Theorem 8.6) yield (8.65) and finish the proof.



CHAPTER 9

The Galerkin scheme

We now introduce the Galerkin scheme of the fully mixed variational formulation (7.33), analyze

its solvability by applying a discrete version of the fixed point approach adopted in Chapter

8.1, and derive the corresponding a priori error estimate.

9.1 Preliminaries

We first let Hh, Qh, Xi,h, Mi,h, Hi,h ,and Qi,h, i P t1, 2u, be arbitrary finite element subspaces

of the spaces H, Q, Xi, Mi, Hi, and Qi, i P t1, 2u, respectively. Hereafter, h denotes both the

sub-index of each subspace and the size of a regular triangulation Th of sΩ made up of triangles

K (when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , so that h :“ max
␣

hK :

K P Th

(

. Explicit finite element subspaces satisfying the stability hypotheses to be introduced

throughout the forthcoming analysis, will be defined later on in Chapter 10. Then, the Galerkin

scheme associated with (7.33) reads: Find pσh, uhq P Hh ˆ Qh, pφh, χhq P X2,h ˆ M1,h, and

75
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pσi,h, ξi,hq P Hi,h ˆ Qi,h, i P
␣

1, 2
(

, such that

apσh, τhq ` bpτh, uhq “ Fpτhq @ τ P Hh ,

bpσh, vhq “ Gξh,φh
pvhq @ vh P Qh ,

apφh,ψhq ` b1pψh, χhq “ Fpψhq @ψh P X1,h ,

b2pφh, λhq “ Gξh
pλhq @ λh P M2,h ,

aipσi,h, τi,hq ` cipτi,h, ξi,hq ´ cφh,uh
pτi,h, ξi,hq “ Fipτi,hq @ τi,h P Hi,h ,

cipσi,h, ηi,hq ´ dipξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h .

(9.1)

In what follows, we adopt the discrete version of the strategy employed in Chapter 8.1 to

analyse the solvability of (9.1). We now let pTh : pQ1,h ˆ Q2,hq ˆ X2,h Ñ Qh be the operator

defined by
pThpηh,ϕhq :“ puh @ pηh,ϕhq P pQ1,h ˆ Q2,hq ˆ X2,h ,

where ppσh, puhq P Hh ˆ Qh is the unique solution (to be confirmed below) of the first two rows

of (9.1) with pηh,ϕhq instead of pξh,φhq, that is

appσh, τhq ` bpτh, puhq “ Fpτhq @ τh P Hh ,

bppσh, vhq “ Gηh,ϕh
pvhq @ vh P Qh .

(9.2)

In turn, we let sTh : Q1,h ˆ Q2,h Ñ X2,h be the operator given by

sThpηhq :“ sφh @ηh P Q1,h ˆ Q2,h ,

where p sφh, sχhq P X2,h ˆ M1,h is the unique solution (to be confirmed below) of the third and
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fourth rows of (9.1) with ηh instead of ξh, that is

ap sφh,ψhq ` b1pψh, sχhq “ Fpψhq @ψh P X1,h ,

b2p sφh, λhq “ Gηh
pλhq @ λh P M2,h .

(9.3)

Similarly, for each i P
␣

1, 2
(

, we let rTi,h : X2,h ˆ Qh Ñ Qi,h be the operator defined by

rTi,hpϕh, vhq :“ rξi,h @ pϕh, vhq P X2,h ˆ Qh ,

where prσi,h, rξi,hq P Hi,h ˆ Qi,h is the unique solution (to be confirmed below) of the fifth and

sixth rows of (9.1) with pϕh, vhq instead of pφh, uhq, that is

aiprσi,h, τi,hq ` cipτi,h, rξi,hq ´ cϕh,vh
pτi,h, rξi,hq “ Fipτi,hq @ τi,h P Hi,h ,

ciprσi,h, ηi,hq ´ dip
rξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h ,

(9.4)

so that we can define the operator rTh : X2,h ˆ Qh Ñ pQ1,h ˆ Q2,hq as:

rThpϕh, vhq :“
`

rT1,hpϕh, vhq, rT2,hpϕh, vhq
˘

“ pξ1,h, ξ2,hq “: rξh @ pϕh, vhq P X2,h ˆ Qh .

(9.5)

Finally, defining the operator Th : pQ1,h ˆ Q2,hq Ñ pQ1,h ˆ Q2,hq as

Tpηhq :“ rTh

`

sThpηhq, pTh

`

ηh, sThpηhq
˘˘

@ηh P Q1,h ˆ Q2,h , (9.6)

we observe that solving (9.1) is equivalent to seeking a fixed point of Th, that is: Find ξh P

Q1,h ˆ Q2,h such that

Thpξhq “ ξh . (9.7)
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9.2 Discrete solvability analysis

In this chapter we proceed analogously to Chapters 8.2 and 8.3 and establish the well-posedness

of the discrete system (9.1) by means of the solvability study of the equivalent fixed point

equation (9.7). In this regard, we emphasize in advance that, being the respective analysis

very similar to that developed in the aforementioned chapters, here we simply collect the main

results and provide selected details of the corresponding proofs.

According to the above, we first aim to prove that the discrete operators pTh, sTh, and
rTi,h, i P

␣

1, 2
(

, and hence rTh and Th, are all well-defined, which reduces, equivalently, to

show that the problems (9.2), (9.3), and (9.4) are well-posed. To this end, we now apply the

discrete versions of [23, Theorem 2.34], [6, Theorem 2.1, Section 2.1], and [19, Theorem 3.4],

which are given by [23, Proposition 2.42], [6, Corollary 2.2, Section 2.2], and [19, Theorem

3.5], respectively. More precisely, following similar approaches from related works (see, e.g. [13,

Section 4.2]), our analysis throughout the rest of this chapter is based on suitable hypotheses

that need to be satisfied by the finite element subspaces utilized in (9.1), which are split

according to the requirements of the associated decoupled problems. Explicit examples of

discrete spaces verifying these assumptions will be specified later on in Chapter 10.

We begin by addressing the well-definedness of pTh, for which we let Vh be the discrete kernel

of b, that is

Vh :“
!

τh P Hh : bpτh, vhq “ 0 @ vh P Qh

)

, (9.8)

and assume that

(H.1) there holds div
`

Hh

˘

Ď Qh, and

(H.2) there exists a positive constant βd, independent of h, such that

sup
τhPHh
τh ­“0

bpτh, vhq

}τh}H
ě βd }vh}Q @ vh P Qh . (9.9)



9.2. DISCRETE SOLVABILITY ANALYSIS 79

Then, according to the definition of b (cf. (7.13b)), it follows from (9.8) and (H.1) that

Vh :“
!

τh P Hh : divpτhq “ 0
)

, (9.10)

which says that Vh is contained in the continuous kernel V (cf. (8.7)), and hence the discrete

version of (8.9) is automatically satisfied, that is

apτh, τhq ě αd }τ }
2
divs;Ω @ τh P Vh , (9.11)

with αd “ α :“ Cs{µ. Recall here that Cs is the constant provided by inequality (8.8) with

t “ s. In this way, it is clear from (9.11) that a satisfies the hypotheses given by [23, Proposition

2.42, eq. (2.35)] with the constant αd, whereas (H.2) states that b fulfills [23, Proposition 2.42,

eq. (2.36)] with the constant βd. We are thus in position to establish next the following result.

Theorem 9.1. For each pηh,ϕhq P pQ1,h ˆQ2,hqˆX2,h there exists a unique ppσh, puhq P Hh ˆQh

solution to (9.2), and hence one can define pThpηh,ϕhq :“ puh P Qh. Moreover, there exists a

positive constant C
pT,d, depending only on µ, }ir}, ε0, |Ω|, αd, and βd, and hence independent

of pηh,ϕhq, such that

}pThpηh,ϕhq}Q “ }puh}Q ď C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω ` }ηh}0,ρ;Ω }ϕh}0,r;Ω

)

. (9.12)

Proof. Given pηh,ϕhq P pQ1,h ˆ Q2,hq ˆ X2,h, the existence of a unique solution to (9.2) follows

from a straightforward application of [23, Proposition 2.42]. In turn, the corresponding a priori

bound from [23, Theorem 2.34, eq. (2.30)] and the boundedness properties of F and Gηh,ϕh

imply (9.12).

Similarly as observed for the continuous operator pT, we remark here that the right-hand

side of (9.12) can also be assumed as the respective a priori estimate for pσh.

Furthermore, for the well-definedness of sTh, we need to introduce the discrete kernels of b1

and b2, namely

K1,h :“
!

ψh P X1,h : b1pψh, λhq “ 0 @ λh P M1,h

)

, (9.13)
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and

K2,h :“
!

ψh P X2,h : b2pψh, λhq “ 0 @ λh P M2,h

)

, (9.14)

respectively, and consider the following assumptions

(H.3) there exists a positive constant sαd, independent of h, such that

sup
ψhPK1,h

ψh ­“0

apϕh,ψhq

}ψh}X1

ě sαd }ϕh}X2 @ϕh P K2,h , and (9.15a)

sup
ϕhPK2,h

apϕh,ψhq ą 0 @ψh P K1,h, ψh ­“ 0 . (9.15b)

(H.4) for each i P
␣

1, 2
(

there exists a positive constant sβi,d, independent of h, such that

sup
ψhPXi,h

ψh ­“0

bipψh, λhq

}ψh}Xi

ě sβi,d }λh}Mi
@ λh P Mi,h . (9.16)

As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 8.5.

Theorem 9.2. For each ηh P Q1,h ˆ Q2,h there exists a unique p sφh, sχhq P X2,h ˆ M1,h solution

to (9.3), and hence one can define sThpηhq :“ sφh P X2,h. Moreover, there exists a positive

constant C
sT,d, depending only on ε0, Cr, |Ω|, sαd, and sβ2,d, such that

}sThpηhq}X2 “ } sφh}X2 ď C
sT,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ηh}0,ρ;Ω

)

. (9.17)

Proof. Given ηh P Q1,h ˆ Q2,h, a direct application of [6, Corollary 2.2, Section 2.2] implies the

existence of a unique solution to (9.3), whereas the a priori estimate provided in [6, Corollary

2.2, eq. (2.24)] and the boundedness properties of F and Gηh
yield (9.17).

Analogously as explained for the continuous operator sT, here we can also assume that,

except for a constant C
sT,d depending additionally on sβ1,d, the a priori estimate for sχh, which

follows now from [6, Corollary 2.2, eq. (2.25)], is also given by the right-hand side of (9.17).

It remains to prove the well-definedness of rTh :“ prT1,h, rT2,hq, for which we first observe

that, being ai and ci symmetric and positive semi-definite in the whole spaces Hi and Qi,
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they certainly keep these properties in Hi,h and Qi,h, respectively, so that the assumption i)

of [19, Theorem 3.5] is clearly satisfied. Next, given i P
␣

1, 2
(

, we let Vi,h be the discrete kernel

of ci, that is

Vi,h :“
!

τi,h P Hi,h : cipτi,h, ηi,hq “ 0 @ ηi,h P Qi,h

)

, (9.18)

and consider the hypotheses

(H.5) for each i P
␣

1, 2
(

there holds div
`

Hi,h

˘

Ď Qi,h, and

(H.6) there exists a positive constant rβd ą 0, independent of h, such that

sup
τi,hPHi,h

τi,h ­“0

cipτi,h, ηi,hq

}τi,h}Hi

ě rβd }ηi,h}Qi
@ ηi,h P Qi,h . (9.19)

It follows from (9.18), the definition of ci (cf. (7.30b)), and (H.5) that

Vi,h :“
!

τi,h P Hi,h : divpτi,hq “ 0
)

, (9.20)

whence, similarly to the case of pTh, Vi,h is contained in the continuous kernel Vi (cf. (8.30)) of

ci, thus yielding the discrete analogue of (8.31), that is

aipτi,h, τi,hq ě
1
sκ

}τi,h}
2
divϱ;Ω @ τi,h P Vi,h . (9.21)

In this way, it is clear from (9.21) that ai satisfies the hypothesis ii) of [19, Theorem 3.5] with

the constant rαd :“ sκ´1, whereas (H.6) constitutes itself the corresponding assumption iii).

Consequently, a straightforward application of [19, Theorem 3.5] implies the discrete global

inf-sup condition for A (cf. (8.27)) with a positive constant rαA,d depending only on }ai}, }ci},

rαd, and rβd, and thus the same property is shared by Aϕh,vh
for each pϕh, vhq P X2,h ˆ Qh

satisfying the discrete version of (8.35), that is

}ϕh}0,r,Ω ` }vh}0,r,Ω ď
rαA,d

2 }c}
. (9.22)

We are now in position of establishing the well-definedness of rTi,h for each i P
␣

1, 2
(

.



9.2. DISCRETE SOLVABILITY ANALYSIS 82

Theorem 9.3. Given i P
␣

1, 2
(

and pϕh, vhq P X2,h ˆ Qh such that (9.22) holds, there exists

a unique prσi,h, rξi,hq P Hi,h ˆ Qi,h solution to (9.4), and hence one can define rTi,hpϕh, vhq :“
rξi,h P Qi,h. Moreover, there exists a positive constant C

rT,d, depending only on }iρ} and rαA,d,

such that

}rTi,hpϕh, vhq}Qi
“ }rξi,h}Qi

ď }prσi,h, rξi,hq}HiˆQi
ď C

rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (9.23)

Proof. It reduces to a direct application of [23, Theorem 2.22], whose corresponding a priori

estimate, yielding (9.23), makes use of the boundedness of Fi and Gi (cf. (7.31) and (7.32)).

Analogously to the continuous case, it follows from the definition of rTh (cf. (9.5)) and the

a priori estimates given by (9.23) for each i P
␣

1, 2
(

, that

}rThpϕh, vhq}Q1ˆQ2 :“
2
ÿ

i“1
}rTi,hpϕh, vhq}Qi

ď C
rT,d

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

(9.24)

for each pϕh, vhq P X2,h ˆ Qh satisfying (9.22).

Having established that the discrete operators pTh, sTh, rTh, and hence Th (under the con-

straint imposed by (9.22)), are all well defined, we now proceed as in Chapter 8.3 to address

the solvability of the corresponding fixed-point equation (9.7). Then, letting δd be an arbitrary

radius, we set

Wpδdq :“
!

ηh :“ pη1,h, η2,hq P Q1,h ˆ Q2,h : }ηh}Q1ˆQ2 ď δd

)

, (9.25)

and, reasoning analogously to the derivation of Lemma 8.7 (cf. beginning of Chapter 8.3), we

deduce that Th maps Wpδdq into itself under the discrete versions of (8.43) and (8.46), which,

denoting C0,d :“ max
␣

1, C
pT,d

(

C
sT,d, are given, respectively, by

C0,d
`

1 ` δd
˘

δd ` C0,d
`

1 ` δd
˘

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA,d

2 }c}
(9.26)
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and

C
rT,d

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

ď δd . (9.27)

Alternatively, the same conclusion is attained if, instead of (9.26), we define

δd :“ min
!

1,
rαA,d

8C0,d}c}

)

, (9.28)

and, letting C1,d :“ 2C0,d, impose

C1,d

!

}g}1{s,r;Γ ` }f}0,r;Ω

)

` C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω

)

ď
rαA,d

4 }c}
. (9.29)

Note, however, that only (9.26) is required for Th to be well-defined. Furthermore, employing

analogue arguments to those utilized in the proofs of Lemmas 8.8, 8.9, and 8.10, we are able

to show the continuity properties of pTh, sTh, and rTh, that is the discrete versions of (8.47),

(8.51), and (8.55), which are exactly as the latter, but with corresponding constants denoted

L
pT,d, L

sT,d, and L
rT,d. Therefore, following an analogue procedure to the one that yielded (8.63),

we deduce that, under the assumption (9.26), there exists a positive constant LT,d, depending

only on L
rT,d, L

sT,d, L
pT,d, and C

sT,d, such that

}Thpηhq ´ Thpϑhq}Q1ˆQ2

ď LT,d

´

1 ` δd ` }g}1{s,r;Γ ` }f}0,r;Ω

¯
2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}ηh ´ ϑh}Q1ˆQ2 ,

(9.30)

for all ηh, ϑh P Wpδdq.

Consequently, we can establish next the main result of this chapter.

Theorem 9.4. Assume that δd and the data are sufficiently small so that (9.26) and (9.27) are

satisfied, or alternatively that there holds (9.28), (9.29), and (9.27). Then, the operator Th has

a fixed point ξh P Wpδdq. Equivalently, the coupled problem (9.1) has a solution pσh, uhq P Hh ˆ

Qh, pφh, χhq P X2,hˆM1,h, and pσi,h, ξi,hq P Hi,hˆQi,h, i P
␣

1, 2
(

, with ξh :“ pξ1,h, ξ2,hq P Wpδdq.
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Moreover, there hold the following a priori estimates

}pσh, uhq}HˆQ ď C
pT,d

!

}g}1{2,Γ ` }f}0,s,Ω ` }ξh}0,ρ;Ω }φh}0,r;Ω

)

,

}pφh, χhq}X2ˆM1 ď C
sT,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξh}0,ρ;Ω

)

, and

}pσi,h, ξi,hq}HiˆQi
ď C

rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

i P t1, 2u .

(9.31)

In addition, under the extra assumption

LT,d

´

1 ` δd ` }g}1{s,r;Γ ` }f}0,r;Ω

¯
2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

ă 1 , (9.32)

the aforementioned solutions of (9.7) and (9.1) are unique.

Proof. As previously observed, the fact that Th maps Wpδdq into itself is consequence of (9.26)

and (9.27), or alternatively of (9.28), (9.29), and (9.27). Then, the continuity of Th (cf. (9.30))

and Brouwer’s theorem (cf. [16, Theorem 9.9-2]) imply the existence of solution of (9.7), and

hence of (9.1). In turn, under the additional hypothesis (9.32), the Banach fixed point theorem

guarantees the uniqueness of solution. In either case, (8.11), (8.25), and (8.38) yield the a priori

estimates (9.31) and conclude the proof.

9.3 A priori error analysis

In this chapter we consider arbitrary finite element subspaces satisfying the assumptions spec-

ified in Chapter 9.2, and establish the Céa estimate for the Galerkin error

}pσ, uq ´ pσh, uhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

, (9.33)

where
`

pσ, uq, pφ, χq, pσi, ξiq
˘

P
`

H ˆ Q
˘

ˆ
`

X2 ˆ M1
˘

ˆ
`

Hi ˆ Qi

˘

, i P
␣

1, 2
(

, is the unique

solution of (7.33), and
`

pσh, uhq, pφh, χhq, pσi,h, ξi,hq
˘

P
`

HhˆQh

˘

ˆ
`

X2,hˆM1,h

˘

ˆ
`

Hi,hˆQi,h

˘

,

i P
␣

1, 2
(

, is a solution of (9.1). We proceed as in previous related works (see, e.g. [13])

by applying suitable Strang-type estimates to the pairs of associated continuous and discrete
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schemes arising from (7.33) and (9.1) after splitting them according to the three decoupled

equations. Throughout the rest of this chapter, given a subspace Zh of an arbitrary Banach

space
`

Z, } ¨ }Z

˘

, we set

dist
`

z, Zh

˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z .

We begin the analysis by considering the first two rows of (7.33) and (9.1), so that, employing

the estimates provided by [6, Proposition 2.1, Corollary 2.3, Theorem 2.3], we deduce the

existence of a positive constant pc, independent of h, such that

}pσ, uq ´ pσh, uhq}HˆQ ď pc
!

distpσ, Hhq ` distpu, Qhq ` }Gξ,φ ´ Gξh,φh
}Q1

h

)

. (9.34)

Thus, proceeding analogously to the derivation of (8.50), we readily obtain

}Gξ,φ ´ Gξh,φh
}Q1

h
ď ε´1

0 |Ω|
pr´2q{2r

!

}ξ}0,ρ,Ω }φ´φh}0,r,Ω ` }φh}0,r,Ω }ξ ´ ξh}0,ρ,Ω

)

, (9.35)

which, substituted back in (9.34), yields

}pσ, uq ´ pσh, uhq}HˆQ ď c
pT

!

distpσ, Hhq ` distpu, Qhq

` }ξ}0,ρ,Ω }φ´φh}0,r,Ω ` }φh}0,r,Ω }ξ ´ ξh}0,ρ,Ω

)

,

(9.36)

with c
pT :“ pc max

␣

1, ε´1
0 |Ω|pr´2q{2r

(

.

Next, employing the same estimates from [6, Proposition 2.1, Corollary 2.3, Theorem 2.3]

to the context given by the third and fourth rows of (7.33) and (9.1), we find that there exists

a positive constant sc, independent of h, such that

}pφ, χq ´ pφh, χhq}X2ˆM1 ď sc
!

distpφ, X2,hq ` distpχ, M1,hq ` }Gξ ´ Gξh
}M1

2,h

)

. (9.37)

In turn, proceeding as for the deduction of (8.54), we obtain

}Gξ ´ Gξh
}M1

2,h
ď |Ω|

pρ´rq{ρr
}ξ ´ ξh}0,ρ;Ω , (9.38)
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which, along with (9.37), gives

}pφ, χq ´ pφh, χhq}X2ˆM1 ď c
sT

!

distpφ, X2,hq ` distpχ, M1,hq ` }ξ ´ ξh}0,ρ;Ω

)

, (9.39)

with c
sT :“ sc max

␣

1, |Ω|pρ´rq{ρr
(

.

Furthermore, we now focus on the last two rows of (7.33) and (9.1), with the terms cφ,upτi, ξiq

and cφh,uh
pτi,h, ξi,hq being considered as part of the respective functionals on the right-hand

side. In this way, applying the estimate from [23, Lemma 2.27], we conclude that there exists

a positive constant rc, independent of h, such that

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď rc
!

distpσi, Hi,hq ` distpξi, Qi,hq ` }cφ,up¨, ξiq ´ cφh,uh
p¨, ξi,hq}H1

i,h

)

.

(9.40)

Then, subtracting and adding ξi,h to the second component of cφ,up¨, ξiq, making use of the

triangle inequality, bearing in mind the definition of cϕ,v (cf. (7.30f)), and employing its

boundedness property (cf. (7.31), (7.32)), we get

}cφ,up¨, ξiq ´ cφh,uh
p¨, ξi,hq}H1

i,h
ď }cφ,up¨, ξi ´ ξi,hq}H1

i,h
` }cφ´φh,u´uh

p¨, ξi,hq}H1
i,h

ď }c}

!

`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}ξi ´ ξi,h}0,ρ;Ω ` }ξi,h}0,ρ;Ω
`

}φ´φh}0,r;Ω ` }u ´ uh}0,r;Ω
˘

)

,

which, jointly with (9.40), and summing over i P
␣

1, 2
(

, imply

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď c
rT

!
2
ÿ

i“1

`

distpσi, Hi,hq ` distpξi, Qi,hq
˘

`
`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}ξ ´ ξh}0,ρ;Ω

` }ξh}0,ρ;Ω
`

}φ´φh}0,r;Ω ` }u ´ uh}0,r;Ω
˘

)

,

(9.41)

with c
rT :“ rc max

␣

1, }c}
(

.
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For the rest of the analysis we introduce the partial error

E :“ }pσ, uq ´ pσh, uhq}HˆQ `

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

,

and suitably combine the estimates (9.36), (9.39), and (9.41). More precisely, employing the

right-hand side of (9.39) to bound }φ ´ φh}0,r;Ω in (9.36) and (9.41), adding the resulting

inequalities, performing some algebraic manipulations, and then utilizing the a priori bounds

for }φ}0,r;Ω, }φh}0,r;Ω, }ξ}0,ρ;Ω, }ξh}0,ρ;Ω, and }u}0,r;Ω provided by Theorems 8.11 and 9.4, we

find that there exists a positive constant Ce, depending on c
pT, c

sT, c
rT, δ, δd, C

pT, C
sT, C

rT, C
sT,d,

and C
rT,d, and hence independent of h, such that

E ď Ce

!

dist
`

pσ, uq, Hh ˆ Qh

˘

` dist
`

pφ, χq, X2,h ˆ M1,h

˘

`

2
ÿ

i“1
dist

`

pσi, ξiq, Hi,h ˆ Qi,h

˘

)

` Ce

!

}g}1{2,Γ ` }f}0,s,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

E .

(9.42)

Consequently, we are in position to establish the announced Céa estimate.

Theorem 9.5. In addition to the hypotheses of Theorems 8.11 and 9.4, assume that

Ce

!

}g}1{2,Γ ` }f}0,s,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

ď
1
2 . (9.43)

Then, there exists a positive constant C, independent of h, such that

}pσ, uq ´ pσh, uhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C
!

dist
`

pσ, uq, Hh ˆ Qh

˘

` dist
`

pφ, χq, X2,h ˆ M1,h

˘

`

2
ÿ

i“1
dist

`

pσi, ξiq, Hi,h ˆ Qi,h

˘

)

.

(9.44)

Proof. Under the assumption (9.43), the a priori estimate for E follows from (9.42), which,

along with (9.39), yield (9.44) and ends the proof.

We end this chapter by remarking that (6.7) suggests the following postprocessed approxi-
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mation for the pressure p

ph “ ´
1
n

trpσhq , (9.45)

for which it is easy to show that

}p ´ ph}0,Ω ď
1

?
n

}σ ´ σh}0,Ω . (9.46)



CHAPTER 10

Specific finite element subspaces

In this chapter we define explicit finite element subspaces satisfying the hypotheses (H.1) -

(H.6) that were introduced in Chapter 9.2 for the well posedness of the Galerkin scheme (9.1),

and provide the corresponding rates of convergence.

10.1 Preliminaries

In what follows we make use of the notations introduced at the beginning of Chapter 9.1. Thus,

given an integer k ě 0, for each K P Th we let PkpKq and PkpKq be the spaces of polynomials

of degree ď k defined on K and its vector version, respectively. Similarly, letting x be a generic

vector in Rn, RTkpKq :“ PkpKq ` PkpKqx and RTkpKq stand for the local Raviart-Thomas

space of order k defined on K and its associated tensor counterpart. In addition, we let PkpThq,

PkpThq, RTkpThq and RTkpThq be the corresponding global versions of PkpKq, PkpKq, RTkpKq

89
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and RTkpKq, respectively, that is

PkpThq :“
!

vh P L2
pΩq : vh|K P PkpKq @ K P Th

)

,

PkpThq :“
!

vh P L2
pΩq : vh|K P PkpKq @ K P Th

)

,

RTkpThq :“
!

τh P Hpdiv; Ωq : τh|K P RTkpKq @ K P Th

)

,

and

RTkpThq :“
!

τh P Hpdiv; Ωq : τh|K P RTkpKq @ K P Th

)

.

We notice here that for each t P p1, `8q there hold the inclusions PkpThq Ď LtpΩq, PkpThq Ď

LtpΩq, RTkpThq Ď Hpdivt; Ωq, RTkpThq Ď Htpdivt; Ωq, and RTkpThq Ď Hpdivt; Ωq, which

are employed below to introduce our specific finite element subspaces. Indeed, we now set

Hh :“ RTkpThq X H0pdivs; Ωq , Qh :“ PkpThq , Hi,h :“ RTkpThq , Qi,h :“ PkpThq ,

X2,h :“ RTkpThq , M1,h :“ PkpThq , X1,h :“ RTkpThq , and M2,h :“ PkpThq .

(10.1)

10.2 Verification of the hypotheses (H.1) - (H.6)

We begin by observing from (10.1) that (H.1) is trivially satisfied, whereas (H.2) was proved

in [17, Lemma 5.5] (see, also, [11, Lemma 4.3]) for the particular case given by r “ 4 and

s “ 4{3. In turn, a vector version of (H.2) was established in [29, Lemma 4.5] for s P p1, 2q

in 2D (with local notation there given by ϱ instead of s). In both cases, the preliminary result

provided by [17, Lemma 5.4] plays a key role in the respective proofs. While we could simply

say, at least in 2D, that (H.2) follows basically from a direct extension of [29, Lemma 4.5], we

provide its explicit proof below for sake of completeness. To this end, following [29, Section

4.1], we now introduce for each t P p1, `8q the space

Ht :“
!

τ P Ht
pdivt; Ωq Y Hpdivt; Ωq : τ |K P W1,t

pKq @ K P Th

)

,
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and let Πk
h : Ht Ñ RTkpThq be the global Raviart-Thomas interpolator (cf. [7, Section 2.5]).

Then, we recall from [7, Proposition 2.5.2 and eq. (2.5.27)] the commuting diagram property

div
`

Πk
hpτ q

˘

“ Pk
h

`

divpτ
˘˘

@ τ P Ht , (10.2)

where Pk
h : L1pΩq Ñ PkpThq is the projector defined, for each v P L1pΩq, as the unique element

Pk
hpvq P PkpThq such that

ż

Ω
Pk

hpvq qh “

ż

Ω
v qh @ qh P PkpThq . (10.3)

In turn, it follows from [23, Proposition 1.135] (see, also, [13, eq. (A.5)]) that there exists a

positive constant CP , independent of h, such that for each t P p1, `8q there holds

}Pk
hpvq}0,t;Ω ď CP }v}0,t;Ω @ v P Lt

pΩq . (10.4)

On the other hand, while here we could use again [17, Lemma 5.4], we prefer to resort to the

slightly more general result provided by [13, Lemma A.2], thus giving a greater visibility to it,

which establishes that, given an integer l such that 1 ď l ď k ` 1, and given t, p P p1, `8q,

such that p ď t ď
np

n´p
if p ă n, or p ď t ă `8 if p “ n, there exists a positive constant C,

independent of h, such that

}τ ´ Πk
hpτ q}0,t;Ω ď C hl` n

t
´ n

p |τ |l,p;Ω @ τ P Wl,p
pΩq . (10.5)

Note that for the first set of constraints on t and p, there holds n
t

´ n
p

ě ´1, which yields

l ` n
t

´ n
p

ě 0, whereas for the second one, there holds l ` n
t

´ n
p

“ l ´ 1 ` n
t

ě n
t
, thus proving

that in any case the power of h in (10.5) is non-negative. In this way, it follows from (10.5)

that, for l “ 1, and under the specified ranges of t and p, there exists a positive constant CΠ,

independent of h, such that (cf. [13, Lemma A.3])

}Πk
hpτ q}0,t;Ω ď CΠ }τ }1,p;Ω @ τ P W1,p

pΩq . (10.6)
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In particular, for p ă n and t “ 2, the inequality t ď
np

n´p
becomes p ě 2n

n`2 , so that for the

resulting range of p, that is p P
“ 2n

n`2 , 2
˘

in 2D, and p P
“ 2n

n`2 , 2
‰

in 3D, we obtain

}Πk
hpτ q}0,Ω ď CΠ }τ }1,p;Ω @ τ P W1,p

pΩq . (10.7)

Analogue identities and inequalities to those stated above are valid with the tensor and vector

versions of Πk
h and Pk

h , which are denoted by Πk
h and Pk

h, respectively.

We are now in position to prove that (H.2) holds.

Lemma 10.1. Under the ranges for r and s specified by (8.23), there exists a positive constant

βd, independent of h, such that

sup
τhPHh
τh ­“0

ż

Ω
vh ¨ divpτhq

}τh}divs;Ω
ě βd }vh}0,r;Ω @ vh P Qh , (10.8)

Proof. Given vh P Qh, vh ­“ 0, we set vh,s :“ |vh|r´2 vh, which belongs to LspΩq, and notice

that
ż

Ω
vh ¨ vh,s “ }vh}0,r;Ω }vh,s}0,s;Ω . (10.9)

Next, we let O be a bounded convex polygonal domain that contains sΩ, and define

g :“

$

’

&

’

%

vh,s in Ω ,

0 in OzsΩ ,
.

It is readily seen that g P LspOq and }g}0,s;O “ }vh,s}0,s;Ω. Then, applying the elliptic regularity

result provided by [25, Corollary 1], we deduce that there exists a unique z P W2,spOqXW1,s
0 pOq

such that: ∆z “ g in O, z “ 0 on BO. Moreover, there exists a positive constant Creg,

depending only on O, such that

}z}2,s;O ď Creg }g}0,s;O “ Creg }vh,s}0,s;Ω . (10.10)

Hence, defining ζ :“ ∇z|Ω P W1,spΩq, it follows that divpζq “ vh,s in Ω, and, according to
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(10.10),

}ζ}1,s;Ω ď }z}2,s;O ď Creg }vh,s}0,s;Ω . (10.11)

Now, since the identity tensor I clearly belongs to RTkpThq, we can let ζh be the H0pdivs; Ωq-

component (cf. (7.10)) of Πk
hpζq, so that ζh P Hh. In this way, employing the analogue of

(10.2), we find that

divpζhq “ div
`

Πk
hpζq

˘

“ Pk
h

`

divpζq
˘

“ Pk
h

`

vh,sq , (10.12)

which, along with the analogue of (10.4) for t “ s, give

}divpζhq}0,s;Ω ď CP }vh,s}0,s;Ω . (10.13)

In turn, noting that the range for s (cf. (8.23)) fits into the one for p in (10.7), we can apply

this inequality (with p “ s) and the regularity estimate (10.11), to arrive at

}ζh}0,Ω ď }Πk
hpζq}0,Ω ď CΠ }ζ}1,s;Ω ď CΠ Creg }vh,s}0,s;Ω , (10.14)

which, combined with (10.13), implies

}ζh}divs;Ω ď
`

CP ` CΠ Creg
˘

}vh,s}0,s;Ω . (10.15)

Consequently, bounding below the supremum in (10.8) with ζh, and making use of (10.12), the

analogue of (10.3), (10.9), and (10.15), we conclude the required discrete inf-sup condition with

the constant βd :“
`

CP ` CΠ Creg
˘´1.

Furthermore, for the hypotheses (H.3) and (H.4), we first stress that (H.3) corresponds

exactly to [13, (H.5)], and hence we omit most details and refer to [13, Section 5.2, Lemma

5.2]. We just make a few remarks here. First of all, we observe that the discrete kernels of the

bilinear forms b1 and b2 coincide algebraically, which reduces to

Kk
h :“

!

ψh P RTkpThq : divpψhq “ 0 in Ω
)

.
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Then, we let Θk
h : L1pΩq Ñ Kk

h be the projector defined similarly to (10.3), that is, given

ϕ P L1pΩq, Θk
hpϕq is the unique element in Kk

h such that

ż

Ω
Θk

hpϕq ¨ψh “

ż

Ω
ϕ ¨ψh @ψh P Kk

h .

In this way, a quasi-uniform boundedness property of Θk
h in 2D (cf. [13, eq.(5.8)]), along with

the properties of the operators Dt (cf. Lemma 8.2), play a key role in the proof of (H.3).

Whether the aforementioned boundedness is satisfied or not in 3D is still an open problem, and

hence, similarly to [13], the assumption (H.3) is the only aspect of the analysis in this chapter

that does not hold in 3D. All the other conditions are valid in both 2D and 3D. Regarding

(H.4), we remark that the discrete inf-sup conditions for b1 and b2, which adapt the continuous

analysis from Lemma 8.4 to the present discrete setting, follow from slight modifications of the

proofs of [29, Lemma 4.5] and [13, Lemma 5.3]. Further details are omitted here.

Finally, it is clear from (10.1) that (H.5) is trivially satisfied, whereas (H.6) was proved

precisely by [29, Lemma 4.5]. Alternatively, for the discrete inf-sup condition for ci we can

proceed analogously to the proof of Lemma 10.1 by observing that the range of ϱ (cf. (8.23),

recall that Hi :“ Hpdivϱ; Ωq) also fits into the one for p in (10.7), whence this inequality can

be applied to p “ ϱ as well.

10.3 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (9.1) with the specific finite

element subspaces introduced in Chapter 10.1, for which we previously collect the respective

approximation properties. In fact, thanks to [23, Proposition 1.135] and its corresponding

vector version, along with interpolation estimates of Sobolev spaces, those of Qh, Qi,h, and

M1,h, are given as follows

pAPu
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s,
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and for each v P Wl,rpΩq, there holds

dist
`

v, Qh

˘

:“ inf
vhPQh

}v ´ vh}0,r;Ω ď C hl
}v}l,r;Ω ,

´

APξi
h

¯

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s,

and for each ηi P Wl,ρpΩq, there holds

dist
`

ηi, Qi,h

˘

:“ inf
ηi,hPQi,h

}ηi ´ ηi,h}0,ρ;Ω ď C hl
}ηi}l,ρ;Ω ,

pAPχ
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s,

and for each λ P Wl,rpΩq, there holds

dist
`

λ, M1,h

˘

:“ inf
λhPM1,h

}λ ´ λh}0,r;Ω ď C hl
}λ}l,r;Ω .

Furthermore, from [29, eq. (4.6), Section 4.1] and its tensor version, which, as the foregoing

ones, are derived in the classical way by using the Deny–Lions Lemma and the corresponding

scaling estimates (cf. [23, Lemmas B.67 and 1.101]), we state next the approximation properties

of Hh and Hi,h

pAPσ
h q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s,

and for each τ P HlpΩq X H0pdivs; Ωq with divpτ q P Wl,spΩq, there holds

dist
`

τ , Hh

˘

:“ inf
τhPHh

}τ ´ τh}divs;Ω ď C hl
!

}τ }l,Ω ` }divpτ q}l,s;Ω

)

,

pAPσi
h q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s,

and for each τi P HlpΩq with divpτiq P Wl,ϱpΩq, there holds

dist
`

τi, Hi,h

˘

:“ inf
τi,hPHi,h

}τi ´ τi,h}divϱ;Ω ď C hl
!

}τi}l,Ω ` }divpτiq}l,ϱ;Ω

)

.

Finally, that of X2,h, which we recall from [29, Section 4.5, (APu
h)], becomes
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pAPφ
h q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s,

and for each ϕ P Wl,rpΩq with divpϕq P Wl,rpΩq, there holds

dist
`

ϕ, X2,h

˘

:“ inf
ϕhPX2,h

}ϕ´ ϕh}r,divr;Ω ď C hl
!

}ϕ}l,r;Ω ` }divpϕq}l,r;Ω

)

.

The rates of convergence of (9.1) are now provided by the following theorem.

Theorem 10.2. Let
`

pσ, uq, pφ, χq, pσi, ξiq
˘

P
`

H ˆ Q
˘

ˆ
`

X2 ˆ M1
˘

ˆ
`

Hi ˆ Qi

˘

, i P
␣

1, 2
(

be

the unique solution of (7.33) with ξ :“ pξ1, ξ2q P Wpδq, and let
`

pσh, uhq, pφh, χhq, pσi,h, ξi,hq
˘

P
`

Hh ˆQh

˘

ˆ
`

X2,h ˆM1,h

˘

ˆ
`

Hi,h ˆQi,h

˘

, i P
␣

1, 2
(

be a solution of (9.1) with ξh :“ pξ1,h, ξ2,hq P

Wpδdq, which is guaranteed by Theorems 8.11 and 9.4, respectively. In turn, let p and ph given

by (6.7) and (9.45), respectively. Assume the hypotheses of Theorem 9.5, and that there exists

l P r1, k ` 1s such that σ P HlpΩq X H0pdivs; Ωq, divpσq P Wl,spΩq, u P Wl,rpΩq, φ P Wl,rpΩq,

divpφq P Wl,rpΩq, χ P Wl,rpΩq, σi P HlpΩq, divpσiq P Wl,ϱpΩq, and ξi P Wl,ρpΩq, i P
␣

1, 2
(

.

Then, there exists a positive constant C, independent of h, such that

}pσ, uq ´ pσh, uhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C hl
!

}σ}l,Ω ` }divpσq}l,s;Ω ` }u}l,r;Ω ` }φ}l,r;Ω ` }divpφq}l,r;Ω ` }χ}l,r;Ω

`

2
ÿ

i“1

`

}σi}l,Ω ` }divpσiq}l,ϱ;Ω ` }ξi}l,ρ;Ω
˘

)

.

Proof. It follows straightforwardly from Theorem 9.5, (9.46), and the above approximation

properties.



CHAPTER 11

Computational results

We turn now to the numerical verification of the rates of convergence anticipated by Theo-

rem 10.2. The following examples in 2D and 3D have been realized with the finite element

library FEniCS [1]. The linearization of the nonlinear algebraic equations that arise after dis-

cretization is done using either a fixed-point Picard algorithm or an exact Newton–Raphson

method (with the zero vector as initial guess and iterations are stopped once the absolute or

relative residual drops below 10´8) and the linear systems are solved with the multifrontal

massively parallel sparse direct method MUMPS [2].

97



98

Figure 11.1: Example 1. Error history associated with the finite element family (10.1) with
k “ 0 in 3D for primal variables (top left) and mixed variables (top right), and samples of
approximate primal variables (velocity streamlines uh, iso-surfaces of postprocessed pressure
ph, electrostatic potential χh, and positive ion concentration ξ1,h; bottom plots). In all mesh
refinements the number of Newton–Raphson iterations was 4.

Example 1. Considering first the spatial domain Ω “ p0, 1q3 along with the arbitrarily chosen
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parameters

µ “ 10´3, ε “ 0.1, κ1 “ 0.25, κ2 “ 0.5,

we define the following manufactured exact solutions to (6.8)

u “

¨

˚

˚

˚

˝

sin2pπxq sinpπyq sinp2πzq

sinpπxq sin2pπyq sinp2πzq

´rsinp2πxq sinpπyq ` sinpπxq sinp2πyqs sin2pπzq

˛

‹

‹

‹

‚

,

p “ x4
´

1
2py4

` z4
q, ξ1 “ expp´xy ` zq,

ξ2 “ cos2
pxyzq, χ “ sinpxq cospyq sinpzq, σ “ µ∇u ´ pI,

σi “ κip∇ξi ` qiξiε
´1φq ´ ξiu, φ “ ε∇χ,

and construct forcing/source terms and non-homogeneous Dirichlet boundary conditions f , g, fi, gi

from these closed-form solutions. Using the lowest-order version of the finite element spaces

defined in (10.1) (with polynomial degree k “ 0), we solve problem (9.1) on a sequence of

six succesively refined regular meshes. The zero-mean pressure condition is enforced using a

real Lagrange multiplier approach. At each refinement level we compute errors between ap-

proximate and smooth exact solutions using the norms in (9.33) and Theorem 10.2 (but we

split their contribution coming from the error on each individual field variable). For this 3D

accuracy test we consider the Banach spaces indexes specified in (8.23)

r “ 3, s “ 3{2, ρ “ 6, ϱ “ 6{5.

The results of this convergence study are collected in Figure 11.1 (top panels), where we plot

in log-log scale the error decay as the number of degrees of freedom increases. Apart from the

electric field φ which converges with rate of approximately 1.5, all other variables exhibit an

optimal rate of convergence. In the bottom panel of the figure we show approximate solutions

for some of the field variables, which indicate well resolved profiles.

In addition, the balance-preserving property of the proposed mixed formulation is assessed
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DoF h e r momentumh potentialh transport1,h transport2,h

145 1.732 1.40e+1 ‹ 2.37e-07 7.29e-17 1.83e-15 8.64e-16
1009 0.866 7.44e+0 0.91 8.61e-08 2.45e-16 4.14e-15 1.81e-15
7489 0.433 3.43e+0 1.12 6.07e-10 4.53e-16 5.10e-15 4.85e-15

57601 0.217 1.40e+0 1.29 1.27e-11 6.76e-16 1.45e-14 8.77e-15
451585 0.108 6.00e-01 1.22 1.04e-11 6.29e-15 1.47e-14 2.48e-11

3575809 0.051 2.97e-01 1.13 5.88e-11 4.20e-15 2.38e-15 2.95e-15

Table 11.1: Example 1. Total error, experimental rates of convergence, and ℓ8-norm of the
projected residual of the momentum, potential, and ionic transport equations.

by computing the quantities

momentumh :“ }Pk
hpdivpσhq ´ pξ1,h ´ ξ2,hq ε´1φh ` fq}ℓ8 ,

potentialh :“ }Pk
hpdivpφhq ` pξ1,h ´ ξ2,hq ` fq}ℓ8 ,

transporti,h :“ }Pk
hpξi,h ´ divpσi,hq ´ fiq}ℓ8 .

These values, for each refinement level, are collected in Table 11.1. We tabulate the total error

e :“ }pσ, uq ´ pσh, uhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1

`

2
ÿ

i“1
}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

,

(as indicated by Theorem 10.2) as well as the rates of convergence computed as

r “ logpe{peqrlogph{phqs
´1 ,

where e and pe denote errors produced on two consecutive meshes associated with mesh sizes

h and ph, respectively. From the last columns we see that the potential and transport balance

equations are satisfied to machine precision while the error for the momentum balance is higher.

This may be explained by the presence of the term φh on the right-hand side (which has a

H(div)-component).

Example 2. In addition, and in order to illustrate the implementation of fixed-point solvers,

we have realized numerically Picard versions of the linearization of (9.1). In case A we follow the
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fixed-point structure used in the analysis of Chapter 9.1, that is, solving sequentially problems

(9.2) Ñ (9.3) Ñ (9.4),

and iterating until the ℓ2-norm of the vector containing the residual of the Picard iterates

reaches 10´8. Next, in case B we choose a different fixed-point splitting where we apply two

modifications with respect to case A. First, in (9.4) instead of the linear functional for the second

discrete electrostatic potential equation (discrete version of (7.21d)) we consider Gpλhq :“

´
ş

Ω fλh and the coupling term appears as a bilinear form contribution (and no longer as part

of the linear functional), say

pgpλh, pξ1,h, ξ2,hqq :“
ż

Ω
λhpξ1,h ´ ξ2,hq.

Secondly, with regards to the constitutive equation in the ionized particle equations, we swap

the bilinearity in the flux definition (discrete version of (7.30f)) from ξi,h to the pair pϕh, uhq,

that is, we consider

pcξ̂i,h
pτi,h, pϕh, uhqq :“

ż

Ω

!

qi ξ̂i ε´1ϕh ´ κ´1
i ξ̂i uh

)

¨ τi.

For both fixed-point cases we have taken as initial guess solution the zero vector. Moreover,

we consider a 2D problem with manufactured solutions defined on Ω “ p0, 1q2

u “

¨

˝

cospπxq sinpπyq

´ sinpπxq cospπyq

˛

‚, p “ x4
´ y4, χ “ sinpxq cospyq, ξ1 “ expp´xyq, ξ2 “ cos2

pxyq,

and take the same model constants as before. In 2D, and according to (8.23) we now choose

r “ 4, s “ 4{3, ρ “ 4, ϱ “ 4{3.

We focus on the number of Picard iterations required in each case, displaying the obtained

results in Table 11.2. While we confirm that all methods give exactly the same errors (and
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case A case B case C
DoF h e r iter e r iter e r iter

k “ 0
221 0.500 6.64e+0 ‹ 80 6.64e+0 ‹ 9 6.64e+0 ‹ 5
841 0.250 2.36e+0 1.49 83 2.36e+0 1.49 8 2.36e+0 1.49 4

3281 0.125 8.34e-01 1.50 72 8.34e-01 1.50 8 8.34e-01 1.50 4
12961 0.062 3.32e-01 1.33 70 3.32e-01 1.33 9 3.32e-01 1.33 4
51521 0.031 1.51e-01 1.14 68 1.51e-01 1.14 9 1.51e-01 1.14 4

k “ 1
681 0.500 6.87e-01 ‹ 68 6.87e-01 ‹ 9 6.87e-01 ‹ 4

2641 0.250 1.20e-01 2.51 68 1.20e-01 2.51 9 1.20e-01 2.51 3
10401 0.125 2.57e-02 2.23 68 2.57e-02 2.23 9 2.57e-02 2.23 4
41281 0.062 6.11e-03 2.08 68 6.11e-03 2.08 9 6.11e-03 2.08 4

164481 0.031 1.51e-03 2.01 77 1.50e-03 2.02 9 1.50e-03 2.02 4

Table 11.2: Example 2. Total error, experimental rates of convergence, and number of iterations
required for two types of fixed-point methods as well as for Newton–Raphson linearization.

consequently also the same convergence rates, which are optimal in view of the theoretical

bounds), from the number of fixed-point iterations we readily note that case B performs much

better than case A, for the two polynomial degrees we tested k “ 0, k “ 1. This behaviour

could be explained by the stability of different linearizations of advective nonlinearities and by

the strength of the coupling for this particular choice of model parameters. We stress that the

analysis of case B is, however, not at all straightforward since the decoupled linear electrostatic

potential problem resulting from the first modification is no longer symmetric. For sake of

reference we also tabulate total errors and number of nonlinear iterates obtained with the

method we use also in Examples 1 and 3: an exact Newton–Raphson linearization (labelled

here as case C). Needless to say, the latter is actually the one that one would employ in practical

computations. Samples of the approximate solutions (only the mixed variables) computed with

the method in case A are portrayed in Figure 11.2.

Example 3. We conclude this chapter with an application problem where we demonstrate the

use of the mixed finite element scheme in simulating the transport process in an electrokinetic

system with an ion-selective interface, where the development of an electroosmotic instability

is expected. The problem configuration is adopted from [21,22]. This system corresponds to a

transient counterpart of (6.8) in the absence of external forces and sources (f “ 0, f “ fi “ 0),
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Figure 11.2: Example 2. Samples of approximate mixed variables (stress magnitude, electric
field magnitude and arrows, and ionic fluxes) obtained with the fixed-point algorithm labelled
case A, and for k “ 1.

where the following additional terms appear in the momentum and concentration equations

(note also the different scaling of ε on the right-hand side of the momentum balance, required
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to match the adimensionalization in [22])

´
1
ScBtu ´ divpσq “ pξ1 ´ ξ2q

1
2ε2φ, ´Btξi ` divpσiq “ 0.

The time derivatives are discretized using backward Euler’s method. In the problem setup

a boundary layer is present in the vicinity of the solid boundary (the bottom edge of the

rectangular domain), and therefore we employ a graded mesh with a higher refinement close

to the layer. For this problem we select the second-order family of finite element subspaces

(setting k “ 1 in Chapter 10.1), which gives for the chosen mesh 865201 degrees of freedom.

The physical properties of the system are as follows. The cation species is Na` having

diffusivity κ1 “ 1 and the anion species is Cl´ with the same diffusivity κ2 “ 1. The dynamic

viscosity of the mixture is µ “ 1. Initial conditions are given by u “ 0, and a 2% random

perturbation on a linearly varying initial ionic concentrations ξ1 “ ζp2 ´ yq, ξ2 “ ζx, where ζ

is a uniform random variable between 0.98 and 1. On the top boundary we set ξ1 “ ξ2 “ 1,

u “ 0, and an applied voltage of χ “ 120. On the bottom boundary we impose χ “ 0, ξ1 “ 2,

σ2 ¨ ν “ 0, and u “ 0. On the vertical walls we prescribe periodic boundary conditions. The

other model parameters take the values ε “ 8 ¨10´6, Sc =103, and we use a timestep ∆t “ 10´6.

We plot snapshots of the anion concentration ξ2,h in Figure 11.3 at times t “ 10´4, 10´3. We

observe similar ionic patterns to those produced also in [35,37].
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Figure 11.3: Example 3. Samples of approximate velocity (top) and anion concentration (bot-
tom) at times t “ 10´4 and 10´3 (left and right, respectively), produced with the mixed method
and using k “ 1.

h
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Concluding Remarks

In the first part of this thesis we developed a new theory to continuous and discrete schemes

of perturbed problems in Banach spaces to be well-posed. The main results of this part are:

• We provided sufficient conditions for the well-posedness of perturbed saddle-point formu-

lations in Banach spaces and their associated Galerkin schemes in the case in which the

kernel of the adjoint operator induced by one of the bilinear forms is not trivial.

• In the case in which the kernel of the adjoint operator induced by one of the bilinear

forms is trivial, we employ a suitable characterization of a closed range injective adjoint

operator, to lighten the sufficient conditions for the solvability.

In the second part of this thesis we developed mixed finite element methods for a partial

differential equation of physical interest in Biology and Nanotechnology, namely, the coupled

Stokes and Poisson-Nernst-Planck equations. We proved the solvability of the continuous and

discrete formulations as well as their convergence results, and we also provided corresponding

numerical examples and simulations. The main results of this part are:

• We develop a new mixed formulation in Banach spaces for the coupled problem given by

the Stokes and Poisson–Nernst-Planck equations.

• The well-posedness of the continuous formulation was proved using a fixed point strategy

in combination with the Banach theorem.

• An analogous approach is employed to conclude the existence and uniqueness of a solution

for the associated Galerkin scheme. In addition, a priori error estimates are derived.

• Finally we use Raviart-Thomas elements of order k with their appropriate convergence

rates, followed by several numerical experiments confirming the theoretical error bounds.

• We also showed the applicability of the theory presented in the first part.



107

Future work

The methods developed and the results obtained in this thesis have motivated several on-

going and future projects. Some of them are described below:

• We are interested in extending the applicability of the theory developed in the first part

of this thesis to others problems.

• We are interested in extending the analysis and results to the Navier-Stokes case, that is

to the coupled problem given by

´ µ ∆u ` λ p∇uq u ` ∇p “ ´ pξ1 ´ ξ2q ε´1φ ` f in Ω ,

divpuq “ 0 in Ω , u “ g on Γ ,

ż

Ω
p “ 0 .

• We are interested in developing a posteriori error analysis for the method studied in part

II.

• We are also interested in extending the analysis and results to time dependent case.
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