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Abstract

This thesis aims to develop the mathematical and numerical analysis of nonlinear coupled partial

differential equations (PDE’s)-based models that describe certain phenomena in Biology and Bio-

medicine encompassing generalized bioconvection and deformable image registration. More precisely,

we introduce primal and mixed schemes based on finite elements for the aforementioned models, prove

the solvability of the continuous and discrete problems, establish the corresponding error estimates,

and present a variety of tests to validate the theoretical results and illustrate the performance of such

methods including applied examples.

We begin with the bioconvective flows model, which describes the hydrodynamics of microorganisms

in a culture fluid and takes place in several biological processes, including reproduction, infection, and

the marine life ecosystem. The flows are governed by a Navier-Stokes type system coupled to a

conservation equation that models the microorganisms concentration. The culture fluid is assumed

to be viscous and incompressible with a concentration dependent viscosity. For the mathematical

analysis, the model is rewritten in terms of a first-order system based on the introduction of the strain,

the vorticity, and the pseudo-stress tensors in the fluid equations along with an auxiliary vector in the

concentration equation. The resulting weak model is then augmented using appropriate redundant

parameterized terms and rewritten as a fixed-point problem. Existence and uniqueness results for both

the continuous and the discrete scheme are obtained under certain regularity assumptions combined

with the Lax-Milgram theorem or the Babuška-Brezzi theory, and the Banach and Brouwer fixed-point

theorems. Optimal a priori error estimates are also derived and confirmed via numerical examples.

Next, we address the study of a deformable image registration (DIR) model, which arises in numer-

ous research fields as a solution to the combination or comparison of a series of images. Specifically,

in Biomedicine, there is a need to detect changes in images obtained from the same subject over time,

whereby the deformable image registration represents a powerful computational method for image

analysis, with promising applications in the diagnosis of human disease. One important and recent

application of DIR is the study of local lung tissue deformation from computed-tomography images of

the thorax, which allows the early detection of damage induced by mechanical ventilation in the lung.

In our case, for the first model studied in this part, which we will call extended deformable image

registration problem, we propose a finite element method for its numerical approximation, proving

well-posedness of the primal and dual-mixed continuous formulations, as well as of the associated

Galerkin schemes. A priori error estimates and the corresponding rates of convergence are also es-

tablished for both discrete methods. In addition, we provide numerical examples confronting our

formulations with the standard ones.

Finally, in order to guarantee an appropriate convergence behavior of the discrete approximations
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obtained by the aforementioned primal and mixed variational formulations of the image registration

problem, we develop an a posteriori error analysis for both schemes in terms of residual estimators,

which we prove to be reliable and efficient. Based on the latters, we implement adaptive mesh-

refinement schemes for the formulations, confirm their properties and illustrate their applicability

using medical brain images and binary images.



Resumen

Esta tesis tiene como objetivo desarrollar un análisis matemático y numérico de modelos basados en

ecuaciones diferenciales parciales (PDE’s) acopladas y no lineales que describen ciertos fenómenos

en Bioloǵıa y Biomedicina que abarcan la bioconvección generalizada y el registro de imágenes de-

formables. Más precisamente, introducimos esquemas primales y mixtos basados en elementos finitos

para los modelos antes mencionados, probamos la solubilidad de los problemas continuos y discretos,

establecemos las estimaciones de error correspondientes y presentamos una variedad de experimentos

numéricos para validar los resultados teóricos e ilustrar el desempeño de tales métodos incluyendo

ejemplos aplicados.

Iniciamos con el modelo de flujos bioconvectivos el cual describe la hidrodinámica de un cultivo

de microorganismos y se usa para estudiar y entender diversos procesos biológicos tales como la re-

producción, infecciones, y el ecosistema de la vida marina. Desde un punto de vista matemático, el

problema está constituido por ecuaciones tipo Navier-Stokes para el movimiento del fluido acoplada

a una ecuación de conservación para describir la hidrodinámica y la concentración de microorganis-

mos, respectivamente. El cultivo se asume como un fluido viscoso e incompresible con una viscosidad

dependiente de la concentración. Para el análisis matemático de este modelo, se reescribe en términos

de un sistema de primer orden basado en la introducción de los tensores de esfuerzo, de vorticidad y

de pseudo-estrés en las ecuaciones de fluidos junto con un vector auxiliar en la ecuación de concen-

tración. La formulación débil resultante se aumenta utilizando términos parametrizados redundantes

apropiados y lo reescribimos como un problema de punto fijo. La existencia y unicidad, tanto para el

esquema continuo como para el discreto se obtienen bajo ciertos supuestos de regularidad combinados

con el teorema de Lax-Milgram o la teoŕıa de Babuška-Brezzi y los teoremas de punto fijo de Banach

y Brouwer. También derivamos estimaciones de error a priori óptimas y que se ilustran a través de

experimentos numéricos.

Luego, estudiamos un modelo de registro deformable de imágenes (DIR, por sus siglas en inglés), el

cual surge en un gran número de campos de investigación como solución a la combinación o compara-

ción de una serie de imágenes. Espećıficamente, en biomedicina, existe la necesidad de detectar cambios

en imágenes obtenidas a partir de un mismo sujeto a través del tiempo, por lo cual, el registro defor-

mable de ellas representa un poderoso método computacional para analizar imágenes biomédicas, con

prometedoras aplicaciones en el diagnóstico en enfermedades humanas. Una aplicación importante y

reciente de este problema es estudiar la deformación regional del tejido pulmonar a partir de imágenes

de tomograf́ıa computarizada del tórax, lo cual permite la detección temprana del daño inducido por

ventilación mecánica en el pulmón. En nuestro caso, para el primer modelo estudiado en esta parte, el

cual llamaremos problema de registro deformable de imágenes extendido, proponemos un método de
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elementos finitos para su aproximación numérica, probando que las formulaciones continuas primal y

dual-mixta, aśı como de los esquemas de Galerkin asociados están bien puestos. También se estable-

cen estimaciones de error a priori y las correspondientes tasas de convergencia para ambos métodos

discretos. Adicionalmente, proporcionamos ejemplos numéricos que comparan nuestras formulaciones

con la estándar.

Finalmente, con el fin de garantizar un comportamiento de convergencia adecuado de las aproxi-

maciones discretas que se obtienen a través de las formulaciones variacionales primales y mixtas antes

mencionadas para el problema de registro de imágenes, desarrollamos un análisis de error a poste-

riori para ambos esquemas en términos de estimadores residuales, que demostramos ser confiables y

eficientes. Basados en estos últimos, implementamos esquemas adaptativos de refinamiento de malla

para las formulaciones, confirmamos sus propiedades e ilustramos la aplicabilidad de éstos utilizando

imágenes médicas cerebrales e imágenes sintéticas.
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Introduction

Most of the partial differential equations (PDEs) that model many natural phenomena in science and

engineering are difficult or even impossible to solve analytically, so numerical methods are required to

generate approximate solutions that allow a better understanding and description of such phenomena.

Finite element methods are one of such techniques and have shown to be appropriate for a wide

range of problems representing, in particular, a very powerful tool to obtain approximate solutions

in finite dimensional spaces and to conduct computational simulations. In particular, the mixed

finite element method is a technique used for numerically solving mathematical models in the form of

systems of PDE’s that involve several physically disparate quantities, which need to be approximated

simultaneously. In some cases, one or several fields are introduced in the formulation of the problem

because of its physical interest and they are usually related with some derivatives of the original

unknown fields, or a combination of these.

According to the above, this thesis deals with mixed finite element methods for certain phenomena

based on nonlinear coupled partial differential equations of special interest in Biology and Biomedi-

cine that encompass generalized bioconvection and deformable image registration (see Section Model

Problems below). For each of these models, we are particularly interested in:

- deriving suitable variational formulations based on mixed or primal-mixed approaches,

- establishing the existence and uniqueness of continuous weak solutions,

- proposing Galerkin schemes and analyzing their well-posedness,

- obtaining the corresponding solvability and convergence results,

- developing a posteriori error analysis, in some cases, and

- validating theoretical results and illustrating the performance of the schemes through essays and

numerical simulations.

In the following two sections, we first describe the models we focus in this thesis and briefly discuss

some of their applications. Then, we present the outline section in which we set the organization of

the thesis and explain the mathematical and numerical focusing used for each model.

Model problems

In this thesis we address two problems that are generated in important areas of science and health,

such as Biology and Biomedicine. The problem that we study in the biological area is known as the

bioconvective fluid model, and the corresponding one to the Biomedicine area is called the deformable

image registration (DIR) model, which are described next.

1
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First, we focus on the bioconvective fluids problem [65, 71, 75, 78], represented by the following

system of partial differential equations, describing the three-dimensional hydrodynamics of negatively

geotactic micro-organisms in suspension in a viscous and incompressible culture fluid Ω,

−div (µ(ϕ)e(u)) + (∇u)u+∇ p = f − g (1 + γϕ) i3 , and divu = 0 in Ω,

−κ∆ϕ+ u · ∇ϕ+ U
∂ϕ

∂x3
= 0 in Ω,

u = 0 , and κ
∂ϕ

∂ν
− ν3Uϕ = 0 on Γ, and

1

|Ω|

ˆ
Ω
ϕ = α,

(1)

where the unknowns are the velocity u, the pressure p, and the micro-organism concentration ϕ of

the culture fluid which might affect the kinematic viscosity µ. Here, e(u) stands for the symmetric

part of the velocity gradient, f refers to a volume-distributed external force, g is the gravitational

force magnitude, i3 = (0, 0, 1)t is the vertical unitary vector, κ and U are constants associated to the

diffusion rate and the mean velocity of upward swimming of the microorganisms, respectively, and

γ > 0 is a given constant depending on the micro-organisms density and the culture fluid density. The

model (1) will be studied in Chapter 1. We also remark that the bioconvection phenomenon takes

place in several biological processes, including reproduction, infection, and the marine life ecosystem

[17, 67, 68, 78]. Some direct applications are related to bacterial research, microbiological cultures,

separation of subpopulations of geotactic micro-organisms in lab experiments, and population control

of plankton communities in the oceans, to name a few.

The deformable image registration (DIR) model concerns the problem of aligning a given set of

images by means of a transformation that warps one or more of these images. Its formulation requires

three main ingredients: (i) the transformation model, composed by a family of mappings that warp

the target image into the reference image; (ii) the similarity measure, a function that measures the

differences between the images; and (iii) the regularizer, which renders the problem well-posed. Spe-

cifically, consider a domain Ω ⊂ Rd=2,3, R : Ω → R the reference image and T : Ω → R the target

image, where R(x) and T (x) denote the image intensity at point x. Then, the objective of DIR is to

find a transformation u : Ω → Rd, also known as the displacement field, that best aligns the images

R and T , namely

T (x+ u(x)) = R(x) ∀x ∈ Ω .

This problem is ill-posed in general, so one formulates it as a minimization problem by considering a

family of deformations V (such that u ∈ V), a similarity measure D : V → R (a functional which attains

its minimum when the equality above holds), a regularizer S : V → R (which provides smoothness to

the problem), and a positive constant α (which balances D and S). Putting everything together, the

following minimization problem arises:

min
u∈V

{
αD(u;R, T ) + S(u)

}
. (2)

We call to the equation (2) the standard DIR. A extended version for DIR is formulated as follows:

Let Q be the kernel of the adjoint operator induced by S, which we assume to be non trivial and

finite dimensional, splitting V = Q⊥ ⊕Q, from which we recall the orthogonality condition, that is, if

u ∈ Q⊥ then 〈u,ρ〉 = 0 ∀ρ ∈ Q, also given a positive constant β, hinted to control u in Q. Then the
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extended DIR version is formulated as the following minimization problem:

min
(u,λ)∈V×Q

max
ρ∈Q

{
αD(u;R, T ) + S(u) + 〈u− λ,ρ〉+

β

2
‖λ‖2V

}
. (3)

Additional details for obtain (3) will be mentioned in Chapter 2. A common choice for the similarity

measure is the sum of squares difference, i.e, the L2 error that takes the form

D(u;R, T ) :=
1

2

ˆ
Ω

(T (x+ u(x))−R(x))2,

where R and T are reference and target images, respectively. In this thesis we study the case of elastic

DIR, in which V = H1(Ω) and the regularizing term is taken to be the elastic deformation energy,

defined by

S(u) :=
1

2

ˆ
Ω
Ce(u) : e(u),

where

e(u) =
1

2
{∇u+ (∇u)t} and Cτ = λtr(τ )I + dµτ ∀τ ∈ L2(Ω),

are respectively, the infinitesimal strain tensor (symmetric component of the displacement field gradi-

ent) and the elasticity tensor for isotropic solids with the Lamé constants λ, µ > 0 characterizing the

material. In this case, the associated Euler-Lagrange equations from (2) deliver the following strong

problem: Find u such that

div(Ce(u)) = α∇D(u) in Ω,

Ce(u)ν = 0 on ∂Ω.
(4)

We observe that this problem presents a structure similar to that of a linear elasticity problem with a

nonlinear load source. In turn, the associated Euler-Lagrange equations from (3) allow us to formulate

the following problem with unknowns u, and the rigid motions ρ y λ

−div(Ce(u)) + ρ = −α∇D(u), λ = ΠQ u , ρ = β λ in Ω,

Ce(u)ν = 0 on ∂Ω,
(5)

where ΠQ : V → Q is the orthogonal projection on Q. The extended DIR problem (5) will be

analyzed in Chapter 2, whilst a posteriori error analysis for the standard DIR problem (4) will be

developed in Chapter 3. It is important to remark that this model arises in a number of important

applications, particularly in the field of medical imaging [85], for example in the study of lung regional

deformation computed from tomography images of the thorax [29,64], and problems related with the

image registration of the human brain.

Outline of the thesis

This thesis is organized as follows. In Chapter 1, we extend the results obtained in [24] to analyze

the solvability of the coupled system (6). We write the model as a first-order system of equations

in which the resulting unknowns become the velocity and concentration along with the strain tensor,

the vorticity tensor, a pseudo-stress tensor and a vectorial unknown depending on the fluid velocity,
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the microorganism concentration and its gradient (introduced as auxiliary unknowns). After the

variational formulation is derived, the problem is then augmented by using redundant parameterized

Galerkin terms, which allows to set the problem in standard Hilbert spaces and, in turn, to circumvent

any inf-sup compatibility condition between the involved spaces. Then the analysis is carried out

using a fixed-point approach [36], combining the Lax-Milgram theorem with the classical Banach and

Brouwer fixed-point theorems for stating the respective solvability of the continuous problem and the

associated Galerkin scheme, under suitable regularity assumptions, a feasible choice of parameters

and, in the discrete case, for any family of finite element subspaces. A Strang-type lemma, valid for

linear problems, enables us to derive the corresponding Céa estimate and to provide optimal a priori

error bounds for the Galerkin solution. The contents of this chapter gave rise to the following paper:

[34] E. Colmenares, G. N. Gatica and W. Miranda, Analysis of an augmented fully-

mixed finite element method for a bioconvective flows model. Journal of Computational and

Applied Mathematics, vol. 393, Art. Num. 113504, (2021).

In Chapter 2, we generalize the analysis presented in [13] to regularizers that may present a kernel,

and to Lipschitz similarity measures. This is performed by splitting weakly the warping with respect

to the kernel of the regularizer so that such kernel remains present in the formulation throughout the

model, under the assumption of a relationship between the regularizer and the similarity measure.

Then, we derive the new model and analyze its primal formulation at both continuous and discrete

levels. The main results, which are obtained by using the Babuška-Brezzi theory and duality argu-

ments, include well-posedness of the continuous and discrete formulations, a priori error estimates,

and the respective rates of convergence. In addition, we introduce and analyze (using basically the

same theoretical tools from the primal case) an extended dual-mixed formulation in the particular

case of an elastic energy. The contents of this chapter gave rise to the following paper:

[15] N. Barnafi, G. N. Gatica, D. E. Hurtado, W. Miranda and R. Ruiz-Baier, New

primal and dual-mixed finite element methods for stable image registration with singular

regularization. Mathematical Models and Methods Applied Sciences, to appear (2021).

In Chapter 3, we develop an a posteriori error analysis for the variational formulations described

in [13]. More precisely, we develop an reliable and efficient residual-based a posteriori error estimat-

ors, which allows us to establish appropriate adaptive methods to guarantee greater precision of the

numerical approximations, and mainly the convergence of the Galerkin scheme in situations in which

there are singularities or high gradients of the solution. Our theoretical results, make use of the stand-

ard tools, which include global inf-sup conditions, Helmholtz decompositions, and the approximation

properties of the Raviart-Thomas and Clément interpolants for proving reliability of the estimator.

In turn, localization techniques using bubble functions and inverse inequalities are employed to prove

the corresponding efficiency estimates. This chapter is constituted by the following preprint:

[14] N. Barnafi, G. N. Gatica, D. E. Hurtado, W. Miranda and R. Ruiz-Baier, A

posteriori error estimates for primal and mixed finite element approximations of the deform-

able image registration problem. Preprint 2018-50, Centro de Investigación en Ingenieŕıa

Matemática (CI2MA), Universidad de Concepción, Chile, (2018).
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Throughout the chapters of this thesis, the theoretical results are illustrated through several numer-

ical examples, that corroborate the accuracy of the numerical schemes. In addition, the computational

implementations were obtained using the free access software for finite elements: FreeFem++ [59],

FEniCS [4] and the illustrator ParaView.

Preliminary notations

Let Ω ⊆ Rd=2,3 a bounded domain with boundary Γ := ∂Ω, and outward unit normal given by

ν = (ν1, · · · , νd)t. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces

Hs(Ω) with norm ‖ · ‖s,Ω, and semi-norm | · |s,Ω. Given a generic scalar functional space A, we let A

and A be its vectorial and tensor versions, respectively, and we denote by ‖ · ‖, with no subscripts, the

natural norm of either an element or an operator in any product functional space. As usual, for any

vector field v = (vi)i=1,d, we set the gradient, divergence and, tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=

d∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,d.

Furthermore, given tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div τ be the divergence

operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,

and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,d, tr(τ ) :=

d∑
i=1

τii, τ : ζ :=

d∑
i,j=1

τijζij , and τ d := τ − 1

d
tr(τ )I.

Finally, we recall the following Hilbert space

H(div;Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

eqquiped with the usual norm

‖τ‖2div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω.



Introducción

La mayoŕıa de las ecuaciones diferenciales parciales (EDP’s) que modelan una diversidad de fenómenos

naturales en ciencia e ingenieŕıa son dif́ıciles o incluso imposibles de resolver anaĺıticamente, por lo que

se requieren métodos numéricos para generar soluciones aproximadas que permitan una mejor com-

prensión y descripción de dichos fenómenos. Los métodos de elementos finitos son una de esas técnicas

y han demostrado ser apropiados para una amplia gama de problemas, representando en particular,

una herramienta muy poderosa para obtener soluciones aproximadas en espacios de dimensión finita

y para realizar simulaciones computacionales. En particular, el método de elementos finitos mixtos

es una técnica utilizada para resolver numéricamente modelos matemáticos presentados en forma de

sistemas de EDP’s que involucran varias cantidades f́ısicamente dispares, que requieran aproximarse

simultáneamente. En algunos casos, una o más variables se introducen en la formulación del problema

por su interés f́ısico y suelen estar relacionadas con algunas derivadas de las incógnitas originales, o

una combinación de estas.

De acuerdo con lo anterior, esta tesis trata sobre métodos mixtos de elementos finitos para ciertos

fenómenos representados por medio de ecuaciones diferenciales parciales acopladas no lineales, que son

de especial interés en Bioloǵıa y Biomedicina y que engloban bioconvección generalizada y el registro

de imágenes deformables (ver apartado Problemas modelo más adelante). Para cada uno de estos

modelos, estamos particularmente interesados en:

- derivar formulaciones variacionales adecuadas basadas en enfoques mixtos o primarios-mixtos,

- establecer la existencia y la unicidad de soluciones débiles a nivel continuo,

- proponer esquemas de Galerkin y analizar su buena planteamiento,

- obtener correspondientes resultados de solubilidad y convergencia,

- desarrollar análisis de errores a posteriori, en algunos casos, y

- validar resultados teóricos e ilustrar el desempeño de los esquemas a través de ensayos y simu-

laciones numéricas.

En las dos secciones siguientes, primero describimos los modelos que en los que nos enfocamos

en esta tesis y discutimos brevemente algunas de sus aplicaciones. A continuación, presentamos la

organización de la tesis y explicamos el enfoque matemático y numérico utilizado para cada modelo.

Problemas modelo

En esta tesis abordamos dos problemas que se generan en importantes áreas de la ciencia y la

salud, como lo son la Bioloǵıa y la Biomedicina. El problema que estudiamos en el área biológica se

6
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conoce como modelo de flujos bioconvectivos, y el correspondiente al área de Biomedicina es llamado

problema de registro deformable de imágenes (DIR, por sus siglas en inglés), los cuales se describen a

continuación.

Primero, estudiamos en el problema de fluidos bioconvectivos [65, 71, 75, 78], el cual se representa

mediante el siguiente sistema de ecuaciones diferenciales parciales, y que describe la hidrodinámica

de un grupo de microorganismos que tienen un comportamiento geotáctico negativo, es decir que se

mueven contra la gravedad (tienden a nadar hacia arriba), suspendidos en un cultivo, fluido viscoso e

imcopresible Ω,

−div (µ(ϕ)e(u)) + (∇u)u+∇ p = f − g (1 + γϕ) i3 , and divu = 0 in Ω,

−κ∆ϕ+ u · ∇ϕ+ U
∂ϕ

∂x3
= 0 in Ω,

u = 0 , and κ
∂ϕ

∂ν
− ν3Uϕ = 0 on Γ, and

1

|Ω|

ˆ
Ω
ϕ = α,

(6)

donde la incógnitas son la velocidad u, la presión p, y la concentración de microoganismos ϕ, la cual

puede afectar a la viscosidad cinemática µ. Aqúı, e(u) es el tensor de pequeñas deformaciones, f es

una fuerza externa distribuida en el volumen, g es la magnitud de la fuerza de gravedad, i3 = (0, 0, 1)t

es el vector unitario vertical, y las constantes positivas: κ y U asociadas a la tasa de difusión y la

velocidad promedio de natación ascendente de los microorganismos, respectivamente; γ que depende

de la densidad de los microorganismos y el cultivo; α que asegura que ningún microorganismo pueda

salir o entrar en el dominio f́ısico. El modelo (6) será estudiado en el Caṕıtulo 1. Señalamos además

que el fenómeno de bioconvección aparece en varios procesos biológicos, incluida la reproducción, la in-

fección, y el ecosistema de vida marina [17,67,68,78]. Algunas aplicaciones directas están relacionadas

con la investigación bacteriana, los cultivos microbiológicos, la separación de subpoblaciones de mi-

croorganismos geotácticos en experimentos de laboratorio y el control de la población de comunidades

de plancton en los océanos, por nombrar algunas.

El modelo de registro deformable de imágenes (DIR) consiste en el problema de alinear un con-

junto dado de imágenes mediante una transformación que deforma una o más de estas imágenes. Su

formulación requiere de tres ingredientes principales: (i) el modelo de transformación, compuesto por

una familia de mapeos que deforman la imagen objetivo en la imagen de referencia; (ii) la medida de

similitud, función que mide las diferencias entre las imágenes; y (iii) el regularizador, que hace que el

problema este bien planteado. Espećıficamente, considerando un dominio Ω ⊂ Rd=2,3, R : Ω → R la

imagen de referencia y T : Ω → R la imagen objetivo, donde R(x) y T (x) denotan la intensidad de

la imagen en el punto x. Entonces, el objetivo del DIR es encontrar una transformación u : Ω → Rd,

también conocida como campo de desplazamiento, que mejor se alinea las imágenes R y T , esto es

T (x+ u(x)) = R(x) ∀x ∈ Ω .

En general este problema está mal puesto, por lo que se formula como un problema de minimización

considerando una familia de deformaciones V (tal que u ∈ V), una medida de similitud D : V → R (un

funcional que alcanza su mı́nimo cuando se cumple la igualdad anterior, un regularizador S : V → R (el

cual aporta suavidad al problema), y una constante positiva α (la cual equilibra D y S). Escribiendo

matemáticamente eso, se genera el siguiente problema de minimización:

mı́n
u∈V

{
αD(u;R, T ) + S(u)

}
. (7)
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Llamaremos a la ecuación (7) la versión estándar del problema DIR. Una versión extendida de este

problema se formula como sigue: Sea Q el kernel del operador adjunto inducido por S, el cual se

asume no trivial y de dimensión finita, se tiene la descomposición V = Q⊥⊕Q, de la cual recordamos

la condición de ortogonalidad es decir, si u ∈ Q⊥ entonces 〈u,ρ〉 = 0 ∀ρ ∈ Q, además dada una

constante β, sugerida para controlar u en Q. Entonces la versión extendida DIR se formula como el

siguiente problema de minimización:

mı́n
(u,λ)∈V×Q

máx
ρ∈Q

{
αD(u;R, T ) + S(u) + 〈u− λ,ρ〉+

β

2
‖λ‖2V

}
. (8)

Detalles adicionales para obtener (8) se mencionan en el Caṕıtulo 2. Usualmente, la medida de similitud

se elige como la suma de diferencia de cuadrados, dada por

D(u;R, T ) :=
1

2

ˆ
Ω

(T (x+ u(x))−R(x))2,

donde R y T son las imágenes de referencia y objetivo, respectivamente. En esta tesis nos ocupamos

del caso elástico del DIR, en el cual V = H1(Ω) y el término regularizador se elige como la enerǵıa de

deformación elástica, definida por

S(u) :=
1

2

ˆ
Ω
Ce(u) : e(u),

donde

e(u) =
1

2
{∇u+ (∇u)t} y Cτ = λtr(τ )I + dµτ ∀τ ∈ L2(Ω),

son respectivamente, el tensor de deformación infinitesimal (componente simétrico del gradiente del

campo de desplazamiento) y el tensor de elasticidad para sólidos isotrópicos con las constantes de

Lamé λ, µ > 0. En este caso, las ecuaciones de Euler-Lagrange asociadas a (7), nos proporcionan el

siguiente problema: Encontrar u tal que

div(Ce(u)) = α∇D(u) in Ω,

Ce(u)ν = 0 on ∂Ω.
(9)

Hacemos notar que este problema presenta una estructura similar al problema de elasticidad lineal con

termino fuente no lineal. A su vez, las ecuaciones de Euler-Lagrange asociadas al problema extendido

(8), nos permiten formular el siguiente problema con incógnitas u, y los movimientos ŕıgidos ρ y λ

−div(Ce(u)) + ρ = −α∇D(u), λ = ΠQ u , ρ = β λ in Ω,

Ce(u)ν = 0 on ∂Ω,
(10)

donde ΠQ : V → Q es la proyección ortogonal en Q. La versión extendida (10) del problema DIR será

analizada en el Caṕıtulo 2, mientras que el análisis de error a posteriori para la versión estándar (9) será

desarrollado en el Caṕıtulo 3. Es importante señalar que este modelo tiene una serie de aplicaciones

importantes, particularmente en el campo de las imágenes médicas [85], como por ejemplo en el

estudio de la deformación regional del pulmón a partir de imágenes de tomograf́ıa del tórax [29,64], y

a problemas relacionados con el registro de imágenes del cerebro humano.
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Organización de la tesis

Esta tesis está organizada como sigue. En el Caṕıtulo 1, extendemos los resultados obtenidos en [24]

para analizar la solubilidad del sistema acoplado (6). Primero, escribimos el modelo como un sistema

de ecuaciones de primer orden en el cual las incógnitas resultantes son la velocidad y la concentración

junto con el tensor de esfuerzo; la vorticidad; el tensor de pseudo esfuerzo y un vector desconocido

que depende de la velocidad de fluido, la concentración de microorganismos y su gradiente. Después se

obtiene la formulación variacional, el problema entonces es aumentado usando términos redundantes

de Galerkin, lo cual nos permite establecer el problema en espacios estándar de Hilbert y, a su vez,

evitar cualquier condición de compatibilidad inf-sup entre los espacios involucrados. Luego, el análisis

es llevado a cabo usando una estrategia de punto-fijo [36], combinando el teorema de Lax-Milgram

con los teoremas clásicos de Banach y punto-fijo de Brouwer para obtener la respectiva solubilidad del

problema continuo y el esquema de Galerkin asociado, bajo supuestos adecuados de regularidad, una

elección factible de parámetros y, en el caso discreto, para cualquier familia de subespacios de elementos

finitos. Utilizando un lema de tipo Strang, válido para problemas lineales, derivamos la correspondiente

estimación de Céa y provee cotas óptimas de error a priori para la solución de Galerkin. Los contenidos

de este caṕıtulo dieron lugar al siguiente art́ıculo:

[34] E. Colmenares, G. N. Gatica and W. Miranda, Analysis of an augmented fully-

mixed finite element method for a bioconvective flows model. Journal of Computational and

Applied Mathematics, vol. 393, Art. Num. 113504, (2021).

En el Caṕıtulo 2, generalizamos el análisis presentado en [13] para regularizadores que podŕıan

presentar un kernel no trivial, y para medidas de similitud Lipschitz, lo cual se realiza separando

débilmente la deformación con respecto al kernel del regularizador para que dicho kernel permanezca

presente en la formulación a lo largo del modelo, bajo el supuesto de una relación entre el regularizador

y la medida de similitud. Luego, derivamos el nuevo modelo y analizamos su formulación primal tanto

en el caso continuo como discreto. Los principales resultados en este caṕıtulo, los cuales se obtienen

usando la teoŕıa de Babuška-Brezzi y argumentos de dualidad, incluyen solubilidad de las formulaciones

continua y discreta, estimaciones de error a priori y la respectiva tasa de convergencia. Adicionalmente,

introducimos y analizamos (usando básicamente las mismas herramientas que en el caso primal) una

formulación dual-mixta para el caso particular de enerǵıa elástica. Los contenidos de este caṕıtulo

dieron lugar al siguiente art́ıculo:

[15] N. Barnafi, G. N. Gatica, D. E. Hurtado, W. Miranda and R. Ruiz-Baier, New

primal and dual-mixed finite element methods for stable image registration with singular

regularization. Mathematical Models and Methods Applied Sciences, to appear (2021).

En el Caṕıtulo 3, desarrollamos un análisis de error a posteriori para las formulaciones variacio-

nales descrita en [13]. Más precisamente, desarrollamos estimadores de error a posteriori confiables

y eficientes basados en residuos, los cuales permiten establecer métodos adaptativos apropiados para

garantizar mayor precisión de las aproximaciones numéricas, y principalmente la convergencia del es-

quema de Galerkin en situaciones en las que hay presencia de singularidades o bien altos gradientes

de la solución. Para los resultados teóricos hacemos uso de herraminetas estándar, las cuales inclu-

yen la condición inf-suf global, descomposiciones de Helmholtz, propiedades de aproximación de los
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interpolantes de Raviart-Thomas y Clément para probar la confiabilidad. Por otro lado, técnicas de

localización basadas en funciones burbuja y desigualdades inversa se utilizan para demostrar la co-

rrespondiente estimación de eficiencia. Este caṕıtulo está constituido por la siguiente pre-publicación:

[14] N. Barnafi, G. N. Gatica, D. E. Hurtado, W. Miranda and R. Ruiz-Baier, A

posteriori error estimates for primal and mixed finite element approximations of the defor-

mable image registration problem. Preprint 2018-50, Centro de Investigación en Ingenieŕıa

Matemática (CI2MA), Universidad de Concepción, Chile, (2018).

A lo largo de los caṕıtulos que conforman esta tesis, los resultados teóricos, son ilustrados a través

de varios ejemplos numéricos, que corroboran la precisión de los esquemas numéricos. Además, las

implementaciones computacionales de los métodos, se obtuvieron empleando las libreŕıas de elementos

finitos de acceso libre: FreeFem++ [59], FEniCS [4] y el ilustrador ParaView.



CHAPTER 1

Analysis of an augmented fully-mixed finite element method for a

bioconvective flows model

1.1 Introduction

Bioconvective flows, or bioconvection, refers to a spontaneous flow and pattern formation due to

the motion of a large number of upswimming micro-organisms as an innate behavioral response to

a stimulus like gravity, light, oxygen, food, changes on temperature, or some combination of these.

In a fluid of finite depth, upswimming means that cells accumulate near the top surface due to the

gathering of micro-organisms, so the upper regions of the suspensions become denser than the lower,

and when the density gradient is high enough, micro-organisms fall down; leading to an overturning

convection [78].

By its nature, this phenomenon takes place in several biological processes, including reproduction,

infection and the marine life ecosystem [68]. Some direct applications are related to bacterial re-

search, microbiological cultures, separating swimming subpopulations of geotactic micro-organisms

(whose movement is gravity-induced) in lab experiments, and controlling population of plankton com-

munities in the oceans, to name a few. In addition, more recently, bioconvective flows have also been

considered useful to medical, bioengineering and pharmaceutical applications [17, 67]. For instance,

it can be used to configure new geometries of bioreactors, to improve the biofuel production and to

enhance microfluidics mixing, which are often linked to several pharmaceutical and biotechnological

experiments such as analyses of DNA or drugs, screening of patients and combinatorial synthesis.

A fluid dynamical model to describe bioconvection of geotactic microorganisms was introduced

in [71] and [75], independently, from a biological and physical point of view. Using the Boussinesq

approximation, the resulting model consists of a Navier-Stokes type system for describing the hydro-

dynamic of the culture fluid assumed to be viscous and incompressible, in terms of the velocity and

the pressure, nonlinearly coupled to an advection-diffusion equation for the micro-organisms concen-

tration, which comes from a cell conservation equation.

The mathematical analysis of this model was carried out in [65]. There, the authors prove existence

of weak solutions by the Galerkin method, and existence of strong solutions by a semi-group approach

along with the method of successive approximations, for both stationary and evolution problems.

11
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Also, a positivity property of the concentration is shown there. Later, generalized models in which

the effective viscosity depends on the concentration of the organisms are mathematically analyzed

in [19], for initial conditions, and in [32], for periodic conditions and assuming that the viscosity is

a concentration-dependent continuously differentiable function. In these works, uniqueness results of

solutions are further given. Then in [40], the authors complement the results from [65] by addressing

the problem of obtaining convergence rates for the error when using spectral Galerkin approximations

of the problem with a constant viscosity.

First numerical simulations of bioconvection are developed in [27, 58] in two dimensions. Whilst

in [27] the authors integrate the Navier-Stokes equations, they treat the cells as individuals moving

points, instead of using the continuum cell conservation. In [58], the problem is solved integrating

the incompressible Navier-Stokes equations and the cell conservation equation in a shallow box as a

physical domain. To the best of our knowledge, [24] is one of the first finite element analysis for the

bioconvection model. There, the problem is considered with concentration-dependent viscosity and

the authors firstly improve the existence result from [32], by allowing the viscosity to be a continuous

and bounded function. They then state existence and uniqueness results for the continuous and

discrete problems, as well as a the convergence associated to the classical primal method based on

finite elements; whose solvability requires an inf-sup compatibility condition. Additionally, although

the analysis is carried out in two and three dimensions, they test the performance and accuracy

of the numerical technique only in the 2d-case, including an example with data obtained from lab

experiments. Here the Taylor-Hood finite element of second order is used for approximating the

velocity and pressure, whereas piecewise quadratic polynomials are used for the concentration. Other

numerical techniques developed for related models and their respective mathematical analysis are

[38, 41, 42, 46, 52–54, 60, 70, 72, 86] and the references there in, which include gyrotactic, geotactic,

oxitactic and chemotactic microorganisms modeling.

As a phenomenon from fluid dynamics, in certain applications some additional physically relevant

variables such as the gradient of the fluid velocity or the gradient of the micro-organisms concentration

might reveal specific mechanisms of the bioconvection, and hence become of primary interest. Whilst

these variables could be obtained via numerical integration of the discrete solutions provided by stand-

ard methods, this certainly would lead to a loss of accuracy or deteriorate the expected convergence

order. In light of this, the purpose of this work is to contribute with the construction, analysis and im-

plementation of a new numerical technique based on mixed finite elements for simulating bioconvective

flows of geotactic micro-organisms, allowing

(a) direct computation of physically relevant variables in the phenomena such as the velocity gradi-

ent, the vorticity, the shear stress tensor of the fluid and the micro-organisms concentration

gradient,

(b) flexibility regarding the use of finite element subspaces, avoiding any inf-sup compatibility res-

triction,

(c) high-order approximations, and optimal-order a priori error estimates.

To that end, based on previous mixed methods developed for related problems [2, 3, 5, 26, 35, 37],

we firstly re-write the original model as a first-order system of equations in which the resulting un-
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knowns become the velocity and concentration (as primal variables) along with the strain tensor,

the vorticity tensor, a pseudo-stress tensor and a vectorial unknown depending on the fluid velocity,

the microorganism concentration and its gradient (introduced as auxiliary unknowns). After a vari-

ational formulation, the problem is then augmented by using redundant parameterized Galerkin terms,

which allows to set the problem in standard Hilbert spaces and, in turn, to circumvent any inf-sup

compatibility condition between the involved spaces. The analysis is then carried out by a fixed-point

approach [36], combining the Lax-Milgram theorem with the classical Banach and Brouwer fixed-point

theorems for stating the respective solvability of the continuous problem and the associated Galerkin

scheme, under suitable regularity assumptions, a feasible choice of parameters and, in the discrete

case, for any family of finite element subspaces. A Strang-type lemma, valid for linear problems,

enables us to derive the corresponding Céa estimate and to provide optimal a priori error bounds

for the Galerkin solution. In turn, the pressure can be recovered by a post-processed of the discrete

solutions, preserving the same rate of convergence. Finally, numerical experiments are presented to

illustrate the performance of the technique and confirming the expected orders.

We have organized the contents of this chapter as follows. In Section 1.2, we introduce the model

problem, and the auxiliary variables in terms of which an equivalent first-order set of equations is

obtained. Next, in Section 1.3, we derive the augmented mixed variational formulation and establish

its well-posedness. The associated Galerkin scheme is introduced and analyzed in Section 1.4. In

Section 1.5, we derive the corresponding Céa estimate and, finally, in Section 1.6 we present a couple of

numerical examples illustrating the performance of our augmented fully-mixed finite element method.

1.2 The bioconvective flows model

In this section, we present the model problem, and define the auxiliary unknowns to be introduced

into the respective continuous formulation. From [71, 75, 78], we consider the following system of

partial differential equations, describing the three-dimensional hydrodynamics of negatively geotactic

micro-organisms in suspension in a viscous and incompressible culture fluid Ω, given by

−div (µ(ϕ)e(u)) + (∇u)u+∇ p = f − g (1 + γϕ) i3 , and divu = 0 in Ω,

−κ∆ϕ+ u · ∇ϕ+ U
∂ϕ

∂x3
= 0 in Ω,

(1.1)

that is, a set of coupled non-linear equations given by a Navier-Stokes type-system and an advection–

diffusion equation, in the Boussinesq approximation framework, where the unknowns are the velocity

u = (uj)j=1,3, the pressure p and the micro-organism concentration ϕ of the culture fluid, and in the

realistic case in which the micro-organisms concentration might affect the kinematic viscosity µ( · ).

Here, e(u) stands for the symmetric part ot the velocity gradient, defined as e(u) = 1
2(∇u+ (∇u)t) ,

f refers to a volume-distributed external force, g is the gravitational force magnitude, κ and U

are constants associated to the diffusion rate and the mean velocity of upward swimming of the

microorganisms, respectively, i3 = (0, 0, 1)t is the vertical unitary vector, and γ := ρ0/ρm− 1 > 0, is a

given constant depending on the micro-organisms density ρ0 and the culture fluid density ρm. In turn,

such as in [24] (cf. [32]), we assume that the viscosity µ( · ) is a Lipschitz continuous and bounded
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from above and below function; that is, for some constants Lµ > 0 and µ1, µ2 > 0, there hold

|µ(s)− µ(t)| ≤ Lµ |s− t| , ∀ s, t ≥ 0, (1.2)

and

µ1 ≤ µ(s) ≤ µ2, ∀s ≥ 0. (1.3)

We complete the system (1.1), with a non-slip condition for the velocity and a zero flux Robin-type

condition for the micro-organisms on the boundary, that is

u = 0 , and κ
∂ϕ

∂ν
− ν3Uϕ = 0 on Γ, (1.4)

as well as the total mass restriction
1

|Ω|

ˆ
Ω
ϕ = α, (1.5)

where α is a given positive constant, assuring that no micro-organisms are allowed to leave or enter

the physical domain. Note that (1.5) is equivalent to

ˆ
Ω

(ϕ− α) = 0,

and consequently, when setting the auxiliary concentration ϕα := ϕ − α, which satisfies

ˆ
Ω
ϕα = 0,

and by introducing it into (1.1) and (1.4), we get

−div (µ(ϕα + α)e(u)) + (∇u)u+∇ p = fα − g (1 + γϕα) i3 in Ω ,

κ
∂ϕα
∂ν

− ν3U(ϕα + α) = 0 on Γ ,

where fα := f − gγα i3 . Note that the rest of equations remains unchanged with ϕα in place of

ϕ. Therefore, to simplify the notation and without confusion, we rename from now on ϕ := ϕα and

f := fα, so that the original problem (1.1), (1.4) and (1.5), takes the form

−div (µ(ϕ+ α)e(u)) + (∇u)u+∇ p = f − g (1 + γϕ) i3 , and divu = 0 in Ω,

−κ∆ϕ+ u · ∇ϕ+ U
∂ϕ

∂x3
= 0 in Ω, with

ˆ
Ω
ϕ = 0 ,

u = 0 and κ
∂ϕ

∂ν
− ν3U(ϕ+ α) = 0 on Γ .

(1.6)

From the first equation of (1.6), it is clear that uniqueness of an eventual pressure solution of this

problem (see [55] or [76]) is ensured in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

ˆ
Ω
q = 0

}
.

Likewise, from the total mass condition on the auxiliary concentration (second equation of the second

row in system (1.6)), we see that an eventual weak solution ϕ of (1.6) belongs to the space

H̃1(Ω) := H1(Ω) ∩ L2
0(Ω) =

{
ψ ∈ H1(Ω) :

ˆ
Ω
ψ = 0

}
, (1.7)
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which is a closed subspace of H1(Ω), and in which the norm and the seminorm are equivalent (result

to be used in Lemma 1.2).

Next, in order to derive our fully-mixed formulation, we firstly need to rewrite (1.6) as a first-order

system of equations. To this purpose, inspired by the approach from [26] (see also [2,3]), we introduce

as additional unknowns the strain and vorticity tensors

t := e(u) and ρ =
1

2

{
∇u− (∇u)t

}
=: ∇u− t in Ω, (1.8)

as well as the pseudo-stress tensor

σ := µ(ϕ+ α)t− pI− (u⊗ u) in Ω. (1.9)

Note that div(u⊗u) = (∇u)u when divu = 0 (incompressibility condition - second equation of first

row in (1.6)). Thus, the first equation of (1.6) and the constitutive relation (1.9), gives the equilibrium

equation

−div(σ) = f − g (1 + γ ϕ)i3 in Ω. (1.10)

Again, from the incompressibility condition, we have that tr(∇u) = 0 and so tr(ρ) = tr(t) = 0. In

particular, by taking deviatoric part from both sides of (1.9), we find that

σd = µ(ϕ+ α)t− (u⊗ u)d in Ω , (1.11)

and so the pressure can be eliminated from the system but, by taking trace from both sides of (1.9),

we readily deduce that it can be recovered in terms of σ and u as

p = −1

3
tr(σ + (u⊗ u)) in Ω . (1.12)

As for the equation modeling the micro-organisms concentration, similarly to [37], we introduce as

the new vectorial unknown that we call “pseudo-concentration” gradient

p := κ∇ϕ− ϕu− U(ϕ+ α)i3 in Ω, (1.13)

so that, from the first equation of second row from (1.6), the incompressibility condition and the Robin

condition for the concentration, we get

−div p = 0 in Ω, and p · ν = 0 on Γ . (1.14)

Finally, gathering together (1.8), (1.10), (1.11), (1.13) and (1.14), we arrive at the following first-order

system with unknowns t, σ, ρ, u, p and ϕ

t+ ρ = ∇u , σd + (u⊗ u)d = µ(ϕ+ α)t , −divσ = f − g (1 + γϕ) i3 in Ω

κ−1p+ κ−1ϕu+ κ−1U(ϕ+ α)i3 = ∇ϕ , −div p = 0 in Ω

u = 0 and p · ν = 0 on Γ

ˆ
Ω

tr(σ + (u⊗ u)) = 0 and

ˆ
Ω
ϕ = 0 .

(1.15)

Note that according to (1.12), the zero mean value restriction of the pressure on the domain is imposed

via the first equation in the last row in (1.15). Also, notice that the incompressibility condition of the

fluid is implicitly present through the equilibrium relation (1.10) and by stating that t is a trace-free

tensor.
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1.3 The continuous formulation

In this section we introduce and analyze the weak formulation of the system described by (1.15).

To this end, in Section 1.3.1 we firstly deduce an augmented variational formulation of (1.15) and

then in Section 1.3.2 we equivalently rewrite it as a fixed-point problem in terms of operators, which

arise by decoupling the fluid equations and the concentration equation. Their well-definiteness and

solvability are addressed through Sections 1.3.3 and 1.3.4.

1.3.1 The augmented fully-mixed variational formulation

We first recall (see, e.g., [49] or [55]) that there holds

H(div;Ω) = H0(div;Ω)⊕ RI, (1.16)

where

H0(div;Ω) :=

{
τ ∈ H(div;Ω) :

ˆ
Ω

tr τ = 0

}
,

which means that any ζ ∈ H(div;Ω), can be uniquely written in terms of its orthogonal projection,

namely ζ0 ∈ H0(div, Ω), as

ζ = ζ0 + c I , where c =
1

3 |Ω|

ˆ
Ω

tr ζ .

In particular, using the first equation in the last row of (1.15), it is easy to see that an eventual

solution σ ∈ H(div;Ω) of that system is given by

σ = σ0 + cI with σ0 ∈ H0(div;Ω) , and c = − 1

3 |Ω|

ˆ
Ω

tr (u⊗ u) . (1.17)

Then, since σd = σd
0 and divσd = divσd

0 , it follows that the equations in (1.15) remain unchanged

when replacing there σ0 in place of σ. This fact along with (1.17) allows us to reduce the problem

by only looking for σ0. According to that, and for simplifying the notation, we set from now on

σ := σ0 ∈ H0(div;Ω).

In addition, by their definitions, we introduce the following spaces for the strain tensor t and the

vorticity ρ, respectively,

L2
tr(Ω) :=

{
r ∈ L2(Ω) : rt = r and tr (r) = 0

}
, and L2

skew(Ω) :=
{
η ∈ L2(Ω) : ηt = −η

}
.

Also, the boundary condition for p on Γ (see third row in (1.15)) suggests the introduction of the

functional space

HΓ (div;Ω) :=
{
q ∈ H(div;Ω) : q · ν = 0 on Γ

}
.

Now, multiplying the first equation in (1.15) by a test function τ ∈ H0(div;Ω), integrating by

parts, using the Dirichlet condition for u, and the identity t : τ = t : τ d (since t is trace-free), we get
ˆ
Ω
t : τ d +

ˆ
Ω
u · div τ +

ˆ
Ω
ρ : τ = 0 ∀ τ ∈ H0(div;Ω).
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Next, testing the second equation from first row in (1.15) with r ∈ L2
tr(Ω), we obtain

ˆ
Ω
σd : r +

ˆ
Ω

(u⊗ u)d : r =

ˆ
Ω
µ(ϕ+ α)t : r ∀ r ∈ L2

tr(Ω).

In turn, the equilibrium relation associated to σ (third equation from first row in (1.15)) is written as

−
ˆ
Ω
v · divσ =

ˆ
Ω

(
f − g (1 + γϕ) i3

)
· v ∀v ∈ L2(Ω),

whereas the symmetry of the pseudo-stress tensor is weakly imposed through the identity

−
ˆ
Ω
σ : η = 0 ∀η ∈ L2

skew(Ω).

As for the equations associated to the micro-organisms concentration (second row from (1.15)), we

firstly multiply the respective constitutive relation by a function q ∈ HΓ (div;Ω) and, after integrating

by parts, we find

κ−1

ˆ
Ω
p · q + κ−1

ˆ
Ω
ϕu · q + κ−1

ˆ
Ω
U(ϕ+ α)i3 · q = −

ˆ
Ω
ϕdivq ∀ q ∈ HΓ (div;Ω) ,

and the equilibrium relation for the concentration is weakly expressed as

−
ˆ
Ω
ψ div p = 0 ∀ψ ∈ L2(Ω).

In this way, we arrive at first instance to the mixed formulation: Find t ∈ L2
tr(Ω), σ ∈ H0(div;Ω),

ρ ∈ L2
skew(Ω), p ∈ HΓ (div;Ω), and u, ϕ in suitable spaces to be specified below, such that

ˆ
Ω
t : τ d +

ˆ
Ω
u · div τ +

ˆ
Ω
ρ : τ = 0,

ˆ
Ω
µ(ϕ+ α)t : r −

ˆ
Ω
σd : r −

ˆ
Ω

(u⊗ u)d : r = 0,

−
ˆ
Ω
v · divσ −

ˆ
Ω
σ : η =

ˆ
Ω

(f − g (1 + γϕ) i3) · v,

κ−1

ˆ
Ω
p · q +

ˆ
Ω
ϕdivq + κ−1

ˆ
Ω
ϕu · q = −κ−1

ˆ
Ω
U(ϕ+ α)i3 · q,

−
ˆ
Ω
ψ div p = 0,

(1.18)

for all τ ∈ H0(div;Ω), r ∈ L2
tr(Ω), (η,v) ∈ L2

skew(Ω) × L2(Ω), q ∈ HΓ (div;Ω), and ψ ∈ L2(Ω).

Note that the third terms on the left-hand side of the second and fourth equations in (1.18) require

a suitable regularity for both unknowns u and ϕ. Indeed, by applying Cauchy-Schwarz and Hölder

inequalities, and then the continuous injections i : H1(Ω) → L4(Ω) and i : H1(Ω) → L4(Ω) (see

e.g. [1] or [80]), we deduce that there exist positive constants c1(Ω) := ‖i‖ ‖i‖ and c2(Ω) := ‖i‖2, such

that ∣∣∣∣ˆ
Ω
ϕu · q

∣∣∣∣ ≤ c1(Ω)‖ϕ‖1,Ω‖u‖1,Ω‖q‖0,Ω ∀ϕ ∈ H1(Ω),∀u ∈ H1(Ω), ∀ q ∈ L2(Ω), (1.19)
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and ∣∣∣∣ˆ
Ω

(u⊗w)d : r

∣∣∣∣ ≤ c2(Ω)‖u‖1,Ω‖w‖1,Ω‖r‖0,Ω ∀u,w ∈ H1(Ω), ∀ r ∈ L2(Ω). (1.20)

In light of the above, and in order to be able to set the variational formulation (1.18) in a framework

on standard Hilbert spaces for both the velocity and concentration, we propose to seek u ∈ H1
0(Ω) and

ϕ ∈ H̃1(Ω), and so their respective test spaces. In turn, similarly as in [26, Section 2] (see also [3,37]),

we additionally augment (1.18) by incorporating the following redundant Galerkin terms coming from

the constitutive and equilibrium equations,

κ1

ˆ
Ω

(e(u)− t) : e(v) = 0 ∀v ∈ H1
0(Ω) ,

κ2

ˆ
Ω

divσ · div τ = −κ2

ˆ
Ω

(f − g (1 + γϕ) i3) · div τ ∀ τ ∈ H0(div;Ω),

κ3

ˆ
Ω

{
σd + (u⊗ u)d − µ(ϕ+ α)t

}
: τ d = 0 ∀ τ ∈ H0(div;Ω),

κ4

ˆ
Ω

{
ρ−

(
∇u− e(u)

) }
: η = 0 ∀η ∈ L2

skew(Ω) ,

(1.21)

and

κ5

ˆ
Ω

{
∇ϕ− κ−1p− κ−1ϕu− κ−1U(ϕ+ α)i3

}
· ∇ψ = 0 ∀ψ ∈ H̃1(Ω),

κ6

ˆ
Ω

div p div q = 0 ∀ q ∈ HΓ (div;Ω),

(1.22)

where (κ1, κ2, κ3, κ4, κ5, κ6) is a vector of positive parameters to be specified later in Section 1.3.3.

Hence, letting

t := (t,σ,ρ) ∈ H := L2
tr(Ω)×H0(div;Ω)× L2

skew(Ω),

where H is endowed with the natural norm

‖r‖H :=
{
‖r‖20,Ω + ‖τ‖2div,Ω + ‖η‖20,Ω

}1/2
∀ r := (r, τ ,η) ∈ H ,

and adding up (1.18) with (1.21) and (1.22), we arrive at the following augmented fully-mixed formu-

lation for the bioconvective flow problem1: Find (t,u,p, ϕ) ∈ H×H1
0(Ω)×HΓ (div;Ω)× H̃1(Ω) such

that

Aϕ((t,u), (r,v)) + Bu((t,u), (r,v)) = Fϕ(r,v) ∀ (r,v) ∈ H×H1
0(Ω),

Ã((p, ϕ), (q, ψ)) + B̃u((p, ϕ), (q, ψ)) = F̃ϕ(q, ψ) ∀ (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω),
(1.23)

where, given φ ∈ H̃1(Ω) and w ∈ H1
0(Ω), Aφ, Bw, Ã and B̃w are the bilinear forms defined,

respectively, as

Aφ((t,u), (r,v)) :=

ˆ
Ω
µ(φ+ α)t :

(
r − κ3τ

d
)

+

ˆ
Ω
σd :

(
κ3τ

d − r
)

+

ˆ
Ω
t : τ d

+

ˆ
Ω

(
u+ κ2divσ

)
· div τ −

ˆ
Ω
v · divσ +

ˆ
Ω
ρ : τ −

ˆ
Ω
σ : η

+ κ1

ˆ
Ω

(
e(u)− t

)
: e(v) + κ4

ˆ
Ω

{
ρ−

(
∇u− e(u)

)}
: η ,

(1.24)
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Bw((t,u), (r,v)) :=

ˆ
Ω

(u⊗w)d :
(
κ3τ

d − r
)
, (1.25)

Ã((p, ϕ), (q, ψ)) := κ−1

ˆ
Ω
p ·
(
q − κ5∇ψ

)
+

ˆ
Ω

(
ϕ + κ6 divp

)
divq

−
ˆ
Ω
ψ div p+ κ5

ˆ
Ω
∇ϕ · ∇ψ,

(1.26)

and

B̃w((p, ϕ), (q, ψ)) := κ−1

ˆ
Ω
ϕw ·

(
q − κ5∇ψ

)
, (1.27)

for all (t,u), (r,v) ∈ H × H1
0(Ω) and for all (p, ϕ), (q, ψ) ∈ HΓ (div;Ω) × H̃1(Ω). In turn, given

φ ∈ H̃1(Ω), Fφ and F̃φ are the bounded linear functionals given by

Fφ(r,v) :=

ˆ
Ω

(f − g (1 + γφ) i3) ·
(
v − κ2div τ

)
∀ (r,v) ∈ H×H1

0(Ω), (1.28)

and

F̃φ(q, ψ) := −κ−1

ˆ
Ω
U(φ+ α)i3 ·

(
q − κ5∇ψ

)
∀ (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω). (1.29)

1.3.2 The fixed point approach

Now, we proceed similarly as in [36] (see also [26,37]) and rewrite (1.23) as an equivalent fixed-point

equation in terms of a certain operator T to be defined below. Firstly, we set H := H1
0(Ω) × H̃1(Ω)

and start by introducing the operator S : H −→ H×H1
0(Ω) by

S(w, φ) :=
( (

S1(w, φ),S2(w, φ),S3(w, φ)
)
, S4(w, φ)

)
= (t,u) ∀ (w, φ) ∈ H, (1.30)

where, given (w, φ) ∈ H, (t,u) is the unique solution to the problem1: Find (t,u) ∈ H×H1
0(Ω) such

that

Aφ((t,u), (r,v)) + Bw((t,u), (r,v)) = Fφ(r,v) ∀ (r,v) ∈ H×H1
0(Ω) . (1.31)

In addition, we also introduce the operator S̃ : H −→ HΓ (div;Ω)× H̃1(Ω) defined as

S̃(w, φ) :=
(
S̃1(w, φ), S̃2(w, φ)

)
= (p, ϕ) ∀ (w, φ) ∈ H, (1.32)

where, given (w, φ) ∈ H, (p, ϕ) is the unique solution to the problem1: Find (p, ϕ) ∈ HΓ (div;Ω) ×
H̃1(Ω) such that

Ã((p, ϕ), (q, ψ)) + B̃w((p, ϕ), (q, ψ)) = F̃φ(q, ψ) ∀ (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω). (1.33)

Having introduced the auxiliary mappings S and S̃, we now define the operator T : H −→ H as

T(w, φ) :=
(
S4(w, φ), S̃2

(
S4(w, φ), φ

))
∀(w, φ) ∈ H , (1.34)

and realize that (1.23) can be rewritten as the fixed point problem1: Find (u, ϕ) ∈ H such that

T(u, ϕ) = (u, ϕ). (1.35)

In this way, through the following sections we study the conditions under which the operator T is

well-defined, has a fixed point and when it is unique.
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1.3.3 Well-definiteness of the fixed point operator

In what follows we show that T is well-defined. Notice that it suffices to prove that the uncoupled

problems (1.31) and (1.33) defining S and S̃, respectively, are well-posed. To state the solvability of

(1.31), we start studying the stability properties of the forms Aφ and Bw and the functional Fφ (cf.

(1.24), (1.25) and (1.28), respectively). Firstly, given φ ∈ H̃1(Ω), from the Cauchy-Schwarz inequality

we find that there exists a positive constant, denoted by ‖Aφ‖, and depending on µ2 (cf. (1.3)) and

the parameters κ1, κ2, κ3, κ4, such that

|Aφ((t,u), (r,v))| ≤ ‖Aφ‖ ‖(t,u)‖ ‖(r,v)‖ ∀ (t,u), (r,v) ∈ H×H1
0(Ω). (1.36)

Also, given w ∈ H1
0(Ω), from the estimation (1.20) we have that

|Bw((t,u), (r,v))| ≤ c2(Ω)(1 + κ2
3)1/2‖w‖1,Ω‖u‖1,Ω‖(r,v)‖ ∀ (t,u), (r,v) ∈ H×H1

0(Ω). (1.37)

It then follows from (1.36) and (1.37) that there exists a positive constant, denoted by ‖Aφ + Bw‖,
and depending on µ2, κ1, κ2, κ3, κ4, c2(Ω), and ‖w‖1,Ω, such that

|
(
Aφ + Bw

)
((t,u), (r,v))| ≤ ‖Aφ + Bw‖ ‖(t,u)‖ ‖(r,v)‖ ∀ (t,u), (r,v) ∈ H×H1

0(Ω) . (1.38)

Regarding the ellipticity of Aφ we proceed similarly to [26, Lemma 3.1]. So, we use the bounds for

µ( · ) (cf. (1.3)), the Cauchy-Schwarz and Young inequalities (with δ1, δ2, δ3 > 0), and subsequently

the Korn inequality and the Poincaré inequality (see [81, Théorème 1.2-5]) with constant cp, to deduce

that there exists α(Ω) > 0 satisfying

Aφ((r,v), (r,v)) ≥ α(Ω) ‖(r,v)‖2 ∀ (r,v) ∈ H×H1
0(Ω), (1.39)

where

α(Ω) := min
{
α1(Ω), α3(Ω), cpα4(Ω), α5(Ω)

}
, (1.40)

with

α1(Ω) := µ1 −
κ3µ2

2δ1
− κ1

2δ2
, α2(Ω) := min

{
κ3

(
1− µ2δ1

2

)
,
κ2

2

}
,

α3(Ω) := min
{
c3(Ω)α2(Ω),

κ2

2

}
, α4(Ω) :=

κ1

2

(
1− δ2

2

)
− κ4

4δ3
, and α5(Ω) := κ4

(
1− δ3

2

)
,

and c3(Ω) > 0 (see [49, Lemma 2.3] for details) is such that

c3(Ω)‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀τ ∈ H0(div;Ω) .

In turn, the positivity of α(Ω) is ensured as long as the constants αi in (1.40) are positive, which gives

the following feasible ranges for the parameters (κi)1≤i≤4 ,

0 < κ1 < 2δ2

(
µ1 −

µ2κ3

2δ1

)
, κ2 > 0 , 0 < κ3 <

2δ1µ1

µ2
and 0 < κ4 < 2δ3κ1

(
1− δ2

2

)
(1.41)

with

0 < δ1 <
2

µ2
and 0 < δ2 , δ3 < 2 . (1.42)
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Next, combining (1.37) with (1.39), we have that for all (r,v) ∈ H×H1
0(Ω) there holds

(Aφ + Bw)((r,v), (r,v)) ≥
{
α(Ω)− c2(Ω)(1 + κ2

3)1/2‖w‖1,Ω
}
‖(r,v)‖2 ≥ α(Ω)

2
‖(r,v)‖2, (1.43)

provided c2(Ω)(1 + κ2
3)1/2‖w‖1,Ω ≤

α(Ω)

2
. Therefore, the ellipticity of the form Aφ + Bw is ensured

with the constant
α(Ω)

2
> 0, independent of w, by requiring ‖w‖1,Ω ≤ r0, with

r0 :=
α(Ω)

2c2(Ω)(1 + κ2
3)1/2

. (1.44)

Finally, the functional Fφ (with φ ∈ H̃1(Ω), given) is clearly linear in H × H1
0(Ω), and using

Cauchy-Schwarz inequality, we conclude with MS := (1 + κ2
2)1/2, that

‖Fφ‖ ≤ MS

{
‖f‖0,Ω +

(
|Ω|1/2 + γ‖φ‖0,Ω

)
‖g‖∞,Ω

}
. (1.45)

where g := g i3 ∈ L∞(Ω). The foregoing analysis essentially gives us conditions for the well-posedness

of the uncoupled problem (1.31) or, equivalently, the well definition of the operator S (cf. (1.30)).

This is summarized in the following result.

Lemma 1.1. Let r0 > 0 given by (1.44) and let r ∈ (0, r0). Assume that κ1 ∈
(

0, 2δ2

(
µ1 − κ3µ2

2δ1

))
,

κ2 > 0, κ3 ∈
(

0, 2δ1µ1
µ2

)
, and κ4 ∈

(
0, 2δ3κ1

(
1− δ2

2

))
, with δ1 ∈

(
0, 2

µ2

)
, and δ2, δ3 ∈ (0, 2). Then,

for each (w, φ) ∈ H such that ‖w‖1,Ω ≤ r, there exist a unique solution (t,u) = S(w, φ) ∈ H×H1
0(Ω)

to problem (1.31) and a positive constant cS > 0, independent of (w, φ), such that

‖S(w, φ)‖ = ‖(t,u)‖ ≤ cS

{
‖f‖0,Ω +

(
|Ω|1/2 + γ‖φ‖0,Ω

)
‖g‖∞,Ω

}
. (1.46)

Proof. It follows from the estimates (1.38), (1.43) and (1.45) and a straightforward application of the

Lax-Milgram Theorem (see e.g. [49, Theorem 1.1]), and the respective continuous dependence result

gives the a priori estimate (1.46) with cS :=
2MS

α(Ω)
. In turn, the ranges for the parameters are stated

according to (1.41)-(1.42), guaranteeing the positivity of the ellipticity constant α(Ω) . �

Next, we concentrate in proving that problem (1.33) is well posed or, in other words, that the

operator S̃ (cf. (1.32)) is well-defined. The following lemma establishes this result.

Lemma 1.2. Assume that κ5 ∈ (0, 2δ̃), with δ̃ ∈ (0, 2κ), and κ6 > 0. Then, there exists a positive

constant r̃0 (see (1.52) below) such that for all r ∈ (0, r̃0) and (w, φ) ∈ H with ‖w‖1,Ω ≤ r, the

problem (1.33) has a unique solution (p, ϕ) := S̃(w, φ) ∈ HΓ (div;Ω)× H̃1(Ω). Moreover, there exists

a constant c
S̃
> 0, independent of (w, φ), satisfying

‖S̃(w, φ)‖ = ‖(p, ϕ)‖ ≤ c
S̃
κ−1 U

{
α|Ω|1/2 + ‖φ‖0,Ω

}
. (1.47)
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Proof. For a given w ∈ H1
0(Ω), we firstly observe from (1.26) and (1.27) that Ã + B̃w is clearly a

bilinear form. Also, from the Cauchy-Schwarz inequality we have that

|Ã((p, ϕ), (q, ψ))| ≤ ‖Ã‖ ‖(p, ϕ)‖ ‖(q, ψ)‖ ,

where ‖Ã‖ depends on κ, κ5 and κ6, and from the estimate (1.19) we get

|B̃w((p, ϕ), (q, ψ)) | ≤ κ−1(1 + κ2
5)1/2c1(Ω)‖w‖1,Ω‖ϕ‖1,Ω‖(q, ψ)‖ , (1.48)

for all (p, ϕ), (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω). Then, by gathering the foregoing estimates, we find that

there exists a positive constant, which we denote by ‖Ã+B̃w‖, only depending on κ, κ5, κ6 and c1(Ω),

such that

|Ã((p, ϕ), (q, ψ)) + B̃w((p, ϕ), (q, ψ))| ≤ ‖Ã + B̃w‖ ‖(p, ϕ)‖ ‖(q, ψ)‖,

for all (p, ϕ), (q, ψ) ∈ HΓ (div;Ω) × H̃1(Ω). Likewise, from the definition of the bilinear form Ã (cf.

(1.26)), we have that

Ã((q, ψ), (q, ψ)) = κ−1‖q‖20,Ω − κ−1 κ5

ˆ
Ω
q · ∇ψ + κ6 ‖divq‖20,Ω + κ5 |ψ|21,Ω,

and hence, using the Cauchy-Schwarz inequality and the Young inequality with δ̃ > 0, we obtain for

all (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω) that

Ã((q, ψ), (q, ψ)) ≥ κ−1

(
1− κ5

2δ̃

)
‖q‖20,Ω + κ6 ‖divq‖20,Ω + κ5

(
1− κ−1 δ̃

2

)
|ψ|21,Ω. (1.49)

In this way, recalling that the norm and semi-norm are equivalent in the space H̃1(Ω) (cf. 1.7), we

apply the generalized Poincaré inequality with constant c̃p to the last term in (1.49) (see [48, Teorema

9.13]), and define the constants

α̃1(Ω) := min

{
κ−1

(
1− κ5

2δ̃

)
, κ6

}
and α̃2(Ω) := κ5

(
1− κ−1 δ̃

2

)
,

which are positive thanks to the hypotheses on δ̃, κ5 and κ6, to obtain

Ã((q, ψ), (q, ψ)) ≥ α̃(Ω)‖(q, ψ)‖2 ∀(q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω), (1.50)

with α̃(Ω) := min {α̃1(Ω), c̃pα̃2(Ω)}, which shows that Ã is elliptic. Therefore, combining (1.48) and

(1.50), we deduce that for all (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω), there holds

(Ã + B̃w)((q, ψ), (q, ψ)) ≥
{
α̃(Ω)− κ−1(1 + κ2

5)1/2c1(Ω)‖w‖1,Ω
}
‖(q, ψ)‖2 ≥ α̃(Ω)

2
‖(q, ψ)‖2, (1.51)

whenever κ−1(1 + κ2
5)1/2c1(Ω)‖w‖1,Ω ≤

α̃(Ω)

2
. Thus, the ellipticity of Ã + B̃w with constant

α̃(Ω)

2
,

independent of w, is ensured by requiring ‖w‖1,Ω ≤ r̃0, with

r̃0 :=
α̃(Ω)

2κ−1(1 + κ2
5)1/2c1(Ω)

. (1.52)
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Next, it is easy to see from (1.29) that the functional F̃φ is bounded with

‖F̃φ‖ ≤ κ−1 U (1 + κ2
5)1/2

{
α|Ω|1/2 + ‖φ‖0,Ω

}
. (1.53)

Summing up, and owing to the hypotheses on κ5 and κ6, we have proved that for any sufficiently

small w ∈ H1
0(Ω), the bilinear form Ã + B̃w and the functional F̃φ satisfy the hypotheses of the

Lax-Milgram Theorem, which guarantees the well-posedness of (1.33) and the a priori estimate (1.47)

with c
S̃

:=
2

α̃(Ω)
(1 + κ2

5)1/2. �

At this point, we remark that, for computational purposes, the constants α(Ω) and α̃(Ω) yielding

the ellipticity of Aφ + Bw and Ã + B̃w, respectively, can be maximized by taking the parameters

δ1, δ2, δ3, κ1, κ3, κ4, δ̃ and κ5 as the middle points of their feasible ranges, and by choosing κ2 and κ6

so that they maximize the minima defining α2(Ω) and α̃1(Ω), respectively. More precisely, we take

δ1 =
1

µ2
, δ2 = δ3 = 1, κ3 =

δ1µ1

µ2
=
µ1

µ2
2

, κ1 = δ2

(
µ1 −

κ3µ2

2δ1

)
=
µ1

2
,

κ4 = δ3κ1

(
1− δ2

2

)
=
µ1

4
, κ2 = 2κ3

(
1− µ2δ1

2

)
=
µ1

µ2
2

, δ̃ = κ,

κ5 = δ̃ = κ, and κ6 = κ−1

(
1− κ5

2δ̃

)
=
κ−1

2
.

(1.54)

The explicit values of the stabilization parameters κi, i ∈ {1, . . . , 6}, given above will be employed in

Section 1.6 for the corresponding numerical examples.

1.3.4 Solvability analysis of the fixed point equation

Having proved the well-posedness of the uncoupled problems (1.31) and (1.33), which ensures that

the operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed

point of the operator T. For this purpose, in what follows we will verify the hypothesis of the Banach

fixed-point theorem (see, e.g. [30, Theorem 3.7-1]). We begin with the following result.

Lemma 1.3. Suppose that the parameters κi, i ∈ {1, . . . , 6}, satisfy the conditions required by Lemmas

1.1 and 1.2. Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (1.44) and (1.52), respectively, we let

Wr be the closed ball in H defined by

Wr :=
{

(w, φ) ∈ H : ‖(w, φ)‖ ≤ r
}
, (1.55)

and assume that the data satisfy

cS

{
‖f‖0,Ω +

(
|Ω|1/2 + γ r

)
‖g‖∞,Ω

}
+ c

S̃
κ−1 U

{
α|Ω|1/2 + r

}
≤ r, (1.56)

with cS and c
S̃

as in (1.46) and (1.47), respectively. Then T(Wr) ⊆Wr.

Proof. Given (w, φ) ∈Wr, and so ‖w‖1,Ω ≤ r0, it follows from Lemma 1.1 that there exists a unique

u = S4(w, φ) ∈ H1
0(Ω) solution to problem (1.31) and it satisfies the a priori estimate (1.46). In turn,

if the data satisfies (1.56), we have that ‖S4(w, φ)‖1,Ω ≤ r̃0, and according to Lemma 1.2 there exists
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a unique ϕ = S̃2(S4(w, φ), φ) ∈ H̃1(Ω) solution to (1.33) with w := S4(w, φ). As a consequence, from

the definition of the operator T (cf. (1.34)), ∃! (u, ϕ) = (S4(w, φ), S̃2(S4(w, φ), φ)) = T(w, φ) and

from (1.46) and (1.47)

‖(u, ϕ)‖ ≤ ‖S4(w, φ)‖1,Ω + ‖S̃2

(
S4(w, φ), φ

)
‖1,Ω,

≤ cS

{
‖f‖0,Ω +

(
|Ω|1/2 + γ ‖φ‖0,Ω

)
‖g‖∞,Ω

}
+ c

S̃
κ−1 U

{
α|Ω|1/2 + ‖φ‖0,Ω

}
.

The results then follows using that ‖φ‖0,Ω ≤ r and the assumption on the data (1.56). �

Next, we establish two lemmas that will be useful to derive conditions under which the operator

T is continuous. To this end, in a similar way to [5, Section 3.3] and [26, Section 3.3], we introduce

the following regularity hypotheses on the operator S. From now on, we suppose that f ∈ Hδ(Ω), for

some δ ∈ (1/2, 1) and that for each (w, φ) ∈ H with ‖w‖1,Ω ≤ r, r > 0 given, there holds

S(w, φ) ∈
((

L2
tr(Ω) ∩Hδ(Ω)

)
×
(
H0(div;Ω) ∩Hδ(Ω)

)
×
(
L2

skew(Ω) ∩Hδ(Ω)
))
×
(
H1

0 ∩H1+δ(Ω)
)
,

and
‖S1(w, φ)‖δ,Ω + ‖S2(w, φ)‖δ,Ω + ‖S3(w, φ)‖δ,Ω + ‖S4(w, φ)‖1+δ,Ω

≤ ĈS

{
‖f‖δ,Ω +

(
|Ω|1/2 + γ ‖φ‖0,Ω

)
‖g‖∞,Ω

}
,

(1.57)

where ĈS is a constant independent of (w, φ). The aforementioned range for δ will become clear in the

proof of Lemma 1.4 and Lemma 1.6 below, in which we will require to suitably control an expression

involving the norm of t = S1(w, φ) in some L2p−space by the respective norm in the Hδ−space, so

that it then can be bounded by data using the a priori estimate (1.57).

Lemma 1.4. Let r ∈ (0, r0), with r0 given by (1.44). Then, for all (w, φ), (w̃, φ̃) ∈ H such that

‖w‖1,Ω, ‖w̃‖1,Ω ≤ r, there exists a positive constant CS, depending on the parameters κ2, κ3, the

constant c2(Ω) (cf. (1.20)), the ellipticity constant α(Ω) of the bilinear form Aφ (cf. (1.39)) and δ

(cf. (1.57)), such that

‖S(w, φ)− S(w̃, φ̃)‖ ≤ CS

{
Lµ ‖S1(w, φ)‖δ,Ω‖φ− φ̃‖L3/δ(Ω)

+ ‖S4(w, φ)‖1,Ω‖w − w̃‖1,Ω + γ ‖g‖∞,Ω‖φ− φ̃‖0,Ω
}
,

(1.58)

where Lµ and γ are given by (1.2) and (1.1), respectively.

Proof. Given (w, φ), (w̃, φ̃) ∈ H with ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r, let (t,u) := S(w, φ) and (̃t, ũ) := S(w̃, φ̃)

be the corresponding solutions to the problem (1.31), respectively. Firstly, from the bilinearity of the

forms Aφ and Bw, it is observed that(
A
φ̃

+ Bw̃
)
((t,u)− (̃t, ũ), (r,v)) = −

(
Aφ − A

φ̃

)
((t,u), (r,v))

−Bw−w̃((t,u), (r,v)) +
(
Fφ − Fφ̃

)
(r,v) ∀ (r,v) ∈ H×H1

0(Ω) ,
(1.59)

where we can notice that(
Aφ − A

φ̃

)
((t,u), (r,v)) =

ˆ
Ω

{
µ(φ+ α)− µ(φ̃+ α)

}
t : {r − κ3τ

d} , (1.60)
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and (
Fφ − Fφ̃

)
(r,v) = −

ˆ
Ω
γ(φ− φ̃)g · {v − κ2div τ} . (1.61)

Thus, using the ellipticity of A
φ̃

+ Bw̃ (cf. (1.43)) and then the identities (1.59), (1.60) and (1.61)

with (r,v) = (t,u)− (̃t, ũ), we find that

α(Ω)

2
‖(t,u)− (̃t, ũ)‖2 ≤

(
A
φ̃

+ Bw̃
)
((t,u)− (̃t, ũ), (t,u)− (̃t, ũ)),

= −
(
Aφ −A

φ̃

)
((t,u), (t,u)− (̃t, ũ))−Bw−w̃((t,u), (t,u)− (̃t, ũ)) +

(
Fφ − Fφ̃

)
((t,u)− (̃t, ũ)),

= −
ˆ
Ω

{
µ(φ+ α)− µ(φ̃+ α)

}
t :
{

(t− t̃)− κ3(σd − σ̃d)
}
−Bw−w̃((t,u), (t,u)− (̃t, ũ))

−
ˆ
Ω
γ(φ− φ̃)g · {(u− ũ)− κ2div (σ − σ̃)} .

Now, applying Cauchy-Schwarz and Hölder inequalities, the Lipschitz continuity of µ( · ) (cf. (1.2)),

and the estimate (1.20), we obtain

α(Ω)

2
‖(t,u)− (̃t, ũ)‖2 ≤

{
Lµ(1 + κ2

3)1/2‖t‖L2p(Ω)‖φ− φ̃‖L2q(Ω)

+ c2(Ω)(1 + κ2
3)1/2‖u‖1,Ω‖w − w̃‖1,Ω + γ(1 + κ2

2)1/2‖g‖∞,Ω‖φ− φ̃‖0,Ω
}
‖(t,u)− (̃t, ũ)‖ ,

(1.62)

where p, q ∈ [1,+∞) are such that 1/p+1/q = 1. Next, according to the additional regularity assumed

in (1.57), and recalling that the Sobolev embedding theorem (cf. [1, Theorem 4.12] or [80, Theorem

1.3.4]) establishes the continuous injection iδ : Hδ(Ω) → Lδ
∗
(Ω) with boundedness constant Cδ > 0,

where

δ∗ :=
6

3− 2δ
,

we then take p such that 2p = δ∗ to deduce that, on the one hand, since t := S1(w, φ)

‖t‖L2p(Ω) = ‖S1(w, φ)‖L2p(Ω) ≤ Cδ‖S1(w, φ)‖δ,Ω , (1.63)

and, on the other hand, the respective conjugate index q is given by

2q =
2p

p− 1
=

3

δ
.

Finally, inequalities (1.62) and (1.63) together with the previous identity give (1.58) with constant

CS :=
2

α(Ω)
max

{
Cδ(1 + κ2

3)1/2, c2(Ω)(1 + κ2
3)1/2, (1 + κ2

2)1/2
}
. �

In turn, the following result establishes the Lipschitz-continuity of the operator S̃.

Lemma 1.5. Let r ∈ (0, r̃0), with r̃0 given by (1.52). Then, for all (w, φ), (w̃, φ̃) ∈ H such that

‖w‖1,Ω, ‖w̃‖1,Ω ≤ r, there exists a positive constant C
S̃

, depending on the parameter κ5, the ellipticity

constant α̃(Ω) of the bilinear form Ã (cf. (1.50)) and the constant c1(Ω) (cf. (1.19)), such that

‖S̃(w, φ)− S̃(w̃, φ̃)‖ ≤ κ−1C
S̃

{
U‖φ− φ̃‖0,Ω + ‖S̃2(w, φ)‖1,Ω‖w − w̃‖1,Ω

}
, (1.64)

where κ is given in (1.1).



1.3. The continuous formulation 26

Proof. Given r and (w, φ), (w̃, φ̃) ∈ H as in the hypothesis, let us denote (p, ϕ) := S̃(w, φ) and

(p̃, ϕ̃) := S̃(w̃, φ̃), that is, the respective solutions to problem (1.33) in HΓ (div;Ω) × H̃1(Ω). Thus,

from the bilinearity of Ã and B̃w for any w, we have that

(Ã + B̃w̃)((p, ϕ)− (p̃, ϕ̃), (q, ψ)) = −B̃w−w̃((p, ϕ), (q, ψ)) +
(
F̃φ − F̃φ̃

)
(q, ψ),

for all (q, ψ) ∈ HΓ (div;Ω) × H̃1(Ω). Hence, using the ellipticity of Ã + B̃w̃ (cf. (1.51)) and the

continuity of B̃w (cf. (1.48)) and the definition of F̃φ (cf. 1.29), we obtain

α̃(Ω)

2
‖(p, ϕ)− (p̃, ϕ̃)‖2 ≤ −B̃w−w̃((p, ϕ), (p, ϕ)− (p̃, ϕ̃)) +

(
F̃φ − F̃φ̃

)
((p, ϕ)− (p̃, ϕ̃)),

≤
{
κ−1(1 + κ2

5)1/2
(
U‖φ− φ̃‖0,Ω + c1(Ω)‖w − w̃‖1,Ω‖ϕ‖1,Ω

)}
‖(p, ϕ)− (p̃, ϕ̃)‖ .

The result then follows with C
S̃

:=
2

α̃(Ω)
(1 + κ2

5)1/2 max{1, c1(Ω)} and recalling that ϕ = S̃2(w, φ).

�

As a consequence of the previous lemmas, we have the following result.

Lemma 1.6. Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (1.44) and (1.52), respectively, we

let Wr be the closed ball in H defined in (1.55) and assume that the data satisfy (1.56). Then, there

holds

‖T(w, φ)−T(w̃, φ̃)‖

≤ (1 + κ−1)(1 + Lµ)CT

{
‖f‖δ,Ω + ‖f‖0,Ω +

(
|Ω|1/2 + γ

)
‖g‖∞,Ω + U

}
‖(w, φ)− (w̃, φ̃)‖ ,

(1.65)

for all (w, φ), (w̃, φ̃) ∈Wr, where CT is a positive constant depending on r, the constants cS, CS, CS̃

(cf. (1.46), (1.58), (1.64)) and δ (cf. (1.57)).

Proof. Given r ∈ (0,min{r0, r̃0}), and (w, φ), (w̃, φ̃) ∈ Wr, from the definition of T (cf. (1.34)), the

Lipschitz-continuity of S̃ (cf. (1.64)) and the a priori estimate given for S̃ (1.47) we note that

‖T(w, φ)−T(w̃, φ̃)‖ ≤ ‖S4(w, φ)− S4(w̃, φ̃)‖ + ‖S̃2(S4(w, φ), φ)− S̃2(S4(w̃, φ̃), φ̃)‖

≤ ‖S4(w, φ)− S4(w̃, φ̃)‖ + κ−1C
S̃

{
U‖φ− φ̃‖0,Ω + ‖S̃2(S4(w, φ), φ)‖1,Ω‖S4(w, φ)− S4(w̃, φ̃)‖1,Ω

}
≤ κ−1C

S̃
U ‖φ− φ̃‖0,Ω + (1 + κ−1C

S̃
r)‖S4(w, φ)− S4(w̃, φ̃)‖1,Ω ,

where in the last inequality we have used that the data satisfy (1.56) and so ‖S̃2(S4(w, φ), φ)‖1,Ω ≤ r .

Next, using the Lipschitz-continuity of S (cf. (1.58)) and then applying the estimates (1.46) and (1.57),
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and the fact that ‖φ‖1,Ω ≤ r, we get

‖T(w, φ)−T(w̃, φ̃)‖ ≤ κ−1C
S̃
U ‖φ− φ̃‖0,Ω + (1 + κ−1C

S̃
r)CS

{
Lµ ‖S1(w, φ)‖δ,Ω‖φ− φ̃‖L3/δ(Ω)

+ ‖S4(w, φ)‖1,Ω‖w − w̃‖1,Ω + γ ‖g‖∞,Ω‖φ− φ̃‖0,Ω
}

≤ κ−1C
S̃
U ‖φ− φ̃‖0,Ω + (1 + κ−1C

S̃
r)CS

{
LµĈSC̃δ

[
‖f‖δ,Ω +

(
|Ω|1/2 + γ r

)
‖g‖∞,Ω

]
‖φ− φ̃‖1,Ω

+ cS

[
‖f‖0,Ω +

(
|Ω|1/2 + γ r

)
‖g‖∞,Ω

]
‖w − w̃‖1,Ω + γ‖g‖∞,Ω‖φ− φ̃‖0,Ω

}
,

where the multiplicative constant C̃δ, appearing in the second term of the last inequality, stands for

the boundedness constant of the continuous injection of H1(Ω) into L3/δ(Ω) . In this way, with

C(r) :=
(
1 + rC

S̃

)
(1 + r)CS , CT,1 := max{ĈSC̃δ, cS} and CT,2 := 3 max{ĈSC̃δ, cS, 1} ,

after performing some algebraic manipulations, we find that

‖T(w, φ)−T(w̃, φ̃)‖ ≤ (1 + κ−1)(1 + Lµ)
{
C(r)

[
CT,1

(
‖f‖δ,Ω + ‖f‖0,Ω

)
+CT,2

(
|Ω|1/2 + γ

)
‖g‖∞,Ω

]
+ C

S̃
U
}
‖(w, φ)− (w̃, φ̃)‖,

and so (1.65) follows with CT := max{C(r)CT,1, C(r)CT,2, CS̃
} .

�

We are now in a position to establish sufficient conditions for the existence and uniqueness of a fixed-

point for our problem (1.35) (equivalently, the well-posedness of the variational problem (1.23)). In-

deed, we have from Lemmas 1.1 and 1.2 that T is well-defined in any ball Wr, with r ∈ (0,min{r0, r̃0}),
and if the data satisfy (1.56) then T(Wr) ⊆ Wr (cf. Lemma 1.3). Furthermore, Lemma 1.6 guarantees

that T is Lipschitz-continuous. So, if the data is small enough so that

(1 + κ−1)(1 + Lµ)CT

{
‖f‖δ,Ω + ‖f‖0,Ω +

(
|Ω|1/2 + γ

)
‖g‖∞,Ω + U

}
< 1 , (1.66)

then T becomes a contraction. Therefore, the Banach fixed-point Theorem provides the existence of

a unique fixed-point of T; that is, a unique solution to the problem (1.35), or equivalently, to the

variational problem (1.23). We have then shown the main result of this section, and we state it as

follows.

Theorem 1.1. Let Wr be the closed ball in H = H1
0(Ω)× H̃1(Ω) defined in (1.55). Suppose that the

parameters κi, i ∈ {1, . . . , 6}, satisfy the conditions required by Lemmas 1.4 and 1.5, that the estimate

(1.57) holds and the data satisfy (1.56) and (1.66). Then, the augmented fully-mixed problem (1.23)

has unique solution (t,u,p, ϕ) ∈ H×H1
0(Ω)×HΓ (div;Ω)× H̃1(Ω), with (u, ϕ) ∈Wr. Moreover, the

following a priori estimates hold

‖(t,u)‖ ≤ cS
{
‖f‖0,Ω +

(
|Ω|1/2 + γ ‖ϕ‖0,Ω

)
‖g‖∞,Ω

}
,

and

‖(p, ϕ)‖ ≤ c
S̃
κ−1 U

{
α|Ω|1/2 + ‖ϕ‖0,Ω

}
.

with cS and c
S̃

are given as in Lemmas 1.1 and 1.2, respectively.
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We point out here that in practice micro-organisms are slightly denser than water and so the

parameter γ = ρ0/ρm − 1 is small. Then, the data restrictions (1.56) and (1.66) are equivalent to

require the diffusion rate κ to be sufficiently large while the average velocity of upward swimming

U and the physical domain Ω to be sufficiently small. Hence, Theorem 1.1 essentially states that

our augmented fully-mixed formulation provides unique solutions to the Bioconvection problem for

suspensions with viscous culture fluid, large diffusion rate, and slowly upswimming micro-organisms

in small containers, similarly to the primal method for bioconvection proposed in [24].

1.4 The Galerkin Scheme

We here present and analyze the Galerkin scheme of the augmented fully-mixed formulation (1.23).

In Section 1.4.1, after introducing the finite element spaces in which the discretization is based, we

set the discrete problem and adapt the same strategy from Section 1.3.2 to equivalently write it as

a fixed-point equation. The respective solvability analysis will be then address in Section 1.4.2 by

adapting the results for the continuous case obtained in Sections 1.3.3 and 1.3.4.

1.4.1 The discrete framework

As usual, given a shape–regular triangulation Th of Ω made up of tetrahedra K of diameter hK , we

define the meshsize h := max {hK : K ∈ Th}. Furthermore, for any k ≥ 0 and for each K ∈ Th, let

Pk(K) (resp. P̃k(K)) be the space of polynomial functions on K of degree ≤ k (resp. = k), and with

the same notations from Section 1.1, we define the local Raviart-Thomas space of order k as

RTk(K) := Pk(K)⊕ P̃k(K)x ,

where x is a generic vector in R3. Thus, we introduce the following finite element spaces for approx-

imating t, σ and ρ, respectively,

Hth :=
{
rh ∈ L2

tr(Ω) : rh|K ∈ Pk(K) , ∀K ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div;Ω) : ctτ h

∣∣
K
∈ RTk(K) , ∀ c ∈ R3 , ∀K ∈ Th

}
,

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh|K ∈ Pk(K) , ∀K ∈ Th
}
,

and for approximating u, p and ϕ, respectively, we define

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) , ∀K ∈ Th , vh = 0 on Γ

}
,

Hp
h :=

{
qh ∈ HΓ (div;Ω) : qh|K ∈ RTk(K) , ∀K ∈ Th

}
,

Hϕ
h :=

{
ψh ∈ C(Ω) : ψh|K ∈ Pk+1(K) , ∀K ∈ Th , and

ˆ
Ω
ψh = 0

}
.

That is, trace-free and skew-symmetric tensors in the space Pdisck (or simply P0 when k = 0) of

discontinuous piecewise polynomials tensors of degree ≤ k, are used for approximating the strain
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tensor t and the vorticity ρ, respectively, Raviart-Thomas elements of degree k for approximating the

pseudo-stress σ and the pseudo-concentration gradient p, whereas the components of the velocity u

and the concentration ϕ are approximating by using the Lagrange space of piecewise polynomials of

degree k + 1 (with zero-mean value for ϕ).

Then, letting Hh := Hth × Hσh × Hρh and th := (th,σh,ρh), rh := (rh, τ h,ηh) ∈ Hh , the Galerkin

scheme of (1.23) reads: Find (th,uh,ph, ϕh) ∈ Hh ×Hu
h ×Hp

h ×Hϕ
h such that

Aϕh((th,uh), (rh,vh)) + Buh((th,uh), (rh,vh)) = Fϕh(rh,vh) ∀ (rh,vh) ∈ Hh ×Hu
h ,

Ã((ph, ϕh), (qh, ψh)) + B̃uh((ph, ϕh), (qh, ψh)) = F̃ϕh(qh, ψh) ∀ (qh, ψh) ∈ Hp
h ×Hϕ

h .
(1.67)

Similarly to the continuous case, we now rewrite (1.67) as a fixed-point problem in terms of operators

arising by decoupling the system. Indeed, adapting the approach from Section (1.3.2), we firstly define

Hh := Hu
h ×Hϕ

h and introduce the operator Sh : Hh −→ Hh ×Hu
h as

Sh(wh, φh) :=
((

S1,h(wh, φh),S2,h(wh, φh),S3,h(wh, φh)
)
,S4,h(wh, φh)

)
= (th,uh),

for all (wh, φh) ∈ Hh, where, for (wh, φh) ∈ Hh given, (th,uh) is the unique solution to the discrete

version of the problem (1.31), namely: Find (th,uh) ∈ Hh ×Hu
h such that

Aφh((th,uh), (rh,vh)) + Bwh((th,uh), (rh,vh)) = Fφh(rh,vh) ∀ (rh,vh) ∈ Hh ×Hu
h , (1.68)

where the bilinear forms Aφh (with φh in place of φ) and Bwh (with wh in place of w), and the

functional Fφh (with φh instead of φ) are defined as in (1.24), (1.25) and (1.28), respectively. Secondly,

we define the operator S̃h : Hh −→ Hp
h ×Hϕ

h as

S̃h(wh, φh) :=
(
S̃1,h(wh, φh), S̃2,h(wh, φh)

)
= (ph, ϕh) ∀ (wh, φh) ∈ Hh,

where, for (wh, φh) ∈ Hh given, (ph, ϕh) stands for the unique solution to the discrete version of

problem (1.33), that is: Find (ph, ϕh) ∈ Hp
h ×Hϕ

h such that

Ã((ph, ϕh), (qh, ψh)) + B̃wh((ph, ϕh), (qh, ψh)) = F̃φh(qh, ψh) ∀ (qh, ψh) ∈ Hp
h ×Hϕ

h , (1.69)

where the bilinear forms Ã and B̃wh (with wh in place of w), and the functional F̃φh (with φh instead

of φ) are defined as in (1.26), (1.27), and (1.29), respectively. Hence, by introducing the operator

Th : Hh −→ Hh as

Th(wh, φh) :=
(
S4,h(wh, φh), S̃2,h

(
S4,h(wh, φh), φh

))
∀(wh, φh) ∈ Hh ,

we realize that solving (1.67) is equivalent to seeking for a fixed-point of the operator Th, that is:

Find (uh, ϕh) ∈ Hh such that

Th(uh, ϕh) = (uh, ϕh). (1.70)

1.4.2 Solvability analysis

Here we study the solvability of the fixed-point equation (1.70) by adapting the analysis from

Sections 1.3.3 and 1.3.4. We remark in advance that most of the proofs are almost verbatim from
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the analogues results at continuous level, and hence we omit the details in those cases. To begin

with, using the same arguments from Lemmas 1.1 and 1.2, we firstly state conditions under which

the discrete problems (1.68) and (1.69) are well-posed, and therefore the operators Sh and S̃h are

well-defined.

Lemma 1.7. Suppose that the parameters κi, i ∈ {1, . . . , 4}, satisfy the conditions required by Lemma

1.1. Then, for each r ∈ (0, r0), with r0 given by (1.44), and for each (wh, φh) ∈ Hh such that

‖wh‖1,Ω ≤ r, the problem (1.68) has a unique solution (th,uh) = Sh(wh, φh) ∈ Hh ×Hu
h . Moreover,

with the same constant cS > 0 from (1.46), which is independent of (wh, φh), there holds

‖Sh(wh, φh)‖ = ‖(th,uh)‖ ≤ cS

{
‖f‖0,Ω +

(
|Ω|1/2 + γ‖φh‖0,Ω

)
‖g‖∞,Ω

}
.

Lemma 1.8. Suppose that the parameters κi, i ∈ {5, 6}, satisfy the conditions required by Lemma 1.2.

Then, for each r̃ ∈ (0, r̃0), r̃0 given by (1.52), and for each (wh, φh) ∈ Hh such that ‖wh‖1,Ω ≤ r̃, the

problem (1.69) has a unique solution (ph, ϕh) ∈ Hp
h × Hϕ

h . Moreover, with the same constant c
S̃
> 0

from (1.47), which is independent of (wh, φh), there holds

‖S̃h(wh, φh)‖ = ‖(ph, ϕh)‖ ≤ c
S̃
κ−1 U

{
α|Ω|1/2 + ‖φh‖0,Ω

}
.

Now we state the solvability of the fixed-point equation (1.70) by verifying the hypotheses of the

Brouwer fixed-point Theorem (cf. [30, Theorem 9.9-2]). On the one hand, as a straightforward com-

bination of Lemmas 1.7 and 1.8, we begin by establishing the discrete version of Lemma 1.3.

Lemma 1.9. Given r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (1.44) and (1.52), respectively, we

let Wr,h be the closed ball in Hh defined by

Wr,h :=
{

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}
, (1.71)

and assume that the data satisfy (1.56). Then Th(Wr,h) ⊆Wr,h.

On the other hand, we focus now on the Lipschitz continuity of the operators Sh and S̃h. Regarding

Sh, the discrete version of Lemma 1.4 is provided next. Here, we particularly notice in advance that

the additional regularity assumption (1.57) employed there to suitably bound t in the L2p−norm by

some Hδ−norm can not be applied at the present discrete context to bound th. On the contrary,

we will utilize a L4 − L4 − L2 argument (Hölder inequality) to bound the respective term in which

it is involved and then make use of the fact that th ∈ Hth, and so their components are piecewise

polynomials (see at the beginning of Section 1.4.1).

Lemma 1.10. Let (wh, φh), (w̃h, φ̃h) ∈ Hh such that ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r, for any r ∈ (0, r0) with

r0 given by (1.44). Then, there exists a positive constant CSh, depending on κ2, κ3, c2(Ω), and α(Ω),

but independent of h, such that

‖Sh(wh, φh)− Sh(w̃h, φ̃h)‖ ≤ CSh

{
Lµ ‖S1,h(wh, φh)‖L4(Ω)‖φh − φ̃h‖L4(Ω)

+ ‖S4,h(wh, φh)‖1,Ω‖wh − w̃h‖1,Ω + γ ‖g‖∞,Ω‖φh − φ̃h‖0,Ω
}
.

(1.72)
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Proof. The proof is almost verbatim to that one of Lemma 1.4. Indeed, it suffices to see that when

applying the Hölder inequality with p = q = 2, the estimate (1.62) becomes

α(Ω)

2
‖(th,uh)− (t̃h, ũh)‖ ≤

{
Lµ(1 + κ2

3)1/2‖th‖L4(Ω)‖φh − φ̃h‖L4(Ω)

+ c2(Ω)(1 + κ2
3)1/2‖uh‖1,Ω‖wh − w̃h‖1,Ω + γ(1 + κ2

2)1/2‖g‖∞,Ω‖φh − φ̃h‖0,Ω
}
.

(1.73)

Since elements of Hth are piecewise polynomials by components we have that ‖th‖L4(Ω) < +∞, and

using the fact that S1,h(wh, φh) = th, the inequality (1.73) immediately yields the estimate (1.72)

with CSh :=
2

α(Ω)
max

{
(1 + κ2

3)1/2, c2(Ω)(1 + κ2
3)1/2, (1 + κ2

2)1/2
}
, which is clearly independent of

h. �

Following the same arguments used in the proof Lemma 1.5, we directly have the following result

regarding the operator S̃h.

Lemma 1.11. Let (wh, φh), (w̃h, φ̃h) ∈ Hh such that ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r̃, for any r ∈ (0, r̃0), with

r0 given by (1.52). Then, with the same constant C
S̃

provided by Lemma 1.5, there holds

‖S̃h(wh, φh)− S̃h(w̃h, φ̃h)‖ ≤ κ−1C
S̃

{
U ‖φh − φ̃h‖0,Ω + ‖S̃2,h(wh, φh)‖1,Ω‖wh − w̃h‖1,Ω

}
. (1.74)

As a result of the previous two lemmas, we can state the Lipschitz-continuity of the operator Th,

which constitutes the discrete version of Lemma 1.6.

Lemma 1.12. Let r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (1.44) and (1.52), respectively, let

Wr,h be the closed ball in Hh defined in (1.71) and assume that the data satisfy (1.56). Then, there

exists a constant CTh > 0, that depends on r and other constants but is independent of h, such that

‖Th(wh, φh)−Th(w̃h, φ̃h)‖ ≤ (1 + κ−1)(1 + Lµ)CTh

{
‖S1,h(wh, φh)‖L4(Ω)

+ ‖f‖0,Ω +
(
|Ω|1/2 + γ

)
‖g‖∞,Ω + U

}
‖(w, φ)− (w̃, φ̃)‖ ,

(1.75)

for all (wh, φh), (w̃h, φ̃h) ∈Wr,h.

Proof. Proceeding as in the proof of Lemma 1.6, but using (1.72) and (1.74) instead (1.58) and (1.64),

respectively, the continuous injection of H1(Ω) into L4(Ω) with constant C̃, and then the a priori

estimate provided by Lemma 1.7, we find that

‖Th(wh, φh)−Th(w̃h, φ̃h)‖

≤ κ−1C
S̃
U ‖φh − φ̃h‖0,Ω + (1 + κ−1C

S̃
r)CSh

{
LµC̃ ‖S1(wh, φh)‖L4(Ω)‖φh − φ̃h‖1,Ω

+ cS

[
‖f‖0,Ω +

(
|Ω|1/2 + γ r

)
‖g‖∞,Ω

]
‖wh − w̃h‖1,Ω + γ ‖g‖∞,Ω‖φh − φ̃h‖0,Ω

}
.

Then, after performing algebraic manipulations and defining

C̃(r) :=
(
1 + rC

S̃

)
(1 + r)CSh , C̃T,1 := max{C̃, cS} and C̃T,2 := 2 max{cS, 1} ,

the results follows with CTh := max{C̃(r)CT,1, C̃(r)CT,2, CS̃
}, which is independent of h because so

the constants C̃(r), CT,1, CT,2 and C
S̃

are. �
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The previous lemma provides the continuity required by the Brouwer fixed-point theorem, in the

convex and compact set Wr,h ⊂ Hh. Therefore, we have essentially proved the following result.

Theorem 1.2. Suppose that the parameters κi, i ∈ {1, . . . , 6}, satisfy the conditions required by

Lemmas 1.4 and 1.5. Let Wr,h be the closed ball in Hh defined in (1.71) and assume that the data satisfy

(1.56). Then, the Galerkin scheme (1.67) has at least one solution (th,uh,ph, ϕh) ∈ Hh×Hu
h×Hp

h×Hϕ
h ,

with (uh, ϕh) ∈Wr,h, and the following a priori estimates hold

‖(th,uh)‖ ≤ cS
{
‖f‖0,Ω +

(
|Ω|1/2 + γ‖ϕh‖0,Ω

)
‖g‖∞,Ω

}
,

and

‖(ph, ϕh)‖ ≤ c
S̃
κ−1 U

{
α|Ω|1/2 + ‖ϕh‖0,Ω

}
,

with cS and c
S̃

as in Lemmas 1.1 and 1.2, respectively.

We end this section by remarking that the lack of suitable estimates for ‖S1,h(wh, φh)‖L4(Ω) (similar

to [26, Section 4.2]) stops us of trying to use (1.75) to derive a condition on data so that Th becomes

a contraction. This is the reason why in the previous theorem we can only guarantee the existence of

a discrete solution. In turn, as we commented after Theorem 1.1 for the continuous case, the previous

result states that our augmented fully-mixed scheme provides existence of discrete solutions to the

bioconvection problem whenever the data satisfy the condition (1.56), that is, for suspensions with

viscous culture fluid, large diffusion rate, and slowly upswimming micro-organisms in small containers,

similarly to the classical finite element method for bioconvection that was constructed in [24].

1.5 A priori error analysis

In this section, we undertake the error analysis for the Galerkin scheme (1.67) associated to the

problem (1.23). To that end, we will deduce the corresponding Céa estimate as well as the respect-

ive theoretical convergence rates according to the approximation properties of the discrete spaces

introduced in Section 1.4.1. To begin with, we let

(t,u,p, ϕ) ∈ H×H1
0(Ω)×HΓ (div;Ω)× H̃1(Ω) with (u, ϕ) ∈Wr ,

and

(th,uh,ph, ϕh) ∈ Hh ×Hu
h ×Hp

h ×Hϕ
h with (uh, ϕh) ∈Wr,h ,

be solutions to the problems (1.23) and (1.67), respectively. Therefore, we have that

Aϕ((t,u), (r,v)) + Bu((t,u), (r,v)) = Fϕ(r,v) ∀ (r,v) ∈ H×H1
0(Ω),

Aϕh((th,uh), (rh,vh)) + Buh((th,uh), (rh,vh)) = Fϕh(rh,vh) ∀ (rh,vh) ∈ Hh ×Hu
h ,

(1.76)

and

Ã((p, ϕ), (q, ψ)) + B̃u((p, ϕ), (q, ψ)) = F̃ϕ(q, ψ) ∀ (q, ψ) ∈ HΓ (div;Ω)× H̃1(Ω),

Ã((ph, ϕh), (qh, ψh)) + B̃uh((ph, ϕh), (qh, ψh)) = F̃ϕh(qh, ψh) ∀ (qh, ψh) ∈ Hp
h ×Hϕ

h .
(1.77)
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Because of the structure of the systems (1.76) and (1.77), in what follows we apply the well-known

Strang lemma for elliptic variational problems (see [83, Theorem 11.1]) in order to derive an upper

bound for the total error ‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖. We recall this auxiliary result as follows.

Lemma 1.13. Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and V -elliptic

bilinear form. In addition, let {Vh}h>0 be a sequence of finite dimensional subspaces of V , and for

each h > 0 consider a bounded bilinear form A : Vh × Vh → R and a functional Fh ∈ V ′h. Assume

that the family {Ah}h>0 is uniformly elliptic, that is, there exists a constant α̃ > 0, independent of h,

such that

Ah(vh, vh) ≥ α̃ ‖vh‖2V , ∀ vh ∈ Vh , ∀h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) , ∀ v ∈ V , and Ah(uh, vh) = Fh(vh) , ∀ vh ∈ Vh.

Then, for each h > 0 there holds

‖u− uh‖V ≤ CST

 sup
wh∈Vh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh‖V + sup
wh∈Vh
wh 6=0

|A(vh, wh)−Ah(vh, wh)|
‖wh‖V


 ,

where CST := α̃−1 max{1, ‖A‖}.

In that follows, we denote as usual

dist
(
(t,u), Hh ×Hu

h

)
:= inf

(rh,vh)∈Hh×Huh
‖(t,u)− (rh,vh)‖ ,

and

dist
(
(p, ϕ), Hp

h ×Hϕ
h

)
:= inf

(qh,ψh)∈Hph×Hϕh

‖(p, ϕ)− (qh, ψh)‖ .

The following lemma provides a preliminary estimate for the error ‖(t,u)− (th,uh)‖ associated to

the system (1.76).

Lemma 1.14. Let CST :=
2

α(Ω)
max{1, ‖Aϕ + Bu‖}, where α(Ω) is the constant yielding the ellipt-

icity of Aϕ + Bu (cf. (1.43) and Lemma 1.1). Then, there holds

‖(t,u)− (th,uh)‖ ≤ CST

{(
1 + 2‖Aϕ‖+ c2(Ω)(1 + κ2

3)1/2‖u− uh‖1,Ω
)

dist
(
(t,u), Hh ×Hu

h

)
+ γ(1 + κ2

2)1/2‖g‖∞,Ω‖ϕ− ϕh‖0,Ω + LµCδ(1 + κ2
3)1/2‖t‖δ,Ω‖ϕ− ϕh‖L3/δ(Ω) (1.78)

+ c2(Ω)(1 + κ2
3)1/2‖u‖1,Ω‖u− uh‖1,Ω

}
.
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Proof. Since (u, ϕ) ∈Wr and (uh, ϕh) ∈Wr,h, Lemma 1.1 and Lemma 1.7 guarantee that the bilinear

forms Aϕ + Bu and Aϕh + Buh are H×H1
0(Ω)−elliptic and Hh×Hu

h−elliptic (∀h > 0), respectively,

with the same constant α(Ω)
2 (see (1.43)). Also, Fϕ and Fϕh are clearly both linear and bounded

functionals. Therefore the system (1.76) satisfies the hypotheses of Strang’s lemma and thus, a direct

application of the Lemma 1.13 to the specific context (1.76) with

A := Aϕ + Bu , {Ah}h>0 := {Aϕh + Buh}h>0 , F := Fϕ , and Fh := Fϕh ,

yields

‖(t,u)− (th,uh)‖ ≤ CST


∥∥∥(Fϕ − Fϕh)∣∣Hh×Huh∥∥∥+ inf

(rh,vh)∈Hh×Huh
(rh,vh) 6=0

(
‖(t,u)− (rh,vh)‖

+ sup
(sh,zh)∈Hh×Huh

(sh,zh) 6=0

∣∣(Aϕ −Aϕh)((rh,vh), (sh, zh)) + Bu−uh((rh,vh), (sh, zh))
∣∣

‖(sh, zh)‖

) ,

(1.79)

where CST :=
2

α(Ω)
max{1, ‖Aϕ + Bu‖}. Now, from the estimate (1.61), observe that the first term

at the right-hand side of (1.79) can be bounded as∥∥∥(Fϕ − Fϕh)∣∣Hh×Huh∥∥∥ ≤ γ (1 + κ2
2)1/2 ‖g‖∞,Ω‖ϕ− ϕh‖0,Ω . (1.80)

To estimate the supremum in (1.79), on the one hand, we first conveniently add and subtract (t,u)

in the first component of the bilinear form Aϕ −Aϕh to find

(Aϕ −Aϕh)((rh,vh), (sh, zh)) = Aϕ((rh,vh)− (t,u), (sh, zh))

+ (Aϕ −Aϕh)((t,u), (sh, zh)) + Aϕh((t,u)− (rh,vh), (sh, zh)) .

(1.81)

Now, we apply (1.36) to estimate the first and third terms at the right-hand side of (1.81), whereas

the the second term is estimated by proceeding similarly to the derivation of (1.62) combined with

(1.63), which gives∣∣(Aϕ −Aϕh)((rh,vh), (sh, zh))
∣∣ ≤ 2‖Aϕ‖ ‖(t,u)− (rh,vh)‖ ‖(sh, zh)‖

+ LµCδ(1 + κ2
3)1/2‖t‖δ,Ω‖ϕ− ϕh‖L3/δ(Ω)‖(sh, zh)‖.

On the other hand, for estimating the term that involves Bu−uh , we apply (1.37) with w = u− uh,∣∣Bu−uh((rh,vh), (sh, zh))
∣∣ ≤ c2(Ω)(1 + κ2

3)1/2‖u− uh‖1,Ω‖vh‖1,Ω‖(sh, zh)‖

≤ c2(Ω)(1 + κ2
3)1/2‖u− uh‖1,Ω‖(t,u)− (rh,vh)‖ ‖(sh, zh)‖

+ c2(Ω)(1 + κ2
3)1/2‖u− uh‖1,Ω‖u‖1,Ω‖(sh, zh)‖ ,

(1.82)

where the last inequality arises after adding and subtracting u in the term ‖vh‖1,Ω, using triangle

inequality and then bounding ‖u− vh‖1,Ω by ‖(t,u)− (rh,vh)‖ . Finally, by replacing (1.80), (1.81)

and (1.82) back into (1.79), we get (1.78). �
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Concerning the error ‖(p, ϕ)− (ph, ϕh)‖ associated to the concentration equations (1.77), we have

the following result.

Lemma 1.15. Let C̃ST :=
2

α̃(Ω)
max{1, ‖Ã+B̃u‖}, where α̃(Ω) is the constant yielding the ellipticity

of Ã + B̃u (cf. (1.51) and Lemma 1.2). Then, there holds

‖(p, ϕ)− (ph, ϕh)‖ ≤ C̃ST

{(
1 + κ−1c1(Ω)(1 + κ2

5)1/2‖u− uh‖1,Ω
)

dist
(
(p, ϕ), Hp

h ×Hϕ
h

)
+κ−1c1(Ω)(1 + κ2

5)1/2‖ϕ‖1,Ω‖u− uh‖1,Ω + κ−1U(1 + κ2
5)1/2‖ϕ− ϕh‖0,Ω

}
.

(1.83)

Proof. It follows from a slight modification of the proof of [35, Lemma 5.3] which makes use of Lemma

1.13. There, the consistency error associated to the functional in the Strang estimate vanishes, but

this does not happen in the present case with F̃ϕ − F̃ϕh . We simply bound this term similarly as in

the proof of Lemma 1.5. We omit further details. �

We now combine the two previous lemmas to derive an a priori estimate for the total error

‖(t,u,p, ϕ) − (th,uh,ph, ϕh)‖. Indeed, by gathering together the estimates (1.78) and (1.83), we

get
‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖ ≤ CSTLµCδ(1 + κ2

3)1/2‖t‖δ,Ω‖ϕ− ϕh‖L3/δ(Ω)

+
(
CST c2(Ω)(1 + κ2

3)1/2‖u‖1,Ω + C̃STκ
−1c1(Ω)(1 + κ2

5)1/2‖ϕ‖1,Ω
)
‖u− uh‖1,Ω

+
(
CSTγ(1 + κ2

2)1/2‖g‖∞,Ω + C̃STκ
−1U(1 + κ2

5)1/2
)
‖ϕ− ϕh‖0,Ω

+CST

(
1 + 2‖Aϕ‖+ c2(Ω)(1 + κ2

3)1/2‖u− uh‖1,Ω
)

dist
(
(t,u), Hh ×Hu

h

)
+ C̃ST

(
1 + κ−1c1(Ω)(1 + κ2

5)1/2‖u− uh‖1,Ω
)

dist
(
(p, ϕ), Hp

h ×Hϕ
h

)
.

The first term of the right-hand side of the foregoing inequality is estimated by using (1.57) to bound

‖t‖δ,Ω, and the continuous injection of H1(Ω) into L3/δ(Ω) to get ‖ϕ− ϕh‖L3/δ(Ω) ≤ C̃δ‖ϕ− ϕh‖1,Ω.

In turn, in the second term, we use that (u, ϕ) ∈ Wr to bound ‖u‖1,Ω and ‖ϕ‖1,Ω by r. In this way,

after performing some algebraic manipulations, we can assert that

‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖ ≤ C(f , g, κ, µ, γ, U, r, |Ω|) ‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖

+CST

(
1 + 2‖Aϕ‖+ c2(Ω)(1 + κ2

3)1/2‖u− uh‖1,Ω
)

dist
(
(t,u), Hh ×Hu

h

)
+ C̃ST

(
1 + κ−1c1(Ω)(1 + κ2

5)1/2‖u− uh‖1,Ω
)

dist
(
(p, ϕ), Hp

h ×Hϕ
h

)
,

(1.84)

where C(f , g, κ, µ, γ, U, |Ω|) is a constant, depending only on data, r and |Ω|, but is independent of

h, defined by

C(f , g, κ, µ, γ, U, r, |Ω|) := max
{

C1(f , g, µ, γ, r, |Ω|) ,C2(κ, r) ,C3(g, κ, γ, U)
}
, (1.85)

with

C1(f , g, µ, γ, r, |Ω|) := LµC1

{
‖f‖δ,Ω +

(
|Ω|1/2 + γ r

)
‖g‖∞,Ω

}
, C2(κ, r) := r C2 (κ−1 + 1) ,

and C3(g, κ, γ, U) := C3

(
γ‖g‖∞,Ω + κ−1U

)
,
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where

C1 := CST Cδ C̃δ ĈS (1 + κ2
3)1/2 , C2 := CST c2(Ω) (1 + κ2

3)1/2 + C̃ST c1(Ω) (1 + κ2
5)1/2 ,

and C3 := CST (1 + κ2
2)1/2 + C̃ST (1 + κ2

5)1/2 .

Note that the constants multiplying the distances dist
(
(t,u), Hh ×Hu

h

)
and dist

(
(p, ϕ), Hp

h × Hϕ
h

)
are both controlled by other constants, parameters, and data only because so ‖u − uh‖1,Ω does,

according to Theorem 1.1. Consequently, we are in position to establish the following result providing

the complete Céa estimate.

Theorem 1.3. Let r ∈ (0,min{r0, r̃0}), with r0 and r̃0 given by (1.44) and (1.52), respectively, and

(t,u,p, ϕ) ∈ H × H1
0(Ω) × HΓ (div;Ω) × H̃1(Ω) and (th,uh,ph, ϕh) ∈ Hh × Hu

h × Hp
h × Hϕ

h , with

(u, ϕ) ∈Wr and (uh, ϕh) ∈Wr,h, be solutions to the problems (1.23) and (1.67), respectively. Assume

that the data, r and Ω are such that the constant defined by (1.85) satisfies

C(f , g, κ, µ, γ, U, r, |Ω|) ≤ 1

2
. (1.86)

Then, there exists a positive constant C, depending only on parameters, data and other constants, all

of them independent of h, such that

‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖ ≤ C
{

dist
(
(t,u), Hh ×Hu

h

)
+ dist

(
(p, ϕ), Hp

h ×Hϕ
h

)}
. (1.87)

Proof. It follows by using the hypothesis (1.86) into the estimate (1.84) and the fact that u and uh
are both bounded by r and so ‖u− uh‖1,Ω ≤ 2r. �

Finally, we complete our a priori error analysis stating the corresponding convergence rate of our

Galerkin scheme (1.67).

Theorem 1.4. In addition to the hypotheses of Theorems 1.1, 1.2 and 1.3, assume that there exists

s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω) with divσ ∈ Hs(Ω), ρ ∈ Hs(Ω), u ∈ Hs+1(Ω), p ∈ Hs(Ω)

with div p ∈ Hs(Ω), and ϕ ∈ Hs+1(Ω). Then, there exists C > 0, independent of h, such that

‖(t,u,p, ϕ)− (th,uh,ph, ϕh)‖ ≤ Chmin{s,k+1}
{}

. ‖t‖s,Ω+‖σ‖s,Ω+‖divσ‖s,Ω+‖ρ‖s,Ω + ‖u‖s+1,Ω+‖p‖s,Ω+‖div p‖s,Ω+‖ϕ‖s+1,Ω

(1.88)

Proof. It follows directly from the Céa estimate (1.87) and standard approximation properties of the

discrete spaces Hth, Hσh , Hρh, Hu
h , Hp

h and Hϕ
h (see [21,49], for instance) . �

Now, regarding the postprocessing of additional variables, on the one hand, we recall the orthogonal

decomposition for the pseudostress tensor provided in (1.16), and then the modified equation for the

continuous pressure (1.12) becomes

p = −1

3
tr(σ + cI + (u⊗ u)), with c := − 1

3|Ω|

ˆ
Ω

tr(u⊗ u). (1.89)
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Thus, according to (1.89), we define our discrete approximation of the pressure as

ph = −1

3
tr(σh + chI + (uh ⊗ uh)), with ch := − 1

3|Ω|

ˆ
Ω

tr(uh ⊗ uh), (1.90)

which yields

p− ph =
1

3
tr
{

(σh − σ) + (uh ⊗ uh − u⊗ u)
}

+ (ch − c).

On the other hand, such as in [37], it is not difficult to see that the relation (1.13) gives also the chance

to compute the discrete concentration gradient through the formulae

∇ϕh = κ−1ph + κ−1ϕhuh + κ−1U(ϕh + α)i3 . (1.91)

Therefore, similarly to [23, Section 4], we easily deduce that there exist constants C, C̃ > 0, independ-

ent of h, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div;Ω + ‖u− uh‖1,Ω

}
,

‖∇ϕ−∇ϕh‖0,Ω ≤ C̃
{
‖p− ph‖div;Ω + ‖ϕ− ϕh‖1,Ω + ‖u− uh‖1,Ω

}
,

(1.92)

and so the convergence rates of the postprocessed variables, in the L2-norm, coincide with those

provided by (1.88) (cf. Theorem 1.4).

1.6 Numerical results

This section presents a few numerical examples to illustrate the performance of our augmented

fully-mixed formulation (1.67) and to support the respective convergence theoretical results for the

primary and postprocessed variables predicted by Theorem 1.4 and the estimates (1.92), respectively.

The fixed-point problem (1.70) has been implemented through a Picard iteration on a FreeFem++

code (cf. [59]) and the resulting algebraic linear systems have been solved with the direct linear solver

UMFPACK (see [39]). As an initial solution, we have simply taken (u
(0)
h , ϕ

(0)
h ) = (0, 0) to construct,

on each step m, the entire solution vector

sol(m) = (t
(m)
h ,σ

(m)
h ,ρ

(m)
h ,u

(m)
h ,p

(m)
h , ϕ

(m)
h ) for all m ≥ 1 .

As a stopping criteria, we have prescribed a fixed tolerance tol = 1E−8 to finish the iterative technique

when either a maximum number of iterations is reached or the relative error between two consecutive

iterations, let us say sol(m) and sol(m+1), satisfies

||sol(m+1) − sol(m)||`2
||sol(m+1)||`2

< tol ,

where || · ||`2 stands for the Euclidean `2−norm in RN with N denoting the total number of degrees

of freedom defined by the finite element family (Hth,Hσh ,H
ρ
h,H

u
h ,H

p
h,H

ϕ
h) specified in Section 1.4.1.

The individual errors associated to the primary unknowns are denoted and defined by

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div;Ω, e(ρ) := ‖ρ− ρh‖0,Ω,

e(u) := ‖u− uh‖1,Ω, e(p) := ‖p− ph‖div;Ω, and e(ϕ) := ‖ϕ− ϕh‖1,Ω ,
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and the errors associated to the postprocessed variables (cf. (1.90) and (1.91)) are given, respectively,

as

e(p) := ‖p− ph‖0,Ω and e(∇ϕ) := ‖∇ϕ−∇ϕh‖0,Ω .

We also let eprim and epost be the total errors related to the primary and post-processed variables,

respectively, that is,

eprim :=
{
e(t)2 + e(σ)2 + e(ρ)2 + e(u)2 + e(p)2 + e(ϕ)2

}1/2
and epost :=

{
e(p)2 + e(∇ϕ)2

}1/2
.

Following the same notation, we denote r( · ), rprim and rpost as the individual experimental conver-

gence rate associated to each variable, and the total convergence rates of the primary unknowns and

post-processed variables, respectively, that is

r( · ) :=
log(e( · )/e′( · ))

log(h/h′)
, rprim :=

log(eprim/e
′
prim)

log(h/h′)
and rpost :=

log(epost/e
′
post)

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′.

1.6.1 Example 1: Accuracy assessment in 2D

In our first example we study the accuracy of the method in 2D by manufacturing an exact solution of

a corresponding modification of problem (1.6) and considering a non concentration-dependent viscosity.

More precisely, the expressions i3, ∂ϕ
∂x3

, and ν3 are replaced in (1.6) by i2 := (0, 1), ∂ϕ
∂x2

, and ν2,

respectively. Then, we consider the square Ω := (−1, 1)2 and the data

µ(x1, x2) = 1 + sin2(x1), U = 0.01, γ = 0.5, κ = 1, α = 0.5 and g = (0, 1)t . (1.93)

It follows that µ1 = 1 and µ2 = 2 (cf. (1.3)), and hence the stabilization parameters κi, (i = 1, . . . , 6),

are chosen as in (1.54) and in accordance to Lemmas 1.1 and 1.2, that is

κ1 =
µ1

2
, κ2 = κ3 =

µ1

µ2
2

, κ4 =
µ1

4
, κ5 = κ, and κ6 =

κ−1

2
. (1.94)

The terms on the right-hand sides are adjusted in such a way that the exact solutions are given by

the smooth functions

u(x1, x2) =

 2π cos(πx2) sin(πx2) sin2(πx1)

−2π cos(πx1) sin(πx1) sin2(πx2)

 , p(x1, x2) = −5x1 sin(x2) ,

and

ϕ(x1, x2) = ϑ exp

(
U

κ
x2

)
− α , where ϑ ∈ R is taken so that

ˆ
Ω
ϕ = 0.

Note that the homogeneous Dirichlet condition for the velocity, the Robin-type boundary condition

for the concentration, the incompressibbility condition of the fluid, and the zero-mean value restriction

for both the pressure and the concentration are satisfied by the above functions.

Values of errors and corresponding convergence rates associated to the approximations with the

finite element families P0 − RT0 − P0 − P1 − RT0 − P1 and Pdisc1 − RT1 − Pdisc1 − P2 − RT1 − P2
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Figure 1.1: Example 1: Approximated pressure, velocity magnitude, and concentration obtained with

the fully-mixed method using k = 0 and N = 873843 degrees of freedom.

corresponding to approximations of order k = 0 and k = 1, respectively, are reported in Table 1.1.

There, we observe that the convergence rates are linear (in the case k = 0) and quadratic (in the case

k = 1) with respect to h for all the main unknowns in their respective norms, as well as the post-

processed variables in the L2−norm. Also, it is observed that the errors decay faster when increasing

the approximation order from k = 0 to k = 1. In particular, this behavior can be observed from the

values related to the total convergence rates rprim and rpost for the primary and the variables obtained

by post-processing. Our findings are in agreement with the theoretical error bounds predicted from

Theorem 1.4 and the estimates (1.92). On the other hand, we mention that 8 and 9 Picard steps were

required to reach the prescribed tolerance tol = 1E-08 in the cases k = 0 and k = 1, respectively.

The approximation of the velocity magnitude, the pressure and concentration are depicted in Figure

1.1 computed with our fully-mixed method on a mesh with N = 873843 degrees of freedom and k = 0.

1.6.2 Example 2: Accuracy assessment in 3D with concentration-dependent vis-

cosity

In this example we focus on testing the accuracy of our method in the three-dimensional setting

and considering the viscosity as a concentration-dependent function. To that end, we define the

manufactured exact solution in the cube Ω := (0, 1)3 as

u(x1, x2, x3) =

 4x2
1x2x3(x3 − 1)(x2 − 1)(x2 − x3)(x1 − 1)2

−4x1x
2
2x3(x2 − 1)2(x3 − 1)(x1 − 1)(x1 − x3)

4x1x2x
2
3(x3 − 1)2(x2 − 1)(x1 − 1)(x1 − x2)

 ,

p(x1, x2, x3) = cos(πx1) cos(x2) cos(x3) ,

and, similarly as in the first example, the auxiliary exact concentration satisfying the Robin-type

boundary condition takes the form

ϕ(x1, x2, x3) = ϑ exp

(
U

κ
x3

)
− α , where ϑ ∈ R is taken so that

ˆ
Ω
ϕ = 0.
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Fully–mixed P0 − RT0 − P0 −P1 −RT0 − P1 (k = 0) scheme

e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ)

2.4590 – 17.755 – 2.1535 – 4.4929 – 0.1792 – 0.1728 –

1.2280 1.0018 8.9033 0.9958 1.1132 0.9520 2.2405 1.0038 0.0898 0.9968 0.0869 0.9917

0.8925 0.9976 6.4778 0.9943 0.8147 0.9759 1.6285 0.9974 0.0654 0.9912 0.0633 0.9906

0.7010 0.9980 5.0906 0.9958 0.6419 0.9850 1.2792 0.9976 0.0514 0.9953 0.0498 0.9928

0.5607 1.0098 4.0729 1.0085 0.5144 1.0012 1.0232 1.0097 0.0411 1.0112 0.0398 1.0117

0.3924 0.9928 2.8513 0.9919 0.3606 0.9881 0.7162 0.9923 0.0288 0.9892 0.0279 0.9881

0.3567 1.0724 2.5921 1.0715 0.3279 1.0687 0.6510 1.0731 0.0262 1.0637 0.0253 1.0998

e(p) r(p) e(∇ϕ) r(∇ϕ) eprim rprim epost rpost h N It

1.5750 – 0.1728 – 18.606 – 1.5845 – 0.0884 18819 8

0.7723 1.0281 0.0869 0.9917 9.3301 0.9958 0.7772 1.0277 0.0442 74499 8

0.5587 1.0122 0.0633 0.9906 6.7884 0.9943 0.5623 1.0119 0.0321 140451 8

0.4378 1.0076 0.0497 0.9995 5.3347 0.9957 0.4406 1.0075 0.0252 227139 8

0.3497 1.0169 0.0398 1.0044 4.2682 1.0085 0.3520 1.0158 0.0202 354483 8

0.2444 0.9966 0.0279 0.9881 2.9881 0.9918 0.2460 0.9964 0.0141 722403 8

0.2222 1.0706 0.0253 1.0998 2.7164 1.0716 0.2236 1.0710 0.0129 873843 8

Fully–mixed Pdisc1 − RT1 − Pdisc1 −P2 −RT1 − P2 (k = 1) scheme

e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ)

0.3204 – 2.2831 – 0.2628 – 0.5630 – 0.0214 – 0.0205 –

0.1812 1.9853 1.2892 1.9905 0.1523 1.9001 0.3186 1.9830 0.0121 1.9859 0.0117 1.9533

0.0808 1.9898 0.5745 1.9907 0.0695 1.9322 0.1422 1.9868 0.0054 1.9871 0.0052 1.9972

0.0455 1.9988 0.3234 2.0013 0.0395 1.9679 0.0801 1.9990 0.0031 1.9330 0.0030 1.9158

0.0359 2.0168 0.2556 2.0023 0.0313 1.9803 0.0633 2.0033 0.0024 2.1782 0.0023 2.2613

0.0239 2.0105 0.1712 1.9805 0.0208 2.0194 0.0423 1.9919 0.0016 2.0036 0.0015 2.1122

e(p) r(p) e(∇ϕ) r(∇ϕ) eprim rprim epost rpost h N It

0.2185 – 0.0205 – 2.3879 – 0.2195 – 0.1178 35139 9

0.1236 1.9843 0.0117 1.9533 1.3490 1.9889 0.1242 1.9841 0.0884 62211 9

0.0550 1.9942 0.0052 1.9972 0.6014 1.9897 0.0552 1.9943 0.0589 139395 9

0.0309 2.0082 0.0030 1.9158 0.3386 2.0007 0.0310 2.0073 0.0442 247299 9

0.0244 2.0100 0.0023 2.2613 0.2676 2.0024 0.0245 2.0123 0.0393 312771 9

0.0163 1.9935 0.0015 2.1122 0.1792 1.9822 0.0164 1.9945 0.0321 466755 9

Table 1.1: Example 1: Convergence history for the fully-mixed approximation of the Bioconvection

problem with k = 0 (first and second panel) and k = 1 (third and fourth panel)

.
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Next, the viscosity is taken as a concentration-dependent function defined as

µ(ϕ) = 1 + sin2(ϕ),

satisfying (1.2) and (1.3) with µ1 = 1 and µ2 = 2. The rest of data and stabilization parameters are

taken as in (1.93) and (1.94).

For this example, we consider the finite element spaces introduced in Section 1.4.1 with k = 0. The

convergence history is summarized in Table 1.2 and it is observed there that the total error decay is

of order O(h) for the primary unknowns and the postprocessed variables as predicted by Theorem

1.4 and the estimates (1.92). In particular, 4 Picard steps were required to achieve the prescribed

tolerance tol = 1E-08. Next, in Figure 1.2 we display the streamlines, the component ρ12,h of the

vorticity tensor and the concentration profile ϕ in the first panel, whereas in the second panel are

depicted the component t11,h of the shear stress tensor, the component σ23,h of the pseudo-stress

tensor and the concentration gradient vector field ∇ϕh obtained with k = 0 and N = 1403428 degrees

of freedom.

1.6.3 Example 3: Accuracy assessment with no manufactured analytical solution

In this example we aim to illustrate the accuracy of our method by considering a case in which the

exact solution is unknown in the two-dimensional setting. As in the previous example, we consider

the viscosity as the concentration-dependent function given by µ(ϕ) = 1 + sin2(ϕ), satisfying (1.2)

and (1.3) with µ1 = 1 and µ2 = 2. Here, the source term is taken as f = 0, and the data are given by

U = 0.01, γ = 0.1, κ = 0.08, α = 0.3 and g = (0, 9.8)t ,

in terms of which the parameters κi, (i = 1, . . . , 6) are defined according to (1.94). The boundary

conditions are imposed as in (1.4) In Table 1.3, we summarize the convergence history for a sequence

of uniform triangulations, considering a P0 −RT0 − P0 −P1 −RT0 −P1 approximation. We mention

that the errors and the convergence rates of are computed by considering the discrete solution obtained

with a finer mesh (N = 822, 774) as the exact solution. It is observed that the rate of convergence

O(h) is attained by all the primary and post processed unknowns as well as the total convergence

rates in agreement with Theorem 1.4 and the estimates (1.92). Additionally, in Figure 1.3 we display

the approximation of the velocity components whereas in Figure 1.4, we illustrate, in a 3D view,

the pressure (left) and the concentration (right) scalar fields and observe there that ph has a linear

behavior differently than ϕh. All the figures presented there were obtained with N = 181, 203 degrees

of freedom.
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Fully–mixed P0 − RT0 − P0 −P1 −RT0 − P1 (k = 0) scheme

e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ)

0.0817 – 0.6974 – 0.0446 – 0.0916 – 0.4489 – 1.0850 –

0.0676 0.4672 0.4764 0.9398 0.0419 0.1544 0.0647 0.8576 0.4365 0.0692 0.8401 0.6039

0.0550 0.7174 0.3580 0.9941 0.0371 0.4209 0.0452 1.2500 0.3301 0.9713 0.6096 1.1154

0.0389 0.8569 0.2360 1.0274 0.0290 0.6089 0.0252 1.4391 0.1918 1.3385 0.3433 1.4156

0.0297 0.9306 0.1750 1.0400 0.0234 0.7546 0.0161 1.5537 0.1240 1.5178 0.2160 1.6113

0.0240 0.9623 0.1388 1.0375 0.0194 0.8314 0.0113 1.5853 0.0875 1.5611 0.1478 1.6981

0.0200 0.9807 0.1150 1.0355 0.0165 0.8813 0.0085 1.5883 0.0658 1.5629 0.1077 1.7414

0.0151 0.9861 0.0856 1.0239 0.0127 0.9166 0.0054 1.5436 0.0426 1.5095 0.0654 1.7349

0.0121 0.9924 0.0682 1.0169 0.0103 0.9465 0.0039 1.4727 0.0310 1.4282 0.0447 1.7019

0.0101 0.9933 0.0567 1.0105 0.0086 0.9611 0.0030 1.3985 0.0242 1.3510 0.0331 1.6428

0.0093 1.0021 0.0523 1.0152 0.0080 0.9762 0.0027 1.3583 0.0218 1.3048 0.0291 1.6082

e(p) r(p) e(∇ϕ) r(∇ϕ) eprim rprim epost rpost h N It

0.2231 – 1.0680 – 0.7096 – 0.2233 – 0.7071 972 4

0.1496 0.9845 0.8146 0.6680 0.4874 0.9263 0.1499 0.9837 0.4714 3064 4

0.1091 1.0995 0.5879 1.1342 0.3669 0.9875 0.1092 1.0099 0.3536 7028 4

0.0674 1.1858 0.3303 1.4215 0.2423 1.0236 0.0675 1.1864 0.2357 22792 4

0.0474 1.2239 0.2076 1.6150 0.1798 1.0375 0.0475 1.2247 0.1768 53604 4

0.0362 1.2111 0.1421 1.6967 0.1426 1.0358 0.0362 1.2120 0.1414 103724 4

0.0291 1.1919 0.1037 1.7373 0.1182 1.0342 0.0292 1.1926 0.1179 178132 4

0.0201 1.1502 0.0631 1.7257 0.0880 1.0230 0.0209 1.1508 0.0884 419012 4

0.0163 1.1107 0.0447 1.5443 0.0702 1.0163 0.0163 1.1110 0.0707 814644 4

0.0134 1.0808 0.0322 1.7988 0.0583 1.0101 0.0134 1.0812 0.0589 1403428 4

0.0123 1.0732 0.0284 1.5868 0.0538 1.0149 0.0123 1.0735 0.0129 1782252 4

Table 1.2: Example 2: Convergence history for the fully-mixed approximation of the three-dimensional

Bioconvection problem with concentration-dependent viscosity and using approximation order k = 0

.
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Figure 1.2: Example 2: Streamlines, concentration profile ϕh, and component ρ12,h of the vorti-

city tensor (first panel), and the component t11,h of the shear stress tensor, component σ23,h of the

pseudo-stress tensor and concentration gradient ∇ϕh obtained with the fully-mixed method for the

Bioconvection problem using k = 0 and N = 1403428 degrees of freedom.



1.6. Numerical results 44

Fully–mixed P0 − RT0 − P0 −P1 −RT0 − P1 (k = 0) scheme

e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ)

0.8054 – 0.9424 – 1.0043 – 0.3207 – 0.0044 – 0.7832 –

0.4911 0.7137 0.6119 0.6230 0.5652 0.8294 0.2062 0.6372 0.0026 0.7738 0.3074 1.3492

0.3845 0.8510 0.4995 0.7057 0.4456 0.8265 0.1564 0.9609 0.0020 0.8716 0.2119 1.2932

0.2689 0.8815 0.3550 0.8421 0.3166 0.8429 0.1019 1.0566 0.0014 0.8740 0.1355 1.1028

0.2051 0.9418 0.2695 0.9579 0.2455 0.8838 0.0766 0.9920 0.0010 1.0412 0.0989 1.0945

0.1831 0.9634 0.2380 1.0557 0.2197 0.9435 0.0678 1.0362 0.0009 1.1338 0.0871 1.0788

0.1488 1.0336 0.1966 0.9522 0.1781 1.0460 0.0525 1.2744 0.0007 1.3073 0.0689 1.1680

0.1290 1.1170 0.1690 1.1833 0.1522 1.2293 0.0461 1.0169 0.0005 1.4173 0.0582 1.3202

e(p) r(p) e(∇ϕ) r(∇ϕ) eprim rprim epost rpost h N It

0.3211 – 0.0963 – 1.8060 – 0.3352 – 0.2357 2739 10

0.1414 1.1828 0.0500 0.9449 1.0354 0.8026 0.1500 1.1599 0.1179 10659 12

0.1089 0.9031 0.0372 1.0279 0.8156 0.8295 0.1152 0.9165 0.0884 18819 13

0.0674 1.1862 0.0209 1.4220 0.5721 0.8745 0.0706 1.2088 0.0589 42051 13

0.0481 1.2233 0.0159 0.9504 0.4366 0.9397 0.0500 1.1976 0.0442 74499 13

0.0405 1.3406 0.0138 1.2028 0.3881 1.0001 0.0428 1.3265 0.0393 94179 13

0.0330 1.0205 0.0102 1.5062 0.3163 1.0201 0.0345 1.0668 0.0321 140451 13

0.0291 0.9838 0.0088 1.1549 0.2718 1.1847 0.0304 0.9985 0.0283 181203 13

Table 1.3: Example 3: Convergence history for the fully-mixed approximation of a two-dimensional

Bioconvection problem with no manufactured analytical solution and with concentration-dependent

viscosity, using approximation order k = 0

.
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Figure 1.3: Example 3: Horizontal and vertical components uh,1 and uh,2 (left and right, respectively)

of the velocity vector field obtained with the fully-mixed method for the Bioconvection problem with

no manufactured analytical solution and with concentration-dependent viscosity using k = 0 and

N = 181, 203 degrees of freedom.

Figure 1.4: Example 3: Pressure ph and concentration ϕh (left and right, respectively) obtained with

the fully-mixed method for the Bioconvection problem with no manufactured analytical solution and

with concentration-dependent viscosity using k = 0 and N = 181, 203 degrees of freedom.



CHAPTER 2

New primal and dual-mixed finite element methods for stable image

registration with singular regularization

2.1 Introduction

Deformable image registration (DIR) is a challenging process where a given set of images are aligned

by means of a transformation that warps one or more of these images. It arises in numerous applications

and particularly in medical imaging [85]. Its formulation requires three inputs: a transformation

model (composed by a family of mappings that warp the target images), a function that measures the

differences between images known as similarity measure, and a regularizer that renders the problem

well-posed. In addition to the many variants of these components, different modeling approaches

exist, between which we highlight: traditional variational minimization [61, 74], L2-optimal mass

transport [57, 93] (which does not require regularization), and level-set modeling [87]. The solution

strategy in general considers the incorporation of an auxiliary time variable, which can be seen as a

semi-implicit formulation of the proximal point algorithm [84] recently extended to a more general class

of proximal operators by using Forward-backward splitting [45]. Also, machine learning techniques

have been recently developed for the solution of this problem, which do not depend on the existence of

ground truth solutions and support large deformations [12]. This last work proved competitive against

the well-established software ANTs [11].

For a more mathematical explanation of DIR, let us now consider a domain Ω ⊂ Rd=2,3, and two

fields R : Ω → R and T : Ω → R referred to as reference and target images, where R(x) and T (x)

denote the image intensity at point x. Then, the objective of DIR is to find a mapping of T onto R

by means of a warping u such that–ideally–it holds that

T (x+ u(x)) = R(x) ∀x ∈ Ω . (2.1)

This problem is ill-posed in general, so one formulates it as a minimization problem by considering

a similarity measure D (a functional which attains its minimum when (2.1) holds), a regularizer S
(which provides smoothness to the problem), a family of deformations V (such that u ∈ V) and a

positive constant α (which balances D and S). Putting everything together, the following minimization

problem arises:

min
v∈V

{
αD(v) + S(v)

}
. (2.2)

46
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The choices of V and S are not independent. For example, it would not make sense to consider

V = L2(Ω) together with a regularizer S(u) =
´
Ω |∇u|

2 dx which penalizes steep gradients, as S
would not be well-defined in all V. It is common practice to consider S to be a quadratic term of

the form S(v) = 1
2a(v,v), where a is a suitable bounded bilinear form. One common example is

given by considering the L2 error as a similarity measure together with the H1
0 norm as a regularizer

(equivalently, using a(u,v) :=
´
Ω∇u · ∇v), which yields the following problem:

min
v∈H1

0 (Ω)

{
α

ˆ
Ω
|T (x+ u(x))−R(x)|2 dx+

ˆ
Ω
|∇u|2 dx

}
, (2.3)

with first order conditions given by: Find u ∈H1
0 (Ω) such that

a(u,v) = −〈∇D(u),v〉 = −
ˆ
Ω
∇T (x+ u(x))(T (x+ u(x))−R(x)) dx ∀v ∈H1

0 (Ω),

where ∇D stands for the Fréchet derivative of D. Further details and examples beyond this brief

overview can be found in [74].

The present chapter has been mainly motivated by the study of lung regional deformation computed

from tomography images of the thorax [29,64]. However, as we will illustrate later on, it is also applic-

able to related problems such as the image registration of the human brain. The optimal warping, u,

can be interpreted as a displacement field, from which the gradient ∇u can be calculated to obtain the

strain tensor required to characterize the continuum mechanics framework. The study of deformation

from one side has revealed the lungs to present a highly heterogeneous and anisotropic behaviour [8,63],

thus providing new deformation-based markers to understand lung diseases [28, 82]. The proposal of

the optical flow formulation by Horn & Schunk [61] gave origin to much mathematical analysis at

the continuous level, with an increasing interest towards the discrete analysis in an algorithm-specific

fashion in [79], in the optimal-control setting within a more classical Galerkin framework [69], and

more recently the variational problem was tackled in its primal and mixed formulation in [13].

In fact, the mixed finite element method (MFEM) is a well-established technique which allows to

incorporate unknowns of physical interest, such as stress and rotation, and also delivers locking-free

schemes in the context of incompressible elasticity (see, e.g., [21, 49]). It also introduces additional

difficulties: (i) the new variables increase the dimension of the numerical scheme, making its computa-

tional solution more expensive, (ii) the mixed formulation may now possess a saddle-point structure,

which results in linear systems of equations that are harder to solve numerically and (iii) only dis-

crete spaces that satisfy the required inf-sup conditions grant a stable scheme, therefore restricting

the choices for approximations and also demanding more attention in the analysis of the finite ele-

ment scheme. For a mixed formulation of DIR with elastic regularization and a target image with

Lipschitz gradient, it has been shown that classical existence of solutions is independent of the regu-

larization parameter in the primal case. Furthermore, both primal and mixed schemes give existence

and uniqueness for a sufficiently small regularization, and PEERS elements, as well as BDM-P0 for

stress-displacement, are inf-sup stable [13]. In addition, the drawback mentioned in (iii) is alternat-

ively overcome in [13] by using an augmented mixed variational formulation whose discrete analysis

does not require the verification of any inf-sup condition, and hence arbitrary finite element subspaces

can be employed. More precisely, in this last work a complete numerical analysis of the method was

presented, in the particular case of an elastic regularizer and a sum-of-squared-differences similarity
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measure with Neumann boundary conditions. Using such conditions is usually physically desirable,

as other ones present artificial stress accumulation on the boundaries, thus yielding the difficulty of

non-uniqueness to iterative schemes.

In this chapter we aim to generalize the analysis presented in [13] to regularizers that may present

a kernel, and to Lipschitz similarity measures. This is performed by splitting weakly the warping

with respect to the kernel of the regularizer so that such kernel remains present in the formulation

throughout the model, under the assumption of a relationship between the regularizer and the similar-

ity measure commonly known in the inverse problems community as source condition [92]. Numerical

experiments validating our aforedescribed extended model and showing how it compares to a more

traditional formulation are also presented.

The rest of the chapter is organized as follows. In Section 2.2 we derive the new model and analyze

its primal formulation at both continuous and discrete levels. The main results, which are obtained

by using the Babuška-Brezzi theory and duality arguments, include well-posedness of the continuous

and discrete formulations, a priori error estimates, and the respective rates of convergence. Then, in

Section 2.3 we introduce and analyze, using basically the same theoretical tools from Section 2.2, an

extended dual-mixed formulation in the particular (though very common and useful) case of an elastic

energy. Next, in Section 2.4 we explain how to use the traditional time regularization to implement

the methods, and provide a suitable bound of the time step guaranteeing convergence. In Section

2.5 we present several numerical experiments illustrating convergence, the capability of the methods

to capture translations and rotations, the effect of the added degrees of freedom, the advantage of

using the dual-mixed approach in the quasi-incompressible case, and the application to the image

registration of the human brain.

2.2 Extended primal formulation in abstract form

In this section we derive an abstract extended model and analyze its continuous and discrete primal

formulations.

2.2.1 Setting of the problem

As briefly commented in the Introduction, our problem is posed in the following framework: a Hilbert

space (V, 〈·, ·〉), a similarity measure D : V → R, a symmetric bounded bilinear form a : V × V → R

acting as the regularizer, and a positive scalar α. Then, we look for minimizers of the following

problem:

min
v∈V

{
αD(v) +

1

2
a(v, v)

}
. (2.4)

The first order conditions yield the following nonlinear problem: Find u ∈ V such that

a(u, v) = αFu(v) ∀v ∈ V , (2.5)

where, given w ∈ V, Fw : V → R is the linear functional defined as

Fw(v) := −〈∇D(w), v〉 ∀ v ∈ V , (2.6)
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which is clearly bounded with ‖Fw‖V ′ = ‖∇D(w)‖V . Next, denoting by Q the kernel of the adjoint

of the bounded operator induced by a, which we assume to be non trivial and finite dimensional, and

splitting V as Q⊥ ⊕Q, we can rewrite (2.4) equivalently as

min
(v,η)∈Q⊥×Q

{
αD(v + η) +

1

2
a(v, v)

}
,

and then impose the condition v ∈ Q⊥ as 〈v, ξ〉 = 0 ∀ ξ ∈ Q, to obtain

min
(v,η)∈V×Q

max
ξ∈Q

{
αD(v + η) +

1

2
a(v, v) + 〈v, ξ〉

}
. (2.7)

Finally, to avoid having the nonlinear term D in more than one equation, we perform the change of

variables v ← v + η, whence (2.7) becomes

min
(v,η)∈V×Q

max
ξ∈Q

{
αD(v) +

1

2
a(v, v) + 〈v − η, ξ〉

}
. (2.8)

In this formulation a is not elliptic, which gives difficulties in proving the well-posedness of the weak

problem. If we consider the form (2.7) with solution (u, λ) ∈ V ×Q, we get that Fu+λ(ξ) = 0 for all

ξ in Q, which is fully nonlinear and does not give the required control over λ, but on the other hand,

form (2.8) gives rise to a non invertible linear operator. This hints the requirement of controlling the

component of u in Q, for which, given a positive constant β, we consider the problem

min
(v,η)∈V×Q

max
ξ∈Q

{
αD(v) +

1

2
a(v, v) + 〈v − η, ξ〉+

β

2
‖η‖2V

}
. (2.9)

We call (2.9) the extended formulation of (2.4). Equivalently, this setting can be obtained by splitting

V in the Euler-Lagrange equations (2.5). First write them as finding (u, λ) ∈ V ×Q such that

a(u, v) = αFu(v) ∀ v ∈ Q⊥ ,

〈λ, ξ〉 = 〈u, ξ〉 ∀ ξ ∈ Q ,
(2.10)

and then impose the weak orthogonality by adding a Lagrange multiplier ρ together with the compact

perturbation β〈λ, η〉 to obtain the extended weak form: Find (u, λ, ρ) ∈ V ×Q×Q such that

a(u, v) + β〈λ, η〉+ 〈v − η, ρ〉 = αFu(v) ∀ (v, η) ∈ V ×Q ,

〈u− λ, ξ〉 = 0 ∀ ξ ∈ Q .
(2.11)

The extended formulation presents two advantages:

• The standard formulation gives rise to a nonlinear compatibility condition for the solution u,

namely 0 = Fu(ξ) ∀ ξ ∈ Q, which arises after testing (2.5) against elements in Q. Thus,

the new variable λ does not affect the compatibility condition. The existence of functions such

that this holds is known as the source condition, and is usually stated in the inverse problems

community as ∂D ⊥ Q [92], which we assume true throughout the chapter.
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• Fixed-point schemes arising from such problems impose an undesired orthogonality to the solu-

tion, which we refer to as kernel locking. If we let un in V be a previous solution, we get the

fixed-point problem of finding un+1 in V such that

a(un+1, v) = Fun(v) ∀v ∈ V .

This problem does not have a unique solution, so it is common in practice to choose un+1 such

that un+1 ⊥ Q. The orthogonal space is closed, and thus if the sequence {un}n converges to a

solution u, such solution is also orthogonal to Q.

The interpretation of λ in the overall context of the problem is crucial to understand the extent

to which it regularizes the problem. For it we first focus on the nonlinear compatibility condition

Fu(ξ) = 0, also written as ΠQ∇D(u) = 0, where ΠQ : V → Q is the orthogonal projection on Q.

This condition rises naturally from the extended formulation, and thus it is a necessary condition

for the differentiability of D. If the functional does not comply with it, then it is unrelated to a

variational principle, so we can add a function λ̃ = ΠQ∇D(u) ∈ Q to (2.11) –without λ– such that

the compatibility condition holds, that is

a(u, v) + 〈v − η, ρ〉 = α(Fu − λ̃)(v) ∀ (v, η) ∈ V ×Q ,

〈u− λ, ξ〉 = 0 ∀ ξ ∈ Q .
(2.12)

We can see that λ indeed takes the desired values by testing the first equation with v = η ∈ Q, which

gives Fu(η) = 〈λ̃, η〉 ∀ η ∈ Q. Note that the same holds if we take the term 〈λ̃, v〉 to the left hand

side and replace it with 〈λ̃, η〉, which means that the compatibilized problem is equivalent to (2.11)

if we take βλ̃ = λ. In what follows, we show that such choice gives a well posed problem with many

numerical advantages, for which we will make the following assumptions

(A1) There exist two positive constants c̃a and C̃a such that

c̃a‖v‖2V ≤ a(v, v) ∀ v ∈ Q⊥ , and |a(w, v)| ≤ C̃a ‖w‖V ‖v‖V ∀w, v ∈ V .

(A2) There exists a positive constant LD and a space W containing V, such that the embedding

iW : V ↪→W is compact and there holds

‖∇D(z1)−∇D(z2)‖V ≤ LD ‖z1 − z2‖W ∀ z1, z2 ∈ V .

(A3) There exists a positive constant MD such that ‖∇D(w)‖V ≤ MD for all w ∈ V.

2.2.2 Analysis of the continuous formulation

We now show that the extended problem (2.11) has at least one solution, which is stable with

respect to the data. For this, we first set the product space H := V ×Q, and let A : H ×H → R and

B : H ×Q→ R be the bilinear forms involved in (2.11), that is

A((w, ϑ), (v, η)) := a(w, v) + β〈ϑ, η〉 ∀ (w, ϑ), (v, η) ∈ H , (2.13)
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and

B((v, η), ξ) := 〈v − η, ξ〉 ∀ (v, η) ∈ H , ∀ ξ ∈ Q . (2.14)

In addition, for each z ∈ V, we denote by Gz : H → R the linear functional given by (cf. (2.6))

Gz(v, η) := αFz(v) ∀ (v, η) ∈ H . (2.15)

Note here that A, B, and Gz are bounded. In fact, considering the corresponding euclidean norm for

the product space H, and denoting the constants ‖A‖ := max
{
C̃a, β

}
(cf. (A1)) and ‖B‖ :=

√
2,

we easily find, using the Cauchy-Schwarz inequality, that

|A((w, ϑ), (v, η)) | ≤ ‖A‖ ‖(w, ϑ)‖H ‖(v, η)‖H and |B((v, η), ξ) | ≤ ‖B‖ ‖(v, η)‖H ‖ξ‖V

for all (w, ϑ), (v, η) ∈ H , ∀ ξ ∈ Q. In turn, it is clear from the above definition of Gz and the fact

that Fz ∈ V ′ (cf. (2.6)) that Gz ∈ H ′ and ‖Gz‖ = α ‖Fz‖ = α ‖∇D(z)‖. According to the previous

notations, (2.11) can be rewritten as: Find
(
(u, λ), ρ

)
∈ H ×Q such that

A
(
(u, λ), (v, η)

)
+B

(
(v, η), ρ

)
= Gu(v, η) ∀ (v, η) ∈ H ,

B
(
(u, λ), ξ

)
= 0 ∀ ξ ∈ Q .

(2.16)

Then, we introduce the operator T : V → V defined by T (z) := ũ for each z ∈ V, where ũ ∈ V is the

first component of the solution to the problem: Find
(
(ũ, λ̃), ρ̃

)
∈ H ×Q such that

A
(
(ũ, λ̃), (v, η)

)
+B

(
(v, η), ρ̃

)
= Gz(v, η) ∀ (v, η) ∈ H ,

B
(
(ũ, λ̃), ξ

)
= 0 ∀ ξ ∈ Q .

(2.17)

We stress here that solving (2.16) is equivalent to seeking a fixed point of T , that is: Find u ∈ V
such that T (u) = u. In the following lemma we show that, for any z ∈ V, the linear problem (2.17)

is well-posed, whence the operator T is well-defined.

Lemma 2.1. Given z in V, there exists a unique
(
(ũ, λ̃), ρ̃

)
∈ H × Q solution to (2.17). Moreover,

there exists a positive constant CT , independent of
(
(ũ, λ̃), ρ̃

)
, such that the following a priori estimate

holds

‖T (z)‖V ≤ ‖
(
(ũ, λ̃), ρ̃

)
‖H×Q ≤ CT ‖Gz‖H′ = αCT ‖∇D(z)‖V . (2.18)

Proof. In what follows we apply the Babuška-Brezzi theory (cf. [49, Chapter 2]). To this end, we first

let N be the kernel of the operator induced by B, that is

N =
{

(v, η) ∈ H : B((v, η), ξ) = 0 ∀ ξ ∈ Q
}
,

which, according to (2.14), yieldsN =
{

(v, η) ∈ H : η = ΠQv
}

. Then, given (v, η) = (v,ΠQv) ∈ N ,

we split v = v⊥ + η ∈ Q⊥ ⊕Q and use assumption (A1) to obtain

A
(
(v, η), (v, η)

)
= a(v⊥, v⊥) + β ‖η‖2V ≥ c̃a ‖v⊥‖2V + β ‖η‖2V ≥ ca ‖(v, η)‖2H , (2.19)
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with ca := min
{
c̃a,

β
2

}
, which gives the N -ellipticity of A. On the other hand, given an arbitrary

ξ ∈ Q, we easily see that

sup
(v,η)∈H

(v,η) 6=(0,0)

B((v, η), ξ)

‖(v, η)‖H
≥ B((0,−ξ), ξ)
‖(0,−ξ)‖H

= cb ‖ξ‖V , (2.20)

with cb = 1, which proves the continuous inf-sup condition for B. In this way, a straightforward applic-

ation of [49, Theorem 2.3] implies the existence of a unique solution to (2.17) and the corresponding

stability estimate (2.18) with a constant CT depending on ca, cb, and ‖A‖. �

Now, given r > 0, we let B̄(r) be the closed ball of V centered at the origin with radius r. Then, as

a consequence of the previous lemma, we have the following additional result.

Lemma 2.2. Let LD, MD, and CT be the constants specified in (A2), (A3), and Lemma 2.1, respect-

ively, and define r0 := αCT MD. Then, there hold T (V) ⊆ B̄(r0) and

‖T (z1)− T (z2)‖V ≤ αCT LD ‖z1 − z2‖W ∀ z1, z2 ∈ V . (2.21)

Proof. Given z ∈ V, it readily follows from (2.18) and (A3) that ‖T (z)‖V ≤ αCT MD := r0, which

proves the required inclusion for T . In turn, the fact that (2.17) is a linear problem guarantees that,

given z1, z2 ∈ V, the difference T (z1) − T (z2) is the first component of the unique solution of (2.17)

when Gz is replaced there by the functional Gz1 −Gz2 . Thus, from the stability estimate (2.18) again,

and the Lipschitz-continuity provided by (A2), we deduce that

‖T (z1)− T (z2)‖V ≤ αCT ‖∇D(z1)−∇D(z2)‖V ≤ αCT LD ‖z1 − z2‖W ,

which completes the proof. �

Having established the above properties of T , we are now in position to provide the main result of

this section.

Theorem 2.1. Let r0 be the radius defined in the statement of Lemma 2.2. Then, problem (2.16)

admits at least one solution
(
(u, λ), ρ

)
∈ H × Q, with u ∈ B̄(r0). Moreover, under the additional

assumption αCT LD ‖iW‖ < 1, this solution is unique.

Proof. We begin by noticing from Lemma 2.2 that certainly T (B̄(r0)) ⊆ B̄(r0). Next, it is easy to see

from the Lipschitz continuity of T (cf. (2.21)) and the compactness of the embedding iW : V → W (cf.

(A2)) that T (B̄(r0)) is compact. Hence, Schauder’s fixed-point theorem (cf. [30, Theorem 9.12-1(b)])

implies the existence of a fixed point u ∈ B̄(r0) for T , and hence of a solution
(
(u, λ), ρ

)
∈ H ×Q to

problem (2.16). Furthermore, it also follows from (2.21) and (A2) that

‖T (z1)− T (z2)‖V ≤ αCT LD ‖iW‖ ‖z1 − z2‖V ∀ z1, z2 ∈ V ,

whence the uniqueness in V is imposed by forcing T to be a contraction and then using the Banach

fixed-point theorem, which happens precisely when αCT LD ‖iW‖ < 1. �
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2.2.3 Analysis of the discrete scheme

In this section we consider the Galerkin scheme approximating the solutions of (2.16), establish its

well-posedness, derive the associated Céa estimate, and provide the corresponding rates of convergence.

For this purpose, we now let
{
Vh
}
h>0

be a sequence of finite dimensional subspaces of V, where h > 0

is an index thought as a characteristic meshsize. Then, bearing in mind that Q is finite dimensional,

and defining Hh := Vh ×Q, our discrete extended problem reduces to: Find
(
(uh, λh), ρh

)
∈ Hh ×Q

such that

A
(
(uh, λh), (vh, ηh)

)
+B

(
(vh, ηh), ρh

)
= Guh(vh, ηh) ∀ (vh, ηh) ∈ Hh ,

B
(
(uh, λh), ξh

)
= 0 ∀ ξh ∈ Q .

(2.22)

In turn, we introduce the discrete operator Th : Vh → Vh given by T (zh) := ũh ∀ zh ∈ Vh, where ũh
is the first component of the solution

(
(ũh, λ̃h), ρ̃h

)
∈ Hh ×Q to (2.22) with Gzh instead of Guh , that

is:
A
(
(ũh, λ̃h), (vh, ηh)

)
+B

(
(vh, ηh), ρ̃h

)
= Gzh(vh, ηh) ∀ (vh, ηh) ∈ Hh ,

B
(
(ũh, λ̃h), ξh

)
= 0 ∀ ξh ∈ Q .

(2.23)

As for the continuous case, we emphasize here that solving (2.22) is equivalent to finding uh ∈ Vh
such that Th(uh) = uh. We start our discrete analysis by proving the well-posedness of (2.23), thus

confirming that Th is well-defined.

Lemma 2.3. Given zh ∈ Vh, there exists a unique
(
(ũh, λ̃h), ρ̃h

)
∈ Hh × Q solution to (2.23).

Moreover, with the same constant CT from Lemma 2.1, there holds

‖Th(zh)‖V ≤ ‖
(
(ũh, λ̃h), ρ̃h

)
‖H×Q ≤ CT ‖Gzh‖H′ = αCT ‖∇D(zh)‖V ≤ αCT MD =: r0 . (2.24)

Proof. The proof is analogous to the one shown for the well posedness of problem (2.17) (cf. Lemma

2.1). In fact, we first observe that the discrete kernel Nh of B becomes

Nh =
{

(vh, ηh) ∈ Hh : ηh = ΠQvh

}
,

which is clearly contained in N , and hence the Nh-ellipticity of A follows from that of N , and certainly

with the same ellipticity constant ca. In turn, given ξh ∈ Q, the discrete inf-sup condition for B is

obtained as in (2.20) by bounding below the involved supremum with (vh, ηh) = (0,−ξh), which yields

the same resulting constant cb. In this way, applying now the discrete version of the Babuška-Brezzi

theory (cf. [49, Theorem 2.4]), and using from (A3) that ‖∇D(zh)‖ ≤ MD, we conclude the proof. �

Next, given r > 0, we let B̄h(r) be the closed ball of Vh centered at the origin with radius r.

Then, the main result concerning the solvability of (2.22), which summarizes the discrete analogues

of Lemma 2.2 and Theorem 2.1, is established as follows.

Theorem 2.2. The discrete problem (2.22) has at least one solution
(
(uh, λh), ρh

)
∈ Hh × Q, with

uh ∈ B̄h(r0). Moreover, under the assumption αCT LD ‖iW ‖ < 1, this solution is unique.
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Proof. We first notice from (2.24) (cf. Lemma 2.3) that Th(Vh) ⊆ B̄h(r0), which obviously yields, in

particular, Th
(
B̄h(r0)

)
⊆ B̄h(r0). In addition, proceeding as in the proofs of Lemma 2.2 and Theorem

2.1, but certainly using now the linear character of problem (2.23), and employing the stability estimate

(2.24), the assumption (A2), and the boundedness of iW , we easily find that

‖Th(z1,h)− Th(z2,h)‖V ≤ αCT LD ‖iW ‖ ‖z1,h − z2,h‖V ∀ z1,h, z2,h ∈ Vh . (2.25)

In this way, the fact that B̄h(r0) is clearly a compact and convex subset of Vh, the continuity of

Th : B̄h(r0)→ B̄h(r0), and a straightforward application of Brouwer’s theorem (cf. [30, Theorem 9.9-

2]) implies the existence of a fixed point uh ∈ B̄h(r0) for Th, and therefore of a solution
(
(uh, λh), ρh

)
∈

Hh ×Q to (2.22). Finally, uniqueness in Vh follows again by forcing Th to be a contraction. �

Having proved the existence of solutions for the discrete and continuous problems, we now provide

the Céa estimate for the corresponding error. In what follows, given a subspace Xh of a generic Banach

space
(
X, ‖ · ‖X

)
, we set

dist(x,Xh) := inf
xh∈Xh

‖x− xh‖X ∀x ∈ X .

Theorem 2.3. Assume that αCT LD ‖iW ‖ ≤ 1 − δ, with δ ∈]0, 1[, and let
(
(u, λ), ρ

)
∈ H × Q and(

(uh, λh), ρh
)
∈ Hh ×Q be the unique solutions of (2.16) and (2.22), respectively. Then, there exists

a positive constant Ĉ, depending only on ca, cb, ‖A‖, and ‖B‖, and hence independent of h, such that

‖
(
(u, λ), ρ

)
−
(
(uh, λh), ρh

)
‖H×Q ≤ δ−1 Ĉ dist(u,Vh) . (2.26)

Proof. Let
(
(ûh, λ̂h), ρ̂h

)
∈ Hh × Q be the resulting unique solution of the discrete scheme (2.22)

when the functional Guh is replaced there by Gu. In this way,
(
(ûh, λ̂h), ρ̂h

)
∈ Hh × Q constitutes a

conforming Galerkin approximation of the unique solution
(
(u, λ), ρ

)
∈ H × Q to (2.16), and hence

the Céa estimate provided by the discrete Babuška-Brezzi theory (cf. [49, Theorems 2.5 and 2.6]) gives

the existence of a positive constant Ĉ, depending only on ca, cb, ‖A‖, and ‖B‖, such that

‖
(
(u, λ), ρ

)
−
(
(ûh, λ̂h), ρ̂h

)
‖H×Q ≤ Ĉ dist

((
(u, λ), ρ

)
, Hh ×Q

)
= Ĉ dist

(
u,Vh

)
, (2.27)

where the last equality arises from the fact that λ and ρ belong to Q. On the other hand, the linear

character of the discrete problem (2.23) readily implies that the difference
(
(ûh, λ̂h), ρ̂h

)
−
(
(uh, λh), ρh

)
is the unique solution of it when Gzh is replaced there by Gu−Guh , and therefore, the a priori estimate

(2.24) and the assumption (A2) yield

‖
(
(ûh, λ̂h), ρ̂h

)
−
(
(uh, λh), ρh

)
‖ ≤ CT ‖Gu −Guh‖H′

= αCT ‖∇D(u)−∇D(uh)‖V ≤ αCT LD ‖iW ‖ ‖u− uh‖V .
(2.28)

Finally, the required estimate (2.26) follows easily from triangle inequality, (2.27), (2.28), and the

hypothesis αCT LD ‖iW ‖ ≤ 1− δ. �
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We end this section by stressing that the main assumption in Theorem 2.3 is handled by choosing

a particular value of δ. Certainly, the closer to 1, the smaller the constant δ−1 Ĉ in the Céa estimate,

but then the hypothesis αCT LD ‖iW ‖ ≤ 1 − δ, with 1 − δ approaching 0, is more demanding on

the constants involved. Conversely, the closer to 0, the hypothesis is less restrictive, but then the

constant in the Céa estimate blows up. According to the above, it seems more reasonable to consider

the midpoint of the range for δ, that is δ = 1/2, which yields the assumption αCT LD ‖iW ‖ ≤ 1/2,

and the corresponding Céa estimate

‖
(
(u, λ), ρ

)
−
(
(uh, λh), ρh

)
‖H×Q ≤ 2 Ĉ dist(u,Vh) . (2.29)

2.2.4 The rates of convergence

For the sake of exposition and clearness, we now assume V = H1(Ω) := [H1(Ω)]2, which is precisely

the case of the application to an elastic energy that we report later on in Section 2.5. In there, the

unknown u of the abstract analyses from Sections 2.2.1, 2.2.2, 2.2.3, and 2.4, becomes the respective

displacement vector u of the elastic material.

Now, let
{
Th
}
h>0

be a family of regular triangulations of Ω̄ made of triangles K with diameter hK ,

and define the meshsize h := max
{
hK : K ∈ Th

}
, which also acts as the index of Th. Then, given

an integer k ≥ 1, we denote by Pk(K) := [Pk(K)]2 the space of polynomial vectors of degree ≤ k on

K, introduce the Lagrange finite element subspace of V of order k

Vh :=
{
vh ∈ H1(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
, (2.30)

and let Lh : C(Ω̄) := [C(Ω̄)]2 → Vh be its associated interpolation operator. It is well-known that

there holds the following approximation property (cf. [20]):

(APu
h) for each m ∈

{
1, . . . , k + 1

}
there exists a positive constant Cm such that

dist(v,Vh) ≤ ‖v − Lh(v)‖1,Ω ≤ Cm h
m−1 |v|m,Ω ∀v ∈ Hm(Ω) := [Hm(Ω)]2 . (2.31)

Then, as a straightforward consequence of Theorem 2.3, (2.29), and (APu
h), and analogously to [13],

we obtain the following convergence result.

Theorem 2.4. Assume that αCT LD ‖iW ‖ ≤ 1/2, and let
(
(u, λ), ρ

)
∈ H ×Q and

(
(uh, λh), ρh

)
∈

Hh×Q be the unique solutions of (2.16) and (2.22), respectively. In addition, suppose that u ∈ Hm(Ω),

for some m ∈
{

1, . . . , k + 1
}

. Then, there holds

‖
(
(u, λ), ρ

)
−
(
(uh, λh), ρh

)
‖H×Q ≤ 2 Ĉ Cm h

m−1 |u|m,Ω . (2.32)

Furthermore, in what follows we apply usual duality arguments to derive the rate of convergence

for the error u − uh, but measured in the weaker norm ‖ · ‖0,Ω. For this purpose, we now simplify

the writing of the vector versions of (2.16) and (2.22) by introducing the bilinear form arising after

adding the expressions on the left-hand side of either one, that is we let A :
(
H×Q

)
×
(
H×Q

)
−→ R

be defined as

A
(
(~w, χ), (~v, ξ)

)
:= A(~w, ~v) +B(~v, χ) +B(~w, ξ) ,
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for all ~w := (w, ϑ), ~v := (v, η) ∈ H := V ×Q, for all χ, ξ ∈ Q. In this way, (2.16) and (2.22) can be

rewritten, respectively, as: Find (~u, ρ) :=
(
(u, λ), ρ

)
∈ H ×Q such that

A
(
(~u, ρ), (~v, ξ

)
= Gu(~v) ∀ (~v, ξ) :=

(
(v, η), ξ

)
∈ H ×Q , (2.33)

and: Find (~uh, ρh) :=
(
(uh, λh), ρh

)
∈ Hh ×Q such that

A
(
(~uh, ρh), (~vh, ξh

)
= Guh(~vh) ∀ (~vh, ξh) :=

(
(vh, ηh), ξh

)
∈ Hh ×Q . (2.34)

Note that A is obviously bounded with a corresponding constant ‖A‖ depending on ‖A‖ and ‖B‖.

Next, we let (~w, χ) :=
(
(w, ϑ), χ

)
∈ H ×Q be the unique solution, guaranteed by Lemma 2.1 and

the symmetry of A, of the continuous problem

A
(
(~v, ξ), (~w, χ)

)
=

ˆ
Ω

(u− uh) · v ∀ (~v, ξ) :=
(
(v, η), ξ

)
∈ H ×Q , (2.35)

and consider the following regularity assumption:

(RAw) there holds w ∈ H2(Ω) and there exists a positive constant Creg, independent of w and h,

such that

‖w‖2,Ω ≤ Creg ‖u− uh‖0,Ω . (2.36)

In addition, throughout the rest of the section we assumeW = L2(Ω) in (A2). Then, we are able to

prove the following result, which establishes an extra O(h) for the rate of convergence of ‖u−uh‖0,Ω.

Theorem 2.5. In addition to the hypotheses of Theorem 2.3 with δ = 1/2, assume (RAw) and that

αLD (C2 + 1)Creg ≤ 1/2. Then, there exists a positive constant C0, depending only on ‖A‖, Ĉ, C2

(cf. (2.31)), and Creg (cf. (2.36)), and hence independent of h, such that

‖u− uh‖0,Ω ≤ C0 hdist(u,Vh) . (2.37)

In particular, if u ∈ Hm(Ω), with m ∈
{

1, . . . , k + 1
}

, there holds

‖u− uh‖0,Ω ≤ C̃0 h
m |u|m,Ω , (2.38)

with C̃0 := CmC0.

Proof. We begin by taking (~v, ξ) = (~u, ρ)− (~uh, ρh) in (2.35), which yields

‖u− uh‖20,Ω = A
(
(~u, ρ)− (~uh, ρh), (~w, χ)

)
,

and by recalling from the Sobolev embedding theorem that H2(Ω) ⊆ C(Ω̄), which implies, according

to (RAw), that w ∈ C(Ω̄). Thus, adding and subtracting (~wh, χh) :=
(
(Lh(w), ϑ), χ

)
∈ Hh × Q in

the second component of A, and then using (2.33), (2.34), and the definition of the functional Gz (cf.

vector version of (2.6) and (2.15)), we obtain from the foregoing equation

‖u− uh‖20,Ω = A
(
(~u, ρ)− (~uh, ρh), (~w, χ)− (~wh, χh)

)
+A

(
(~u, ρ)− (~uh, ρh), (~wh, χh)

)
= A

(
(~u, ρ)− (~uh, ρh), (~w, χ)− (~wh, χh)

)
+Gu(~wh)−Guh(~wh)

= A
(
(~u, ρ)− (~uh, ρh), (~w, χ)− (~wh, χh)

)
+ α 〈∇D(uh)−∇D(u),wh〉 .

(2.39)
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Next, employing now the boundedness of A, the assumption (A2), the estimate (2.29), the approxim-

ation property (2.31) for Lh, and the regularity bound (2.36), we deduce from (2.39) that

‖u− uh‖20,Ω ≤ ‖A‖ ‖(~u, ρ)− (~uh, ρh)‖ ‖w − Lh(w)‖1,Ω + αLD ‖u− uh‖0,Ω ‖wh‖1,Ω

≤ ‖A‖ 2 Ĉ dist(u,Vh)C2 h |w|2,Ω + αLD ‖u− uh‖0,Ω ‖wh‖1,Ω

≤ C h‖u− uh‖0,Ω dist(u,Vh) + αLD ‖u− uh‖0,Ω ‖wh‖1,Ω ,

(2.40)

with C := 2 ‖A‖ Ĉ C2Creg, which yields

‖u− uh‖0,Ω ≤ C h dist(u,Vh) + αLD ‖wh‖1,Ω . (2.41)

In turn, applying again (2.31) and (2.36), and assuming for sake of simplicity that h ≤ 1, we find that

‖wh‖1,Ω ≤ ‖w −wh‖1,Ω + ‖w‖1,Ω ≤
(
C2 h+ 1

)
‖w‖2,Ω ≤ (C2 + 1)Creg ‖u− uh‖0,Ω ,

which, replaced back into (2.41), leads to (2.37) with C0 = 2C. Finally, it is straightforward to see

that (2.31) and (2.37) imply (2.38), which completes the proof. �

As a particular case of (2.38), we notice that for k = 1 and u ∈ H2(Ω) there holds the error estimate

‖u−uh‖0,Ω ≤ C̃0 h
2 |u|2,Ω, that is ‖u−uh‖0,Ω = O(h2). This rate of convergence will be illustrated

below in Section 2.5 with some numerical results.

2.3 Extended mixed formulation and application to elastic energies

In this section we present and analyse a dual-mixed formulation of problem (2.16) in the particular

case of an elastic energy. In this regard, we find it important to remark in advance that the setting

and analysis to be considered and developed, respectively, in what follows, do not correspond to a

straightforward application of those from Sections 2.2.1 and 2.2.2, which basically refer to a primal

formulation, but to a modification of them yielding the associated extended mixed approach to be

employed here. Still, the point of departure for this novel model is the use of an elastic regularizer

with Neumann boundary conditions, which presents a non-trivial kernel.

2.3.1 Setting of the problem

Let C : L2(Ω) −→ L2(Ω) be the Hooke operator defined by

Cτ := λs tr(τ ) I + 2µs τ ∀ τ ∈ L2(Ω) , (2.42)

where λs and µs are the associated Lamé parameters, and let ε(u) := 1
2

{
(∇u) + (∇u)t

}
be the strain

rate tensor, also known as the symmetric component of ∇u. Then, letting V := H1(Ω), the bilinear

form a from Section 2.2 is defined as

a(w,v) :=

ˆ
Ω
Cε(w) : ε(v) ∀w, v ∈ V , (2.43)
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and its kernel Q is given by the subspace of V determined by the rigid motions, that is

Q :=
〈{(

1
0

)
,

(
0
1

)
,

(
x2

−x1

)}〉
. (2.44)

Next, we introduce the auxiliary unknown σ := C ε(u), and observe that there holds

σ = σt and C−1 σ = ∇u − Φ in Ω , (2.45)

where the rotation Φ := 1
2

{
(∇u)− (∇u)t

}
is considered as a further unknown as well. In addition,

we look for rigid motions ρ and λ such that

−divσ + ρ = −α∇D(u) , λ = ΠQ u , and ρ = β λ in Ω , (2.46)

where α and β are the analogue parameters from Section 2.2, and incorporate the Neumann boundary

condition

σ ν = 0 on Γ . (2.47)

We now proceed to derive the variational formulation of (2.45), (2.46), and (2.47). In fact, recalling

that the definition of H(div;Ω) was provided in Section 2.1, we first define the spaces

H0(div;Ω) :=
{
τ ∈ H(div;Ω) : τ ν = 0 on Γ

}
,

and

L2
skew(Ω) :=

{
Ψ ∈ L2(Ω) : Ψ t = −Ψ

}
,

noting in advance that σ and Φ will be sought in H0(div;Ω) and L2
skew(Ω), respectively. Thus,

performing the tensor inner product of the second equation in (2.45) with an arbitrary τ ∈ H0(div;Ω),

integrating by parts, and using the boundary condition that holds for τ , we obtain

ˆ
Ω
C−1 σ : τ +

ˆ
Ω
Φ : τ +

ˆ
Ω

u · div τ = 0 ∀ τ ∈ H0(div;Ω) . (2.48)

In addition, testing the first and third equations in (2.46) against v ∈ L2(Ω) and ξ ∈ Q, respectively,

and rewriting the second equation in (2.46) as the equivalent orthogonality condition, we find that

ˆ
Ω
v · divσ −

ˆ
Ω
ρ · v = α

ˆ
Ω
∇D(u) · v ∀v ∈ L2(Ω) , (2.49)

ˆ
Ω

(ρ− β λ) · ξ = 0 ∀ ξ ∈ Q , (2.50)

and ˆ
Ω

(λ− u) · η = 0 ∀η ∈ Q . (2.51)

Finally, the symmetry of σ (first equation in (2.45)) is imposed weakly as

ˆ
Ω
Ψ : σ = 0 ∀Ψ ∈ L2

skew(Ω) . (2.52)
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Therefore, incorporating (2.51) into (2.48), and adding (2.49), (2.50), and (2.52), we arrive at the

following dual-mixed variational formulation of (2.45) - (2.47): Find ~σ := (σ,ρ) ∈ H := H0(div;Ω)×
Q and ~u := (u,Φ,λ) ∈ Q := L2(Ω)× L2

skew(Ω)×Q, such that

a(~σ, ~τ ) + b(~τ , ~u) = 0 ∀ ~τ := (τ ,η) ∈ H ,

b(~σ, ~v) − c(~u, ~v) = αFu(~v) ∀~v := (v,Ψ , ξ) ∈ Q ,
(2.53)

where a : H×H→ R, b : H×Q→ R, and c : Q×Q→ R, are the bilinear forms defined as

a(~ζ, ~τ ) :=

ˆ
Ω
C−1 ζ : τ , (2.54)

b(~τ , ~v) :=

ˆ
Ω
v · div τ +

ˆ
Ω
Ψ : τ +

ˆ
Ω

(ξ − v) · η , (2.55)

and

c(~w, ~v) := β

ˆ
Ω
ϑ · ξ , (2.56)

for all ~ζ := (ζ, χ) , ~τ := (τ ,η) ∈ H, for all ~w := (w,Υ ,ϑ) , ~v := (v,Ψ , ξ) ∈ Q. In turn, given

~w := (w,Υ ,ϑ) ∈ Q, the linear functional Fw : Q→ R is defined by

Fw(~v) :=

ˆ
Ω
∇D(w) · v ∀~v := (v,Ψ , ξ) ∈ Q . (2.57)

At this point we stress that a, b, and c are all bounded bilinear forms with respect to the usual norms

of the product spaces H and Q, that is

‖~τ‖H :=
{
‖τ‖2div;Ω + ‖η‖20,Ω

}1/2
∀ ~τ := (τ ,η) ∈ H ,

and

‖~v‖Q :=
{
‖v‖20,Ω + ‖Ψ‖20,Ω + ‖ξ‖20,Ω

}1/2
∀~v := (v,Ψ , ξ) ∈ Q .

Moreover, a and c are both symmetric and positive semi-definite, that is

a(~τ , ~τ ) ≥ 0 ∀ ~τ ∈ H and c(~v, ~v) ≥ 0 ∀~v ∈ Q . (2.58)

In addition, it is clear that Fw is bounded for each w ∈ L2(Ω).

2.3.2 Analysis of the continuous formulation

In order to study the solvability of (2.53), and similarly to the analysis in Section 2.2.2, we now

introduce the operator T : L2(Ω) → L2(Ω) defined by T(z) := u for each z ∈ L2(Ω), where

~σ := (σ,ρ) ∈ H and ~u := (u,Φ,λ) ∈ Q are such that

a(~σ, ~τ ) + b(~τ , ~u) = 0 ∀ ~τ := (τ ,η) ∈ H ,

b(~σ, ~v) − c(~u, ~v) = αFz(~v) ∀~v := (v,Ψ , ξ) ∈ Q .
(2.59)

We remark here that solving (2.53) is equivalent to seeking a fixed point of T, that is: Find

u ∈ L2(Ω) such that T(u) = u. The following abstract result will allow us to show below that, given

z ∈ L2(Ω), the linear problem (2.59) is well-posed, thus confirming that the operator T is well-defined.
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Theorem 2.6. Let H and Q be real Hilbert spaces, and let a : H × H → R, b : H × Q → R,

and c : Q × Q → R be bounded bilinear forms with induced bounded linear operators A : H → H′,

B : H→ Q′, Bt : Q→ H′, and C : Q→ Q′, defined, respectively, by the identities

A(ζ)(τ ) := a(ζ, τ ) ∀ ζ, τ ∈ H ,

B(τ )(v) = Bt(v)(τ ) := b(τ ,v) ∀ τ ∈ H, ∀v ∈ Q ,

C(w)(v) := c(w,v) ∀w, v ∈ Q .

In turn, let K = N(B) and V = N(Bt), and assume the following hypotheses:

i) a and c are symmetric and positive semi-definite.

ii) a is K-elliptic, that is there exists a positive constant αK such that

a(τ , τ ) ≥ αK ‖τ‖
2
H ∀ τ ∈ K .

iii) R(B) is closed, that is there exists a positive constant βB such that

sup
τ∈H
τ 6=0

b(τ ,v)

‖τ‖H
≥ βB ‖v‖Q ∀v ∈ V⊥ ,

or equivalently

sup
v∈Q
v 6=0

b(τ ,v)

‖v‖Q
≥ βB ‖τ‖H ∀ τ ∈ K⊥ .

iv) c is V-elliptic, that is there exists a positive constant γV such that

c(v,v) ≥ γV ‖v‖
2
Q ∀v ∈ V .

Then, for each pair (F,G) ∈ H′ ×Q′ there exists a unique (σ,u) ∈ H×Q solution to

a(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H ,

b(σ,v) − c(u,v) = G(v) ∀v ∈ Q .
(2.60)

In addition, there exists a positive constant C, depending only on αK, βB, γV , ‖A‖, and ‖C‖, such

that

‖σ‖H + ‖u‖Q ≤ C
{
‖F‖H′ + ‖G‖Q′

}
.

Proof. See [18, Theorem 4.3.1]. �

We now apply Theorem 2.6 to show the well-posedness of (2.59), and hence the well-definiteness of

the associated operator T. To this end, we first rewrite the bilinear form b (cf. (2.55)) as

b(~τ , ~v) :=

ˆ
Ω
v ·
{
div τ − η

}
+

ˆ
Ω
Ψ : τ +

ˆ
Ω
ξ · η , (2.61)
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for all ~τ := (τ ,η) ∈ H, for all ~v := (v,Ψ , ξ) ∈ Q, from which we deduce that the null space of its

induced operator B : H→ Q′ is given by

K = N(B) :=
{
~τ := (τ ,η) ∈ H : div τ − η = 0, τ = τ t, and η = 0

}
,

which yields

K =
{
~τ := (τ ,η) ∈ H : div τ = 0, τ = τ t, and η = 0

}
. (2.62)

Similarly, looking at the original definition (2.55) of b, we readily find that

V = N(Bt) :=
{
~v := (v,Ψ , ξ) ∈ Q :

ˆ
Ω
v · div τ +

ˆ
Ω
Ψ : τ = 0

∀ τ ∈ H0(div;Ω) , and ξ = ΠQv
}
,

from which, rewriting the expression involving τ in the distributional sense, we are lead to

V =
{
~v := (v,Ψ , ξ) ∈ Q : Ψ = ∇v in D′(Ω) and ξ = ΠQv

}
.

Moreover, the fact that ∇v = Ψ ∈ L2
skew(Ω) implies that ε(v) = 0, that is v lies in the subspace of

rigid motions Q, and therefore V ⊆ V0, where

V0 :=
{
~q := (q,∇q,q) ∈ Q : q ∈ Q

}
. (2.63)

Conversely, it is easy to see that, given ~q ∈ V0, there holds b(~τ , ~q) = 0 for all ~τ ∈ H (see also (2.67)

below), which shows that V0 ⊆ V, and hence V = V0.

We now aim to show the K-ellipticity of a, for which we first state two preliminary results that are

based on the decomposition H(div;Ω) := H̃(div;Ω)⊕ RI, where

H̃(div;Ω) :=
{
τ ∈ H(div;Ω) :

ˆ
Ω

tr(τ ) = 0
}
.

In fact, we have the following lemmas, in which we use that for each τ ∈ H(div;Ω) there exist unique

τ 0 ∈ H̃(div;Ω) and d ∈ R such that τ = τ 0 + d I ∈ H(div;Ω).

Lemma 2.4. There exists a positive constant c1, depending only on Ω, such that

‖τ d‖20,Ω + ‖div(τ )‖20,Ω ≥ c1 ‖τ 0‖20,Ω ∀ τ ∈ H(div;Ω) . (2.64)

Proof. See [21, Proposition 3.1 of Chapter IV] or [49, Lemma 2.3]. �

Lemma 2.5. There exists a positive constant c2, depending only on Ω, such that

‖τ 0‖2div;Ω ≥ c2 ‖τ‖2div;Ω ∀ τ ∈ H0(div;Ω) . (2.65)

Proof. See [47, Lemma 2.2] or [49, Lemma 2.5]. �

Then, the announced result for a is established as follows.
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Lemma 2.6. There exists a constant αK > 0, independent of the Lamé parameter λs, such that

a(~τ , ~τ ) ≥ αK ‖~τ‖
2
H ∀ ~τ ∈ K .

Proof. We begin by recalling from [49, Section 2.4.3] that in the present 2D case the inverse C−1 of

the Hooke tensor C becomes

C−1τ =
1

2µs
τ − λs

4µs(λs + µs)
tr(τ ) I ∀ τ ∈ L2(Ω) ,

which, after some algebraic manipulations, yields (cf. [49, eqs. (2.48) and (2.52)])

a(~τ , ~τ ) =

ˆ
Ω
C−1τ : τ =

1

2µs
‖τ d‖20,Ω +

1

4(λs + µs)
‖tr(τ )‖20,Ω ≥

1

2µs
‖τ d‖20,Ω

for all ~τ := (τ ,η) ∈ H. In particular, given ~τ ∈ K, that is η = 0 and τ ∈ H0(div;Ω) such that

div(τ ) = 0 and τ = τ t, it follows from the foregoing inequality and straightforward applications of

Lemmas 2.4 and 2.5, that

a(~τ , ~τ ) ≥ c1

2µs
‖τ 0‖20,Ω =

c1

2µs
‖τ 0‖2div;Ω ≥

c1c2

2µs
‖τ‖2div;Ω =

c1c2

2µs
‖~τ‖2H ,

which completes the proof with the constant αK := c1c2
2µs

. �

A preliminary continuous inf-sup condition for the bilinear form b (cf. (2.55)), in which the space

V0 as such (cf. (3.19)) plays a key role, is established next.

Lemma 2.7. There exists a positive constant βB, independent of the Lamé parameters, such that

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ βB dist(~v,V0) ∀~v ∈ Q . (2.66)

Proof. While we already know that V0 = V, the inclusion V0 ⊆ V = N(Bt) suffices to realize

that (2.66) trivially holds for ~v ∈ V0, and therefore in what follows we prove for ~v := (v,Ψ , ξ) ∈
Q \V0. Indeed, given an arbitrary ~τ := (τ ,η) ∈ H, we first use the orthogonal decomposition

v = (v−ΠQv)+ΠQv ∈ Q⊥⊕Q, and then integrate by parts the expression
´
ΩΠQv ·div τ , to deduce

from (2.55) that there holds

b(~τ , ~v) :=

ˆ
Ω

(v −ΠQv) · div τ +

ˆ
Ω

(Ψ −∇ΠQv) : τ +

ˆ
Ω

(ξ −ΠQv) · η . (2.67)

Next, we proceed as in the proof of [50, Lemma 3.4]. In fact, assuming that v − ΠQv 6= 0, we let

ζ := ε(z) in Ω, where z ∈ H1(Ω) is the unique solution, up to an element in Q, of the problem

div(ε(z)) = v −ΠQv in Ω , ε(z)ν = 0 on Γ . (2.68)

Note that the compatibility condition required by this Neumann problem is satisfied thanks to the

orthogonality relation
´
Ω(v − ΠQv) · q = 0 ∀q ∈ Q. Thus, it is clear that ζ ∈ H0(div;Ω) with

div(ζ) = v − ΠQv and ζ = ζt in Ω. In addition, the corresponding continuous dependence result
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for (2.68) guarantees the existence of a positive constant CN , independent of v − ΠQv, such that

‖ζ‖div;Ω ≤ CN ‖v −ΠQv‖0,Ω. In this way, defining ~ζ := (ζ,0) ∈ H, it readily follows that

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ b(~ζ, ~v)

‖~ζ‖H
=
‖v −ΠQv‖20,Ω
‖ζ‖div;Ω

≥ 1

CN
‖v −ΠQv‖0,Ω . (2.69)

In turn, if Ψ −∇ΠQv 6= 0, a slight variation of the proof of [51, Lemma 4.4] allows us to show that

there exists ζ ∈ H0(div;Ω) such that 1
2

(
ζ − ζt

)
= Ψ −∇ΠQv and ‖ζ‖div;Ω ≤ cN ‖Ψ −∇ΠQv‖0,Ω,

with a positive constant cN , independent of Ψ −∇ΠQv. Hence, setting ~ζ := (ζ,0) ∈ H, we see that

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ b(~ζ, ~v)

‖~ζ‖H
=
‖Ψ −∇ΠQv‖20,Ω +

´
Ω(v −ΠQv) · div ζ

‖~ζ‖H

≥ 1

cN
‖Ψ −∇ΠQv‖0,Ω − ‖v −ΠQv‖0,Ω .

(2.70)

Furthermore, assuming that ξ−ΠQv 6= 0, we define ~ζ := (0, ξ−ΠQv) ∈ H and readily observe that

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ b(~ζ, ~v)

‖~ζ‖H
= ‖ξ −ΠQv‖0,Ω . (2.71)

In this way, since at least one of the components of (v−ΠQv,Ψ −∇ΠQv, ξ−ΠQv
)

does not vanish,

which follows from the fact that ~v 6∈ V0, a suitable linear combination of (2.69), (2.70), and (2.71)

implies the existence of a positive constant βB , depending on CN and cN , such that

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ βB

∥∥~v − (ΠQv,∇ΠQv, ΠQv
)∥∥

Q
. (2.72)

Finally, (2.72) and the fact that
(
ΠQv,∇ΠQv, ΠQv

)
∈ V0 yield (2.66) and complete the proof. �

We remark here that the inf-sup condition (2.66) provides an alternative proof of the inclusion

V ⊆ V0, and hence of the identity V = V0. In fact, for each ~v ∈ V there necessarily holds, due

to (2.66), dist(~v,V0) = 0, which is obviously equivalent to saying ~v ∈ V0. Furthermore, as a direct

corollary of Lemma 2.7, we now state the continuous inf-sup condition for b required by item iii) of

Theorem 2.6.

Lemma 2.8. With the same constant βB from Lemma 2.7 there holds

sup
~τ∈H
~τ 6=0

b(~τ , ~v)

‖~τ‖H
≥ βB ‖~v‖Q ∀~v ∈ V⊥ . (2.73)

Proof. It suffices to use in (2.66) that dist(~v,V0) = dist(~v,V) = ‖~v‖Q for all ~v ∈ V⊥. �

Next, having in mind that V = V0 (cf. (3.19)), we prove the V-ellipticity of the bilinear form c

(cf. (2.56)).
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Lemma 2.9. There exists a positive constant γV such that

c(~v, ~v) ≥ γV ‖~v‖
2
Q ∀~v ∈ V .

Proof. Given ~v := (q,∇q,q) ∈ V (cf. (3.19)), it follows from (2.56) and the fact that all the norms

in Q are equivalent, that there exists a positive constant cE , depending only on Q, such that

c(~v, ~v) = β ‖q‖20,Ω ≥
β

2

{
‖q‖20,Ω + cE ‖q‖21,Ω

}
≥ γV ‖~v‖

2
Q ∀~v ∈ V ,

with γV = β
2 min

{
1, cE

}
. �

Hence, thanks to (2.58), and Lemmas 2.6, 2.8, and 2.9, we are able to prove the following result.

Lemma 2.10. For each pair (F,G) ∈ H′×Q′ there exist unique ~σ := (σ,ρ) ∈ H and ~u := (u,Φ,λ) ∈
Q such that

a(~σ, ~τ ) + b(~τ , ~u) = F(~τ ) ∀ ~τ := (τ ,η) ∈ H ,

b(~σ, ~v) − c(~u, ~v) = G(~v) ∀~v := (v,Ψ , ξ) ∈ Q .
(2.74)

Moreover, there exists a positive constant C, depending only on αK, βB, γV , and the norms of the

operators induced by a and b, such that

‖(~σ, ~u)‖H×Q ≤ C
{
‖F‖H′ + ‖G‖Q′

}
. (2.75)

Proof. It follows from a straightforward application of Theorem 2.6. �

Next, given an arbitrary z ∈ L2(Ω), we consider the particular pair (F,G) := (0, αFz) ∈ H′ ×Q′,

and conclude, thanks to Lemma 2.10, that the problem defining T(z) (cf. (2.59)) is well-posed, thus

confirming that the operator T : L2(Ω) → L2(Ω) is well-defined. Moreover, by noticing from (2.57)

that ‖αFz‖Q′ = α ‖∇D(z)‖0,Ω, we deduce from (2.75) that there holds

‖T(z)‖0,Ω ≤ ‖(~σ, ~u)‖H×Q ≤ C α ‖∇D(z)‖0,Ω ∀ z ∈ L2(Ω) . (2.76)

The Lipschitz-continuity of the operator T is established in the following lemma.

Lemma 2.11. Assume (A2) and let C be the constant provided by the continuous dependence estimate

(2.75). Then, there holds

‖T(z1)−T(z2)‖0,Ω ≤ αC LD ‖z1 − z2‖0,Ω ∀ z1, z2 ∈ L2(Ω) .

Proof. We proceed analogously to [13, Lemma 11]. In this way, given zj ∈ L2(Ω), j ∈
{

1, 2
}

, we

let ~σj := (σj ,ρj) ∈ H and ~uj := (uj ,Φj ,λj) ∈ Q be the unique solution to (2.59) with z = zj , so

that T(zj) = uj . Subtracting the respective rows of the resulting systems (2.59), we easily find that

(~σ1 − ~σ2, ~u1 − ~u2) ∈ H×Q is solution of (2.74) with F := 0 and G := α
(
Fz1 − Fz2

)
, and hence the

corresponding estimate (2.75) and the Lipschitz continuity of ∇D (cf. (A2)) yield

‖T(z1)−T(z2)‖0,Ω ≤ ‖~u1 − ~u2‖Q′ ≤ C ‖α(Fz1 − Fz2)‖Q′

= C α ‖∇D(z1)−∇D(z2)‖0,Ω ≤ C αLD ‖z1 − z2‖0,Ω ,

which finishes the proof. �
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We are now in position to establish the existence of a unique fixed-point for the operator T, or

equivalently, the well-possedness of problem (2.53). More precisely, we have the following result.

Theorem 2.7. Assume (A2), (A3) and αC LD < 1. Then, the mixed problem (2.53) has a unique

solution (~σ, ~u) ∈ H×Q. Moreover, the following a priori estimate holds

‖(~σ, ~u)‖H×Q ≤ C αMD .

Proof. It follows straightforwardly from Lemma 2.11 and the present hypothesis involving the con-

stants α, C, and LD that T is a contraction, and hence the classical Banach theorem implies the

existence of a unique fixed point of T. Equivalently, the mixed problem (2.53) has a unique solution

(~σ, ~u) ∈ H×Q, which, according to the estimate (2.76) and the assumption (A3), satisfies

‖(~σ, ~u)‖H×Q ≤ C α ‖∇D(u)‖0,Ω ≤ C αMD ,

thus completing the proof. �

2.3.3 Analysis of the discrete scheme

In this section we introduce and analyze a Galerkin scheme for problem (2.53). As in Section 2.2.4,

we first let
{
Th
}
h>0

be a family of regular triangulations of Ω̄ made of triangles K with diameter hK ,

and define the meshsize h := max
{
hK : K ∈ Th

}
, which also serves as the index of Th. In turn,

we recall that, given a non-negative integer k, Pk(K) stands for the space of polynomials of degree

≤ k on K, whose vector and tensor versions are denoted by Pk(K) and Pk(K) , respectively. Then,

noting that certainly the space of rigid motions Q is already of finite dimension, we propose next two

possible sets of finite element subspaces of H0(div;Ω), L2(Ω), and L2
skew(Ω), which, in order to make

clear the unknowns they are approximating, are denoted by Hσh , Hu
h and HΦh , respectively. The first

choice, employed in [13, Section 4.2] and [14, Section 3.4] for previous related results, consists of the

Brezzi-Douglas-Marini (BDM) space of order 1 for the stress (cf. [22]) and the rest as in [10, Theorem

7.2], that is

Hσh :=
{
τ h ∈ H0(div;Ω) : τ h|K ∈ P1(K) ∀K ∈ Th

}
,

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ P0(K) ∀K ∈ Th

}
,

HΦh :=

{
Ψh :=

(
0 ψh
−ψh 0

)
∈ L2

skew(Ω) : ψh|K ∈ P0(K) ∀K ∈ Th

}
,

(2.77)

In addition, we also consider the classical PEERS space of order 0, originally introduced in [9] for

linear elasticity as well, which is given by

Hσh :=
{
τ h ∈ H0(div;Ω) : τ h,i|K ∈ RT0(K)⊕ P0(K) curltbK ∀ i ∈ {1, 2}, ∀K ∈ Th

}
,

Hu
h :=

{
vh ∈ L2(Ω) : vh|K ∈ P0(K) ∀K ∈ Th

}
,

HΦh :=

{
Ψh :=

(
0 ψh
−ψh 0

)
∈ C(Ω̄) : ψh|K ∈ P1(K) ∀K ∈ Th

}
,

(2.78)
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where τ h,i denotes the ith row of τ h, RT0(K) is the local Raviart-Thomas space of order 0 (cf. [21],

[49]), bK is the usual cubic bubble function on K, and curltbK =
(
∂bK
∂x2

,−∂bK
∂x1

)
. Nevertheless, for

stability purposes to be discussed later on (see Lemma 2.12 below), we need that the space of rigid

motions Q be contained in the finite element subspace approximating u, reason why we now enrich

this space with the P1(Ω)-component of Q, thus yielding the introduction of

H̃u
h := Hu

h ⊕
〈(

x2

−x1

)〉
. (2.79)

Then, letting Hh := Hσh ×Q and Qh := H̃u
h × HΦh ×Q, the Galerkin scheme of (2.53) reads: Find

~σh := (σh,ρh) ∈ Hh and ~uh := (uh,Φh,λh) ∈ Qh such that

a(~σh, ~τ h) + b(~τ h, ~uh) = 0 ∀ ~τ h := (τ h,ηh) ∈ Hh ,

b(~σh, ~vh) − c(~uh, ~vh) = αFuh(~vh) ∀~vh := (vh,Ψh, ξh) ∈ Qh .
(2.80)

Analogously to the analysis from Section 2.3.2, we now introduce the discrete operator Th : H̃u
h → H̃u

h

defined by Th(zh) := uh for each zh ∈ H̃u
h , where ~σh := (σh,ρh) ∈ Hh and ~uh := (uh,Φh,λh) ∈ Qh

satisfy
a(~σh, ~τ h) + b(~τ h, ~uh) = 0 ∀ ~τ h := (τ h,ηh) ∈ Hh ,

b(~σh, ~vh) − c(~uh, ~vh) = αFzh(~vh) ∀~vh := (vh,Ψh, ξh) ∈ Qh .
(2.81)

As for the continuous problem, it is easy to see that solving (2.80) is equivalent to looking for a fixed

point of Th, that is: Find uh ∈ H̃u
h such that Th(uh) = uh, for whose solvability analysis we need

to show first that Th is well-defined, equivalently that (2.81) is well-posed. For this purpose, in what

follows we apply Theorem 2.6 to the discrete setting provided by the spaces Hh and Qh, the bilinear

forms a|Hh×Hh
and b|Hh×Qh

, and the discrete kernels of B and Bt, which are given, respectively, by

Kh :=
{
~τ h := (τ h,ηh) ∈ Hh : b(~τ h, ~vh) = 0 ∀~vh := (vh,Ψh, ξh) ∈ Qh

}
, (2.82)

and

Vh :=
{
~vh := (vh,Ψh, ξh) ∈ Qh : b(~τ h, ~vh) = 0 ∀ ~τ h := (τ h,ηh) ∈ Hh

}
. (2.83)

Thus, employing the expression for b given by (2.61), we can redefine Kh as

Kh :=
{
~τ h := (τ h,ηh) ∈ Hh :

ˆ
Ω
vh ·

{
div τ h − ηh

}
= 0 ∀vh ∈ H̃u

h ,ˆ
Ω
Ψh : τ h = 0 ∀Ψh ∈ HΦh ,

ˆ
Ω
ξh · ηh = 0 ∀ ξh ∈ Q

}
,

(2.84)

from which, noticing that the pair (Hσh , H̃
u
h), taken either from (2.77) - (2.79) or (2.78) - (2.79), satisfies

the inclusion div Hσh ⊆ H̃u
h , it readily follows that

Kh :=
{
~τ h := (τ h,ηh) ∈ Hh : div τ h = 0 , ηh = 0 ,

ˆ
Ω
Ψh : τ h = 0 ∀Ψh ∈ HΦh

}
.

In this way, due to the first two identities characterizing Kh in the foregoing equation, we deduce that

the Kh-ellipticity of a can be proved exactly as we did for its K-ellipticity, and hence with the same

constant αK := c1c2
2µs

from Lemma 2.6 there holds

a(~τ h, ~τ h) ≥ αK ‖~τ h‖
2
H ∀ ~τ h ∈ Kh . (2.85)
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We now aim to establish the discrete analogue of Lemma 2.7, for which we first highlight that,

thanks to the enriched space H̃u
h (cf. (2.79)), one guarantees that V0 (cf. (3.19)) is a subspace of Qh.

Then, we have the following result.

Lemma 2.12. There exists a positive constant β̃B, independent of h, such that

Sh(~vh) := sup
~τh∈Hh
~τh 6=0

b(~τ h, ~vh)

‖~τ h‖H
≥ β̃B dist(~vh,V0) ∀~vh ∈ Qh . (2.86)

Proof. We proceed analogously to the proof of Lemma 2.7. However, because of the similarities

involved, we simplify our reasoning by using the results already available along the proof of [50, Lemma

4.1], which in turn is an adaptation of the proof of [73, Theorem 4.5]. We begin by recalling from

(2.67) that, given ~τ h := (τ h,ηh) ∈ Hh and ~vh := (vh,Ψh, ξh) ∈ Qh, we can rewrite b(~τ h, ~vh) as

b(~τ h, ~vh) :=

ˆ
Ω

(vh −ΠQvh) · div τ h +

ˆ
Ω

(Ψh −∇ΠQvh) : τ h +

ˆ
Ω

(ξh −ΠQvh) · ηh , (2.87)

from which one easily deduces that V0 ⊆ Vh, and hence (2.86) is trivially satisfied for ~vh ∈ V0.

According to this, it only remains to prove for ~vh ∈ Qh \V0. Indeed, if vh − ΠQvh 6= 0, we know

from the first part of the proof of [50, Lemma 4.1] that there exists ζh ∈ Hσh such that div(ζh) =

Ph(vh − ΠQvh) and ‖ζh‖div;Ω ≤ C̃N ‖vh − ΠQvh‖0,Ω, where Ph : L2(Ω) → Hu
h is the orthogonal

projection, and C̃N is a positive constant independent of h. In turn, decomposing vh = v̄h + qh, with

v̄h ∈ Hu
h and qh ∈

〈(
x2

−x1

)〉
, we obtain ΠQvh = ΠQv̄h+qh, and thus vh−ΠQvh = v̄h−ΠQv̄h. In

particular, this latter identity obviously implies div(ζh) = Ph(v̄h−ΠQv̄h). Then, setting ~ζh := (ζh,0),

using the original definition of b (cf. (2.55)), integrating by parts similarly as done for the derivation

of (2.67), and applying the properties of the orthogonal projections Ph and ΠQ, we find that

b(~ζh, ~vh) =

ˆ
Ω

(v̄h + qh) · div(ζh) +

ˆ
Ω
Ψh : ζh

=

ˆ
Ω
v̄h · Ph(v̄h −ΠQv̄h) +

ˆ
Ω

(Ψh −∇qh) : ζh

=

ˆ
Ω
v̄h · (v̄h −ΠQv̄h) +

ˆ
Ω

(Ψh −∇qh) : ζh

= ‖v̄h −ΠQv̄h‖20,Ω +

ˆ
Ω

(Ψh −∇qh) : ζh ,

which readily yields

Sh(~vh) ≥ b(~ζh, ~vh)

‖~ζh‖H
=

‖vh −ΠQvh‖20,Ω +

ˆ
Ω

(Ψh −∇qh) : ζh

‖ζh‖div;Ω

≥ 1

C̃N
‖vh −ΠQvh‖0,Ω − ‖Ψh −∇qh‖0,Ω .

(2.88)

Next, assuming that Ψh −∇qh 6= 0 and appealing now to the second half of the proof of [50, Lemma

4.1], there exists another ζh ∈ Hσh such that div(ζh) = 0,

ˆ
Ω

(Ψh−∇qh) : ζh = ‖Ψh−∇qh‖20,Ω, and
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‖ζh‖div;Ω ≤ c̃N ‖Ψh − ∇qh‖0,Ω, where c̃N is a positive constant independent of h. Hence, defining
~ζh := (ζh,0), and employing again (2.55), we obtain

b(~ζh, ~vh) = ‖Ψh −∇qh‖20,Ω ,

which, similarly as before, gives

Sh(~vh) ≥ 1

c̃N
‖Ψh −∇qh‖0,Ω . (2.89)

In this way, a suitable linear combination of (2.88) and (2.89) implies the existence of a positive

constant β̃1, depending only on C̃N and c̃N , such that

Sh(~vh) ≥ β̃1

{
‖vh −ΠQvh‖0,Ω + ‖Ψh −∇qh‖0,Ω

}
. (2.90)

In addition, proceeding exactly as for the derivation of (2.89), but now considering Ψh −∇ΠQvh in

place of Ψh −∇qh, and utilizing the expression (2.87) for b, we are able to show that

Sh(~vh) ≥ 1

ĉN
‖Ψh −∇ΠQvh‖0,Ω , (2.91)

with a positive constant ĉN independent of h. Furthermore, if ξh − ΠQvh 6= 0, we do as in the

continuous case (cf. (2.71) in the proof of Lemma 2.7) and choose ~ζh := (0, ξh − ΠQvh) to prove,

according to (2.87), that

Sh(~vh) ≥ ‖ξh −ΠQvh‖0,Ω . (2.92)

The rest of the proof follows analogously to the one of Lemma 2.7 by considering now the inequalities

(2.90), (2.91), and (2.92), and after discarding the expression ‖Ψh−∇qh‖0,Ω in the first one of them.

We omit further details. �

As a first straightforward consequence of (2.86) we have that Vh ⊆ V0, and hence Vh = V0.

Moreover, since dist(~vh,Vh) = ‖~vh‖Q for all ~vh ∈ V⊥h , we conclude the discrete inf-sup condition for

b, that is

sup
~τh∈Hh
~τh 6=0

b(~τ h, ~vh)

‖~τ h‖H
≥ β̃B ‖~vh‖Q ∀~vh ∈ V⊥h ∩Qh , (2.93)

with certainly the same constant β̃B from Lemma 2.12. On the other hand, since the continuous and

discrete kernels V and Vh, respectively, coincide, the Vh-ellipticity of the bilinear form c is already

proved by Lemma 2.9.

Therefore, bearing in mind (2.85), (2.93), and Lemma 2.9, a straightforward application of Theorem

2.6 allows us to establish the following result.

Lemma 2.13. For each pair (F,G) ∈ H′ × Q′ there exist unique ~σh := (σh,ρh) ∈ Hh and ~uh :=

(uh,Φh,λh) ∈ Qh such that

a(~σh, ~τ h) + b(~τ h, ~uh) = F(~τ h) ∀ ~τ h := (τ h,ηh) ∈ Hh ,

b(~σh, ~vh) − c(~uh, ~vh) = G(~vh) ∀~vh := (vh,Ψh, ξh) ∈ Qh .
(2.94)
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Moreover, there exists a positive constant C̃, depending only on αK, β̃B, γV , and the norms of the

operators induced by a and b, such that

‖(~σh, ~uh)‖H×Q ≤ C̃
{
‖F‖H′ + ‖G‖Q′

}
. (2.95)

Next, we proceed analogously to the continuous case (cf. (2.76) and the last part of Section 2.3.2) by

applying now Lemma 2.13 to the pair of functionals (F,G) := (0, αFzh), with an arbitrary zh ∈ H̃u
h .

In this way, we conclude that Th : H̃u
h → H̃u

h is well-posed, and that

‖Th(zh)‖0,Ω ≤ ‖(~σh, ~uh)‖H×Q ≤ C̃ α ‖∇D(zh)‖0,Ω ∀ zh ∈ H̃u
h .

Moreover, adopting the same arguments from Lemma 2.11, and employing the a priori estimate (2.95)

and the Lipschitz-continuity of ∇D (cf. (A2)), we arrive at the same property for the operator Th,

that is

‖Th(zh)−Th(wh)‖0,Ω ≤ C̃ αLD ‖zh −wh‖0,Ω ∀ zh , wh ∈ H̃u
h .

Consequently, we are now in position to establish the well-posedness of our mixed finite element

method (2.80), by appealing to its equivalence with the existence of a unique fixed point of Th, and

applying again the respective Banach theorem. We omit further details and state the corresponding

result as follows.

Theorem 2.8. Assume (A2), (A3) and α C̃ LD < 1. Then, the discrete scheme (2.80) has a unique

solution (~σh, ~uh) ∈ Hh ×Qh. Moreover, the following a priori estimate holds

‖(~σh, ~uh)‖H×Q ≤ C̃ αMD .

2.3.4 A priori error analysis

Given (~σ, ~u) ∈ H×Q and (~σh, ~uh) ∈ Hh×Qh, the unique solutions of the continuous and discrete

problems (2.53) and (2.80), respectively, we now aim to estimate the corresponding error given by

‖(~σ, ~u) − (~σh, ~uh)‖H×Q. To this end, we first let (~σh, ~uh) ∈ Hh ×Qh be the solution to (2.94) with

F = 0 and G = αFu, equivalently the solution to (2.81) with u in place of zh, that is

a(~σh, ~τ h) + b(~τ h, ~uh) = 0 ∀ ~τ h := (τ h,ηh) ∈ Hh ,

b(~σh, ~vh) − c(~uh, ~vh) = αFu(~vh) ∀~vh := (vh,Ψh, ξh) ∈ Qh ,
(2.96)

which certainly can be seen as the classical Galerkin approximation of (2.53). Then, invoking the

corresponding Céa estimate (see, e.g., [18, Proposition 5.5.2.]), we have the preliminary estimate

‖(~σ, ~u)− (~σh, ~uh)‖H×Q ≤ Ĉ
{

dist(~σ,Hh) + dist(~u,Qh)
}
, (2.97)

where Ĉ is a positive constant independent of h. Next, subtracting (2.96) from (2.80), we find that

(~σh, ~uh)− (~σh, ~uh) solves

a(~σh − ~σh, ~τ h) + b(~τ h, ~uh − ~uh)) = 0 ∀ ~τ h := (τ h,ηh) ∈ Hh ,

b(~σh − ~σh, ~vh) − c(~uh − ~uh, ~vh) = α (Fuh − Fu)(~vh) ∀~vh := (vh,Ψh, ξh) ∈ Qh ,
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and hence, thanks to the a priori estimate (2.95), the fact that ‖Fuh−Fu‖Q′ = ‖∇D(uh)−∇D(u)‖0,Ω
(cf. (2.57)), and the Lipschitz-continuity of ∇D (cf. (A2)), there holds

‖(~σh, ~uh)− (~σh, ~uh)‖H×Q ≤ C̃ αLD ‖u− uh‖0,Ω . (2.98)

In this way, employing the triangle inequality together with the estimates (2.97) and (2.98), and then

realizing that dist(~σ,Hh) = dist(σ,Hσh ) and that dist(~u,Qh) = dist(u, H̃u
h) + dist(Φ,HΦh ), we get

‖(~σ, ~u)− (~σh, ~uh)‖H×Q ≤ Ĉ
{

dist(σ,Hσh ) + dist(u, H̃u
h) + dist(Φ,HΦh )

}
+ C̃ αLD ‖(~σ, ~u)− (~σh, ~uh)‖H×Q .

The foregoing inequality readily implies the following main result.

Theorem 2.9. Assume (A2), (A3) and that C̃ αLD ≤ 1− δ, with δ ∈]0, 1[. Then, there holds

‖(~σ, ~u)− (~σh, ~uh)‖H×Q ≤ δ−1 Ĉ
{

dist(σ,Hσh ) + dist(u, H̃u
h) + dist(Φ,HΦh )

}
.

Exactly as remarked at the end of Section 2.2.3, we also stress here that the optimal value of δ is

1/2, whence we obtain the assumption C̃ αLD ≤ 1/2 and the Céa estimate

‖(~σ, ~u)− (~σh, ~uh)‖H×Q ≤ 2 Ĉ
{

dist(σ,Hσh ) + dist(u, H̃u
h) + dist(Φ,HΦh )

}
. (2.99)

We end this section with the rates of convergence of our mixed finite element solution (~σh, ~uh), for

which we first recall the approximation properties of the finite element subspaces involved (see [21]).

(APσh ) there exists C > 0, independent of h, such that for each τ ∈ H1(Ω) ∩ H0(div;Ω) with

div(τ ) ∈ H1(Ω) there holds

dist(τ ,Hσh ) ≤ C h
{
‖τ‖1,Ω + ‖div(τ )‖1,Ω

}
.

(APu
h) there exists C > 0, independent of h, such that for each v ∈ H1(Ω) there holds

dist(v,Hu
h) ≤ C h ‖v‖1,Ω .

(APΦh ) there exists C > 0, independent of h, such that for each Ψ ∈ H1(Ω) ∩ L2
skew(Ω) there holds

dist(Ψ ,HΦ) ≤ C h ‖Ψ‖1,Ω .

Note here that, while (APu
h) provides the approximation property of Hu

h , the fact that this space is

contained in H̃u
h implies that dist(v, H̃u

h) ≤ dist(v,Hu
h), and hence (APu

h) also serves to estimate the

distance to H̃u
h . According to the above discussion, the main result of this section is stated as follows.
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Theorem 2.10. Assume (A2), (A3) and that C̃ αLD ≤ 1/2. In addition, suppose that the solution(
~σ, ~u

)
:=
(
(σ,ρ), (u,Φ,λ)

)
∈ H × Q of (2.53) verifies σ ∈ H1(Ω), div(σ) ∈ H1(Ω), u ∈ H1(Ω),

and Φ ∈ H1(Ω). Then, there exists a positive constant C, independent of h, such that

‖(~σ, ~u)− (~σh, ~uh)‖H×Q ≤ C h
{
‖σ‖1,Ω + ‖div(σ)‖1,Ω + ‖u‖1,Ω + ‖Φ‖1,Ω

}
.

Proof. It is a simple consequence of the Céa estimate (2.99), the additional regularity assumptions on

the solution, and the approximation properties (APσh ) , (APu
h), and (APΦh ). �

2.4 Implementation of the methods

We now refer to the practical implementation of (2.11). The extension to (2.53) proceeds similarly.

More precisely, in what follows we employ a fictional time variable in a gradient flow fashion to

implement the solution of problem (2.11), thus rendering problem (2.4) convex for a sufficiently small

time step. This means that, given a time step ∆t, k ∈ N, and a previous iteration uk, we modify the

extended problem (2.9) to obtain

min
(v,η)∈H

max
ξ∈Q

{
αD(v) +

1

2
a(v, v) + 〈v − η, ξ〉+

β

2
‖η‖2 +

1

2∆t
‖v − uk‖2V

}
, (2.100)

where we recall from Section 2.2.2 that H = V ×Q. Then, the first order conditions of this problem

are given by the following: Find
(
(u, ρ), λ

)
∈ H ×Q such that

〈u, v〉+∆ta(u, v) + β∆t〈λ, η〉+∆t〈v − η, ρ〉 = α∆tFuk(v) + 〈uk, v〉 ∀(v, η) ∈ H,
〈u− λ, ξ〉 = 0 ∀ξ ∈ Q,

(2.101)

where the nonlinear term is treated explicitly, and which is well-posed in virtue of Theorem 2.2.

The resulting solution of (2.101) is then redenoted
(
(uk+1, ρk+1), λk+1

)
. Our main modification to the

classical time dependent scheme used to implement registration problems is that the extended variables

prevent the orthogonality to the kernel of the adjoint operator. Now we establish a relationship between

subsequent iterations to find a bound on the time step for stability.

Lemma 2.14. Given an initial iteration
(
(u0, ρ0), λ0

)
∈ H ×Q and n ∈ N, we let

(
(un, ρn), λn

)
and(

(un+1, ρn+1), λn+1

)
be the solutions of (2.101) with k = n − 1 and k = n, respectively. In addition,

let c̃a be the ellipticity constant of the bilinear form a (cf. (A1)), and define κ1(∆t) :=
(

1
∆t + 2c̃a − α

)
and κ2(∆t) :=

(
1
∆t + αLD

)
. Then, there holds

κ1(∆t) ‖un+1 − un‖2V ≤ κ2(∆t) ‖un − un−1‖2V . (2.102)

Proof. Subtracting the corresponding equations of the problems (2.101) yielding
(
(un, ρn), λn

)
and(

(un+1, ρn+1), λn+1

)
, we obtain

1

∆t
〈un+1 − un, v〉+ a(un+1 − un, v) + β〈λn+1 − λn, η〉+ 〈v − η, ρn+1 − ρn〉

= α(Fun − Fun−1)(v) +
1

∆t
〈un − un−1, v〉 ∀ (v, η) ∈ H ,

(2.103)
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and

〈un+1 − un − λn+1 + λn, ξ〉 = 0 ∀ ξ ∈ Q . (2.104)

from which, testing (2.103) and (2.104) against (v, η) = (un+1 − un, ρn+1 − ρn) and ξ = λn+1 − λn,

respectively, we deduce that

1

∆t
‖un+1 − un‖2V + a(un+1 − un, un+1 − un) + β‖λn+1 − λn‖2V

= α(Fun − Fun−1)(un+1 − un) +
1

∆t
〈un − un−1, un+1 − un〉 .

Next, using the ellipticity of a (cf. (A1)), the Lipschitz continuity of ∇D (cf. (A2)), and Young’s

inequality, we arrive at(
1

2∆t
+ c̃a

)
‖un+1 − un‖2V ≤

α

2
‖un+1 − un‖2 +

(
LDα

2
+

1

2∆t

)
‖un − un−1‖2 ,

which leads to the desired result after a minor algebraic rearrangment. �

We stress here that the estimate (2.102) (cf. Lemma 2.14) becomes useless if κ1(∆t) ≤ 0. According

to it, we now provide a way to bound how small ∆t should be in order to guarantee that κ1(∆t) > 0.

Lemma 2.15. Problem (2.100) is unconditionally stable in time, that is stable for any fixed time step

∆t, if α < 2c̃a. It is otherwise stable if ∆t < 1
α−2c̃a

.

Proof. We first observe that if α < 2c̃a, then, independently of ∆t, κ1(∆t) remains always strictly

positive, bounded below precisely by 2c̃a −α. Otherwise, the strict positivity of κ1(∆t) is guaranteed

only by imposing 1
∆t > α− 2c̃a. �

Unfortunately, the previous scheme does not guarantee convergence for arbitrary α. Indeed, it is

clear from (2.102) that in order to obtain ‖un+1 − un‖ ≤ δ ‖un − un−1‖, with δ ∈]0, 1[, it suffices to

require that κ2(∆t) < κ1(∆t), which yields the condition α < 2ca
LD+1 . Alternatively, if we consider

variable time steps, we can prove the following result.

Lemma 2.16. Let
{
∆tk

}
k∈N

be an arbitrary sequence of time steps, and given an initial iteration(
(u0, ρ0), λ0

)
∈ H × Q and n ∈ N, we let

(
(un, ρn), λn

)
and

(
(un+1, ρn+1), λn+1

)
be the solutions of

(2.101) with (k,∆t) = (n− 1, ∆tn) and (k,∆t) = (n,∆tn+1), respectively. Then, there holds

κ1(∆tn+1) ‖un+1 − un‖2V ≤ κ2(∆tn) ‖un − un−1‖2V .

Consequently, under the assumption

1

∆tn+1
>

1

∆tn
+ α(LD + 1)− 2c̃a ,

the absolute step-wise error is strictly decreasing.
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Proof. The derivation of the relationship between ‖un+1−un‖2V and ‖un−un−1‖2V is analogous to the

one in the proof of Lemma 2.14, except for a minor modification. In fact, as time steps are different,

the time derivatives gives rise to new terms which cancel out , that is〈 un+1

∆tn+1
− un
∆tn

, un+1 − un
〉

=
1

∆tn+1
‖un+1 − un‖2 +

(
1

∆tn+1
− 1

∆tn

)
〈un, un+1 − un〉 ,

and〈 un
∆tn+1

− un−1

∆tn
, un+1 − un

〉
=

1

∆tn
〈un − un−1, un+1 − un〉+

(
1

∆tn+1
− 1

∆tn

)
〈un, un+1 − un〉 .

Finally, the condition relating the subsequent time steps ∆tn+1 and ∆tn is obtained by imposing

κ2(∆tn) < κ1(∆tn+1). �

The above formulation and its associated analysis apply straightforwardly to the mixed case, the

only difference being that, while the H1 inner product is employed in the regularizing terms for the

primal case, the L2 one is utilized for the mixed approach.

2.5 Numerical examples

In this section we present several numerical examples to show the effectiveness of the proposed

formulations. All tests were implemented with the FEniCS library [4]. For this, we will use in the

primal case the same regularizer used in the mixed formulation, that is the bilinear form defined by

(2.43), which arises from the Hooke law for elastic materials. Thus, as already announced at the

beginning of Section 2.2.4, the abstract unknown u utilized in Sections 2.2.1, 2.2.2, 2.2.3, and 2.4, is

rewritten here as u to denote the respective displacement vector. We consider the problem with null

traction boundary conditions so that it kernel is given by the space of rigid motions Q (cf. (2.44)),

and consider the similarity functional given by the squared error, i.e.:

D(u) =

ˆ
Ω

(T (x+ u(x))−R(x))2 ,

where the maps R, T : Ω → [0, 1] denote the reference and target images respectively, and are such

that the gradient ∇D fulfills condition 2. In what follows we consider the domain Ω = (0, 1)2, and

all examples, except for the convergence one, use the classic time regularization scheme described in

Section 2.4. Also, only in the real-case study we use the time-adaptivity strategy presented in Section

2.4. For the other examples, we used ∆t ∝ α−1 justified by Lemma 2.15, which does not account for

the ellipticity constant of the problem but gives satisfactory results nonetheless. The Young modulus

E and Poisson ratio ν are related to the Lamé parameters through λs = Eν
(1+ν)(1−2ν) and µs = E

2(1+ν) .

2.5.1 Example 1: Convergence

We consider the reference and target images

R(x) = exp (−20‖x− 0.3(1, 1)‖2)
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and

T (x) = exp (−20‖x− 0.7(1, 1)‖) ,

respectively, where x = (x1, x2)t with parameters µs = λs = β = 1 and α = 0.1. We define also the

individual errors

e0(u) := ‖u− uh‖0,Ω , e1(u) := ‖u− uh‖1,Ω , e0(σ) := ‖σ − σh‖0,Ω ,

e(σ) := ‖σ − σh‖div;Ω , e(u) := ‖u− uh‖0,Ω , and e(Φ) := ‖Φ−Φh‖0,Ω ,

and the respective experimental rates of convergence

r0(u) :=
log
(
e0(u)/e′0(u)

)
log
(
h/h′

) , r1(u) :=
log
(
e1(u)/e′1(u)

)
log
(
h/h′

) , r0(σ) :=
log
(
e0(σ)/e′0(σ)

)
log
(
h/h′

) ,

r(σ) :=
log
(
e(σ)/e′(σ)

)
log
(
h/h′

) , r(u) :=
log
(
e(u)/e′(u)

)
log
(
h/h′

) , r(Φ) :=
log
(
e(Φ)/e′(Φ)

)
log
(
h/h′

) ,

where e y e′, with and without subindex, denote in each case the errors of two consecutive triangula-

tions with meshsizes given by h and h′.

We report the convergence results for the primal (2.11) and mixed (2.53) formulations in Tables 2.1

and 2.2, respectively with respect to a solution of higher resolution, where the mixed scheme is set

with the BDM elements described in (2.77). We stress that this problem was solved with a low α, thus

results from the point of view of registration are not satisfactory, but they help us to verify convergence,

as it is theoretically established for small α without the time stabilization terms (see Section 2.4). In

particular, the O(h) and O(h2) rates of convergence for ‖u − uh‖1,Ω and ‖u − uh‖0,Ω, respectively,

which are predicted by (2.32) (cf. Theorem 2.4) and (2.38) (cf. Theorem 2.5), are confirmed by the

sixth and fourth columns of Table 2.1. Nevertheless, the convergence of the extended mixed scheme

shown in Table 2.2 seems a bit slow for e0(σ) and slightly oscillating for e(u), which could be originated

by an insufficient number of degrees of freedom employed.

Ndofs hmax e0(u) r0(u) e1(u) r1(u)

56 3.536e-01 1.756e-03 – 1.959e-02 –

168 1.768e-01 5.669e-04 1.631 1.210e-02 0.695

584 8.839e-02 1.636e-04 1.793 6.253e-03 0.952

2184 4.419e-02 4.291e-05 1.931 3.147e-03 0.990

8456 2.210e-02 1.082e-05 1.988 1.575e-03 0.998

33288 1.105e-02 2.649e-06 2.030 7.878e-04 0.999

Table 2.1: Example 1: Errors and convergence rates for the primal extended scheme with α = 0.1.
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Ndofs hmax e0(σ) r0(σ) e(σ) r(σ) e(u) r(u) e(Φ) r(Φ)

95 7.071e-01 9.059e-03 – 8.327e-02 – 5.783e+00 – 6.327e+00 –

327 3.536e-01 3.304e-03 1.455 5.103e-02 0.706 2.194e-04 1.469 5.642e-04 1.345

1223 1.768e-01 1.285e-03 1.363 3.217e-02 0.666 1.126e-04 0.960 2.416e-04 1.224

4743 8.839e-02 3.924e-04 1.711 1.632e-02 0.979 5.731e-05 0.975 1.128e-04 1.098

18695 4.419e-02 1.262e-04 1.637 8.122e-03 1.006 3.129e-05 0.873 5.609e-05 1.008

Table 2.2: Example 1: Errors and convergence rates for the mixed extended scheme with α = 0.1.

2.5.2 Example 2: To extend or not to extend

In this test we compare the results of the Neumann solver with and without extending the formula-

tion, i.e. without the added degrees of freedom in Q and their corresponding terms to (2.11), which we

call the standard formulation. The translation images are defined as in the convergence test, whereas

the rotation images are given by

R(x) = ϕ(Sx) and T (x) = ϕ(SRx) ,

where

S =

[
1 0

0 a

]
, R =

1√
2

[
1 −1

1 1

]
,

and the function ϕ(x) = exp(−C|x|2). The parameters used are given by E = 103, ν = 0.3, α = 104,

∆t = 0.1/α, β = 1, C = 20, a = 0.4, and the convergence criterion is given by a threshold on the

similarity, so that the simulation stops when D(u) ≤ 0.01D(0). In Figures 2.1 and 2.2, which display

the reference image and the warped reference image with the target image in the background, we notice

that both translations and rotations cannot be captured up to the required tolerance without extending

the formulation. In this regard we stress that choosing a smaller ∆t does not yield convergence in

the non-extended scenario. This locking-like phenomenon is seen due to the choice of the convergence

criterion, and indeed using another one such as the solution increments would yield convergence to a

solution, albeit unsatisfactory.

Formulation Iterations time [s]

Translation Extended 64 3.516

Standard 1000 –

Rotation Extended 51 3.454

Standard 1000 –

Table 2.3: Example 2: Extended vs. standard in terms of iterations and execution time on a personal

computer.

2.5.3 Example 3: Translations in the quasi-incompressible case

In this test we register the translation images for the primal (2.11) and mixed (2.53) formula-

tions, both with E = 15, ν = 0.4999, α = 100, ∆t = 0.1/α, β = 1, and time regularization terms
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(a) Extended case

(b) Standard case

Figure 2.1: Example 2: Warped reference images in translation example. We present the reference

image R(x) in the first column and the deformed reference image R ◦ (I + uh)−1(x) with the target

image T (~x) in the background in the second column.

were included and a tolerance of 10−8 for the absolute `∞ error between two subsequent steps was

used. The results are reported in Figure 2.3, where the rigid motion components obtained were

λ = (0.386, 0.396, 0.022) for the primal case and λ = (0.402, 0.381,−0.056) for the mixed one. As λ is

a rigid motion, the first two components are translations in x and y, whereas the third one represents

a rotation. The solution in this case presents no rotation and has by construction a translation of 0.4

in each axis, which is coherent with the results obtained. We highlight that the primal formulation
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(a) Extended case

(b) Standard case

Figure 2.2: Example 2: Comparison warped reference images in rotation example. We present the

reference image R(x) in the first column and the deformed reference image R ◦ (I+uh)−1(x) with the

target image T (~x) in the background in the second column.

took 213 iterations to achieve convergence, whereas the mixed one took 102. This difference is mainly

due to the locking effects generated by ν ≈ 0.5 in the primal formulation, which are fully overcome

by the mixed one.
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(a) R and T , reference and target images.

(b) Warped target images T ◦ (I + uh) for primal and mixed formulation.

Figure 2.3: Example 3: Solutions of the primal and mixed formulations of the translation test.

2.5.4 Example 4: Rotations in the quasi-incompressible case

This test was performed for the same settings of the translation example but with the rotation

images using C = 20 and a = 0.4. Results are reported in Figure 2.4, and the rigid motions obtained

in this case are

λ = (−2.843 10−4, 3.120 10−5,−7.084 10−2) and λ = (6.798 10−5, 6.042 10−4,−1.476 10−3) ,

for the primal and mixed cases, respectively. We remark that we did not allow for more than 1000

iterations in time, which was achieved by the primal case still without reaching the required tolerance.

The mixed one instead converged after 74 iterations, which is again explained by the superiority of

the mixed formulation in the quasi-incompressible case.
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(a) R and T , reference and target images.

(b) R and T , reference and target images.

Figure 2.4: Example 4: Solutions of the primal and mixed formulations of the rotation test.

2.5.5 Example 5: Application to the image registration of the human brain

The real application is performed on brain images obtained in [33]. We use this case as well to test

the condition on the time step given by

∆tn+1 <
∆tn

1 +∆tn(α(LD + 1)− ca)
. (2.105)

Two important observations are in place for condition (2.105). One is that it guarantees the conver-

gence of ‖un+1−un‖, and not of ‖un+1−un‖/∆tn, which means that possibly the error performed by

means of incorporating the time terms might not disappear. The second one is that it does not stall

the simulation within a certain time. To see this, assume ∆t0 = τ = (α(LD + 1)− ca)−1. This choice

gives ∆tn < τ/(n+ 1), and thus we can not insure that
∑

n∆t
n <∞.
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(a) Reference and template images.

(b) Primal and mixed formulation solutions.

Figure 2.5: Example 5: Results of registration for brain images scenario with α = 104, β = 1.

In turn, for the simulations we use the elastic constants E = 15 and ν = 0.3. For the others

constants we consider α = 104, β = 1, ∆t0 = 0.01/α and a tolerance of 10−6 for a domain with

128× 128 elements. We report the outcome in Figures 2.5 and 2.6, that indicate sufficiently accurate

results after convergence. To avoid an excessive reduction of the time step, we used (2.105) every ten

iterations.
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(a) |T ◦ (I + ~u)−R| for primal and mixed formulations.

Figure 2.6: Example 5: Results of registration for brain images scenario with α = 104, β = 1.



CHAPTER 3

Adaptive mesh refinement in deformable image registration: A

posteriori error estimates for primal and mixed formulations

3.1 Introduction

Deformable image registration (DIR) consists of aligning two images through a transformation

that deforms one image onto the other. It arises in several applications, particularly in the medical

imaging field [85]. Its mathematical formulation requires three objects: a transformation model,

defined by a family of suitable mappings that warp the target image, a similarity measure, typically

represented by a functional that quantifies the difference between images, and a regularizer, which

renders the problem well-posed [74]. In addition to the many variants of these components, different

modeling approaches exist, between which we highlight the traditional variational minimization [61,74],

optimal mass transport [57] and level-set modeling [87]. The solution of the DIR problem typically

considers incorporating an auxiliary time variable. This approach can be interpreted as a semi-implicit

formulation of the proximal point algorithm [84], recently extended to a more general class of proximal

operators by using forward-backward splitting [45]. The formulation of the optical flow problem put

forward by Horn & Schunk [61] leads to a more rigorous mathematical analysis of the DIR problem

continuous formulation, which is in contrast with the lack of rigorous numerical analysis of the discrete

counterpart, recently developed in the variational formulation [79] in an algorithm-specific fashion and

also in the optimal-control setting within a more classical Galerkin framework [69].

One active area of DIR application is the study of deformation in the lungs from the analysis of

computed-tomography images of the thorax [29]. In this setting, the optimal warping u that solves the

DIR problem can be interpreted as a displacement field, from which deformation metrics such as the

strain tensor can be computed based on ∇u using the framework of continuum mechanics. The study

of deformation using DIR has revealed that the lungs display a highly heterogeneous and anisotropic

behavior [63]. Further, deformation metrics from the strain tensor recently proved very insightful in

understanding certain pulmonary diseases and lung injury progression [28, 62, 82]. The prediction of

strain measures from DIR is not without problems, as it has been shown that estimating the strain

tensor from direct differentiation of the transformation mapping yields spurious numerical errors that

can distort the physical meaning of the strain tensor [64]. This problem, together with an effort of

providing a rigorous analysis of the Galerkin formulation of DIR, motivated the recent development of

82
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primal and mixed continuous formulations and finite-element schemes [13]. This last work used null

traction boundary conditions so as to avoid spurious stress. It relied on the mixed theory of linear

elasticity problems with pure-traction conditions [50], which delivered a priori error estimates not

only for the displacement solution but also for the stress and rotation fields in the mixed formulation.

These analytical results provide a sound framework for the error assessment of stress and deformation

estimates in DIR.

Depending on the amount of warping from the target to the reference images, the optimal warping u

can typically result in localized regions with high variations. These localizations may not be accurately

captured by the transformation model, which has motivated the development of adaptive refinement

techniques in other areas of numerical analysis [91]. However, specific schemes developed for DIR

remain understudied. One exception is the work of Haber et al. [56], where a finite-difference scheme

was employed to solver the DIR problem, and a oct-tree strategy was used to improve the numerical

solution by adaptive refinement. Another approach is the use of ad-hoc mesh-refinement techniques

based on classical strategies in finite-element analysis for elasticity [77, 94]. While very useful, this

approach does not directly extend to mixed formulations, and it lacks of a theoretical framework that

can guarantee the numerical convergence of the scheme.

In this chapter, we propose a posteriori mesh-refinement scheme particularly tailored for primal

and mixed formulations of the DIR problem. We start by constructing an optimal a posteriori error

estimator Θ [91]. The estimator Θ is then decomposed into a sum of local error indicators θT that

give a norm-wise equivalent of the error. The estimator Θ is said to be reliable (resp. efficient) if there

exists Crel > 0 (resp. Ceff > 0) independent of the mesh sizes such that

CeffΘ + h.o.t. ≤ ‖error‖ ≤ CrelΘ + h.o.t.,

where h.o.t. is a generic expression for denoting higher order terms. This estimator is designed to

be effective in terms of computing cost, allowing to rapidly identify regions with large error that

are candidates to local mesh refinement. At the same time, the use of the estimator prevents the

refinement of areas where the error is small, delivering an efficient scheme for error reduction, which is

in contrast to uniform refinement schemes. We validate the proposed mesh-refinement scheme and the

associated theoretical results through applications on the registration of smooth and medical images,

where the performance of the methods is assessed in terms on error measures and convergence rates.

We have organized the contents of this chapter as follows. In Section 3.2, we state the mathematical

formulation of DIR, along with the similarity measure and regularizer considered in this work. In

Section 3.3, we state the weak problems for the primal and mixed formulations of DIR, along with

their corresponding Galerkin schemes. In Section 3.4, we develop a posteriori error indicators for the

FE formulations, to then derive the corresponding theoretical bounds yielding reliability and efficiency

of each estimator under reasonable assumptions. To demonstrate the applicability of the proposed

methods, in Section 3.5 we apply the mesh-refinement scheme in the elastic registration of smooth and

medical images, where we confirm the reliability and efficiency of the estimators, along with assessing

their numerical performance.
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3.2 Mathematical formulation of the deformable image registration

problem

In this section we recall from [13, Section 2] the elastic deformable image registration model. Let

n ∈ {2, 3} be the dimension of the images we are interested in analyzing, and let Ω ⊆ Rn be a compact

domain with Lipschitz boundary Γ := ∂Ω. Let R ∈ H1(Ω) be the reference image and T ∈ H1(Ω̃)

be the target image. The DIR problem consists in finding a transformation u : Ω → Rn, also known

as the displacement field, that best aligns the images R and T , which is expressed as the variational

problem (cf. [74])

inf
u∈V

αD[u;R, T ] + S[u], (3.1)

where V is typically H1(Ω), D : V → R is the similarity measure between the images R and T , α > 0

is a weighting constant, and S : V → R is a regularization term rendering the problem well-posed. A

common choice for the similarity measure is the sum of squares difference, i.e, the L2 error that takes

the form

D[u;R, T ] :=
1

2

ˆ
Ω

(T (x+ u(x))−R(x))2.

For the case of elastic DIR, the regularizing term is commonly taken to be the elastic deformation

energy, defined by

S[u] :=
1

2

ˆ
Ω
Ce(u) : e(u),

where

e(u) =
1

2
{∇u+ (∇u)t}

is the infinitesimal strain tensor, i.e., the symmetric component of the displacement field gradient, and

C is the elasticity tensor for isotropic solids, that is

Cτ = λtr(τ )I + 2µτ ∀τ ∈ L2(Ω). (3.2)

Assuming that (3.1) has at least one solution with sufficient regularity, the associated Euler-Lagrange

equations deliver the following strong problem: Find u such that

div(Ce(u)) = αfu in Ω,

Ce(u)ν = 0 on ∂Ω,
(3.3)

where

fu(x) =
{
T (x+ u(x))−R(x)

}
∇T (x+ u(x)) ∀x ∈ Ω a.e. (3.4)

We assume the following conditions on the nonlinear load term fu:

|fu(x)− fv(x)| ≤ Lf |u(x)− v(x)| ∀x ∈ Ω a.e.,

|fu(x)| ≤Mf ∀x ∈ Ω a.e.,
(3.5)

where Lf and Mf are positive constants.
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3.3 Continuous and discrete weak formulations of DIR

In this section we summarize the continuous primal and mixed variational formulations of (3.3)

derived in [13, Section 3] and [13, Section 4], respectively, and recall the respective solvability results.

3.3.1 DIR primal formulation

The primal variational formulation for the registration problem reads: Find u ∈H1(Ω) such that

a(u,v) = αFu(v), v ∈H1(Ω), (3.6)

where a : H1(Ω)×H1(Ω)→ R is the bilinear form defined by

a(u,v) :=

ˆ
Ω
Ce(u) : e(v) ∀u,v ∈H1(Ω), (3.7)

and for every u ∈H1(Ω), Fu : H1(Ω)→ R is the linear functional given by

Fu(v) := −
ˆ
Ω
fu · v ∀v ∈H1(Ω).

By imposing the conditions (3.5), we can deduce the Lipschitz continuity and uniform boundedness

properties for the functional Fu, that is

‖Fu − Fv‖H1(Ω)
′ ≤ LF ‖u− v‖0,Ω ∀u,v ∈H1(Ω), (3.8)

and

‖Fu‖H1(Ω)
′ ≤MF ∀u ∈H1(Ω),

respectively. We recall the results concerning the solvability of (3.6), as developed in [13, Section 3].

First, we define the following linear auxiliary problem: Given z ∈H1(Ω), find u ∈H1(Ω) such that

a(u,v) = αFz(v), v ∈H1(Ω). (3.9)

Since this problem does not have unisolvency, we modify it by imposing weak orthogonality to the

rigid motions space, denoted by RM(Ω) and defined as (see [20, Eq. 11.1.7])

RM(Ω) :=
{
v ∈H1(Ω) : e(v) = 0

}
, (3.10)

which guarantees unique solvability of (3.9) since RM(Ω) is the null space of its solution operator.

Defining

H := RM(Ω)⊥ =

{
v ∈H1(Ω) :

ˆ
Ω
v = 0,

ˆ
Ω

rotv = 0

}
,

where rotv = −∂v1/∂x2 + ∂v2/∂x1, for v = (v1, v2)t, we consider the following restricted problem:

Given z ∈ H, find u ∈ H such that

a(u,v) = αFz(v), v ∈ H. (3.11)

Then, we have the following result:
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Theorem 3.1. Given z ∈ H, problem (3.11) has a unique solution u ∈ H, and there exists Cp > 0

such that

‖u‖1,Ω ≤ αCp‖Fz‖H1(Ω)
′ .

Proof. See [13, Theorem 2]. �

We now define the operator T̂ : H → H given by T̂(z) = u, where u is the unique solution to

problem (3.11) and thus rewrite (3.6) as the fixed-point equation: Find u ∈ H such that

T̂(u) = u. (3.12)

The following result establishes the existence of solution to the fixed-point equation (3.12).

Theorem 3.2. Under data assumptions (3.5), the operator T̂ has at least one fixed point. Moreover,

if αCpLF < 1, the fixed point is unique.

Proof. See [13, Theorem 3]. �

3.3.2 DIR mixed formulation

In what follows we introduce a mixed variational formulation of (3.3). We begin by defining an

auxiliary field as the skew symmetric component of the displacement field gradient

ρ :=
1

2
(∇u−∇ut).

We note that from a continuum mechanics perspective, ρ corresponds to the rotation tensor, which

accounts for displacement gradients that do not induce deformation energy. We further define the

auxiliary stress tensor field σ := Ce(u). Further, we note that the constitutive relation (3.2) can be

inverted (cf. [16] or [49]) as

C−1σ =
1

2µ
σ − λ

2µ(2µ+ nλ)
tr(σ)I.

Then, the strong form of the mixed registration BVP associated with (3.3) becomes: Find u, σ and

ρ such that
C−1σ = ∇u− ρ in Ω,

div(σ) = αfu in Ω,

σ = σt in Ω,

σν = 0 on ∂Ω.

(3.13)

Introducing the spaces

H0(div;Ω) =
{
τ ∈ H(div;Ω) : γντ = 0

}
,

and

Q := L2(Ω)× L2
skew(Ω),
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where

L2
skew(Ω) := {η ∈ L2(Ω) : ηt = −η},

and using a standard integration by parts procedure, the weak formulation of the mixed DIR problem

(3.13) reads: Find (σ, (u,ρ)) ∈ H0(div;Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div;Ω),

b(σ, (v,η)) = αFu(v,η) ∀ (v,η) ∈ Q,
(3.14)

where a : H0(div;Ω)×H0(div;Ω)→ R and b : H0(div;Ω)×Q→ R are the bilinear forms defined by

a(σ, τ ) :=

ˆ
Ω
C−1σ : τ ∀σ, τ ∈ H0(div;Ω), (3.15)

b(τ , (v,η)) :=

ˆ
Ω
v · divτ +

ˆ
Ω
η : τ ∀ τ ∈ H0(div;Ω), ∀(v,η) ∈ Q. (3.16)

In turn, given u ∈ L2(Ω), Fu : Q→ R is the linear functional defined by

Fu(v,η) :=

ˆ
Ω
fu · v ∀(v,η) ∈ Q .

In order to have unisolvency of (3.14), we define the auxiliary problem: Given z ∈ L2(Ω), find

(σ, (u,ρ)) ∈ H0(div;Ω)×Q such that

a(σ, τ ) + b(τ , (u,ρ)) = 0 ∀ τ ∈ H0(div;Ω),

b(σ, (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,
(3.17)

which corresponds to a mixed formulation of the linear elasticity problem with pure traction boundary

conditions. Since this problem does not yield unique solvability, we impose weak orthogonality to the

rigid motions space RM(Ω) (c.f. (3.10)). Defining H := H0(div;Ω) × RM(Ω), we arrive at the

following equivalent mixed variational formulation of (3.17): Given z ∈ L2(Ω), find ((σ,χ), (u,ρ)) ∈
H ×Q such that

A((σ,χ), (τ , ξ)) +B((τ , ξ), (u,ρ)) = 0 ∀ (τ , ξ) ∈H,

B((σ,χ), (v,η)) = αFz(v,η) ∀ (v,η) ∈ Q,
(3.18)

where A : H ×H → R and B : H ×Q→ R are the bilinear forms given by

A((σ,χ), (τ , ξ)) := a(σ, τ ) +

ˆ
Ω
χ · ξ ∀ (σ,χ), (τ , ξ) ∈H,

B((τ , ξ), (v,η)) := b(τ , (v,η)) +

ˆ
Ω
ξ · v ∀ ((τ , ξ), (v,η)) ∈H ×Q.

The following two lemmas are needed to establish the well-posedness of (3.18).

Lemma 3.1. Let V := {(τ , ξ) ∈H : B((τ , ξ), (v,η)) = 0, ∀(v,η) ∈ Q}. Then V = V × {0}, with

V := {τ ∈ H(div;Ω) : div τ = 0 and τ = τ t in Ω}, (3.19)

and there exists α̂ > 0, such that

α̂‖(τ , ξ)‖2H ≤ A((τ , ξ), (τ , ξ)) ∀ (τ , ξ) ∈ V.
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Proof. See [50, Lemma 3.3]. �

Lemma 3.2. There exists β̂ > 0, such that

β̂‖(v,η)‖Q ≤ sup
(τ ,ξ)∈H
(τ ,ξ)6=0

|B((τ , ξ), (v,η))|
‖(τ , ξ)‖H

∀ (v,η) ∈ Q.

Proof. See [50, Lemma 3.4]. �

The well-posedness of the variational formulation (3.18) is stated as follows.

Theorem 3.3. There exists a unique solution ((σ,χ), (u,ρ)) ∈H ×Q of (3.18). In addition, χ = 0

and there exist Cm > 0, such that

‖((σ,χ), (u,ρ))‖H×Q ≤ αCm‖Fz‖Q′ .

Proof. See [50, Theorem 3.1]. �

The treatment above allows us to define a fixed-point operator. Let T : L2(Ω) → L2(Ω) given by

T (z) := u ∀z ∈ L2(Ω), where u is the displacement component of the unique solution of problem

(3.18), and so the mixed formulation (3.14) can be restated as: Find u ∈ L2(Ω) such that

T (u) = u . (3.20)

The following result establishes the existence of solution to the fixed-point problem (3.20):

Theorem 3.4. Under data conditions (3.5) and assuming αCmLF < 1, there is a unique fixed point

for (3.20). With this, the mixed formulation (3.14) has a unique solution (σ, (u,ρ)) ∈ H0(div;Ω)×Q.

Furthermore

‖(σ, (u,ρ))‖H0(div;Ω)×Q ≤ αCmMF .

Proof. See [13, Theorem 12]. �

3.3.3 The primal Galerkin finite-element scheme

Let Hh be a finite dimensional subspace of H1(Ω) and define Hh := RM⊥ ∩Hh. Then the primal

nonlinear discrete problem is: Find uh ∈ Hh such that

a(uh,vh) = αFuh(vh), vh ∈ Hh. (3.21)

Analogously to the continuous case, we consider the auxiliary problem: Given zh ∈ Hh, find uh ∈ Hh

such that

a(uh,vh) = αFzh(vh), vh ∈ Hh, (3.22)

and also let Th : Hh → Hh be the discrete operator given by Th(zh) = uh, where uh is the solution

to problem (3.22). Considering the same data assumptions as in the continuous case, as well as the

continuity and bound obtained before, we arrive at the following result.
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Theorem 3.5. Assume that data assumptions (3.5) hold. Then, the operator Th has at least one fixed

point. Moreover, if αCpLF < 1, then such fixed point is unique.

Proof. See [13, Theorem 5]. �

3.3.4 The mixed Galerkin finite-element scheme

In this section we recall the Galerkin finite-element scheme for (3.14). First, let {Th}h>0 be a regular

family of triangulations of the polygonal region Ω̄ by triangles K of diameter hK with global mesh

size h := max{hK : K ∈ Th}, such that they are quasi-uniform around Γ . Let us consider finite

dimensional subspaces Hσ
h , Quh , and Qρh of H(div;Ω), L2(Ω), and L2

skew(Ω), respectively. Then we

introduce the product spaces

Hh := (Hσ
h ∩H0(div;Ω) )× RM, Qh := Quh ×Q

ρ
h,

and define the discrete version of (3.18): Given zh ∈ Quh , find ((σh,χh), (uh,ρh)) ∈ Hh ×Qh such

that

A((σh,χh), (τ h, ξh)) +B((τ h, ξh), (uh,ρh)) = 0 ∀ (τ h, ξh) ∈Hh,

B((σh,χh), (vh,ηh)) = αFzh(vh,ηh) ∀ (vh,ηh) ∈ Qh.
(3.23)

The unique solvability and stability of (3.23), being the Galerkin scheme of a linear elasticity problem

with pure traction boundary conditions, has already been established in [50, Theorem 4.1]. This allows

us to define the discrete operator T h : Quh → Quh given by T h(zh) := uh, where uh is the unique

displacement from (3.23), and then we rewrite the discrete nonlinear problem as: Find uh ∈ Quh such

that

T h(uh) = uh. (3.24)

Now we establish the well-posedness of problem (3.24).

Theorem 3.6. Assuming (3.5) and αCmLF < 1, the problem (3.24) has a unique solution uh ∈ Quh ,

which yields ((σh,χh), (uh,ρh)) ∈Hh×Qh the unique solution of (3.23) with zh = uh, which satifies

‖((σh,χh), (uh,ρh))‖H×Q ≤ αCmMF .

Proof. See [13, Theorem 14]. �

3.4 Residual-based a posteriori error estimators

In this section we derive a reliable and efficient residual-based a posteriori error estimator for each

one of the Galerkin finite-element schemes (3.21) and (3.23).
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3.4.1 Preliminaries

We first let Eh be the set of all edges of the triangulation Th, and given K ∈ Th, we let E(K) be

the set of its edges. Then we decompose Eh as Eh = Eh(Ω) ∪ Eh(Γ ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}
and Eh(Γ ) := {e ∈ Eh : e ⊆ Γ}. Further, he stands for the length of a given edge e. Also, for each

edge e ∈ Eh we fix a unit normal vector νe := (ν1,ν2)t and let se := (−ν2,ν1)t be the corresponding

fixed unit tangential vector along e. However, when no confusion arises, we simple write ν and s

instead of νe and se, respectively. Now, let τ ∈ L2(Ω) such that τ |K ∈ C(K) on each K ∈ Th.

Then, given e ∈ Eh(Ω), we denote by [τ s] and [τ ν] the tangential and normal jumps of τ across e,

that is, [τ s] := (τ |K − τ |K′)|es and [τ ν] := (τ |K − τ |K′)|eν, respectively, where K and K ′ are the

triangles of Th having e as a common edge. Additionally, given scalar, vector and tensor valued fields

v, ϕ = (ϕ1, ϕ2)t and τ := (τij)1≤i,j≤2, respectively, we let

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
∂ϕ1

∂x2
−∂ϕ1

∂x1
∂ϕ2

∂x2
−∂ϕ2

∂x1

)
, curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.

Next, we collect a few preliminary definitions and results that we need in what follows. Given an

integer k ≤ 0 and S ⊆ R2, we let Pk(S) be the space of polynomials of degree ≤ k. Then, we let

Ih : H1(Ω)→ Xh be the usual Clément interpolation operator (cf. [31]), where

Xh := {vh ∈ C(Ω̄) : vh|K ∈ P1(K), ∀K ∈ Th}.

The following lemma establishes the local approximation properties of Ih.

Lemma 3.3. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there

holds

‖v − Ih(v)‖0,K ≤ c1hK ‖v‖0,∆(K) ∀K ∈ Th
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖0,∆(e) ∀ e ∈ Eh(Ω) ∪ Eh(Γ ),

where ∆(K) := ∪{K ′ ∈ T : K ′ ∩K 6= ∅} and ∆(e) := ∪{K ′ ∈ T : K ′ ∩ e 6= ∅}.

Proof. See [31]. �

The main techniques involved below in the proof of efficiency include the localization technique

based on element-bubble and edge-bubble functions. Given K ∈ Th and e ∈ E(K), we let ψK and

ψe be the usual triangle-bubble and edge-bubble functions [89, eqs. (1.5)-(1.6)], respectively, which

satisfy:

(i) ψK ∈ P3(K), ψK = 0 on ∂K, supp(ψK) ⊆ K, and 0 ≤ ψK ≤ 1 in K,

(ii) ψe ∈ P2(K), ψe = 0 on ∂K, supp(ψe) ⊆ ωe, and 0 ≤ ψe ≤ 1 in ωe,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}. Additional properties of ψK and ψe are collected in the

following lemma (c.f. [88, Lemma 1.3], [89, Section 3.4] or [90, Section 4]).
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Lemma 3.4. Given k ∈ N ∪ {0}, there exist positive constants γ1, γ2, γ3, γ4 and γ5, depending only

on k and the shape regularity of the triangulations, such that for each K ∈ Th and e ∈ E(K), there

hold

γ1 ‖q‖20,K ≤
∥∥∥ψ1/2

K q
∥∥∥2

0,K
∀ q ∈ Pk(K),

‖ψKq‖1,K ≤ γ2h
−1
K ‖q‖0,K ∀ q ∈ Pk(K),

γ3 ‖p‖20,e ≤
∥∥∥ψ1/2

e p
∥∥∥2

0,e
∀ p ∈ Pk(e),

‖ψep‖1,ωe ≤ γ4h
−1/2
e ‖p‖0,e ∀ p ∈ Pk(e),

‖ψep‖0,ωe ≤ γ5h
1/2
e ‖p‖0,e ∀ p ∈ Pk(e).

(3.25)

3.4.2 A posteriori error analysis for the primal finite-element scheme

We now derive a reliable and efficient residual-based a posteriori error estimator for (3.21). We

draw ideas from [6,7] (see also the monograph [91]). Letting uh ∈ Hh be the unique solution of (3.21),

we define for each K ∈ Th the a posteriori error indicator:

Θ2
K :=h2

K

∥∥αfuh − div(Ce(uh))
∥∥2

0,K
+

∑
e∈E(K)∩Eh(Ω)

he‖[Ce(uh)νe]‖20,e +
∑

e∈E(K)∩Eh(Γ )

he‖Ce(uh)νe‖20,e,

(3.26)

where, according to (3.4),

fuh
∣∣
K

(x) :=
{
T (x+ uh(x))−R(x)

}
∇T (x+ uh(x)) ∀x ∈ K,

and introduce the global a posteriori error estimator

Θ :=

∑
K∈Th

Θ2
K


1/2

.

The following theorem constitutes the main result of this section.

Theorem 3.7. Let u ∈ H and uh ∈ Hh be the solutions of (3.6) and (3.21), respectively, and assume

that αCpLF < 1/2. Then, there exist constants h0, Crel, Ceff > 0, independent of h, such that for

h ≤ h0 there holds

CeffΘ ≤ ‖u− uh‖H ≤ CrelΘ. (3.27)

The reliability of the global a posteriori error estimator (upper bound in (3.27)) and the corres-

ponding efficiency (lower bound in (3.27)) are established in Sections 3.4.2 and 3.4.2, respectively.

Reliability

The upper bound for (3.27) is established as follows.
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Lemma 3.5. Assume that αCpLF < 1/2. Then, there exist h0, Crel > 0, independent of h, such that

for h ≤ h0 there holds

‖u− uh‖H ≤ CrelΘ.

Proof. Let us first define

Rh(w −wh) := αFu(w −wh)− a(uh,w −wh) ∀wh ∈ Hh.

As a consequence of the ellipticity of a (c.f (3.7)) with ellipticity constant ᾱ (c.f. [20, Corollary 11.2.22]),

we obtain the following condition

ᾱ‖v‖1,Ω ≤ sup
w∈H
w 6=0

a(v,w)

‖w‖H
∀v ∈ H.

In particular, for v = u−uh ∈ H, we notice from (3.6) and (3.21) that a(u−uh,wh) = 0 ∀wh ∈ Hh,

and hence we obtain a(u− uh,w) = a(u− uh,w −wh) = Rh(w −wh), which yields

ᾱ‖u− uh‖H ≤ sup
w∈H
w 6=0

Rh(w −wh)

‖w‖H
∀wh ∈ Hh. (3.28)

From the definition of Rh(w−wh), integrating by parts on each K ∈ Th, and adding and subtracting

a suitable term, we can write

Rh(w −wh) = αFuh(w −wh) + αFu(w −wh)− a(uh,w −wh)− αFuh(w −wh),

= α {Fu(w −wh)− Fuh(w −wh)} − α
ˆ
Ω
fuh · (w −wh)−

∑
K∈Th

ˆ
K
Ce(uh) : e(w −wh),

= α{(Fu − Fuh)(w −wh)} − α
ˆ
Ω
fuh · (w −wh)

−
∑
K∈Th

{
−
ˆ
K

div(Ce(uh)) · (w −wh) +

ˆ
∂K

(Ce(uh)νe) · (w −wh)

}
,

= α{(Fu − Fuh)(w −wh)}+
∑
K∈Th

ˆ
K

(div(Ce(uh))− αfuh) · (w −wh)

−
∑

e∈Eh(Ω)

ˆ
e

[(Ce(uh)νe)] · (w −wh)−
∑

e∈Eh(Γ )

ˆ
e
(Ce(uh)νe) · (w −wh).

(3.29)

Then, choosingwh as the Clément interpolant ofw, that iswh := Ih(w), the approximation properties

of Ih (cf. Lemma 3.3) yield

‖w −wh‖0,K ≤c1hK ‖w‖1,∆(K) ,

‖w −wh‖0,e ≤c2he ‖w‖1,∆(e) .
(3.30)

In this way, applying the Cauchy-Schwarz inequality to each term (3.29), and making use of (3.30)

together with the Lipschitz continuity of Fu (cf. (3.8)), we obtain

Rh(w −wh) ≤ αc1LFhK‖u− uh‖H‖w‖1,∆(K)

+ Ĉ

∑
K∈Th

Θ2
K


1/2∑

K∈Th

‖w‖21,∆(K) +
∑

e∈Eh(Ω)

‖w‖21,∆(e)


1/2

,
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where Ĉ is a constant depending on c1 and c2 and Θ2
K defined by (3.26). Additionally using the fact

that the number of triangles in ∆(K) and ∆(e) are bounded, we have∑
K∈Th

‖w‖21,∆(K) ≤ C1‖w‖21,Ω and
∑

e∈Eh(Ω)

‖w‖21,∆(e) ≤ C2‖w‖21,Ω

where C1, C2 are positive constant, and using that αCpLF ≤ 1/2, it follows that h0 := 1/(2c1αLF ),

finally substituting in (3.28), we conclude that

‖u− uh‖H ≤ CrelΘ,

where Crel is independent of h. �

Efficiency

Now we focus on establish the lower bound in (3.27). We begin with the following lemma whose

proof is a slight modification of [90, Section 6].

Lemma 3.6. There exist constants η1, η2, η3 > 0, independent of h, but depending on γ1, γ2, γ3, γ4

and γ5 (c.f. (3.25)), such that for each K ∈ Th there holds

hK
∥∥αfuh − div(Ce(uh))

∥∥
0,K
≤ η1‖u− uh‖0,K ,

h1/2
e ‖[Ce(uh) · νe]‖0,e ≤ η2

{
‖u− uh‖0,ωe +

∑
K∈ωe

hK‖u− uh‖0,K

}
,

h1/2
e ‖Ce(uh) · νe‖0,e ≤ η3‖u− uh‖0,K ,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.

Proof. Using the first inequality in (3.25), and let RK(uh) := αfuh − div(Ce(uh)) we have

‖RK(uh)‖20,K ≤ γ
−1
1

∥∥∥ψ1/2
K RK(uh)

∥∥∥2

0,K
,

= γ−1
1

ˆ
K
ψKRK(uh)

{
αfuh − div(Ce(uh))},

= γ−1
1

ˆ
K
αψKRK(uh)

{
fuh − fu} − γ

−1
1

ˆ
K
ψKRK(uh){div(Ce(uh)− Ce(u))},

= γ−1
1

ˆ
K
αψKRK(uh)

{
fuh − fu}+ γ−1

1

ˆ
K

(Ce(uh)− Ce(u)) · ∇(ψKRK(uh)),

≤ αγ−1
1 ‖RK(uh)‖0,K‖fuh − fu‖0,K + γ−1

1 γ2h
−1
K ‖Ce(uh)− Ce(u)‖0,K‖RK(uh)‖0,K ,

where, for the last inequality we used the inverse inequality (second relation in (3.25)). Next, we have

hK‖RK(uh)‖0,K ≤ αhKγ−1
1 ‖fuh − fu‖0,K + γ−1

1 γ2‖Ce(uh)− Ce(u)‖0,K ,

now, using (3.5) and grouping terms, we conclude with η1 > 0 independent of h, that

hK
∥∥αfuh − div(Ce(uh))

∥∥
0,K
≤ η1‖u− uh‖0,K ,

We omit further details and repeating arguments used for the remaining inequalities. �
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3.4.3 A posteriori error analysis for the mixed finite-element scheme

In this section we derive a reliable and efficient residual-based a posteriori error estimator for (3.23).

Throughout the rest of this section we let ((σ,χ), (u,ρ)) ∈H×Q and ((σh,χh), (uh,ρh)) ∈Hh×Qh

be the solutions of the continuous and discrete formulations (3.18) and (3.23), respectively. We

introduce the global a posteriori error estimator

Ψ :=

∑
K∈Th

Ψ2
K


1/2

,

where we define for each K ∈ Th

Ψ2
K :=

∥∥αfuh − divσh
∥∥2

0,K
+ ‖σh − σt

h‖20,K + ‖χh‖20,K + h2
K‖curl(C−1σh + ρh)‖20,K

+ h2
K‖C−1σh + ρh‖20,K +

∑
e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e

+
∑

e∈E(K)∩Eh(Γ )

he‖(C−1σh + ρh)s‖20,e.

(3.31)

The following theorem constitutes the main result of this section.

Theorem 3.8. Assume that αCmLF < 1/2. Then, there exist Crel, Ceff > 0 independent of h, such

that

CeffΨ ≤ ‖(σ,χ)− (σh,χh)‖H + ‖(u,ρ)− (uh,ρh)‖Q ≤ CrelΨ. (3.32)

The reliability of the global error estimator (upper bound in (3.32)) and the corresponding efficiency

(lower bound in (3.32)) are established in Sections 3.4.3 and 3.4.3, respectively.

Reliability

We begin by establishing a more general result due to Lemmas 3.1, 3.2 and Theorem 3.4, and that

we will use to establish the upper bound in (3.32). This result we establish in the following theorem.

Theorem 3.9. Given F̄ ∈H ′ and Ḡu ∈ Q′, there exists a unique ((σ̄, χ̄), (ū, ρ̄)) ∈H ×Q such that

A((σ̄, χ̄), (τ , ξ)) +B((τ , ξ), (ū, ρ̄)) = F̄ ((τ , ξ)) ∀(τ , ξ) ∈H ,

B((σ̄, χ̄), (v,η)) = Ḡu((v,η)) ∀(v,η) ∈ Q .
(3.33)

In addition, there exists C > 0, depending only on α̂, β̂, ‖a‖, and ‖b‖, such that

‖(σ̄, χ̄)‖H + ‖(ū, ρ̄)‖Q ≤ C{‖F̄‖H′ + ‖Ḡu‖Q′}. (3.34)

To derive an upper bound for ‖(σ,χ) − (σh,χh)‖H we consider the functional Sh : H(div;Ω) → R
defined by

Sh(τ ) := a(σh, τ ) + b(τ , (uh,ρh)) ∀ τ ∈ H(div;Ω), (3.35)
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where a and b are the bilinear forms defined in (3.15) and (3.16), respectively, and let Sh|V be the

restriction of S to V , the first component of the kernel V of B (cf. (3.19)) We note that Sh(τ h) = 0

for each τ h ∈ Hσ
h .

Now, we make use of a particular problem of the form (3.33) with F̄ ∈H ′ and Ḡu ∈ Q′ defined by

F̄ ((τ , ξ)) := 0 ∀ (τ , ξ) ∈H and Ḡu((v,η)) := B((σ,χ)− (σh,χh), (v,η)) ∀ (v,η) ∈ Q,

and let ((σ̄, χ̄), (ū, ρ̄)) ∈H ×Q be the unique solution of this particular problem. We note that

Ḡu((v,η)) =

ˆ
Ω

(αfu − divσh) · v −
ˆ
Ω
χh · v −

ˆ
Ω
σh : η,

this conforming the definition of B and the second equation of (3.18). Adding and subtracting a

suitable term we can rewrite the above equation as:

Ḡu((v,η)) =

ˆ
Ω

(
αfuh − divσh

)
· v −

ˆ
Ω
χh · v −

ˆ
Ω
σh : η + α

ˆ
Ω

(fu − fuh) · v.

Applying Cauchy-Schwarz inequality and noting that σh : η = 1
2(σh − σt

h) : η, together with the

condition (3.5), we can establish

‖Ḡu‖Q′ ≤ C
{ ∥∥αfuh − divσh

∥∥
0,Ω

+ ‖σh − σt
h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω

}
,

by the previous estimate and the continuous dependence results (3.34), we have

‖(σ̄, χ̄)‖H ≤ C
{ ∥∥αfuh − divσh

∥∥
0,Ω

+ ‖σh − σt
h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω

}
. (3.36)

Now, applying the triangle inequality we obtain

‖(σ,χ)− (σh,χh)‖H ≤ ‖(σ,χ)− (σh,χh)− (σ̄, χ̄)‖H + ‖(σ̄, χ̄)‖H , (3.37)

and hence, it remains to estimate ‖(σ,χ)−(σh,χh)−(σ̄, χ̄)‖H . First observe that (σ,χ)−(σh,χh)−
(σ̄, χ̄) ∈ V , hence applying the ellipticity of A in V (cf. Lemma 3.1) and analogously to [43, Lemma

4.6], we obtain an estimate for this term that replacing together with (3.36) in (3.37), allows us to

establish that

‖(σ,χ)− (σh,χh)‖H ≤C
{
‖Sh|V ‖V ′ +

∥∥αfuh − divσh
∥∥

0,Ω
+ ‖σh − σt

h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω
}
.

(3.38)

To estimate ‖Sh|V ‖V ′ , (cf. (3.35)) in (3.38), we have the following result

Lemma 3.7. There exists C > 0, such that

‖Sh|V ‖V ′ ≤C

h2
K‖curl(C−1σh + ρh)‖20,K +

∑
e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e

+
∑

e∈E(K)∩Eh(Γ )

he‖(C−1σh + ρh)s‖20,e

 .

(3.39)
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Proof. See [43, Lemma 4.7] for details. �

From the above, the following lemma is configured.

Lemma 3.8. Assume that αCmLF < 1/2. Then, there exists C > 0 such that

‖(σ,χ)− (σh,χh)‖H ≤ C

∑
K∈Th

Ψ̃2
K


1/2

,

where

Ψ̃2
K := h2

K‖curl(C−1σh + ρh)‖20,K +
∑

e∈E(K)∩Eh(Ω)

he‖[(C−1σh + ρh)s]‖20,e +
∑

e∈E(K)∩Eh(Γ )

he‖(C−1σh + ρh)s‖20,e

+ ‖αfu − divσh‖0,Ω + ‖σh − σt
h‖0,Ω + ‖χh‖0,Ω + αLF ‖u− uh‖0,Ω.

Proof. It follows straightforwardly from (3.38) and (3.39). �

Now we proceed to obtain the corresponding upper bound for ‖(u,ρ)− (uh,ρh)‖Q.

Lemma 3.9. Assume that αCmLF < 1/2. Then, there exists C > 0 such that

‖(u,ρ)− (uh,ρh)‖Q ≤ C

∑
K∈Th

Ψ2
K


1/2

,

where Ψ2
K is the local indicator defined in (3.31).

Proof. The proof follows directly from [43, Lemma 4.9] with small modifications. �

The reliability of Ψ , is a straightforward consequence of Lemmas 3.8 and 3.9, assuming αCmLF <

1/2.

Efficiency

In this section, we provide upper bounds depending on the actual errors for the seven terms defining

the local indicator Ψ2
K (c.f. (3.31)). For this, analogously to [43, Section 4.3] we begin with the first

three ones appearing there, more precisely, since div(σ) = αfu in Ω, we have that

‖αfu − divσh‖20,K ≤ ‖σ − σh‖
2
div,K .

Next, adding and subtracting σ, and we use that σ = σt in Ω, we see that

‖σh − σt
h‖20,K ≤ 4‖σ − σh‖20,K .

Finally, since χ = 0, we obtain

‖χh‖20,K = ‖χ− χh‖20,K .

The upper bounds for the terms involving only the tensor C−1σh+ρh, are established in the following

result.
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Lemma 3.10. There exist C1, C2, C3, C4 > 0, independent of h, such that for each K ∈ Th there holds

h2
K‖curl(C−1σh + ρh)‖20,K ≤ C1

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
‖C−1σh + ρh‖20,K ≤ C2

{
‖u− uh‖20,K + h2

K‖σ − σh‖20,K + h2
K‖ρ− ρh‖20,K

}
he‖[(C−1σh + ρh)s]‖20,e ≤ C3

∑
K⊆ωe

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
∑

e∈Eh(Γ )

he‖(C−1σh + ρh)s‖20,e ≤ C4

∑
e∈Eh(Γ )

{
‖σ − σh‖20,K + ‖ρ− ρh‖20,K

}
,

where ωe := ∪{K ′ ∈ Th : e ∈ E(K ′)}.

Proof. See [43, Section 4.3]. �

3.5 Applications and performance assessment

3.5.1 Numerical implementation

We now turn to the implementation of some numerical tests that confirm the predicted reliability

and efficiency of the a posteriori error estimators (3.26) and (3.31). The DIR problem is in all cases

restricted to images mapped to the unit square Ω = (0, 1)2, and uniform triangular partitions are

employed for all initial meshes. The discretization of the primal problem is done with continuous

piecewise linear and continuous piecewise quadratic approximations for displacement. For the case

of the mixed formulation we consider the lowest-order family of Brezzi-Douglas-Marini elements for

the rows of the Cauchy stress tensor, and piecewise constant approximations of the entries of the

displacement vector and the rotation tensor [49]. The Picard method is used to linearize the problem

and we set a fixed tolerance of 1e-5 on the energy norm of the difference between two consecutive

solutions. Unless otherwise specified, all linear solves related to the fixed-point iteration (in both

primal and mixed formulations) are carried out with the stabilized bi-conjugated gradient method

(BiCGStab) using an incomplete LU decomposition as preconditioner.

Mesh adaptation guided by the a posteriori error estimators is carried out by a classical conforming

partitioning. No coarsening is applied (mainly due to the capabilities of the current version of the finite

element library we use herein [4]). After computing locally the error indicators, we proceed to tag

elements for refinement using the Dörfler strategy [44], where we mark sufficiently many elements so

that one establishes equi-distribution of the error indicator mass, and then the diameter of each triangle

in the new adapted mesh (contained in a generic element K on the initial grid) is set proportional

to the diameter of the initial element times the ratio ζ̄h/ζK , where ζ̄h is the mean value of a generic

error estimator ζ over the initial mesh (see for instance, [88]). In each of the accuracy tests below,

these ratios are multiplied by a constant γratio that is arbitrarily chosen so as to generate either a

roughly similar number of degrees of freedom, or similar individual error magnitudes than in the case

of uniform refinement. The density of the refinement process is tuned at will.

Let us also recall from [13] that the implementation of the fixed-point scheme includes an additional

stabilization term associated with dynamic gradient flows, that essentially translates in having a
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pseudo-time step in the Euler-Lagrange equations (3.3), that then read: knowing uk, for k = 1, . . .,

solve
uk+1

δt
− div(Ce(uk+1)) =

uk

δt
− αfuk .

Further details can be found in [13, Appendix C]. Therefore the primal and mixed Galerkin methods,

as well as the a posteriori error indicators Θ and Ψ are modified accordingly, and only affecting

the residual terms associated with the momentum equation. The Picard iterations with pseudo time-

stepping are located inside the adaptive refinement loop which consists in solving, estimating, marking

and refining.

3.5.2 Example 1: Registration of smooth synthetic images

We assess the accuracy of the primal and mixed DIR methods using a smooth synthetic image under

a smooth transformation. To this end, we define the reference image R : [0, 1]2 → R by

R(x1, x2) = sin(2πx1) sin(2πx2).

We further define a manufactured displacement and the corresponding stress and rotation tensor fields

by

u(x1, x2) =

 0.1 cos(πx1) sin(πx2) +
x21(1−x1)2x22(1−x2)2

2λ

−0.1 sin(πx1) cos(πx2) +
x31(1−x1)3x32(1−x2)3

2λ

 ,

σ(x1, x2) = Ce(u), and ρ(x1, x2) =
1

2
(∇u−∇ut).

Then, we construct a synthetic target image via composition of the reference image and the inverse

warping, namely T = R ◦ (id+ u)−1. An initial target in the fixed-point scheme is a perturbation of

the reference image, that is T0(x1, x2) = sin(2πx1) sin(2π[x2 + 0.01]). These manufactured solutions

satisfy the zero-traction boundary condition, and they are used to construct an additional body load

(apart from fu) that needs to be incorporated as right-hand side in the discrete problems, as well

as in the residual term associated with the momentum conservation equation in the definition of the

error indicators. The model parameters employed in this test are Young modulus E = 1000, Poisson

ratio ν = 0.4 (used to obtain the Lamé constants of the solid, λ = Eν
(1+ν)(1−2ν) and µ = E

2+2ν ), a weight

constant α = 100, and pseudo time-step δt = α−2.

On sequences of uniformly or adaptive refined meshes, we solve the DIR problem with primal and

mixed methods and compute (non-normalized) errors between the approximate and exact solutions in

their natural norms, that is, for the primal method eu = ‖u−uh‖1,Ω; whereas for the mixed method

eu = ‖u− uh‖0,Ω and eρ = ‖ρ− ρh‖0,Ω, eσ = ‖σ − σh‖div,Ω. We also point out that in the case of

adaptive mesh refinement, the experimental rates of convergence r̂ate are computed differently than

in the uniform case

rate = log(e/ê)[log(h/ĥ)]−1, r̂ate = −2 log(e/ê)[log(DoF/D̂oF)]−1,

where e and ê denote errors produced on two consecutive meshes. These grids have respective mesh

sizes h and h′ (needed to compute the experimental order of convergence rate), or they are asso-

ciated with DoF and D̂oF degrees of freedom, respectively (in when computing r̂ate). In addition,
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the effectivity index associated with the global estimators for the primal and mixed discretizations is

computed as

eff(Θ) =
λeu
Θ

, eff(Ψ) =

{
e2
σ + e2

u + e2
ρ

}1/2

Ψ
,

where the additional scaling (with the dilation modulus λ) for the indicator Θ is motivated by the

fact that the efficiency bound arising from the proof of Lemma 3.6 is proportional to λ due to the

definition of the Hooke tensor C. Such an explicit scaling is however not required for the a posteriori

estimation in the mixed method.

In Figure 3.1(a,b) we show the reference image Rh and the resampled image Th = T (x+uh(x)), and

the panels (c-h) show examples of meshes adaptively refined guided by the estimators. We note that

the primal method refines largely around the center of the domain. We also show in panels (i,j,k) the

approximate solutions (the Frobenius norm of stress, displacement magnitude, and Frobenius norm of

the rotation matrix) generated with the mixed method at the final refinement level.

The numerical convergence of the primal and mixed DIR methods are shown in Figure 3.2(a)

and Figure 3.2(b), respectively. We observe that both methods do exhibit monotonic convergence.

For this particular example, no major differences arise between the uniform and adaptive refinement

schemes. Convergence rates for both methods are reported in Table Table 3.1, where we verify that

optimal convergence are achieved with O(hk). No differences were observed in the number of Picard

iterations required by the uniform and adaptive refinement strategies. The mixed DIR method also

displays optimal convergence rates, see Table 3.2. We further note that the effectivity index values

for the mixed scheme are roughly constant and close to 0.43, and that the convergence rate is not

substantially improved by the adaptivity in this example.

(a) Primal method, uniform refinement (b) Primal method, adaptive refinement

k DoF h rate iter k DoF hmin r̂ate eff(Θ) iter

1 53 0.3536 0.561 4 1 53 0.3536 1.123 0.6984 4

165 0.1768 0.931 4 165 0.1768 1.123 0.7083 4

581 0.0884 1.116 4 557 0.0884 1.123 0.6964 4

2181 0.0442 1.082 4 2101 0.0442 1.041 0.6962 4

8453 0.0221 1.030 4 8149 0.0221 1.022 0.6950 4

2 165 0.3536 1.649 4 2 165 0.3536 2.177 0.3599 4

581 0.1768 1.945 4 581 0.1768 2.026 0.3675 4

2181 0.0884 2.025 4 2181 0.0884 2.088 0.3602 4

8453 0.0442 2.031 4 8453 0.0442 2.045 0.3546 4

33285 0.0221 2.041 4 32933 0.0221 2.061 0.3457 4

Table 3.1: Example 1: Smooth synthetic image registration example. Error measures, convergence

rates, and Picard iteration count for the approximate displacements uh produced with the primal

method (of polynomial degrees k = 1 and k = 2); and tabulated according to the resolution level. (a)

Uniform mesh refinement, (b) adaptive mesh refinement based on error estimator Θ, with γratio = 0.1,

also displaying the rescaled effectivity index.



3.5. Applications and performance assessment 100

-5.0e-01 0.0e+00 5.0e-01-1.0e+00 1.0e+00

R

(a)
-5.0e-01 3.0e-07 5.0e-01-1.0e+00 1.0e+00

(b)

(c) (d) (e)

(f) (g) (h)
7.9e+01 1.6e+02 2.4e+021.1e-01 3.2e+02

2.5e-02 4.9e-02 7.4e-024.1e-06 9.9e-02
1.1e-01 2.2e-01 3.3e-011.6e-07 4.4e-01

(i) (j) (k)

Figure 3.1: Example 1: Adaptive mesh refinement in the registration of a smooth synthetic images.

(a,b) Projected fields of the reference R and composed T (x + uh(x)) images; (c,d,e) evolution of

the mesh adaption for the primal scheme using the error indicator Θ; (f,g,h) evolution of the mesh

adaption for the mixed scheme using the error indicator Ψ ; (i,j,k) Stress, displacement and rotation

norm fields predicted by the mixed scheme using mesh adaptivity.

3.5.3 Example 2: Registration of smooth synthetic images with high gradients

Next, we modify the closed-form displacement of Example 1 to produce higher gradients in the

reference image and initial target image. To this end, we consider the following image and displacement
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Figure 3.2: Example 1: Smooth synthetic image registration example. Error convergence with respect

to the number of degrees of freedom for both (a) primal, and (b) mixed DIR formulations. Uniform

refinement is shown in solid lines, while the adaptive refinement is shown in dotted lines.

field expressions:

u(x1, x2) =

 0.1 cos(πx1) sin(πx2) +
x21(1−x1)2x22(1−x2)2

2

−0.1 sin(πx1) cos(πx2) +
x31(1−x1)3x32(1−x2)3

2

 , R(x1, x2) =
x1x2(x1 − 1)(x2 − 1)

(x1 + 0.01)4 + (x2 + 0.01)4
,

T0(x1, x2) = e−50[(x1−0.2)2+(x2−0.2)2].

All other remaining model parameters are kept the same as in Example 1.
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(a) Mixed method, uniform refinement

DoF h rateσ rateu rateρ iter

323 0.3536 1.016 0.932 1.125 7

1219 0.1768 1.101 0.994 1.049 8

4739 0.0884 1.051 1.000 1.017 8

18691 0.0442 1.015 1.000 1.006 8

74243 0.0221 1.004 1.000 1.002 10

(b) Mixed method, adaptive refinement

DoF hmin r̂ateσ r̂ateu r̂ateρ eff(Ψ) iter

323 0.3536 1.251 1.015 1.195 0.4281 8

1219 0.1768 1.005 1.037 1.114 0.4257 8

4739 0.08839 1.085 1.020 1.038 0.4219 8

18603 0.04419 1.030 1.004 0.998 0.4222 9

73635 0.0221 1.001 1.001 1.000 0.4217 9

Table 3.2: Example 1: Smooth synthetic image registration example. Convergence rates, and Picard

iteration count for the approximate Cauchy stress, displacements, and rotation σh,uh,ρh for the

mixed formulations. (a) Uniform mesh refinement, (b) adaptive mesh refinement guided by Ψ , with

γratio = 0.05.

We show in Figure 3.3(a,b) synthetic images projected onto the space of piecewise linear and con-

tinuous functions, as well as a few adapted meshes produced with the indicators (c-h), where one

sees that the agglomeration of vertices occurs not so much due to the high gradients of the synthetic

images, but mainly because of the features in the solutions to the elasticity problem. Panels (i,j,k)

have snapshots of approximate solutions generated with the mixed method after five steps of adaptive

refinement, and plotted on the deformed domain. We note that, for the adaptive algorithm with

γratio = 0.01, the error indicator makes the refinement to be applied uniformly for the first three

iterations, after which localized meshing takes place in certain regions of the domain.

Figure 3.4(a) shows the numerical convergence of the primal DIR method under uniform and ad-

aptive refinement. We observe monotonic convergence for all displacement field error as the number of

DoFs increases. A notable improvement in convergence is observed for the particular case of the ad-

aptive refinement scheme using second-order element interpolations. Convergence rates for the primal

DIR method using uniform and adaptive refinement are reported in Table 3.3, where we observe that

the case of adaptive refinement using second-order elements results in convergence rates that reach

k = 2, which is notoriously higher than the convergence rate of k = 1.5 reached by the primal method

under uniform refinement. For the case of the mixed method, adaptive refinement always result in

better convergence than uniform refinement for the displacement, stress and rotation fields, see Figure

3.4(b). Table 3.4 reports the convergence rates of the mixed method, where we note that the adaptive

refinement always results in rates that are greater than those obtained under uniform refinement. Fur-

ther, we observe that in systems with roughly similar number of DoFs, the number of Picard iterations

needed to reach the tolerance are smaller in the case of adaptive refinement.
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Figure 3.3: Example 2: Adaptive mesh refinement in the registration of smooth synthetic images with

high gradients. (a,b) Reference image R and composed Target image T (x+ uh(x)); (c,d,e) evolution

of the mesh adaption for the primal DIR method using the error indicator Θ; (f,g,h) evolution of the

mesh adaption for the mixed DIR method using the error indicator Ψ ; (i,j,k) Stress, displacement and

rotation norm fields predicted by the mixed scheme using mesh adaptivity.

3.5.4 Example 3: Registration of brain medical images

We now turn to the application of the adaptive primal and mixed DIR methods in the registration

of medical images of human brains [33]. The reference and target images for the brain have dimensions

258 × 258 and the voxel resolution corresponds to 1 mm, see top panels in Figure 3.5. We proceed

to solve the DIR problem using both primal and mixed adaptive schemes, starting from structured

meshes with 32768 triangular elements. The elasticity parameters are set to E = 15, ν = 0.3, the
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Figure 3.4: Example 2: Error convergence for (a) primal DIR method and (b) mixed DIR method

under uniform and adaptive mesh refinement.

weight constant is α = 50, and the pseudo timestep is δt = 0.01/α. The tolerance for the Picard

scheme is increased to 1e-04, and for the mixed method the refinement density proportion is ruled by

the constant γratio = 0.1. The primal method requires an average (over the number of mesh refinement

steps, here assigned to 4) of 19 Picard steps to reach convergence, which is slightly larger for the mixed

method (22 iterations). The first two plots on the middle row of Figure 3.5 depict the composed images

T ◦ (id+uh) generated with the primal and mixed methods, where we can notice very similar patterns

in both cases. The two other figures on the right show the similarity between reference and warped

images, |R(x)− T (x+ uh(x))| resulting from both methods.
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(a) Primal method, uniform refinement (b) Primal method, adaptive refinement

k DoF h rate iter k DoF hmin r̂ate eff(Θ) iter

1 53 0.3536 0.481 4 1 53 0.3536 0.617 0.8314 4

165 0.1768 0.526 6 165 0.1768 1.277 0.8282 6

581 0.0884 0.859 19 581 0.0884 1.037 0.8205 11

2181 0.0442 0.793 24 2105 0.0442 1.084 0.8187 15

8453 0.0221 0.620 28 8177 0.0221 1.099 0.8219 18

2 165 0.3536 0.844 4 2 165 0.3536 1.398 1.6422 4

581 0.1768 0.529 6 581 0.1768 1.489 1.6926 6

2181 0.0884 0.900 20 2181 0.0884 1.891 1.6360 12

8453 0.0442 1.169 25 4959 0.0442 1.786 1.6799 15

33285 0.0221 1.564 29 13129 0.0221 2.097 1.6492 18

Table 3.3: Example 2. Convergence rates, and Picard iteration count for the approximate displace-

ments uh produced with the first and second-order primal method; and tabulated according to the

resolution level, under uniform (a) and adaptive mesh refinement guided by Θ, with γratio = 0.01 ((b)

also displaying the rescaled effectivity index).

(a) Mixed method, uniform refinement

DoF h rateσ rateu rateρ iter

323 0.3536 0.552 0.278 1.174 7

1219 0.1768 0.278 0.728 0.674 13

4739 0.0884 0.443 0.846 0.882 28

18691 0.0442 0.741 1.183 0.658 45

74243 0.0221 0.598 1.235 0.606 50

(b) Mixed method, adaptive refinement

DoF hmin hmax r̂ateσ r̂ateu r̂ateρ eff(Ψ) iter

323 0.3536 0.3536 0.965 0.518 1.169 0.5333 5

1219 0.1768 0.1768 0.955 0.725 0.869 0.5272 8

4692 0.0742 0.1250 0.952 0.946 1.002 0.5188 19

6277 0.0264 0.1250 1.066 1.114 1.106 0.5139 21

18884 0.0107 0.0817 1.052 1.039 1.067 0.5205 24

32998 0.0051 0.0730 0.986 0.958 0.975 0.5216 30

94153 0.0020 0.0601 0.961 0.963 0.959 0.5210 30

Table 3.4: Example 2: Convergence rates, and Picard iteration count for the approximate Cauchy

stress, displacements, and rotation σh,uh,ρh produced with the lowest-order mixed method; and

tabulated according to the resolution level, under uniform (a) and adaptive mesh refinement guided

by Ψ , with γratio = 0.009 ((b) also displaying the effectivity index).
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Figure 3.5: Example 3. Registration of brain medical images. (a) Reference image, (b) target image;

(c,d) resampled (composed) (c,d) images from solutions using primal and mixed schemes, respectively;

(e,f) similarity plots resulting from primal and mixed schemes, respectively; (g,h,i) stress, displacement

and rotation norm fields resulting from the mixed DIR scheme using adaptive mesh refinement.

We also plot an example of a mesh obtained after four steps of adaptive refinement with the primal

and mixed methods (see Figure 3.6). For illustration purposes we initiate the process from a coarse

mesh of 8196 triangles (corresponding to a low resolution image of 64×64 pixels. Starting with images

of higher resolution imply that the meshes obtained after adaptive refinement are too dense to be easily

visualized). The figures exemplify the concentration of refinement near the skull, which is consistently
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(a) (b)(a)

(a) (b)(b)

Figure 3.6: Example 3. Adaptive mesh refinement in the registration of brain medical images. (a)

Mesh after four steps of adaptive refinement using the error indicator Θ for the primal DIR method;

(b) Mesh after four steps of adaptive refinement using the error indicator Ψ for the mixed DIR method.

the zone with highest gradients in the reference and target images, as well as in stress and rotations (as

inferred from panels (g,h,i) in Figure 3.5, where the Frobenius norm of the rotation tensor is plotted

in log-scale for clarity). On the other hand, the displacements are, in comparison, rather smooth and

they seem not to contribute substantially to the local error indicators.

In Table 3.5 we report information about the CPU time required in each step of the overall solution

algorithm. We record the wall-time during the execution of the mixed and primal DIR methods, when

starting from a coarse grid (representing 8715 DoFs for the primal method and 76573 DoFs for the

mixed scheme) and in both cases applying five iterations of adaptive mesh refinement. An average of

17 fixed-point iterations are needed for the primal approximations and 25 for the mixed scheme.

3.5.5 Example 4: Registration of binary images under large deformation

The last example of application adressed in this study consists in a classic benchmark in DIR which

introduces two important challenges. First, reference and target images are binary-composed, i.e. they

have intensity values of either 0 or 1, which creates steep numerical gradients at the binary interface

of order 1/h. Thus, the images do not satisfy condition (3.5). Second, the deformation required for a
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refin.
level

matrix
assembly

solution
computation

IO and
residual

evaluation
of estimator

marking and
refinement

Primal method 1 0.101 0.075 (avg) 0.102 0.096 0.544

(total CPU time: 73.16) 2 0.099 0.163 (avg) 0.110 0.130 0.757

3 0.162 0.312 (avg) 0.192 0.235 1.284

4 0.489 1.127 (avg) 0.481 0.704 3.351

5 0.853 2.093 (avg) 0.758 0.812 5.246

Mixed method 1 0.418 1.445 (avg) 0.101 0.099 0.530

(total CPU time: 997.83) 2 0.443 2.373 (avg) 0.109 0.141 0.668

3 0.578 4.746 (avg) 0.135 0.154 0.719

4 0.704 8.390 (avg) 0.204 0.237 1.298

5 0.921 22.45 (avg) 0.439 0.304 2.616

Table 3.5: Example 3. CPU time (in [s]) of each step of the adaptive finite element method for

the DIR problem, measured for the primal and mixed methods, starting from coarse meshes. The

time associated with the solution of the linear systems is averaged over the number of inner Picard

iterations.

satisfactory registration is large, so that the validity of the elastic potential is not clear from a physical

viewpoint. We define the ball B(x, r) = {x ∈ R2 : |x| ≤ r} to set the images as

R(x) =

{
1 x ∈ B(0.5, 0.32) ∩ [B(0.5, 0.16)]c ∩ [{x1 > 0.5} ∩ {0.4 < x2 < 0.6}]c,
0 otherwise,

T (x) =

{
1 x ∈ B(0.5, 0.25),

0 otherwise.

Both methods consider quadrature rules of sixth order, with an initial mesh given by a unit square

with 20 elements per side, which yields a total of 800 triangular elements. We consider the parameters

α = 1000, E = 15, ν = 0.3 and set the pseudo timestep to δt = h2
min/α for the primal case and

δt = 0.01h2
min/α, where hmin is the minimum characteristic length of the mesh. This was motivated

by a possible CFL condition on the timestep arising from the explicit treatment of the nonlinearity

and proved effective during numerical tests. The convergence was set through the `∞ norm of the

increment |uk − uk−1|`∞ with a tolerance of hmin, so that iterations stop when the displacement

changes by less than the smallest element. A maximum number of 100 iterations was always achieved,

following previous works adressing this problem [74]. Both the primal and mixed DIR problems for this

example were solved in serial with the iterative scheme BiCGStab preconditioned with an incomplete

LU factorization, using the default parameters available in FEniCS. The solution of the mixed DIR

problem required a considerable numerical effort to converge to a solution that met the error criterion.

To overcome this difficulty, we used at each refinement level the solution of the primal formulation as

an initial solution for the mixed case, and then employed 5 iterations of the mixed formulation only.

This was already implemented in [13] to substantially improve the registration of lung images in a

mixed formulation.
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refin.
level

matrix
assembly

solution
computation

IO and
residual

evaluation
of estimator

marking and
refinement

Primal method 1 0.018 0.036 (avg) 0.024 0.017 0.010

(total CPU time: 261.83) 2 0.031 0.076 (avg) 0.029 0.023 0.023

3 0.293 0.181 (avg) 0.049 0.054 0.081

4 0.293 0.627 (avg) 0.130 0.140 0.202

5 0.751 2.381 (avg) 0.338 0.466 0.799

Mixed method 1 0.04 0.051 (avg) 0.058 0.016 0.006

(total CPU time: 326.61) 2 0.248 0.112 (avg) 0.037 0.047 0.064

3 0.777 0.361 (avg) 0.037 0.047 0.064

4 2.781 1.256 (avg) 0.142 0.147 0.243

5 10.725 5.104 (avg) 0.464 0.545 1.031

Table 3.6: Example 4. CPU time (in [s]) of each step of the adaptive finite element method for

the DIR problem, measured for the primal and mixed methods, starting from coarse meshes. The

time associated with the solution of the linear systems is averaged over the number of inner Picard

iterations.

We report the solution with its components in Figure 3.7. In the first row we show the reference (a)

and target (b) images, constructed as in [74], with the solution reported in the second row together

with its absolute error |R(x) − T (x + uh(x))| in primal (c, e) and mixed (d, f) form. We note that

the mixed DIR performs slightly worse than the primal DIR method, which is to be expected due

to the lower order of approximation used. The last row shows the magnitude of all components of

the solution, in both primal (j) and mixed (g,h,i) formulations. Also, in Figure 3.8 we present the

refined mesh after three steps, where it can be observed how the mixed scheme yields a more localized

refinement even though the amount of refined elements is the same in both schemes. Finally, we

provide information on the CPU time required in each step of the overall solution algorithm in Table

3.6.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 3.7: Example 4. Registration of binary images (O-C). (a) Reference image, (b) target image;

(c,d) resampled (composed) images from solutions using primal and mixed schemes, respectively; (e,f)

similarity images resulting from the primal and mixed methods, respectively; (g,h,i) stress, displace-

ment and rotation norm fields using the adaptive mixed DIR method; (j) displacement norm field

using the adaptive primal DIR method.
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(a) (b)

Figure 3.8: Example 4. Registration of binary images. Mesh after three steps of adaptive refinement

for (a) primal DIR problem, and (b) mixed DIR problem.



Conclusions and future work

Conclusions

In this thesis we have developed primal and mixed finite element methods for a set of partial

differential equations of physical interest in Biology and Biomedicine, more precisely, the bioconvective

flows problem and deformable image registration problem. We have proved the solvability of the

continuous and discrete problems as well as their convergence results, and we have also provided

corresponding numerical examples and simulations. The main conclusions for each one of the models

are:

1. We introduced a fully-mixed finite element method for the bioconvective flows problem. For

convenience of the analysis, we introduced the strain tensor, vorticity, and pseudo-stress as ad-

ditional unknowns (besides the pseudo-concentration gradient, the velocity, the pressure, and the

concentration). This allows us to eliminate the pressure from the system, which is then recovered

using an appropriate postprocessing formula, together with the concentration gradient. The ori-

ginal problem was reformulated as an augmented variational approach in the incompressible

viscous fluid modelled by a Navier-Stokes type-system (with non-linear viscosity) coupled with

an advection-diffusion equation. Then, through a fixed-point strategy together with sufficiently

small data assumptions, the solvability analysis of both the continuous and discrete problems

as well as its corresponding a priori estimate were developed. Finally, several numerical experi-

ments were reported in order to validate the good performance of the method and confirm the

corresponding order of convergence.

2. We presented a way to formulate deformable image registration problems with Neumann bound-

ary conditions in a mathematically consistent way so as not to lose information from the images

but still keeping all the degrees of freedom from the original problem in both primal and mixed

formulations, the latter being particularly important in the quasi-incompressible case. This

method presents clear advantages for capturing rigid motions, i.e translations and rotations.

The results of well-posedness of the continuous and discrete formulations, a priori error estim-

ates, and the respective rates of convergence, were obtained by using the Babuška-Brezzi theory

and duality arguments.

3. We established an adaptive mesh-refinement scheme for the numerical solution of primal and

mixed DIR problems. Our method hinges upon the development of a posteriori error estimators

for both the primal and mixed finite-element formulations that are reliable and efficient, and at

the same time, they are easily computed. These estimators allow for an optimal refinement of
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the mesh in zones where the accuracy of the numerical approximation does not perform well.

Thus, one distinctive feature of our work is the effectiveness of the mesh-adaption strategy,

as they are justified on selectively reducing the local approximation error made by the finite-

element schemes employed. This contrasts with current methods of mesh adaption employed in

DIR problems, which either refine the discretization uniformly or rely on heuristic grounds to

select regions that are refined. To assess the numerical performance of the proposed method,

we employ uniform and adaptive mesh refinement to solve a DIR problem based on smooth

synthetic images where the displacement solution is known in advance and to demonstrate the

applicability of the method in medical images, we perform DIR on human brain images.

Future work

The methods developed and the results obtained in this thesis have motivated several ongoing and

future projects. Some of them are described below:

1. A posteriori error analysis of the augmented fully-mixed formulation for bioconvective flows

problem: We are interested in developing a posteriori error analysis for the method studied

in Chapter 1 in order to improve its robustness in the context of problems involving complex

geometries or solutions with high gradients.

2. Analysis of an augmented mixed-primal formulation for the bioconvective flow model: As an

alternative to our fully-mixed method presented in Chapter 1, we are interested in studying a

mixed formulation for the fluid (without considering the vorticity as an unknown of the system)

and a primal formulation for the concentration equation.

3. Finite element methods for inelastic deformable image registration problem: We are interested

in extending the results and techniques of Chapters 2 and 3 to the inelastic case. For this model,

we consider the problem of elastoplasticity with internal hardening ξ, in which we assume that

the strain tensor e can be decomposed as e(u) = ee(u) + ep(u), where ee and ep are the elastic

and plastic part of the strain tensor, respectively. The main unknowns of the model are the

displacement u, the plastic strain ep and the internal hardening ξ, whereas the equations reduce

to
divσ + αfu = 0, σ = C(e(u)− ep), χ = −Hξ in Ω,

u = 0, σ ν = 0 on ∂Ω,
(3.40)

where χ is the force conjugate to ξ and H represents a hardening modulus. Further, this model

considers a flow law which governs the evolution of the plastic strain and internal hardening.

The relevance of this kind of model is due to that certain human tissues, such as lung tissue,

can exhibit plasticity behavior when they are subjected to stresses above their elastic range.
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Conclusiones

En esta tesis hemos desarrollado métodos de elementos finitos primales y mixtos para sistemas

de ecuaciones diferenciales parciales de interés f́ısico en Bioloǵıa y Biomedicina, más precisamente, el

problema de fluidos bioconvectivos y problema de registro deformable de imágenes. Hemos demostrado

solubilidad de los problemas continuo y discreto, aśı como sus resultados de convergencia, para luego

proporcionar ejemplos numéricos y simulaciones correspondientes. Las principales conclusiones para

cada uno de los modelos son:

1. Introdujimos un método de elementos finitos completamente mixto para el problema de fluidos

bioconvectivos. Por conveniencia del análisis, introdujimos el tensor de esfuerzo, la vorticidad, y

el pseudo-estrés como incógnitas adicionales (además de la pseudo-concentración, la velocidad,

la presión y la concentración). Esto nos permite eliminar la presión en el sistema, la cual

es recuperada a través de una fórmula de postproceso adecuada, junto con el gradiente de la

concentración. El problema original fue reformulado mediante un enfoque variacional aumentado

para el fluido viscoso incompresible modelado por un sistema de ecuaciones de tipo Navier-Stokes

(con viscosidad no lineal) acoplado con una ecuación de advección-difusión. Seguidamente, a

través de una estrategia de punto fijo junto con supuestos de datos suficientemente pequeños,

se desarrolló el análisis de solubilidad de los problemas continuo y discreto, con su estimación a

priori correspondiente. Finalmente, se reportaron varios experimentos numéricos que validaron

el buen desempeño del método y que confirmaron los órdenes de convergencia correspondientes.

2. Presentamos una manera de formular problemas de registro deformable de imágenes con condi-

ciones de frontera Neumann de una manera matemáticamente consistente para para no perder

información de las imágenes pero manteniendo todos los grados de libertad del problema original

tanto en la formulación primal como mixta, siendo este último particularmente importante en

el caso cuasi-incompresible. Este método presenta claras ventajas para capturar movimientos

ŕıgidos, es decir, traslaciones y rotaciones. Los resultados de solubilidad de las formulaciones

continua y discreta, estimaciones de error a priori y la respectiva tasa de convergencia, fueron

obtenidos usando la teoŕıa de Babuška-Brezzi y argumentos de dualidad.

3. Establecimos un esquema de refinamiento adaptativo de malla para la solución numérica para

los problemas de registro deformable de imágenes primal y mixto. Nuestro método depende

del desarrollo de estimadores de error a posteriori, para las formulaciones de elementos finitos

primal y mixta, los cuales son confiable y eficiente, y al mismo tiempo, se calculan fácilmente.
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Estos estimadores permiten un refinamiento óptimo de la malla en zonas donde la precisión de

la aproximación numérica no funciona bien. Aśı, una caracteŕıstica distintiva de nuestro trabajo

es la efectividad de la estrategia de adaptación de la malla, ya que se justifica en la reducción

selectiva del error de aproximación local de los esquemas de elementos finitos empleados. Esto

contrasta con los métodos actuales de adaptación de malla empleados en los problemas de DIR,

que refinan la discretización de manera uniforme o dependen de bases heuŕısticas para seleccionar

regiones que se refinan. Para evaluar el desempeño numérico del método propuesto, empleamos

un refinamiento de malla uniforme y adaptativo para resolver un problema de DIR basado en

imágenes sintéticas suaves donde el desplazamiento se conoce de antemano y para demostrar la

aplicabilidad del método en imágenes médicas, realizamos DIR en imágenes del cerebro humano.

Trabajo futuro

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios proyectos en

proceso y a futuro. Algunos de ellos son descritos a continuación:

1. Análisis de error a posteriori para la formulación completamente mixta del problema de fluidos

bioconvectivos: Estamos interesados en desarrollar el análisis de error a posteriori para el método

estudiado en el Caṕıtulo 1, y de esta forma, mejorar su solidez en el contexto de problemas que

involucran geometŕıas complejas o soluciones con altos gradientes.

2. Análisis de una formulación mixta-primal aumentada para el modelo bioconvectivo: Como al-

ternativa a nuestro método completamente mixto presentado en el Caṕıtulo 1, nos interesa

estudiar una formulación mixta para el fluido (sin considerar la vorticidad como incógnita del

sistema) y una formulación primal para la ecuación de concentración.

3. Métodos de elementos finitos para el problema de registro deformable de imágenes inelástico:

Estamos interesados en extender los contenidos de los Caṕıtulos 2 y 3, al caso inelástico. Para

este caso se estudia el problema de elastoplasticidad con endurecimiento interno ξ, en el cual se

asume que el tensor de esfuerzo e puede ser descompuesto como e(u) = ee(u)+ep(u), donde ee y

ep representan la parte elástica y plástica del tensor de esfuerzo, respectivamente. Las incógnitas

principales del modelo son el desplazamiento u, la deformación plástica ep y el endurecimiento

interno ξ, mientras que las ecuaciones se reducen a

divσ + αfu = 0, σ = C(e(u)− ep), χ = −Hξ in Ω,

u = 0, σ ν = 0 on ∂Ω,
(3.41)

donde χ es la fuerza conjugada a ξ y H representa el módulo del endurecimiento. Adicion-

almente, el modelo considera una ley de flujo que gobierna la evolución de las variables de

deformación plástica y endurecimiento interno. La importancia de un modelo de este tipo, es

debido a que ciertos tejidos humanos, como por ejemplo el tejido pulmonar, pueden presentar

un comportamiento de plasticidad cuando están sometidos a tensiones por encima de su rango

elástico.
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