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Abstract

This work is divided in two main parts. In the first part we provide sufficient conditions for
perturbed saddle-point formulations in Banach spaces and their associated Galerkin schemes to
be well-posed. Our approach, which extends a similar procedure employed with Hilbert spaces,
proceeds in two slightly different ways depending on whether the kernel of the adjoint operator
induced by one of the bilinear forms is trivial or not. The applicability of the continuous
solvability is illustrated with a mixed formulation for the decoupled Nernst-Planck equation.

This part yielded the following work already published:

C.I. CorRREA AND G.N. GATICA, On the continuous and discrete well-posedness of

perturbed saddle-point formulations in Banach spaces. Comput. Math. Appl. 117 (2022),
14-23.

On the other hand, in the second part we employ a Banach spaces-based framework to intro-
duce and analyze new mixed finite element methods for the numerical solution of the coupled
Stokes and Poisson—Nernst—Planck equations, which is a nonlinear model describing the dy-
namics of electrically charged incompressible fluids. The pressure of the fluid is eliminated from
the system (though computed afterwards via a postprocessing formula) thanks to the incom-
pressibility condition and the incorporation of the fluid pseudostress as an auxiliary unknown.
In turn, besides the electrostatic potential and the concentration of ionized particles, we use
the electric field (rescaled gradient of the potential) and total ionic fluxes as new unknowns.
The resulting fully mixed variational formulation in Banach spaces can be written as a coupled
system. the well-posedness of the continuous formulation is a consequence of a fixed point
strategy in combination with the Banach theorem, the Babuska—Brezzi theory, the solvability
of abstract perturbed saddle point problem that will be developed in the first part of this thesis,
and the Banach—Necas—Babuska theorem. For this we also employ smallness assumptions on
the data. An analogous approach, but using now both the Brouwer and Banach theorems,
and invoking suitable stability conditions on arbitrary finite element subspaces, is employed to

conclude the existence and uniqueness of solution for the associated Galerkin scheme. A priori

vi



vii

error estimates are derived, and examples of discrete spaces that fit the theory, include, e.g.,
Raviart—Thomas elements of order k along with piecewise polynomials of degree < k. Finally,
rates of convergence are specified and several numerical experiments confirm the theoretical
error bounds. These tests also illustrate the balance-preserving properties and applicability of

the proposed family of methods. This part yielded the following work, presently submitted:

C.I. CorreEA, G.N. GATIiCA AND R. RUIZ-BAIER, New mized finite element methods
for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces. Preprint
2022-26, Centro de Investigacién en Ingenieria Matematica (CI*MA), Universidad de
Concepcion, (2022).
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Part 1

On the continuous and discrete
well-posedness of perturbed
saddle-point formulations in Banach

spaces



CHAPTER 1

Introduction

The purpose of this note in to analyze the solvability of the continuous and discrete schemes
arising from perturbed saddle-point problems formulated in terms of Banach spaces. More
precisely, given reflexive Banach spaces H and Q, bounded bilinear forms ¢ : H x H — R,
b:HxQ — R, and ¢: Q x Q > R and functionals f € H and g € Q’, the formulation of

interest consists of seeking (o, u) € H x Q such that

a(o,7) +b(r,u) = f(7) VreH,
(1.1)
b(o,v) — c(u,v) = g(v) VoeQ.

In the particular case in which H and @ are Hilbert spaces, the well posedness of (1.1) and its
associated Galerkin scheme is very well established nowadays. We refer to [10, Theorem 1.2,
Section II.1.2] and [10, Proposition 2.11, Section 11.2.4] for a through analysis of it, including
the derivation of the corresponding Cea estimate. While several possible cases of the bilinear
form ¢, which constitutes the so-called perturbation, are considered, the most frequent ones

in applications are those in which, either the null space of the adjoint of the operator induced



by b is trivial, or the bilinear form ¢ is coercive on that kernel. Certainly, the non-perturbed
formulation, that is when ¢ vanishes, has already been fully studied, first in [9], then in [42]
where two different bilinear forms b are assumed, and finally in [6] for the same abstract problem

from [42], but within a Banach framework.

Going back to (1.1), we stress that an alternative setting is introduced in [8], where ¢ is
defined on a dense subspace Q. of ), and then multiplied by the square of a small parameter
usually arising from the underlying physical model. For instance, in the case of the Reissner-
Mindlin plate, which is used in [8] to illustrate the theory, the thickness of it defines that
parameter. The approach in there assumes that Q. is Hilbert with a c-dependent inner product,
and then extends the classical results from [9] to the aforedescribed saddle point problem with
penalty. Some of the tools employed in [8], particularly those regarding the handling of the inf-
sup conditions involved, resemble the ones to be utilized below in Chapter 3 to prove our main
theorems. On the other hand, Similar results to those in [10], though with slightly different
proofs and providing further details, but still within a Hilbertian framework, are discussed
in [7, Theorem 4.3.1, Sections 4.3.1] and [7, Theorem 5.5.1, Proposition 5.5.2, Section 5.5.1].
In turn, denoting by V and W the null spaces of the operator induced by b and its adjoint,
respectively, we stress that a key result for the solvability analysis of (1.1) in the Hilbertian

context is given by the identity (see, e.g. [7, eq. (4.3.18)])

b(T,v) b(T,v)

inf sup ————— = inf sup > 0, (1.2)
revhveq [Tl [vlq  vewt ren [ Tlullv]q
70 v+0 v£0 740

whose discrete version is also satisfied (see, e.g. [7, eq. (5.5.12)]).

According to the above discussion, and since the respective results do not seem to be avail-
able in the literature, the present work aims to extend the aforementioned theory to the Banach
case. In this regard, we warn in advance that (1.2) is not going to hold for the continuous for-
mulation nor for the discrete one, and hence the analysis and results to be presented below
will take this fact into consideration, mainly when we deal with the Galerkin scheme of (1.1).
Indeed, in this case the discrete inf-sup conditions arising from both sides of (1.2) require to be

assumed separately with constants independent of the meshsizes. However, in the particular,



though very frequent case in which W is the null subspace, we are able to apply a suitable
characterization of closed range injective adjoint operators, so that for the solvability analysis
it suffices to assume only the inf-sup condition arising from the right-hand side of (1.2). An

analogous reasoning is valid if the discrete version of W, say Wy, is the null subspace as well.

The rest of the first part is organized as follows. In Chapter 2 we present some preliminary
results on the spaces H and QQ and the operators induced by the bilinear form b. In particular,
we address here a key equivalence result between the inf-sup conditions involving b. Next, in
Chapter 3 we establish the theorems providing the unique solvability of (1.1) and its associated
Galerkin scheme. The presentation considers first a general situation in which nothing is said
about W, and then the particular case in which it is assumed that W = {O} We proceed
analogously for the discrete solvability. Finally, an application of the continuous theory to
mixed variational formulation of the decoupled Nernst-Planck equation for a single ionic species,

is discussed in Chapter 4.



CHAPTER 2

Preliminary results

In this Chapter we present some previous results concerning the spaces and operators involved,
which will be employed later on. To this end, we first let B: H — Q" and B* : Q — H’ be the

bounded linear operators induced by b, that is
B(7)(v) := b(r,v) VreH,VoeQ and B'(v)(r) := b(r,v) YveQ, VreH, (2.1
and introduce the respective null spaces
V = N(B) = {Te H: b(r,o)=0 Yoe Q} (2.2)

and

W := N(B) := {v €eQ: b(r,v)=0 Vre H} (2.3)



Next, we assume that V and W admit topological complements, which means that there exist

closed subspaces V* and W+ of H and Q, respectively,such that
H=VeVt and Q=WaoWwW, (2.4)

and let i : VX — Hand j : WY — Q be the respective injections. Notice that these comple-
ments are denoted using the symbol * just to keep the analogy with the orthogonal decompo-
sition theorem in the Hilbert spaces case, but certainly we are aware of the fact that in the

present discussion we have no inner products and hence no orthogonality concepts.

Furthermore, a direct application of the open mapping theorem implies the existence of

positive constants Cyy and Cq, depending only on H and Q, respectively, such that
Iolln + I7lln < Culrla and Juwlq + 7] < Colvlq (2.5)

forall 7 =79+ 7e€ V@V, and for all v = vy + v € W@ WL, As a consequence of these

boundedness properties, we have the following result.

Lemma 2.1. There hold

1
C—H IT|g < dist(7, V) < ||7]|ln VreVt, (2.6)
and
1
o [v]q < dist(v, W) < [jv]lg Vve W, (2.7)

Proof. We begin by noticing that the upper bounds of (2.6) and (2.7) are straightforward, and
that they are actually valid for all (7,v) € Hx Q. In addition, being the respective lower bounds
proved analogously, it suffices to provide the proof for one of them, say (2.6). To this end, we

first recall that if X is a reflexive Banach space and T is a closed subspace of X’, there holds

F
dist(x,” T) = sup () VoeX.
rer [F|x:
F+0

Thus, applying this identity to X = H and T = V°, and using that ° (VO) =V, we deduce that



F
dist(7, V) = sup | F(Q VreH. (2.8)
F20

Next, we restrict to 7 € V*. Then, given G € H’, we define the functional ¢ : H — R by
g(¢Q):==G({) forall ¢ = ¢+ (e H=V@V"L It follows that g is linear, g|y = 0, and, using
(2.5),

9(O] = 1G] < [Glw [Cl < Cu|| Gl [¢lw Y¢eH,

which says that ¢ is bounded, with |g|w < Chu |Gllw, and hence g € V°. In this way, according
to (2.8), and noting that g(7) = G(7), we find that

| 9| 1G()
dist(7,V) > =
V) 2 ol © CalGl

from which, taking supremum with respect to G € H’, we conclude that

1
dist(7,V) = — |r|la  V7eV*,
Ch

thus finishing the proof of (2.6). O
Some equivalence properties connecting B and B* are established next.

Lemma 2.2. The following statements are equivalent:

i) B*oj: Wt — H is injective and of closed range, that is there exists a constant E >0

such that

b
HBt(U)HH’ ‘= sup (T,U)
ren [ 7]u
740

> Blolq  YoeWt. (2.9)

i) j/oB:H— (Wl)/ is surjective.

iii) Boi: V't — Q' is injective and of closed range, that is there exists a constant E > 0 such

that



b(r,v)

IB(T)llq := sup
veq [vllg

v£0

> Blrla VreVt. (2.10)

iv) oB*: Q — (Vi)/ is surjective.

Proof. Let Juy : H — H” and Jqu : Q — Q" be the isometric and bijective linear mappings
given by

Ju(r)(F) = F(r) VreH, VFeH and Jg()(G) := Gv) YVveQ, VGeQ,

and observe, as suggested by the diagrams

HZ H ) @ and Q 5 @ B W
that there holds
B =B"YYoJy and B = B'oJj. (2.11)

Indeed, given 7 € H and v € Q, we obtain
((BY) o Ju)(r)(v) = (B (Ju(r))(v) = Jul(r)(B*(v)) = B*(v)(r) = B()(v),

which proves the first identity of (2.11). The second one proceeds similarly or as a consequence
of the first one after exchanging B with B* and the roles of the spaces H and Q. It follows
from (2.11) that

joB = (jo(BY)oJu = (B*0j) o Ju, (2.12)

and hence, bearing in mind the bijectivity of 7y, we deduce that j'oB : H — (WL), is surjective
if and only if (Bt oj)/ :H" — (WL)/ is surjective as well, which, in turn, is equivalent to stating
that Btoj : W — H' is injective and of closed range. The above shows the equivalence between

i) and ii). Analogously, employing from the second identity in (2.11) that

ioB* = ('oB)oJq = (Boi) oy, (2.13)



we are able to prove that iii) and iv) are equivalent. In order to conclude the proof, it suffices
to see, for instance, that i) and iii) share the same property, which is addressed in what follows.

Indeed, let us assume now that i) holds. Then, knowing that B* o j has closed range, we have
that R(B* o j) = °N((B" o j)'), where, according to (2.12), N((B* 0 j)') = Ju(N(;'oB)). A

simple computation yields
N(j o B) = {T eH: j(B(r)(w)=B(r)@w) =0 Yu ewi} ~V,

and hence R(B'oj) = °Ju(V) = V°. In this way, we conclude that B* o j : Wt — V° is

bijective, and (2.9) implies that (B o j)~'| < 5. It follows that (B® o j)": (V*)" — (W4)" is

bijective as well, and
An—1 . .
(B o)) | = (B o)™ = (B o) '] <
which says, equivalently, that

IB 0 )Y @lwsy = BlGIwey VG e (V). (2.14)

In particular, taking G = Ju(7)|ve, with 7 € H, we obtain

t Btoyj) T Bt b(r,
(B0 (@) lwsy = sup BTN TOB) - bw)
vewd ”UHQ veW-L H’U”Q vewl H'U”Q
’U=*=O ’U#O 'U=i=0

(2.15)

whereas, making use of (2.8) in the last equality below, we find that

F F
(vey = supM = sup (7) = dist(7,V). (2.16)
reve  [|[Far veve [[Flw
F+0 F40

| Tu(7)

VO

In this way, replacing (2.15) and (2.16) back into (2.14), we conclude that

b ~
By = sw 2% S Fdist(r,V)  ¥reH, (2.17)

et ]
v%0




10

which, together with the lower bound of (2.6), yields iii) (cf. (2.10)) with B = c% Conversely,
let us assume that iii) holds. Then, in order to prove i), we proceed analogously to the opposite

implication. In particular, using now (2.13) one deduces that R(B o i) = W°, so that Boi :

L ° N o,_) 1\ .. . . .,—1: A —1 lA
V We and (Boi) : (W°) (V1) are bijective with | ((Bod)) | = [(Bod) | < 5
In this way, we get the analogue of (2.17), that is
t b(T7U) 27
IB*(v)|w = sup > [dist(v, W) VoeQ, (2.18)
revi HTHH

%0

from which, along with (2.7), we arrive at (2.9) with § := %. Further details are omitted. [

We find it important to emphasize here, as announced in Chapter 1, that the equivalence
between the inf-sup conditions (2.9) (cf. 1)) and (2.10) (cf. iii)) holds with different constants 3
and B . Indeed, from the proof of Lemma 2.2 we notice that, starting from i), we first derive the
inequality (2.17) with the same constant E , thus yielding the partial implication summarized

as

b b 3
sup (TU) > 5HU||Q Voe Wt = sup ?;'”v) > fdist(r,V) VreH} . (2.19)
TeH veQ Q
7+0 v%0

Similarly, starting from iii), we obtain (2.18) with the same constant B , which gives rise to the

partial implication

e TeH H
i 740

However, as observed in the aforementioned proof, the expressions given by dist(7, V) in (2.19)
and j3 dlst(v W) in (2.20) are then bounded below, respectlvely, by B |7 & for each 7 € V*, with
5 , and by 5 |v]q for each v € W+, with B . These estimates explain the above use
of the concept ‘partial”, which refers to the fact that, in order to obtain the same constant in
both sides of each implication, the latter must be stated up to as indicated in (2.19) and (2.20).

Differently from this case, when H and Q are Hilbert spaces, full implications are achieved in



11

the sense that there hold dist(r, V) = ||7||g for each 7 € V*, and dist(v, W) = ||v||q for each
v € W+, so that now the equivalence between i) and iii) does hold with the same constant
5 = B , as it has already been established in the available bibliography (see, e.g. [7, eq. (4.3.18),
Theorem 4.3.1], [26, Lemma 2.1], and [10, Proposition 1.2 and eqgs. (1.15) and (1.16), Chapter

I1]). Moreover, this fact can be written, equivalently, as

b(T,v) b(t,v)

inf sup - e = nf sup e = B> 0,
o o 1TVl ey e ITIE VG

which is exactly what what was highlighted in (1.2) (cf. Chapter 1).



CHAPTER 3

The main results

In this chapter we address the well-posedness of (1.1) and its associated Galerkin scheme.

3.1 An equivalent setting

We begin by observing that the perturbed saddle-point formulation (1.1) can be re-stated,
equivalently, as: Find (o,u) € H x Q such that

A((o,u),(1,v)) = F(r,v) V(r,v)e HxQ, (3.1)

where A : (Hx Q) x (Hx Q) - Rand F : H x Q — R are the bounded bilinear form and

linear functional, respectively, defined by

A((C,w), (T, v)) = a(¢,7) + b(r,w) + b(C,v) — c(w,v) V((,w), (r,v) e HxQ, (3.2)

12



3.1. AN EQUIVALENT SETTING 13

and

F(r,v) := f(1) + g(v) V(r,v)eH x Q. (3.3)

Throughout the rest of this part we consider the product norm
|7, 0)[axq = |rla + [vlq  V(r,v)e HxQ.

Thus, resorting to the Banach-Necas-Babuska theorem (cf. [23, Theorem 2.6]), also known as
the generalized Lax-Milgram lemma, we deduce that (1.1) (equivalently (3.1)) is well-posed if
and only if the following hypotheses are satisfied:

1) there exists a constant o > 0 such that

S i= sup AUCWTO) o YGw eHxQ. (34
(Ef)vE)PrOQ H(Tv U)HHXQ

2) for each (7,v) e H x Q, (7,v) % O:

sup A((C,w),(T,v)) > 0. (3.5)
(¢w)eHxQ

Certainly, when A is symmetric, which is equivalent to assume that a and c are, 2) is
redundant and hence it suffices to prove 1). In this regard, we stress that the supremum in

(3.4) is equivalent to the expression |F (¢ u|w + |G(cw)lq, where
Fw () == A(((w),(,0))  VreH, (3.6)

and

G (v) == A((¢,w), (0,0)) VoeQ. (3.7)

More precisely, it is easy to see that

1
APl + 1Geumla} < 8@ w) < IFgule + Gl ¥(Guw)eHxQ. (35
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Consequently, a necessary and sufficient condition for 1) is given by the existence of a constant

C' > 0 such that

¢ w)lixa < C{IFcuml + [Gemla}  ¥(Guw)eHxQ, (3.9)

The above is basically the same procedure that was utilized in the proof of [10, Theorem 1.2,
Chapter II] for the Hilbert version of (1.1), as well as the one that, except for some necessary

modifications, we adopt below in Chapter 3.2 for the proof of the main theorem.

From now on we denote by |laf, |b/, and |c|, the smallest positive constants such that

(¢, Tl < flall[Clu e V(¢ 7)e H xH,
b(r, o)l < [bll[7ulvle  V(r,v)e HxQ, (3.10)

le(w, v)| < [eflwlqlvlq — V(w,v)eQxQ.

3.2 Continuous solvability

The main result providing sufficient conditions for the solvability of (1.1) is established now.
While some of the definitions and hypotheses have already been introduced, for sake of clearness

we include them again in its statement.

Theorem 3.1. Let H and Q be reflexive Banach spaces, and leta: HxH — R, b: HxQ — R,
and ¢ : Q x Q — R be given bounded bilinear forms (cf. (3.10)). In addition, let B : H — Q'
and B* : Q — H’ be the bounded linear operators induced by b (cf. (2.1)), and let V := N(B)
and W := N(B") be the respective null spaces (cf. (2.2), (2.3)). Assume that:

i) there exist closed subspaces V* and W+ of H and Q, respectively, such that H =V @ V+
and Q = W@ WH,

ii) a and ¢ are symmetric and positive semi-definite, the latter meaning that

a(t,7) =20 VreH and c(v,v) 20 YveQ, (3.11)



3.2. CONTINUOUS SOLVABILITY 15

iii) there exists a constant & > 0 such that

9
up 40-7)

v |7
%0

> a9y VIeV, (3.12)

iv) there exists a constant 3> 0 such that (cf. (2.9))

b
o 270)

e |7
70

> Blvle  Vve W, (3.13)

v) and there exists a constant 5 > 0 such that

) = 5 |zlq VzeW. (3.14)

Then, for each pair (f,g) € H x Q' there exists a unique (o,u) € H x Q solution to (1.1)

~

1
(equivalently (3.1)). Moreover, there exists a constant C' > 0, depending only on |al, |c|, &, 3,

Cy (cf. (2.5)), and 5, such that

(o, W)lixq < C {1l + lglar} - (3.15)

Proof. Because of the assumed symmetry of a and ¢ (cf. ii)), and as previously remarked, the
proof reduces to show (3.9). In turn, it is easy to see that the assumptions on ¢ allow to show

that
c(w,v) < clw, w)Y?e(v,v)"? Vw,v € Q, (3.16)

which constitutes a kind of Cauchy-Schwarz inequality for ¢, and hence |- |, := ¢(-,)"/? defines
a semi-norm in Q. Now, given ((,w) € H x Q, we first define the functionals F,y € H" and

Gcw) € Q according to (3.6) and (3.7), respectively, that is

Fiew(T) == a((,7) +b(r,w)  Vrel, (3.17)
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and
(3.18)

Gy (v) == b(¢,v) — c(w,v) VoeQ.

Now, according to i), we decompose ¢ and w as

(=¢C+¢ and w = wy+w, (3.19)

with (o € V, ( € VX, wy € W, and w € Wt. Therefore, the rest of the proof consists of bounding
each one of the four components specified in (3.19). We begin by observing from (3.17) that

Fiw () = a(¢,7) for all 7 € V, so that applying (3.12) (cf. iii)) to ¥ = (o, we get
a(Co,7) _  Frw(r) —al(7)
|7

9

a||Golln < sup
TEV H T H H TEV
70 740

from which it readily follows that

(3.20)

1 la] =
I¢ollr < = IFcw)lw + g”CHH-

o}y

In turn, in order to bound (, we employ the equivalence between i) and iii) of Lemma 2.2,

thanks to which and (3.13) (cf. iv)), there holds (cf. (2.10))

UL R

By < sup

VE v
2 Tole
with 3 := c% Thus, noting from (3.18) that G (v) = b(¢,v) — c(w,v) for all v € Q, and
applying the foregoing inequality to 7 = ¢ € V1, we find that
s b(C,v Gew(v) + c(w,v
B¢l < sup ?U’ ) _ < )<‘3]” ( )>
v e @

from which, using thanks to (3.16) and the boundedness of ¢, that c(w,v) < |c]|*?|w|. |v]q,

we deduce that
EES

. 1
I¢ln < EHGKMMQ'+ 3 jwle . (3.21)
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Thus, as a direct consequence of (3.20) and (3.21), we have the following preliminary bound

1/2

< = F w ’ (1 7) G w (1 7)
[cln < 5Pl + (1+ ) 51Gcmle + (1+75) 55

|w, . (3.22)

Certainly, it remains to bound |wl. in terms of |F (¢ )|l and |Gcuw)|q, which will be done
later on. Meanwhile, we address the estimate of |w|q. In fact, from the definition of G (cf.
(3.18)) we have Gcuw)(v) = —c(w,v) = —c(wo,v) — c(w,v) for all v € W, and hence, applying
(3.14) (cf. v)) to z = wp € W, we get

C<w07 U) _G(va)(v) - C(lf), U)

3 wollq < suv]gv) ol = suV1cV> ol , (3.23)
V20 Q VL0 Q
which yields
lel -
lwollq < ~HG @ + 5 |lw]q - (3.24)

Furthermore, it is clear from (3.17) that F( ) (7) = a((,7) 4+ b(r,w) for all 7 € H, so that

making use of (3.13) (cf. iv)) with v = w € WL, we arrive at

b(T, F¢w) 7
ﬁHwHQ < sup (r,@) _ sup —& )(7) = af ), (3.25)
e I7le ren |7
7%0
which implies that

. 1 la]
[wlq < = |Fcwls + == [¢]a- (3.26)

g g

In this way, (3.24) and (3.26) give

C a
Gl + (145 Sicl. @27

QZ\ =

el
fwllg < (14 1) 2 B o +
Q 5 3 (¢

On the other hand, we now aim to bound |w|? := ¢(w,w). Indeed, evaluating F¢ ) (cf. (3.17))
and Gy (cf. (3.18)) in ¢ and w, respectively, and subtracting the resulting expressions, we

obtain

a((,¢) + c(w,w) = Fw)(() — G (w),
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from which, according to the positive semi-definiteness of a (cf. ii)), it follows that

wle < Fewl [¢n + [1Gewle [wlo- (3.28)

Moreover, employing the bounds for |||z and |w|q provided by (3.22) and (3.27), using Young’s
inequality conveniently, and performing several algebraic manipulations, we deduce from (3.28)
that
1
[wz < CrlFewliv + C|Gewlay + 5w, (3.29)

where C} and Cs, positive constants depending on [|a|, ||, &, E, 3, and 7, are given explicitly

as
1 1 1
C = (1+‘“‘~‘”){(1+|ﬁ”)f+(1+|§)~+A}+~ (3.30)
a a/l p ¥/95 93) @
and
2 1
o (14 2 (1 1) f (o ) o L )
+ (14 IaH) L
al’op  q
Finally, it is easy to see from (3.29) that
1/2
wle < (2max{C1,Co})  {IF il + 1Gewlar} (3.32)

which, replaced back into (3.22), completes the upper bound of |(||g. In turn, employing the

latter in (3.27) leads to the respective estimate for |wl|q, and the proof is concluded. O

Bearing in mind the equivalence (3.8), we notice here that the proof of the previous theorem

establishes, equivalently, that the global inf-sup condition for A holds, namely

A((Q,w), (T,U)) 1

sup > — |(¢, w)|nx V¢, w)e Hx Q. 3.33
Db role 28 (Gl ¥ (3:33)

On the other hand, and related to a previous remark (right after the proof of Lemma 2.2)
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on the constants 3 and 3 that appear in the inf-sup conditions (2.9) and (2.10), respectively, we
stress here that the fact that they do not coincide does not yield any difficulty in the solvability
result provided by Theorem 3.1. The reason is certainly because the difference between them
is determined only by the reciprocals of the constants Cy and Cgq, which depend on the con-
tinuous spaces H and ), which are fixed. However, this issue becomes a delicate point for the
associated Galerkin scheme, to be addressed next, since the finite element subspaces employed
are varying, and hence, the respective constants could vary as well with them, particularly with
their dimensions. According to it, in this case we can not employ the equivalence between i)
and iii) from Lemma 2.2 as such, but rather assume (which means proving when dealing with
specific subspaces) that both discrete inf-sup conditions are satisfied with constants indepen-

dent of those dimensions.

3.3 Discrete solvability

We now let {Hh} heo and {Qh be families of finite dimensional subspaces of H and Q,

}h>0
respectively, and introduce the Galerkin scheme associated with (1.1): Find (oy,u;) € H x Qy,

such that

a(Uh,Th)+b(Th,uh) = f(Th) VThEHh,
(3.34)

b(on,vp) — clup,vn) = glvn) Vo, eQp.
Then, we let B, : H, — Q), and Bj, : Q, — Hj, be the discrete versions of the bounded linear

operators induced by b (cf. (2.1)), and define the respective discrete null spaces

Vh = N(Bh) = {Th € Hh . b(Th,Uh> =0 Vvh € Qh} (335)

and

W, = N(B:) := {Uh €Qn: bm,on) =0 VThEHh}. (3.36)

In this case, the existence of closed subspaces Vi and Wi of Hj, and Qy,, respectively, satisfying

the decompositions H, = V,, @Vﬁ and Q, = W, @Wﬁ, is guaranteed by the fact that both
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Hj, and Q, are finite dimensional. As a consequence, the solvability result for (3.34), which is
stated next, does not need to incorporate the aforementioned existence as an assumption (see
hypothesis i) in Theorem 3.1) but rather as a fact. In this way, the discrete version of that
theorem reads as follows. Hereafter, the expression “independent of A” means independent of

the finite element subspaces H, and Q.

Theorem 3.2. In addition to the previous notations and definitions, assume that:

i) a and ¢ are symmetric and positive semi-definite (cf. (3.11)),

ii) there exists a constant a4 > 0, independent of h, such that

9
sup W) o s e VO € Vi, (3.37)
Thev(i]z HThHH
Th

iii) there exists a constant Ed > 0, independent of h, such that

b ~
sup blrn, vn) > Bylonlq  Yuwe Wi, (3.38)

hE€Hp ” h”H
T +0

iv) there exists a constant @1 > 0, independent of h, such that

b ~
sup M > Balmnlu V1, € Vﬁ , (3.39)

vREQp ”UhHQ
vh:{:(]

v) and there exists a constant Y4 > 0, independent of h, such that

sup clzn, vn) = 4 |zl Yz, € Wy, (3.40)

vREW, thHQ
vpF

Then, for each pair (f,g) € H x Q' there exists a unique (op,up) € Hy x Qp solution to (3.34).
Moreover, there exists a constant CN'd > 0, depending only on |a|, |c|, &g, Bd, Bd, and g, such

that
lonlis + Junle < Ca {1/l + loler} (3.41)
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Proof. 1t follows analogously to the proof of Theorem 3.1, except for the fact that, instead of
considering iv) as a consequence of iii), the former is assumed here independently. Alterna-
tively, this proof follows from a direct application of a slight modification of Theorem 3.1 in

which a continuous version of the present hypothesis iv) is added. O]

Similarly as noticed right after the proof of Theorem 3.1, we stress here that the previous

theorem provides, equivalently, the global discrete inf-sup condition for A, that is

A((<h7wh)7 (Thavh)) 1

sup > — |G wn)|uxq Y (Crwn) e Hy x Q. (3.42)

o) 5 1(7h> vr) 1% qQ 2C,
Th,Uh

Having established the well-posedness of the continuous and discrete formulations of interest,
we now prove the respective Cea estimate. In what follows, given a subspace X} of a generic

Banach space (X, | - | x), we set dist(x, X}) := in)f{ |x — xp|lx for each z € X.
ThEXH

Theorem 3.3. Assume the hypotheses of Theorems 3.1 and 3.2, and let (o,u) € H x Q and
(on,up) € Hy x Qp be the unique solutions of (1.1) and (3.34), respectively. Then, there ezists

a constant Cy > 0, depending only on ||a|, 0], |lc|, &, Bd, B\d, and 74, such that

lo — onls + Ju—unq < éd{dist(a, H,) + dist(u, Q) } (3.43)

Proof. Due to the equivalence between (1.1) and (3.1), it is clear that (3.34) can be, equivalently,

rewritten as: Find (op,,up) € Hy, x Qp, such that

A((O’h,uh>, (Th, Uh)) = F(Th,Uh) V (Th, Uh) € Hh X Qh, (344)

and hence, the derivation of (3.43) proceeds in the usual way for formulations of this kind.

More precisely, we first apply the triangle inequality to obtain

(o, u) = (on,un) [axq < [[(o,u) = (Grywn)lluxq + (o, un) — (G wn) |[uxq

for each ({p,,wy,) € Hy x Qp, then we employ the global discrete inf-sup condition (3.42), which
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gives
~ A Op,Up) — Chuwhu Th, Un
(nun) = G wn)ling < 265 sup 2L un) = G wn), (o))
(rh o)€M X Q, 1(7h> vr) 1% qQ
(Th,vn)+0

and finally we use that A((o4,up), (7h,v4)) = A((0,u), (74, vs)) for each (7, v3,) € Hy x Qp,
along with the boundedness of A. In this way, we readily arrive at (3.43) with CA)’d =1+
2Cy||A|. Alternatively, we can also derive (3.43) by proceeding similarly to [26, Theorem 2.5,
that is by employing the corresponding Galerkin projection. [

3.4 Continuous solvability when W = {0}

We now assume the particular case W = {O}, equivalently W+ = Q, which means that the

hypothesis iv) of Theorem 3.1 reduces to the existence of a constant B > () such that

> Blvle  VYveqQ. (3.45)

IB* () = sup

Moreover, recalling from (2.11) that B* = B’ o Jq, and using the reflexivity of Q and the fact

that Jq is an isometry, we observe that (3.45) can be rewritten, equivalently, as

IB' (@) = BlGler  VGeQ". (3.46)

Note that the above establishes that B’ : Q” — H’ is injective and of closed range, which is
equivalent to saying that B : H — Q' is surjective. Thus, applying the converse implication of
the characterization provided in [23, Lemma A.42], which is originally proved in [3], we deduce

from (3.46) that for each G € Q' there exists ¥ € H such that

1

BW) =G and |9y < =|Glo - (3.47)

=

In this way, having the above result to our disposal in the present case, we can improve the
statement of Theorem 3.1 as follows, highlighting in advance that no topological complement

of V nor a continuous inf-sup condition for ¢ are needed now.
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Theorem 3.4. Let H and Q be reflexive Banach spaces, and leta: HxH — R, b: HxQ — R,
and ¢ : Q x Q — R be given bounded bilinear forms (cf. (3.10)). In addition, let B: H — Q' be
one of the bounded linear operators induced by b (cf. (2.1)), and let V := N(B) be the respective
null space (cf. (2.2)). Assume that:

i) a and ¢ are symmetric and positive semi-definite, the latter meaning that

a(t,7) 20 VreH and c(v,0) =20 YVoeQ, (3.48)

ii) there exists a constant & > 0 such that

v
o A(07)
o Tl

7+0

> ddly VIeV, (3.49)

iii) and there exists a constant 5 > 0 such that

b
o HT0)

e ||7]|n
T7+0

> Bl VveQ, (3-50)

Then, for each pair (f,g) € H x Q' there exists a unique (o,u) € H x Q solution to (1.1)
(equivalently (3.1)). Moreover, there exists a constant C > 0, depending only on lal, lell, @,

and B, such that
(@ w)lxq < C{Ifluw + lgla - (3.51)

Proof. We proceed analogously to the proof of Theorem 3.1, though with a key difference in
the decomposition to be introduced below. Indeed, given (¢,w) € H x Q, we first define the
functionals F..,) € H and G ) € Q as we did in (3.17) and (3.18), respectively, and aim
to establish the inequality (3.9). To this end, and bearing in mind iii), we apply (3.47) to
G := B(¢) € @, thus yielding the existence of { € H such that

B(() =B(¢) and  [(|n < 5Bl = %|B(O”Q" (3.52)

™ =
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As a consequence, ¢ can be decomposed as

¢ =G+, (3.53)

with ¢y := (= € V. As previously announced, we stress here that there is no need to identify a
topological complement to which ¢ belongs, but rather to be able to bound |||y, which is indeed
guaranteed by the inequality from (3.52). Then, observing from (3.17) that F (¢ .\ (7) = a(¢,7)
for all 7 € V, and applying (3.49) (cf. ii)) to ¥ = (y, we deduce, exactly as for the derivation
of (3.20), that

1 lal
ol < = Fcm o + == 1] (3.54)

Next, noting from (3.18) that b((,v) = G (v) + c(w,v) for all v € Q, it follows from the
inequality in (3.52) that

L b(Cv) 1 Gan(v) +c(w,v)
6 veQ HUHQ /8 5;@0 ”UHQ

Y

Mﬂ<gw@m=

from which, similarly to the derivation of (3.21), we arrive at

]2

_ 1

[Cln < = 1Gewla + jwle, (3.55)
B

and hence, thanks to (3.54) and (3.55), the analogue of (3.22) becomes

1/2

! aly e
i < 5 gl + (1+18) 16 mle + (1+ 1) 1

), . (3.56)

Furthermore, we know from (3.17) that b(7,w) = F(u)(7) — a((,7) for all 7 € H, so that
applying (3.50) (cf. iii)) with v = w € Q, we readily deduce that

1 o]
[wlq < EHF(C,w)HH’ + K 9 (3.57)

The rest of the proof proceeds exactly as the one of Theorem 3.1. In particular, we obtain (cf.
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(3.28))
w]? < [Fuwlw ¢l + 1Gewle lwlq, (3.58)

and then, employing the bounds for |||z and |wl||q provided by (3.56) and (3.57), and applying

Young’s inequality conveniently, we arrive at

~ o~ 0\ /2
wle < (2max {6, &o}) " {IF gl + [Cicaler} (3.59)
where
~ 1 1 2
GRS A (3.60)
« o] Q 52 «
and
~ 1 2
O,y = ~(1+|M~””> 1+|a~|+|a||~c|(1+|f|> : (3.61)
ﬁ o /8 53 «
Finally, (3.59), (3.56), and (3.57) complete the proof. O

3.5 Discrete solvability when W, = {0}

In what follows we consider the same notations and definitions given at the beginning of Chapter
3.3. Then, similarly to the analysis in Chapter 3.3, we now assume that W, = {0}7 which
means that the hypothesis iii) of Theorem 3.2 reduces to the existence of a constant Ed > 0,

independent of h, such that

B b
IB.(vn) |1, == sup (Th, vn)
TheHp HThHH

T30

= Bd th”Q V’Uh € Qh . (362)

Therefore, noting that the discrete version of the respective identity in (2.11) becomes B} =

Bj, 0 Jq,, we realize that (3.62) is equivalent to stating

IBL(Gn)l, = BallGnley  VGneQ, (3.63)

so that applying again the converse implication of [23, Lemma A.42], we conclude that for each

Gy, € Q), there exists ), € Hj, such that
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1
Bh<79h) = Gh and HﬁhHH < 57 HGhHQ’h (364)

d

Consequently, we are now in position to present the discrete version of Theorem 3.4.

Theorem 3.5. Assume that:

i) a and ¢ are symmetric and positive semi-definite (cf. (3.11)),

ii) there ezists a constant &g > 0, independent of h, such that

9
sup 2T S s g Ve Vi (3.65)

ThEVh HThHH
Th+0

iii) and there exists a constant 5(1 > 0, independent of h, such that

b(1h, v ~
sup (7, V1) > Balonllq Yone Q. (3.66)
The:(}f ”Th”H
Th

Then, for each pair (f,g) € H x Q' there ezists a unique (op,up) € Hy x Qp, solution to (3.34).

Moreover, there exists a constant Cy > 0, depending only on |al|, ||lc|, &y, and Bd, such that

lonlls + lunle < Cs {17l + lolar} (367)

Proof. Tt proceeds analogously to the proof of Theorem 3.4, bearing in mind that, instead of
(3.47), we now apply (3.64). In this way, given ((,,wy) € Hy, x Qp,, we deduce the existence of
fh € H;, such that

Bu(G) = Ba(Gr)  and |Gl < gBth/ _ gmaQf, (3.68)

d d

so that (;, can be decomposed as

Ch = Con+ s (3.69)
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with (o := (p — (y € V. The rest of the proof is as the one of Theorem 3.4. Further details

are omitted. O]

Needless to say, we remark that the global inf-sup conditions stated in (3.33) and (3.42) are
also consequence of the proofs of Theorems 3.4 and 3.5, respectively. We end this chapter with

the corresponding Cea estimate, whose proof is exactly as that of Theorem 3.3.

Theorem 3.6. Assume the hypotheses of Theorems 3.4 and 3.5, and let (o,u) € H x Q and
(on,up) € Hy x Qp be the unique solutions of (1.1) and (3.34), respectively. Then, there ezists

a constant Cy > 0, depending only on ||a|, |b], |c|, &, and By, such that

lo— ol + Ju—unlq < @d{dist(a, H,) + dist(u, Qn) } (3.70)

We end this chapter by emphasizing the main aspects of the present analysis that differ
from those of the Hilbertian case. First of all, and regarding the proof of Theorem 3.1, we
stress that instead of the identity (1.2), which is not valid in the Banach case, here we have
to use Lemma 2.1 to be able to apply the equivalence (though with different constants B and
B) between the statements i) and iii) of Lemma 2.2. A second difference is determined by the
need of having to assume the existence of topological complements for the closed subspaces
V and W, which, on the contrary, is for granted in the Hilbert case thanks to the orthogonal
decomposition theorem. In addition, we do not make use of any ellipticity properties of a nor
of ¢, but only of the respective inf-sup conditions. Furthermore, and concerning the solvability
result provided by Theorem 3.2 for the associated Galerkin scheme, we notice that the lack
of the finite dimensional version of (1.2) as well in the Banach case, forces us to assume two
independent discrete inf-sup conditions instead of just one, as in the Hilbert case. On the other
hand, when W = W,, = 0, in which case nor the identity (1.2) or its discrete version are valid
either, we observe that the corresponding Theorems 3.4 and 3.5 make use of the characterization
of surjective operators provided in [23, Lemma A.42], and more specifically of its consequences
given by (3.47) and (3.64), respectively. In this way, and differently from the Hilbert case and
the continuous and discrete Banach cases analyzed in Chapter 3.2 and 3.3, we do not need to

identify any topological complements of V nor V;, in the proofs of the aforementioned theorems.



CHAPTER 4

Application to the decoupled Nernst Planck

equation

The coupling of the Stokes and Poisson-Nernst-Planck equations is an electrohydrodinamic
model describing the stationary flow of a Newtonian and incompressible fluid occupying a
domain Q = R", n € {2,3}, with polygonal (resp. polyhedral) boundary T' in R? (resp R?)
(see, e.g. [31], [32]). The dynamics of it is determined by the concentration of ionized particles &;
and &, the electric current field ¢, and the velocity u and pressure p of the fluid. In particular,
knowing the vector fields ¢ and u, a simplified version of the decoupled Nernst-Planck equation
for a single ionic species, whose concentration is denoted &, and for which the diffusion and

dielectric coefficients are assumed to be equal to 1, is expressed in mixed form as

oc=VE+E(p—u) in Q
(4.1)

¢ —divie) = f in Q, £=g on I,

28



29

where V and div are the usual gradient and divergence operators acting on scalar and vector
fields, respectively, and f and g are given data belonging to suitable function spaces. On
purpose of this, in what follows we adopt standard notation for Lebesgue spaces L{(Q), with
t € (1,+0), and Sobolev spaces H™(2) and Hy*(€2), with integer m > 0, whose corresponding
norms and seminorms (in the case of the latter), either for the scalar or vectorial case, are
denoted by | - |o.x0s || |ma, and | - [m.q, respectively. Furthermore, as usual we let HY/2(T)
and H™V2(T") be the space of traces of H'(2) and its dual, with norms || - [1or and |- |_1/ar,
respectively, and denote by (-, -)r the corresponding duality pairing. On the other hand, given
any generic scalar functional space S, we let S be its vector counterpart.

Now, in order to derive the variational formulation of (4.1), we stress that the right spaces

where the unknowns are going to be sought is mainly determined by the term depending on ¢

and u. Indeed, using the Cauchy-Schwarz and Holder inequalities, we observe that

< HSHO,p;Q (HQOHO,T;Q + Ju |07T;Q) HTHO,Q (4.2)

LS(SO—U)-T

for all € € LP(Q), for all ¢, ue L"(2), and for all 7 € L?(Q), where p = 2¢ and r = 2j, with

¢, j € (1,+0) conjugate to each other, that is such that % + % = 1. Next, we let g € (1, +o0)

be the conjugate of p, introduce the Banach space

H(div,; Q) = {T eLX(Q): div(r)e L@(Q)}, (4.3)

which is endowed with the norm

0.0 + [div(T)

1T llaivpi0 = |7 oo V7 eH(div, Q),

and recall from [17, Section 3.1] (see also [12, Section 4.1] or [29, eq. (2.11)]) that for ¢ > 2%
there holds

(1 v, = L {T Vo + vdiv(T)} ¥ (7, v) € H(div,; Q) x H'(Q), (4.4)

where v stands for the unit outward normal on I". Note that the integration by parts formula
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(4.4) states implicitly that 7 - v € H™Y%(T') for each 7 € H(div,; Q). In addition, being
p =20 > 2, it follows that p € (1,2), and hence the feasible range for p becomes ( 2f2, 2) Thus,
testing the first equation of (4.1) against 7 € H(div,;(2), and then applying (4.4) with v = ¢,

which requires to assume that, originally ¢ € H'(2), and that g € H/?(T'), we obtain

an-T+Lsdiv<T>—Lw—u)-f=<T-u,g>p. (4.5)

In turn, assuming that f € L¢(Q2), and testing the second equation of (4.1) against n € L (),

we get

f ndiv(e f {n = L fn. (4.6)

In this way, placing together (4.5) and (4.6), we arrive at the following mixed variational

formulation for (4.1): Find (o,€§) € H x Q such that

a(o, )+ b(T f{ —u) = F(r) VreH,
(4.7)
b(a,n) — (&) = G VneQ,
where
H := H(div,;Q), Q = L(Q), (4.8)

and the bilinear forms a: HxH —> R, b: Hx Q — R, and ¢: Q x Q — R, and the functionals
F:H— R and G : Q — R, are defined, respectively, as

— fgf V(C,r) e H x H, (4.9)
b(T,n) = Lndiv(f) V(r,n)eHxQ, (4.10)
c(A\,n) = L)\n V(AN eQxQ, (4.11)

F(r) =={(r-v,9) VreH, (4.12)
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and

G(n) = —Lfn VneQ. (4.13)

Equivalently, introducing the bilinear forms A, A, : (H x Q) x (H x Q) — R given by

A((CN), (7)) = a(C7) + b(r, A) + b(C.m) — c(Am) (4.14)
and
Apu((CN). (7)) = A((C.N). (7)) — Lw —w)r (4.15)

for all (¢, A), (7,n7) € H x Q, we deduce that (4.7) can be re-stated as: Find (o,&) € H x Q
such that

A%u((a,f), (‘r,n)) = F(7) + G(n) V(r,n)eHxQ. (4.16)

According to the above, in what follows we show first that the bilinear forms forming part
of A satisfy the assumptions of Theorem 3.4. Later on, we combine this fact with the effect of
the extra term completing the definition of A, to conclude the solvability of (4.7) (or (4.16)).

We begin by observing that the reflexivity of L*(2), L¢(€2), and L°(Q), imply that H and
Q are both reflexive Banach spaces. In addition, straightforward applications of the Cauchy-
Schwarz and Hoélder inequalities show that a, b, and ¢, are all bounded with |al < 1, 0] < 1,
and |¢| < [Q|=2/r. Also, it is clear from (4.9) and (4.11) that a and b are symmetric and

positive semi-definite (assumption i) of Theorem 3.4). Next, bearing in mind the definitions of

b (cf. (4.10)) and the null space V of the operator B induced by b (cf. (2.2)), we find that
V = {T e H(div,: Q) : div(r) = 0}, (4.17)

and thus

a(r,7) = |tloa = I7lav,e  VTeEV,

from which it readily follows that a satisfies the continuous inf-sup condition (3.49) with con-

stant @ = 1 (assumption ii) of Theorem 3.4). It remains to show that b satisfies the continuous
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inf-sup condition (3.50) (assumption iii) of Theorem 3.4). While the corresponding proof is ac-
tually available in the literature (see, e.g. [29, Lemma 2.9] and the references mentioned there),

we provide it again below for sake of completeness of the presentation.

Lemma 4.1. There exists a constant B > 0, depending only on Q and p, such that

b
sup (1,m)

ren |7 ]u
T+0

> Blnlq  VYneq. (4.18)

Proof. Given n € Q := L*(Q), we first define n, := |n|°"?n and observe, thanks to simple
algebraic computations, that 7, € L¢(Q) and

. 7m0 = o Il (4.19)
Then, we let ¥ := Vz € L*(Q), where z € H}(Q2) is the unique solution of the variational
problem
J Vz-Vw = —J now  YweHyQ). (4.20)
Q Q

Indeed, Holder’s inequality and the continuous injection i, of H'(Q) into L*(§2) guarantee that
the right hand side of (4.20) constitutes a functional in H} (€)', so that the classical Lax-Milgram

Lemma confirms the unique solvability of this problem. In turn, it follows from (4.20) that
div(f) = n, in Q, (4.21)

which yields 7 € H(div,; ). Moreover, according to the continuous dependence result for
(4.20) and the resulting bound for the norm of the aforementioned functional, we deduce the

existence of a constant ¢, > 0, depending on [i,|, such that [z|l1.0 < ¢, [7,]0,0:0, and hence

H7~'Hdivg;ﬂ = ‘Z’LQ + ”%HO,Q;Q < (1 +CP) H779”079;Q' (4.22)

Finally, according to the definition of b (cf. (4.10)), and employing (4.21), (4.19), and (4.22),
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we obtain
b(T,n b(T,n Mo [Melloee _
sup (r.n) _ @) _ [nlopa [neloce B lnllope,
e | T|u |7]ln |7
7+0
with B = (1 + cp)_l, thus proving the required continuous inf-sup condition (4.18). [

Having proved that a, b, and c¢ verify the hypotheses of Theorem 3.4, we deduce that the
global inf-sup condition (3.33) also holds for the present bilinear form A (cf. (4.14)), which
means in this case that there exists a constant ¢ > 0, depending only on [a] (< 1), |c|

(< |QP=2/P) & =1, and § = (1+ cp)fl, such that

oy AlCH). ()

(r.m)eHxQ H(Tﬂ?)HHxQ
(T,m)*0

Thus, it readily follows from (4.15), (4.2), and (4.23) that

> 2Nl V(A eHXQ. (4.23)

A u((CN), (T,1) "
p el b2 {o = (0lon + 1ulara) G Ml ¥(€0) € HxQ
wmenxa (7, 1)lnxq
(T.m)*0
(4.24)
from which, under the assumption that, say |@]orq + [uforo < g , we conclude that
A ,a (C7 )‘)7 <T7 77) /C\
ap Aenl L2 Sje Nl VENEHxQ  (125)
rmetteg [(7.m)[1xq 2
T’/r]

Similarly, using the symmetry of A and (4.23), and under the same hypothesis on ¢ and u, we
find that

A‘ u 7)\ ) Y c
p AenlC T Ty g wimmenxa a2
P Sy R
(CGA)+0

On the other hand, recalling from the proof of Lemma 4.1 that 7, is the continuous injection
of H'(Q) into L*(Q2), it is easy to see from (4.4) that there exists a constant C, > 0, depending

on [i,[, such that |7-v|_ior < C,|7T|aiv,0 for all 7 € H(div,; ), and hence we deduce from
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(4.12) that F € H' with |F|gw < C,|g|-1/2r- In turn, (4.13) and Hélder’s inequality yield
G e Q with |Gl < [[flogo-
In this way, we are now in position of establishing the well-posedness of (4.7) (equivalently

(4.16)).

Theorem 4.2. Let ¢, u € L(Q) such that |@|or0 + [ufome < 5. Then, there exists a
unique (o,§) € H x Q solution to (4.7), and there holds

2
Iolavge + I€lopa < = max {1,C,} {lgl1r + Iflosa}

Proof. Thanks to (4.25), (4.26), and the boundedness of F and G, it follows from a straight-
forward application of the Banach-Necas-Babuska Theorem (also known as generalized Lax-

Milgram Lemma) (cf. [23, Theorem 2.6]). O

We end this part of the thesis by remarking that the continuous and discrete analyses of the
full Poisson-Nernst-Planck and Stokes coupled model, which certainly contain those of (4.7),

will be provided next in the second part.



Part 11

New mixed finite element methods for
the coupled Stokes and
Poisson-Nernst-Planck equations in

Banach spaces
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CHAPTER b

Introduction

Fluid mixtures with electrically charged ions are critical for many industrial processes and
natural phenomena. Notable examples of current interest are efficient energy storage and
electrodialysis cells, design of nanopore sensors, electro-osmotic water purification techniques,
and even drug delivery in biological tissues [45]. One of the most well-known models for liquid
electrolytes is the Poisson—-Nernst—Planck / Stokes system. It describes the isothermal dynamics
of the molar concentration of a number of charged species within a solvent. This classical model
is valid for the regime of relatively small Reynolds numbers and it is written in terms of the
concentrations, the barycentric velocity of the mixture, the pressure of the mixture, and the
electrostatic potential. The system is strongly coupled and the set of equations consist of the
transport equations for each dilute component of the electrolyte, a diffusion equation for the
electrostatic equilibrium, the momentum balance for the mixture (including a force exerted by

the electric field), and mass conservation.

Solving these systems lends itself difficult due to coupling nonlinearities of different nature. Nu-

merical methods for incompressible flow equations coupled with Poisson—Nernst—Planck equa-

36
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tions that are based on finite element schemes in primal formulation (also including stabilized
and goal-adaptive methods) can be found in [4,24, 36,39, 41, 44], finite differences in e.g. [38],
finite volume schemes in [43], spectral elements in [40], and also for virtual element methods
n [21]. Regarding formulations using mixed methods, the first works addressing Stokes/PNP
systems are relatively recent [31,32]. Mixed variational formulations are particularly interesting
when direct discrete approximations of further variables of physical relevance are required. A
recent approach to mixed methods consists in defining the corresponding variational settings in
terms of Banach spaces instead of the usual Hilbertian framework, and without augmentation.
As a consequence, the unknowns belong now to the natural spaces that are originated after car-
rying out the respective testing and integration by parts procedures, simpler and closer to the
original physical model formulations arise, momentum conservative schemes can be obtained,
and even other unknowns can be computed by postprocessing formulae. As a non-exhaustive
list of contributions taking advantage of the use of Banach frameworks for solving the aforemen-
tioned kind of problems, we refer to [5,11,13-15,17,18,29,30,33], and among the different models
considered there, we find Poisson, Brinkman—Forchheimer, Darcy—Forchheimer, Navier—Stokes,
chemotaxis/Navier—Stokes, Boussinesq, coupled flow-transport, and fluidized beds. Neverthe-
less, and up to our knowledge, no mixed methods with the described advantages seem to have

been developed so far for the coupled Stokes and Poisson—Nernst—Planck equations.

As motivated by the previous discussion, the goal of this part is to develop a Banach spaces-
based formulation yielding new mixed finite element methods for, precisely, the coupled Stokes
and Poisson—-Nernst—Planck equations. The rest of the manuscript is organized as follows. Re-
quired notations and basic definitions are collected at the end of this introductory chapter. In
Chapter 6 we describe the model of interest and introduce the additional variables to be em-
ployed. The mixed variational formulation is deduced in Chapter 7. After some preliminaries,
the respective analysis is split according to the three equations forming the whole system. In
particular, the right spaces to which the trial and test functions must belong are derived in
each case by applying suitable integration by parts formulae jointly with the Cauchy—Schwarz
and Holder inequalities. In Chapter 8 we utilize a fixed-point approach to study the solvabil-

ity of the continuous formulation. The Babuska—Brezzi theory and recent results on perturbed
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saddle-point problems, both in Banach spaces, along with the Banach—Nec¢as—Babuska theorem,
are utilized to prove that the corresponding uncoupled problems are well-posed. The classical
Banach fixed-point theorem is then applied to conclude the existence of a unique solution. In 9
we proceed analogously to Chapter 8 and, under suitable stability assumptions on the discrete
spaces employed, show existence and then uniqueness of solution for the Galerkin scheme by
applying the Brouwer and Banach theorems, respectively. A priori error estimates are also
derived here. Next, in Chapter 10 we define explicit finite element subspaces satisfying those
conditions, and provide the associated rates of convergence. Finally, several numerical exam-
ples confirming the latter and illustrating the good performance of the method, are reported in

Chapter 11.

Preliminary notations

Throughout the second part, €2 is a bounded Lipschitz-continuous domain of R", n € {2, 3},
which is star shaped with respect to a ball, and whose outward normal at ' := 0f2 is denoted
by v. Standard notation will be adopted for Lebesgue spaces L{(2) and Sobolev spaces W ()
and Wgt(Q), with [ > 0 and ¢ € [1, +00), whose corresponding norms, either for the scalar and
vectorial case, are denoted by || - |or.q and || - |10, respectively. Note that W (Q) = LI(Q),
and if ¢ = 2 we write H(Q) instead of W%?(Q), with the corresponding norm and seminorm
denoted by | - [0 and | - |, respectively. In addition, letting ¢, ¢’ € (1, +o0) conjugate to each
other, that is such that 1/t + 1/t = 1, we denote by W¥*:(T') the trace space of W(Q), and
let W-Y4¥(T") be the dual of WY*(I') endowed with the norms || « |_1syr and | - |10 .r,
respectively. On the other hand, given any generic scalar functional space M, we let M and M
be the corresponding vectorial and tensorial counterparts, whereas | - | will be employed for the
norm of any element or operator whenever there is no confusion about the spaces to which they
belong. Furthermore, as usual, T stands for the identity tensor in R := R"*" and | - | denotes

the Euclidean norm in R := R™. Also, for any vector field v = (v;);=1, we set the gradient and
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divergence operators, respectively, as

ov; = Ov
Vv = ( Z) and div(v) := !
0% /s io1n JZ; x

J

D

Additionally, for any tensor fields 7 = (7i;)ij=1,, and ¢ = ((ij)ij=1n, We let div(7) be the
divergence operator div acting along the rows of 7, and define the transpose, the trace, the
tensor inner product operators, and the deviatoric tensor, respectively, as

n n 1
Tt = (Tji)i,jzl,ny tI'(T) = ZT”‘, T . C = Z TijCij s and Td =T — *tI‘(T)]I
i=1

i1 "



CHAPTER 6

The model problem

We consider the nonlinear system given by the coupled Stokes and Poisson—Nernst—Planck
equations, which constitute an electrohydrodinamic model describing the stationary flow of a
Newtonian and incompressible fluid occupying the domain 2 € R", n € {2, 3}, with polyg-
onal (resp. polyhedral) boundary I' in R? (resp. R*). Under the assumption of isothermal
properties, equal molar volumes and molar masses for each species, the behavior of the system
is determined by the concentrations &; and & of ionized particles, and by the electric current
field ¢o. Mathematically speaking, and firstly regarding the fluid, we look for the barycentric

velocity u and the pressure p of the mixture, such that (u, p) is solution to the Stokes equations

—pAu+Vp = — (G —&)e ' +f in Q,

(6.1)

diviu) =0 in Q, u=g on I, Jp:O,
Q

where p is the constant viscosity, € is the dielectric coefficient, also known as the electric

conductivity coefficient, f is a source term, g is the Dirichlet datum for u on I', and the null
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mean value of p has been incorporated as a uniqueness condition for this unknown. In addition,
@, & and & solve the Poisson—Nernst—Planck equations, which depend on the velocity u and

are given by

p=ecVx in Q, —divip) = (& —&) + f in Q,

(6.2)
X =9 on [
where Y is the electrostatic potential, and for each i € {1, 2}
& —div(mi(V& + @ &ie ) — & u) = f; in Q,
(6.3)
& =9 on I,
1 ifi=1
where k; and Ky are the diffusion coefficients, ¢; := , f, f1, and fy are external
—1 ife=2

source/sink terms, and g, g; and g, are Dirichlet data for x, £ and &, respectively, on T'. The
systems (6.2) and (6.3) correspond to the Poisson and Nernst—Planck equations, respectively.
We end the description of the model by remarking that e, k1, and k9 are all assumed to be
bounded above and below, which means that there exist positive constants ¢y, €1, Kk, and &,

such that
g0 < e(x) < e and K < Ki(x) < B foralmostallxe Q, Vie {1,2}. (6.4)

We stress that in order to solve (6.3), u and ¢ are needed. In turn, (6.1) requires &;, &
and ¢, whereas (6.2) makes use of & and &. This multiple coupling is illustrated through
the graph provided in Figure 6.1, where the vertexes represent the aforementioned equations
and the arrows, properly labeled with the unknowns involved, show the respective dependence

relationships.

Furthermore, since we are interested in employing a fully mixed variational formulation for

the coupled model (6.1) — (6.3), we introduce the auxiliary variables of pseudostress

o :=puVu—pl in Q (6.5)
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v

Figure 6.1: Illustrative graph of the coupling mechanisms connecting the three sub-problems
(6.1), (6.2) and (6.3).

and, for each 7 € {1, 2}, the total (diffusive, cross-diffusive, and advective) ionic fluxes
o, = ki (V& + géie ') — &u in Q. (6.6)

Thus, applying the matrix trace in (6.5) and using the incompressibility condition, we deduce
that
p=——tr(o), (6.7)

so that, incorporating the latter expression into (6.5), p is eliminated from the system (6.1) -

(6.3), which can then be rewritten in terms of the unknowns o, u, ¢, x, o; and &;, i € {1, 2},



as

1
~o%=Vu in Q, divie) = (& -&)elp—f in Q,
0

u=g¢g on I, ftr(a)—O,
Q
1 . . .
E‘PZVX in Q, —div(p) = (& —&)+f in Q,
X =g on [
—0; = V& + el — k7T Eu in Q,

fi — le(O'Z) = fz in Q, 51 = @g; on F, 1€ {1,2}

43

We notice here that the uniqueness condition for p has been rewritten equivalently as the null

mean value constraint for tr(eo).
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The fully mixed formulation

In this chapter we derive a suitable Banach spaces-based variational formulation for (6.8) by
splitting the analysis in four chapters. The first one collects some preliminary discussions and
known results, and the remaining three deal with each one of the pairs of equations forming

the whole nonlinear coupled system (6.8), namely Stokes, Poisson, and Nernst-Planck.

7.1 Preliminaries

We begin by noticing that there are three key expressions in (6.8) that need to be looked
at carefully before determining the right spaces where the unknowns must be sought, namely
(1-&) e, e 'pand k; & u in the first and fifth rows of (6.8). More precisely, ignoring
the bounded above and below functions e~! and x; ', as well as the constant ¢;, and given test

functions v and 7; associated with u and o;, respectively, straightforward applications of the
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Cauchy—Schwarz and Holder inequalities yield

f (&1 —&) e v] < [& —&oz2ea elozio [V, (7.1a)
Q
f &7 < Eiloza | @lbain I Tlos. (7.11)
Q
and similarly
f a1 < [&lozen [ufoza |Tilos (7.1¢)
Q

where ¢, j € (1,+00) are conjugate to each other. In this way, denoting

20
20 -1

o
(conjugate of p), r :=2j, and s := — J (conjugate of r),

27 —1
(7.2)

p:=20, o :=

it follows that the above expressions make sense for &; € L?(Q2), ¢, u € L"(Q2), and v, 7; € L%(Q2).
The specific choice of ¢, and hence of j, p, r and the respective conjugates p and s, will be
addressed later on, so that meanwhile we consider generic values for the indexes defined in
(7.2).

Having set the above preliminary choice for the space to which ¢ belongs, we deduce from
the first equation in the third row of (6.8) that y should be initially sought in W' (Q). In
turn, using that H'(Q2) is embedded in L!(Q) for ¢ € [1,+0) in R? (resp. t € [1,6] in R?),
and for reasons that will become clear below, the unknowns &;, i € {1, 2}, and u are initially
sought in H'(Q2) and H'(Q), respectively, certainly assuming that p and r verify the indicated
ranges, namely p, 7 € (2, +o0) in R?, and p, 7 € (2,6] in R®. Note that in terms of ¢ the latter

3], which yields p € [3,6]. Equivalently, j € [2,3] and r € [3,6],

constraint becomes ¢ € [3 2

29
though going through the respective intervals in the opposite direction to ¢ and p, respectively.

In turn, in order to derive the variational formulation of (6.8), we need to invoke a couple
of integration by parts formulae, for which, given ¢ € (1, +00), we first introduce the Banach
spaces

H(div,; Q) = {T eLX(Q): div(r)e Lt(Q)}, (7.3a)

H(div,; Q) = {T eLX(Q): div(r) e Lt(Q)}, (7.3)
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H(divy; Q) = {’7‘ eLIQ): div(r) e Lt(Q)}, (7.3¢)

which are endowed with the natural norms defined, respectively, by

ITlaivise = Tloq + [div(T)fose V7 e H(div;Q), (7.4a)
ITlaivee == [7loa + [div(T)fose V7 e H(div,; Q), (7.4b)
I7leaiven == [Tlose + [div(T)lore V7 e H (divi; Q). (7.4c)

Then, proceeding as in [26, eq. (1.43), Section 1.3.4] (see also [12, Section 4.1] and [17, Section

3.1]), it is easy to show that for each ¢t > -2 there holds
(T -v,v) = J {T -Vu + UdiV(T)} Y (T,v) € H(div; Q) x HY(Q), (7.5)
Q
and analogously

v - |

) {T VYV 4 v diV(T)} V(r,v) e H(divi; Q) x H'(Q),  (7.6)

where (-, -) stands for the duality pairing between H=%/2(T") and HY2(I'), as well as between
H~'2(I') and HY2(I'). Furthermore, given ¢, ' € (1, +o0) conjugate to each other, there also
holds (cf. [23, Corollary B. 57])

(T -v,0)r = Jﬂ {T Vv + UdiV(T)} Y (1,v) € H (divy; Q) x WH'(Q), (7.7)

where (-, >p stands for the duality pairing between W~44(I") and W5 (T).

7.2 The Stokes equations

Let us first notice that, applying (7.6) with ¢ = s to 7 € H(div,; Q) and u € H'(Q), and using

the Dirichlet boundary condition on u, for which we assume from now on that g € H/2(Q), we
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obtain

J T:Vu = —J u-div(t) + (tv,g),
Q Q
and thus, the testing of the first equation in the first row of (6.8) against T yields

; L ot 4 Lu-div(f) _ (g (7.8)

Note from the second term on the left-hand side of (7.8) that, knowing that div(7) € L*(Q2),
it actually suffices to look for u in L"(£2), which is coherent with a previous discussion on the
space to which this unknown should belong. In addition, testing the second equation in the

first row of (6.8) against v € L"(2), for which we require that f € L*(Q2), we get

| vdivio) = [@-@=tev | v (7.9

which makes sense for div(e) € L*(€2). Hence, due to the last equation in the second row of

(6.8), it follows that we should look for o in Hy(divy; (2), where

Ho(divg; Q) = {7’ e H(divy; Q) : J
Q

tr(r) = 0} :
Moreover, it is easily seen that there holds the decomposition
H(divy; Q) = Hy(div,; Q) @ RI, (7.10)

and that the incompressibility of the fluid forces the compatibility condition on g given by

Jg-uzO.
r

As a consequence of the above, we realize that imposing (7.8) for each 7 € H(div; Q) is
equivalent to doing it for each 7 € Hy(divy; 2). Furthermore, since r > 2 it follows that L"(Q)
is embedded in L%(Q), which, along with the estimate (7.1a), confirms that the first term on
the right-hand side of (7.9) is also well-defined. In this way, denoting from now on & := (&3, &),

and joining (7.8) and (7.9), we arrive at the following mixed variational formulation for the
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Stokes equations (given by the first two rows of (6.8)): Find (o,u) € H x Q such that

a(o,7)+b(r,u) = F(7) VreH,
(7.11)
b(o,v) = Ggo(v) VveQ,
where
H = Hy(divy; ), Q = L"(Q), (7.12)

and the bilinear formsa: H x H — R and b : H x Q — R, and the functional F : H — R,

are defined, respectively, as

a(l¢, ) = ; ¢t V¢, TeH, (7.13a)
0
b(r,v) := | v-div(r) V(r,v)e HxQ, (7.13b)
Q
F(r) :={(rv,gy V7TeH, (7.13c)

whereas, given 1 := (n;,72) € L?(Q2) and ¢ € L"(Q2), the functional G, 4 : Q — R is set as
Gpo(v) = JQ(m —ng)s_lqb-v—fgf-v VveQ. (7.13d)
It is readily seen that, endowing H with the corresponding norm from (7.4b), that is
ITla = [T]daivie V7TeH, (7.14)

and recalling that || - [o,.q is that of Q, the bilinear forms a and b, and the linear functionals
F and G,, 4, are all bounded. Indeed, applying the Cauchy-Schwarz and Hoélder inequalities,
noting that | 7%)oq < |7[oq for all 7 € H, invoking the identity (7.6) along with the continuous
injection i, : H'(Q) — L"(€2), using (7.1a) together with the fact that |-[oq < |Q|"=2/2"|-|o.r0,

1

and bounding ¢! according to (6.4), we deduce the existence of positive constants, denoted
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and given as

1 :
lal ===, b =1, [F] = (1+]i]) lgly2r,
a (7.15)
and |G| := max{esgl]Q](T’m/z”,l},
such that
la(¢, )| < [a||¢lalr|a V¢ TeH,
Ib(m,v)| < [b[|r[ulvle  V(r,v)e HxQ,
(7.16)

|F(m)| < |F|||7]a VreH, and

Gos) < IGI{In = malope |Blore + [Flosa} IVla  ¥veQq.

7.3 The electrostatic potential equations

We begin the derivation of the mixed formulation for the Poisson equation by testing the first
equation in the third row of (6.8) against ¥ € H*(div,; ). In this way, applying (7.7) with
t = sand t' = r to the given 9 and y € W'"(Q), and employing the Dirichlet boundary

condition on y, for which we assume that g € WY/*"(T"), we get

JQ E w1+ JQ xdiv(y) = P -v,g)r. (7.17)

£

In turn, testing the second equation in the third row of (6.8) against A € L*(£2), which requires

to assume that f € L"(Q2), we obtain

| daivio) = = [ xea—e) - | 1. (7.18)

which certainly makes sense for div(¢) € L"(2). Thus, recalling from (7.1a) and (7.1b) that
¢ must belong to L"(2), it follows from the above that this unknown should be sought then
in H"(div,; Q). Furthermore, bearing in mind from (7.1a) - (7.1c) that & and & must belong
to L?(£2), we notice that in order for the first term on the right-hand side of (7.18) to make
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sense, we require that p > r, which is assumed from now on. Therefore, placing together (7.17)
and (7.18), we obtain the following mixed variational formulation for the electrostatic potential

equations (given by the third and fourth rows of (6.8)): Find (¢, x) € X3 x M; such that

a(p, ) +bi(p,x) = F(v) Vi e Xy,
(7.19)

bo(p,A) = Ge(\)  VAeM,,

where
Xy := H'(div,; ), M; = L"(Q), X;:= H(div;Q), M, := L(Q), (7.20)

and the bilinear forms a : Xog x Xy > Rand b; : X; x M; > R, 7 € {1, 2}, and the functional

F : X; — R, are defined, respectively, as

W6.0) = | Zoew V(B X kX, (7.212)

bi(ah, \) 1= J Aiv() Y (h,A) € Xy x M, (7.21b)
Q

F(y) = ¢ -v,gr Ve Xy, (7.21c)

whereas, given 1 := (n;,n2) € L?(Q), the functional G,, : My — R is defined by
Gy = —f N — 1) — J A WaelMs. (7.21d)
Q Q

We end this chapter by establishing the boundedness of a, b;, 7 € {1, 2}, F, and Gy, for which
we recall that the norms of X; and X, are defined by (7.4c) with ¢ = s and ¢ = r, respectively,
whereas those of M; and M, are certainly given by | - [lo0 and | - [o.s.0, respectively. Then,
employing again the Cauchy—Schwarz and Holder inequalities, bounding ! according to (6.4),

and using that | - o, < [Q®7 | - |o .0, Which follows from the fact that p > r, we find
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that there exist positive constants
1 —Tr T
fol i= =l = [l = 1. and |Gl = max {1, |07} (7.22)

such that

(P, ¥)| < lal[@lx, [#lx, V() e X x Xy,

A

i, N)| < |bil 10 ]x, | M |m; V(,\)eX; x My, Vie{l,2}, and (7.23)

(3

GaN] < IGI{Im = alope + [ flore } [Nlose YA€ Ms.

Regarding the boundedness of F, we need to apply [23, Lemma A.36], which, along with the
surjectivity of the trace operator mapping W () onto WY/*"(T'), yields the existence of a
fixed positive constant C,, such that for the given g € WY*"(T), there exists v, € W17 (Q)
satisfying vy|r = ¢ and

vgll1m0 < Crllgliysmr -

Hence, employing (7.7) with (¢,t') = (s,7) and (7,v) = (¢,v,), and then using Hélder’s
inequality, we arrive at

F@) < [F[vlx,  VeeX, (7.24)

with
HFH = C; ”9“1/8,7“;1*' (7.25)

7.4 The ionized particles concentration equations

We now deal with the Nernst-Planck equations, that is the fifth and sixth rows of (6.8), for
which we proceed analogously as we did for the Stokes equations in Chapter 7.2. More precisely,

applying (7.5) with ¢ = g to 7; € H(div,; Q) and & € H'(Q), and using the Dirichlet boundary
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condition on &;, for which we assume from now on that g; € H?(T'), we obtain

J V& -1 = —J §div(m) + {1 v, 9i),
Q Q

so that the testing of the equation in the fifth row of (6.8) against 7;, yields

L ;ai -T; + L &i diV(Ti) - L {Qi &i 5—190 — /-gi—l & u} T = <7-l. . V>gi>- (7.26)

Since div(7;) € L¢(f2), we notice from the second term on the left-hand side of (7.26) that
it suffices to look for & in L”(2), which, similarly as for Stokes, is coherent with a previous
discussion on where to seek this unknown. In fact, as already commented, the corresponding
estimates (7.1b) and (7.1c) confirm that the third term on the left-hand side of (7.26) is well-
defined as well. We end this derivation by testing the first equation of the sixth row of (6.8)

against a function in the same space to which &; belongs, that is n; € L?(€2), which gives

L nidiv(e;) — L &ini = —L fini. (7.27)

We remark that the above requires to assume that both f; and div(e;) belong to Le(2), which
is coherent with the fact that &; is sought in L(2) since, being p > 2, it follows that p > p, and
hence LP(€2) < Le(Q2). Consequently, we arrive at the following mixed variational formulation

for the ionized particles concentration equations: Find (o7, ¢;) € H; x Q; such that

ai(oi, Ti) + ci(T3,8) — cou(Ti,&) = Fi(m) VT, eH;,
(7.28)

Ci(Uz',?%) - di(fi,m) = Gi(ﬁi) Vi€ Qi

where

H, := H(div,;Q), Qi = L°(Q), (7.29)
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and the bilinear forms a; : H; x H; > R, ¢; : H; x Q; — R, and d; : Q; x Q; — R, and the

functionals F; : H; — R and G; : Q; — R, are defined, respectively, as

1
a;(Gi; Ti) = f P G T V(¢i, i) € Hy x Hy, (7.30a)
o Ki
ci(Ti,mi) = f nidiv(m) V(T m) € Hy x Qi (7.30Db)
Q
di(0i,mi) = | Vi Y (Di,m:) € Qi x Qi (7.30c)
Q
Fi(m) == (miv,g)p) Vmel, (7.30d)
Gi(m) = —J fini V€ Qi, (7.30¢)
Q

whereas, given (¢, v) € Xy x Q = H"(div,; Q) x L"(€), the bilinear form ¢y : H; x Q; — R is

set as

C¢,V<Ti>77i) = L {Qi i 5_1¢ - "%—1 UiV} © T V(7Ti,m) € Hy x Q;.. (7.30f)

Similarly to the analysis at the end of Chapter 7.2 (cf. (7.15) and (7.16)), we conclude here that
a;, ¢, di, Fy, G;, and ¢4 are all bounded with the norm defined by (7.4a) with ¢t = p for H;, and
certainly the norm |-|¢ .. for Q;. Indeed, applying the Cauchy-Schwarz and Holder inequalities,
bounding both e ™! and ;! according to (6.4), noting that |00 < |Q[?~2/2 || .0, invoking
the identity (7.5) and the continuous injection i, : H'(Q2) — L°(2), and utilizing (7.1b) and

(7.1c), we find that there exist positive constants

lai ===, el =1, il == (2P F] = (1 [i]) lgilar

= 1=

(7.31)

|Gill == Ifiloge.  and | := max{e;" £},
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such that

|ai(Gi, )| < Jail |G

H; | T:

lci(Ti,m)| < lleill [ 7illa; 7

|di (s ma)| < [lds] 19

Q. 1M

[Fi(m)| < [Fil | 73] m, VT e H;,

1Gi(mi)| < |Gl [ms

Qs Y ni € Qz s and

H; V(CmTi)GHiXHi,
Qi Y (Ti,m:) € Hy x Qq,

Qi V (93, m:) € Qi x Q4

conlmismi)| < llel {Ilora+ [Vlora  Inloa 7o

(7.32)

V(Ti,T]i) € Hz X QZ

Throughout the rest of the part we will use indistinctly either |n|q,xq, or |1]o 0, where

H”HOW;Q = H771”0,p;ﬂ + H772H0,p;9

V= (n,m2) € Qr x Q.

Summarizing, and putting together (7.11), (7.19), and (7.28), we find that, under the as-
sumptions that f € L3(Q), g € HY?(T), f € L"(Q), g € WY (), f; € Le(Q), g; € HV*(I),

and p > r, the mixed variational formulation of (6.8) reduces to: Find (o,u) € H x Q,

(p,x) € Xg x My, and (64,&) € H; x Q;, i € {1,2}, such that

a(o, )+ b(T,u)
b(o,v)

a(p, ) + bi(9h, X)
ba(p, A)

— Cou(Ti, &)

ai(os, i) + ci(715, &)

ci(oi,m:) — di(&,m)

VreH,
VveQ,
Vap e Xy,
(7.33)
V)\EM27

V‘I'Z'EI‘IZ'7

Ve Q.



CHAPTER 8

The continuous solvability analysis

In this chapter we proceed as in several related previous contributions (see, e.g. [13] and the

references therein), and employ a fixed-point strategy to address the solvability of (7.33).

8.1 The fixed-point strategy

In order to rewrite (7.33) as an equivalent fixed point equation, we introduce suitable operators
associated with each one of the three problems forming the whole nonlinear coupled system.

Indeed, we first let T: (Q1 x Q2) x X3 — Q be the operator defined by

T(n,¢) =8  V(n ) e (QxQ)xXs,

55
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where (o,u) € H x Q is the unique solution (to be confirmed below) of problem (7.11) (equiv-

alently, the first two rows of (7.33)) with (n, ¢) instead of (£, ¢), that is

a(e,7)+b(r,u) = F(7) VreH,
(8.1)
b(a,v) = Gue(v) VveQ.

In turn, we let T : Q; x Qy — X, be the operator given by

Tn) =@ VneQ xQa,

where (@,x) € Xy x M; is the unique solution (to be confirmed below) of problem (7.19)
(equivalently, the third and fourth rows of (7.33)) with n instead of &, that is

a(p,y) +bi1(,x) = F(v) Vipe Xy,
(8.2)

bg(ga,)\) = G"l(/\) V)\GMQ.

Similarly, for each i € {1, 2}, we let i : Xo x Q — Q; be the operator defined by
Ti((ﬁav) = E; V((ﬁ,V)EXQXQ,

where (&i,é) € H; x Q; is the unique solution (to be confirmed below) of problem (7.28)
(equivalently, the fifth and sixth rows of (7.33)) with (¢, v) instead of (¢, u), that is

~ ~

ai(ai, Ti) +ci(13,8) — con(Ti,&) = Fi(m)  VmeH;,
ci(&imi) — di(&imi) = Gim) VmeQ,
so that we can define the operator T: X, x Q — (Q1 x Q) as:

~

T(¢,v) := (Ti(¢,v), Ta(¢,V)) = (&1,&) = € V($,v)eXyx Q. (8.4)
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Finally, defining the operator T : (Q; x Q2) — (Q1 x Q2) as

T(n) := T(T(n),T(n,T(n)) V¥meQ xQ,, (8.5)

we observe that solving (7.33) is equivalent to seeking a fixed point of T, that is: Find £ €
Q1 x Qg such that

T = €. (8.6)

8.2 Well-posedness of the uncoupled problems

In this chapter we establish the well-posedness of the problems (8.1), (8.2), and (8.3), defining
the operators T, T, and Ti, respectively. To this end, we apply the Babuska—Brezzi theory
in Banach spaces for the general case (cf. [6, Theorem 2.1, Corollary 2.1, Section 2.1]), and
for a particular one [23, Theorem 2.34], as well as a recently established result for perturbed
saddle point formulations in Banach spaces (cf. Theorem 3.4, [19, Theorem 3.4]) along with

the Banach—Necas—Babuska Theorem (also known as the generalized Lax—Milgram Lemma)

(cf. [23, Theorem 2.6]).

8.2.1 Well-definedness of the operator T

Here we apply [23, Theorem 2.34] to show that, given an arbitrary (n, ¢) € (Ql X Qg) x X,
(8.1) is well-posed, equivalently that T is well-defined. We remark that (n, @) only influences
the functional Gy, ¢, and that the boundedness of all the bilinear forms and linear functionals
defining (8.1), has already been established in (7.15) and (7.16). Hence, the discussion below
just refers to the remaining hypotheses to be satisfied by a and b. We begin by letting V be
the kernel of the operator induced by b, that is

V= {TEH: b(T,v) =0 VVGQ},
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which, according to the definitions of H, Q, and b (cf. (7.12), (7.13b)), along with the fact
that L*(Q2) is isomorphic to the dual of L"(2), yields

Vo= {’T € Ho(div,; Q) :  div(r) = 0}. (8.7)

Next, we recall that a slight modification of the proof of [26, Lemma 2.3] allows to prove that

for each t > 2% (see, e.g., [11, Lemma 3.1] for the case ¢ = 4/3, which is extensible almost
verbatim for any ¢ in the indicated range) there exists a constant C;, depending only on (2,
such that

Cilrlon < 1705 + ldiv(T)[5re V7 € Ho(dive; Q). (8.8)

Then, assuming that s > 2% and using (8.8), we deduce from the definition of a (cf. (7.13a)),

and similarly to [11, Lemma 3.2], that
a(r.7) = a|rg,.e YTEV, (8.9)

with a := C;/u. Hence, thanks to (8.9), it is straightforward to see that a satisfies the
hypotheses specified in [23, Theorem 2.34, eq. (2.28)] with the foregoing constant c.. In order
to fulfill all the hypotheses of the latter theorem, and knowing from (7.15) and (7.16) that
the boundedness of the corresponding bilinear forms and linear functionals has already been
established, it only remains to show the continuous inf-sup condition for b. Moreover, being

this result already proved for the particular case s = 4/3 (cf. [11, Lemma 3.3] and [30, Lemma

2n

3.5] for a closely related one), and arising no significant differences for an arbitrary s > —s

we provide below, and for sake of completeness, only the main aspects of its proof.

Indeed, given v e Q := L"(2), we first recall from (7.2) that r > 2, and set v, := |[v|"?v,

which is easily seen to satisfy
vs € L°(Q2) and f vvs = [V]ora [Vsose-
Q

In what follows, we make use of both, the Poincaré inequality, which refers to the existence

of a positive constant cp, depending on Q, such that cp |z|7, < |zl Yz e Hy(Q), and the
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continuous injection i, : H'(Q) — L"(Q) for the indicated range of s. Then, we let w € H}(Q)
be the unique solution of: {, Vw-Vz = —{ v, -z for all z € Hj(Q2), which is guaranteed by the
classical Lax—Milgram Lemma, and notice, thanks to the corresponding continuous dependence
estimate, that |w|;q < HCI—;” [vsloso. Hence, defining ¢ := Vw € L*(Q), we deduce that
div(¢) = v, in Q, so that ¢ € H(div; Q), and [[{[aiv..0 < (1+ %) [Vs]|o.s.0- Finally, letting o
be the Hy(divy; ©2)-component of ¢, it is clear that div({y) = v, and that ||{o|aiv..0 < [€|div..s
whence bounding by below with 7 := {, € H, and using the definition of b (cf. (7.13b)) along

with the above identities and estimates, we conclude that

b
oy PTY)

-~ [T|H
T+0

> Blvle VveQ, (8.10)

with 8 := (1 + %)71. The foregoing inequality (8.10) proves [23, Theorem 2.34, eq. (2.29)]
and completes the hypotheses of this theorem.

Consequently, the well-definedness of the operator T is stated as follows.

Theorem 8.1. For each (n, ¢) € (Q1 x Qz) x Xy there exists a unique (,1) € H x Q solution
to (8.1), and hence one can define TAF(n, @) := u e Q. Moreover, there exists a positive constant

Cs., depending only on p, |i.|, €0, ||, o, and B, and hence independent of (n, @), such that

T(n.$)la = lila < Cr{lglyar + [Eloso + Mlopo l@lora}.  (811)

Proof. Given (n,¢) € (Q1 x Q2) x Xy, a direct application of [23, Theorem 2.34] guarantees
the existence of a unique (,1) € H x Q solution to (8.1). Then, the corresponding a priori

estimate in [23, Theorem 2.34, eq. (2.30)] gives

NI W Y lal ¢, , lal
g < 5 (10 ) 1Pl + gy (1470 IGnlar (8.12)

which, according to the identities and estimates given by (7.15) and (7.16), along with some
algebraic manipulations, yields (8.11) and finishes the proof. O]

Regarding the a priori bound for the component & of the unique solution to (8.1), it follows
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from [23, Theorem 2.34, eq. (2.30)] that

la]

1
Bl + 5 (1+7) [Gnsla

~ 1
lofe < —
a

which yields the same inequality as (8.11), but with a different constant. Hence, choosing the
largest of the respective constants, and still denoting it by Cs, we can summarize the a priori

estimates for U and & by saying that both are given by the right-hand side of (8.11).

8.2.2 Well-definedness of the operator T

We now employ [6, Theorem 2.1, Section 2.1] to prove that, given an arbitrary n € Q; x Qa, (8.2)
is well-posed, equivalently that T is well-defined. Similarly as for Chapter 8.2.1, we first stress
that m is utilized only to define the functional G,,, and that the boundedness of all the bilinear
forms and functionals defining (8.2), was already established by (7.22) and (7.23). In this way,
it only remains to show that a, by, and b, satisfy the corresponding hypotheses from [6, Theorem
2.1, Section 2.1]. To this end, and because of the evident similarities, we follow very closely the
analysis in [13, Section 3.2.3], which, in turn, suitably adopts the approach from [29, Section
2.4.2]. Indeed, we begin by letting K; be the kernel of the operator induced by the bilinear
form b;, for each i € {1,2}, that is

K, = {weXi: bi(p,\) = 0 VAeMi}, (8.13)

which, according to the definitions of X; and M; (cf. (7.20)), and b; (cf. (7.21b)), along again
with the fact that L"(Q2) and L*(€2) can be isomorphically identified with (LS(Q))/ and (L’"(Q))/,

respectively, gives
Ky = {zbeHs(divs;Q): div(¢) =0 in Q} (8.14)

and

Ky = {zpeHr(dm;Q); div(y) =0 in Q} (8.15)
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Next, in order to establish the inf-sup conditions required for the bilinear form a (cf. [6, egs.

(2.8) and (2.9)]), we resort to [13, Lemma 3.3], which is recalled below.

Lemma 8.2. Let Q be a bounded Lipschitz-continuous domain of R", n € {2,3}, and let

[4/3,4] ifn=2
t,t" € (1,+0) conjugate to each other with t (and hence t') lying in .
13/2,3] ifn =3
Then, there exists a linear and bounded operator D; : L'(Q) — LY(Q) such that

div(Dy(w)) =0 in VweL(Q). (8.16)
In addition, for each z € L¥(Q) such that div(z) = 0 in Q, there holds

Lz-Dt(w) _ Lz.w Ywe LI(Q). (8.17)

Proof. Tt reduces to a minor modification of the proof of [29, Lemma 2.3], for which one needs to
apply the well-posedness in W1¢(Q) of a Poisson problem with homogeneous Dirichlet boundary
conditions (see [27, Theorem 3.2] or [34, Theorems 1.1 and 1.3] for the vector version of it). The
specified ranges for ¢ and ¢’ are precisely forced by the latter result. We omit further details

and refer to the proof of [13, Lemma 3.3]. O

We are now in position to prove the required hypotheses on a.

Lemma 8.3. Assume that s (and hence r) satisfy the ranges specified in Lemma 8.2. Then,

there exists a positive constant & such that

a( o, _
sup GO > alglx, VoeKs,. (8.18)
v, []x,
P+0
In addition, there holds
sup a(¢,¢) > 0 ViyeK,, ¥+0. (8.19)
@»eKs

Proof. Being almost verbatim to that of [13, Lemma 3.4], we just proceed to sketch it. Indeed,
given ¢ € Ky, we recall from (7.2) that r > 2 and set ¢¢ := |¢|" "2 ¢, which belongs to L*(Q)
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and satisfies

L ¢ b0 = [Blora [slone. (8.20)

In this way, bounding by below with ¥ := Dy(¢s), which, according to Lemma 8.2, belongs to
Ky, and then using (8.17), (8.20), the boundedness of D;, and the upper bound of ¢ (cf. (6.4)),
we arrive at (8.18) with @ := (| D, 51)_1. On the other hand, given now @ € Ky, ¢ + 0, we

P2y it £ 0
define v, := , which lies in L" () and satisfies J Vp = || Y50 >
0 ifip =0 @
0. Thus, bounding by below with ¢ := D,(1,) € Ky, and proceeding similarly as for (8.18),

we deduce (8.19) and conclude the proof. O

Before continuing with the continuous inf-sup conditions for the bilinear forms b;, i € {1, 2},
we now check the feasibility of the indexes employed so far, according to the different constraints
that have arisen along the analysis. In fact, from the preliminary discussion provided in Chapter

7.1, we have the following initial ranges

l, je(1,+m) and p, r€(2,+0) ifn=2,

(8.21)
l, 5€[3/2,3] and  p,re[3,6] ifn=3,
which, being added the request p > r, equivalently [ > j, becomes
le[2,40), je(1,2], peld,+0), re(2,4] ifn=2,
(8.22)

le[2,3], je[3/2,2], pel4,6], re[3,4] ifn=23.

Finally, imposing to r (and hence to s) the ranges required by Lemma 8.2, and guaranteeing

that s > nz—fQ, we arrive at the final feasible choices

le[2,400), je(1,2], peld+x), oe(L4/3], re(24], se[4/3,2) ifn=2,

l=3,7=3/2, p=6, 0=6/5, r=3, s=3/2 ifn=23.
(8.23)

Note that in (8.23) we have included the consequent ranges for p := ﬁ and s := 15 as well.
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However, we remark that the above indexes are not chosen independently, but once [ (or its
conjugate j) is chosen, then all the remaining ones are fixed.

We now go back to the well-definedness of T by establishing the continuous inf-sup conditions
for the bilinear forms b;, i € {1,2}. While the corresponding proofs are similar to those
of [29, Lemma 2.7] and [13, Lemma 3.6], and very close to that of [28, Lemma 3.5], for sake of

completeness we provide below the main details of them.

Lemma 8.4. For each i € {1,2} there exists a positive constant 3; such that

bi(¢, A =

sup (%, ) = 05 || M, Ve M;. (8.24)
PeX; ||¢ X

P+0

Proof. We begin by noticing that the values of r and s specified in (8.23) are compatible

with the range [2%, 22| required by [28, Theorem 3.2], an existence result to be applied

n+1) n—1
below. According to it, and since the pairs (Xl,Ml) and (XQ,MQ) result from each other
exchanging r and s, it suffices to prove (8.24) either for ¢ = 1 or for i = 2. In what follows
we consider i = 1, so that, given A € M; := L"(Q), we set A, := |A[""2 ), which belongs
to L*(Q2) and satisfies §, AN = [A|osal|Aslo,s0. Thus, a straightforward application of the
scalar version of [28, Theorem 3.2 yields the existence of a unique z € Wy*(Q) such that
Az = Xgin 2, z = 0 on I'. Moreover, the corresponding continuous dependence result
reads |z]1s0 < Os|As|osq, where Cy is a positive constant depending on s. Next, defining
¢ = Vz e L*(Q), it follows that div(¢p) = As in 2, whence ¢ € H?(divs; Q) =: Xy, and
there holds [|@|x, = [@]saiveo < (1 + (78) [As]o,s:0- In this way, bounding by below with
1 = ¢ € X, and bearing in mind the definition of b; (cf. (7.21b)) along with the foregoing
identities and estimates, we arrive at (8.24) for i = 1 with g, := (1 + C_'S)_l. The proof for

i = 2 proceeds analogously, except for the fact that, given A\ € My := L*(Q2), and since s < 2,
IAF2X ifAF0,

one needs to define A\, := Further details are omitted. O
0 it A=0.

As a consequence of Lemmas 8.3 and 8.4, and the boundedness properties given by (7.22),

(7.23), (7.24), and (7.25), we are able to conclude now that the operator T is well-defined.
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Theorem 8.5. For each m € Q; x Qq there exists a unique (@, X) € Xo x My solution to (8.2),
and hence one can define T(n) := @ € Xy. Moreover, there exists a positive constant Cx,

depending only on g, C,, |Q|, @, and By, such that

Tk, = 1@lxe < Cr{lghysrr + 1floma + Inloga} (8.25)

Proof. Given n € Q1 x Q, a straightforward application of [6, Theorem 2.1, Section 2.1] implies
the existence of a unique (@, x) € Xy x M; solution to (8.2). In turn, the a priori estimate

provided in [6, Corollary 2.1, Section 2.1, eq. (2.15)] establishes
_ 1 1 HaH
@l < = IFlx + = (1+120) Gl (8.26)
@ Ba

which, along with the aforementioned boundedness properties, yields (8.25) and ends the proof.

]

Similarly as for T, and employing now [6, Corollary 2.1, Section 2.1, eq. (2.16)], we observe

that the a priori bound for the ¥ component of the unique solution to (8.2) reduces to

i < 3 (L4 0 v + 3% (14 ) 16

which yields the same inequality as (8.25), but with a different constant, in particular depending
additionally on /3;. Therefore, as before, we still denote the largest of them by Cy, and simply
say that the right hand-side of (8.25) constitutes the a priori estimate for both ¢ and Y.

8.2.3 Well-definedness of the operator T

In this section we employ the solvability result for perturbed saddle point formulations in
Banach spaces provided by [19, Theorem 3.4|, along with the Banach-Ne¢as-Babuska Theorem
(cf. [23, Theorem 2.6]), to show that, given an arbitrary (¢, v) € Xy x Q, (8.3) is well-posed for
each 1 € {1, 2}, equivalently that T; is well-defined. Since this result was already derived in [19,

Theorem 4.2] as an application of the abstract theory developed there, and more specifically
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of [19, Theorem 3.4], we just discuss in what follows the main aspects of its proof.
To begin with, we introduce the bilinear forms A, A, : (H; x Q;) x (H; x Q;) — R given
by
A((Ci90), (Tim)) = ai(Ciymi) + ci(mi, ) + ci(Coomi) — ds(Diymi) (8.27)

and

Ay (&), (1i,m) == A((&, ), (Ti,m)) — con(Ti05) (8.28)

for all ({;,9;), (1i,m:) € H; x Q;, and realize that (8.3) can be re-stated as: Find (67, 5) e H; xQ;
such that
Ap((5:.&). (Ti,m)) = Fi(mi) + Gi(my) V(7 mi) € Hy x Q. (8.29)

In this way, the proof reduces to show first that the bilinear forms forming part of A satisfy
the hypotheses of [19, Theorem 3.4], and then to combine the consequence of this result with
the effect of the extra term given by ¢4y (+,-), to conclude that Ay, satisfies a global inf-sup
condition.

Indeed, it is clear from (7.30a), (7.30c), and the upper bound of x; (cf. (6.4)) that a; and d;
are symmetric and positive semi-definite, which proves the assumption i) of [19, Theorem 3.4].
Next, bearing in mind the definitions of ¢; (cf. (7.30b)) and the spaces H; and Q; (cf. (7.29)),
and using again that L(2) is isomorphic to the dual of L2(f2), we readily find that the null

space V; of the operator induced by ¢; becomes
V, = {T,- eH,: div(n) = 0} , (8.30)

and thus
1

K

1

K

ai(ti, 1) = = |Tlie = = I7liv,e  YTeVi, (8.31)

from which the assumption ii) of [19, Theorem 3.4], namely the continuous inf-sup condition

for a;, is clearly satisfied with constant & := &L

In turn, while the continuous inf-sup condition for ¢; was already established in [29, Lemma
2.9] (see also [19, Lemma 4.1}), for sake of clearness we provide below the main steps of its proof,

which follows similarly to the one yielding the continuous inf-sup condition for b in the present
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Chapter 8.2.1. More precisely, given n; € Q; := LP(Q), we set n;, := |n;|*~?n;, which uses from
(8.23) that p > 2, and notice that there hold n;, € L¢(Q) and §, 7m0, = |nilo.p0 [7i0]0,0:0-
Then, we let ¢; := Vz € L?(Q), where z € H}(2) is the unique solution of the variational
formulation: {,Vz.-Vw = —{ n,w for all w € Hj(Q), and deduce from the latter that
div(¢i) = mi, in 2, which yields ¢; € H; := H(div,;§2). In turn, denoting by cp the positive

constant guaranteeing the Poincaré inequality: cp |w|i, < |w|fq Yw € H(Q, and letting

lipll

again i, : H'(Q) — L*(Q) be the continuous injection, we find that [z[1,0 < 2 [9:0l0.00

and hence [{ifln, < (1+ %) [Mi0l0,0:0- In this way, bounding by below with 7; := ¢; € H;,

recalling the definition of ¢; (cf. (7.30b)), and employing the foregoing identities and estimates,

we arrive at

sup 01'(7-1'7771') > BHT]Z
Ti€H; H i
Ti

Qi Vi€ Qi, (8.32)

i

with 3 := (1 + ”é—’;“)fl, thus confirming the verification of assumption iii) of [19, Theorem 3.4].

Consequently, having shown that a;, ¢;, and d; verify all the hypotheses of [19, Theorem
3.4], we conclude that A satisfies the global inf-sup condition, which means that there exists a

positive constant s, depending only on |a;||, |ci|, &, and 3, such that

sup A((¢, %), (i, m:)

(73,m;)€H; x Q4 H(Ti7 ni)HHiXQi
(73,m:)F0

= &A H(Cﬂ 197’)HH1><QZ v (Cw 791) € Hi X QZ . (833)

Moreover, invoking the upper bound of ¢y, (cf. (7.31), (7.32)), it follows from (8.28) and (8.33)

that
A v Ciﬂ%u Tiy i ~
up  Aeell& (0 o (5 ey (1gasa + VIare) 1G9 lia, (530
("'Ev"i)EHiXQi H(Ti77]i) H;xQ;
TisTi

for all (¢;, ;) € H; x Q;, from which, under the assumption that, say

oA
||¢H07’Q + HVHO,T,Q < w> (8.35)
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we conclude that

A (G %), (15,m1))

aa
sup > — [ (&iy V)|l < Qs V(i) € Hy x Q. (8.36)
s PN [CA ] T 2 °
TisM5

Similarly, using the symmetry of A and (8.33), and assuming again (8.35), we find that

A v ) 7-91 ) i 1l o
(€;,9;)€H; XQy H(Cla 191) H; xQ; 2
0

Ui

In this way, we are now in position of establishing that, for each i € {1, 2}, (8.3) is well-

posed, which means, equivalently, that T ; is well-defined.

Theorem 8.6. For each i € {1,2}, and for each (¢,v) € X x Q such that (8.35) holds, there
exists a unique (o7, 5) € H; x Q; solution to (8.3), and hence one can define 'Ti((ﬁ, V) = 51 € Q.

Moreover, there exists a positive constant Cs, depending only on |i,| and o, such that

ITi(p, V)|, = [&illa, < (T4 &) lmixq, < CT{ng'Hl/zr + Hfz'Ho,g;Q}- (8.38)

Proof. Thanks to (8.36), (8.37), and the boundedness of F; and G; (cf. (7.31), (7.32)), the
unique solvability of (8.3) follows from a straightforward application of [23, Theorem 2.6]. In
turn, the a priori estimate given by [23, Theorem 2.6, eq. (2.5)] reads

QQ}?

which, along with the upper bounds for [F;|x, and |G|, derived from (7.31) and (7.32), yields
2
(8.38) with C; := = (1 + [i,])- O
aA

2

@5 &) e, < 5 {IFill; + 1G:
A

We end this chapter by observing from the definition of T (cf. (8.4)) and the priori estimates
given by (8.38) for each i € {1,2}, that

2 2

T¢Il == X 1T Vo, < Co Y {lailar + filose}  (339)

i=1 =1
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for each (¢, v) € Xy x Q satisfying (8.35).

8.3 Solvability analysis of the fixed-point scheme

Knowing that the operators ”I“, T, T, and hence T as well, are well defined, we now address
the solvability of the fixed-point equation (8.5). For this purpose, and in order to finally apply
the Banach Theorem, we first derive sufficient conditions under which T maps a closed ball of
Q1 x Qg into itself. Thus, letting  be an arbitrary radius to be properly chosen later on, we

define
W) == {n = mm)eQx Qi nlae < 3} (8.40)

Then, given n € W(J), we have from the definition of T (cf. (8.5)) and the a priori estimate
for T (cf. (8.39)) that, under the assumption (cf. (8.35))

QA

, (8.41)
2]

Sm) == IT®)ora + T, T(M)Jore <

there holds

[\

T lauxqe = IT(T), T, T0))laixa: < Co D {lgiler + Ifilogef. (342

=1

In turn, applying the a priori estimates for T (cf. (8.11)) and T (cf. (8.25)), we find that

Stn) < (1+Canl) T + Cx {lglar + [Flos]

< Co(1+ Iml)lml + Co(t + 1) {lglsrr + Ifloro } + Co{lehar + Iflosa}

with Cy := max {1,C3} Cg, so that, bounding ||n| by 8, we deduce that a sufficient condition
for (8.41) reduces to

QA
2]l

Co(1+8)0 + Co(1+ ) {glnrr + Ifloma} + Co{lglar + [£lose} < (8.43)
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For instance, defining

. ap
0 = mln{l, }, 8.44
SCole] (&40
letting C := 2Cj, and imposing
aa
Cl{HgHI/s,r;F + HfHO,r;Q} + Cf{HgHm,r + HfHO,s,Q} < ek (8.45)

it is easily seen that (8.43) holds. We have therefore proved the following result.

Lemma 8.7. Assume that § and the data are sufficiently small so that there hold (8.43) and

2

Ci 2 {lgilhar + Lfiloga} < 0. (8.46)

i=1
Then, T(W((S)) < W(6). In particular, with the definition (8.44) of 0, and under the assump-

tions (8.45) and (8.46), the same conclusion is attained.

We now address the continuity properties of T, T, T , and hence of T. We begin with that
of T.

Lemma 8.8. There exists a positive constant Lg., depending only on €y, ||, o, B, and |al|,

such that
[T(n.8) ~ T w)la < Li {Inlopold —loa + 10— Olopalbloe)  (347)

for all (n, ®), (9,%) € (Ql X Qz) x Xs.

Proof. Given (n,¢), (9,v¢) € (Ql X Qg) x Xo, we let T(n, ¢) := u and T(ﬁ,zb) := W, where
(g,u) € H x Q and (6, w) € H x Q are the corresponding unique solutions of (8.1). Then,

subtracting both systems, we obtain

a6 — 1) +b(r,i—Ww) = 0 VreH,
(8.48)
b(&—C,v) = (qug—Gﬁﬂp)(V) VVEQ,
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which says that (& — a u—w) € H x Q is the unique solution of a system like (8.1), but with
F = 0 and G, 4 — Gy, instead of just Gy, 4. Hence, similarly as for the derivation of (8.11),
that is employing [23, Theorem 2.34, eq. (2.30)] (see also (8.12)), we deduce that

- - o lalg al
[Tm.) =T, #)la = 18- %la < g5 (1+717) 1Gao— Goula (8.49)

In turn, it is clear from (7.13d), and then subtracting and adding 1 to the factor ¢ in the first
term, that for each v € Q there holds

(G = Gou)) = | = {(m—m) = (0 —02) w} v
- Lf‘l{(m—m) (6 =) + (0n = 02) — (o — 0) ) - v.

from which, proceeding as for the boundedness of G, 4 (cf. (7.15), (7.16)), that is employing
the lower bound of € (cf. (6.4)), (7.1a), and the fact that ||- 0.0 < [Q2]T"2/2"|-|o,-q, We conclude
that

1Gno ~ Goular < =5 12722 {Inllope |~ lora + 0= Blope [lora}.  (3.50)

In this way, replacing (8.50) back into (8.49), we arrive at (8.47) and finish the proof. O

The next result establishes the continuity of T, whose proof follows similarly to that of

Lemma 8.8.

Lemma 8.9. There exists a positive constant Ly, depending only on |Q|, @, Ba, and |al, such

that
IT(n) = T)|x, < Lz |n—Fope  Vm, 9 Qi xQq. (8.51)

Proof. Given 1, 9 € Q; x Qq, we let T(n) := @ and T(¥) := ¢, where (@, Y) € Xy x M;
and (¢, &) € Xy x M; are the corresponding unique solutions of (8.2). Then, subtracting both
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systems, we get

a(lg— ¢, ) +bi(p,x—w) = 0 Vi e Xy,
(8.52)

(@B A) = (Gp—Ca)(N) VYAeM,

which states that (@ — ¢, ¥ — ©) € Xy x M; is the unique solution of a problem like (8.2) with
G = 0 and G,, — Gy instead of G,. In this way, proceeding as for the derivation of (8.25),
which means applying the a priori estimate given by [6, Corollary 2.1, Section 2.1, eq. (2.15)]
(see also (8.26)), we find that

_ _ — 1
T - Tl = 2 - Bl < 5 (1+120) 16y~ Gl (8.53)

Now, it is clear from (7.21d) that for each A € My there holds

(Gn - Gﬂ) (A) = Gps(N) = — fg A {(771 — 1) — (2 — 792)}7

from which, applying Hoélder’s inequality, as we did for the boundedness of G, (cf. (7.22),
(7.23)), and using that | - o0 < [Q®~7" | - o0, We deduce that

1Gy — Gollmy, < Q7 |l — 9o e - (8.54)

Finally, employing (8.54) in (8.53), we obtain (8.51) and conclude the proof. O

It remains to prove the continuity of T, which is provided by the following lemma.

Lemma 8.10. There exists a positive constant Lz, depending only on €y, k, s, and Cy, such

T
that

2
F(6,v) T Wilaieas < Lo X {lgilar + 1filooe} 1@ v) = (8, W)lxxa (85
=1

for all (¢,v), (¢, w) € Xy x Q satisfying (8.35).

Proof. Given (¢,v) and (1, w) as indicated, we let, for each i € {1,2}, Tz(qb,v) = EZ € Q;
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and Ti(@b,w) = ;€ Q;, where (&i,é;) € H; x Q,; and (CN'Z, 51) € H; x Q; are the corresponding
unique solutions of (8.3), equivalently (cf. (8.29))

Arb,v((a'iagi)a (1i,m)) = Fi(mi) + Gi(ns) Vi (mim) € Hi x Qi (8.56)

and

A1/J,w((5i,5i)a (Tum)) = Fi(m) + Gi(m) V(Ti,mi) € Hy x Q. (8.57)

It follows from (8.56) and (8.57), along with the definitions of the bilinear forms Ay, (cf.
(8.28)) and cg,y (cf. (7.30f)), that

A¢7v((&z‘7§~i) - (aa51)7 (Tz‘ﬂ?z‘)) = A¢,v((5'z‘,gz‘)> (Tz‘,m)) - A¢7V((5ia’§i)v (Tz‘ﬂ?z‘))
(8.58)

= A%W((éa 51)’ (Tia 77@)) - A(b,v((Eia g2)7 (Ti7 771)) = C¢—¢,V—W(Ti’ [9;) )

so that applying the global inf-sup condition (8.36) to (&, 5) — (5“ 52), and then using (8.58)
and the boundedness of ¢4 (cf. (7.31), (7.32)), we conclude that
2||c|

o < 2 {1 = Bloso + [V = Wlora 17
(ETN

~

& = Dilla, < 1(8:.6) — (G0

Qi -

Next, invoking the a priori bound (8.38) for ||J;]

Q., the foregoing inequality yields

ITi(,v) — Ti(ep, w)

2]l Cs
o < g {lolar + [foen} 1(@v) — (. W)lxxa.

from which, summing over ¢ € {1, 2}, we arrive at (8.55) and end the proof. O]

Having proved Lemmas 8.8, 8.9, and 8.10, we now aim to derive the continuity property of
the fixed point operator T. To this end, given n, ¥ € W(J) (cf. (8.40)), we first recall from the
definition of T (cf. (8.5)) and Theorem 8.6 that, in order to define T(n) and T(¥), we need
that the pairs (T(n),’f(n,T(n))) and (T(ﬂ),T(ﬂ,T(ﬁ))) satisfy (8.35). Then, according to
the discussion at the beginning of the present chapter, we know that a sufficient condition for
the latter is given by (8.43), which we assume in what follows. Alternatively, and as indicated

there as well, (8.44) and (8.45) are in turn sufficient for (8.43).
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Thus, under the aforementioned assumption on ¢ and the data, a direct application of (8.55)

(cf. Lemma 8.10) yields

IT(7) — T(9)|qixq. = |T(T(n), T(n,T(n)) — T(T(¥), T(¥, T(9)))]axa,

2
< Ly D {lgilhor + [ filloea} {ITm) = T@)lx, + 1T, T(m) - T8, T(®))la}
i=1
(8.59)
In addition, employing now (8.51) (cf. Lemma 8.9) and (8.47) (cf. Lemma 8.8), we obtain

IT(m) = TW)|x, < Lr[n—Iaixq, (8.60)
and
IT(n, T(n)) = T(I,T(9))q
(8.61)
< Lz {||77||Q1xQ2 IT(m) = T(D)lx, + |7 —Fqixq HT(ﬂ)sz} :
respectively, whereas the a priori estimate for T(19) (cf. (8.25), Theorem 8.5) states
T@lxs < Cr{llghysrr + I Flora + 9laixa } (8.62)

In this way, using (8.60) in both (8.59) and (8.61), and then replacing the resulting (8.61) along
with (8.62) in (8.59), as well as recalling that || q,xq, and |¥|q,xq, are bounded by §, we
deduce the existence of a positive constant Ly, depending only on Lz, Lg, Lg, and Cs, such

that

IT(m) = T(9)] oy
2 (8.63)
< Lr (140 + lglysrr + 1 flora) Y {Iglar + 1o} 17 = Faucas
=1

for all , ¥ € W(§). We are thus in position to establish the main result of this chapter.

Theorem 8.11. In addition to the hypotheses of Lemma 8.7, that is (8.43) and (8.46), or
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alternatively (8.44), (8.45), and (8.46), assume that

LT (1 +0 + Hng/s,T;F + ”fHOJ’;Q)

(2

2
{lgilar + Ifilloen} < 1. (8.64)
=1

Then, the operator T has a unique fized point & € W(J). Equivalently, the coupled problem
(7.33) has a unique solution (o,u) e Hx Q, (¢, x) € Xa x My, and (0,&) € H; x Q;, i € {1,2},
with € := (&1,&) € W(J). Moreover, there hold the following a priori estimates

(e Wlixa < Cp{lgler + [Elosa + [€losel@loro}
(@) sty < Cr{lglsir + [f oo + €lopaf . and (8.65)

(02, &)l < Ca {lgillar + Ifiloon} i€ {12}

Proof. We first recall that the assumptions of Lemma 8.7 guarantee that T maps W(d) into
itself. Then, bearing in mind the Lipschitz-continuity of T : W(§) — W(0) (cf. (8.63)) and
the assumption (8.64), a straightforward application of the classical Banach theorem yields the
existence of a unique fixed point & € W(4) of this operator, and hence a unique solution of
(7.33). Finally, it is easy to see that the a priori estimates provided by (8.11) (cf. Theorems
8.1), (8.25) (cf. Theorem 8.5), and (8.38) (cf. Theorem 8.6) yield (8.65) and finish the proof. [



CHAPTER 9

The Galerkin scheme

We now introduce the Galerkin scheme of the fully mixed variational formulation (7.33), analyze
its solvability by applying a discrete version of the fixed point approach adopted in Chapter

8.1, and derive the corresponding a priori error estimate.

9.1 Preliminaries

We first let Hy, Qp, Xin, Mg, Hip sand Q;p, @ € {1,2}, be arbitrary finite element subspaces
of the spaces H, Q, X;, M;, H;, and Q;, i € {1, 2}, respectively. Hereafter, h denotes both the
sub-index of each subspace and the size of a regular triangulation 75, of  made up of triangles
K (when n = 2) or tetrahedra K (when n = 3) of diameter hg, so that h := max {hy :
Ke ﬁl}. Explicit finite element subspaces satisfying the stability hypotheses to be introduced
throughout the forthcoming analysis, will be defined later on in Chapter 10. Then, the Galerkin
scheme associated with (7.33) reads: Find (o, u,) € Hy x Qun, (@n, Xn) € Xop X My, and

1)
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(Oin,&in) €Hip x Qip, i € {1,2}, such that

a(op, )+ b(mh,wy) = F(m) V1reH,,

b(on,vi) = Gg,e,(Va) Vv, eQn,

a(pn, ¥n) + bi(PYn, xn) = F(iby) Vapp e Xqp,
(9.1)
ba(n, An) = Ge,(An) Ve May,
ai(oin, Tin) + Ci(Tin &in) — Ccph,uh(Ti,h; &n) = Filmin) V1ineHp,
Ci(ai,h;ni,h) - di(&',h,m,h) = Gi(m,h) Vm,h € Qi,h-

In what follows, we adopt the discrete version of the strategy employed in Chapter 8.1 to
analyse the solvability of (9.1). We now let Th : (Qun % Qap) x Xop — Qp be the operator
defined by

Th(nha ¢én) = 1, Y (M, d1n) € (Qun X Qap) X Xop,

where (7, 0;) € Hy, x Q), is the unique solution (to be confirmed below) of the first two rows

of (9.1) with (ny, ¢n) instead of (&, 4p), that is

a(a’h,Th)—i—b(Th,ﬁh) = F(’Th) VThEHh,
(9.2)

b(&h,vh) = Gnm(bh(vh) VVh S Qh .

In turn, we let T, : Q1,n X Q2 — Xgp, be the operator given by

Tw(nn) == @n Vo € Qun x Qo

where (@p, Xn) € Xop x My, is the unique solution (to be confirmed below) of the third and
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fourth rows of (9.1) with n, instead of &, that is

a(@n.¥n) + b1(Pn, Xn) = F(bn) Vb € Xy,
(9.3)

bg(@h, )\h) = G"lh ()\h) V)\h € M27h .

Similarly, for each i € {1, 2}, we let Ti,h : Xop X Qp — Qi be the operator defined by

Tz',h((ﬁh,Vh) = gi,h V(¢h,Vh) € X2,h x Qpn,

where (5'1-7;1,5;7;1) € H,, x Q; is the unique solution (to be confirmed below) of the fifth and

sixth rows of (9.1) with (¢, vy) instead of (¢, uy), that is

a;(Gin, Tin) + ci(Tin, &in) — Copwn(Tins&in) = Fi(Tin) V1ineHp,
(9.4)

Ci(&i,hani,h> - di(gi,h,m,h) = Gi(m,h) Vm,h € Qi,h,

so that we can define the operator Th : Xon X Qp = (Qup x Qop) as:

~

Th(n, va) = (Tl,h<¢havh);T2,h(¢haVh)) = (&n&on) = & V(bn,vi) eXop x Q.
(9.5)
Finally, defining the operator T, : (Q1 4 x Qa24) = (Q1n X Qa,1) as

T(m) = Th (Th(Tlh),Th (71, Tr(mn))) Vn € Qua x Qan s (9.6)

we observe that solving (9.1) is equivalent to seeking a fixed point of T}, that is: Find &, €

Q1 x Qo such that
Th(gh) =& (9'7)
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9.2 Discrete solvability analysis

In this chapter we proceed analogously to Chapters 8.2 and 8.3 and establish the well-posedness
of the discrete system (9.1) by means of the solvability study of the equivalent fixed point
equation (9.7). In this regard, we emphasize in advance that, being the respective analysis
very similar to that developed in the aforementioned chapters, here we simply collect the main

results and provide selected details of the corresponding proofs.

According to the above, we first aim to prove that the discrete operators Th, T),, and
Ti,h, S {1,2}, and hence Th and Ty, are all well-defined, which reduces, equivalently, to
show that the problems (9.2), (9.3), and (9.4) are well-posed. To this end, we now apply the
discrete versions of [23, Theorem 2.34], [6, Theorem 2.1, Section 2.1], and [19, Theorem 3.4],
which are given by [23, Proposition 2.42], [6, Corollary 2.2, Section 2.2], and [19, Theorem
3.5], respectively. More precisely, following similar approaches from related works (see, e.g. [13,
Section 4.2]), our analysis throughout the rest of this chapter is based on suitable hypotheses
that need to be satisfied by the finite element subspaces utilized in (9.1), which are split
according to the requirements of the associated decoupled problems. Explicit examples of

discrete spaces verifying these assumptions will be specified later on in Chapter 10.

We begin by addressing the well-definedness of Th, for which we let V;, be the discrete kernel
of b, that is
Vh = {ThEHh : b(‘Th,Vh) =0 VVhEQh}, (98)

and assume that
(H.1) there holds div(H,) < Qu, and
(H.2) there exists a positive constant 34, independent of h, such that

b(1,, v
sup b(7h, va) > Bi|vilq  YvieQu. (9.9)
TheréL HThHH
Th



9.2. DISCRETE SOLVABILITY ANALYSIS 79

Then, according to the definition of b (cf. (7.13b)), it follows from (9.8) and (H.1) that
Vp = {Th eH,: div(m) = o}, (9.10)

which says that V;, is contained in the continuous kernel V (cf. (8.7)), and hence the discrete

version of (8.9) is automatically satisfied, that is
a(th, 1) = aq|7)iv.0 V1,eV,, (9.11)

with oy = a := Cs/p. Recall here that Cy is the constant provided by inequality (8.8) with
t = s. In this way, it is clear from (9.11) that a satisfies the hypotheses given by [23, Proposition
2.42, eq. (2.35)] with the constant o, whereas (H.2) states that b fulfills [23, Proposition 2.42,
eq. (2.36)] with the constant 34. We are thus in position to establish next the following result.

Theorem 9.1. For each (nn, ¢n) € (Qupx Qapn) x Xoy there exists a unique (o, Up) € Hy x Qpy
solution to (9.2), and hence one can define Th(nh,q’)h) = 1y, € Q. Moreover, there exists a

positive constant Cs. ,, depending only on p, |i.||, €0, |Q|, aa, and Ba, and hence independent

Of (nh7¢h)) such that
Ealmadila = lnle < Cry {lgliar + [Eloco + Imlopal@nlora}. 012

Proof. Given (ny, ¢n) € (Q1n x Qa,n) X Xop, the existence of a unique solution to (9.2) follows
from a straightforward application of [23, Proposition 2.42]. In turn, the corresponding a priori
bound from [23, Theorem 2.34, eq. (2.30)] and the boundedness properties of F and Gy, 4,
imply (9.12). O

Similarly as observed for the continuous operator T, we remark here that the right-hand
side of (9.12) can also be assumed as the respective a priori estimate for &y.

Furthermore, for the well-definedness of T}, we need to introduce the discrete kernels of b

and by, namely

K p = {¢h eXin: b M) =0 Ve Ml,h} , (9.13)
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and

Ky i= {qph €Xop: ba(n ) =0 YA€ MM} , (9.14)
respectively, and consider the following assumptions

(H.3) there exists a positive constant &g, independent of h, such that

sup APnn) aglénlx, VeéneKon, and (9.15a)
YpeKy p H":bhHX1
Pr=+0
sup a(¢h,1,bh) >0 V’I#h € Kl,ha ",bh =*: 0. (915]3)
bdreKa p,

(H.4) for each i € {1, 2} there exists a positive constant Bi,d, independent of A, such that

bi(Wn, A _

sup M = 5“1 H)\h‘ M, V)\h € Mi,h . (916)
YReX; p ”’(/)h X

P +0

As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 8.5.

Theorem 9.2. For each ny, € Q1 X Qo there exists a unique (@n, Xn) € Xopn X My solution
to (9.3), and hence one can define Th(nh) = @ € Xy Moreover, there exists a positive

constant Cr 4, depending only on €y, C,, ||, &a, and Ba.q, such that

ITh(mn)x, = |@nlx. < Crg {Hng/s,r;F + [ flloma + thHo,p;ﬂ} : (9.17)

Proof. Given ny, € Q1 x Qap, a direct application of [6, Corollary 2.2, Section 2.2] implies the
existence of a unique solution to (9.3), whereas the a priori estimate provided in [6, Corollary

2.2, eq. (2.24)] and the boundedness properties of F and G,,, yield (9.17). O]

Analogously as explained for the continuous operator T, here we can also assume that,
except for a constant Cr 4 depending additionally on Bl,d, the a priori estimate for Y3, which

follows now from [6, Corollary 2.2, eq. (2.25)], is also given by the right-hand side of (9.17).

It remains to prove the well-definedness of Th = (Tl,h,'fg,h), for which we first observe

that, being a; and ¢; symmetric and positive semi-definite in the whole spaces H; and Q;,
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they certainly keep these properties in H;j and Q; 5, respectively, so that the assumption i)
of [19, Theorem 3.5] is clearly satisfied. Next, given i € {1, 2}, we let V; ;, be the discrete kernel
of ¢;, that is

Vip = {Ti,h € H;p : Ci(Ti,hani,h) =0 Vnpue th} ; (9-18)

and consider the hypotheses
(H.5) for each i € {1,2} there holds div(H;,) < Qip, and
(H.6) there exists a positive constant Ed > (), independent of h, such that

Ci<7'i,h7 Th',h)

sup > gd 175,nllq; V0in € Qih - (9.19)
7i,h€H; p HTi,h

Ti,h+0

It follows from (9.18), the definition of ¢; (cf. (7.30b)), and (H.5) that
Vi = {n,h ey div(my) = 0}, (9.20)

whence, similarly to the case of Ty, Vi is contained in the continuous kernel V; (cf. (8.30)) of

¢;, thus yielding the discrete analogue of (8.31), that is
1 2
ai(TZ‘7h, Ti,h) = % HTi,thivg;Q VTz‘,h € V;,h. (9.21)

In this way, it is clear from (9.21) that a; satisfies the hypothesis ii) of [19, Theorem 3.5] with
the constant &y := £~', whereas (H.6) constitutes itself the corresponding assumption iii).
Consequently, a straightforward application of [19, Theorem 3.5] implies the discrete global
inf-sup condition for A (cf. (8.27)) with a positive constant cs 4 depending only on ||, ||,
g4, and Ed, and thus the same property is shared by A, v, for each (¢p,vy) € Xop x Qp
satisfying the discrete version of (8.35), that is

o))

Ad (9.22)

+ <
H(ﬁhHO,nQ thHO,T,Q = 92 HCH

We are now in position of establishing the well-definedness of Tiﬁh for each i € {1, 2}.
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Theorem 9.3. Given i € {1,2} and (¢n, vy) € Xop X Qp such that (9.22) holds, there exists
a unique (&i,h,é,h) € Hip x Qip solution to (9.4), and hence one can define 'T“i’h((,bh,vh) =
gm € Q. Moreover, there exists a positive constant Cy ,, depending only on |i,| and ceaq,

such that

nxa < Cpg {laihar + [filoga}.  (923)

o < |(@in &in)

I Tin(Dn vi)la, = lI€in

Proof. 1t reduces to a direct application of [23, Theorem 2.22|, whose corresponding a priori

estimate, yielding (9.23), makes use of the boundedness of F; and G; (cf. (7.31) and (7.32)). O

Analogously to the continuous case, it follows from the definition of T}, (cf. (9.5)) and the
a priori estimates given by (9.23) for each i € {1, 2}, that
N 2 2
ITn(¢n, vi)laixa: = X, [Tin(@n, va)la, < Cag

i=1 %

{lghar + 1o} (929
1

for each (¢, vi) € Xo ) x Qy, satisfying (9.22).

Having established that the discrete operators Th, Ty, Th, and hence T}, (under the con-
straint imposed by (9.22)), are all well defined, we now proceed as in Chapter 8.3 to address
the solvability of the corresponding fixed-point equation (9.7). Then, letting 4 be an arbitrary

radius, we set

W(5d) = {nh = (Ul,hﬂlz,h) € Ql,h X Q2,h : thHleQQ < 5(1}7 (9-25)

and, reasoning analogously to the derivation of Lemma 8.7 (cf. beginning of Chapter 8.3), we
deduce that T), maps W(d,) into itself under the discrete versions of (8.43) and (8.46), which,

denoting Cp4 := max {1, Cs d} Ct 4, are given, respectively, by

o),

Ad
2 |c]

Coa(1+8:)da + Coa(1+ 82) {lglhjsr + 1 Flora} + Cra{ lghar + [Elosef < (9.26)
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and
2

CT,d Z {HgiHI/Q,F + HfiHO,g;Q} < dq. (9.27)

i=1

Alternatively, the same conclusion is attained if, instead of (9.26), we define

. A g
5y = mm{l, ’ } 9.28
: 8Coal] (5:28)
and, letting C} 4 := 2Cj 4, impose
Op g
Cra{llglssie + 1o} + Cra{llglyar + [flose} < T7- (9.29)

Note, however, that only (9.26) is required for T}, to be well-defined. Furthermore, employing
analogue arguments to those utilized in the proofs of Lemmas 8.8, 8.9, and 8.10, we are able
to show the continuity properties of Th, T}, and Th, that is the discrete versions of (8.47),
(8.51), and (8.55), which are exactly as the latter, but with corresponding constants denoted
L34, L1, and Lg . Therefore, following an analogue procedure to the one that yielded (8.63),
we deduce that, under the assumption (9.26), there exists a positive constant Lt 4, depending

only on Ls , L4, L 4, and Cg 4, such that

ITh(1m) — Th(9n) Qi xq.
(9.30)

< Lra (14 8+ lghysrr + 1flor) D {lailyar + 1fillooe} I = nlauas

2
=1

for all g, ¥, € W(dy).

Consequently, we can establish next the main result of this chapter.

Theorem 9.4. Assume that 64 and the data are sufficiently small so that (9.26) and (9.27) are
satisfied, or alternatively that there holds (9.28), (9.29), and (9.27). Then, the operator T}, has
a fized point &, € W(d4). Equivalently, the coupled problem (9.1) has a solution (o, uy) € Hy x

Q. (@n, xn) € Xopx My, and (075, & p) € Hipx Qup, i € {1,2}, with &, := (&1, &) € W(da).
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Moreover, there hold the following a priori estimates
l(on u)lrca < Cy{lelor + [flosn + [€alopo l@nlora}

1, xn) [ xoxm;, < Crg {||9H1/s,r;r + [ fllose + Hﬁh”o,p;ﬂ} , and (9.31)

H(Ui,ha fz’,h)

toxar < Crg {laihar + [ filoga} i€ {1,2).

In addition, under the extra assumption

2
Lra (14 8+ lglorr + 1flore) D, {laihar + [ filoga} < 1, (9.3
=1

the aforementioned solutions of (9.7) and (9.1) are unique.

Proof. As previously observed, the fact that T, maps W(d,) into itself is consequence of (9.26)
and (9.27), or alternatively of (9.28), (9.29), and (9.27). Then, the continuity of T}, (cf. (9.30))
and Brouwer’s theorem (cf. [16, Theorem 9.9-2]) imply the existence of solution of (9.7), and
hence of (9.1). In turn, under the additional hypothesis (9.32), the Banach fixed point theorem
guarantees the uniqueness of solution. In either case, (8.11), (8.25), and (8.38) yield the a priori
estimates (9.31) and conclude the proof. O

9.3 A priori error analysis

In this chapter we consider arbitrary finite element subspaces satisfying the assumptions spec-

ified in Chapter 9.2, and establish the Céa estimate for the Galerkin error

2
l(o, 1) = (oh, wn) |lmxq + (@, X) = (@ X0) [xosrty + 2,104, &) = (@in, &in)lmixq, , (9.33)

i=1

where ((a,u), (©, %), (0'1-,&)) € (H X Q) X (X2 X Ml) X (Hz X QZ-), i€ {1,2}, is the unique
solution of (7.33), and ((o4, ws), (@n Xn), (Gin, &in)) € (HrxQp) x (XopxMyp) x (Hip x Qin),
= {1,2}, is a solution of (9.1). We proceed as in previous related works (see, e.g. [13])

by applying suitable Strang-type estimates to the pairs of associated continuous and discrete
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schemes arising from (7.33) and (9.1) after splitting them according to the three decoupled
equations. Throughout the rest of this chapter, given a subspace Z, of an arbitrary Banach

space (Z,] - |z), we set

dist(z, Z),) := iggh |z — zn|z Vze Z.

z

We begin the analysis by considering the first two rows of (7.33) and (9.1), so that, employing
the estimates provided by [6, Proposition 2.1, Corollary 2.3, Theorem 2.3], we deduce the

existence of a positive constant ¢, independent of A, such that

l(o,u) = (o, w)[Hxq < E{dist(U,Hh) + dist(u, Qn) + [Gep — Gsh,cph||Q;L}~ (9.34)

Thus, proceeding analogously to the derivation of (8.50), we readily obtain

|Gew — Geponlay < 25 12072 {[€lupn i — @rlara + [@nlonn € — Exlopa}, (039
which, substituted back in (9.34), yields

(o) = (o, w)llxq < e {dist(or, Hy) + dist(u, Qu)
(9.36)

+[&lopale = enllora + lenloral§ = &Ho,p,a} :

with ¢z = 6max{1,551 |Q|(7"*2)/27“},
Next, employing the same estimates from [6, Proposition 2.1, Corollary 2.3, Theorem 2.3]

to the context given by the third and fourth rows of (7.33) and (9.1), we find that there exists

a positive constant ¢, independent of h, such that

1(, X) — (@ns Xn) [ x2 001, < E{diSt(%th) + dist(x, Min) + [Ge — GshHMg,h}- (9.37)

In turn, proceeding as for the deduction of (8.54), we obtain

|Ge = Geyllg, < QAP € = &nllopa s (9.38)
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which, along with (9.37), gives

1@, X) = (@hs Xn) [ xoxnt, < cf {dist(%xz,h) + dist(x, Myn) + (€ —€hH0,p;ﬂ}> (9.39)

with ¢y := ¢ max {1, ]Q\(p_"“)/’"‘}.

Furthermore, we now focus on the last two rows of (7.33) and (9.1), with the terms c,, (7, &)
and ¢y, w, (Tin, & n) being considered as part of the respective functionals on the right-hand
side. In this way, applying the estimate from [23, Lemma 2.27], we conclude that there exists

a positive constant ¢, independent of A, such that

I(4,&) = (0ins Ein)

(9.40)
< 5{diSt(ai7Hi,h) + diSt<£iaQi,h) + HC%U('?&) _CLPh,uh< fz h)

H{L }L}

Then, subtracting and adding &;, to the second component of ¢, (-, §;), making use of the
triangle inequality, bearing in mind the definition of ¢4y (cf. (7.30f)), and employing its
boundedness property (cf. (7.31), (7.32)), we get

leon(5&) = onun C &inluy, < leou(& = &n)liy, + lco—pnu—u, (- &in)
< el {(Hw\lo,r;ﬂ + [ulloe) 1€ = Gnlose + [€inlopn (I — @rlloma + u— uhHo,r;ﬂ)} :

which, jointly with (9.40), and summing over i € {1,2}, imply

2 2
Z (i, &) — (oins &in) . < Gy { Z dlst (o4, H; p) + dist(&;, th))
i=1 i=1
+ (Ielora + [alore) 1€ — &lope (9.41)
+1&nlopn (10 = @nloo + lu— unlore) }

with ¢z = @ max {1, |c[}.
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For the rest of the analysis we introduce the partial error

2

E = (o, 0) = (o0, w)rcq + X (006) = (o0 &)

=1

H;xQ; »

and suitably combine the estimates (9.36), (9.39), and (9.41). More precisely, employing the
right-hand side of (9.39) to bound | — @ullor0 in (9.36) and (9.41), adding the resulting
inequalities, performing some algebraic manipulations, and then utilizing the a priori bounds
for |ellora. [enloras 1€lopas [€rnllona, and |[ufo,.q provided by Theorems 8.11 and 9.4, we
find that there exists a positive constant C., depending on c3, ct, ¢5, 9, dq, Cz, Cg, Cy, Cr 4,

and Cx

% 4> and hence independent of h, such that

2
E < C, {dist((a,u),Hh x Q) + dist((¢, x), Xap x M) + Zdist((ai,@),HM X Qi,h)}

i=1

2
+ Ce{llglar + [€lose + 1glsre + 1flone + 3 (lg:lor + | filogn) £
i=1

(9.42)
Consequently, we are in position to establish the announced Céa estimate.
Theorem 9.5. In addition to the hypotheses of Theorems 8.11 and 9.4, assume that
2
1
Ce{lglhar + flose + lolysre + Uflosa + ) (lgihar + 1ilooo) } <5 (9.43)

=1

Then, there exists a positive constant C, independent of h, such that

2
[(e0) = (o0, W) [uxq + 1(#: X) = (n x0) Ixaxrty + D 1(06,&) = (Fins &in)mixa,

i=1
2
<C {dist((o‘,u),Hh X Qh) + dist((cp,x),XZh X Mlyh) + Zdist((o‘i,&),Hi’h X QM)}.
i=1
(9.44)

Proof. Under the assumption (9.43), the a priori estimate for E follows from (9.42), which,
along with (9.39), yield (9.44) and ends the proof. O

We end this chapter by remarking that (6.7) suggests the following postprocessed approxi-
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mation for the pressure p

1
= "t
Ph - r(on) .

for which it is easy to show that

1
lp = prloge < % lo—onfoe-

88

(9.45)

(9.46)



CHAPTER 10

Specific finite element subspaces

In this chapter we define explicit finite element subspaces satisfying the hypotheses (H.1) -
(H.6) that were introduced in Chapter 9.2 for the well posedness of the Galerkin scheme (9.1),

and provide the corresponding rates of convergence.

10.1 Preliminaries

In what follows we make use of the notations introduced at the beginning of Chapter 9.1. Thus,
given an integer k > 0, for each K € T;, we let Py(K') and P, (K) be the spaces of polynomials
of degree < k defined on K and its vector version, respectively. Similarly, letting x be a generic
vector in R™, RTy(K) := Py(K) + Pi(K)x and RTy(K) stand for the local Raviart-Thomas
space of order k defined on K and its associated tensor counterpart. In addition, we let Pr(73),

P(T), RTk(T;,) and RTy(7;) be the corresponding global versions of Py (K), Pr(K), RT(K)

89



10.2. VERIFICATION OF THE HYPOTHESES (H.1) - (H.6) 90

and RTy(K), respectively, that is
Pu(Th) = {vh eLX(Q): wlxePu(K) VKe 7;} ,

P.(T;) = {vh eL2(Q): vilx e Pi(K) VK e E} ,
RTW(T:) == {m e H(div;) :  7lx € RTW(K) YK eTi),

and

RT,(T;) = {TheH(div;Q): |k € RTH(K) \ﬂ(efrh}.

We notice here that for each t € (1, +00) there hold the inclusions P(7,) < LY(Q), Pi(Th) <
LY(Q), RTy(7n) < H(divy;Q), RTk(7n) < H'(divy; Q), and RTx(7,) < H(divy; ), which

are employed below to introduce our specific finite element subspaces. Indeed, we now set

Hj, := RT(T,) n Ho(divy; ), Qp := Pip(Tn), Hin := RTw(Th), Qin = Pu(Th),

X2,h = RTk(ﬁ), Ml,h = Pk(’ﬁl)a Xl,h = RTk('ﬁL), and Mz,h = Pk(ﬁ)-
(10.1)

10.2 Verification of the hypotheses (H.1) - (H.6)

We begin by observing from (10.1) that (H.1) is trivially satisfied, whereas (H.2) was proved
in [17, Lemma 5.5] (see, also, [11, Lemma 4.3]) for the particular case given by r = 4 and
s = 4/3. In turn, a vector version of (H.2) was established in [29, Lemma 4.5] for s € (1,2)
in 2D (with local notation there given by ¢ instead of s). In both cases, the preliminary result
provided by [17, Lemma 5.4] plays a key role in the respective proofs. While we could simply
say, at least in 2D, that (H.2) follows basically from a direct extension of [29, Lemma 4.5], we
provide its explicit proof below for sake of completeness. To this end, following [29, Section

4.1], we now introduce for each t € (1, +o0) the space

H, = {’T e Hi(div; Q) U H(divi: Q) 1 7|x € WH(K) VK e 7;} ,
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and let 117 : H; — RT(T,) be the global Raviart-Thomas interpolator (cf. [7, Section 2.5]).

Then, we recall from [7, Proposition 2.5.2 and eq. (2.5.27)] the commuting diagram property
div(I; (7)) = Pr(div(r)) VreH,, (10.2)

where PF : LY(Q) — Py(Ty) is the projector defined, for each v € L!(2), as the unique element
PF(v) € Pp(Tr) such that

J Pr(v)an = f vqn Van € Pr(Th). (10.3)
0

Q

In turn, it follows from [23, Proposition 1.135] (see, also, [13, eq. (A.5)]) that there exists a

positive constant Cp, independent of h, such that for each t € (1, 4+0) there holds
[PE()ose < Cplvfose  YveLH(Q). (10.4)

On the other hand, while here we could use again [17, Lemma 5.4], we prefer to resort to the
slightly more general result provided by [13, Lemma A.2], thus giving a greater visibility to it,
which establishes that, given an integer [ such that 1 < [ < k+ 1, and given ¢, p € (1, 4+0),
such that p < t < n%) if p<n,orp < t< 4w if p=n, there exists a positive constant C,
independent of h, such that

+o_n

|m — HZ(T)H[)}t;Q < ORti s |7 |12 VT1e Wl’p(Q). (10.5)

Note that for the first set of constraints on ¢ and p, there holds © —

. % > —1, which yields

I+7 - % > 0, whereas for the second one, there holds [ + % — % =1—1+% = %, thus proving
that in any case the power of i in (10.5) is non-negative. In this way, it follows from (10.5)

that, for [ = 1, and under the specified ranges of ¢ and p, there exists a positive constant Cyy,

independent of h, such that (cf. [13, Lemma A.3])

I (T)lose < Cultlipe  V7TeWH(Q). (10.6)
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In particular, for p < n and ¢t = 2, the inequality ¢ < n%; becomes p = nz—fQ, so that for the

resulting range of p, that is p € [ n 2) in 2D, and p € [ 2n 2] in 3D, we obtain

n+2’ n+2’

I(T)loe < CulTlipe  ¥7eWH(Q). (10.7)

Analogue identities and inequalities to those stated above are valid with the tensor and vector

versions of TI¥ and P}, which are denoted by IT} and PY, respectively.

We are now in position to prove that (H.2) holds.

Lemma 10.1. Under the ranges for r and s specified by (8.23), there exists a positive constant

Ba, independent of h, such that

L vy, - div(m)

sup = /Bd thHO,r;Q vVh € Qh7 (108)
mer, | Thldivae
Th#o
Proof. Given v, € Qp, vi, # 0, we set vy, := |v,|""? vy, which belongs to L#(Q2), and notice
that
| v = Wil Vil (109)
Q

Next, we let O be a bounded convex polygonal domain that contains Q, and define
Vs in Q s
0 in O\Q,

It is readily seen that g € L*(O) and |g[os.0 = | Vhsllo.s:0- Then, applying the elliptic regularity
result provided by [25, Corollary 1], we deduce that there exists a unique z € W>*(0)nWy*(0)
such that: Az = gin O, z = 0 on dO. Moreover, there exists a positive constant Cieg,

depending only on O, such that

[zl250 < Creglglosio = Creg [Vhslosa- (10.10)

Hence, defining ¢ := Vaz|g € W(Q), it follows that div({) = v, in Q, and, according to
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(10.10),

[€lrse < lzlaso < Creg[Vaslosa- (10.11)

Now, since the identity tensor I clearly belongs to RTy(7;), we can let ¢, be the Hy(divs; $2)-
component (cf. (7.10)) of II¥(¢), so that ¢, € Hy,. In this way, employing the analogue of
(10.2), we find that

div(¢y) = div(IT(¢)) = PL(div(C) = PL(vas). (10.12)
which, along with the analogue of (10.4) for t = s, give

HdiV(Ch)HO,S;Q < Cp th,SHO,S;Q' (10.13)

In turn, noting that the range for s (cf. (8.23)) fits into the one for p in (10.7), we can apply
this inequality (with p = s) and the regularity estimate (10.11), to arrive at

[¢hloe < [T ]oe < Crl¢ise < Cn Creg [Vhs|osa (10.14)

which, combined with (10.13), implies

I¢hllaivee < (Cp + Cn Creg) [Vasllo,sio - (10.15)

Consequently, bounding below the supremum in (10.8) with ¢, and making use of (10.12), the
analogue of (10.3), (10.9), and (10.15), we conclude the required discrete inf-sup condition with

the constant B4 = (C’p + Ch Creg)_l. O

Furthermore, for the hypotheses (H.3) and (H.4), we first stress that (H.3) corresponds
exactly to [13, (H.5)], and hence we omit most details and refer to [13, Section 5.2, Lemma
5.2]. We just make a few remarks here. First of all, we observe that the discrete kernels of the

bilinear forms b; and b, coincide algebraically, which reduces to

Kb .= {¢heRTk(ﬁ): div(gp) =0 in Q}
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Then, we let ©F : L1(Q) — K¥ be the projector defined similarly to (10.3), that is, given
¢ € L1(Q2), ©F(¢) is the unique element in K¥ such that

J@iﬁ(@-wh _ f S
Q Q

In this way, a quasi-uniform boundedness property of ©F in 2D (cf. [13, eq.(5.8)]), along with
the properties of the operators D; (cf. Lemma 8.2), play a key role in the proof of (H.3).
Whether the aforementioned boundedness is satisfied or not in 3D is still an open problem, and
hence, similarly to [13], the assumption (H.3) is the only aspect of the analysis in this chapter
that does not hold in 3D. All the other conditions are valid in both 2D and 3D. Regarding
(H.4), we remark that the discrete inf-sup conditions for b; and by, which adapt the continuous
analysis from Lemma 8.4 to the present discrete setting, follow from slight modifications of the

proofs of [29, Lemma 4.5] and [13, Lemma 5.3]. Further details are omitted here.

Finally, it is clear from (10.1) that (H.5) is trivially satisfied, whereas (H.6) was proved
precisely by [29, Lemma 4.5]. Alternatively, for the discrete inf-sup condition for ¢; we can
proceed analogously to the proof of Lemma 10.1 by observing that the range of ¢ (cf. (8.23),
recall that H; := H(div,;?)) also fits into the one for p in (10.7), whence this inequality can
be applied to p = o as well.

10.3 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (9.1) with the specific finite
element subspaces introduced in Chapter 10.1, for which we previously collect the respective
approximation properties. In fact, thanks to [23, Proposition 1.135] and its corresponding
vector version, along with interpolation estimates of Sobolev spaces, those of Qj, Q;, and

M, 5, are given as follows

(AP}) there exists a positive constant C', independent of h, such that for each [ € [0,k + 1],
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and for each v e W' (), there holds

diSt(V’ Qh) = vig(gh v = Vilore < C'h' V]l

(AP%) there exists a positive constant C', independent of h, such that for each [ € [0,k + 1],
and for each n; € W(92), there holds

dist (1, Qin) = oot I = ninlope < Ch e,

(APY) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1],
and for each A € Wi (), there holds

dist(A, Myp) == inf A = Apflore < Ch A0 -

REM1 p

Furthermore, from [29, eq. (4.6), Section 4.1] and its tensor version, which, as the foregoing
ones, are derived in the classical way by using the Deny-Lions Lemma and the corresponding
scaling estimates (cf. [23, Lemmas B.67 and 1.101]), we state next the approximation properties

of Hy, and H;

(APY) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1],
and for each 7 € H'(Q) n Hy(divy; ) with div(7) € Wh¥(Q), there holds

dist(7,Hy) i= inf |7 = milai.o < OB {I7]o + |div(r) o},

(AP}") there exists a positive constant C', independent of h, such that for each [ € [1,k + 1],
and for each 7; € H'(Q) with div(7;) € Wh2(€2), there holds

dist(r,, 1) = inf |7 — Tonlawge < Chl{\m”l,g + \|div(n)ul,g;g}.

Ti,n€H; n

Finally, that of X35, which we recall from [29, Section 4.5, (AP})], becomes
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(APY) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1],
and for each ¢ € W' (Q) with div(¢p) € Wi (Q), there holds

Aist(9, X20) = 6= Sulleavea < O {[@lie + |Av(9)lirn}

d)hEX

The rates of convergence of (9.1) are now provided by the following theorem.

Theorem 10.2. Let ((o,u), (¢, x), (0:,&)) € (Hx Q) x (Xa x My) x (H; x Q;), i € {1,2} be
the unique solution of (7.33) with € := (&1,&) € W(J), and let ((O'h, uy), (@n, Xn), (Gin, fi,h)) €
(Hy x Qp) x (Xop xMyg) x (Hipx Qin), i € {1,2} be a solution of (9.1) with &, := (&1, &) €
W(d4), which is guaranteed by Theorems 8.11 and 9.4, respectively. In turn, let p and py, given
by (6.7) and (9.45), respectively. Assume the hypotheses of Theorem 9.5, and that there exists
l€[1,k+ 1] such that o € H(Q) n Hy(divy; ), div(o) e WH(Q), ue WH(Q), p € WH(Q),
div(ep) € WH(Q), x € WH(Q), o; € H'(Q), div(e;) € WHe(Q), and & € W'(Q), i € {1,2}.

Then, there exists a positive constant C, independent of h, such that

2
l(o.0) = (n, wi)[rxq + [P = Prlloa + 10, %) = (@ns x0) xaran + D5 1(00: &) = (@ins in) i xa
i=1

C'h {HU”LQ + [div(e)|iso + [ulime + [elime + [divie) e + x|

N

2
+ 3 (loile + [div(e) oo + [&lin0) }
=1

~

Proof. 1t follows straightforwardly from Theorem 9.5, (9.46), and the above approximation

properties. O



CHAPTER 11

Computational results

We turn now to the numerical verification of the rates of convergence anticipated by Theo-
rem 10.2. The following examples in 2D and 3D have been realized with the finite element
library FEniCS [1]. The linearization of the nonlinear algebraic equations that arise after dis-
cretization is done using either a fixed-point Picard algorithm or an exact Newton-Raphson
method (with the zero vector as initial guess and iterations are stopped once the absolute or
relative residual drops below 107%) and the linear systems are solved with the multifrontal

massively parallel sparse direct method MUMPS [2].
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Figure 11.1: Example 1. Error history associated with the finite element family (10.1) with
k = 0 in 3D for primal variables (top left) and mixed variables (top right), and samples of
approximate primal variables (velocity streamlines uy,, iso-surfaces of postprocessed pressure

Ph, electrostatic potential xj,, and positive ion concentration &; 5; bottom plots). In all mesh
refinements the number of Newton—-Raphson iterations was 4.

Example 1. Considering first the spatial domain © = (0, 1) along with the arbitrarily chosen
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parameters

p=10"% =01, k1 =025 Ky =05,

we define the following manufactured exact solutions to (6.8)

sin?(mx) sin(7y) sin(272)
u= sin(7x) sin?(ry) sin(272) ;
—[sin(27z) sin(7y) + sin(7z) sin(2ry)] sin?(72)

1
p=at= Sy + 2, & = exp(ay+2),

& = cos®(xyz), x =sin(z)cos(y)sin(z), o = uVu —pl,

o, = ri(VE + C]ifiﬁ_lso) —&u, @ =¢eVy,

and construct forcing/source terms and non-homogeneous Dirichlet boundary conditions f, g, f;, g;
from these closed-form solutions. Using the lowest-order version of the finite element spaces
defined in (10.1) (with polynomial degree k = 0), we solve problem (9.1) on a sequence of
six succesively refined regular meshes. The zero-mean pressure condition is enforced using a
real Lagrange multiplier approach. At each refinement level we compute errors between ap-
proximate and smooth exact solutions using the norms in (9.33) and Theorem 10.2 (but we
split their contribution coming from the error on each individual field variable). For this 3D

accuracy test we consider the Banach spaces indexes specified in (8.23)
r=3 s=3/2, p=6, p=06/5.

The results of this convergence study are collected in Figure 11.1 (top panels), where we plot
in log-log scale the error decay as the number of degrees of freedom increases. Apart from the
electric field ¢ which converges with rate of approximately 1.5, all other variables exhibit an
optimal rate of convergence. In the bottom panel of the figure we show approximate solutions

for some of the field variables, which indicate well resolved profiles.

In addition, the balance-preserving property of the proposed mixed formulation is assessed
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DoF h e r momentum, potential, transport;; transportyy
145 1.732 | 1.40e+1 * 2.37e-07 7.29e-17 1.83e-15 8.64e-16
1009 0.866 | 7.44e4+0 0.91  8.61e-08 2.45e-16 4.14e-15 1.81e-15
7489 0.433 | 3.43e+0 1.12  6.07e-10 4.53e-16 5.10e-15 4.85e-15
57601 0.217 | 1.40e+0 1.29  1.27e-11 6.76e-16 1.45e-14 8.77e-15
451585 0.108 | 6.00e-01 1.22  1.04e-11 6.29¢e-15 1.47e-14 2.48e-11
3575809 0.051 | 2.97e-01 1.13  5.88e-11 4.20e-15 2.38e-15 2.95e-15

Table 11.1: Example 1. Total error, experimental rates of convergence, and ¢*-norm of the
projected residual of the momentum, potential, and ionic transport equations.

by computing the quantities

momentum, := [P} (div(ey) — (&1 — &op) e on + £)| e,
potential, := |Pr(div(en) + (E1h — &an) + f)e,

transport, = 1PE(E&n — div(ain) — fi)llee-
These values, for each refinement level, are collected in Table 11.1. We tabulate the total error

e:= (o, u) = (o, un)[uxq + lp = Paloe + (. X) = (@n xn)|x2xm,

HixQq »

2
+ Z I(03,&i) = (Tin; §in)

i=1
(as indicated by Theorem 10.2) as well as the rates of convergence computed as

r = log(e/8)[log(h/h)] ",

where e and e denote errors produced on two consecutive meshes associated with mesh sizes
h and ﬁ, respectively. From the last columns we see that the potential and transport balance
equations are satisfied to machine precision while the error for the momentum balance is higher.
This may be explained by the presence of the term ¢, on the right-hand side (which has a
H(div)-component).

Example 2. In addition, and in order to illustrate the implementation of fixed-point solvers,

we have realized numerically Picard versions of the linearization of (9.1). In case A we follow the
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fixed-point structure used in the analysis of Chapter 9.1, that is, solving sequentially problems
(9.2) — (9.3) — (9.4),

and iterating until the ¢?>-norm of the vector containing the residual of the Picard iterates
reaches 1078, Next, in case B we choose a different fixed-point splitting where we apply two
modifications with respect to case A. First, in (9.4) instead of the linear functional for the second
discrete electrostatic potential equation (discrete version of (7.21d)) we consider G(A,) =
— SQ fAn and the coupling term appears as a bilinear form contribution (and no longer as part

of the linear functional), say

G(Ans (&1,n, &) = L M(&n —E2n).

Secondly, with regards to the constitutive equation in the ionized particle equations, we swap
the bilinearity in the flux definition (discrete version of (7.30f)) from &, ;, to the pair (¢p, uy),
that is, we consider

Eéi,h(ﬂ',h, (D, up)) := J {qi Eietoy — o ¢ Uh} T

Q

For both fixed-point cases we have taken as initial guess solution the zero vector. Moreover,
we consider a 2D problem with manufactured solutions defined on Q = (0,1)?
cos(mx) sin(my)

, p=x'—y', x=sin(x)cos(y), & =exp(—ay), & = cos’(xy),

— sin(mz) cos(my)

and take the same model constants as before. In 2D, and according to (8.23) we now choose

r=4, s=4/3, p=4, op=4/3.

We focus on the number of Picard iterations required in each case, displaying the obtained

results in Table 11.2. While we confirm that all methods give exactly the same errors (and
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case A case B case C
DoF h e r iter e r iter e r iter

k=0

221 0.500 | 6.64e+0 = 80 | 6.64e+0  « 9 6.64e+0  * 5

841 0.250 | 2.36e+0 1.49 83 | 2.36e+0 1.49 8 2.36e+0 1.49 4

3281 0.125 | 8.34e-01 1.50 72 | 8.34e-01 1.50 8 8.34e-01 1.50 4

12961 0.062 | 3.32¢e-01 1.33 70 | 3.32¢-01 1.33 9 3.32¢-01 1.33 4

51521 0.031 | 1.51e-01 1.14 68 | 1.51e-01 1.14 9 1.51e-01 1.14 4
k=1

681 0.500 | 6.87e-01  « 68 | 6.87e-01  « 9 6.87e-01  * 4

2641 0.250 | 1.20e-01 2.51 68 1.20e-01 2.51 9 1.20e-01 2.51 3

10401 0.125 | 2.57e-02 2.23 68 | 2.57e-02 2.23 9 2.57e-02 2.23 4

41281 0.062 | 6.11e-03 2.08 68 6.11e-03 2.08 9 6.11e-03 2.08 4

164481 0.031 | 1.51e-03 2.01 77 1.50e-03 2.02 9 1.50e-03 2.02 4

Table 11.2: Example 2. Total error, experimental rates of convergence, and number of iterations
required for two types of fixed-point methods as well as for Newton—-Raphson linearization.

consequently also the same convergence rates, which are optimal in view of the theoretical
bounds), from the number of fixed-point iterations we readily note that case B performs much
better than case A, for the two polynomial degrees we tested k = 0, k = 1. This behaviour
could be explained by the stability of different linearizations of advective nonlinearities and by
the strength of the coupling for this particular choice of model parameters. We stress that the
analysis of case B is, however, not at all straightforward since the decoupled linear electrostatic
potential problem resulting from the first modification is no longer symmetric. For sake of
reference we also tabulate total errors and number of nonlinear iterates obtained with the
method we use also in Examples 1 and 3: an exact Newton-Raphson linearization (labelled
here as case C). Needless to say, the latter is actually the one that one would employ in practical
computations. Samples of the approximate solutions (only the mixed variables) computed with

the method in case A are portrayed in Figure 11.2.

Example 3. We conclude this chapter with an application problem where we demonstrate the
use of the mixed finite element scheme in simulating the transport process in an electrokinetic
system with an ion-selective interface, where the development of an electroosmotic instability
is expected. The problem configuration is adopted from [21,22]. This system corresponds to a

transient counterpart of (6.8) in the absence of external forces and sources (f = 0, f = f; = 0),
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Figure 11.2: Example 2. Samples of approximate mixed variables (stress magnitude, electric
field magnitude and arrows, and ionic fluxes) obtained with the fixed-point algorithm labelled
case A, and for k = 1.

where the following additional terms appear in the momentum and concentration equations

(note also the different scaling of £ on the right-hand side of the momentum balance, required
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to match the adimensionalization in [22])

1 ] 1 .
_gatu —div(e) = (& — &) 2752"0’ —0i&; + div(oy) = 0.

The time derivatives are discretized using backward FEuler’s method. In the problem setup
a boundary layer is present in the vicinity of the solid boundary (the bottom edge of the
rectangular domain), and therefore we employ a graded mesh with a higher refinement close
to the layer. For this problem we select the second-order family of finite element subspaces

(setting k = 1 in Chapter 10.1), which gives for the chosen mesh 865201 degrees of freedom.

The physical properties of the system are as follows. The cation species is Na™ having
diffusivity x; = 1 and the anion species is C1~ with the same diffusivity ko = 1. The dynamic
viscosity of the mixture is p = 1. Initial conditions are given by u = 0, and a 2% random
perturbation on a linearly varying initial ionic concentrations & = ((2 — y), & = (x, where (
is a uniform random variable between 0.98 and 1. On the top boundary we set & = & = 1,
u = 0, and an applied voltage of y = 120. On the bottom boundary we impose y = 0, & = 2,
oy -v =0, and u = 0. On the vertical walls we prescribe periodic boundary conditions. The
other model parameters take the values ¢ = 8-107%, Sc =103, and we use a timestep At = 1076,
We plot snapshots of the anion concentration &, in Figure 11.3 at times ¢ = 107*,107%. We

observe similar ionic patterns to those produced also in [35,37].
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Figure 11.3: Example 3. Samples of approximate velocity (top) and anion concentration (bot-
tom) at times t = 10~* and 1073 (left and right, respectively), produced with the mixed method
and using k£ = 1.
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Concluding Remarks

In the first part of this thesis we developed a new theory to continuous and discrete schemes

of perturbed problems in Banach spaces to be well-posed. The main results of this part are:

o We provided sufficient conditions for the well-posedness of perturbed saddle-point formu-
lations in Banach spaces and their associated Galerkin schemes in the case in which the

kernel of the adjoint operator induced by one of the bilinear forms is not trivial.

e In the case in which the kernel of the adjoint operator induced by one of the bilinear
forms is trivial, we employ a suitable characterization of a closed range injective adjoint

operator, to lighten the sufficient conditions for the solvability.

In the second part of this thesis we developed mixed finite element methods for a partial
differential equation of physical interest in Biology and Nanotechnology, namely, the coupled
Stokes and Poisson-Nernst-Planck equations. We proved the solvability of the continuous and
discrete formulations as well as their convergence results, and we also provided corresponding

numerical examples and simulations. The main results of this part are:

o We develop a new mixed formulation in Banach spaces for the coupled problem given by

the Stokes and Poisson—Nernst-Planck equations.

o The well-posedness of the continuous formulation was proved using a fixed point strategy

in combination with the Banach theorem.

« An analogous approach is employed to conclude the existence and uniqueness of a solution

for the associated Galerkin scheme. In addition, a priori error estimates are derived.

o Finally we use Raviart-Thomas elements of order k£ with their appropriate convergence

rates, followed by several numerical experiments confirming the theoretical error bounds.

o We also showed the applicability of the theory presented in the first part.
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Future work

The methods developed and the results obtained in this thesis have motivated several on-

going and future projects. Some of them are described below:

o We are interested in extending the applicability of the theory developed in the first part
of this thesis to others problems.

o We are interested in extending the analysis and results to the Navier-Stokes case, that is

to the coupled problem given by

—pAu+ A (Va)u + Vp = — (& -&)elo + f in Q

diviu) =0 in Q, u=g on I, Jsz.
Q

o We are interested in developing a posteriori error analysis for the method studied in part

I1.

o We are also interested in extending the analysis and results to time dependent case.
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