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Cord-cordis es la palabra
latina que denomina al
corazon. Y de Cord-cordis
nace la palabra cordel
aquello que amarra sin
soltar.

Una cordada, pues, es ese
grupo de personas unidas
POT UM COTAZON, que Se
confirma con la mera
cuerda.

Dedicado a mi familia.



Abstract

A Hybridizable Discontinuous Galerkin (HDG) method for solving the biharmonic problem A%y =
f is proposed and analyzed in this work. More precisely, we employ a Discontinuous Galerkin
(DG) method based on a system of first-order equations, which we propose to approximate u,
Vu, H(u) and V-H(u) simultaneously, where H corresponds to the Hessian matrix. This method
allows us to eliminate all the interior variables locally to obtain a global system for 4y, and q;, that
approximate u and Vu, respectively, on the interfaces of the triangulation. As a consequence the
only globally coupled degrees of freedom are those of the approximations of u and Vu on the faces
of the elements. We also carry out an priori error analysis using the orthogonal L?-projection and
conclude that the orders of convergence for the errors in the approximation of H(u), V - H(u),
Vu and w are k+1/2, k — 1/2, k, and k + 1, respectively, where k£ > 1 is the polynomial degree
of the discrete spaces. Our numerical results suggest that the approximations of H(u), Vu and u
converge with optimal order k 4+ 1 and the approximation of V - H(u) converge with suboptimal
order k.



Resumen

Proponemos y analizamos un método de Galerkin Discontinuo hibridizable (HDG por sus siglas
en inglés) para resolver el problema del biarménico A%u = f. Mas precisamente, utilizamos un
método HDG basado en un sistema de ecuaciones de primer orden, el cual sugiere aproximar u,
Vu, H(u) and V - H(u) simultdneamente, donde H denota a la matriz Hessiana. Este método
nos permite eliminar todas las variables interiores localmente para obtener un sistema global
para Uy v @j, incégnitas que aproximan a u y Vu respectivamente sobre el esqueleto de toda la
triangulacion . Como consecuencia los tnicos grados de libertad que son acoplados globalmente
son aquellos asociados a las aproximaciones de u y Vu sobre las caras de los elementos. También
realizamos un analisis de error a priori usando el proyector ortogonal L? y concluimos que los
ordenes de convergencia para las aproximaciones de H(u), V- H(u), Vuy uson k+1/2, k—1/2,
k v k+ 1 respectivamente, donde k£ > 1 es el grado polinomial de los espacios discretos. Nuestros
resultados numéricos sugieren que las aproximaciones de H(u), Vu y u convergen con orden
optimo k + 1, y la aproximacion de V - H(u) converge con orden suboptimo k.

vi



Agradecimientos

Quiero dar las gracias a los profesores del Departamento de Ingenierfa Matemadtica por todos
los conocimientos y apoyo que me han brindado en esta etapa de pre-grado. En especial, quiero
agradecer a mi profesor guia por toda su ensenanza académica que me ha entregado durante la
realizacion de este trabajo y en varios cursos dictados en pre-grado, en los cuales siempre destacod
su profesionalismo y paciencia.

También me gustaria agradecer al proyecto Basal PFB03 por financiar este trabajo, y a
Fondecyt 1160320 por hacer posible la visita a Brown University, Providence, R.I. . Lugar en el
cual pude interactuar con matemaéticos expertos en sus areas, como lo son Dr Johnny Guzman y
Dr. Francisco Javier Sayas. Por esta razén es que me gustaria agradecer a Johnny y Javier por
todo el tiempo que dedicaron a intercambiar ideas con el fin de que aprendiera sobre los métodos
HDG. Y destacar la paciencia de Jhonny en explicarme sus conocimientos sobre el problema
biarmoénico y problemas relacionados a éste.

Un agradecimiento carinoso a mis companeros de carrera por todos los buenos momentos
vividos durante esta etapa, también agradecer su buena compaififa en muchas asignaturas com-
partidas. Asi mismo quiero agradecer a mi grupo de escalada por asegurar mi vida en los buenos
pasos. Y en los malos pasos también.

Un agradecimiento a la comisiéon evaluadora por todos sus comentarios y sugerencias.

Finalmente, agradecer a las personas més importantes en mi vida y las que hicieron posible
la finalizacién de esta etapa; mis padres y mis hermanos. No hay dudas que sin su amor y apoyo
incondicional esto no hubiera sido posible.

Vil



Contents

Abstract

Resumen

Agradecimientos

List of Figures

List of Tables

1 Introduction

2 An HDG method applied to the biharmonic problem

2.1 Notation and Preliminaries . . . . . . ... .. .. ... ....
2.2 The HDG method . . . . . . . . .. .. .. ... .. ......
2.3 The discrete scheme . . . . . . . ... ... ... ...

24 Localsolvers . . . . . . . . . .

3 A priori error analysis

3.1 Error equations and energy argument . . . . . . ... ... L.
3.2 Duality argument . . . . . ...
3.3 Errorestimates . . . . ... ... L

3.4 Errors associated to the numerical traces . . . . . . . . ... ..

4 Numerical result

4.1 Firstexample . . . . . . . ...

4.2 Second example . . . . ..o

5 Conclusions and Future work
Bibliography

viii

vi

vii

ix

17

.......... 17
.......... 23
.......... 26
.......... 27

28

.......... 28
.......... 30

39

42



List of Figures

4.1
4.2

4.3
4.4

4.5

4.6

Example 1 : Errors in logarithmic scale k =0,1,2,3 . . . . .. ... ... ....

Example 1: With a fixed mesh of 1620 elements, the graphics show the behavior
of the errors associated with u, , and for different polynomial degrees. . . . . ..

Example 2 : Errors in logarithmic scale £ =0,1,2,3 . . .. .. ... ... . ...

Example 2: With a fixed mesh of 1620 elements, the graphics show the behavior
of the errors associated to for different polynomial degrees. . . . . . . .. . . . ..

Example 2 : HDG performance for different size mesh and different polynomial
degree, k = 1, k = 2 and k = 3 to first, second and third rows respectively. Left
pictures were made with 215 elements and right pictures were made with 1620
elements. . . . . . L L

Example 2 : Top picture correspond to exact solution of first component of the
vector o for second example and bottom picture shows a uniform mesh with 215
elements. . . . . . L

X



List of Tables

4.1

4.2

4.3

4.4

4.5

Example 1 : Errors for first example and k£ = 0,1. N correspond to number of

elements of the mesh 7 with h & —. . . . . . . . . . .

Example 1 : Errors for first example and k¥ = 2,3. N correspond to number of

elements of the mesh 7 with h & —. . . . . . . . . .

Example 1 : Errors numerical traces. N correspond to number of elements of the

mesh i with b s —. . . . .

Example 2 : Errors for second example and £k = 0,1,2,3. N correspond to number

of elements of the mesh 7 with h ~ ——. . . . . . . . . . .. . .. . ... ...,

VN

Example 2 : Errors numerical traces. N correspond to number of elements of the

mesh i with b s —. . . . .

29

30

31

34



CHAPTER 1

Introduction

Discontinuous Galerkin(DG) methods are one of the most commonly used family of numer-
ical methods to approximate the solution of partial deferential equations. The first DG method
was introduced in 1973 by Reed and Hill in the context of neutron transport equation which
corresponds to a time independent linear hyperbolic equation [1]. Subsequently, it was extended
to the compressible Navier-Stokes equations and to second-order elliptic equations [2]. Later
many DG methods applied to second-order elliptic problems have been proposed and a historical
review can be found in [3]. A comparison of these DG methods has been maden in an unified
framework [4]. However, when the Continuous Galerkin (CG) methods were compared with
DG methods, these last were criticized for having too many degrees of freedom and for not being
as easy to implement. As answer to the critics, hybridization of DG method was proposed. In
particular, Hybridizable Discontinuous Galerkin (HDG) methods were introduced, for
diffusion problems, in a unified framework [5].

During the last decade, HDG methods have been proposed and analyzed when applied to
different types of equations, for instance, diffusion problems [6], |7, [8], [9], [10], [11], [12], [13],
[14], [15], convection-diffusion equations [16], [17], [18], [19], [20], the wave equation [21], [22],
[23], Stokes flow [24], [25], [25], [26], [27], [28], [29], [30], Oseen and Brinkman equations [31], [32],
Navier-Stokes equations [33], [34], [35], nolinear conservation laws [36], [37], [38], [39], linear and
non-linear elasticity [40], [41], [42], Timonshenko Beams [43], [44], among others.

Our aim in this thesis is to propose and implement an HDG method for numerically solving
the biharmonic problem: find u such that

A%y = f in Q,
u = 0 on 00, (1.1)
Vu-n = 0 on 01,

where Q@ C R? is polygonal /polyhedral domain with boundary T' := 9, d € {2,3} and data
f € L2(Q). We introduce ¢ = Vu, z = Vq, 0 = V - 2z as unknowns and the problem (1.1) is
rewritten as

q = Vu, z = Vgq in Q,
o = V-.z, Ve = f in Q, (1.2)
u = 0, qg-n = 0 on of.

where (Vq);; := 0z;(¢;) for 1 <i,j <d, ¢; is the i-th component of g and (V-z); := Z;l:l 0x;2ij,
2;j is the ij-entry of z.



One of the motivations to solve this problem lies in the existing relationship between Reissner-
Mindlin plate (R-M) and biharmonic problems. In fact, the Mindlin-Reissner theory of plates is an
extension of Kirchoff-Love plates theory that takes into account shear deformations through-the-
thickness of a plate. Then the R-M model is a problem of the structural engineering, specifically,
it arises from studying the mechanics of deformable plates, understanding that a plate is a solid
that geometrically can be approximated by a bidimendional surface ).

The authors in [45] developed a mixed finite element method for the Reissner-Mindlin plate

model:
~V - (Ce(r)) = AXt2(Vu—7r) =

0 in Q
o 1.
M2V - (Vu —7) = f in Q, (13)
U 0 on 99,
T 0 on 0N,

where Q € R? is a polygonal domain and f € LQ(Q). Here t is the thickness of the plate and A is
fixed positive parameter and €(r) := 3 (Vu + (Vu)?) . Moreover, the tensor C is defined to be

E

CT= =)

(1 =)z +vir(D)l),

where v is the Poisson’s ratio, £ = M is the Young’s modulus and [ is the shear correction

factor. The variable u correspond to the transverse displacement and 7 the rotation.

The method developed in [45] is based on the following non-dimensionalized formulation of
the problem (1.3)

q = Vu , p = 2(Vr—(vr)7) in Q,
A(z) = Vr—-p o = V-z in Q, (1.4)
r—q-tc = 0 , V-o = f in E '
U = 0 , r = 0 on o9.
Here, ¢ := \% and A denotes the inverse of C, i.e.,
Als) = 12(1+v)s  12v(1 —v)tr(s)l . (15)

E E(1+v)

The variables (Vq);; for 1 <i,j < d where g; is the i-th component of g and (V - z); where the
zi; is the ij-entry of z are defined in the same way as in (1.2).

Now, since the original structure (3D) of the model (1.3) was approximated Q by a two-
dimensional domain €2, it makes sense approach t to zero in the formulation (1.4). In this case,
we obtain the following equations

qg = Vu : p = 3(Va—(Vg)') i Q,
A(z) = Vg—-p , o = V-z in Q,
r = q R V-o = f in Q.

Later using the definition (1.5), assuming that z is symmetric, Young’s modulus have a value
of £ = 12 and that the longitudinal deformations of the plate are larger than the transverse
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deformations, that is, Poisson’s modulus is zero (v = 0), so we obtain that z = Vq in Q and
qg-n =0 on 0N. Therefore, the R-M problem can be written as (1.2).

Another application where the biharmonic operator appears, arises from fluid dynamics. In
particular, in the stream function formulation of the two-dimensional incompressible Navier-
Stokes equation [46]. In fact, if u is the velocity of a incompressible fluid, « the pressure and v
the viscosity, then,

0

amwr[v#w]mp = vA% in Q, (1.6)

Viy = U on 0Q (1.7)

where 1) is the scalar stream function such that v = V11 = (—%, g%f). Thinking in a bounded

domain €2 enclosed by rigid walls, the impermeability of the walls and the no-slip condition imply
u(z,t) = U(zx,t) for x € 9Q and t > 0, where U is the prescribed velocity in the wall.

We will now focus on revising the literature related to numerical methods to solve (1.1).

In the literature we can find, in general, two different ways to rewrite the problem (1.1) as
a second or first order system. One of them introduces z = Au as unknown and thus, from the
first equation in (1.1) we have

—AZ = f?
1.

—Au = =z. (18)

A method to solve (1.8) is the Ciarlet and Raviart (C-R) mixed method [47]. It chooses
as unknowns u and z = —Aw to obtain a coupled system of Poisson problems. The error analysis
of the C-R method shows that the convergence rates for the approximation of v and z are k and
k — 1, respectively, if polynomials of degree k > 2 are used.

Other examples of mixed methods are the Hellan-Herrmann-Jhonson (HHJ) method
and Herrmann-Miyoshi (HM) method. In 1980, I. Babugka, J. Osborn and J. Pitkaranta
studied the convergence results of Brezzi and Babugka [48] to analyse three examples previously
proposed in the literature. These examples were the C-R, HHJ and HM methods mentioned
above. For the case of C-R method, the authors in [48] introduced the auxiliary variable z =
—Au and rewrite the biharmonic problem (1.1) as the second order system (1.8) with boundary
conditions « = Vu = 0 on 9Q. In addition, they assumed that f € H~1(Q). Later, in their error
analysis, they established: If u € H"(Q), » > 3 and k > 2 then ||z — z||o.7;, < Ch*2||ul|s, where
s = min {r, k + 1}. They also estimated ||u—wup||1,7; using a duality argument and concluded that
lu—upll17;, < Ch*||ul|s, where s = min {r, k + 1}. Here, uj, and zj, are the approximations of

z and u delivered by their method.

For the HM method the auxiliary variable is the matrix of second-order partial derivatives
of u (z = H(u) where H is the hessian matrix of u). The authors in [48] concluded that if
uw € H(Q), r>3yk>2then ||z — zullo7, < Ch*2||ulls and ||u — up|[1 < Ch*~Y||ul|s, where
s =min{r, k + 1}.

By last, the HHJ method uses the same formulation as the HM method, but the choice of
finite dimensional spaces is different. In [48], it is concluded that if w € H"(2), r > 3 and k > 2
then ||z — z;l0,7;, < Ch®||ul|s42 with s = min {k,r — 2}. In addition, if £ =1 they obtained

lw—unllo, < CR*|lulla,
llu—wunlli, < Chllulls,



and, if k > 2,

Ohs||UHs+1 where s = Hlln{k +1,r— 1} ’
Chs—1||u”s where s = min {7", k + 1} .

lu —unllo,7, <
lu = unll,7 <

In the context of the HDG methods for the formulation (1.8), [43] developed an HDG
method, called Single-Face-Hybridizable (SFH) method, which rewrites (1.8) as a first
order system of equations. The authors in [43] introduced the additional variables ¢ = Vu and
o = Vz and then the problem (1.8) is rewritten as

c+Vz =0 , Vo = f in Q,
q+Vu = 0 , Vg = 2z in Q, (1.9)
U = 0 , gn = 0 on 09.

Notice that in this formulation u, z are scalar unknowns and o, q are vector unknowns.

The SFH method is a particular case of an HDG scheme where the penalty function 7 is
defined on each simplex T' € T}, as,

L 0, on OT\ ef,
>0, on er,

where €7 is an arbitrary but fixed face of 7. We recall that, in the case of a general HDG
method, the penalty function can be non zero on each face of T. The authors in [43] chose as
traces unknowns @ and 2, and define the numerical fluxes q, & in terms of the penalty function
and the other variables. This helps to obtain error estimates in coherence with the numerical
results. They also proved under the assumption of extra regularity for the unknown q, this is
q € WF12°(T;), that when polynomials of degree at most k > 1 are used on all the variables,
optimal convergence rates are obtained for v and q; the approximations to z = Au and o = Vz
converge with order k+1/2 and k —1/2, respectively. In addition, they showed that it is possible
to locally devise a new approximation of w that superconverges with order k 4+ 2 for k£ > 2 and
with order 5/2 for £k = 1. Finally, although they predicted that the converge rates for z and o
are suboptimal with rates k+1/2 and k — 1/2, respectively, their numerical experiments showed
that the convergence rates are optimal in any fixed interior subdomian of €.

A second alternative for the problem (1.1) is to study this problem rewritten as in (1.2).
Notice that in this case, there is only one scalar unknown, two vector unknowns and one tensor
unknown, the variables (Vq); ; and (V - z); are defined in the same way as in (1.2).

In [49] a mixed method is studied for the formulation (1.2), which is based on a system of first-
order equations. The authors in [49] also introduced a hybrid form of their method which allowed
them to reduce the globally coupled degrees of freedom to only those associated to the Lagrange
multipliers that approximate the solution and its derivative at the faces of the triangulation. On
the other hand, their error analysis indicated that if k& > 1, the approximations u, q, z have
optimal convergence rate while o has suboptimal convergence rate. For k = 0 they got that the
approximations of u, q, z converge with order 1 and for o the theory was not conclusive. Their
numerical results showed that, for smooth solutions, the order of convergence of the errors for u,
q, z are optimal and that the order of convergence for the error in o is suboptimal.

In the context of HDG method, [44] studied an HDG method for Timoshenko beams, which
can be seen as the biharmonic (formulation (1.2)) in one dimension. Their error analysis is
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based on the use of a projection especially designed to fit the structure of the numerical traces
of the HDG method. This property allowed them to prove, in a very concise manner, that the
projection of the errors is bounded in terms of the distance between the exact solution and its
projection. They considered polynomials of degree k > 0 for the local spaces of the unknowns,
and showed that the projection of the error in each of them superconverges with order k+2 when
k > 1 and converges with order 1 for k£ > 0. As a result, they showed that the HDG method
converge with optimal order k4 1 for all the unknowns defined in each T' € Tp,. In addition, they
obtain that the numerical traces converge with order 2k + 1.

We present in this manuscript an HDG method to solve (1.2), which, to the best of our
knownledge, has not been studied before. Next, we summarize the main contribution of our
work. In Chapter 2, we give details of how to build an HDG scheme for the biharmonic problem,
introduce and give sense to the numerical fluxes. We also explain the properties of consistency and
conservative of these numerical fluxes. Next, we deduce our HDG scheme applied to biharmonic
problem and show that it has unique solution. In addition we introduce the local solvers with
the aim of explaining the advantage of the HDG scheme studied in this thesis.

In Chapter 3, we carry out an priori error analysis using orthogonal L?-projectors and conclude
that the orders of convergence for z, o, g and u are k +1/2, k — 1/2, k and k + 1, respectively,
with k > 1 being the polynomial degree of the local discrete spaces. Finally, in Chapter 4, we
show two numerical examples which suggest that the method converges with better orders than
those predicted by the theory. That is, when we approximate z, o, q or u by polynomials of
degree k > 1, the numerical results show that z;, q; and wuj, converge with optimal order k + 1,
while the function o converges with suboptimal order k.



CHAPTER 2

An HDG method applied to the biharmonic problem

2.1 Notation and Preliminaries

In order to study of the proposed HDG method applied to the formulation (1.2). It is necessary
to set the notation that we will use. Given h > 0, we denote by 73 a uniformly shaped regular
triangulation of Q made of simplices. Given T' € Tj,, we denote by hp its diameter and nr its
unit outward normal. If there is no confusion, we will write n instead of ny. Moreover the set
of interior edges or faces of T, is denoted by &£, the set of boundary edges or faces is denoted
by 5}: and set of all faces is denoted by &,. We define by 97, the union of the boundary of the
elements T € Tp,. Also, we define

('7 )Th = Z ('a ')T ; <'7 '>8’7’h = Z <" '>8T and <'7 '>87}L\F = Z <'a '>e .

TET;, TeTh 6652

where (-, )7, (-, )or and (-, -), are the standard L? inner products over an element 7', its boundary
OT and face e, respectively. In addition, given k € ZJ, we denote by Px(T) the space of the
polynomials of degree at most k defined on T. We also say that the space denoted by Py(e)
consists of polynomials of degree k defined on a face e of a element T € Tp,.

The space H (73,), with I > 0, denotes the space of functions defined in © whose restriction to
cach element T belongs to the Sobolev space H/(T') and the traces of functions in H*(7},) belong
to M(8Ty) := [Iper, L*(T).

In addition, boldface variables indicate vector-valued functions and an underline boldface
variables indicate tensor-valued function.

In Chapter 3, the error analysis is based on the L2-orthogonal projection and we will denote
by P, P and P the L%-projectors into the spaces Py (T3,), [Pr(Tr)]¢ and [Py (75)]9%¢, respectively,
where Py (75) is the space of functions whose restriction to each element T belongs to Py (7).

It is well-known (see Lemma 1.59 in [3]), that P satisfies, on each T € Ty, the following
property: Given 1 € HY(T), there exists C' > 0, independent of hp, for all e € 9T such that

loe < Chi

|ln — Pn sT » s>1. (2.1)

Additionally, it is also known that P satisfies the following: Let k& and m non negative integers
and r € R such that 0 < r < k. There exists a constant C' := C(k,d) > 0 such that

1D (n = P)llor < Chp™ =™ [[nllrsrr Vo € HHHT). (2.2)

7
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Moreover, the following discrete trace inequality (see Lemma 1.52 in [3]) holds: Let T € T}, and
e € OT. Then, there exist a constant, independent of Ay, Cy. > 0 such that

W2\ nlloe < Curllnllor ¥ € Pu(T). (2.3)

In addition, we also define the L?-projection, denoted by Pj, as follows. Given a face e € &,
and n € L%(e), Pyn is defined as the unique element of P (e) that satisfies

(Pon —n,w), =0 VYw e Pgle). (2.4)

Remark 1. If u € H}() and g = Vu such that ¢-n =0 on T then ¢ =0 on I.

2.2 The HDG method

We recall the problem that we are interested in: Find w such that

A%y = f in Q,
u =0 on I, (2.5)
Vu-n = 0 on I'.

We introduce the auxiliary variables q := Vu, z := —V q and o := —V - 2. Using these variables,
the problem (2.5) is rewritten as:

q Vu in ,
z —Vgq in Q,
o = —V-z in Q,
V.o = f in Q, (2:6)
g n = 0 in I,
U = 0 in I.

In order to devise our HDG method, on each element T of the mesh T, we derive a weak
formulation.

Testing with v € [H(div; 7)) and integrating by parts in the first equation of (2.6), we obtain
/ q-v —i—/(V cv)u— (v-n,u) =0 Yo € [H(div; T)]7. (2.7)
T T

Then, testing with s € [H(div; T)]?*? the second equation of (2.6) and integrating by part, we
have

/ 25— / (V-8)-q+(sn.q)yr =0 Vs € [H(div; 7)™ (2.8)
T T

Moreover, we test the third and fourth equations in (2.6) with m € [H'(T)]¢ and w € HY(T),
respectively, and obtain

/a’-m—/z:Vm+<zn,m>aT = 0 Vme[HYT),
T T
(2.9)
/Vw~o'—<a-n,w>aT+/fw = 0 YweHYT).
T T
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The proposed HDG method applied to biharmonic problem yields an approximation up of
u € HY(7},), approximations o, and g, of o € [H(div; 73)]¢ and q € [H!(T3,)]¢, respectively, and
an approximation z, of z € [H(div; 73)]4*%. It also provides a single valued approximation iy,
to the trace of u and a single valued approximation g, of the trace of g on elements boundaries.
We introduce the following discrete spaces associated to the triangulation 7p,.

Vi = {veH'(Th): olp e V(D)},
Q= {meE TN mpeQ)},
S o= {ne HE@WT: nlp e S(D)}
Z, = {§ € [H(div; 7,)]? : 8|y € Z(T)} ;

where V(T), Q(T), £(T) and Z(T') are finite dimensional spaces on an element 7. We recall that
the general idea in the DG methods (see [4], Section 3) is to introduce unknowns on mesh skeleton
called numerical fluzes. In our case we shall add [Gp,7, @y, 7] and [}, 7,6 7] as new unknowns
on &,. The numerical fluzes UpT,qy 1,2, 7 and Op 1 are approximations to u, Vu, H(u) and
V - H(u), respectively, on the boundary of 7. So, we consider the following local formulation:
Find zj, € Zp, o, € Xy, q;, € Qp and up, € V3, such that for all T' € T;, we have

(zp:8)r — (V- 8,q,)1 + (57, fIhT>aT 0 Vsez(T) |,

(thv)T + (V v uh)T - <U n uh T>3T =0 Vo € Z(T) ’ (2 10)
(on,m)r — (2, Vm)r + (Z,rm,m),, = 0 YmeQ(T) , '
(oh, Vw)r —(ophr 1w e+ (f,w)r = 0 Vwe V(T)

To complete the specification of the HDG method we must express the numerical flures in
terms of uy, q;,, o and z; and in terms of the boundary conditions. Then, we first give sense
to numerical fluxes and traces unknowns, so we must prevent functions in M(97p) to be double-
valued on &, \ I'. In IT" there is no problem because they are single-valued. The properties of
consistency and conservativity of the numerical fluzes will allow us to identify the traces as
elements of M(97},) such that the two values coincide on all internal edge.

We take the scalar and vector numerical fluxes @, = (in,)7e7;, » @ = (@n7)TeT;, and tensor
and vector numerical fluxes 2j, = (£, r)re7;, and 6, = (Gp,1)7eT;, to be linear functions

ay, - HY(Tp) = MOTh) 5z, H(Th) x [HY(TR)]Y — [M(9T)]
qn H(To) x YT — IMOT)Y 5 6w HY(TW) x (T — [M(@Tw)).

We say that the numerical fluxes are consistent if

@ip,(v) = lgr ; z,(v, H(v)) = H(v)lor
q(v,Vv) = vU|3T ) on(v,V-H(v)) = V'H(U)’aTa

for any smooth function v that satisfies the boundary conditions. We also say that the numerical
fluxes are conservative if they are single-valued on 07j,.

As we have mentioned before we express the numerical fluxes in terms of u;, € V4, , q;, € Qp,
o € Xy, 25, € Zp.To that end, we look for q;, and 4y, in the spaces @5, and W}, defined by

o, = {+ € [LA(ENY: 7], € Dle) Vee 5h} ,
Wy, = {0e€L?*&): 9|, €W(e) Vee&}.
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In addition, on each T' € T;, we define the normal components for 6, and 2, as follow

zmm = zpn+7(up, —un)n + 14(q, — qp) for each e € 0T,

(2.11)
op-n = op-n+7n(u,—1uy) +72(q,—q,) -n  foreach ec€ 9T,
where 7;, ¢ = 1,2, 3,4 are stabilization parameters defined on 07, which we will assume to be
constant on each face of the triangulation. Properties of consistent and conservation for numerical
fluxes and boundary conditions can be summarized in the next four equations

Zym, Brlorar =

{
é&h nan) g = 0, (2.12)
{

Il
oo oo

an, B)r
Upy Op)p =

for each (By,an) € ®, x Wp,. From now on we call numerical traces the unknowns 4, and q,,
and numerical fluzes z; and oy,

2.3 The discrete scheme

We study an HDG method for the case where the local spaces V(T'), Q(T), X(T'), Z(T'), ®(e)
and W (e) are polynomial spaces. Defined as follows:

V(T):=P(T), Q) :=[P(D)*, X(T) = [Px(T)],
W(e) :=Pg(e) , ®(e) = [Pr(e)]? Z(T) = {s|p: each row of s|, belongs to Q(T)}
(2.13)
Then, the HDG scheme that we analyse reads:
Find (25, 0h, qn, Un, Gp, Un) € Zp X X X Qp X Vi X @ x W), such that
(zh: 81)7 — (Vi - s ap) 7, + (831, ‘A1h>afrh = 0, (2.14a)
(@n,vn)7, + (V- vn,up), — (Un - n,Gn)sr, = 0, (2.14b)
(oh. mp)7, — (21, Vamu)7, + <§h"7mh>a7'h = 0, (2.14c)
(oh, Viwn) 7, — (6h nwp)gr, + (fwn)7, = 0, (2.14d)
(zwn, Br)opar = 0, (2.14e)
(Gh-m,an)orr = 0, (2.14f)
<Qh718h>f‘ = 07 (214g)

(Up,on)p = 0, (2.14h)
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for all (s, vp, Mmp, wp, By, an) € Zp X L X Qp X Vi X &p x Wy, Where we recall that defined
the numerical fluzes as

zm = zpyn+713(up — ap)n + 74(q, — qp) on o7y,
and

op-n = op-n+71(uy—up) +71(q,—q) n on o7y, .

Later, in the next section, we will explain that from the scheme (2.14) we can locally eliminate
all the interior variables in terms of the numerical traces. The following result shows that the
previous scheme has a unique solution.

Theorem 2.1. Let 11, 19, 73, T4 be reals numbers such that 71, T4 are positive and 13 + 70 = 0.
Then, the scheme (2.14) is well-posed.

Proof. Since (2.14) is a linear system, it is enough to show that the homogeneous problem (f = 0)
has only the trivial solution.

Since the number of unknowns is equal to the number of equations, then the system is com-
patible.

Now, considering f = 0, testing the equation (2.14c) with m;,, = g;, and integrating by parts,
we obtain

(@h, an)7, + (@, Vi - 23) 7, + (2, — 2)7, %)aTh =0. (2.15)
Testing (2.14a) with s;, = 2, and (2.14b) with v;, = o, we get
1zall37: = (Vi - 20, @)73 + (2070 1)o7, =0, (2.16)
and
(@n,on)7, = —(Vin - onup), +(0n 1, Gn) sy, - (2.17)

Then, adding (2.15) and (2.16), and replacing (g;,, o) from (2.17), it holds
(V- on,un) T, + (On -1, 0n) o7 + (21 @n — Gn)ar, + (Ems @n)or, + 2all675 = 0. (2.18)
Also, testing equation (2.14d) with w;, = uy and integrating by parts, we obtain that
(Vi on,up)7, — ((0n = 6n) - m,up) sy, =0. (2.19)
Then, we add (2.18) and (2.19) and obtain
|2ull5 75, + (a1 @ — Gn)ar, +(On - 1@ — un)ar, + (2,1, ap) o, + (G- 1y un) gy, = 0. (2.20)

qh on (97}L/I’
zym on T
in (2.14f) and (2.15), we have that

th on 8E/P

By last, taking 8, = 6,-n on T
b

in (2.14e) and (2.14g) and «aj = {
— (& @p)or, =0 and  — (6 m, i)y =0.

Adding these to terms to (2.20), replacing the definitions of 2, n and &, - n and using the fact
7o + 13 = 0, it holds

lzalld 7 + 117 (@ — @)l + 11(70)"* (un — @n)l137, =0 (2.21)
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which implies that z;, = 0in Tp, q;, = q;, in 0T, and up, = Gy on 97y. Then, by (2.11), 2,n =0
and 6, -n =0y -non 07},

Testing (2.14c) with my, = o, and using the fact that z;, = 0 and 2;n = 0, we obtain o, =0
in 7, and hence 6, -n =0, -n =0 on 07,.

We notice that integrating by part equation (2.14a) and testing with s;, = V},q;,, we conclude
that thqhH%,Th = 0. Thus, g, is constant in 7. Since q; = q;, = constant on 97y, from (2.14g)
we obtain that q; = 0 in 7" and then g;, = 0 in 7},

Finally, since o, = 0 and uj, = 4y on 07y, integrating by parts (2.14b) and taking v, = Vuy, we
obtain thuh”(zJ,Th = 0. Consequently, uy, is constant in 7 and using the condition (2.14h), we
have that up, =0 on 7. O

2.4 Local solvers

The formulation (2.14) corresponds to a hybrid scheme since it was constructed by relaxing
the continuity requirements of the spaces

Sho = {n € [H(div; Q)] : mly € Z(T)}
Zn = {§ € [H(div; 2)]**? : 5|, € Z(T)} .

As consequence we have had to introduce the unknowns 4y and @, to approximate u and q on
the interfaces of 7p,.

In this section we show that only the globally coupled degrees of freedom are those associated
with the unknowns 4y and g;, in a global system. The other unknowns can be recovered element
by element. For doing that, we start by writing an auxiliary scheme inspired in the hybrid
formulation (2.14), where the numerical traces are given. In other words, given A € Wy, ¢ € &y,
and f € L?(Q) we look for (;g)"c’f), (’\Cf),qg/\c ) ()"C’f)) € Zp X Xy X Qp, X V, such that, on
each T € Ty, it satisfies

= s)r — (Vi s dy e = (sanQop s (2.220)
(@ o) + (Vi o, uf™ e = (o -n,Ngp, (2.22b)
(o T ) + (m, Vi - 24N + <Tgugf’c’f)n + g mh>8T = (T3 n, M) + (2.22¢)

+ <T4C7 mh>8T 5

(Vi - a7, h)T+<T1U§LA’C’f) + g n,wh> = (fywn)r +  (2:22d)

orT

+ (TIA + 726 - n, wh)

for each (s, vn, mp,wp) € Z(T) x 2(T) x Q(T) x V(T).

The system (2.22) allows us to notice that, if we know the values of A\, ¢ and f on each T € Tp,,

then (2 V67| gOG) GO (A

.4, ) is the unique solution of (2.22). This is summarized in next

theorem
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Theorem 2.2. Given A € Wy, ( € @, and f € L*>(Q), if 11 > 0, 74 > 0, 7o + 73 = 0, then the
system (2.22) has unique solution.

Proof. The proof follows as in the proof of Theorem 2.1 O

Now, we use the linearity of the scheme (2.22) to introduce the local solvers. First, for A € W),
let (Z1(N\),S1(A),Q,(N),U1(N)) € Zp, x Ep x Qp x V}, such that, on each T € Ty, it solves

(Z1(N),85)7 — (Vi -85, Q1( V)T = 0,
(Q1(N);vn)r + (Vi - vp, Urt(A))r = (vn 1 Nyr
(S1(A),mp)r + (Vi Zi(A)y mp)r + (T3 Ut(A) e+ Q1 (A), ma)yr = (TN, My n)yp

(Vh -8, ()\)7 wh)T + <T1 Ul(/\) + 7 Ql()\) ‘n, wh>8T = <T1 A, wh)aT
(2.23)

Y (8p, v, M, wp) € Z(T) x X(T) x Q(T) x V(T).
Similarly, for ¢ € @, let (Z5(€), S2(€), Q2(C), U2(C)) € Zy x X x Qp, x Vj, such that, on each
T € T, it satisfies

(Z5(€), 3p)1 — (Vi - 84, Q2(C))7 = (s Qor
(Q2(C), o)1 + (Vi - vn, Ua(€))1 = 0,

(82(C), mn)r + (Vi - Z2(C); mn)r + (13 U2(() 1 + 12 Qo (C), mi)or = (1aC;min)or
(Vi - 82(C), wn)r + (11 U2(C€) + 72 Q2(C) - ™, wh) oy = (nd-mn, wh>8(g‘24)

Y (sp, vh, mp,wy) € Z(T) x X(T) x Q(T) x V(T).

By last, for the data f € L?(f2) restricted to each element, let (Z5(f), S3(f), Qs(f),Us(f)) €
Zp, X 2 X Qp, x Vi, such that, on each T € Tj, it solves

(Z3(f)ssp)r — (Va '§h>Q3(f)>8T = 0,
(Qs3(f),vn)r + (Vi - vp, Us(f))r = 0,
(2.25)
(S3(f),mu)r + (mp, Vi - Z3(f))r + (13 Us(f)m+ 74 Q3(f). ma)or = 0,
(Vi - 83(f), wn)r)r + (11 Us(f) + 12 Q3(f) - My wh) = (fywn)r
Y (8, O, mp,wp) € Z(T) x 3(T) x Q(T) x V(T

It is clear that the problems (2.23), (2.24), (2.25) have a unique solution since (Z;(A), S1(A), Q,(A\), Ui (),

)-
(2. 5)
(Z5(€), S2(€), Q2(¢), U2(€)) and (Z 3(f), ( ) Qs(f),Us(f)) are the solutions of the system
(2.22) with (¢ = 0,A # 0,f =0), (( #0,A=0,f =0) and (( = 0,A = 0,f € L*(Q))
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respectively. Consequently we can define the linear operators:
L1: Wy — Zp XX X Qp XV
A= Li(A) = (Z1(A), 51(A), @1(A), Ui (V)
Lo:Dy, — ZpxXpxQpx Wy
¢ = L2(¢) = (Z2(€), 52(€), Q2(€), U2(Q))
L3:L%Q) — ZnxIpxQnxVy
= La(f) = (Z5(f), S3(f), Qs(f), Us(f)),

associated to the problems (2.23), (2.24) and (2.25) respectively. The operators £; with i =1,2,3
are called local solvers, and they establish a relation between functions defined on T and the
solutions defined on T'.

Now, since we have introduced the local solvers, the local solution of (2.22) can be written as

2D = 2 0+ Z,(0) + Z5(1),

(M) ¢)
ElAcf) = S1(\) + S2(¢) + Ss(f), (2.26)
g™ = Qi) +Q.(¢) + Qs()),
( <)

(“f) = Ui(A) + Ua(C) + Us(f).

On the other hand, given the fact that the numerical traces A and ¢ are chosen, then we set
them to satisfy the equations (¢, 8;,)p = 0 and (X, ap)p = 0.

(MG ) £ (GF)

At the same time, the numerical flures z; and are defined as

and
Additionally, we ask z( S5) and 0'(/\ ¢ to satisfy the compatibility conditions
(0mp) =
OTn\L' (2.27)
h " aT\r

Next, replacing (2.26) in the equations (2.27), we define the following global problem which
will allow us to find the unknowns A and . Let (¢, \) € @9 x W} solve

A((Cv)‘)a (/Bhvah)) = b(ﬁhvah) (228&)
for all (B),,an) € ®9 x WP, where A : (®) x W?) x (&) x W) — R is a bilinear form and
b: @) x WP — R is a linear form defined as follow: for (v,&) € ®) x W and (u,n) € 9 x W)
A((:€), (wsm)) = (Z1(&) + Zo(V)ms ) gy p + (73 (U1(E) + Ua(v) — E)n ) orr +

+ (1 (Q1(8) + Q2(7) = 7)s Wagr + ((51(8) + S2(7)) - Moy p
+ (11 (U1(§) + U2(7) = &), mapar + (12 (Q1(€) + Qa(Y) —¥) - msmagnr -

b(p,m) = —(msUs(f)n+ 1 Qs(f) + Z3(f)m, wop\r
—(mUs(f) + 2 Qs(f) -+ Ss(f) -, mogr -
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Where 9 := {x € & : x|p =0} and WP := {w € W}, : w|p =0} .

Theorem 2.3 is the main result of this section and shows that to solve (2.14) we only need to
solve the problem (2.28) for q;, and 4y, .

Theorem 2.3. The problem (2.28) is well defined. Moreover, if (qy,, Un) € ®p X W), solves (2.28)
and if

z, = Zy(an) + Zy(an) + Zs(f)

on = Si(an) + S2(qp) + S3(f),
(2.29)

g, = Qq(in) +Q2(qy) +Qs(f),

up, = Ui(in) + U2(qy) + Us(f),

then (gh,ah,qh,uh,qh,ﬁh) S Zh X Eh X Qh X Vh X (IJh X Wh solves (2.14).

Proof. We start by showing that the problem (2.28) is well defined. It is clear that the problem
(2.28) is a square system, since dim {®),} = |&} | dim([Py(e)]?) = d|€}[(* ;) and dim {W},} =
£} dim (P (e)), thus the problem (2.28) is a linear system with (d+1)|&} | (dflljk) unknowns and
equations.

Next, we consider the homogeneous system (2.28) (f = 0) and the solutions of the local
solvers L1 (tp) and L2(qy) in the following way. Since f = 0, then L3(f) = (0,0,0,0). This
implies that the right hand side of (2.28) is also zero.

Then, the system (2.28) is rewritten as:

<Zn’5h>a¢h\r =9 (2.30)
<S'n’ah>a7'h\r N |

where Zn := (Z,(\) + Z,(¢)) n + 73(Ur(N) + U2(C) = N) + 4(Q1(A) + Q2(¢) —¢) and S - =
(S1(A) + S2(€)) -+ T (U1 (A) + U2(C) = A) + m(Q1(A) + Q5(¢) — ).

On the other hand, when we add the systems associated to £q(ay) and L2(q;,) we get

(Z,80)7, — (Vi 84, @), = — (81, C>a’rh ) (2.31a)

(@ vn)7, + (Vi on, @)y, = (vh -1, Ny, (2.31b)

(&, mu), + (Va2 mp) 7 + <Zn _zn, mh>8ﬁ ~ 0, (2.31c)
(Vy-o,wp)7, + <S ‘n—3-n, wh>8’fh = 0. (2.31d)

Where 2 = Z;(\) + Z2(€), ¢ = Q1(A) + Q2(C), @ = Ur(\) + U2(€), 6 = S1(A) + S2(¢). Now,

using similar arguments as in Theorem 2.1 we obtain

121187, + 1)@ = O)lg o, + 1(71) /(@ = M3 o, = 0. (2.32)
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From the equation (2.32), we conclude that Z = 0in 7, ¢ = ¢ on 97, and @ = A on O7p,.
Similarly to the proof of Theorem 2.1, since {| = 0 and A|p = 0, we have ¢ = 0 and @ = 0 in
Th. Hence ¢ =0 and A = 0 on 97}, and the problem (2.28) had only one solution.

By last, we show that (2, on, g3, un, qp,, Up) defined in (2.29), is the unique solution of (2.14).
To that end we only need to consider the three local solvers and add the system associated to
each to them. Looking the variables in (2.29) we see that we have rebuilt the scheme (2.14).
Then Theorem 2.1 showed that (2}, o, g, un, @y, Un) is the unique solution of (2.14). O

To close this section we comment that Theorem 2.2, the local solvers and Theorem 2.3 allow
us to justify the main feature of the hybrid scheme (2.14). That is, we can eliminate all the
interior variables locally to obtain a global system, (2.28), for the g, and 4 that approximate
u and g on the interfaces of the triangulation. This characteristic represents a computational
advantage because the only globally coupled degrees of freedom are those associated with the
unknowns 4y and gy, .



CHAPTER 3

A priori error analysis

3.1 Error equations and energy argument

The aim now is to obtain the error estimates related to the proposed HDG method. In partic-
ular, we bound the interpolation and the projection of errors. Let (2,0, q,u) € [H(div; Q)]?*? x
[H(div; Q)] x [H{(Q2)]? x H(Q) the weak solution of (2.6), then using (2.14) we can write the
following equations for the errors 2z — 25, ¢ — q;,, 0 — o and u — uy, :

(z—zpsu)7 — (Vosp,a—an)7, + (Sp,na — Qn)oy;, = 0, (3.1a)
(@ —ap.vn)7, + (V- vp,u—up)y, — (0p - nu—dp)yy, = 0, (3.1b)
(0 —on.mp)7, — (2 — 2, V)7, + (2 - éh)namhbn = 0, (3.1c)
(0 —on Vwn)y, — (0 —64) -n,wh)yyr, = 0, (3.1d)
((z— 2z Bu)orar = 0, (3.1e)
((0—=6n) n,an)spr = 0, (3.1f)
(@—an.Bnr = 0, (3.1g)
(u—ap,app = 0, (3.1h)
for all (§h,vh,mh,wh,,8h,ah) € Zp X Xp X Qp X Vi x & x Wy
First, we consider the following identify for [|[Pz — 2,5 7.
Lemma 3.1. If 71 and 14 are positive and 7o = 13 = 0, then
1Pz - zilli7, = ((Po—a)-n, Pu—uyr + (" (wn —i).m 2(Pu—w)
h
+((Pz—2)n,Pq—q),; + <T41/2(Qh — ), *(Pq - q)>8T 5.9
h
1/2 . -1/2/5 1/2 :
2= )l g, — (P = )P — )

)
1/2 N —1/2 1/2 N
~7*(@n — @l oy — <T4 PPz —z)n, " (a) — qh)>8

Proof. Considering the definition of P (see, Section 2.1) and (3.1a) with s;, = Pz — z;,, we obtain
Pz—z,ll57, = (2-2znPz—2z)7,

= (V- (Pz—2zp).9—an)7 — (Pz—21)n.0 — 1)o7, -

17
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Using the definition of P and integrating by parts previous expression, we obtain
[Pz — EhH(Q),Th = (V- (Pz—z,),Pq— an)7, — (Pz — z)n. q — Qh>87'h

= —(Pz—2z,,V(Pq—aqy))7, + ((Pz—z,)n, Pq — Qh>aTh
—((Pz— zp)n.q — @p)pr, :

By definition of P and (3.1c) with my;, = Pq — q;,, we have

1Pz = 2ll57, = —(z— 2, V(Pa—a)7 +((Pz—z,)n. Pqa—a),r
—((Pz—zp)n,q — @h>87’h

= —(e—onPag—ay)7, —((z— 21 Pa— 1)y,
+((Pz = zp)n, Pa — an)yr — (Pz = zp)n,a = Gy, -

By definition of P and then using (3.1b) with vy, = Po — o, there holds

||P§ — Eh”(2)77'h = _(PO' — 0O, q _Eh)Th - <(§ - éh) naﬁq - Qh>37‘h
+((Pz = zp)n, Pa — ay,) 5. — (P2~ 2,)1, a4 — Qi)

= +(V-(Po - aj),u —up)7;, — ((Po — ah)niu — @h>a7’h
—{(z — 2,)n, Pq - Qh>a7'h + <(7DéA— zp)n, Pq — qh>3771
—(Pz— 21,9 — Qp) o7, -

By definition of P, integrating by parts, and then using (3.1d) with wj, = Pu — up, we have
||Pz — 5’1H(2),7’h = —(Po —op, V(Pu—up))7, + ((Po— o) -n, Pu— uh>87'h

- <(?0 —op) - nlu - ﬁh>a7—h - <(§ - éh)nvﬁq - Qh>a7—h
+{((Pz—zp)n, Pa —an)yr — (Pz—zp)n,a — an)or,

= - <(0’: on)-n, Pu— uh>87'h + <(FO’ —op) '77;,Pu — uh>87’h
- <(P‘7 —op) n,u— ah>aTh - <(§_§h)nqu - Qh>57h

+((Pz — zp)n. Pq — q1,) o7, — (P2 — 21)1. 0 — 1)y, -

—th, on 8771\1_‘

Py(oc-n)—6p-n, on T , and

On the other hand, in (3.1f) and (3.1h) we take ap = {

obtain, after adding both equations,
<(0‘ —ﬁ'h) ‘n, _ah>87'h\f‘ + <P3(0’ n) - &h : n,u—@h>r =0.
Since u € H{(Q) and using the definition of Py, we have

((0—6n) nu—1ip)yy =0.

Similarly, in (3.1e) and (3.1g) we take 3; = { —an, on OT\T , and obtain

Py(zn)—2,n, on T

(2= 2p) 1 —@)orr + (Po(zn) — 2,m,9 — @3) = 0.



3.1. ERROR EQUATIONS AND ENERGY ARGUMENT 19

Since g € [H3(Q)]? and using the definition of Py, we have
(2= 2p)Ma— a7, =0.
Thus,

1Pz~ 2[5, = —((0—6n) 1 Pu—up) 10T, +((P “n, Pu—up)
—<(Fo'—0'h) ‘n,u— >6Th <( n ,Pq — qh>a7_h
+<(P§_Eh)n7ﬁq Qh>37’h <( zh)n q- qh>8’7'h
—{((o—0ap) -n,u, — >6Th (z—2zp)n,qp, — Q>6Th

Rearranging terms in a convenient way, we have

1Pz =zpll5 7, =  —{(@=64) n,Pu—u)yy +{(0 —6n) n,up — )y,
((Po — o) n, Pu— uh>8T ((Po—op) n u—ﬂh>a7_h
—((z—z)n,Pq — q>an (2= 21,9, — Qn)oT,

+{(Pz — z,)n, Pq — qh>a7'h —((Pz—zp)n,9 — an)or,

o — &) Ny up — Un)yr,
Po — o) n,up — ah>8Th

+ <(73§ - éh)n,?q - CI>3771 - <(7D£ - Eh)nv qp — f1h>a7’h .
Rearranging terms again conveniently, we get
||Pg_éh||g,7’h = _<(U_&h)'napu_u>87’h _<(Eo-_a-)'n7uh_ﬂh>a7—h
+{(on = &) - nyup —in)y, + (P —on) - n, Pu—u),.
- <(§ - zh)nv Pq — Q>a7—h - <(Pé - g)n, q}L_ Qh>87’h
+{(zn = 21, an = Qn)or, + ((Pz— 231, Pa — q) 7

= ((Po—-o0) n,Pu— > — (o, — h) n, Pu —u)yr
+ {(op — &p) - nyup —Up) BTh < o—0) n,u, — zlh>8T
+((Pz—2)n,Pq—a),, —((z;, — 2,)n. Pa—q) 7
((z1, — zp)n,qp — Qh>afrh (Pz—2z)n,q) — Qh>dfrh
)

Finally, by replacing the definitions of numerical traces (2.11) we finish the proof. O
The next two lemmas will allow us to find a expression for ||Po — o, |(2)77—h and ||Pq — qhH%,Th

in a similar way as we proceeded in previous lemma.

Lemma 3.2. If 74 is positive and 73 = 0, then,

|Po — ol = —(V-(P;—;h),ﬁa—crh)fh+<(P§—;)n,?a—ah>an

Zn), ! 3.3
+(ra(an — an), Po —on)yy - (3:3)

Proof. Considering the definition of P and using (3.1c) with mj; = Po — g}, we obtain

(U_O'haﬁo'_a'h)Th

= (E — Zh V(?O' - o-h))Th - <(§ - zh)nvﬁa- - Uh>37;L .



20 CHAPTER 3. A PRIORI ERROR ANALYSIS

Integrating by parts and rearranging terms, we have

|Po — o5, = —(V-(Pz— ;hbﬁa — o)1, + ((Pz — z),)n, Po — Uh>8Th
— <(§ —z,)n, Po — Uh>8Th

= _(v ’ (Pé_éh)7fo-_o-h)7ﬁ + <(’P§—§)’I’L,FO' _o-h>87-h
+((2), — zp)n, Po — 0h>67’h )

Finally, replacing the definition of numerical traces (2.11) with 73 = 0, we conclude

|1Po—onlls s, = —(V:(Pz-z2,),Po—ou)7, +((Pz—2z)n,Po —on),.
+ <T4(Qh - Qh)a Po — o'h>87~h .

O
Lemma 3.3. There holds
1Pg—aulli7, = (Pg—qu V(Pu—un))7, +(Pq—qy) noun—in),p (3.4)
— <(Pq —qp) - n, Pu— u>87_h .
Proof. From equation (3.1b) with v, = Pq — q,,, we obtain
1Pq—a,ll5, = (a—an Pa—an)T,
= —(V-(Pq—q),u—up)T, + <(Fq —qp) m,u— ﬁh>8Th .
Integrating by parts, using the definition of P and rearranging terms properly, we conclude
1Pa—anllis, = (Pa—an V(Pu—up))7 —((Pq—qy) n Pu—up),.
+ <(Fq —qp) n,u— ah>8Th
= (Pq—q,,V(Pu—un))7, + ((Pq—aqy) -m,up —n)yr
— <(?q —qp) - n, Pu— u>a7_h
O

Next result will allow us to bound the norm of the projection of the error in the variables z,
o and g. In the proof we will use Lemmas 3.1, 3.2 and 3.3. Inequalities (2.2) and (2.1) will be
also employed.

Theorem 3.4. Let 7, 7o, 73 and 74 real numbers such that 71 > 0, 74 > 0 and 79 =713 = 0. Let
us assume k > 1 and z € [H YTy, o € [HY )Y, q € [HTHTH)]? and u € H™(T;,).
Then there exist positive constants Cy = C(k,d,11,74), Co = C(k,d,14), C3 = C(k,d, 11), such
that

a) |[Pz—zy,

1/2 ~
3,Th+%|lﬁ/ (un—1n)

1/2 ~
2or 3 Im (@@ B o < 1R (200, q,0)|12 0 7

b) [[Po —anlloz, < C2h" ' 2l(z, 0,4, 0)llrs17,
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¢) IPq — aullf 7, < Cinoh™?I|Pu—uplf§ 7, + Csh®" (2,0, @, w741 7,

with 0 < r < k and ||(z, 0,4, 0)|2,1 7, = 10121 7, + llal417; + 1121207, + 247,

Proof. Let us begin with the first inequality. We consider Lemma 3.1 and apply Cauchy-Schwarz
inequality to obtain

1Pz — 2,5 7 + ()2 (un, — )57, + 1(74)"/%(q), — an)lls.or,

- 1/2 N
< |[Po — ollo7;|[Pu — ullors, + Crl|Pu — ulloor |Im > (un — @n)lloom,
- - 1/2 N
+|Pz — zllo.07:.11Pa — allo.o7, + Cral|Pa — alloor |71 (an — an)llo.or,
- 1/2 N 1/2 ~
+C,|[Por 17" (un — @n)llo,o7 + Cral|Pz — 2ll0o7 1T (an — @)

Using Young’s inequality and arranging terms properly, we have

1Pz — 231575, + 311(m) " (un — an) I3 o7, + 311(72) (@ — @n)l,

< Cn||Po — UH%,aTh + Cr || Pu —UH?)Th +CT4||7D§—§H3,37;L +C

By last, we use inequality (2.1) with s = r 4+ 1 and we finish the proof as follow

1Pz = zull.75, + 517> (un — @13 o7, + 311(70)" (@ — @n)l§ o7, < CH*HI(2, 0, @ W1 7, -

For second inequality, we use Cauchy-Schwarz and Young’s inequalities in Lemma 3.2 to get,
for any € > 0, that

1Po — a3 7,

1
JIPo = anll7, +1IV - (Pz = 2)I[F,
L5 2 € 2
o |Po —onlloer, + 5Pz = 2[5 0r,
2e 2
1 = € N
EHPU - 0'h||<23,a7'h + 5”74(% - %)H%Th .
Now, we choose € = 2h~'C?. and replace

||Po —

IN

1
2l1Po— ol + IV - (Pz—zp)l5 7,

+ P Po — ol o + CE Pz — 213 o
401527" ,O'Th h = =007
h C? .
Cg [Po — onllg o, +#|’7—4(Qh_Qh)”(2),8Th‘

Using the inverse inequality

_ 1= _
1P —alli 7, 1Po = anllig, + Cinh™*([Pz = 2[5,

h 2 Ct2r 2
40 —5|[Po —onllg o7, + e 1Pz — 2|[5.67,
h C? .
+—5 e |[Po — o'hH(]aTh+T§T|’T4(Qh_Qh>Hg,8Th-
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Using the inequalities (2.1) with s =r + 1

— 1 = _
[Po —aull§r, < EHPU—U}LH(QLTh-‘rCmUh 1Pz — z,)Il5,

_ 02 Ch2r+1
2 3 2
+4Cl€2r 1Pe = anlloor, + ————llzllra7

h = 2 Ct2 ~ 2
+@HPU —oulloer, + #HM(qh —ap)llo.sor, -

Use inequality (2.3) we obtain

|Po —aull37, <

3 B

HIPo —oulls 7, + Cinsh 1Pz — 2l 7,

2 Ct2 2
+Ch. C B ||2| 241 7, + hTHM(qh_qh)HO,aTh-

Finally, using the first inequality of the Theorem 3.4 we conclude

*HPU oulls s < Coh? (2,0, 4, )74 75, -

For the third inequality, we consider Lemma 3.3, Cauchy-Schwarz and Young’s inequality

1

< ZHPq_QhH(Z),Th+’|V(Pu_uh)”%,7'h
1 € N

+;|!Pq — aull5 o7, + §Huh — inll o7,

1 — €
+ZHPQ — qpll6.or + gf\Pu—qu,aTh~

202
We choose € = 7t

_ 1
1Pq —qull5,7, < Z||Pq—qh||(2),7h+HV(PU—Uh)H(2),Th

h  — C? R

+ﬁHPq— anlls o, + iHuh — Wll§ o7,

Gt

2||Pq QhHoaTh ||Pu_UH08Th

4C

Using the inverse inequality

_ 1= -
1P —onlliz < ;I1Pa—all§s + Cinoh™[[Pu—unllg 7,

+LHF‘1_Qh||3aT +%|\uh—ﬂh\|gaT
4'Ct2'r' »O'Ih h ,0'Th

h 5 2 Ci 2
+@||Pq = anllo.om, + #HPU —ullg.a7, -

Using inequality (2.3) and inequality (2.1) with s =7 + 1 we get

_ 3 = -
|Po —onllsr, < *lqu—qhH%,nﬂLCmvh ?1Pu— i,

Cr ~ — r
}z Crul[(r) "2 (un = wn)|1§ o5, + b~ CLCR |2y 7 -
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Arranging terms and using the first inequality of the Theorem 3.4, we conclude

1= _
JPa=anlliz < Coh?||Pu—unllsz, + Csh™ (2,0, ¢, 0)[[711 7

where C3 := C,.

3.2 Duality argument

In this section we estimate || Pu—up||o.q via a duality argument. Given v € L?({2) we consider
the dual problem

¢—Vy = 0 in Q,
¢+Vep = 0 in Q,
n+V-.p = 0 in Q,
V-n = v in Q, (3.5)
d-n = 0 in T,
() = 0 in T.
We assume that this boundary value problem have the following regularity estimate
Dllae +l@llsa + llellza + InllLe < Cregllvlloq - (3.6)

The regularity assumption (3.6) holds, for example, for polygonal domains with inner-angle con-
ditions [50].

Lemma 3.5. Let vy € L?*(Q), o = 73 = 0 and (Y, @, ,m) the corresponding solution of (3.5).
Then,

(Pu—up,y) = _<@’7_’7)'"°P“_“>an—<(7’
+{((Pn=m)-m,up, — i)y +

Proof. We use the fact that V -1 = v, add and subtract V - Pn to get

(Pu—up,v)7, = (Pu—up,V-n),
(Pu—wup,V-n—=V-Pn)r, + (Pu—u,V-Pn)r, .

Using the definition of P and integrating by parts, we obtain

(Pu—up,y)y;, = (Pu—up,V-n—V-Pn)y + (u—upV-Pn)p,
<(n—Pn)-n,Pu—uh>aTh + (u—up, V- Pn)7, .

Testing equation (3.1b) with v, = Pn and replacing properly, we have
(Pu—up, )7, = ((n—Pn)-n,Pu—up)yr —(q—ayPn)y,

+<P’l’] ~n,u—ﬂh>67_h .
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We use definition of P, add and subtract n, add the term — (- n,u — tp) g7, = 0, consider that
n € H'(Q), u € Hj(Q2) and 4y, is single-valued, using the fact that n = —V - ¢, we obtain
(Pu - Uh77)7'h = <(Ir’ - ?Ir’) " n, Pu — uh>a771 + <<?n - Ir]) n,u — ah>a7—h
—(Pq—qn, Pn—n)7, + (Pq -4, V- @), -
Rearranging terms and adding and subtracting V - Py, we have
(Pu—wup, )7, = —{((Pn—m)-n,Pu-— u>87—h +{((Pn—mn) -n,up — ﬁh>8Th
—(Pg—aqp, Pn—n)7;, + (Pq—a,, V- 9)7;

= —((Pn —n)-n,Pu—u>8Th +{(Pn—m)-n,u, —ﬂh>a,rh
—(Pq—q, Pn—mn)7, + (Pq—q,,V -9 -V -Pp)T,
+(Pq —qp,,V - Po)7, -

Integrating by parts, using the definition of P, P and equation (3.1a) with s, = P, it holds

(Pu—up. "7 = —((Pn—mn) n,Pu—u),. +((Pn—mn) nu,—1ip),
—(Pq —qp, Pn— )7, — ((Pe — o). Pq— ;).
+(q—aq,, V-Po)7,

= —((Pn-n) n,Pu— u>6Th +{((Pn—mn) -n,up — ﬁ’h>877,,
—(Pq =gy, Pn— )7, +{(¢ = P)n. Pq—ay),;
+(z =z, PP, + <7D£nv q- Qh>a7;L :
Next, since ¢ € [H2(Q)]9¢, q € [HL(Q)]¢ and <£n7q_qh>l“ = <Fa(£n),q—qh>F = 0 by
(3.1g) we add the term — (¢ n,q — Qh>87'h = 0 and arranging similar terms:
(Pu - uh?V)Th - = <(PT] - T’) -n, Pu— u>a7'h + <(F,’7 - 77) "N, Up — ﬁ'h>a7’h
—(Pq—qy, Pn—m)7, +((Pe—@)n,q— Pq),
+ <(P£ - f) n,qp — Qh>a7—h + (é — Zh PE)E .
We use definition of P, add and subtract ¢ and we use the fact of ¢ = -V,

(Pu—up,y);, = — <(Fn —n)-n,Pu— u>67_h - <(77£—£) n, Pq — q>a7_h
+ (P —=n) -nyup — ) yr + (P — @)1, an = @n) oy
—(Pq—aqy, Pn—m)7, + (Pz =z, Pe — @7,
—(Pz -2, V)7, -

Add and subtract VPg, integrating by parts and using the definition of P and P, we get

(Pu—unV)7 = —((Pn=n) n,Pu—u),. —((Pe—@)n.Pqg—aq),.
+((Pn —n) -nyup — )y + (P — @)1, an = @n) oy
—(Pq—aqy, Pn—m)7, + (Pz— 2z, Pe — @7,
+((Pz —z,)n. P — &)y — (2~ 2, VPP)T; .
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Using equation (3.1c) with my = P¢, we have
(Pu—up, )7 = —((Pn—m) n,Pu— u>a7’h —((Pe—¢)n, Pq - q>a7-h
+((Pn =) nyun — )y + (Pe — @) 0, an — n)yr
—(Pg—aqu, Pn—m)7, + (Pz =z, P — @),
+((Pz—zy)n, Pp— ), — (0 — 0, PO)7, — (2~ 2,)n, P),.
we use definition of P, add and subtract ¢ and replace ¢ for Vi,
(Pu—up,v)7, = —((Pn—m)-n,Pu-— u>8Th —{(Pep —p)n, Pq— q>8Th
+ (P —=n) - nyup =)y + (P~ @)1, an = @n)yy.
—(Pq —qp, Pn—n)7, + (Pz = 2, P — @)7,
+((Pz—zy)n, P~ ¢),; — (Po —on Po— o),
~(Po — 01, V)7, — (2 — 2,)n. P, -
Add and subtract VP, integrating by parts and using the definition of P and P, we obtain
(Pu—up,y)7, = —((Pn—m) n,Pu—u),. —((Pe—¢nPq—q),
(P =) nun =)y + (P~ 0) 0@, = n)yr.
—(Pq =gy, Pn —m)7, + (Pz — 2, Pe — @)1,

Using the definition of L2-projector, testing (3.1d) with wy, = Pt. The previous expression is
reduced to

((Pn—m) n,Pu—u),. —((Pe—p)n,Pqg—q),,
(Pn—m)-n,uy, - fth>3Th +{((Pe —p)n,q), — flh>aTh
((Pz —z,)n,P¢ — ¢>BTh —((Po—op) - n, P — )
— (e =6&n) -1, PY)yr, — (2~ 2,)n, Po)

Notice that using the boundary conditions ¥ = 0 in I' and ¢ - n = 0 in I', the fact of o €
[H(div; Q)]¢, z € [H(div; Q)]**? and the properly of conservative on 2, and &, we have

(z=2p)n @)y, =0 and  ((0 —6n) -n,¢)y7 =0 (3.8)

Finally, using the definition of the L2-projection, adding the equations (3.8) and replacing the
definition (2.11) we get

(Pu—un,)7 = —

(Pu—up,y)7;, = —<(F77—n) -n,Pu—u>aTh —<(P£—£)n,?q—q>87h
(P —=n) - nyup — )y + (P~ @)1, an = @n)yy
+{(Pz—z)n,P¢ — ¢>8Th + (14(qp, — @3), P — ¢>8Th
+{((Po—0o)-n,Pyp— ¢>a771 + (T1(up — @p), PY — ) s,
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Theorem 3.6. Let us assume that (3.6) holds. Then, there exists a constant C := C(k,d, 1, 74)
such that
1Pu—wplloz < CR|(2, 0,4, 0) |41, (3.9)

Proof. Applying the Cauchy-Schwarz inequality in the Lemma 3.5, we obtain

|(Pu —up,y)| < 1Pu—ullo.or, + [P — ¢lloor 1P — glloor,

- 1/2 ~
+Co [P = mllo.on |17 (un — @)oo,
+ [Pz - 2|07 Po — ¢llo.o7
1Py — blloor

1/2 N
+ColIPe — elloanlim(a, — an)
+Cryllma(@n — an)loon | [Po — dlloor, + || Po

1/2 ~
1 (un, — @)

T1

We use properties of the projections P, P and P (see inequality (2.1)) on each variable of dual
problem and deduce that

1Pn—mnlloan, < Ch[lo7
1Pe —elloon. < CR*hllom
1Pp = dlloor, < CH o7 »
1Py = Plloor, < Ch[lo7 -
By replacing this in the above inequality, we obtain
Pu — uy,
Pu—wlg, = sp  Pusmd)
ozver2@) o7
- 1/2 ~
< on?{ +1Pg — glloam + IIm" (un — iin)

1/2 ~ )
173" (an = @l + Pz = 2llo.o7, + [1Po = llo.om, }

Ch?drl ’ ‘ (57 0,4, u) ‘ |T+17Th

IN

3.3 Error estimates

To summarize all the previous results we state then in a single theorem.

Theorem 3.7. Let us assume that hypotheses of Theorems 3.4 and 3.6 Then, there exists a
constant C > 0, independent of the mesh size, such that:

lz-zilom < ORIz 0,0l
lo—anllon < CHY2(z,0,q,u)||r41.7 »
llg —apllo, < CK|l(z,0,q,u)llr+1,7,
lu—wnllon, < CHY|(z,0,q,u)|l1,7 -

with 0 < r < k.

Proof. 1t follows directly from Theorems 3.4 and 3.6. O
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3.4 Errors associated to the numerical traces

In this section, we obtain estimates for the projection of the errors associated to the numerical
traces 4y, and q,. We introduce the norm ||| - |||, defined by |||u|]|? = > TeT hTH,uHaaT for any
function u € L2(9T;,) = [rer, L?(dT). We proceed as in the proof of Theorem 4.1 in [6]. The
authors of [6] use a local argument, which can be found in [51].

Theorem 3.8. Let us assume that the hypotheses of Theorems 8.4 and 3.6 hold. Then exists
C > 0, independent of the mesh size, such that

Ch™ (2,0, ¢, 0)|lr117, (3.10)
Ch'l|(z,q,0,u)|lr+1,7, (3.11)

[[Pou — tnll|n <
11 Poq — apllln <
with 0 < r < k.

Proof. Let T € Ty, for k > 1. We consider functions = and r in [Py(T)]? and [P(T)]?*,
respectively, such that r-n = Pyu — a4y, Tn = Pyq — q;, and |[|r||7 < Cth/zHPau — apllor,
lrllr < Chr}/ZH&q — qpllor- Testing the equations (3.1a) and (3.1b) with s, = hrr and
vy, = hr we get

hrllPou— |5 or = —(a— au, her)r — (V- her,u —wy)r

hrllPod — anll3or = —(z—zphrr)r + (V- hrr,q —a,)7-
Using Cauchy-Schwarz and inverse inequalities, we have

hrl|Pou —anllopor < ChYlla — apllor + Chyl*llu —wnllor

hrllPog — anlloor < Chi||z = zullox + Chi*lla — ayllor-
Multiplying by h;l/ 2 on both sides and adding over T € T, we get

1/2 N
S hl?l1Pou—anlloor < Chllg — anlloz + Cllu — unllo7,

TET

1/2 N
S hPNPag — anlloor < Chllz — zullo + Clla — anllo -
TeT,

Using the inequalities of the Theorem 3.7, we obtain

1/2 ~
S w2 P —dnlloor < CHI(z,00q,w)|ls1 7 -
TETy,

1/2 ~
> hil*||Pag — anllo.om,
TET

3/2
Cny (2, 0, ¢, w)lrs1,7 + CRT||(2, 0, @, 0) | |41, 7, -

IN

Thus, we finish the proof concluding that

1| Pou — a7 Ch**?||(z,0. ¢, w)llr1,7 ,

<
11Pog — anllli, <

Ch?"||(z,0,q,u)||r41,7;, -
O

To finish this chapter we comment that the interpolation errors for z, o, g and u are deduced
using the equation (2.2). That is, if 2z, o, q and u belong to H™"1(7;,) then the orders of
convergence for all of them is O(h"T1).



CHAPTER 4

Numerical result

In this chapter we illustrate the performance of the HDG method with two numerical tests. For the
first example, we consider as exact solution u(x,y) = 10(y—1)3y>(x—1)222 for (z,y) € Q :=]0,1[2
and f, q, o and z are calculated accordingly. For the second example we consider a sinusoidal
function defined on the same domain. This is, u(z,y) = —sin(y) sin(z) for (x,y) in £, and obtain
the exact expressions for the functions f q, o and z.

The penalty functions 7y, 7, 73, 74 defined on d7, are assumed constants such that . =73 =0
and 1 = 74 = 1, as suggested by Theorems 2.1 and 3.7. In addition the domain is partitioned
into uniform meshes of size z(l—il) with ¢ = 1,2,...,14 and denote the mesh with size 2(2%1) by
“mesh ¢”.

On the other hand, the convergence of the approximate solutions is assessed by computing
errors in the respective norms and experimental rates, that we define as usual

e(u) = |lu—upllog, el@):=llga—apllogo, elo):=lo-ailoa,
e(z) = llz—zlloa, @) :=llu—"1lloor, €@ =Illa—amllosr
r(u) = M’ r(q) := M7 r(o) = M,
log(h/h) log(h/h) log(h/h)
ey o lBEEVER) o losfel@/e@) o loa(e(@)/e(@)
- log(h/h) log(h/h) log(h/h)

where e and € denote errors computed on two consecutive meshes of sizes h and h, respectively.

4.1 First example

In Tables 4.1 and 4.2, we display the history of convergence corresponding to u(z,y) = 10(y —
1)3y3(z — 1)%22 on the unit square. We observe that, the error in the variable u converges
optimally with order A**1  as is predicted by Theorem 3.7. The error in g, also converges to zero
with order h**1 which is one power of h more than our theoretical estimate in Theorem 3.7.
In the case of the variable o, Tables 4.1 and 4.2 suggest that the order of convergence is h*, in
contrast to the estimate in Theorem 3.7 that predicts an order A*~1/2. These tables also indicate
that, for k = 1,2,3, the error in z is of order h*t1 which is half a power of h more than the
theoretical rate in Theorem 3.7. For k = 0, z converges with order between 1/2 and 1, which is
a slightly higher than the order provided in Theorem 3.7.

Figure 4.1 shows the graphics of error in logarithmic scale in the following order; upper left

28
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is the graph corresponding to & = 0, upper right is the graph for £ = 1, lower left is the graph
for k = 2 and lower right is the graph for k = 3.

In the Figure 4.2 we display the behavior of the errors ||u—uw|lo.7,, [la—apllo 7., lo—0onllo7,
and ||z — zp]o,7;, when we increase the polynomial degree. We observe that, for k > 7, the errors
are affected by round-off errors.

In addition, Table 4.3 shows the order of convergence for the errors associated with g, and ay,.
We can see that for |||Pyu— tp|||p, the order of convergence is k4 2 and in the case ||| Pag — @, ||1
is k+1/2if k = 1,2,3, which is slightly better than the result established by our the theory. In
fact, the estimates in Theorem 3.8 is predict an order of £ + 1 and k for the error associated to
up, and q;,, respectively. For k = 0 the convergence of 4y, is optimal with order 1, and for g;,, the
error seems to converge with very low order. Comparing this with the theoretical results obtained
in Section 2.4, we conclude that the numerical result are slightly better than theoretical results.

H k ‘ Mesh ¢ h ‘ N ‘ e(u) ‘ r(u) ‘ e(q) ‘ r(q) ‘ e(o) ‘ r(o) ‘ e(z) ‘ r(z) H
4 0.1508 44 4.38e-01 | 0.37 | 3.75e-02 | 0.12 | 7.53e-01 | 0.88 | 4.98e-02 | 0.64
5 0.0995 101 2.97e-01 | 0.94 | 2.64e-02 | 0.84 | 5.10e-01 | 0.94 | 4.09e-02 | 0.48
6 0.0682 215 2.17e-01 | 0.83 | 1.85e-02 | 0.94 | 4.02¢-01 | 0.63 | 3.19e-02 | 0.66
7 0.0499 401 1.57e-01 | 1.04 | 1.36e-02 | 0.98 | 3.45e-01 | 0.49 | 2.57e-02 | 0.70
8

9

0.0354 | 800 | 1.12e-01 | 0.98 | 9.91e-03 | 0.93 | 2.99e-01 | 0.41 | 2.10e-02 | 0.58

0 0.0251 | 1586 | 7.96e-02 | 0.99 | 7.14e-03 | 0.96 | 2.65e-01 | 0.36 | 1.72e-02 | 0.59
10 0.0177 | 3190 | 5.50e-02 | 1.06 | 5.09e-03 | 0.97 | 2.36e-01 | 0.33 | 1.35e-02 | 0.70
11 0.0125 | 6367 | 3.95e-02 | 0.96 | 3.67e-03 | 0.95 | 2.11e-01 | 0.32 | 1.06e-02 | 0.69
12 0.0089 | 12737 | 2.80e-02 | 0.99 | 2.62e-03 | 0.97 | 1.92e-01 | 0.27 | 8.20e-03 | 0.75
13 0.0063 | 25497 | 1.97e-02 | 1.00 | 1.86e-03 | 0.98 | 1.76e-01 | 0.25 | 6.32e-03 | 0.75
14 0.0044 | 50917 | 1.40e-02 | 1.00 | 1.33e-03 | 0.98 | 1.65e-01 | 0.19 | 4.85e-03 | 0.77
4 0.1508 44 6.73e-02 | 2.26 | 5.11e-03 | 1.47 | 5.35e-01 | 0.27 | 2.17e-02 | 1.04
3 0.0995 | 101 | 2.98e-02 | 1.96 | 2.25e-03 | 1.97 | 3.75e-01 | 0.85 | 9.06e-03 | 2.10
6 0.0682 | 215 | 1.45e-02 | 1.91 | 1.17e-03 | 1.74 | 2.86e-01 | 0.72 | 4.96e-03 | 1.60
7 0.0499 | 401 | 7.35e-03 | 2.18 | 6.09¢-04 | 2.09 | 2.16e-01 | 0.90 | 2.70e-03 | 1.94
8 0.0354 | 800 | 3.70e-03 | 1.99 | 3.12e-04 | 1.94 | 1.51e-01 | 1.04 | 1.32e-03 | 2.07
1 9 0.0251 | 1586 | 1.90e-03 | 1.94 | 1.60e-04 | 1.96 | 1.17e-01 | 0.73 | 7.44e-04 | 1.68

10 0.0177 | 3190 | 9.28e-04 | 2.05 | 7.60e-05 | 2.12 | 8.01e-02 | 1.10 | 3.54e-04 | 2.13
11 0.0125 | 6367 | 4.70e-04 | 1.97 | 3.92e-05 | 1.91 | 5.94e-02 | 0.86 | 1.87e-04 | 1.84
12 0.0089 | 12737 | 2.33e-04 | 2.02 | 1.96e-05 | 2.00 | 4.17e-02 | 1.02 | 9.31e-05 | 2.02
13 0.0063 | 25497 | 1.17e-04 | 1.98 | 9.82e-06 | 2.00 | 2.99e-02 | 0.96 | 4.75e-05 | 1.94
14 0.0044 | 50917 | 5.89¢e-05 | 1.99 | 4.91e-06 | 2.00 | 2.12e-02 | 0.99 | 2.38e-05 | 1.99

Table 4.1: Example 1 : Errors for first example and £ = 0,1. N correspond to number of elements

of the mesh 7 with h ~ N
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H k ‘ Mesh 4 h ‘ N ‘ e(u) ‘ r(u) ‘ e(q) ‘ r(q) ‘ e(o) ‘ r(o) ‘ e(z) ‘ r(z) H
4 0.1508 44 6.97e-03 | 1.80 | 7.43e-04 | 3.02 | 1.28e-01 | 0.86 | 4.87e¢-03 | 2.05
5 0.0995 101 2.17e-03 | 2.81 | 2.26e-04 | 2.87 | 5.61e-02 | 1.99 | 1.20e-03 | 3.37
6 0.0682 215 7.40e-04 | 2.84 | 7.76e-05 | 2.82 | 2.76e-02 | 1.88 | 4.66¢-04 | 2.50
7 0.0499 401 3.48e-04 | 2.42 | 2.87e-05 | 3.19 | 1.50e-02 | 1.95 | 1.74e-04 | 3.15
8 0.0354 | 800 | 1.23e-04 | 3.02 | 1.03e-05 | 2.98 | 8.31e-03 | 1.71 | 7.18e-05 | 2.57
2 9 0.0251 | 1586 | 3.77e-05 | 3.45 | 3.85e-06 | 2.87 | 4.19¢-03 | 2.00 | 2.55e-05 | 3.02
10 0.0177 | 3190 | 1.25¢-05 | 3.16 | 1.30e-06 | 3.10 | 2.02e-03 | 2.09 | 8.8%¢-06 | 3.02
11 0.0125 | 6367 | 4.43e-06 | 3.00 | 4.74e-07 | 2.93 | 1.04e-03 | 1.92 | 3.25e-06 | 2.92
12 0.0089 | 12737 | 1.57e-06 | 2.99 | 1.66e-07 | 3.03 | 5.17e-04 | 2.02 | 1.15e-06 | 3.00
13 0.0063 | 25497 | 5.63e-07 | 2.96 | 5.90e-08 | 2.97 | 2.61e-04 | 1.96 | 4.11e-07 | 2.96
14 0.0044 | 50917 | 1.98e-07 | 3.02 | 2.10e-08 | 2.98 | 1.31e-04 | 2.00 | 1.47e-07 | 2.97
4 | 0.1508 | 44 | 221e-03 | 2.62 | 1.14c-04 | 2.85 | 2.71e-02 | 1.32 | 7.85¢-04 | 1.90
5 0.0995 | 101 | 2.99¢-04 | 4.82 | 1.96e-05 | 4.23 | 6.68¢-03 | 3.37 | 1.15e-04 | 4.62
6 |0.0682| 215 |6.23¢-05 | 4.15 | 4.89¢-06 | 3.68 | 2.08¢-03 | 3.09 | 2.98¢-05 | 3.58
7 0.0499 | 401 | 2.32e-05 | 3.16 | 1.65e-06 | 3.48 | 8.49¢-04 | 2.87 | 9.83e-06 | 3.56
8 0.0354 | 800 | 6.00e-06 | 3.92 | 4.08¢-07 | 4.05 | 4.17e-04 | 2.06 | 3.16e-06 | 3.29
3| 9 00251 1586 | 1.11e-06 | 4.93 | 9.48¢-08 | 4.27 | 9.88¢-05 | 4.21 | 5.39¢-07 | 5.17
10 | 0.0177 | 3190 | 2.74e-07 | 4.01 | 2.19-08 | 4.20 | 3.29¢-05 | 3.14 | 1.29¢-07 | 4.10
11| 0.0125 | 6367 | 6.65e-08 | 4.10 | 5.56¢-09 | 3.97 | 1.23¢-05 | 2.85 | 3.30e-08 | 3.94
12 0.0089 | 12737 | 1.65¢-08 | 4.02 | 1.40e-09 | 3.98 | 4.33e-06 | 3.01 | 8.49¢-09 | 3.92
13 | 0.0063 | 25497 | 4.24-09 | 3.92 | 3.64e-10 | 3.88 | 1.50e-06 | 3.05 | 2.20e-09 | 3.89

Table 4.2: Example 1 :

Errors for first example and k = 2,3. N correspond to number of elements
of the mesh 7 with h ~ —.

VN

4.2 Second example

In Table 4.4, we display the history of convergence corresponding to u(x,y) = —sinysin(z) on

the unit square. We observe that, the error in the variable u converges optimally with order A**1,
as predicted by Theorem 3.7. The error in g, also converges to zero with order h**1, which is
one power of h more than our theoretical estimate in Theorem 3.7. In the case of the variable o,
Table 4.4 suggest that the order of convergence is h*, in contrast to the estimate in Theorem 3.7
that predicts an order h*~1/2. These tables also indicate that, for k = 1,2, 3, the error in z is of
order h*+1, which is half a power of h more than the theoretical rate in Theorem 3.7. For k = 0,
z converges with order between 1/2 and 1, which is a slightly higher than the order provided in
Theorem 3.7.

Figure 4.3 shows the graphics of error in logarithmic scale in the following order; upper left
is the graph corresponding to k = 0, upper right is the graph for £ = 1, lower left is the graph
for k = 2 and lower right is the graph for k = 3.

In the same way as in first example, in Figure 4.4 shows the behavior of the errors ||u—4||o,7;, ,
llg—anllo7,, |l —onllo7, and ||z — 24|07, when we increase the polynomial degree. We observe
that for polynomials of degree k > 5, the errors are affected by round-off errors.

By last, we can observe in Table 4.5 the order of convergence of the errors for ¢ and 4. We can
see that for |||Pyu — Gp|||s, the order of convergence is k + 2 and in the case |||g — g|||n the order
of convergence is k+ 1/2 if k = 1,2, 3, which is slightly better than established by the theory. In
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H k ‘ Mesh ¢ h ‘ N ‘ e() ‘ r(a) ‘ e(q) ‘ r(q) H
4 0.1508 44 1.57e-02 | 0.22 | 2.60e-02 | 1.41
5 0.0995 101 1.07e-02 | 0.92 | 2.25e¢-02 | 0.35
6 0.0682 215 7.26e-03 | 1.04 | 2.06e-02 | 0.22
7 0.0499 401 5.55e-03 | 0.86 | 2.07e-02 | -0.00
8 0.0354 | 800 | 3.99¢-03 | 0.96 | 2.02e-02 | 0.07
0 9 0.0251 | 1586 | 2.87¢-03 | 0.96 | 1.98e-02 | 0.06
10 0.0177 | 3190 | 2.09¢-03 | 0.91 | 1.80e-02 | 0.26
11 0.0125 | 6367 | 1.50e-03 | 0.96 | 1.66e-02 | 0.24
12 0.0089 | 12737 | 1.07e-03 | 0.97 | 1.48e-02 | 0.32
13 0.0063 | 25497 | 7.66e-04 | 0.97 | 1.31e-02 | 0.35
14 0.0044 | 50917 | 5.48e-04 | 0.97 | 1.15e-02 | 0.38

4 0.1508 44 4.85e-04 | 2.80 | 5.37e-03 | 1.54
5 0.0995 | 101 | 1.15e-04 | 3.46 | 1.67e-03 | 2.81
6 0.0682 | 215 | 3.16e-05 | 3.42 | 8.26e-04 | 1.87
7
8

0.0499 | 401 | 1.22e-05 | 3.06 | 3.66e-04 | 2.61
0.0354 | 800 | 4.94e-06 | 2.61 | 1.51e-04 | 2.56
1 9 0.0251 | 1586 | 1.92e-06 | 2.76 | 7.19e-05 | 2.18
10 0.0177 | 3190 | 5.92e-07 | 3.37 | 2.96e-05 | 2.54
11 0.0125 | 6367 | 2.22¢-07 | 2.84 | 1.30e-05 | 2.38
12 0.0089 | 12737 | 7.67e-08 | 3.06 | 5.53e-06 | 2.47
13 0.0063 | 25497 | 2.76e-08 | 2.94 | 2.37e-06 | 2.44
14 0.0044 | 50917 | 9.63e-09 | 3.05 | 1.01e-06 | 2.46

4 0.1508 44 6.11e-05 | 3.91 | 7.37e-04 | 2.33
5 0.0995 | 101 | 8.94e-06 | 4.62 | 1.51e-04 | 3.81
6 0.0682 | 215 | 1.97e-06 | 4.00 | 5.17e-05 | 2.84
7
8

0.0499 | 401 | 5.30e-07 | 4.22 | 1.59e-05 | 3.79
0.0354 | 800 | 1.41e-07 | 3.84 | 5.77e-06 | 2.92
2 9 0.0251 | 1586 | 4.18e-08 | 3.55 | 1.70e-06 | 3.58
10 0.0177 | 3190 | 9.38e-09 | 4.28 | 4.94e-07 | 3.53
11 0.0125 | 6367 | 2.54e-09 | 3.78 | 1.51e-07 | 3.43
12 0.0089 | 12737 | 6.21e-10 | 4.07 | 4.55e-08 | 3.46
13 0.0063 | 25497 | 1.56e-10 | 3.98 | 1.37e-08 | 3.45

4 0.1508 44 5.37e-06 | 4.27 | 1.06e-04 | 1.80
5} 0.0995 | 101 | 5.10e-07 | 5.67 | 8.79¢-06 | 5.98
6 0.0682 | 215 | 9.10e-08 | 4.56 | 2.16e-06 | 3.72
7 0.0499 | 401 | 2.46e-08 | 4.20 | 4.88e-07 | 4.78
8
9

0.0354 | 800 | 5.61e-09 | 4.28 | 1.56e-07 | 3.30
0.0251 | 1586 | 7.92e-10 | 5.72 | 2.08e-08 | 5.90
0 0.0177 | 3190 | 1.23e-10 | 5.33 | 4.26e-09 | 4.53
1 0.0125 | 6367 | 2.49¢-11 | 4.62 | 9.39¢-10 | 4.38

Table 4.3: Example 1 : FErrors numerical traces. N correspond to number of elements of the

mesh i with h ~ L.

VN
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Figure 4.1: Example 1 : Errors in logarithmic scale k =0,1,2,3

fact, the estimates in Theorem 3.8 is predict an order of k 4+ 1 and k for the error associated to
Up and @y, , respectively. For k = 0 the convergence of 4y, is optimal with order 1, and for g,
the errors seems to converge with very low order. Comparing this with the theoretical results
obtained in Section 2.4, we conclude that numerical result are slightly better than theoretical
results.

The Figure 4.5 shows performance of HDG method for two different mesh. If left column
corresponds to mesh with 215 elements and the right column corresponds to mesh with 1620
elements. Each row has associated a different polynomial degree in the following order. The first
row shows the graphic of the approximate o when polynomials of degree k = 1 are used, the
second row shows the graphic when polynomials of degree k = 2 are used and the last row shows
the performance when polynomials of degree k = 3 are used. Finally, Figure 4.6 shows the exact
solution and a uniform triangulation with 215 elements.
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Figure 4.2: Example 1: With a fixed mesh of 1620 elements, the graphics show the behavior of
the errors associated with wu, , and for different polynomial degrees.
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Figure 4.3: Example 2 : Errors in logarithmic scale k =0,1,2,3
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CHAPTER 4. NUMERICAL RESULT

H k ‘ Mesh ¢ h ‘ N ‘ e(u) ‘ r(u) ‘ e(q) ‘ r(q) ‘ e(o) ‘ r(o) ‘ e(z) ‘ r(z) H
4 0.1508 44 3.60e-02 | 0.89 | 1.08e-02 | 0.12 | 7.13e-01 | 0.10 | 1.20e-01 | 0.70
5 0.0995 101 2.33e-02 | 1.05 | 6.25e-03 | 1.33 | 6.39e-01 | 0.27 | 9.26e-02 | 0.63
6 0.0682 | 215 | 1.65¢-02 | 0.92 | 4.94e-03 | 0.62 | 5.70e-01 | 0.30 | 7.16e-02 | 0.68
7 0.0499 401 1.19¢-02 | 1.05 | 3.90e-03 | 0.76 | 5.24e-01 | 0.27 | 5.71e-02 | 0.73
8 0.0354 | 800 | 8.34¢-03 | 1.02 | 2.91e-03 | 0.85 | 4.88¢-01 | 0.21 | 4.47¢-02 | 0.71
0 9 0.0251 | 1586 | 5.92¢-03 | 1.00 | 2.10e-03 | 0.95 | 4.44e-01 | 0.28 | 3.48e-02 | 0.73
10 0.0177 | 3190 | 4.21e-03 | 0.97 | 1.54e-03 | 0.88 | 4.04e-01 | 0.27 | 2.67e-02 | 0.75
11 0.0125 | 6367 | 2.97¢-03 | 1.01 | 1.14e-03 | 0.89 | 3.70e-01 | 0.25 | 2.06e-02 | 0.76
12 0.0089 | 12737 | 2.11e-03 | 0.98 | 8.20e-04 | 0.94 | 3.40e-01 | 0.24 | 1.58e-02 | 0.77
13 0.0063 | 25497 | 1.49¢-03 | 1.01 | 5.89¢-04 | 0.96 | 3.14e-01 | 0.23 | 1.20e-02 | 0.78
14 0.0044 | 50917 | 1.06e-03 | 1.00 | 4.22e-04 | 0.96 | 2.91e-01 | 0.22 | 9.20e-03 | 0.78
4 [ 0.1508 | 44 | 1.62e-03 | 1.73 | 1.48¢-03 | 1.63 | 1.30e-01 | 0.47 | 4.94¢-03 | 1.65
5 100995 | 101 | 6.92e-04 | 2.04 | 5.40e-04 | 2.43 | 9.25¢-02 | 0.83 | 2.08¢-03 | 2.08
6 | 00682 | 215 |3.19¢-04 | 2.05 | 2.40e-04 | 2.14 | 5.60e-02 | 1.33 | 9.68¢-04 | 2.03
7 1 0.0499 | 401 | 1.78¢-04 | 1.87 | 1.32¢-04 | 1.93 | 4.34e-02 | 0.81 | 5.20¢-04 | 1.99
8 0.0354 | 800 | 8.71le-05| 2.07 | 6.71e-05 | 1.95 | 3.31e-02 | 0.79 | 2.83e-04 | 1.76
1| 9 100250 | 1586 | 4.43e-05 | 1.97 | 3.23e-05 | 2.14 | 2.21e-02 | 1.17 | 1.36e-04 | 2.15
10 0.0177 | 3190 | 2.16e-05 | 2.05 | 1.58e-05 | 2.05 | 1.54e-02 | 1.04 | 6.6%9e-05 | 2.03
11 | 00125 | 6367 | 1.09¢-05 | 1.98 | 7.99¢-06 | 1.98 | 1.11e-02 | 0.95 | 3.40¢-05 | 1.96
12 0.0089 | 12737 | 5.48¢-06 | 2.00 | 4.03e-06 | 1.97 | 7.87e-03 | 0.99 | 1.72e-05 | 1.96
13 | 0.0063 | 25497 | 2.74¢-06 | 2.00 | 1.99¢-06 | 2.03 | 5.55¢-03 | 1.00 | 8.57¢-06 | 2.01
14 0.0044 | 50917 | 1.37e-06 | 2.00 | 9.97e-07 | 2.00 | 3.92e-03 | 1.01 | 4.30e-06 | 1.99
4 0.1508 44 5.63e-05 | 2.09 | 7.28e-05 | 2.15 | 5.55e-03 | 0.05 | 1.54e-04 | 1.57
5 0.0995 101 1.32e-05 | 3.49 | 1.64e-05 | 3.58 | 1.79e-03 | 2.73 | 3.26e-05 | 3.74
6 0.0682 | 215 | 4.30e-06 | 2.97 | 5.56e-06 | 2.87 | 5.98¢-04 | 2.90 | 1.11e-05 | 2.85
2 7 0.0499 401 1.74e-06 | 2.90 | 2.13e-06 | 3.08 | 3.49e-04 | 1.73 | 4.14e-06 | 3.17
8 0.0354 | 800 | 6.10e-07 | 3.04 | 7.40e-07 | 3.07 | 2.18¢-04 | 1.36 | 1.69¢e-06 | 2.60
9 0.0251 | 1586 | 2.14e-07 | 3.06 | 2.62e¢-07 | 3.04 | 8.45e-05 | 2.78 | 5.36e-07 | 3.35
10 0.0177 | 3190 | 7.51e-08 | 3.00 | 9.11e-08 | 3.02 | 4.15e-05 | 2.03 | 1.91e-07 | 2.96
4 01508 | 44 | 9.71e-07 | 2.96 | 9.79¢-07 | 3.02 | 6.52¢-05 | 2.07 | 2.65¢-06 | 2.78
5 0.0995 | 101 | 1.44e¢-07 | 4.60 | 1.38¢-07 | 4.71 | 1.26e-05 | 3.95 | 3.11e-07 | 5.16
6 | 0.0682| 215 | 3.41e-08 | 3.80 | 2.66¢-08 | 4.36 | 5.02e-06 | 2.44 | 7.65¢-08 | 3.71
31 7 100499 | 401 | 7.88¢-09 | 4.70 | 6.39¢-09 | 4.57 | 1.63¢-06 | 3.61 | 1.79¢-08 | 4.66
8 0.0354 | 800 | 1.91e-09 | 4.11 | 1.94e-09 | 3.45 | 5.67e-07 | 3.05 | 4.30e-09 | 4.13
9 | 0.0251 | 1586 | 4.55¢-10 | 4.19 | 4.44¢-10 | 4.31 | 1.88¢-07 | 3.23 | 1.00e-09 | 4.25

Table 4.4: Example 2 : Errors for second example and k£ = 0,1,2,3. N correspond to number of

1

elements of the mesh 7 with h ~ —.

VN
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u(z,y) = —sin(y)sin(z)
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Figure 4.4: Example 2: With a fixed mesh of 1620 elements, the graphics show the behavior of
the errors associated to z;, o, q;, and wuy, for different polynomial degrees.
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H k ‘ Mesh 14 h ‘ N ‘ e(t) ‘ r(a) ‘ e(q) ‘ r(q) H
4 0.1508 44 6.78e-03 | 1.20 | 9.87e-02 | 0.30
5 0.0995 101 3.22e¢-03 | 1.79 | 9.54e-02 | 0.08
6 0.0682 215 2.17e-03 | 1.04 | 8.82e-02 | 0.21
7 0.0499 401 1.60e-03 | 0.97 | 8.03e-02 | 0.30
8 0.0354 | 800 1.16e-03 | 0.95 | 7.24e-02 | 0.30
0 9 0.0251 | 1586 | 8.09e-04 | 1.05 | 6.43e-02 | 0.35
10 0.0177 | 3190 | 5.72e-04 | 0.99 | 5.66e-02 | 0.37
11 0.0125 | 6367 | 4.20e-04 | 0.90 | 4.93e-02 | 0.40
12 0.0089 | 12737 | 2.99¢-04 | 0.98 | 4.26e-02 | 0.42
13 0.0063 | 25497 | 2.14e-04 | 0.97 | 3.67e-02 | 0.44
14 0.0044 | 50917 | 1.51e-04 | 1.01 | 3.14e-02 | 0.45
4 0.1508 44 2.38e-04 | 1.58 | 1.32e-03 | 1.58
5 0.0995 101 4.59¢-05 | 3.96 | 4.10e-04 | 2.82
6 0.0682 | 215 1.55e-05 | 2.88 | 1.76e-04 | 2.23
7 0.0499 401 5.99¢-06 | 3.05 | 7.44e-05 | 2.77
8 0.0354 | 800 | 2.28e-06 | 2.80 | 3.80e-05 | 1.95
1 9 0.0251 | 1586 | 7.89e-07 | 3.10 | 1.38e-05 | 2.96
10 0.0177 | 3190 | 2.72e-07 | 3.04 | 5.97e-06 | 2.40
11 0.0125 | 6367 | 9.87e-08 | 2.94 | 2.54e-06 | 2.47
12 0.0089 | 12737 | 3.58e-08 | 2.93 | 1.11e-06 | 2.40
13 0.0063 | 25497 | 1.25e-08 | 3.04 | 4.58e-07 | 2.54
14 0.0044 | 50917 | 4.44e-09 | 2.99 | 1.95e-07 | 2.47
4 | 01508 | 44 | 6.650-06 | 2.20 | 3.330-05 | 1.56
5 00995 | 101 | 7.85¢-07 | 5.14 | 4.66e-06 | 4.73
6 | 0.0682| 215 | 2.21e-07 | 3.36 | 1.49¢-06 | 3.03
7 100499 | 401 | 5.99¢-08 | 4.18 | 4.09¢-07 | 4.14
21 8 00354 800 |1.40e-08 | 4.22 | 1.60e-07 | 2.72
9 | 0.0251 | 1586 | 3.77¢-09 | 3.83 | 3.84¢-08 | 4.17
10 | 0.0177 | 3190 | 9.42e-10 | 3.97 | 1.16e-08 | 3.43
11| 0.0125 | 6367 | 2.38¢-10 | 3.98 | 3.62¢-09 | 3.37
4 0.1508 44 1.36e-07 | 2.48 | 7.72e-07 | 1.95
5 0.0995 101 9.76e-09 | 6.34 | 6.14e-08 | 6.09
6 0.0682 215 1.76e-09 | 4.53 | 1.43e-08 | 3.85
3 7 0.0499 401 3.44e-10 | 5.25 | 2.32e-09 | 5.84
8 0.0354 800 6.68e-11 | 4.74 | 1.05e-09 | 2.29
9 0.0251 | 1586 | 1.55e-11 | 4.26 | 2.80e-10 | 3.87

Table 4.5: Example 2 : Errors numerical traces. N correspond to number of elements of the

. . ~ L
mesh 7 with h =~ N



4.2. SECOND EXAMPLE
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Figure 4.5: Example 2 : HDG performance for different size mesh and different polynomial degree,
k=1, k=2and k = 3 to first, second and third rows respectively. Left pictures were made with
215 elements and right pictures were made with 1620 elements.
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Figure 4.6: Example 2 : Top picture correspond to exact solution of first component of the vector
o for second example and bottom picture shows a uniform mesh with 215 elements.



CHAPTER D

Conclusions and Future work

Conclusions: The HDG methods proposed has unique solution and it is numerically feasible,
getting good results of convergence for the variables v, Vu and #H(u). The method allowed
us to eliminate all the interior variables locally to obtain a global system for 4; and @, that
approximate u and Vu, respectively, on the interfaces of the triangulation. As a consequence
the only globally coupled degrees of freedom are those of the approximations of v and Vu on
the faces of the elements. By last, when we carried out a priori analysis using the orthogonal
L?—projection we concluded that the orders of convergence for the errors in the approximation
of H(u), V- H(u), Vu and u are k +1/2, k — 1/2, k y k + 1 respectively (k > 1). However, our
numerical results suggest that the approximations of H(u), V-H(u) ,Vu and w are slightly better
than theoretical results. Namely the approximations of H(u), Vu and u converge with optimal
order k + 1 and the approximation of V - H(u) converge with suboptimal order k.

Future works:
1. As the numerical results obtained were better that those predicted by the theory. The
future task will be to improve the error estimates.

2. If the previous point is possible, then the future task will be to extend the method applied
to the biharmonic problem in domains curve.

3. Given the difficulties we had to obtain the error estimates for the HDG scheme that is
studied in this thesis, we decide to propose the next HDG scheme.

Let Vi, Qn, Sh, Z1, and @, like in (2.13) and define W} as follow
Wy = {b € L*(&,) : 9], € Py(e) A 9]y =0} .

Then the proposed HDG scheme is: Find (2, op, qp,, un, Un, 21,) € Zn X Zp X Qp X Vi X
W,? x ®, such that

(onmn)7, — (21, Viema) 7, + (2, mp)yy, = 0, (5.1a)
(oh, Vawn)7, — (6h n,wi) sy, + (fywn)y, = 0, (5.1b)
(@n, )7, + (Vi vnun)7, — (Un - ntn)ey, = 0, (5.1c)
(@n, Vi - 8p)7, — (8pm, Qh>8’7’h = (2h: Sp) T - (5.1d)

(n -1, Br)or, = 0, (5.1e)

(@n.apn)yrn, = 0, (5.1f)

39



40

CHAPTER 5. CONCLUSIONS AND FUTURE WORK
for all (s, vy, mp, wp, Br, ) € Zp X X X Qp X Vi X W,? x @y, where
op-n = op-n+71(uy—ayp) on T,
a = q,+7n(z,—Z)n on T,

are the numerical traces.

In addition, we propose to obtain the a priori error estimate with the next projector:
(IL, T, P) : [H (div; T,)]¥? x [H (div, Tp)] U [HY(T)] x HY(Th) — Zn x S, UQp x Vi,
is defined as follow; given the functions (p, p) € [H(div; T,)]*¢ x [H (div; T)]¢ U [H (T5)]?

and a simplex T € T,. The restriction of (Ip,Ip) to T is defined as the element of
[P ()] x [Py (T)]? that satisfies:

Tp—p,v)r = 0 VYove [P (T, if k>1,
<(ﬁp—p)-n,w>e 0 YwePgle),

p—pv)r = 0 YV,v€ P (D)™, ifk>1,
<(Hé—é)n,w>e = 0 YwePge).

Given n € HY(7;,) and a simplex T € T,. The restriction of Py to T is defined as the
element of P (7)) that satisfies

(Pp—n,w)yy = 0 YweP, (T), if k>1,
(Pn—n,w), = 0 YwePge).

. We would like to study the next biharmonic problem

Nu = f in Q

U = 0 on 0N (5:3)

Au = 0 on 9O9.

For doing that, we propose to define the variables z = Au and Az = f, later ¢ = Vu and
o = Vz. this is,

o = Vz in Q,
Vo = f in Q
z = 0 on 09,
(5.4)
q = Vu in Q,
V-gq = 2z in Q
U = 0 on 09Q.

In addition, we propose to study the next HDG scheme. Let the space ¥, Vi, and W), as
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in (2.13), then we can to find ((o4,qp), (2, un), (2, 4n)) € 2 x V2 x W72 such that

(@hsvn)7, + (20, V - OR) T — (Uns 2n)pr, = 0 (5.5a)
—(oh, Viwp), +(6h nwn)or, = (fiwn)7, (5.5b)
(@n, Th)7 + (Un, Vo Th)7, — (Th M dn)yr, = 0 (5.5¢)
—(qn, Vi), (@ pn)or, = (o pn)T, (5.5d)
(6n-nBr)gr. = O (5.5¢)
(@, -m,an)yyr, = 0 (5.5f)
(2n: Bn)og = O (5.58)
(U, an)gq = 0 (5.5h)
for all ((vn, Th), (wh, pn), (Br,an)) € L2 x V2 x W2. Where
op-m = op-n+T1(zy,—2)n on J0T,
q, - n = q, n+nu,—u,)n on OJT,

are the numerical traces. By last, we propose to analyze the priori error with the HDG-
projectors studied in [6].
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