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Abstract

The aim of this thesis is to analyse, develop and implement several mathematical and numerical
techniques, based on mixed finite element methods and fixed-point strategies, with the purpose of
establishing the solvability of linear and non-linear problems arising in the context of fluid mechanics,
more precisely, coupled problems in porous media and non-isotermal flows.

We firstly derive an augmented fully-mixed finite element method for the coupling of fluid flow
with porous media flow. The flows are governed by the Navier–Stokes equations (with nonlinear
viscosity) and linear Darcy equations, respectively, and the transmission conditions are given by mass
conservation, balance of normal forces, and the Beavers–Joseph–Saffman law. We apply dual-mixed
formulations in both domains, and the nonlinearity involved in the Navier–Stokes region is handled
by setting the strain and vorticity tensors as auxiliary unknowns. In turn, since the transmission
conditions become essential, they are imposed weakly, which yields the introduction of the traces of
the porous media pressure and the fluid velocity as the associated Lagrange multipliers. Furthermore,
since the convective term in the fluid forces the velocity to live in a smaller space than usual, we
augment the variational formulation with suitable Galerkin redundant terms. The resulting augmented
scheme is then written equivalently as a fixed point equation, so that the well-known Schauder and
Banach theorems, combined with classical results on bijective monotone operators, are applied to prove
the unique solvability of the continuous and discrete systems. We also derive a reliable and efficient
residual-based a posteriori error estimator for the coupled problem.

Next, we discuss the analysis of a mixed finite element method for the coupling problem of Navier–
Stokes/Darcy–Forchheimer with constant density and viscosity. We consider the standard mixed for-
mulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which
yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier.
The well-posedness of the problem is achieved combining a fixed point strategy, classical results on
nonlinear monotone operators and the well-known Schauder and Banach theorems. In particular, we
employs Bernardi–Raugel and Raviart–Thomas elements for the velocities, and piecewise constant ele-
ments for the pressures and the Lagrange multiplier. We show stability, convergence, and a priori error
estimates for the associated Galerkin scheme.

Finally, we close this thesis with the a priori and a posteriori error analysis of an augmented fully-
mixed finite element method for the non-isothermal Oldroyd–Stokes problem. For convenience of the
analysis, the strain, the vorticity, and the stress tensors are introduced as further unknowns (besides
the polymeric part of the extra-stress tensor, the velocity, the pressure, and the temperature of the
fluid). This allows to join the polymeric and solvent viscosities in an adimensional viscosity, and
to eliminate the polymeric part of the extra-stress tensor and the pressure from the system, which,
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together with the solvent part of the extra-stress tensor, are easily recovered later on through suitable
postprocessing formulae. In this way, a fully mixed approach is applied, in which the heat flux vector
is incorporated as an additional unknown as well. Furthermore, since the convective term in the
heat equation forces both the velocity and the temperature to live in a smaller space than usual, we
augment the variational formulation by using suitable Galerkin redundant terms. We prove solvability
of both the continuous and discrete problems, with its corresponding a priori estimate. Regarding the
a posteriori error analysis, two reliable and efficient residual-based estimators are derived.

For all the problems described above, several numerical experiments are provided which illustrate
the good performance of the proposed methods and confirm the theoretical results of convergence as
well as reliability and efficiency of the respective a posteriori error estimators.



Resumen

El objetivo de esta tesis es analizar, desarrollar e implementar diversas técnicas matemáticas y numéri-
cas, basadas en métodos de elementos finitos mixtos y estrategias de punto fijo, con el propósito de
establecer la solubilidad de problemas lineales y no lineales que surgen en el contexto de la mecánica
de fluidos, más precisamente, problemas acoplados en medios porosos y flujos no isotérmicos.

En primer lugar, derivamos un método de elementos finitos completamente mixto aumentado para
el acoplamiento de fluidos con flujo en medio poroso. Los flujos son modelados por las ecuaciones
de Navier–Stokes (con viscosidad no lineal) y las ecuaciones de Darcy lineal, respectivamente, y las
condiciones de transmisión están dadas por la conservación de masa, el balance de fuerzas normales, y
por la ley de Beavers–Joseph–Saffman. Aplicamos formulaciones dual-mixtas en ambos dominios, y la
no linealidad en la región de Navier–Stokes es controlada introduciendo los tensores de pequeñas defor-
maciones y vorticidad como incógnitas auxiliares. A su vez, ya que las condiciones de transmisión son
escenciales, ellas son impuestas débilmente, lo cual motiva la introducción de las trazas de la presión
en el medio poroso y de la velocidad del fluido como multiplicadores de Lagrange. Además, ya que el
término convectivo en el fluido fuerza a la velocidad a vivir en un espacio más pequeño que el usual,
aumentamos la formulación variacional con adecuados términos de Galerkin. El resultante esquema
aumentado es escrito equivalentemente como una ecuación de punto fijo, de modo que los teoremas de
Schauder y Banach, combinados con resultados clásicos de operadores monótonos bijectivos, son apli-
cados para probar la unicidad de los problemas continuo y discreto. Además, obtuvimos un estimador
de error a posteriori confiable y eficiente para el problema acoplado.

Luego, abordamos el análisis de un método de elementos finitos mixto para el problema acoplado de
Navier–Stokes/Darcy–Forchheimer con densidad y viscosidad constantes. Consideramos la formulación
mixta estandard en el dominio Navier–Stokes y la dual-mixta en la región Darcy–Forchheimer, lo cual
motiva la introducción de la traza de la presión en el medio poroso como un multiplicador de Lagrange.
La solubilidad del problema se obtiene combinando una estrategia de punto fijo, resultados clásicos
de operadores monótonos no lineales y los teoremas de Schauder y Banach. En particular, empleamos
elementos de Bernardi–Raugel y Raviart–Thomas para las velocidades, y elementos constantes a trozos
para las presiones y el multiplicador de Lagrange. Mostramos estabilidad, convergencia, y estimaciones
de error a priori para el esquema de Galerkin asociado.

Finalmente, cerramos esta tesis con el análisis de error a priori y a posteriori de un método de
elementos finitos completamente mixto aumentado para el problema de Oldroyd–Stokes no isotérmico.
Por conveniencia del análisis, el tensor de pequeñas deformaciones, la vorticidad, y el esfuerzo son
introducidos como incógnitas adicionales (además de la parte polimérica del tensor de extra-esfuerzo,
la velocidad, la presión, y la temperatura del fluido). Esto permite unir las viscosidades polimérica y
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solvente en una viscosidad adimensional, y eliminar del sistema la parte polimérica del tensor de extra-
esfuerzo y la presión, las que, junto con la parte solvente del tensor de extra-esfuerzo, son fácilmente
recuperadas a través de una fórmula de postproceso. En este sentido, una aproximación completamente
mixta es aplicada, en la cual el vector de flujo de calor es incorporado como una incógnita adicional.
Además, ya que el término convectivo en la ecuación de calor fuerza tanto a la velocidad como a la
temperatura a vivir en un espacio más pequeño que el usual, aumentamos la formulación variacional
usando adecuados términos de Galerkin. Demostramos solubilidad de los problemas continuo y discreto,
con su estimación a priori correspondiente. Con respecto al análisis de error a posteriori, se derivan
dos estimadores confiables y eficientes de tipo residual.

Para todos los problemas descritos anteriormente se proporcionan varios experimentos numéricos
que ilustran el buen desempeño de los métodos propuestos, y que confirman los resultados teóricos de
convergencia así como de confiabilidad y eficiencia de los estimadores de error a posteriori respectivos.
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Introduction

The modelling of natural phenomena arising from processes described by using continuum mechanics,
as well as the design of appropriate numerical methods to approximate the solution of the corresponding
systems of partial differentials equations, is still a field of research that keeps an important part of the
scientific community dedicated to the area of numerical analysis very active. In particular, physical
phenomena such as: flows in porous media appearing in petroleum extraction, groundwater system in
karst aquifers, reservoir wellbore, industrial filtrations, internal ventilation of a motorcycle helmet, the
penetration of air into lungs, blood motion in tumors and microvessels can be modelled by the coupling
of incompressible viscous fluids (described by the Navier–Stokes or Stokes equations) with flow in a
porous medium (described by the Darcy–Forchheimer or Darcy model). In turn, some applications in
the field of engineering such as: design of heat exchangers and chemical reactors, cooling processes and
polymer processing, can be modelled by non-isothermal incompressible viscoelastic fluids (described by
the coupling of Stokes-type equation for Oldroyd or Giesekus viscoelasticity with the heat equation).
Many of these natural phenomena involve linear and nonlinear couplings, for which suitable numerical
approximations of the stress, pseudostress, velocity, pressure, temperature, and other fields are usually
required.

In general, the equations that describe these models are difficult to solve analytically, therefore,
the resolution and computational simulation of these problems, in a precise and efficient way, is in-
dispensable. In these types of scenarios, mixed finite element methods are very appropriate since,
in addition to the original unknowns, they allow us to calculate directly other variables of physical
interest such as vorticity, strain tensor of small deformations, gradient of velocity or heat-flux vector
(see, e.g., [91, 116, 115, 23, 25, 24, 30, 28, 52, 51, 50]), to name a few. In particular, for the Navier–
Stokes/Darcy–Forchheimer (or Navier–Stokes/Darcy, Stokes/Darcy) coupled problem, in literature we
can find a significant amount of works related to this topic (see [11, 40, 43, 45, 63, 64, 65, 27, 92, 94, 96]
and the references therein), which include for example formulations for the stress and velocity in the
region modelled by the Navier–Stokes (or Stokes) equations. These are characterized by the advantage
(with respect to the standard velocity-pressure formulation) that the auxiliary variables of interest
are calculated directly, without apply any type of post-process of the system solution, which usually
produces a major loss in accuracy.

In addition, other mathematical techniques like as fixed-point strategies and augmented mixed finite
element methods by means of suitable Galerkin redundant terms (see, e.g., [2, 26, 27, 28, 29, 30, 88, 93]),
allow us to derive and analyse new variational formulations and numerical schemes that lead to the
numerical solution of a wide range of problems that arise in fluid mechanics. We emphasize that
one of the advantages presented by the augmented methods is, on the one hand, greatly simplify the
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continuous and discrete analysis, and on the other hand, allow us to employ standard finite elements
spaces for the numerical approximations of the unknowns of interest.

According to the above, the aim of this thesis is to employ and develop several mathematical and
numerical techniques, typical of the mixed finite element methods and Galerkin schemes, with the
purpose of analyse the solvability of some linear and nonlinear problems (modelled by systems of
partial differential equations) that arise in fluid mechanics, more precisely, coupled problems in porous
media and non-isothermal flows, namely the Navier–Stokes/Darcy, Navier–Stokes/Darcy–Forchheimer
coupled problem and the non-isothermal Oldroyd–Stokes problem. For the problems to be considered
in this thesis, we are interested in:

� Establishing well-posed models for an appropriate analysis of the problem.

� Developing suitable variational formulations in order to establish existence and uniqueness of the
continuous solution of the problem.

� Establishing the corresponding Galerkin scheme and employ suitable finite element spaces.

� Analysing the solvability of the Galerkin scheme and establish the corresponding stability and
convergence results.

� Deriving a posteriori error estimators in order to establish adaptive methods that allow us to im-
prove the precision of the numerical approximations, specially under the presence of singularities
or high gradients of the solution.

� Validating the theoretical results through essays and illustrative numerical simulations, which
include academic and application-oriented examples.

The present work is organized as follows. In Chapter 1, we extend the results obtained in [88] to the
coupled nonlinear Navier–Stokes and linear Darcy problem with constant density and variable viscosity
in the fluid region. To this end, we consider a similar approach to the one presented in [28] for the
Navier–Stokes domain. Next, we define the nonlinear stress tensor as in [30] and subsequently eliminate
the pressure unknown using the incompressibility condition. The transmission conditions consisting of
mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law are imposed weakly,
which results in additional Lagrange multipliers: the traces of the porous media pressure and the fluid
velocity on the interface. We consider dual-mixed formulations in both domains. In addition, similarly
to [91, 88], and in order to handle the nonlinearity in the fluid, the strain and vorticity tensors are
introduced as additionals unknowns. Furthermore, the difficulty that the fluid velocity lives now in H1

instead of L2 as usual, is resolved as in [28] by augmenting the variational formulation with suitable
Galerkin redundant terms. The resulting augmented variational system of equations is then re-ordered
so that it shows a twofold saddle point structure. This continuous problem is rewritten as a fixed point
operator equation, so that the well-known Schauder and Banach theorems, combined with classical
results on bijective monotone operators, are applied to prove the unique solvability of the continuous
and discrete systems. The contents of this chapter gave rise to the following paper:

[40] S. Caucao, G.N. Gatica, R. Oyarzúa, and I. Šebestová, A fully-mixed finite element
method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. Journal of
Numerical Mathematics, vol. 25, 2, pp. 55–88, (2017).
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In Chapter 2, we develop an a posteriori error analysis for the model problem studied in Chapter 1.
More precisely, we derive a reliable and efficient a posteriori error estimator, which allows us to establish
appropriate adaptive methods to guarantee greater precision of the numerical approximations, and
mainly the convergence of the Galerkin scheme in situations in which there are singularities or high
gradients of the solution. The finite elements considered are piecewise constants, Raviart–Thomas
elements of lowest order, continuous piecewise linear elements, and piecewise constants for the strain,
stress, velocity, and vorticity in the fluid, respectively, whereas Raviart–Thomas elements of lowest
order for the velocity, piecewise constants for the pressure, and continuous piecewise linear elements
for the traces, are considered in the porous medium. The proof of reliability of the estimator relies
on a global inf-sup condition, suitable Helmholtz decompositions in the fluid and the porous medium,
the local approximation properties of the Clément and Raviart–Thomas operators. In turn, inverse
inequalities, the localization technique based on bubble functions, and known results from previous
works are the main tools yielding the efficiency estimate. The contents of this chapter gave rise to the
following paper:

[38] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of a fully-
mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity.
Computer Methods in Applied Mechanics and Engineering, vol. 315, pp. 943–971,
(2017).

InChapter 3, we extend the result obtained in [65, 92, 94] to the Navier–Stokes/Darcy–Forchheimer
coupled problem with constant density and viscosity. We consider the standard velocity-pressure
formulation for the Navier–Stokes equation and unlike [65], in the porous medium we consider the
Darcy–Forchheimer equation in its dual-mixed formulation. In this way, we obtain the velocity and
the pressure of the fluid in both media as the main unknowns of the coupled system. Since one of the
interface conditions becomes essential, we proceed similarly to [124, 92] and incorporate the trace of
the porous medium pressure as an additional unknown. The well-posedness and uniqueness of both the
continuous and discrete formulation is proved employing a fixed-point argument and clasical results on
nonlinear monotone operators (see [144, 145]). In particular, we consider Bernardi–Raugel elements
for the velocity in the free fluid region, Raviart–Thomas elements of lowest order for the filtration
velocity in the porous media, piecewise constants with null mean value for the pressures, and piecewise
constants elements for the Lagrange multiplier on the interface. This chapter is constituted by the
following preprint:

[36] S. Caucao, M. Discacciati, G.N. Gatica, and R. Oyarzúa, A conforming mixed finite
element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. Preprint 2017-
29, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción,
Chile, 2017.

In Chapter 4, we develop and analyse a new mixed formulation for the Oldroyd–Stokes problem
for non-isothermal viscoelastic fluids. To that end, unlike to [56] and [73], and in order to obtain a
new fully-mixed formulation of this coupled problem, we first introduce the strain tensor as a new
unknown, which allows us, on one hand, to eliminate the polymeric part of the extra-stress tensor from
the system and compute it as a simple post-process of the solution, and on the other hand, to join the
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polymeric and solvent viscosities in an adimensional viscosity. In addition, similarly to Chapter 1 and
for convenience of the analysis, we also consider the stress and vorticity tensors as auxiliary unknowns,
thanks to which the pressure can be eliminated from the system and approximated later on by a
postprocessing formula. In turn, for deriving the mixed formulation of the heat equation we proceed
similarly to [73] (see also [51, 52]) and set the heat-flux vector as a further unknown. Furthermore, the
difficulty given by the fact that the fluid velocity and the temperature lives in H1 instead of L2 as usual,
is resolved as in [51, 52] by augmenting the variational formulation with suitable Galerkin redundant
terms. Then, following [51] and [2], we prove solvability of both the continuous and discrete problems,
with its corresponding a priori estimate. This chapter is constituted by the following preprint:

[37] S. Caucao, G.N. Gatica, and R. Oyarzúa, Analysis of an augmented fully-mixed for-
mulation for the non-isothermal Oldroyd–Stokes problem. Preprint 2017-21, Centro de In-
vestigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile, 2017.

Finally, in Chapter 5, we develop an a posteriori error analysis for the variational formulation
described in Chapter 4. More precisely, we proceed similarly to [3, 54, 53, 97], and develop two
reliable and efficient residual-based a posteriori error estimators. This means that our analysis begins
by applying the uniform ellipticity for the bilinear form defining the continuous formulation. Next,
similarly to Chapter 2, we apply suitable Helmholtz decompositions, local approximation properties of
the Clément and Raviart–Thomas interpolants, and others known estimates, to prove the reliability of
a residual-based estimator. In turn, some of the main tools used to prove the efficiency of the estimators
are inverse inequalities and localization techniques based on bubble functions. Alternatively, a second
reliable and efficient residual-based a posteriori error estimator not making use of any Helmholtz
decomposition is also proposed. This chapter is constituted by the following preprint:

[39] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of an augmented
fully-mixed formulation for the non-isothermal Oldroyd–Stokes problem. Preprint 2017-25,
Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción,
Chile, 2017.

Throughout the five chapters of this thesis, the theoretical results such as: orders of convergence,
reliability and efficiency of the corresponding residual-based a posteriori error estimators, are illustrated
through several numerical examples, which also highlight the good performance of the proposed discrete
schemes and the associated adaptive algorithms. The computational implementations were obtained
using the free access software for finite elements FreeFemm ++ and the illustrator ParaView.

Preliminary notations

Let O ⊆ Rn, n ∈ {2, 3}, denote a bounded domain with Lipschitz boundary Γ = ΓD ∪ ΓN, with
ΓD ∩ ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by n the outward unit normal vector on Γ. For s ≥ 0 and
p ∈ [1,+∞], we define by Lp(O) and Ws,p(O) the usual Lebesgue and Sobolev spaces endowed with
the norms ‖ · ‖Lp(O) and ‖ · ‖Ws,p(O), respectively. Note that W0,p(O) = Lp(O). If p = 2, we write
Hs(O) in place of Ws,2(O), and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O
and ‖ · ‖s,O, respectively, and the seminorm by | · |s,O. In addition, we denote by W

1
q
,p

(Γ) the trace
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space of W1,p(O) and W
− 1
q
,q

(Γ) the dual space of W
1
q
,p

(Γ) endowed with the norms ‖ · ‖ 1
q
,p;Γ and

‖ · ‖− 1
q
,q;Γ, respectively, where p, q ∈ (1,+∞) with 1/p + 1/q = 1. By M and M we will denote the

corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖,
with no subscripts, will stand for the natural norm of either an element or an operator in any product
functional space. In turn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient,
divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let divτ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, we recall that

H(div;O) :=
{
τ ∈ L2(O) : divτ ∈ L2(O)

}
,

equipped with the usual norm

‖τ‖2div;O := ‖τ‖20,O + ‖divτ‖20,O,

is a standard Hilbert space in the realm of mixed problems. On the other hand, the following symbol
for the L2(Γ) inner product

〈ξ, λ〉Γ :=

∫
Γ
ξλ ∀ξ, λ ∈ L2(Γ),

will also be employed for their respective extension as the duality parity between W
− 1
q
,q

(Γ) and
W

1
q
,p

(Γ). Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes the space of
polynomial functions on S of degree ≤ k. In addition, and coherently with previous notations, we
set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Finally, we end this section by mentioning that,
throughout the rest of the paper, we employ 0 to denote a generic null vector (or tensor), and use C
and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.



Introducción

El modelamiento de fenómenos naturales asociados a procesos descritos a través de la mecánica de
medios continuos, así como el diseño de métodos numéricos apropiados para aproximar la solución de los
sistemas de ecuaciones diferenciales parciales correspondientes, sigue siendo un campo de investigación
que mantiene muy activa a una parte importante de la comunidad científica dedicada al área del análisis
numérico. En particular, fenómenos físicos tales como: flujos en medios porosos que aparecen en la
extracción de petróleo, sistema de aguas subterráneas en los acuíferos kársticos, pozo de reserva de
petróleo, filtraciones industriales, ventilación interna de un casco de motocicleta, ingreso del aire en
los pulmones, el movimiento de la sangre en tumores y vasos sanguíneos, pueden ser modelados por
el acoplamiento de fluidos viscosos incompresibles (descritos por las ecuaciones de Navier–Stokes o
Stokes) con flujo en un medio poroso (descrito por el modelo de Darcy–Forchheimer o Darcy). A su
vez, algunas aplicaciones en el campo de la ingeniería tales como: diseño de intercambiadores de calor
y reactores químicos, procesos de enfriamiento y procesamiento de polímeros, pueden ser modelados
por fluidos viscoelásticos incompresibles no isotérmicos (descritos por el acoplamiento de la ecuación de
tipo Stokes para la viscoelasticidad de Oldroyd o Giesekus con la ecuación del calor). Muchos de estos
fenómenos naturales involucran acoplamientos lineales y no lineales, para los cuales por lo general se
requieren aproximaciones numéricas adecuadas del esfuerzo, pseudo-esfuerzo, la velocidad, la presión,
la temperatura, entre otros campos.

En general, las ecuaciones que describen estos modelos son difíciles de resolver analíticamente, por
lo cual, la resolución y simulación computacional de estos problemas, de manera precisa y eficiente
se hace indispensable. En este tipo de escenarios, los métodos de elementos finitos mixtos resultan
muy apropiados ya que, además de las incógnitas originales, ellos permiten calcular de manera directa
otras variables de interés físico tales como la vorticidad, tensor de pequeñas deformaciones, gradiente
de la velocidad o el vector de flujo de calor (ver, por ejemplo [91, 116, 115, 23, 25, 24, 30, 28, 52,
51, 50]), por nombrar algunas. En particular, para el problema acoplado de Navier–Stokes/Darcy–
Forchheimer (o Navier–Stokes/Darcy, Stokes/Darcy), en la literatura podemos encontrar una cantidad
importante de trabajos relacionados a este tema (ver [11, 40, 43, 45, 63, 64, 65, 27, 92, 94, 96] y sus
referencias), incluyendo por ejemplo formulaciones para el esfuerzo y la velocidad en la región modelada
por las ecuaciones de Navier–Stokes (o Stokes). Estas se caracterizan por la ventaja (con respecto a
las formulaciones velocidad-presión estándar) de que las variables auxiliares de interés se calculan
directamente, sin la necesidad de aplicar ningún tipo de post-proceso de la solución del sistema, que
por lo general produce una pérdida importante en la precisión.

Además, otras técnicas matemáticas tales como estrategias de punto fijo y métodos de elementos
finitos mixtos aumentados con términos de Galerkin adecuados (ver por ejemplo [2, 26, 27, 28, 29,
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30, 88, 93]), permiten derivar y analizar nuevas formulaciones variacionales y esquemas numéricos que
conducen a la solución numérica de una amplia gama de problemas que surgen en la mecánica de
fluidos. Destacamos que una de las ventajas que presentan los métodos aumentados es, por un lado,
simplicar enormemente el análisis continuo y discreto, y por otro lado, permitir emplear espacios de
elementos finitos estándar para las aproximaciones numéricas de las incógnitas de interés.

Acorde a lo expuesto anteriormente, el objetivo de esta tesis es emplear y desarrollar diversos aspectos
matemáticos y numéricos, propios de los métodos de elementos finitos mixtos y esquemas de Galerkin,
con el propósito de analizar la solubilidad de algunos problemas lineales y no lineales (modelados
por sistemas de ecuaciones diferenciales parciales) que surgen en la mecánica de fluidos, más precisa-
mente, problemas acoplados en medios porosos y flujos no isotérmicos, a saber, problemas acoplados de
Navier–Stokes/Darcy, Navier–Stokes/Darcy–Forchheimer y el problema de Oldroyd–Stokes no isotér-
mico. Para los problemas a considerar dentro del desarrollo de esta tesis, estamos interesados en:

� Establecer modelos bien planteados para un análisis apropiado del problema.

� Desarrollar formulaciones variacionales apropiadas para establecer existencia y unicidad de la
solución continua del problema.

� Establecer el esquema de Galerkin correspondiente y emplear espacios de elementos finitos apro-
piados.

� Analizar la solubilidad del esquema de Galerkin y establecer los resultados de estabilidad y
convergencia correspondientes.

� Derivar estimadores de error a posteriori para establecer métodos adaptativos que permitan
mejorar la precisión de las aproximaciones numéricas, principalmente bajo la presencia de singu-
laridades o altos gradientes de la solución.

� Validar los resultados teóricos a través de ensayos y simulaciones numéricas ilustrativas, que
incluyan ejemplos académicos y orientados a aplicaciones.

El presente trabajo se organiza de la siguiente manera. En el Capítulo 1, extendemos los resultados
obtenidos en [88] al problema no lineal acoplado de Navier–Stokes y Darcy lineal con densidad constante
y viscosidad variable en la región del fluido. Para este fin, consideramos un enfoque similar al presentado
en [28] para el dominio de Navier–Stokes. Luego, definimos el tensor de esfuerzo no lineal como en
[30] y eliminamos la presión usando la condición de incompresibilidad. Las condiciones de transmisión
dadas por la conservación de masa, equilibrio de fuerzas normales, y la ley de Beavers–Joseph–Saffman
son impuestas débilmente, lo cual resulta en multiplicadores de Lagrange dados por: las trazas de la
presión en el medio poroso y la velocidad del fluido sobre la interfaz. Consideramos formulaciones
dual-mixta en ambos dominios. Además, de manera similar a [91, 88], y para controlar la no linealidad
en el fluido, el tensor de pequeñas deformaciones y la vorticidad son introducidas como incógnitas
adicionales. Además, la dificultad de que la velocidad del fluido viva ahora en H1 en lugar de L2

como es usual, es resuelto como en [28] aumentando la formulación variacional con adecuados términos
de Galerkin. El sistema aumentado se reordena para que muestre una estructura de doble punto de
silla. Este problema continuo se reescribe como una ecuación de punto fijo, de modo que los teoremas
de Schauder y Banach, combinados con resultados clásicos de operadores monótonos bijectivos, son
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aplicados para probar la unicidad de los problemas continuo y discreto. Esta investigación dio origen
a la siguiente publicación:

[40] S. Caucao, G.N. Gatica, R. Oyarzúa, and I. Šebestová, A fully-mixed finite element
method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. Journal of
Numerical Mathematics, vol. 25, 2, pp. 55–88, (2017).

En el Capítulo 2, desarrollamos un análisis de error a posteriori para el modelo estudiado en
el Capítulo 1. En este trabajo se deriva un estimador de error a posteriori, confiable y eficiente,
el cual permite establecer métodos adaptativos apropiados para garantizar mayor precisión de las
aproximaciones numéricas, y principalmente la convergencia del esquema de Galerkin en situaciones
en las que hay presencia de singularidades o bien altos gradientes de la solución. Los elementos finitos
considerados son elementos constantes a trozos, elementos de Raviart–Thomas de bajo orden, elementos
lineales continuos a trozos, y elementos constantes a trozos en el fluido para aproximar el tensor de
pequeñas deformaciones, esfuerzo, velocidad, y vorticidad, respectivamente, mientras que espacios de
Raviart–Thomas de bajo orden y elementos constantes a trozos para la velocidad y presión, junto
con elementos lineales continuos a trozos para las trazas, constituyen opciones factibles en el medio
poroso. En la demostración de confiabilidad del estimador se utilizan descomposiciones de Helmholtz
y propiedades de aproximación local de los interpolantes de Clément y Raviart–Thomas. Por otro
lado, algunas de las principales herramientas utilizadas para demostrar la eficiencia del estimador son
desigualdades inversas y técnicas de localización basadas en funciones burbujas. Esta investigación dio
origen a la siguiente publicación:

[38] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of a fully-
mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity.
Computer Methods in Applied Mechanics and Engineering, vol. 315, pp. 943–971,
(2017).

En el Capítulo 3, extendemos los resultados obtenidos en [65, 92, 94] al problema acoplado de
Navier–Stokes/Darcy–Forchheimer con densidad y viscosidad constante. Consideramos la formulación
velocidad-presión estándar para la ecuación de Navier–Stokes y a diferencia de [65], en el medio poroso
consideramos la ecuación de Darcy–Forchheimer en su formulación dual-mixta. De este modo, obtene-
mos la velocidad y la presión del fluido en ambos medios como las incógnitas principales del sistema
acoplado. Dado que una de las condiciones de interfaz es esencial, procedemos de manera similar
a [124, 92] e incorporamos la traza de la presión en el medio poroso como una incógnita adicional.
Demostramos que las formulaciones continua y discreta están bien puestas empleando un argumento
de punto fijo y resultados clásicos en operadores monótonos no lineales (ver [144, 145]). En particular,
consideramos los elementos de Bernardi–Raugel para la velocidad en la región del fluido, elementos de
Raviart–Thomas de bajo orden para la velocidad de filtración en el medio poroso, constantes a trozos
con medida nula para las presiones, y elementos constantes a trozos para el multiplicador de Lagrange
sobre la interfaz. Este capítulo está constituido por la siguiente pre-publicación:

[36] S. Caucao, M. Discacciati, G.N. Gatica, and R. Oyarzúa, A conforming mixed finite
element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. Preprint 2017-
29, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción,
Chile, 2017.
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En el Capítulo 4, derivamos y analizamos una nueva formulación mixta para el problema de
Oldroyd–Stokes para fluidos viscoelásticos no isotérmicos. Para ello, a diferencia de [56] y [73], y para
obtener una nueva formulación completamente mixta de este problema acoplado, primero introducimos
el tensor de pequeñas deformaciones como una nueva incógnita, lo cual nos permite, por un lado,
eliminar la parte polimérica del tensor de extra-esfuerzo del sistema y recuperarlo por un simple post-
proceso de la solución, y por otro lado, unir las viscosidades polimérica y solvente en una viscosidad
adimensional. Además, de manera similar al Capítulo 1 y por conveniencia del análisis, también
consideramos los tensores de esfuerzo y vorticidad como incógnitas auxiliares, gracias a lo cual la
presión puede ser eliminada del sistema y luego aproximada con una fórmula de postprocesamiento. A
su vez, para derivar la formulación mixta de la ecuación de calor procedemos de manera similar a [73]
(ver también [51, 52]) e incluimos el vector de flujo de calor como una incógnita adicional. Además, la
dificultad de que la velocidad del fluido y la temperatura vivan en H1 en lugar de L2 como es usual, es
resuelta como en [51, 52] aumentando la formulación variacional con adecuados términos de Galerkin.
Entonces, siguiendo [51] y [2], demostramos solubilidad de los problemas continuo y discreto, con su
estimación a priori correspondiente. Este capítulo está constituido por la siguiente pre-publicación:

[37] S. Caucao, G.N. Gatica, and R. Oyarzúa, Analysis of an augmented fully-mixed for-
mulation for the non-isothermal Oldroyd–Stokes problem. Preprint 2017-21, Centro de In-
vestigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile, 2017.

Finalmente, en el Capítulo 5 desarrollamos un análisis de error a posteriori para la formulación
variacional descrita en el Capítulo 4. Más precisamente, procedemos de manera similar a [3, 54, 53, 97],
y desarrollamos dos estimadores de error a posteriori confiables y eficientes basados en residuos. Esto
significa que nuestro análisis comienza con la elipticidad uniforme de las formas bilineales de las for-
mulaciones continuas. Luego, de manera similar al Capítulo 2, aplicamos adecuadas descomposiciones
de Helmholtz, propiedades de aproximación local de los operadores de Clément y Raviart–Thomas, y
otras estimaciones conocidas, para demostrar la confiabilidad del estimador. A su vez, algunas de las
principales herramientas utilizadas para demostrar la eficiencia de los estimadores son desigualdades
inversas y técnicas de localización basadas en funciones burbujas. Además, se propone un estimador de
error a posteriori alternativo (también confiable y eficiente) basado en residuos, donde la descomposi-
ción de Helmholtz no es utilizada en la demostración de la confiabilidad. Este capítulo está constituido
por la siguiente pre-publicación:

[39] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of an augmented
fully-mixed formulation for the non-isothermal Oldroyd–Stokes problem. Preprint 2017-25,
Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción,
Chile, 2017.

A lo largo de los cinco capítulos que conforman esta tesis, los resultados teóricos como: órdenes de
convergencia, confiabilidad y eficiencia de los estimadores de error a posteriori de tipo residual corres-
pondientes, son ilustrados a través de varios ejemplos numéricos, que destacan el buen desempeño de
los esquemas discretos propuestos y los algoritmos adaptativos asociados. Las implementaciones com-
putacionales se obtuvieron empleando el software para elementos finitos de acceso libre FreeFemm++
y el ilustrador ParaView.



CHAPTER 1

A fully-mixed finite element method for the Navier–Stokes/Darcy
coupled problem with nonlinear viscosity

In this chapter we analyse an augmented mixed finite element method for the coupling of fluid
flow with porous media flow. The flows are governed by the Navier–Stokes equations (with
nonlinear viscosity) and the linear Darcy model, respectively, and the transmission conditions are
given by mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law.

1.1 Introduction

The coupling of fluid flow, governed by the Navier–Stokes equations, and porous media flow, governed
by the Darcy equations, has been intensively studied in recent decades (see, e.g., [11, 22, 32, 45,
65, 66, 101, 152]) for the steady-state case and [42, 43] for the time dependent case. Applications
include the interaction between surface and subsurface flows, modelling of blood flow, and others. In
particular, a discontinuous Galerkin (DG) discretization for this coupled problem has been introduced
and analyzed in [101]. The approach there considers diverse combinations of techniques, including
the usual nonsymmetric, symmetric and incomplete interior penalty discretizations of the Laplacian
in both media, and the upwind Lesaint–Raviart discretization of the convective term in the free fluid
domain. In turn, in [11] the authors extend previous results on the Stokes–Darcy coupling (see [63]
and [64]) and introduce an iterative subdomain method employing the velocity-pressure formulation
for the Navier–Stokes equation and the primal one for the Darcy equation. More recently, a conforming
mixed method for the coupled system has been introduced and analyzed in [65]. This work, which
extends the previous results from [92], utilize the velocity-pressure formulation for the Navier–Stokes
equation and the dual-mixed approach in the Darcy region, which yields the introduction of the trace
of the porous medium pressure as a suitable Lagrange multiplier.

Now, in the context of incompressible fluid flows, the utilization of pseudostress- and stress-based
formulations has gained considerable attention during the last decades due to the fact that, on one hand,
it allows to unify the analysis for Newtonian and non-Newtonian flows, and on the other hand, besides
the original unknowns, they yield direct approximations of several other quantities of physical interest
(see, for instance [91, 116, 115, 23, 25, 24, 30, 28]). More precisely, the pseudostress-velocity formulation
has been studied in [23] and [24] for the Stokes and Navier–Stokes equations, respectively, whereas
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the pseudostress-pressure-velocity formulation has been introduced and analysed in [25] for both, the
Stokes and Navier–Stokes equations as well. While the latter formulation leads to a larger algebraic
system, a hybridization technique can be used, however, to eliminate the pseudostress unknowns and,
hence, to reduce its size. It is worth noting that, in the case of the Navier–Stokes problem, the
methods proposed in [24] and [25] are quasi-optimal. More recently, a new dual-mixed method for
the Navier–Stokes equations, which introduces a nonlinear stress-like quantity that connects the stress
and the convective term as a primary unknown together with the velocity and its gradient, has been
proposed and analysed in [116]. The main advantage of this idea is that it allows for a unified analysis
of Newtonian and non-Newtonian fluids. Moreover, the skew symmetry of the nonlinear terms is
preserved, and therefore the classical theory for the mixed methods extends easily to that setting.
On the other hand, it turns out that natural finite element candidates do not fulfill Babuška–Brezzi
conditions for the associated discrete scheme and consequently construction of special finite elements
is required.

The idea of a stress augmentation by the convective term has been later modified by connecting the
pseudostress with the convective term in [30], where a new augmented mixed finite element method
for the Navier–Stokes problem is proposed and analysed. The main unknowns are comprised only of
the velocity and the aforementioned nonlinear pseudostress in this case. However, depending on the
needs of the user, further variables of interest, such as velocity gradient, vorticity, and pressure, can
be easily recovered by means of a simple postprocess of the solution, and without the necessity of
performing numerical differentiation at the discrete level. In order to guarantee the well-posedness of
the resulting variational formulation, certain Galerkin least-square terms arising from the constitutive
and equilibrium equations, and the Dirichlet boundary condition are introduced. The idea of the
augmented variational formulations goes back to [78] and later has been used for different kind of
problems (see, e.g., [68, 79, 20, 77]). In order to prove well-posedness of both the continuous and
discrete problems in [30], it suffices to apply the Lax–Milgram and Banach fixed point theorems,
which means, in particular, that no discrete inf-sup conditions are required there. As a consequence,
arbitrary finite element subspaces of corresponding continuous spaces can be used. Moreover, unlike
previous results on stress-like methods for the Navier–Stokes problem (see e.g. [24, 25]), the method
in [30] is optimally convergent. The results of [30] have been further extended in [28] to the Navier–
Stokes equations with constant density and variable viscosity. In particular, the analysis in [28] focuses
in developing a mixed finite element approach for those quasi-Newtonian fluids whose viscosity is
a nonlinear function of the magnitude of the gradient of velocity. Another application of the idea
of introducing the aforementioned nonlinear pseudostress has been done in [50] for the Boussinesq
problem. In turn, in the context of stabilized methods, we can refer to [35], where two three-field
(deviatoric stress-velocity-pressure) subgrid-scale type formulations of the Navier–Stokes problem with
nonlinear viscosity has been studied. This approach allows to employ the same interpolation for all
unknowns even in the convection-dominant case.

The purpose of this chapter is to extend the results obtained in [88] to the coupled nonlinear Navier–
Stokes and linear Darcy problem with constant density and variable viscosity in the fluid region. To
this end, we consider a similar approach to the one presented in [28] for the Navier–Stokes domain,
which means that we aim to obtain an optimally convergent method, and allow the possibility of
calculating additional variables of interest. Unlike [28], in our model the viscosity depends nonlinearly
only on the strain tensor, not on the whole gradient of the velocity, which adds an additional difficulty
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to the analysis since the symmetry of the stress must be taken into account. We overcome this
drawback by imposing the symmetry weakly, which yields the vorticity of the fluid as the corresponding
Lagrange multiplier. We define the nonlinear stress tensor as in [30] and subsequently eliminate the
pressure unknown using the incompressibility condition. The transmission conditions consisting of
mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law are imposed weakly,
which results in additional Lagrange multipliers: the traces of the porous media pressure and the fluid
velocity on the interface. We consider dual-mixed formulations in both domains. In addition, similarly
to [91, 88], and in order to handle the nonlinearity in the fluid, the strain tensor is introduced as
an additional unknown. Furthermore, the difficulty that the fluid velocity lives now in H1 instead
of L2 as usual, is resolved as in [28] by augmenting the variational formulation with residuals arising
from the constitutive and equilibrium equations for the fluid flow, and the formulas for the strain and
vorticity tensors. The resulting augmented variational system of equations is then re-ordered so that it
shows a twofold saddle point structure. This continuous problem is rewritten as a fixed point operator
equation, which is shown first to be well-defined thanks to the generalized Babuška–Brezzi theory
developed in [88] (see also [84]), and whose unique solvability is then established by applying the same
arguments utilized in [28]. Proceeding in a similar fashion we can conclude the well-posedness of the
corresponding Galerkin scheme. We point out here that our approach differs from previous works on
the Navier–Stokes/Darcy coupling since all of them consider a simplified model with constant viscosity
(see e.g. [11, 22, 32]), and hence the present work constitutes the first contribution dealing with both
a stress-based mixed formulation in the fluid and a nonlinear viscosity.

The rest of the chapter is organized as follows. In Section 1.2 we introduce the continuous problem
and identify the twofold saddle point structure of the corresponding variational system. The augmented
fully-mixed variational formulation is then derived in Section 1.3, and, under the assumption that the
data are sufficiently small, its well-posedness is proved there by combining fixed point theorems with
the generalized Babuška–Brezzi theory. Next, hypotheses on the finite element spaces aiming to ensure
the well-posedness of the corresponding Galerkin scheme are established in Section 1.4, and the discrete
analogue of the theory applied to the continuous case is employed here for the respective proof. In
turn, the associated a priori error estimate is derived in Section 1.5, whereas particular choices of
discrete subspaces satisfying the hypotheses from Section 1.4 together with the rates of convergence of
the Galerkin schemes, are specified in Section 1.6. Finally, we illustrate the accuracy of the augmented
mixed finite element method with some numerical examples in Section 1.7.

1.2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

1.2.1 The model problem

In order to describe the geometry under consideration we let ΩS and ΩD be bounded and simply
connected open polyhedral domains in Rn, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ 6= ∅. Then,
we let ΓS := ∂ΩS \ Σ, ΓD := ∂ΩD \ Σ, and denote by n the unit normal vector on the boundaries,
which is chosen pointing outward from Ω := ΩS ∪Σ∪ΩD and ΩS (and hence inward to ΩD when seen
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on Σ). On Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 (see Fig.
1.1 below) and by {t1, t2} when n = 3. The problem we are interested in consists of the movement
of an incompressible quasi-Newtonian viscous fluid that occupies ΩS and that flows towards and from
ΩD through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined by two
separate groups of equations and by a set of coupling terms. In ΩS, the governing equations are those
of the Navier–Stokes problem with constant density and variable viscosity, which are written in the
following nonstandard stress–velocity–pressure formulation:

σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI in ΩS, div uS = 0 in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(1.1)

where σS is the nonlinear stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is the

nonlinear kinematic viscosity, e(uS) :=
1

2

{
∇uS + (∇uS)t

}
is the strain tensor (or symmetric part of

the velocity gradient) and fS ∈ L2(ΩS) is a known volume force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 1.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy model

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 ∀s ≥ 0, (1.2)

which, according to the result provided in [98, Theorem 3.8], implies Lipschitz continuity and strong
monotonicity of the nonlinear operator induced by µ. This fact will be used later on in Section 1.3. In
addition, it is easy to see that the forthcoming analysis also applies to the slightly more general case
of a viscosity function acting on Ω× R+, that is µ : Ω× R+ → R. Some examples of nonlinear µ are
the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2, (1.3)

where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both
satisfy (1.2) with (µ1, µ2) = (2, 3) and (µ1, µ2) = (α0, α0 + α1), respectively.

Now, in order to derive our fully-mixed formulation, we first observe, owing to the fact that tr e(uS) =

div uS, that the first two equations in (1.1) are equivalent to

σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI and pS = − 1

n
tr (σS + (uS ⊗ uS)) in ΩS, (1.4)



1.2. The continuous formulation 14

and hence, eliminating the pressure pS (which anyway can be approximated later on by the postpro-
cessed formula suggested by the second equation of (1.4)), the Navier–Stokes problem (1.1) can be
rewritten as

σd
S = µ(|e(uS)|)e(uS)− (uS ⊗ uS)d in ΩS, −divσS = fS in ΩS, uS = 0 on ΓS. (1.5)

Next, in order to handle the nonlinearity in σS given by the term µ(|e(uS)|)e(uS), and employ
the corresponding integration by parts formula, we adopt the approach from [91] (see also [89]) and
introduce the additional unknowns

tS := e(uS) and ρS :=
1

2

{
∇uS − (∇uS)t

}
in ΩS, (1.6)

where ρS is the vorticity (or skew-symmetric part of the velocity gradient). In this way, instead of
(1.5), in the sequel we consider the set of equations with unknowns tS, uS, σS and ρS, given by

tS = ∇uS − ρS in ΩS, σd
S = µ(|tS|)tS − (uS ⊗ uS)d in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(1.7)

where both tS and σS are symmetric tensors, and tr (tS) = 0 holds in ΩS.

On the other hand, in ΩD we consider the linearized Darcy model with homogeneous Neumann
boundary condition on ΓD:

uD = −K∇pD in ΩD, div uD = fD in ΩD, uD·n = 0 on ΓD, (1.8)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source term satisfying∫
ΩD

fD = 0, and K ∈ [L∞(ΩD)]n×n is a positive definite symmetric tensor describing the permeability
of ΩD divided by a constant approximation of the viscosity, satisfying with CK > 0

w·K−1(x)w ≥ CK|w|2, (1.9)

for almost all x ∈ ΩD, and for all w ∈ Rn. Finally, the transmission conditions on Σ are given by

uS·n = uD·n on Σ, σSn +
n−1∑
l=1

ω−1
l (uS·tl)tl = −pDn on Σ, (1.10)

where {ω1, . . . , ωn−1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (1.10) corresponds to mass conservation on Σ, whereas the second one establishes
the balance of normal forces and a Beavers–Joseph–Saffman law.

1.2.2 The augmented fully-mixed variational formulation

In this section we proceed analogously to [88] (see also [93]) and derive a weak formulation of the
coupled problem given by (1.7), (1.8), and (1.10). To this end, let us first introduce further notations
and definitions. In what follows, given ? ∈ {S,D}, u, v ∈ L2(Ω?), u,v ∈ L2(Ω?), and σ, τ ∈ L2(Ω?),
we set

(u, v)? :=

∫
Ω?

uv, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .
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In addition, we let L2
sym(ΩS) and L2

skew(ΩS) be the subspaces of symmetric and skew-symmetric tensors
of L2(ΩS), respectively, that is

L2
sym(ΩS) :=

{
rS ∈ L2(ΩS) : rt

S = rS

}
,

L2
skew(ΩS) :=

{
ηS ∈ L2(ΩS) : ηt

S = −ηS

}
.

Furthermore, we need to define the spaces

H0(div ; ΩD) := {vD ∈ H(div ; ΩD) : vD·n = 0 on ΓD} ,

L2
tr (ΩS) :=

{
rS ∈ L2

sym(ΩS) : tr rS = 0
}
,

and the space of traces H
1/2
00 (Σ) := [H

1/2
00 (Σ)]n, where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1(ΩS), v = 0 on ΓS

}
.

Observe that, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ

0 on ΓS
∀ψ ∈ H1/2(Σ),

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. The dual space of H

1/2
00 (Σ) is denoted by

H
−1/2
00 (Σ).

Now, we proceed with the derivation of our weak formulation. We begin by introducing two addi-
tional unknowns on the coupling boundary

ϕ := −uS|Σ ∈ H
1/2
00 (Σ) and λ := pD|Σ ∈ H1/2(Σ).

Then, to derive the weak formulation of the coupled system (1.7)–(1.8)–(1.10) we proceed similarly
to [88] (see also [27, 93]), that is, we test the first equations of (1.7) and (1.8) with arbitrary τ S ∈
H(div; ΩS) and vD ∈ H0(div ; ΩD), respectively, integrate by parts, utilize the identity (tS, τ S)S =

(tS, τ
d
S)S (which follows from the fact that tS : I = tr tS = 0), and impose the remaining equations

weakly, as well as the symmetry of σS, to obtain the variational problem: Find tS ∈ L2
tr (ΩS), σS ∈

H(div; ΩS), ρS ∈ L2
skew(ΩS), uD ∈ H0(div ; ΩD), ϕ ∈ H

1/2
00 (Σ), λ ∈ H1/2(Σ), pD ∈ L2(ΩD) and uS in

a suitable space (to be specified below), such that

(tS, τ
d
S)S + (divτ S,uS)S + 〈τ Sn,ϕ〉Σ + (τ S,ρS)S = 0,(
K−1uD,vD

)
D
− (div vD, pD)D − 〈vD·n, λ〉Σ = 0,

(µ(|tS|)tS, rS)S − (rS,σ
d
S)S − ((uS ⊗ uS)d, rS)S = 0,

−(divσS,vS)S = (fS,vS)S,

(div uD, qD)D = (fD, qD)D,

(σS,ηS)S = 0,

−〈ϕ·n, ξ〉Σ − 〈uD·n, ξ〉Σ = 0,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ·n, λ〉Σ = 0,

(1.11)
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for all rS ∈ L2
tr (ΩS), τ S ∈ H(div; ΩS), ηS ∈ L2

skew(ΩS), vD ∈ H0(div ; ΩD), ψ ∈ H
1/2
00 (Σ), ξ ∈ H1/2(Σ),

qD ∈ L2(ΩD) and vS ∈ L2(ΩS), where

〈ϕ,ψ〉t,Σ :=
n−1∑
l=1

ω−1
l 〈ϕ·tl,ψ·tl〉Σ .

Notice that the third term in the third equation of the foregoing system requires uS to live in a smaller
space than L2(ΩS). In fact, by applying the Cauchy–Schwarz and Hölder inequalities and then the
continuous injection ic of H1(ΩS) into L4(ΩS) (see e.g. [1, Theorem 6.3] or [139, Theorem 1.3.5]), we
find that there holds∣∣∣((uS ⊗wS)d, rS)S

∣∣∣ ≤ ‖uS‖L4(ΩS)‖wS‖L4(ΩS)‖rS‖0,ΩS
≤ ‖ic‖2‖uS‖1,ΩS

‖wS‖1,ΩS
‖rS‖0,ΩS

, (1.12)

for all uS,wS ∈ H1(ΩS) and rS ∈ L2(ΩS). According to this, we propose to look for the unknown uS

in H1
ΓS

(ΩS) and to restrict the set of corresponding test functions vS to the same space, where

H1
ΓS

(ΩS) := {vS ∈ H1(ΩS) : vS|ΓS
= 0}.

Next, analogously to [88], it is not difficult to see that the system (1.11) is not uniquely solvable
since, given any solution (tS,σS,ρS,uD,ϕ, λ, pD,uS) in the indicated spaces, and given any constant
c ∈ R, the vector defined by (tS,σS − cI,ρS,uD,ϕ, λ + c, pD + c,uS) also becomes a solution. As a
consequence of the above, from now on we require the Darcy pressure pD to be in L2

0(ΩD), where

L2
0(ΩD) :=

{
q ∈ L2(ΩD) : (q, 1)D = 0

}
.

In turn, due to the decomposition L2(ΩD) = L2
0(ΩD) ⊕ R, the boundary conditions uD·n = 0 on ΓD

and uS = 0 on ΓS, the first transmission condition in (1.10), and the fact that
∫

ΩD
fD = 0, guarantee

that the fifth equation of (1.11) is equivalent to requiring it for all qD ∈ L2
0(ΩD).

On the other hand, for convenience of the subsequent analysis, we consider the decomposition (see,
for instance, [19],[81])

H(div; ΩS) = H0(div; ΩS)⊕ RI, (1.13)

where
H0(div; ΩS) :=

{
τ ∈ H(div; ΩS) : (tr τ , 1)S = 0

}
,

and redefine the stress tensor as σS := σS + lI, with the new unknowns σS ∈ H0(div; ΩS) and l ∈ R.
In this way the first and last equations of (1.11) are rewritten, equivalently, as

(tS, τ
d
S)S + (divτ S,uS)S + 〈τ Sn,ϕ〉Σ + (τ S,ρS)S = 0 ∀τ S ∈ H0(div; ΩS),

j 〈ϕ · n, 1〉Σ = 0 ∀j ∈ R,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ·n, λ〉Σ + l 〈ψ·n, 1〉Σ = 0 ∀ψ ∈ H
1/2
00 (Σ).

(1.14)

Finally, with the choice of the corresponding space for uS, and in order to be able to analyze the
present variational formulation of (1.7), (1.8), and (1.10), we augment the resulting system through
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the incorporation of the following redundant Galerkin-type terms:

κ1

(
σd

S − µ(|tS|)tS + (uS ⊗ uS)d, τ d
S

)
S

= 0 ∀τ S ∈ H0(div; ΩS),

κ2 (divσS,divτ S)S = −κ2 (fS,divτ S)S ∀τ S ∈ H0(div; ΩS),

κ3 (e(uS)− tS, e(vS))S = 0 ∀vS ∈ H1
ΓS

(ΩS),

κ4

(
ρS −

1

2

(
∇uS − (∇uS)t

)
,ηS

)
S

= 0 ∀ηS ∈ L2
skew(ΩS),

(1.15)

where κ1, κ2, κ3, and κ4 are positive parameters to be specified later. Notice that the foregoing terms are
nothing but consistent expressions, though tested differently from (1.11), arising from the equilibrium
and constitutive equations, the relation between the strain tensor and tS, and the definition of the
vorticity in terms of the velocity gradient. It is easy to see that each solution of the original system is
also a solution of the resulting augmented one, and hence by solving the latter we find all the solutions
of the former.

Now, it is clear that there are many different ways of ordering the augmented mixed variational
formulation described above, but for the sake of the subsequent analysis we proceed as in [88] (see
also [93, 27]), and adopt one leading to a doubly-mixed structure. To that end, we group the spaces,
unknowns, and test functions as follows:

X := L2
tr (ΩS)×H0(div; ΩS)×H1

ΓS
(ΩS)× L2

skew(ΩS)×H0(div ; ΩD), M := H
1/2
00 (Σ)×H1/2(Σ),

X := X×M, and M := L2
0(ΩD)× R,

t := (tS,σS,uS,ρS,uD) ∈ X, ϕ := (ϕ, λ) ∈M, p := (pD, l) ∈M,

r := (rS, τ S,vS,ηS,vD) ∈ X, ψ := (ψ, ξ) ∈M, q := (qD, j) ∈M,

where X, M, X, and M are respectively endowed with the norms

‖r‖X := ‖rS‖0,ΩS
+ ‖τ S‖div,ΩS

+ ‖vS‖1,ΩS
+ ‖ηS‖0,ΩS

+ ‖vD‖div ,ΩD
,

‖ψ‖M := ‖ψ‖1/2,00,Σ + ‖ξ‖1/2,Σ, ‖(r,ψ)‖X := ‖r‖X + ‖ψ‖M and ‖q‖M := ‖qD‖0,ΩD
+ |j|.

Hence, the augmented fully-mixed variational formulation for the system (1.11) with the new equations
(1.14) and (1.15) reads: Find ((t,ϕ),p) ∈ X×M such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M,
(1.16)

where
[F, (r,ψ)] := [F, r] and [G,q] := [G, qD], (1.17)

with
[F, r] := −κ2(fS,divτ S)S + (fS,vS)S and [G, qD] := −(fD, qD)D .

In addition, given zS ∈ H1
ΓS

(ΩS), the operator A(zS) : X→ X′ is defined by

[A(zS)(t,ϕ), (r,ψ)] := [a(z)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ], (1.18)
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with

[a(zS)(t), r] := [a1(t), r] + [a2(zS)(t), r],

[a1(t), r] := (µ(|tS|)tS, rS)S − (rS,σ
d
S)S + (tS, τ

d
S)S + κ1(σd

S − µ(|tS|)tS, τ
d
S)S

+κ2(divσS,divτ S)S + (divτ S,uS)S − (divσS,vS)S

(τ S,ρS)S − (σS,ηS)S + κ3(e(uS)− tS, e(vS))S

+κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+ (K−1uD,vD)D,

[a2(zS)(t), r] := ((zS ⊗ uS)d, κ1τ
d − rS)S,

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD·n, ξ〉Σ ,

[c(ϕ),ψ] := 〈ϕ·n, ξ〉Σ − 〈ψ·n, λ〉Σ + 〈ϕ,ψ〉t,Σ ,

(1.19)

whereas B : X→M′ is given by

[B(r,ψ),q] := [B1(r), qD] + [B2(ψ), j], (1.20)

with
[B1(r), qD] := −(div vD, qD)D and [B2(ψ), j] := j 〈ψ·n, 1〉Σ .

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators.

1.3 Analysis of the continuous formulation

In this section we analyse the well-posedness of problem (1.16) by means of a fixed point argument and
a result on the solvability of twofold saddle point problems. To that end we first collect some previous
results and notations that will serve for the forthcoming analysis.

1.3.1 Preliminaries

We begin by recalling the following theorem to be employed next.

Theorem 1.1. Let X1,M1, and M be Hilbert spaces, set X := X1 ×M1, and let X ′1,M
′
1,M

′, and
X ′ := X ′1×M ′1, be their respective duals. Let A1 : X1 → X ′1 be a nonlinear operator, and S : M1 →M ′1,
B1 : X1 → M ′1, and B : X → M ′ be linear bounded operators. We also let B′1 : M1 → X ′1 and
B′ : M → X ′ be the corresponding adjoints and define the nonlinear operator A : X → X ′, as:

[A(s,φ), (r,ψ)] := [A1(s), r] + [B′1(φ), r] + [B1(s),ψ]− [S(φ),ψ] ∀ (s,φ), (r,ψ) ∈ X. (1.21)

Finally, we let V be the kernel of B, that is

V := {(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀q ∈M},

and let X̃1 and M̃1 be subspaces of X1 and M1, respectively, such that V = X̃1 × M̃1.
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Assume that

(i) A1|X̃1
: X̃1 → X̃ ′1 is Lipschitz continuous and strongly monotone, that is, there exist constants

γ, α > 0 such that
‖A1(s)−A1(r)‖X̃′1 ≤ γ‖s− r‖X1 ∀ s, r ∈ X̃1

and
[A1(s)−A1(r), s− r] ≥ α‖s− r‖2X1

∀s, r ∈ X̃1.

(ii) For each pair (r, r⊥) ∈ X̃1 × X̃⊥1 there holds the pseudolinear property

A1(r + r⊥) = A1(r) +A1(r⊥).

(iii) S is positive semi-definite on M̃1, that is,

[S(ψ),ψ] ≥ 0 ∀ψ ∈ M̃1.

(iv) B1 satisfies an inf-sup condition on X̃1 × M̃1, that is, there exists β1 > 0 such that

sup
r∈X̃1
r6=0

[B1(r),ψ]

‖r‖X1

≥ β1‖ψ‖M1 ∀ψ ∈ M̃1.

(v) B satisfies an inf-sup condition on X ×M , that is, there exists β > 0 such that

sup
(r,ψ)∈X
(r,ψ)6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β‖q‖M ∀q ∈M.

Then, there exists a unique ((t,ϕ), p) ∈ X ×M , such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ), q] = [G, q] ∀q ∈M.
(1.22)

Moreover, there exists C > 0, depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C {‖F‖X′ + ‖G‖M ′} .

Proof. See [88, Theorem 3.1].

Next, we recall that for each r, s ∈ L2(Ω) (see [98, Theorem 3.8] for details) there holds

‖µ(|r|)r− µ(|s|)s‖0,Ω ≤ Lµ‖r− s‖0,Ω, (1.23)∫
Ω
{µ(|r|)r− µ(|s|)s} : (r− s) ≥ µ1‖r− s‖20,Ω, (1.24)

where Lµ := max{µ2, 2µ2 − µ1}, with µ1 and µ2 being the bounds of µ given in (1.2).
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1.3.2 A fixed point approach

We begin the solvability analysis of (1.16) by defining the operator T : H1
ΓS

(ΩS)→ H1
ΓS

(ΩS) by

T(zS) := uS ∀ zS ∈ H1
ΓS

(ΩS), (1.25)

where uS is the third component of t ∈ X, which in turn is the first component of the unique solution
(to be confirmed below) of the nonlinear problem: Find ((t,ϕ),p) ∈ X×M, such that

[A(zS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M.
(1.26)

It follows that ((t,ϕ),p) ∈ X×M is a solution of (1.16) if and only if uS ∈ H1
ΓS

(ΩS) satisfies

T(uS) = uS. (1.27)

However, we remark in advance that the definition of T will make sense only in a closed ball of
H1

ΓS
(ΩS). Now, it is clear that problem (1.26) has the same structure as the one in Theorem 1.1.

Therefore, in what follows we apply this result to establish the well-posedness of (1.26), equivalently
the well-definiteness of T. To that end, we first observe that the kernel of the operator B (cf. (1.20))
can be written, equivalently, as

V :=
{

(r,ψ) ∈ X : [B(r,ψ),q] = 0 ∀q ∈M
}

= X̃× M̃ ,

where
X̃ = L2

tr (ΩS)×H0(div; ΩS)×H1
ΓS

(ΩS)× L2
skew(ΩS)× H̃0(div ; ΩD)

and
M̃ = H̃

1/2
00 (Σ)×H1/2(Σ) ,

with
H̃0(div ; ΩD) := {vD ∈ H0(div ; ΩD) : div (vD) ∈ P0(ΩD)}

and
H̃

1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : 〈ψ·n, 1〉Σ = 0

}
.

At this point we recall, for later use, that there exist positive constants c1(ΩS), Cdiv , and CKo, such
that (see, [19, Proposition 3.1, Chapter IV], [93, Lemma 3.2], and [19, 100], respectively, for details)

c1(ΩS)‖τ S‖20,ΩS
≤ ‖τ d

S‖20,ΩS
+ ‖divτ S‖20,ΩS

∀ τ S ∈ H0(div; ΩS) , (1.28)

‖vD‖20,ΩD
≥ Cdiv ‖vD‖2div,ΩD

∀vD ∈ H̃0(div; ΩD) , (1.29)

and
‖e(vS)‖20,ΩS

≥ CKo‖vS‖21,ΩS
∀vS ∈ H1

ΓS
(ΩS) , (1.30)

where, in particular, (1.30) is known as Korn’s inequality. Regarding this result, we notice that in
general CKo is unknown. However, for the numerical results reported below in Section 1.7 we employ
a heuristic approximation of this constant.

In what follows, and through the verification of the hypotheses of Theorem 1.1, we provide sufficient
conditions under which the operator T is well-defined. We begin with the Lipschitz-continuity and
strong-monotonicity of a(zS)(·) for a given zS ∈ H1

ΓS
(Ω).
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Lemma 1.2. Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with δ1 ∈
(

0,
2

Lµ

)
, δ2 ∈ (0, 2), δ3 ∈ (0, 2), and that κ2 > 0. Then, there exists r0 > 0 such that for

each r ∈ (0, r0), the nonlinear operator a(zS)(·) is strongly-monotone on X̃ and Lipschitz-continuous
on X, for each zS ∈ H1

ΓS
(ΩS) such that ‖zS‖1,ΩS

≤ r, with respective constants α(Ω) > 0 and γ(Ω) > 0,
independent of zS.

Proof. Let zS ∈ H1
ΓS

(ΩS) such that ‖zS‖1,ΩS
≤ r, with r ∈ (0, r0) and r0 to be defined below. We

first observe that a1 and a2(zS), and consequently a(zS) (cf. (1.19)), are Lipschitz-continuous. In fact,
using the Cauchy–Schwarz inequality, and the Lipschitz-continuity of the operator induced by µ (cf.
(1.23)), we deduce from (1.19) that a1 is Lipschitz continuous with a positive constant La1 , depending
on Lµ, and the parameters κi, i ∈ {1, . . . , 4}, that is

‖a1(t)− a1(r)‖X′ ≤ La1‖t− r‖X ∀ t, r ∈ X. (1.31)

In addition, from (1.12) and (1.19) we easily obtain that

|[a2(zS)(t), r]| ≤ (κ2
1 + 1)1/2‖zS‖L4(ΩS)‖uS‖L4(ΩS)‖r‖X

≤ c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

‖t‖X‖r‖X ∀ t, r ∈ X,
(1.32)

which, together with the linearity of a2(zS), and the Lipschitz-continuity of a1, implies that

‖a(zS)(t)− a(zS)(r)‖X′ ≤ (La1 + c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

)‖t− r‖X

≤ γ(Ω)‖t− r‖X ∀ t, r ∈ X,
(1.33)

with γ(Ω) := La1 + c2(ΩS)(κ2
1 + 1)1/2r. Now, for the strong monotonicity of a(zS), we observe from

the definition of a1 (cf. (1.18)) that it readily follows that

[a1(t)− a1(r), t− r] = (µ(|tS|)tS − µ(|rS|)rS, tS − rS)S + κ1‖(σS − τ S)d‖20,ΩS

− κ1(µ(|tS|)tS − µ(|rS|)rS, (σS − τ S)d)S + κ2‖div(σS − τ S)‖20,ΩS

+ κ3||e(uS − vS)||20,ΩS
− κ3(tS − rS, e(uS − vS))S + κ4‖ρS − ηS‖20,ΩS

− 1

2
κ4(∇(uS − vS)− (∇(uS − vS))t,ρS − ηS)S + (K−1(uD − vD),uD − vD)D.

Hence, we proceed similarly to the proof of [28, Lemma 3.4], utilize the Cauchy–Schwarz and Young’s
inequalities, and apply (1.9), (1.23) and (1.24) to obtain that for any δ1, δ2, δ3 > 0, and for all t, r ∈ X̃,
there holds

[a1(t)− a1(r), t− r] ≥ µ1‖tS − rS‖20,ΩS
+ κ1‖(σS − τ S)d‖20,ΩS

− κ1Lµ
2

{
1

δ1
‖tS − rS‖20,ΩS

+ δ1‖(σS − τ S)d‖20,ΩS

}
+ κ2‖div(σS − τ S)‖20,ΩS

+ κ3‖e(uS − vS)‖20,ΩS

− κ3

2

{
1

δ2
‖tS − rS‖20,ΩS

+ δ2‖e
(
uS − vS

)
‖20,ΩS

}
+ κ4‖ρS − ηS‖20,ΩS

− κ4

2

{
1

δ3
‖uS − vS‖21,ΩS

+ δ3‖ρS − ηS‖20,ΩS

}
+ CK‖uD − vD‖20,ΩD

,
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which, together with (1.29) and Korn’s inequality (1.30), implies

[a1(t)− a1(r), t− r] ≥
{(

µ1 −
κ1Lµ
2δ1

)
− κ3

2δ2

}
‖tS − rS‖20,ΩS

+ κ1

(
1− δ1Lµ

2

)
‖(σS − τ S)d‖20,ΩS

+ κ2‖div(σS − τ S)‖20,ΩS

+

{
CKoκ3

(
1− δ2

2

)
− κ4

2δ3

}
‖uS − vS‖21,ΩS

+ κ4

(
1− δ3

2

)
‖ρS − ηS‖20,ΩS

+ CKCdiv ‖uD − vD‖2div ,ΩD
.

(1.34)

Then, assuming the stipulated hypotheses on δ1, κ1, κ3, δ2, δ3, κ4, and κ2, and applying the inequality
(1.28), we can define the positive constants

α1(ΩS) :=

(
µ1 −

κ1Lµ
2δ1

)
− κ3

2δ2
, α2(ΩS) := min

{
κ1

(
1− δ1Lµ

2

)
,
κ2

2

}
,

α3(ΩS) := min
{
α2(ΩS)c1(ΩS),

κ2

2

}
, α4(ΩS) := CKoκ3

(
1− δ2

2

)
− κ4

2δ3
,

α5(ΩS) := κ4

(
1− δ3

2

)
, α6(ΩD) := CKCdiv ,

which allow us to deduce from (1.34) that

[a1(t)− a1(r), t− r] ≥ α0(Ω)‖t− r‖2X ∀ t, r ∈ X̃ , (1.35)

where
α0(Ω) := min

{
min

i∈{1,...,5}
{αi(ΩS)} , α6(ΩD)

}
(1.36)

is the strong monotonicity constant of a1. Moreover, according to the definition of a(zS) (cf. (1.19)),
and combining (1.32) and (1.35), we obtain

[a(zS)(t)− a(zS)(r), t− r] ≥
{
α0(Ω)− c2(ΩS)(κ2

1 + 1)1/2‖zS‖1,ΩS

}
‖t− r‖2X ,

for all t, r ∈ X̃. Consequently, by requiring ‖zS‖1,ΩS
≤ r0, with

r0 :=
α0(Ω)

2c2(ΩS)(κ2
1 + 1)1/2

, (1.37)

the strong monotonicity of a(zS) is ensured with a constant α(Ω) :=
α0(Ω)

2
independent of zS, that is

[a(zS)(t)− a(zS)(r), t− r] ≥ α0(Ω)

2
‖t− r‖2X ∀ t, r ∈ X̃. (1.38)

At this point we remark that the condition ‖zS‖1,ΩS
≤ r0 imposed in the above proof, with r0 given

by (1.37), does not actually have a physical meaning, but only constitutes a condition guaranteeing
that a(zS) is strongly monotone independently of zS in the closed ball of H1

ΓS
(ΩS) with center at the

null function and radius r0.

We continue with the pseudolinearity of a(zS)(·) (cf. (1.19)).
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Lemma 1.3. Given zS ∈ H1
ΓS

(ΩS), for each pair (t, t⊥) ∈ X̃× X̃⊥ there holds

a(zS)(t + t⊥) = a(zS)(t) + a(zS)(t⊥). (1.39)

Proof. Let zS ∈ H1
ΓS

(ΩS). We first decompose X as X = Xl × Xr, with Xl := L2
tr (ΩS) and Xr :=

H0(div; ΩS)×H1
ΓS

(ΩS)×L2
skew(ΩS)×H0(div ; ΩD). In addition, since B (cf. (1.20)) does not depend

on the variable from Xl, we easily obtain that X̃ = Xl × X̃r, with

X̃r := H0(div; ΩS)×H1
ΓS

(ΩS)× L2
skew(ΩS)× H̃0(div ; ΩD) ⊆ Xr ,

which yields X̃⊥ = {0} × (X̃r)⊥. In turn, given s = (0, sr), with sr = (σS,uS,ρS,uD) ∈ Xr and
r = (rS, τ S,vS,ηS,vD) ∈ X, there holds

[a(zS)(s), r] = − (rS,σ
d
S)S + κ1(σd

S, τ
d
S)S + κ2(divσS,divτ S)S + (divτ S,uS)S − (divσS,vS)S

+ (τ S,ρS)S − (σS,ηS)S + κ3(e(uS), e(vS))S + κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+ (K−1uD,vD)D + ((z⊗ uS)d, κ1τ
d
S − rS)S,

which shows that a(zS) is linear in {0} ×Xr. Similarly, from the definition of a(zS), we also find that
for each t := (tl, tr) ∈ X = Xl ×Xr and for each r ∈ X, there holds

[a(zS)(0, tr) + a(zS)(tl,0), r] = [a(zS)(t), r].

According to the previous analysis, it readily follows that a(zS) satisfies (1.39).

Now, we establish the positive semi-definiteness of c (cf. (1.19)).

Lemma 1.4. There holds
[c(ψ),ψ] ≥ 0 ∀ψ ∈M. (1.40)

Proof. From the definition of operator c, it readily follows that

[c(ψ),ψ] :=
n−1∑
l=1

ω−1
l ‖ψ·tl‖

2
0,Σ ≥ 0 ∀ψ ∈M, (1.41)

which clearly confirms that c is positive semi-definite.

We end the verification of the hypotheses of Theorem 1.1 with the corresponding inf-sup conditions
for the bilinear forms b and B (cf. (1.19) and (1.20), respectively).

Lemma 1.5. There exist positive constants β1 and β, such that

sup
r∈X̃
r6=0

[b(r),ψ]

‖r‖X
≥ β1‖ψ‖M ∀ψ ∈ M̃ (1.42)

and

sup
(r,ψ)∈X
(r,ψ)6=0

[B(r,ψ),q]

‖(r,ψ)‖X
≥ β‖q‖M ∀q ∈M. (1.43)
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Proof. For the proof of (1.42) we refer the reader to [88, Lemma 4.3] whereas a slight modification of
[87, Lemma 4.3] implies (1.43). We omit further details.

We are now in position of establishing the well-posedness of (1.26) (equivalently the well-definiteness
of T).

Lemma 1.6. Let r ∈ (0, r0), with r0 given by (1.37). Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with δ1 ∈
(

0,
2

Lµ

)
, δ2 ∈ (0, 2), δ3 ∈ (0, 2), and that κ2 > 0. Then, the problem (1.26) has a unique

solution for each zS ∈ H1
ΓS

(ΩS), such that ‖zS‖1,ΩS
≤ r. Moreover, there exists a constant cT > 0,

independent of zS and the data fS and fD, such that there holds

‖T(zS)‖1,ΩS
= ‖uS‖1,ΩS

≤ ‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (1.44)

Proof. Given zS ∈ H1
ΓS

(ΩS), such that ‖zS‖1,ΩS
≤ r, the well-posedness of (1.26) follows from Lemmas

1.2 – 1.5, and a straightforward application of Theorem 1.1. Now, concerning the estimate (1.44), we
first deduce from the definitions of F and G (cf. (1.17)), and from the Cauchy–Schwarz and Young’s
inequalities, that there exist constants cF > 0 and cG > 0, such that

‖F‖X′ ≤ cF‖fS‖0,ΩS
and ‖G‖M′ ≤ cG‖fD‖0,ΩD

. (1.45)

This fact and Theorem 1.1 imply the estimate

‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
,

with cT independent of zS, which implies (1.44) and concludes the proof.

We end this section by remarking that the constant α0(Ω) yielding the strong monotonicity of both
a1 and a(zS) can be maximized by taking the parameters δ1, κ1, δ2, κ3, δ3, and κ4 as the middle points
of their feasible ranges, and by choosing κ2 so that it maximizes the minimum defining α2(ΩS). More
precisely, we simply take

δ1 =
1

Lµ
, κ1 =

δ1µ1

Lµ
=
µ1

L2
µ

, δ2 = 1, κ3 = δ2

(
µ1 −

κ1Lµ
2δ1

)
=
µ1

2
, δ3 = 1,

κ4 = δ3CKoκ3

(
1− δ2

2

)
= CKo

µ1

4
, and κ2 = 2κ1

(
1− δ1Lµ

2

)
=
µ1

L2
µ

,

(1.46)

which yields
α1(ΩS) =

µ1

4
, α2(ΩS) =

µ1

2L2
µ

, α3(ΩS) = min{c1(ΩS), 1} µ1

2L2
µ

,

α4(ΩS) = CKo
µ1

8
, α5(ΩS) = CKo

µ1

8
, α6(ΩD) = CKCdiv ,

and hence
α0(Ω) = min

{
min

{
CKo, 1

}µ1

8
,min

{
c1(ΩS), 1

} µ1

2L2
µ

, CKCdiv

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, . . . , 4}, given in (1.46), will be employed
in Section 1.7 for the corresponding numerical experiments.
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1.3.3 Solvability analysis of the fixed point equation

In this section we proceed analogously to [28, Section 3.3] and establish existence of a fixed point of
the operator T (cf. (1.25)) by means of the well known Schauder fixed point theorem. The uniqueness
can then be established by means of the Banach fixed point theorem by utilizing the same estimates
derived for the existence.

We begin by recalling the first of the aforementioned results (see, e.g. [47, Theorem 9.12-1(b)]).

Theorem 1.7. Let W be a closed and convex subset of a Banach space X, and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

The verification of the hypotheses of Theorem 1.7 is provided next.

Lemma 1.8. Let r ∈ (0, r0), with r0 given by (1.37), let Wr be the closed ball defined by Wr :={
zS ∈ H1

ΓS
(ΩS) : ‖zS‖1,ΩS

≤ r
}
, and assume that the data satisfy

cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (1.47)

with cT the positive constant satisfying (1.51). Then there holds T(Wr) ⊆Wr.

Proof. It is a straightforward consequence of Lemma 1.6.

We continue with the following result providing an estimate needed to derive next the required
continuity and compactness properties of the operator T (cf. (1.25)).

Lemma 1.9. Let r ∈ (0, r0), with r0 given by (1.37), and let Wr :=
{

zS ∈ H1
ΓS

(ΩS) : ‖zS‖1,ΩS
≤ r
}
.

Then there exists a positive constant CT, depending on κ1, ‖ic‖, and α0(Ω) (cf. (1.36)), such that

‖T(zS)−T(z̃S)‖1,ΩS
≤ CT‖T(z̃S)‖1,ΩS

‖zS − z̃S‖L4(ΩS) ∀ zS, z̃S ∈Wr. (1.48)

Proof. Given r as indicated and zS, z̃S ∈ Wr, we let uS = T(zS) and ũS = T(z̃S). According to the
definition of T (cf. (1.25)), it follows that

[A(zS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M,

and
[A(z̃S)(t̃, ϕ̃), (r,ψ)] + [B(r,ψ), p̃] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t̃, ϕ̃),q] = [G,q] ∀q ∈M.

Then, recalling the definition of A, B, F and G, in (1.18), (1.20) and (1.17), respectively, we subtract
both problems to obtain

[(a1 + a2(zS))(t)− (a1 + a2(z̃S))(t̃), r] + [b(r),ϕ− ϕ̃] + [B1(r), pD − p̃D] = 0,

[b(t− t̃),ψ]− [c(ϕ− ϕ̃),ψ] + [B2(ψ), l − l̃] = 0,

[B1(t− t̃), qD] = 0,

[B2(ϕ− ϕ̃), j] = 0,
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for all (r,ψ, qD, j) ∈ X×M×L2
0(ΩD)×R. In particular, taking r = t− t̃, ψ = ϕ− ϕ̃, qD = pD − p̃D

and j = l − l̃ in the latter system, we get

[(a1 + a2(zS))(t)− (a1 + a2(z̃S))(t̃), t− t̃] = −[c(ϕ− ϕ̃),ϕ− ϕ̃]. (1.49)

Hence, adding and substracting a2(zS)(t̃) in the second term on the left hand side of (1.49), and using
the strong monotonicity of a(zS) = a1 +a2(zS) (cf. (1.38)), and the fact that c is positive semi-definite
(cf. (1.40)), it follows that

α0(Ω)

2
‖t− t̃‖2X ≤ [a2(z̃S − zS)(t̃), t− t̃].

In this way, by applying the first inequality in (1.32) and then bounding ‖ũS‖L4(ΩS) by ‖ic‖‖ũS‖1,ΩS
,

we deduce that

‖t− t̃‖X ≤
2(κ2

1 + 1)1/2‖ic‖
α0(Ω)

‖ũS‖1,ΩS
‖zS − z̃S‖L4(ΩS),

which implies (1.48) with

CT :=
2(κ2

1 + 1)1/2‖ic‖
α0(Ω)

, (1.50)

thus completing the proof.

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 1.10. Given r ∈ (0, r0), with r0 defined by (1.37), we let Wr := {zS ∈ H1
ΓS

(ΩS) : ‖zS‖1,ΩS
≤

r}, and assume that the data fS and fD satisfy (1.47). Then, T : Wr → Wr is continuous and T(Wr)

is compact.

Proof. The required result follows straightforwardly from estimate (1.48) and the compactness of ic :

H1(ΩS)→ L4(ΩS). We omit further details and refer to [28, Lemma 3.8].

We are now in position of establishing the main result of this section.

Theorem 1.11. Suppose that the parameters κi, i ∈ {1, . . . , 4}, satisfy the conditions required by
Lemma 1.6. In addition, given r ∈ (0, r0), with r0 defined by (1.37), we let Wr := {zS ∈ H1

ΓS
(ΩS) :

‖zS‖1,ΩS
≤ r}, and assume that the data fS and fD satisfy (1.47). Then, the augmented fully-mixed

formulation (1.16) has a unique solution ((t,ϕ),p) ∈ X×M with uS ∈Wr, and there holds

‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (1.51)

Proof. The equivalence between (1.16) and the fixed point equation (1.27), together with Lemmas 1.8
and 1.10, confirm the existence of solution of (1.16) as a direct application of the Schauder fixed point
Theorem 1.7. In addition, it is clear that the estimate (1.51) follows straightforwardly from (1.44). On
the other hand, using the estimate (1.48), the continuity of the compact injection ic, and the definitions
of CT (cf. (1.50)) and r0 (cf. (1.37)), we easily obtain

‖T(zS)−T(z̃S)‖1,ΩS
≤ r

r0
‖zS − z̃S‖1,ΩS

,

which, thanks to the Banach fixed point Theorem, implies that the solution is actually unique.
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We end this section by remarking, similarly as we did for one of the hypotheses of Lemma 1.2 right
after its proof, that condition (1.47), rather than having a physical meaning, is an assumption ensuring
existence and uniqueness of solution of problem (1.16), which is consistent with the classical results
for the Navier–Stokes equation ([100, Chapter IV, Section 2]), as well as with recent results for the
Navier–Stokes/Darcy coupled problem ([11, 65]).

1.4 The Galerkin scheme

In this section we introduce the Galerkin scheme of problem (1.16) and analyse its well-posedness by
establishing suitable assumptions on the finite element subspaces involved.

1.4.1 Discrete setting

We first introduce a set of arbitrary discrete subspaces, namely

L2
h(Ω?) ⊂ L2(Ω?), Hh(Ω?) ⊂ H(div; Ω?), ? ∈ {S,D},

H1
h(ΩS) ⊂ H1(ΩS), L2

skew,h(ΩS) ⊂ L2
skew(ΩS), ΛS

h(Σ) ⊂ H1/2
00 (Σ), ΛD

h (Σ) ⊂ H1/2(Σ) ,
(1.52)

and set
Hh(ΩS) := {τ S ∈ H(div; ΩS) : ctτ ∈ Hh(ΩS) ∀ c ∈ Rn},

Hh,0(ΩS) := Hh(ΩS) ∩H0(div; ΩS),

H1
h,ΓS

(ΩS) := H1
h(ΩS) ∩H1

ΓS
(ΩS),

Hh,0(ΩD) := Hh(ΩD) ∩H0(div ; ΩD),

L2
tr ,h(ΩS) := [L2

h(ΩS)]n×n ∩ L2
tr (ΩS),

L2
h,0(ΩD) := L2

h(ΩD) ∩ L2
0(ΩD),

ΛS
h(Σ) := [ΛS

h(Σ)]n.

(1.53)

Then, defining the global spaces, unknowns, and test functions as follows

Xh := L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)×Hh,0(ΩD) ,

Mh := ΛS
h(Σ)× ΛD

h (Σ) , Xh := Xh ×Mh, Mh := L2
h,0(ΩD)× R ,

th := (tS,h,σS,h,uS,h,ρS,h,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈Mh ,

rh := (rS,h, τ S,h,vS,h,ηS,h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈Mh ,

p
h

:= (pD,h, lh) ∈Mh , and q
h

:= (qD,h, jh) ∈Mh ,

(1.54)

the Galerkin scheme associated with problem (1.16) reads: Find ((th,ϕh),p
h
) ∈ Xh ×Mh such that

[A(uS,h)(th,ϕh), (rh,ψh)] + [B(rh,ψh),p
h
] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh),q
h
] = [G,q

h
] ∀q

h
∈Mh.

(1.55)
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Now, we proceed similarly to [93] and [88] (see also [27]), and derive suitable hypotheses on the
spaces (1.52) ensuring the well-posedness of problem (1.55). We begin by noticing that, in order to
have meaningful spaces Hh,0(ΩS) and L2

h,0(ΩD), we need to be able to eliminate multiples of the identity
matrix and constant polynomials from Hh(ΩS) and L2

h(ΩD), respectively. This requirement is certainly
satisfied if we assume:

(H.0) [P0(ΩS)]n ⊆ Hh(ΩS) and P0(ΩD) ⊆ L2
h(ΩD), where P0(ΩS) and P0(ΩD) are the spaces of cons-

tant polynomials on ΩS and ΩD, respectively. In particular, it follows that I ∈ Hh(ΩS) for all h, and
hence there holds the decomposition

Hh(ΩS) = Hh,0(ΩS)⊕ P0(ΩS)I. (1.56)

Next, we look at the discrete kernel of B, which is given by

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh),q
h
] = 0 ∀q

h
∈Mh

}
.

In order to have a more explicit definition of Vh, we introduce the following assumption:

(H.1) div Hh(ΩD) ⊆ L2
h(ΩD).

Then, owing to (H.1) and recalling the definition of B (cf. (1.20)), it follows that Vh = X̃h × M̃h,
where

X̃h = L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)× H̃h,0(ΩD)

and
M̃h = Λ̃

S
h(Σ)× ΛD

h (Σ) ,

with
H̃h,0(ΩD) :=

{
vD,h ∈ Hh,0(ΩD) : div (vD,h) ∈ P0(ΩD)

}
,

and
Λ̃

S
h(Σ) :=

{
ψh ∈ ΛS

h(Σ) : 〈ψh·n, 1〉Σ = 0
}
. (1.57)

In particular, it readily follows that Vh ⊆ V.

On the other hand, for the subsequent analysis we need to ensure the discrete version of the inf-sup
conditions (1.42) and (1.43) of b and B (cf. (1.20)), respectively, namely the existence of constants
β̃1, β̃ > 0, independent of h, such that

sup
rh∈X̃h

rh 6=0

[b(rh),ψ
h
]

‖rh‖X
≥ β̃1‖ψh‖M ∀ψ

h
∈ M̃h , (1.58)

and

sup
(rh,ψh)∈Xh
(rh,ψh) 6=0

[B(rh,ψh),q
h
]

‖(rh,ψh)‖X
≥ β̃‖q

h
‖M ∀q

h
∈Mh . (1.59)

For (1.58) we apply the same diagonal argument utilized in [88, Section 5.2] (see also [93, Lemma
3.8]) to deduce that b satisfies the discrete inf-sup condition (1.58) if and only if the following hypothesis
holds:
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(H.2) There exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈Hh(ΩS)
τS,h 6=0

〈τ S,hn,ψh〉Σ
‖τ S,h‖div,ΩS

≥ β̂S‖ψh‖1/2,00,Σ ∀ψh ∈ Λ̃
S
h(Σ), (1.60)

sup
vD,h∈H̃h,0(ΩD)

vD,h 6=0

〈vD,h·n, ξh〉Σ
‖vD,h‖div ,ΩD

≥ β̂D‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (1.61)

Similarly, employing the same arguments in [88, Section 5.2] we obtain that B satisfies the discrete
inf-sup condition (1.59) provided that the following hypothesis holds

(H.3) There exist β̃D > 0, independent of h, and ψ0 ∈ H
1/2
00 (Σ), such that

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0·n, 1〉Σ 6= 0, (1.62)

sup
vD,h∈Hh,0(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div ,ΩD

≥ β̃D‖qD,h‖0,ΩD
∀qD,h ∈ L2

h,0(ΩD). (1.63)

1.4.2 Well-posedness of the discrete problem

In what follows, we assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold, and, analogously
to the analysis of the continuous problem, apply a fixed point argument to prove the well-posedness of
the Galerkin scheme (1.55). To that end, we let Th : H1

h,ΓS
(ΩS)→ H1

h,ΓS
(ΩS) be the discrete operator

defined by
Th(zS,h) := uS,h ∀ zS,h ∈ H1

h,ΓS
(ΩS), (1.64)

where uS,h is the third component of th, which in turn is the first component of the unique solution
(to be confirmed below) of the discrete nonlinear problem: Find ((th,ϕh),p

h
) ∈ Xh ×Mh such that

[A(zh)(th,ϕh), (rh,ψh)] + [B(rh,ψh),p
h
] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh),q
h
] = [G,q

h
] ∀q

h
∈Mh.

(1.65)

Then, similarly as for the continuous case, the Galerkin scheme (1.55) can be rewritten, equivalently,
as the fixed point problem: Find uS,h ∈ H1

h,ΓS
(ΩS) such that

Th(uS,h) = uS,h. (1.66)

Now, in order to prove the well-posedness of problem (1.55), or equivalently the well-definiteness of
operator Th (cf. (1.64)), we will require the following discrete version of Theorem 1.1 (cf. [88, Theorem
3.3]).

Theorem 1.12. In addition to the spaces and operators defined in Theorem 1.1, let X1,h,M1,h, and
Mh be finite dimensional subspaces of X1,M1, and M , respectively, and let Xh := X1,h×M1,h ⊆ X :=

X1 ×M1. In turn, let Vh be the discrete kernel of B, that is,

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh), qh] = 0 ∀qh ∈Mh

}
,
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and let X̃1,h and M̃1,h be subspaces of X1,h and M1,h respectively, such that Vh = X̃1,h×M̃1,h. Assume
that

(i) A1|X̃1,h
: X̃1,h → X̃ ′1,h is Lipschitz continuous and strongly monotone, that is, there exist constants

γh, αh > 0 such that

‖A1(sh)−A1(rh)‖X̃′1,h ≤ γh‖sh − rh‖X1 ∀ sh, rh ∈ X̃1,h

and
[A1(sh)−A1(rh), sh − rh] ≥ αh‖sh − rh‖2X1

∀ sh, rh ∈ X̃1,h .

(ii) For each pair (rh, r
⊥
h ) ∈ X̃1,h × X̃⊥1,h there holds the pseudolinear property

A1(rh + r⊥h ) = A1(rh) +A1(r⊥h ).

(iii) S is positive semi-definite on M̃1,h, that is,

[S(ψh),ψh] ≥ 0 ∀ψh ∈ M̃1,h .

(iv) B1 satisfies an inf-sup condition on X̃1,h × M̃1,h, that is, there exists β1,h > 0 such that

sup
rh∈X̃1,h

rh 6=0

[B1(rh),ψh]

‖rh‖X1

≥ β1,h‖ψh‖M1,h
∀ψh ∈ M̃1,h .

(v) B satisfies an inf-sup condition on Xh ×Mh, that is, there exists βh > 0 such that

sup
(rh,ψh)∈Xh
(rh,ψh) 6=0

[B(rh,ψh), qh]

‖(rh,ψh)‖X
≥ βh‖qh‖M ∀ qh ∈Mh .

Then, there exists a unique ((th,ϕh), ph) ∈ Xh ×Mh, such that

[A(th,ϕh), (rh,ψh)] + [B′(ph), (rh,ψh)] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh,

[B(th,ϕh), qh] = [G, qh] ∀ qh ∈Mh .
(1.67)

Moreover, there exists Ch > 0, depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch
{
‖F |Xh‖X′h + ‖G|Mh

‖M ′h
}
.

The following lemma establishes the well-definiteness of operator Th (cf. (1.64)).

Lemma 1.13. Assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Assume further that
κi, i ∈ {1, . . . , 4} satisfy the conditions required by Lemma 1.6. Then, for each r ∈ (0, r0), with r0 given
by (1.37), the problem (1.65) has a unique solution ((th,ϕh),p

h
) ∈ X×M for each zS,h ∈ H1

h,ΓS
(ΩS)

such that ‖zS,h‖1,ΩS
≤ r. Moreover, there exists a constant c̃T > 0, independent of zS,h and the data

fS and fD, such that there holds

‖Th(zS,h)‖1,ΩS
≤ ‖((th,ϕh),p

h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (1.68)
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Proof. Let zS,h ∈ H1
h,ΓS

(ΩS) such that ‖zS,h‖1,ΩS
≤ r. Recalling that Xh ⊆ X, Mh ⊆ M (cf. (1.54))

and Vh ⊆ V, a straightforward application of Lemmas 1.2, 1.3 and 1.4, implies, respectively, that
hypotheses (i), (ii) and (iii) in Theorem 1.12, hold. In turn, as already discussed in Section 1.4.1,
the inf-sup conditions (iv) and (v) follow from hypotheses (H.2) and (H.3), respectively. Therefore,
according to the above, a direct application of Theorem 1.12 allows us to conclude that there exists a
unique ((th,ϕh),p

h
) ∈ Xh ×Mh solution to (1.65), which satisfies

‖((th,ϕh),p
h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
,

with c̃T independent of zS,h and h.

We are now in position of establishing the well-posedness of (1.55).

Theorem 1.14. Assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Assume further that
κi, i ∈ {1, . . . , 4} satisfy the conditions required by Lemma 1.6. In addition, given r ∈ (0, r0), with r0

defined by (1.37), let W h
r :=

{
zS,h ∈ H1

h,ΓS
(ΩS) : ‖zS,h‖1,ΩS

≤ r
}
, and assume that the data fS and fD

satisfy
c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (1.69)

with c̃T > 0 the constant in (1.68). Then, there exists a unique ((th,ϕh),p
h
) ∈ Xh ×Mh solution to

(1.55), which satisfies uS,h ∈W h
r and

‖((th,ϕh),p
h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (1.70)

Proof. We first observe, owing to (1.68), that the assumption (1.69) guarantees that Th(W h
r ) ⊆ W h

r .
Next, proceeding analogously to the proof of Lemma 1.9, that is, applying the strong monotonicity of
a(zS,h) : Xh → X′h for each zS,h ∈ W h

r , and using again the boundedness of the compact injection ic,
we find that

‖Th(zS,h)−Th(z̃S,h)‖1,ΩS
≤ CT‖ic‖‖Th(z̃S,h)‖1,ΩS

‖zS,h − z̃S,h‖1,ΩS
∀ zS,h, z̃S,h ∈W h

r ,

which, together with (1.50), (1.68), (1.69), and the definition of r0 (cf. (1.37)), implies

‖Th(zS,h)−Th(z̃S,h)‖1,ΩS
≤ r

r0
‖zS,h − z̃S,h‖1,ΩS

∀ zS,h, z̃S,h ∈W h
r ,

thus confirming that Th : W h
r →W h

r is a contraction mapping. Then, the Banach fixed point Theorem
and the equivalence between (1.55) and (1.66) imply the well-posedness of (1.55). In turn, the a priori
estimate (1.70) follows directly from (1.68).

1.5 A priori error estimate

In this section, we derive an a priori error estimate for the Galerkin scheme (1.55). To that end, we
first establish some preliminary results that will be utilized in our subsequent analysis.
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1.5.1 Preliminaries

We begin with the following Strang-type lemma,

Lemma 1.15. Let X and M be Hilbert spaces, F ∈ (X×M)′ := X ′×M ′, and P : X×M → X ′×M ′

a nonlinear operator. In addition, let {Xn}n∈N and {Mn}n∈N be sequences of finite dimensional
subspaces of X and M , respectively, and for each n ∈ N consider a nonlinear operator Pn : Xn×Mn →
(Xn ×Mn)′ := X ′n ×M ′n and a functional Fn ∈ X ′n ×M ′n. Assume that the family {P} ∪ {Pn}n∈N
is uniformly Lipschitz continuous with constant CLC > 0. Moreover, assume that Pn has a hemi-
continuous first-order Gâteaux derivative DPn(~s)(·, ·), for all ~s ∈ X ×M , which satisfies the global
inf-sup condition

CG ‖~sn‖ ≤ sup
~rn∈Xn×Mn

~rn 6=0

DPn(~s)(~sn,~rn)

‖~rn‖
∀~sn ∈ Xn ×Mn , (1.71)

with a constant CG > 0 independent of ~s. Furthermore, let ~t := ((t,ϕ),p) ∈ X × M and ~tn :=

((tn,ϕn), pn) ∈ Xn ×Mn be such that

[P (~t),~r] = [F,~r] ∀~r := ((r,ψ),q) ∈ X ×M (1.72)

and
[Pn(~tn),~rn] = [Fn,~rn] ∀~rn := ((rn,ψn),qn) ∈ Xn ×Mn . (1.73)

Then for each n ∈ N , there holds

‖~t−~tn‖ ≤ CST

 sup
~rn∈Xn×Mn

~rn 6=0

|[F,~rn]− [Fn,~rn]|
‖~rn‖

+ inf
~sn∈Xn×Mn

~sn 6=0

‖~t−~sn‖+ sup
~rn∈Xn×Mn

~rn 6=0

|[P (~sn),~rn]− [Pn(~sn),~rn]|
‖~rn‖


 ,

(1.74)

with CST := C−1
G max {1, CG + CLC}.

Proof. We proceed as in the proof of [84, Theorem 3.3] (see also [88, Theorem 3.5]). In fact, given
~tn, ~sn ∈ Xn×Mn, we first observe that the hemi-continuity of DPn implies that there exists µ0 ∈ (0, 1),
such that

[Pn(~tn),~rn]− [Pn(~sn),~rn] =

∫ 1

0
DPn(µ~tn + (1− µ)~sn)(~tn −~sn,~rn)dµ

= DPn(µ0~tn + (1− µ0)~sn)(~tn −~sn,~rn) ,

and hence, by taking ~s = µ0~tn + (1− µ0)~sn in (1.71), we find that

‖~tn −~sn‖ ≤ C−1
G sup

~rn∈Xn×Mn
~rn 6=0

[Pn(~tn),~rn]− [Pn(~sn),~rn]

‖~rn‖
. (1.75)

In turn, using (1.72) and (1.73), and adding and subtracting appropriate terms, we easily obtain

[Pn(~tn),~rn]− [Pn(~sn),~rn] = [Fn,~rn]− [F,~rn] + [P (~t),~rn]− [P (~sn),~rn] + [P (~sn),~rn]− [Pn(~sn),~rn],
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which, together with the Lipschitz continuity of P , implies∣∣∣[Pn(~tn),~rn]− [Pn(~sn),~rn]
∣∣∣ ≤ ∣∣∣[F,~rn]− [Fn,~rn]

∣∣∣+CLC‖~t−~sn‖‖~rn‖+
∣∣∣[P (~sn),~rn]− [Pn(~sn),~rn]

∣∣∣, (1.76)
for all ~sn ∈ Xn ×Mn. In this way, from (1.75), (1.76) and the triangle inequality we readily obtain
(1.74), which concludes the proof.

In addition, we will require the following linear version of Theorem 1.12.

Theorem 1.16. Consider the notations and definitions given in Theorem 1.12. Assume that

(i) A1|X1,h
: X1,h → X ′1,h is linear, bounded and X̃1,h-elliptic, that is, there exist γh, αh > 0, such

that
‖A1(rh)‖X′1,h ≤ γh‖rh‖X1 ∀ rh ∈ X̃1,h,

and
[A1(rh), rh] ≥ αh‖rh‖2X1

∀ rh ∈ X̃1,h.

(ii) The conditions (iii)-(v) from Theorem 1.12 are satisfied.

Then, there exists a unique ((th,ϕh), ph) ∈ X ×M solution of (1.67). Moreover, there exists Ch > 0,
depending only on αh, γh, β1,h, βh, ‖S‖ and ‖B1‖, such that

‖((th,ϕh), ph)‖X×M ≤ Ch{‖F |Xh‖X′h + ‖G|Mh
‖M ′h}. (1.77)

Proof. It reduces to verify the hypotheses of Theorem 1.12. We omit further details

We observe here that (1.77) is equivalent to the global inf-sup condition

‖((sh,ψh), ρh)‖X×M ≤ Ch sup(
(r,ψ),q

)
∈Xh×Mh\0

[A(sh, φh), (r, ψ)] + [B′(ρh), (r, ψ)] + [B(sh, φh), q]

‖((r,ψ), q)‖X×M
,

(1.78)
for all ((sh,ψh), ρh) ∈ Xh ×Mh.

1.5.2 The main result

In what follows, we establish the corresponding a priori error estimate of our Galerkin scheme (1.55).
To that end, and for the sake of simplicity, hereafter we denote by ~t := ((t,ϕ),p) ∈ X × M and
~th := ((th,ϕh),p

h
) ∈ Xh ×Mh the solutions of problems (1.16) and (1.55), respectively. In turn, we

let P : X×M→ (X×M)′ := X′ ×M′ and Ph : Xh ×Mh → (Xh ×Mh)′ := X′h ×M′h, be the nonlinear
operators obtained after adding on the left hand side of (1.16) and (1.55), respectively, that is

[P(~s),~r] := [(a1 + a2(uS))(s), r] + [b(s),ψ] + [b(r),φ]− [c(φ),ψ]

+ [B(r,ψ),m] + [B(s,φ),q] ,
(1.79)
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and

[Ph(~sh),~rh] := [(a1 + a2(uS,h))(sh), rh] + [b(sh),ψ
h
] + [b(rh),φ

h
]− [c(φ

h
),ψ

h
]

+ [B(rh,ψh),mh] + [B(sh,φh),q
h
] ,

(1.80)

for all ~s = ((s,φ),m), ~r = ((r,ψ),q) ∈ X×M and ~sh = ((sh,φh),mh), ~rh = ((rh,ψh),q
h
) ∈ Xh×Mh,

respectively, where uS ∈Wr and uS,h ∈W h
r are the velocity solutions of (1.16) and (1.55), respectively.

According to the above, and denoting by F := (F,G) ∈ X′ ×M′, it follows that

[P(~t),~r] = [F ,~r] ∀~r := ((r,ψ),q) ∈ X×M (1.81)

and
[Ph(~th),~rh] = [F ,~rh] ∀~rh := ((rh,ψh),q

h
) ∈ Xh ×Mh. (1.82)

Next, since the Lipschitz-continuity of a1 (cf. (1.31)) holds at the continuous and discrete levels with
the same constant, as well as the continuity of a2, b, c and B, we observe that the family {P}∪{Ph}h>0

is uniformly Lipschitz-continuous with constant denoted from now on by CLC > 0.

On the other hand, owing to the fact that µ is assumed to be of class C1 (cf. (1.2)), it is not difficult
to see that a1 : X → X′ has hemi-continuous first order Gâteaux derivative Da1 : X → L(X,X′),
which in particular implies that for any s, r ∈ X, the mapping R 3 µ → Da1(s + µr)(r)(·) ∈ X′ is
continuous. Moreover, we have the following lemma.

Lemma 1.17. For any s ∈ X, the Gâteaux derivative Da1(s) constitutes a bounded bilinear form on
X×X that becomes elliptic on X̃× X̃, with boundedness and ellipticity constants La1 (cf. (1.31)) and
α0(Ω) (cf. (1.36)), respectively.

Proof. Given s ∈ X, the Gâteaux derivative Da1(s) is the operator in L(X,X′) (equivalently, the
bilinear form on X×X) defined by

Da1(s)(r, r̂) := lim
ε→0

[a1(s + εr), r̂]− [a1(s), r̂]

ε
∀ r, r̂ ∈ X .

The rest of the proof follows as in [84, Lemma 3.1] by employing the properties (1.31), (1.35) and the
continuity of the mapping R 3 µ→ Da1(s + µr)(r)(·) ∈ X′. We omit further details.

Now, due to the hemi-continuity of the first order Gâteaux derivative Da1, and since the operators
defining Ph (besides a1) are linear, we easily obtain that, given ~s = ((s,φ),m) ∈ X×M, the Gâteaux
derivative of Ph at ~s is obtained by replacing [a1(th), rh] in (1.80) by Da1(s)(th, rh), that is

DPh(~s)(~th,~rh) := Da1(s)(th, rh) + [a2(uS,h)(th), rh] + [b(th),ψ
h
] + [b(rh),ϕ

h
]

− [c(ϕ
h
),ψ

h
] + [B(rh,ψh),p

h
] + [B(th,ϕh),q

h
] ,

(1.83)

for all ~th := ((th,ϕh),p
h
),~rh := ((rh,ψh),q

h
) ∈ Xh ×Mh, which, according to Lemma 1.17, becomes

a bounded bilinear form on (Xh ×Mh) × (Xh ×Mh). Moreover, since c is positive-semidefinite, and
assuming for a moment that (H.0), (H.1), (H.2) and (H.3) hold, we obtain that the conditions (iii)–(v)
in Theorem 1.12 are verified, and as a result, having in mind Lemma 1.17, the bilinear form DPh(~s)(·, ·)
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satisfies the hypotheses of Theorem 1.16. Moreover, in virtue of (1.78), there holds the global inf-sup
condition

CG ‖~sh‖ ≤ sup
~rh∈Xn×Mh

~rh 6=0

DPh(~s)(~sh,~rh)

‖~rh‖
∀~sh ∈ Xh ×Mh . (1.84)

According to the foregoing analysis, it follows that the family of operators {P} ∪ {Ph}h>0 satisfy
the hypotheses of Lemma 1.15, and consequently we can establish now the main result of this section.

Theorem 1.18. Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3), as well as the conditions
on κi, i ∈ {1, . . . , 4} required by Lemma 1.6, hold. Let r ∈ (0, r0), with r0 defined by (1.37) and assume
further that the data fS and fD satisfy

cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r

α0(Ω)CST
, (1.85)

with cT and α0(Ω) being the positive constants satisfying (1.51) and (1.36), respectively. In addition,
let ~t := ((t,ϕ),p) ∈ X ×M with uS ∈ Wr, and ~th := ((th,ϕh),p

h
) ∈ Xh ×Mh with uS,h ∈ W h

r be
the unique solutions of problems (1.16) and (1.55), respectively. Then there exists a positive constant
C > 0, depending only on α0(Ω) and CST, such that

‖~t−~th‖X×M ≤ Cdist (~t,Xh ×Mh). (1.86)

Proof. From the Strang-type estimate (1.74) and from (1.81) and (1.82), we first obtain

‖~t−~th‖X×M ≤ CST inf
~sh∈Xh×Mh

‖~t−~sh‖X×M + sup
~rh∈Xh×Mh

~rh 6=0

∣∣∣[P(~sh),~rh]− [Ph(~sh),~rh]
∣∣∣

‖~rh‖X×M

 . (1.87)

In turn, utilizing the definition of P and Ph (resp. (1.79) and (1.80)), applying the estimate (1.32),
adding and subtracting ~t, and bounding both ‖uS‖1,ΩS

and ‖uS,h‖1,ΩS
by r0 = α0(Ω)

2c2(ΩS)(κ2
1+1)1/2 , we find

that∣∣∣[P(~sh),~rh]− [Ph(~sh),~rh]
∣∣∣ =

∣∣∣[a2(uS − uS,h)(~sh),~rh]
∣∣∣

≤ c2(ΩS)(κ2
1 + 1)1/2‖uS − uS,h‖1,ΩS

{
‖~t−~sh‖X×M + ‖~t‖X×M

}
‖~rh‖X×M

≤
{

2c2(ΩS)(κ2
1 + 1)1/2r0‖~t−~sh‖X×M + c2(ΩS)(κ2

1 + 1)1/2‖~t‖X×M‖uS − uS,h‖1,ΩS

}
‖~rh‖X×M

=
{
α0(Ω)‖~t−~sh‖X×M + c2(ΩS)(κ2

1 + 1)1/2‖~t‖X×M‖uS − uS,h‖1,ΩS

}
‖~rh‖X×M,

which, substituted back into (1.87), taking infimun, and using that ‖uS − uS,h‖1,ΩS
≤ ‖~t − ~th‖X×M,

yields

‖~t−~th‖X×M ≤ CST{1 + α0(Ω)}dist (~t,Xh ×Mh) +CSTc2(ΩS)(κ2
1 + 1)1/2‖~t‖X×M‖~t−~th‖X×M. (1.88)

Finally, recalling from (1.51) that ‖~t‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
, and employing assumption

(1.85), we obtain that

CSTc2(ΩS)(κ2
1 + 1)1/2‖~t‖X×M ≤

1

2
, (1.89)

which, together with (1.88), implies (1.86) with C = 2CST{1 + α0(Ω)}, thus ending the proof.
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1.6 Particular choices of discrete spaces

We now introduce specific discrete spaces satisfying hypotheses (H.0), (H.1), (H.2), and (H.3) in 2D
and 3D. To this end, we let T S

h and T D
h be respective triangulations of the domains ΩS and ΩD, which

are formed by shape-regular triangles (in R2) or tetrahedra (in R3) of diameter hT , and assume that
they match in Σ so that T S

h ∪ T D
h is a triangulation of ΩS ∪ Σ ∪ ΩD. We also let Σh be the partition

of Σ inherited from T S
h (or T D

h ). Then, given an integer k ≥ 0, we set for each T ∈ T S
h ∪ T D

h the local
Raviart–Thomas space of order k as

RTk(T ) := Pk(T )⊕ Pk(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn.

1.6.1 Raviart–Thomas elements in 2D

We define the discrete subspaces in (1.52) as follows:

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ Pk(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RTk(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]2 : vh|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh ∈ L2

tr (ΩS) : rh|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ Pk(T ) ∀T ∈ T S
h

}
.

(1.90)

In addition, in order to introduce the particular subspaces ΛS
h(Σ) and ΛD

h (Σ), we follow the simplest
approach suggested in [93] and [126]. To this end, we first assume, without loss of generality, that the
number of edges of Σh is even. Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent
edges of Σh. Note that, since Σh is inherited from the interior triangulations, it is automatically of
bounded variation (that is, the ratio of lengths of adjacent edges is bounded) and, therefore, so is Σ2h.
Now, if the number of edges of Σh is odd, we simply reduce it to the even case by joining any pair of
two adjacent elements, and then construct Σ2h from this reduced partition. In this way, denoting by
x0 and xN the extreme points of Σ, we set

ΛS
h(Σ) := {ψh ∈ C(Σ) : ψh|e ∈ Pk+1(e) ∀ edge e ∈ Σ2h, ψh(x0) = ψh(xN ) = 0} ,

ΛD
h (Σ) := {ξh ∈ C(Σ) : ξh|e ∈ Pk+1(e) ∀ edge e ∈ Σ2h} .

(1.91)

Then, we define the global spaces Xh and Mh (cf. (1.54)) by combining (1.53), (1.54), (1.90) and
(1.91). Now, concerning hypotheses (H.0)–(H.3), we start mentioning that (H.0) and (H.1) are
straightforward from the definitions in (1.90). In turn, it is well known that the discrete inf-sup
condition (1.63) in (H.3) holds (see for instance [19, Chapter IV] or [81, Section 4.2]). In addition, the
existence of ψ0 ∈ H

1/2
00 (Σ) satisfying (1.62) follows as explained in [93, Section 2.5] or [96, Section 3.2].

Finally, the inf-sup conditions (1.60) and (1.61) in (H.2) can be derived by combining the results in
[93, Section 2.5] and [126, Theorem A.1]. We omit further details and refer the reader to [88, Section
5.3.1] for the verification of these inf-sup conditions.
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According to the above, we conclude that the Galerkin scheme (1.55) defined with the spaces in
(1.90) is well posed. Moreover, by employing the approximations properties of the finite element
subspaces involved (see, e.g. [19, 81, 100, 112]), and the a priori estimate (1.86), we can easily obtain
the following result.

Theorem 1.19. Assume that the hypotheses of Theorem 1.18 hold. Let ~t := ((t,ϕ),p) ∈ X × M
with uS ∈ Wr and ~th := ((th,ϕh),p

h
) ∈ Xh × Mh with uS,h ∈ W h

r be the unique solutions of the
problems (1.16) and (1.55), respectively. Assume further that there exists δ > 0, such that tS ∈ Hδ(ΩS),
σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈ H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and
div uD ∈ Hδ(ΩD). Then, pD ∈ H1+δ(ΩD), λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h,
such that

‖~t−~th‖X×M ≤ C hmin{δ,k+1}
{
‖tS‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.

Proof. From the second equation of (1.11), we readily obtain that ∇pD = −K−1uD, which implies
that pD ∈ H1+δ(ΩD), whence λ = pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the a priori
estimate (1.86), the approximation properties of the discrete spaces involved and the fact that, owing
to the trace theorems in ΩS and ΩD, respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩS
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

1.6.2 Raviart–Thomas elements in 3D

Let us now consider the discrete spaces:

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ Pk(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RTk(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]3 : vh|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh ∈ L2

tr (ΩS) : rh|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ Pk(T ) ∀T ∈ T S
h

}
.

(1.92)

Now, in order to define the discrete spaces for the unknowns on the interface Σ, we introduce an
independent triangulation Σ

ĥ
of Σ, by triangles K of diameter ĥ, and define ĥΣ := max{ĥK : K ∈ Σ

ĥ
}.

Then, denoting by ∂Σ the polygonal boundary of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|K ∈ Pk+1(K) ∀K ∈ Σ

ĥ
, ψh = 0 on ∂K

}
,

ΛD
h (Σ) :=

{
ξh ∈ C(Σ) : ξh|K ∈ Pk+1(K) ∀K ∈ Σ

ĥ

}
.

(1.93)

In this way, we define the global spaces Xh and Mh by combining (1.53), (1.54), (1.92), and (1.93).

Now, for the verification of hypotheses (H.0)–(H.3) we first observe that applying the same ar-
guments as for the 2D case, it follows that (H.0), (H.1) and (H.3) hold. However, for the inf-sup
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conditions in (H.2) we need to proceed differently and apply [86, Lemma 7.5]. More precisely, utilizing
[86, Lemma 7.5] we conclude that there exists C0 ∈ (0, 1) such that for each pair (hΣ, ĥΣ) verifying
hΣ ≤ C0ĥΣ, the inf-sup conditions (1.60) and (1.61) hold.

Having verified hypotheses (H.0)–(H.3) we conclude that the Galerkin scheme (1.55) defined with
the spaces in (1.92) is well posed. In addition, owing again to the approximations properties of the
finite element subspaces involved (see, e.g. [19, 81, 100, 112]), and the a priori estimate (1.86), the
following result holds.

Theorem 1.20. Assume that the hypotheses of Theorem 1.18 hold. Let ~t := ((t,ϕ),p) ∈ X × M
with uS ∈ Wr and ~th := ((th,ϕh),p

h
) ∈ Xh × Mh with uS,h ∈ W h

r be the unique solutions of the
problems (1.16) and (1.55), respectively. Assume further that there exists δ > 0, such that tS ∈ Hδ(ΩS),
σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈ H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and
div uD ∈ Hδ(ΩD). Then, pD ∈ H1+δ(ΩD), λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h,
such that

‖~t−~th‖X×M ≤ C hmin{δ,k+1}
{
‖tS‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.

1.7 Numerical results

In this section we present three examples illustrating the performance of our augmented mixed finite
element scheme (1.55), and confirming the rates of convergence provided by Theorem 1.19. Our
implementation is based on a FreeFem++ code (see [111]), in conjunction with the direct linear solver
UMFPACK (see [62]). Regarding the implementation of the Newton iterative method, the iterations
are terminated once the relative error of the entire coefficient vectors between two consecutive iterates
is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces L2

tr ,h(ΩS), Hh,0(ΩS), H1
h,ΓS

(ΩS), L2
skew,h(ΩS), Hh,0(ΩD), ΛS

h(Σ),
ΛD
h (Σ), and L2

h,0(ΩD), and tol is a fixed tolerance to be specified for each example. As usual, the
individual errors are denoted by:

e(tS) := ‖tS − tS,h‖0,ΩS
, e(σS) := ‖σS − σS,h‖div,ΩS

, e(uS) := ‖uS − uS,h‖1,ΩS
,

e(ρS) := ‖ρS − ρS,h‖0,ΩS
, e(pS) := ‖pS − pS,h‖0,ΩS

, e(uD) := ‖uD − uD,h‖div ,ΩD
,

e(pD) := ‖pD − pD,h‖0,ΩD
, e(ϕ) := ‖ϕ−ϕh‖1/2,00,Σ, e(λ) := ‖λ− λh‖1/2,Σ.

where pS,h is the postprocessed pressure given by

pS,h := − 1

n
tr (σS,h + (uS,h ⊗ uS,h))− lh in ΩS.

In addition, we define the experimental rates of convergence

r(�) :=
log(e(�)/ê(�))

log(h/ĥ)
for each � ∈

{
tS,σS,uS,ρS, pS,uD, pD,ϕ, λ

}
,
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where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ, respectively.

The examples to be considered in this section are described next. In all of them we choose K = I,
ω = 1, and according to (1.46), the stabilization parameters are taken as κ1 = µ1/L

2
µ, with Lµ :=

max{µ2, 2µ2−µ1}, κ2 = κ1, κ3 = µ1/2, and κ4 = CKoµ1/4. In this regard, and since CKo is not known
for H1

ΓS
(ΩS), in what follows we propose a heuristic approximation of this constant by observing first

from (1.30) that CKo can be defined as

CKo := inf
vS∈H

1
ΓS

(ΩS)

vS 6=0

‖e(vS)‖20,ΩS

‖vS‖21,ΩS

.

Then, noting that certainly H1
0(ΩS) ⊆ H1

ΓS
(ΩS), and recalling from [128, Theorem 10.1] (see also [114,

eq. (2.11)]) that
1

2
≤
‖e(vS)‖20,ΩS

‖vS‖21,ΩS

∀vS ∈ H1
0(ΩS), vS 6= 0 ,

we readily deduce that

CKo ≤ C̃Ko := inf
vS∈H

1
0(ΩS)

vS 6=0

‖e(vS)‖20,ΩS

‖vS‖21,ΩS

and
1

2
≤ C̃Ko ,

which suggests to choose this lower bound of C̃Ko, that is 1/2, as the required approximation of CKo.
In addition, the conditions

∫
ΩS

trσS,h = 0 and
∫

ΩD
pD,h = 0 are imposed via a penalization strategy.

In our first example we consider a porous unit square, coupled with a semi-disk-shaped fluid domain,
i.e., ΩD := (−0.5, 0.5)2 and ΩS := {(x1, x2) : x2

1 + (x2 − 0.5)2 < 0.25, x2 > 0.5} (see bottom left panel
of Figure 1.2). In this case, we set the nonlinear viscosity to

µ(s) := 2 +
1

1 + s
for s ≥ 0.

The data fS and fD are chosen so that the exact solution in the tombstone-shaped domain Ω is given
by the smooth functions

pS(x) = sin(πx1) sin(πx2), uS(x) = −curl (cos(πx1) cos(πx2)),

for all x := (x1, x2) ∈ ΩS, and

pD(x) = sin(πx1) sin(πx2) ∀x := (x1, x2) ∈ ΩD,

where curl (v) :=
(
∂v
∂x2

,− ∂v
∂x1

)t
for any sufficiently smooth function v. Notice that this solution

satisfies uS·n = uD·n on Σ and the boundary condition uD·n = 0 on ΓD. However, the Dirichlet
boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous. Then, we need to
modify accordingly the functional F (cf. (1.17)), as follows

[F, (r,ψ)] := −κ2(fS,divτ S)S + (fS,vS)S + 〈τ Sn,g〉ΓS
∀ (r,ψ) ∈ X,

where g := uS|ΓS
∈ H1/2(ΓS).
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In our second example we consider the regions ΩS := (0, 1)2 and ΩD := (0, 1)×(−1, 0). The viscosity
follows a Carreau law (cf. (1.3)), that is

µ(s) := α0 + α1(1 + s2)(β−2)/2 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) = x2
1 − x2

2, uS(x) = curl (x1(x1 − 1)(x2 − 1) sin(πx1) sin(πx2))

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

Finally, in Example 3 we consider ΩS := (0, 1)2 and let ΩD be the L-shaped domain given by
(−1, 1)2 \ ΩS. The viscosity follows a Carreau law with α0 = 0.5, α1 = 0.5, and β = 1.5, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/4 for s ≥ 0.

The data fS and fD are chosen so that the exact solution is given by

pS(x) = cos(πx1) cos(πx2), uS(x) = curl (sin(πx1) sin(πx2))

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

In Tables 1.1, 1.2 and 1.4 we summarize the convergence history for a sequence of quasi-uniform
triangulations, considering the finite element spaces introduced in Section 1.6.1 with k = 0, and solving
the nonlinear problem with a tolerance tol = 1E − 6, which required around five Newton iterations.
In Table 1.2 it has been considered α0 = 0.5, α1 = 0.5, and β = 1 in the Carreau law. We observe
that the rate of convergence O(hk+1) predicted by Theorem 1.19 (when δ = k + 1) is attained in all
the variables (with k = 0). Next, in Table 1.3 we present the behaviour of the iterative method and
CPU time applied to Example 2, considering a decreasing parameter α0 and different mesh sizes. We
observe there that the number of iterations remains bounded even for small values of α0. In addition,
although the CPU time increases for small values of hS, it also remains bounded as α0 decreases.
In addition, some components of the approximate solutions for the three examples are displayed in
Figures 1.2, 1.3 and 1.4. All the figures were obtained with 785349, 1470527 and 2190236 degrees of
freedom for the Examples 1, 2, and 3, respectively. In particular, we can observe in Figure 1.2 that
the second components of uS and uD coincide on Σ as expected, and hence, the continuity of the
normal components of the velocities on Σ is preserved. Moreover, it can be seen that the pressure is
continuous in the whole domain and preserves the sinusoidal behaviour. Next, similarly to Figure 1.2,
in Figure 1.3 we can also observe the continuity of the normal components of the velocities on Σ since
their second components coincide on the interface.
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dof hS e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(ρS) r(ρS) e(pS) r(pS)

859 0.191 0.415 – 4.675 – 0.931 – 1.206 – 0.624 –
3205 0.091 0.206 1.054 2.472 0.958 0.471 0.946 0.705 0.807 0.341 0.908
12542 0.049 0.104 0.994 1.280 0.964 0.239 1.037 0.354 1.009 0.153 1.174
50281 0.024 0.048 1.100 0.639 0.991 0.114 1.058 0.168 1.063 0.069 1.142
198922 0.013 0.025 0.970 0.349 0.889 0.058 1.021 0.088 0.947 0.036 0.935
785349 0.008 0.013 0.979 0.174 1.009 0.029 1.002 0.045 0.973 0.018 0.987

dof hD e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter

859 0.190 1.186 – 0.059 – 1.067 – 0.203 – 5
3205 0.098 0.605 1.033 0.030 1.034 0.557 0.937 0.098 1.056 5
12542 0.054 0.305 1.007 0.015 1.007 0.270 1.044 0.048 1.032 5
50281 0.025 0.152 1.015 0.008 1.015 0.134 1.008 0.024 0.978 5
198922 0.015 0.076 1.002 0.004 1.003 0.067 0.997 0.012 1.025 5
785349 0.007 0.038 1.007 0.002 1.007 0.034 1.003 0.006 1.003 5

Table 1.1: Example 1, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the augmented finite element formulation.

dof hS e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(ρS) r(ρS) e(pS) r(pS)

1595 0.196 0.241 – 1.055 – 0.510 – 0.643 – 0.123 –
5975 0.100 0.116 1.101 0.550 0.981 0.251 1.068 0.375 0.812 0.060 1.084
23486 0.049 0.056 1.071 0.269 1.046 0.120 1.076 0.184 1.038 0.030 1.028
93248 0.025 0.028 0.989 0.137 0.978 0.061 0.988 0.101 0.876 0.015 1.002
373093 0.014 0.014 1.026 0.067 1.025 0.030 1.003 0.050 1.000 0.007 1.067
1470527 0.007 0.007 1.064 0.033 1.022 0.015 1.047 0.026 0.983 0.003 1.110

dof hD e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter

1595 0.190 1.221 – 0.061 – 0.511 – 0.220 – 5
5975 0.095 0.600 1.087 0.030 1.097 0.214 1.258 0.100 1.133 5
23486 0.048 0.303 1.003 0.015 1.002 0.103 1.053 0.049 1.018 5
93248 0.026 0.152 1.007 0.008 1.007 0.055 0.903 0.025 1.007 5
373093 0.014 0.076 1.001 0.004 1.001 0.027 1.053 0.012 1.007 5
1470527 0.007 0.038 1.004 0.002 1.003 0.014 0.935 0.006 0.980 5

Table 1.2: Example 2, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the augmented finite element formulation.
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α0 hS = 0.1964 cpu[s] hS = 0.0997 cpu[s] hS = 0.0487 cpu[s]

1 4 1.3648 4 3.0490 4 8.9298
1/2 5 1.4532 5 3.6315 5 10.9285
1/4 5 1.4801 5 3.8027 5 10.5086
1/8 6 1.7455 5 3.6785 5 10.1666
1/16 6 1.8367 6 4.3328 6 12.0209
1/32 6 1.7321 6 4.3937 6 12.0770
1/64 7 1.9799 7 4.8938 6 12.1350
1/128 7 1.9292 7 4.9459 7 13.6913

α0 hS = 0.0250 cpu[s] hS = 0.0136 cpu[s] hS = 0.0072 cpu[s]

1 4 36.1339 4 1400.5835 4 19934.6071
1/2 5 43.7478 5 1217.9274 5 24872.5168
1/4 5 43.9839 5 371.6146 5 22011.6552
1/8 5 43.0072 5 357.1378 5 4284.1578
1/16 6 50.0509 6 392.7867 6 2313.1802
1/32 6 50.3200 6 393.5295 6 2269.6475
1/64 6 57.2579 6 399.4585 6 2282.7094
1/128 6 51.0813 6 405.1886 6 2297.5849

Table 1.3: Example 2, Behaviour of the iterative Newton’s method with respect to the viscosity µ,
considering a Carreau law with parameters α1 = 0.5 and β = 1.

dof hS e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(ρS) r(ρS) e(pS) r(pS)

2317 0.196 0.856 – 3.729 – 1.556 – 2.991 – 0.625 –
8754 0.099 0.452 0.962 1.958 0.972 0.787 1.028 1.806 0.761 0.357 0.846
34744 0.049 0.209 1.127 0.962 1.038 0.388 1.032 0.961 0.920 0.150 1.264
138089 0.025 0.106 0.981 0.482 1.000 0.195 0.999 0.486 0.989 0.076 0.984
552690 0.014 0.052 1.019 0.241 1.001 0.096 1.014 0.249 0.965 0.037 1.031
2190236 0.007 0.024 1.133 0.119 1.032 0.047 1.051 0.122 1.044 0.018 1.083

dof hD e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ) iter

2317 0.217 2.151 – 0.123 – 1.480 – 0.523 – 5
8754 0.103 1.088 1.024 0.055 1.213 0.789 0.908 0.218 1.260 5
34744 0.059 0.539 1.013 0.027 1.036 0.399 0.985 0.095 1.202 5
138089 0.029 0.271 1.000 0.014 1.002 0.188 1.082 0.053 0.853 5
552690 0.016 0.135 0.999 0.007 1.000 0.093 1.014 0.027 0.977 5
2190236 0.008 0.068 1.003 0.003 1.000 0.047 0.993 0.012 0.975 5

Table 1.4: Example 3, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the augmented finite element formulation.
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Figure 1.2: Example 1: Approximated spectral norm of the stress tensor components and the strain ten-
sor (top panels), skew-symmetric part of the Navier–Stokes velocity gradient, Navier–Stokes pressure
field, and Darcy pressure field (centre panels), and geometry configuration and velocity components
on the whole domain (bottom row).



1.7. Numerical results 44

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-2 0 2

.

-3.14 3.14

-2 0 2

. Y

-3.14 3.14

Figure 1.3: Example 2: Approximated spectral norm of the stress tensor components and the strain ten-
sor (top panels), skew-symmetric part of the Navier–Stokes velocity gradient, Navier–Stokes pressure
field, and Darcy pressure field (centre panels), and geometry configuration and velocity components
on the whole domain (bottom row).
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Figure 1.4: Example 3: Approximated spectral norm of the stress tensor components and the strain ten-
sor (top panels), skew-symmetric part of the Navier–Stokes velocity gradient, Navier–Stokes pressure
field, and Darcy pressure field (centre panels), and geometry configuration and velocity components
on the whole domain (bottom row).



CHAPTER 2

A posteriori error analysis of a fully-mixed formulation for the
Navier–Stokes/Darcy coupled problem with nonlinear viscosity

In this chapter we develop an a posteriori error analysis for the coupled problem studied in
Chapter 1. We derive a reliable and efficient residual-based a posteriori error estimator to establish
adaptive methods allowing to improve the accuracy of the numerical approximations, mainly under
presence of singularities or high gradients of the solution.

2.1 Introduction

Over the last decades, a wide range of numerical methods capturing the behaviour of a free fluid
flow interacting with a porous medium have been proposed. The reason of such an interest by the
numerical analysis community relies on the fact that, in industry, engineering sciences and several
other disciplines, several interesting phenomena can be described under the framework of this kind of
interaction problems. In particular, for specific applications we refer to flow in vuggy porous media
appearing in petroleum extraction (see, e.g. [6], [7]), groundwater system in karst aquifers (see, e.g.
[74], [129]), reservoir wellbore (see, e.g. [8]), industrial filtrations (see. e.g. [110], [132]), topology
optimization (see, e.g. [107]), and blood motion in tumors and microvessels (see, e.g. [138], [146]).
One of the most popular models utilized to describe the aforementioned interaction is the Navier–
Stokes/Darcy (or Stokes/Darcy) model, which consists in a set of differential equations where the
Navier–Stokes (or Stokes) problem is coupled with the Darcy model through a set of coupling equations
acting on a common interface given by mass conservation, balance of normal forces, and the so called
Beavers–Joseph–Saffman condition. In [11, 40, 43, 45, 63, 64, 65, 27, 92, 94, 96], and in the references
therein, we can find a large list of contributions devoted to numerically approximate the solution of this
interaction problem, including primal and mixed conforming formulations, as well as nonconforming
methods.

In Chapter 1, it has been introduced and analyzed a new augmented-mixed finite element method
for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. The formulation there consid-
ers dual-mixed formulations in both domains, and in order to deal with the nonlinear viscosity, the
strain tensor and the vorticity are introduced as auxiliary unknowns. In turn, since the transmission
conditions become essential, they are imposed weakly, which yields the introduction of the traces of the

46
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porous media pressure and the fluid velocity as associated Lagrange multipliers. Furthermore, since
the convective term in the fluid forces the velocity to live in a smaller space than usual, similarly to
[28] and [30], the variational formulation is augmented with suitable Galerkin type terms arising from
the constitutive and equilibrium equations of the Navier–Stokes model, as well as from the relations
defining the strain and vorticity tensors. The resulting augmented variational system of equations is
then suitably ordered so that it exhibits a twofold saddle point structure, which is similar to the one
analyzed in [88] for the Stokes–Darcy coupled problem with nonlinear viscosity. The formulation is
then written equivalently as a fixed point equation, and the well-known Schauder and Banach theo-
rems, as well as the abstract theory developed in [88], which is based on classical results on bijective
monotone operators, are applied to prove the unique solvability of the continuous and discrete sys-
tems. A feasible choice of finite element subspaces for the formulation introduced in Chapter 1 is given
by piecewise constants, Raviart–Thomas spaces of lowest order, continuous piecewise linear elements,
and piecewise constants for the strain, Cauchy stress, velocity, and vorticity in the fluid, respectively,
whereas Raviart–Thomas spaces of lowest order and piecewise constants for the velocity and pressure,
together with continuous piecewise linear elements for the Lagrange multipliers, can be utilized in the
Darcy region. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with
nonlinear problems, as in the present case, most of the standard Galerkin procedures such as finite
element and mixed finite element methods inevitably lose accuracy, and hence one usually tries to
recover it by applying an adaptive algorithm based on a posteriori error estimates. In this direction,
and particularly for the coupling of fluid flows with porous media flows, we refer to [10, 27, 44, 58,
59, 95, 96, 108, 127, 133, 151] where different contributions addressing this interesting issue, most of
them devoted to the Stokes–Darcy coupled problem, can be found. Up to the authors’ knowledge, the
first work dealing with adaptive algorithms for the Navier–Stokes/Darcy coupling is [108], where an
a posteriori error estimator for a discontinuous Galerkin approximation of this coupled problem with
constant parameters is proposed.

According to the above discussion, and in order to complement the study started in Chapter 1 for
the Navier–Stokes/Darcy equations with variable viscosity, in this chapter we proceed similarly to
[95, 96] and [27], and develop an a posteriori error analysis for the finite element method studied in
Chapter 1. More precisely, assuming a smallness condition on the data, we derive a reliable and efficient
residual-based a posteriori error estimator for the three dimensional version of the augmented-mixed
method introduced in Chapter 1. The global inf-sup condition, a suitable Helmholtz decomposition
recently provided in [82], and the approximation properties of the Clemént and Raviart–Thomas ope-
rators, among others, are the main tools yielding the reliability. In turn, the efficiency estimate is
consequence of standard arguments such as inverse inequalities, the localization technique based on
bubble functions, and other known results to be specified later on in Section 2.3.4. The rest of this
chapter is organized as follows. In Section 2.2 we recall from Chapter 1 the model problem and its
continuous and discrete augmented fully-mixed variational formulations. In Section 2.3, we derive the
a posteriori error estimator. The reliability analysis is carried out in Section 2.3.3, whereas in Section
2.3.4 we provide the efficiency analysis. Finally, some numerical results confirming the reliability
and efficiency of the a posteriori error estimator and showing the good performance of the associated
adaptive algorithm for the fully-mixed finite element method, are presented in Section 2.4.
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2.2 The Navier–Stokes/Darcy coupled problem

In this section we recall from Chapter 1 the Navier–Stokes/Darcy model, its fully-mixed variational
formulation, the associated Galerkin scheme, and the main results concerning the corresponding
solvability analysis.

2.2.1 The model problem

In order to describe the geometry under consideration we let ΩS and ΩD be bounded and simply
connected open polyhedral domains in Rn, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ 6= ∅. Then,
we let ΓS := ∂ΩS \ Σ, ΓD := ∂ΩD \ Σ, and denote by n the unit normal vector on the boundaries,
which is chosen pointing outward from Ω := ΩS ∪Σ∪ΩD and ΩS (and hence inward to ΩD when seen
on Σ). On Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 (see Fig.
2.1 below) and by {t1, t2} when n = 3. The problem we are interested in consists of the movement of
an incompressible quasi-Newtonian viscous fluid occupying ΩS which flows towards and from a porous
medium ΩD through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined
by two separate groups of equations and by a set of coupling terms. In ΩS, the governing equations
are those of the Navier–Stokes problem with constant density and variable viscosity, which are written
in the following nonstandard stress-velocity-pressure formulation:

σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI in ΩS, div uS = 0 in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(2.1)

where σS is the nonlinear stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is the

nonlinear kinematic viscosity, e(uS) :=
1

2

{
∇uS + (∇uS)t

}
is the strain tensor (or symmetric part of

the velocity gradient) and fS ∈ L2(ΩS) is a known volume force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy model

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 ∀s ≥ 0, (2.2)

which, according to the results provided in [98, Theorem 3.8], implies Lipschitz continuity of the
nonlinear operator induced by µ. This fact will be used later on in Sections 2.3.3 and 2.3.4. In
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addition, it is easy to see that the forthcoming analysis also applies to the slightly more general case
of a viscosity function acting on Ω× R+, that is µ : Ω× R+ → R. Some examples of nonlinear µ are
the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2, (2.3)

where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both
satisfy (2.2) with (µ1, µ2) = (2, 3) and (µ1, µ2) = (α0, α0 + α1), respectively.

Next, we adopt the approach from [40] (see also [91, 89]) and introduce the additional unknowns
tS := e(uS) and ρS := 1

2

(
∇uS − (∇uS)t

)
, where ρS is the vorticity (or skew-symmetric part of the

velocity gradient). In this way, we observe that the equations in (2.1) can be rewritten equivalently as

tS = ∇uS − ρS in ΩS, σd
S = µ(|tS|)tS − (uS ⊗ uS)d in ΩS,

−divσS = fS in ΩS, pS = − 1

n
tr (σS + (uS ⊗ uS)) in ΩS, uS = 0 on ΓS.

(2.4)

Note that the fourth equation in (2.4) allows us to eliminate the pressure pS from the system and
compute it as a simple post-process of the solution.

On the other hand, in ΩD we consider the linearized Darcy model with homogeneous Neumann
boundary condition on ΓD:

uD = −K∇pD in ΩD, div uD = fD in ΩD, uD·n = 0 on ΓD, (2.5)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source term satisfying∫
ΩD

fD = 0, and K ∈ [L∞(ΩD)]n×n is a positive definite symmetric tensor describing the permeability
of ΩD divided by a constant approximation of the viscosity.

Finally, the transmission conditions are given by

uS·n = uD·n and σSn +

n−1∑
l=1

ω−1
l (uS·tl)tl = −pDn on Σ , (2.6)

where {ω1, . . . , ωn−1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (2.6) corresponds to mass conservation on Σ, whereas the second one establishes
the balance of normal forces and a Beavers–Joseph–Saffman law.

2.2.2 The fully-mixed variational formulation

In this section we introduce the weak formulation derived in Chapter 1 for the coupled problem given
by (2.4), (2.5), and (2.6). To this end, let us first introduce further notations and definitions. In what
follows, given ? ∈ {S,D}, u, v ∈ L2(Ω?), u,v ∈ L2(Ω?), and σ, τ ∈ L2(Ω?), we set

(u, v)? :=

∫
Ω?

uv, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .
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In addition, we let L2
sym(ΩS) and L2

skew(ΩS) be the subspaces of symmetric and skew-symmetric tensors
of L2(ΩS), respectively, that is

L2
sym(ΩS) :=

{
rS ∈ L2(ΩS) : rt

S = rS

}
,

L2
skew(ΩS) :=

{
ηS ∈ L2(ΩS) : ηt

S = −ηS

}
.

Furthermore, we define the spaces

H0(div ; ΩD) :=
{

vD ∈ H(div ; ΩD) : vD·n = 0 on ΓD

}
,

L2
tr (ΩS) :=

{
rS ∈ L2

sym(ΩS) : tr rS = 0
}
,

H1
ΓS

(ΩS) :=
{
vS ∈ H1(ΩS) : vS = 0 on ΓS

}
, H1

ΓS
(ΩS) := [H1

ΓS
(ΩS)]n ,

and the space of traces

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1

ΓS
(ΩS)

}
, H

1/2
00 (Σ) := [H

1/2
00 (Σ)]n .

Equivalently, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ

0 on ΓS
∀ψ ∈ H1/2(Σ) ,

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

which is endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. In addition, ‖ · ‖1/2,00,Σ also stands

for the corresponding product norm of H
1/2
00 (Σ). In turn, H

−1/2
00 (Σ) and H

−1/2
00 (Σ) are the dual spaces

of H
1/2
00 (Σ) and H

1/2
00 (Σ), respectively, with norms denoted in both cases by ‖ · ‖−1/2,00,Σ.

Now, in order to deduce our variational system we need to add two auxiliary unknowns on the
coupling boundary

ϕ := −uS|Σ ∈ H
1/2
00 (Σ) and λ := pD|Σ ∈ H1/2(Σ) .

In this way, our variational system will be written in terms of the unknowns t := (tS,σS,uS,ρS,uD),
ϕ := (ϕ, λ) and pD. Let us recall from [40, Section 2.3] that, given any constant c ∈ R, the vector
defined by ((tS,σS − cI,uS,ρS,uD), (ϕ, λ+ c), pD + c) also becomes a solution of the problem defined
below. Hence, in order to ensure uniqueness of solution, we will require the Darcy pressure pD to live
in L2

0(ΩD), where
L2

0(ΩD) :=
{
q ∈ L2(ΩD) : (q, 1)D = 0

}
.

Then, defining the spaces

X := L2
tr (ΩS)×H(div; ΩS)×H1

ΓS
(ΩS)× L2

skew(ΩS)×H0(div ; ΩD),

M := H
1/2
00 (Σ)×H1/2(Σ), X := X×M, and M := L2

0(ΩD),

with X, M, X and X×M endowed with the product norms

‖r‖X := ‖rS‖0,ΩS
+ ‖τ S‖div,ΩS

+ ‖vS‖1,ΩS
+ ‖ηS‖0,ΩS

+ ‖vD‖div ,ΩD
,

‖ψ‖M := ‖ψ‖1/2,00,Σ + ‖ξ‖1/2,Σ, ‖(r,ψ)‖X := ‖r‖X + ‖ψ‖M,

‖((r,ψ), qD)‖X×M := ‖(r,ψ)‖X + ‖qD‖0,Ω,
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as explained in [40, Section 2.2], we arrive at the following modified variational formulation for (2.4),
(2.5), and (2.6): Find ((t,ϕ), pD) ∈ X×M such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ), pD] = [F, (r,ψ)] ∀ (r,ψ) ∈ X,

[B(t,ϕ), qD] = [G, qD] ∀ qD ∈M,
(2.7)

where, given zS ∈ H1
ΓS

(ΩS), the operator A(zS) : X→ X′ is defined by

[A(zS)(t,ϕ), (r,ψ)] := [a(zS)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ], (2.8)

with

[a(zS)(t), r] := [a1(t), r] + [a2(zS)(t), r],

[a1(t), r] := (µ(|tS|)tS, rS)S − (rS,σ
d
S)S + (tS, τ

d
S)S + κ1(σd

S − µ(|tS|)tS, τ
d
S)S

+ κ2(divσS,divτ S)S + (divτ S,uS)S − (divσS,vS)S

+ (τ S,ρS)S − (σS,ηS)S + κ3(e(uS)− tS, e(vS))S

+ κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+ (K−1uD,vD)D,

[a2(zS)(t), r] := ((zS ⊗ uS)d, κ1τ
d − rS)S,

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD·n, ξ〉Σ ,

[c(ϕ),ψ] := 〈ϕ·n, ξ〉Σ − 〈ψ·n, λ〉Σ +

n−1∑
l=1

ω−1
l 〈ϕ · tl,ψ · tl〉Σ ,

(2.9)

whereas the operator B : X→M′ and the functionals F : X→ R and G : M→ R are given by

[B(r,ψ), qD] := −(div vD, qD)D, (2.10)

and
[F, (r,ψ)] := −κ2(fS,divτ S)S + (fS,vS)S and [G, qD] := −(fD, qD)D. (2.11)

In all the foregoing terms, [·, ·] denotes the duality pairing induced by the corresponding operators and
κi, i ∈ {1, . . . , 4}, are positive parameters to be specified below in Theorem 2.1.

Furthermore, we notice from (2.9) that, owing to the Cauchy–Schwarz and Hölder’s inequalities, and
the continuous injection ic of H1(ΩS) into L4(ΩS) (see e.g. [1, Theorem 6.3] or [139, Theorem 1.3.5]),
there holds

|[a2(zS)(t), r]| ≤ c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

‖uS‖1,ΩS
‖r‖X ∀ t, r ∈ X, (2.12)

where c2(ΩS) := ‖ic‖2. Additionally, we observe that (2.7) is equivalent to the variational formulation
defined in [40, Section 2.2], in which σS is decomposed as σS = σ + lI, with σ ∈ H0(div; ΩS) and
l ∈ R, where

H0(div; ΩS) :=
{
τ ∈ H(div; ΩS) : (tr τ , 1)S = 0

}
.

The following result taken from [40] establishes the well-posedness of (2.7).
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Theorem 2.1. Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ2 > 0, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
, and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with Lµ := max{µ2, 2µ2 − µ1}, CKo the Korn’s constant given by [40, eq. (3.10)], δ1 ∈
(

0,
2

Lµ

)
,

δ2 ∈ (0, 2), and δ3 ∈ (0, 2). In addition, given r ∈ (0, r0), with

r0 :=
α0(Ω)

2c2(ΩS)(κ2
1 + 1)1/2

, (2.13)

where c2(ΩS) is the constant in (2.12) and α0(Ω) is the strong monotonicity constant of the nonlinear
operator a (see [40, eq. (3.16)]), we let Wr :=

{
zS ∈ H1

ΓS
(ΩS) : ‖zS‖1,ΩS

≤ r
}
, and assume that the

data fS and fD satisfy
cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (2.14)

where cT is the positive constant, independent of the data, provided by [40, Lemma 3.6]. Then, the
augmented fully-mixed formulation (2.7) has a unique solution ((t,ϕ), pD) ∈ X ×M with uS ∈ Wr,
which satisfies

‖((t,ϕ), pD)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (2.15)

Proof. See [40, Theorem 3.11] for details.

2.2.3 The fully-mixed finite element method

Here, for clarity of exposition of the a posteriori error estimator to be defined next in Section 2.3, we
restrict ourselves to the particular case provided in [40, Section 6.2] with k = 0 and introduce a Galerkin
scheme for the 3D version of (2.7). To that end we let T S

h and T D
h be respective triangulations of the

domains ΩS and ΩD, which are formed by shape-regular tetrahedra T of diameter hT , and assume that
they match in Σ so that T S

h ∪T D
h is a triangulation of Ω := ΩS ∪Σ∪ΩD. Then, for each T ∈ T S

h ∪T D
h

we set the local Raviart–Thomas space of lowest order,

RT0(T ) := P0(T ) + P0(T )x ,

where x is a generic vector in R3. We also let Σh be the partition of Σ inherited from T S
h (or T D

h ),
which is formed by triangles e of diameter he, and set hΣ := max{he : e ∈ Σh}. Furthermore, we
introduce the following discrete subspaces

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ P0(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RT0(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]3 : vh|T ∈ P1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh ∈ L2

tr (ΩS) : rh|T ∈ P0(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ P0(T ) ∀T ∈ T S
h

}
.
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In turn, in order to define the discrete spaces for the unknowns on the interface Σ, we introduce an
independent triangulation Σ̂h of Σ, by triangles ê of diameter hê, and define the associated meshsize
h

Σ̂
:= max{hê : ê ∈ Σ̂h}. Then, denoting by ∂Σ the polygonal boundary of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|ê ∈ P1(ê) ∀ê ∈ Σ̂h, ψh = 0 on ∂Σ

}
,

ΛD
h (Σ) :=

{
ξh ∈ C(Σ) : ξh|ê ∈ P1(ê) ∀ê ∈ Σ̂h

}
.

(2.16)

Employing the above notations, we set

Hh(ΩS) :=
{
τ S ∈ H(div; ΩS) : ctτ ∈ Hh(ΩS) ∀ c ∈ R3

}
,

Hh,0(ΩS) := Hh(ΩS) ∩H0(div; ΩS),

H1
h,ΓS

(ΩS) := H1
h(ΩS) ∩H1

ΓS
(ΩS),

Hh,0(ΩD) := Hh(ΩD) ∩H0(div ; ΩD),

L2
h,0(ΩD) := L2

h(ΩD) ∩ L2
0(ΩD),

ΛS
h(Σ) := [ΛS

h(Σ)]3.

Then, defining the global spaces, unknowns, and test functions as follows

Xh := L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)×Hh,0(ΩD) ,

Mh := ΛS
h(Σ)× ΛD

h (Σ) , Xh := Xh ×Mh, Mh := L2
h,0(ΩD) ,

th := (tS,h,σS,h,uS,h,ρS,h,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈Mh,

rh := (rS,h, τ S,h,vS,h,ηS,h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈Mh,

pD,h ∈Mh, and qD,h ∈Mh,

the Galerkin scheme for problem (2.7) reads: Find ((th,ϕh), pD,h) ∈ Xh ×Mh such that

[A(uS,h)(th,ϕh), (rh,ψh)] + [B(rh,ψh), pD,h] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh), qD,h] = [G, qD,h] ∀ qD,h ∈Mh.
(2.17)

The following theorem, also taken from [40], provides the well-posedness of (2.17), the associated
Céa estimate, and the corresponding theoretical rate of convergence.

Theorem 2.2. Assume that the conditions on κi, i ∈ {1, . . . , 4}, required by Theorem 2.1 hold. In
addition, given r ∈ (0, r0), with r0 defined by (2.13), we let

W h
r :=

{
zS,h ∈ H1

h,ΓS
(ΩS) : ‖zS,h‖1,ΩS

≤ r
}
,

and assume that the data fS and fD satisfy

c̃T
{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r, (2.18)
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where c̃T is the positive constant, independent of the data, provided by [40, Lemma 4.2]. Then there
exists a constant C0 > 0 such that, whenever hΣ ≤ C0hΣ̂

, there exists a unique ((th,ϕh), pD,h) ∈
Xh ×Mh solution to problem (2.17) with uS,h ∈W h

r . In addition, there holds

‖((th,ϕh), pD,h)‖X×M ≤ c̃T
{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
, (2.19)

and there exists C1 > 0, independent of h, hΣ, and hΣ̂
, such that

‖((t,ϕ), pD)− ((th,ϕh), pD,h)‖X×M ≤ C1dist
(
((t,ϕ), pD),Xh ×Mh

)
.

Assume further that there exists δ > 0 such that tS ∈ Hδ(ΩS), σS ∈ Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈
H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and div uD ∈ Hδ(ΩD). Then pD ∈ H1+δ(ΩD),
λ ∈ H1/2+δ(Σ), and there exists C2 > 0, independent of h, hΣ, and hΣ̂

, such that

‖((t,ϕ), pD)− ((th,ϕh), pD,h)‖X×M ≤ C2 h
δ
{
‖tS‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.

Proof. We refer the reader to [40, Theorems 4.3, 5.4, and 6.2] for details.

We end this section by pointing out that the assumption hΣ ≤ C0hΣ̂
required in Theorem 2.2 is

needed to prove the discrete inf-sup condition for the bilinear form b (cf. (2.9)). We omit further
details about this issue and refer the reader to [86, Lemma 7.5] for more details.

2.3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the three
dimensional Galerkin scheme (2.17). The corresponding a posteriori error analysis for the 2D case
should be quite straightforward. We remark in advance that most of the proofs here make extensive use
of estimates already available in the literature. In particular, we apply results from [82, 80, 89, 93, 97],
among others.

2.3.1 Preliminaries

We begin by introducing further notations and definitions. First, given T ∈ T S
h ∪ T D

h , we let E(T ) be
the set of faces of T , and denote by Eh the set of all faces of T S

h ∪ T D
h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΓD) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ),

where Eh(Γ?) := {e ∈ Eh : e ⊆ Γ?}, Eh(Ω?) := {e ∈ Eh : e ⊆ Ω?}, for ? ∈ {S,D}, and the faces of
Eh(Σ) are exactly those forming the previously defined partition Σh, that is Eh(Σ) := {e ∈ Eh : e ⊆ Σ}.
Also, for each e ∈ Eh(Ω?) we fix a unit normal ne, and then, given v = (v1, v2, v3)t ∈ L2(Ω) and τ :=

(τij)3×3 ∈ L2(Ω) such that v|T ∈ C(T ) and τ |T ∈ C(T ) on each T ∈ Th, we let Jv×neK and Jτ×neK be
the corresponding jumps of the tangential traces across e. In other words, Jv×neK := (v|T −v|T ′)|e×ne
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and Jτ×neK := (τ |T − τ |T ′)|e×ne, respectively, where T and T ′ are the elements of T ?h having e as a
common face and

τ × ne :=

 (τ11, τ12, τ13)× ne
(τ21, τ22, τ23)× ne
(τ31, τ32, τ33)× ne

 .

From now on, when no confusion arises, we simple write n instead of ne. In the sequel we will also
make use of the following differential operators:

curl (v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
and

curl (τ ) :=

 curl (τ11, τ12, τ13)

curl (τ21, τ22, τ23)

curl (τ31, τ32, τ33)

 .

In turn, the tangential curl operator curl s : H1/2(Σ)→ L(H−1/2(Σ)), with L(H−1/2(Σ)) denoting the
tangential vector fields of order −1/2, will also be needed. This operator which can be defined by
curl s(ξ) = ∇ξ×n for any sufficiently smooth function ξ, is linear and continuous (see [21, Proposi-
tions 3.4 and 3.6] for details). A tensor version of curl s, say curl s : H1/2(Σ)→ L(H−1/2(Σ)), which
is defined component-wise by curl s, will be also utilized.

Let us now recall the main properties of the Raviart–Thomas interpolator of lowest order (see
[19, 81, 100]) and the Clément operator onto the space of continuous piecewise linear functions [49].
We begin with the aforementioned Raviart–Thomas operator Π?

h : H1(Ω?) → Hh(Ω?) (recall the
definition of Hh(Ω?) in Section 2.2.3), ? ∈ {S,D}, which is characterized by the identity∫

e
Π?
hv · n =

∫
e
v · n ∀ face e of T ?h . (2.20)

As a consequence of (2.20), there holds

div (Π?
hv) = P?h(div v), (2.21)

where P?h is the L2(Ω?)-orthogonal projector onto the piecewise constant functions on Ω?. A tensor
version of Π?

h, say Π?
h : H1(Ω?) → Hh(Ω?), which is defined row-wise by Π?

h, and a vector version of
P?h, say P?

h, which is the L2(Ω?)-orthogonal projector onto the piecewise constant vectors on Ω?, might
also be required. The local approximation properties of Π?

h (and hence of Π?
h) are established in the

following lemma. For the corresponding proof we refer to [19] (see also [81]).

Lemma 2.3. For each ? ∈ {S,D} there exist constants c1, c2 > 0, independent of h, such that for all
v ∈ H1(Ω?) there hold

‖v −Π?
hv‖0,T ≤ c1hT ‖v‖1,T ∀T ∈ T ?h ,

and
‖v · n−Π?

hv · n‖0,e ≤ c2h
1/2
e ‖v‖1,Te ∀ face e of T ?h ,

where Te is a tetrahedron of T ?h containing e on its boundary.
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In turn, the Clément operator I?h : H1(Ω?)→ H1
h(Ω?), with

H1
h(Ω?) :=

{
v ∈ C(Ω?) : v|T ∈ P1(T ) ∀T ∈ T ?h

}
,

approximates optimally non-smooth functions by continuous piecewise linear functions. The local
approximation properties of this operator are established in the following lemma (see [49]).

Lemma 2.4. For each ? ∈ {S,D} there exist constants c3, c4 > 0, independent of h, such that for all
v ∈ H1(Ω?) there holds

‖v − I?hv‖0,T ≤ c3hT ‖v‖1,∆?(T ) ∀T ∈ T ?h ,

and
‖v − I?hv‖0,e ≤ c4h

1/2
e ‖v‖1,∆?(e) ∀e ∈ Eh,

where
∆?(T ) := ∪

{
T ′ ∈ T ?h : T ′ ∩ T 6= ∅

}
and ∆?(e) := ∪

{
T ′ ∈ T ?h : T ′ ∩ e 6= ∅

}
.

In what follows, a vector version of I?h, say I?h : H1(Ω?)→ H1
h(Ω?), which is defined component-wise

by I?h, will be needed as well.

For the forthcoming analysis we will also utilize a couple of results providing stable Helmholtz
decompositions for H(div; ΩS) and H0(div ; ΩD). In this regard, we remark in advance that the de-
composition for H0(div ; ΩD) will require the boundary ΓD to lie in a “convex part” of ΩD, which means
that there exists a convex domain containing ΩD, and whose boundary contains ΓD. More precisely,
we have the following lemma.

Lemma 2.5.

a) For each τ S ∈ H(div; ΩS) there exist η ∈ H2(ΩS) and χ ∈ H1(ΩS) such that

τ S = ∇η + curlχ in ΩS and ‖η‖2,ΩS
+ ‖χ‖1,ΩS

≤ CS‖τ S‖div,ΩS
, (2.22)

where CS is a positive constant independent of all the foregoing variables.

b) Assume that there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Then, given
vD ∈ H0(div ; ΩD) there exist w ∈ H2(ΩD) and β ∈ H1

ΓD
(ΩD) such that

vD = ∇w + curlβ in ΩD and ‖w‖2,ΩD
+ ‖β‖1,ΩD

≤ CD‖vD‖div ,ΩD
, (2.23)

where CD is a positive constant independent of all the foregoing variables, and

H1
ΓD

(ΩD) :=
{
β ∈ H1(ΩD) : β|ΓD

∈ P0(ΓD)
}
.

Proof. See [82, Theorems 3.1 and 3.2].

We end this section with a lemma providing estimates in terms of local quantities for the H
−1/2
00 (Σ)

and H−1/2(Σ) norms of functions in particular subspaces of L2(Σ) and H−1/2(Σ)∩L2(Σ), respectively.
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More precisely, having in mind the definitions of ΛS
h(Σ) and ΛD

h (Σ) (cf. (2.16)), which are subspaces
of H

1/2
00 (Σ) and H1/2(Σ), respectively, we introduce the orthogonal-type spaces

ΛS,⊥
h (Σ) :=

{
λ ∈ L2(Σ) : 〈λ, ψh〉Σ = 0 ∀ψh ∈ ΛS

h(Σ)
}

(2.24)

and
ΛD,⊥
h (Σ) :=

{
λ ∈ H−1/2(Σ) ∩ L2(Σ) : 〈λ, ξh〉Σ = 0 ∀ ξh ∈ ΛD

h (Σ)
}
. (2.25)

Then, the announced lemma is stated as follows.

Lemma 2.6. Assume that for each e ∈ Σh there exists ê ∈ Σ̂h such that e ⊆ ê and hê ≤ C1 he,
with a constant C1 > 0 independent of hΣ and h

Σ̂
. Then, there exists C > 0, independent of the

aforementioned meshsizes, such that

‖λ‖2−1/2,00,Σ ≤ C
∑
e∈Σh

he ‖λ‖20,e ∀λ ∈ ΛS,⊥
h (Σ) , (2.26)

and
‖λ‖2−1/2,Σ ≤ C

∑
e∈Σh

he ‖λ‖20,e ∀λ ∈ ΛD,⊥
h (Σ) . (2.27)

Proof. Given λ ∈ ΛS,⊥
h (Σ), we first observe that λ ∈ H

−1/2
00 (Σ) and that

‖λ‖−1/2,00,Σ = sup
ξ∈H

1/2
00 (Σ)
ξ 6=0

〈λ, ξ〉Σ
‖ξ‖1/2,00,Σ

≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

〈λ, v〉Σ
‖v‖1,ΩS

. (2.28)

Next, we let T̂ S
h be a regular triangulation of the domain ΩS which coincides with Σ̂h on Σ, and let

Îh : H1(ΩS)→ Ŷh :=
{
v ∈ C(ΩS) : v|T ∈ P1(T ) ∀T ∈ T̂ S

h

}
be the usual Clément operator (see Section 2.3.1). Then, since Îh(v)|Σ ∈ ΛS

h(Σ) ∀ v ∈ H1
ΓS

(ΩS), it
follows from (2.24), (2.28), and the Cauchy–Schwarz inequality, that

‖λ‖−1/2,00,Σ ≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

〈λ, v − Îh(v)〉Σ
‖v‖1,ΩS

≤ sup
v∈H1

ΓS
(ΩS)

v 6=0

∑
e∈Σh

‖λ‖0,e‖v − Îh(v)‖0,ê

‖v‖1,ΩS

, (2.29)

where we also use that ‖v − Îh(v)‖0,e ≤ ‖v − Îh(v)‖0,ê. In turn, applying the second approximation
property from Lemma 2.4, the estimate hê ≤ C1 he, and the fact that the number of triangles of the
macro-elements ∆(ê) are uniformly bounded, we find that∑

e∈Σh

‖λ‖0,e‖v − Îh(v)‖0,ê ≤
∑
e∈Σh

h
1/2
ê ‖λ‖0,e ‖v‖1,∆(ê)

≤

∑
e∈Σh

hê ‖λ‖20,e


1/2 ∑

e∈Σh

‖v‖21,∆(ê)


1/2

≤ C

∑
e∈Σh

he ‖λ‖20,e


1/2

‖v‖1,ΩS
,

which, replaced back into (2.29), gives (2.26). The proof of (2.27), being similar to that of (2.26), is
omitted.
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2.3.2 The main result

In what follows we assume that the hypotheses of Theorem 2.1, Theorem 2.2, and Lemma 2.6, hold
and let ~t := ((t,ϕ), pD) ∈ X ×M and ~th := ((th,ϕh), pD,h) ∈ Xh ×Mh be the unique solutions of
problems (2.7) and (2.17), respectively. Then, our global a posteriori error estimator is defined by:

Θ :=

∑
T∈T S

h

Θ2
S,T +

∑
T∈T D

h

Θ2
D,T


1/2

, (2.30)

where the local error indicators Θ2
S,T (with T ∈ T S

h ) and Θ2
D,T (with T ∈ T D

h ) are given by

Θ2
S,T := ‖fS + divσS,h‖20,T +

∥∥fS −PS
h(fS)

∥∥
0,T

+

∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥2

0,T

+ ‖e(uS,h)− tS,h‖20,T +
∥∥σS,h − σt

S,h

∥∥2

0,T
+
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥2

0,T

+ h2
T

∥∥∇uS,h −
(
tS,h + ρS,h

)∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h

)
×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h

)
×n
∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e
+ he ‖ϕh + uS,h‖20,e

}
+

∑
eE(T )∩Eh(Σ)

he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥2

0,e
,

(2.31)

and

Θ2
D,T := ‖fD − div uD,h‖20,T + h2

T

∥∥K−1uD,h

∥∥2

0,T
+ h2

T

∥∥curl (K−1uD,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩD)

he
∥∥JK−1uD,h×nK

∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓD)

he
∥∥K−1uD,h×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥K−1uD,h×n + curl sλh

∥∥∥2

0,e
+ he ‖pD,h − λh‖20,e + he ‖uD,h·n +ϕh·n‖

2
0,e

}
.

(2.32)

The main goal of the present Section 2.3 is to establish, under suitable assumptions, the existence
of positive constants Crel and Ceff, independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ + h.o.t. ≤ ‖~t−~th‖X×M ≤ Crel Θ , (2.33)

where h.o.t. stands, eventually, for one or several terms of higher order.

The upper and lower bounds in (2.33), which are known as the reliability and efficiency of Θ, are
derived below in Sections 2.3.3 and 2.3.4, respectively.
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2.3.3 Reliability of Θ

Proceeding analogously to [40, Section 5.2], we first let P : X × M → (X × M)′ := X′ × M′ and
Ph : Xh ×Mh → (Xh ×Mh)′ := X′h ×M′h be the nonlinear operators suggested by the left hand sides
of (2.7) and (2.17) with the given velocity solutions uS ∈Wr and uS,h ∈W h

r , that is

[P(~s),~r] := [(a1 + a2(uS))(s), r] + [b(s),ψ] + [b(r),φ]− [c(φ),ψ]

+ [B(r,ψ), rD] + [B(s,φ), qD] ,
(2.34)

for all ~s = ((s,φ), rD), ~r = ((r,ψ), qD) ∈ X×M, and

[Ph(~sh),~rh] := [(a1 + a2(uS,h))(sh), rh] + [b(sh),ψ
h
] + [b(rh),φ

h
]− [c(φ

h
),ψ

h
]

+ [B(rh,ψh), rD,h] + [B(sh,φh), qD,h] ,
(2.35)

for all ~sh = ((sh,φh), rD,h), ~rh = ((rh,ψh), qD,h) ∈ Xh ×Mh. Then, setting F := (F,G) ∈ X′ ×M′, it
is clear from (2.7) and (2.17) that P and Ph satisfy

[P(~t),~r] = [F ,~r] ∀~r ∈ X×M (2.36)

and
[Ph(~th),~rh] = [F ,~rh] ∀~rh ∈ Xh ×Mh, (2.37)

respectively. In addition, since µ is assumed to be of class C1 (cf. (2.2)), we find, as explained in [40,
Section 5.2], that a1 (cf. (2.9)) has hemi-continuous first order Gâteaux derivativeDa1 : X→ L(X,X′).
In this way, the Gâteaux derivative of P at ~s is obtained by replacing [a1(·), ·] in (2.34) by Da1(~s)(·, ·)
(see [40, Lemma 5.3] for details), that is

DP(~s)(~t,~r) := Da1(s)(t, r) + [a2(uS)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ]

+ [B(r,ψ), pD] + [B(t,ϕ), qD] ,

for all ~t = ((t,ϕ), pD), ~r = ((r,ψ), qD) ∈ X ×M, which, according to [40, Lemma 5.3], becomes a
uniformly bounded (with respect to ~s) bilinear form on (X×M)× (X×M). Moreover, thanks to the
assumptions on κi, i ∈ {1, . . . , 4}, required by Theorem 2.1, recalling that c is positive-semidefinite,
employing the continuous version of [40, Theorem 5.2], and proceeding again as in [40, Section 5.2],
we deduce the existence of a positive constant CP, independent of ~s and the continuous and discrete
solutions, such that the following global inf-sup condition holds

CP ‖~ζ‖X×M ≤ sup
~r∈X×M
~r6=0

DP(~s)(~ζ,~r)

‖~r‖X×M
∀~ζ ∈ X×M . (2.38)

We are now in position of establishing the following preliminary a posteriori error estimate.

Theorem 2.7. Given r ∈ (0, r0), with r0 defined by (2.13), assume that the data fS and fD satisfy

c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ CP r

α0(Ω)
, (2.39)
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where c̃T and α0(Ω) are the positive constants, independent of the data, provided by [40, Lemma 4.2
and eq. (3.16)], and CP is given above in (2.38). Then, there holds

‖~t − ~th‖X×M ≤
2

CP
‖R‖(

X×M
)′ , (2.40)

where R : X ×M → R is the residual functional given by R(~r) := [F − Ph(~th),~r] ∀~r ∈ X ×M,
which satisfies

R(~rh) = 0 ∀~rh ∈ Xh ×Mh . (2.41)

Proof. Since ~t and ~th belong to X×M, a straightforward application of the mean value theorem yields
the existence of a convex combination of ~t and ~th, say ~sh ∈ X ×M, such that (see for instance the
proof of [97, Lemma 3.5])

DP(~sh)(~t−~th,~r) = [P(~t)−P(~th),~r] ∀~r ∈ X×M .

Then, using that [P(~t),~r] = [F ,~r] (cf. (2.36)), and adding and subtracting [Ph(~th),~r], it readily follows
from the foregoing identity that

DP(~sh)(~t−~th,~r) = R(~r) + [Ph(~th)−P(~th),~r] ∀~r ∈ X×M . (2.42)

In turn, applying (2.38) with ~s = ~sh and ~ζ = ~t − ~th, and employing (2.42), we deduce after minor
algebraic manipulations that

CP ‖~t − ~th‖X×M ≤ ‖R‖(X×M)′ + sup
~r∈X×M
~r6=0

[Ph(~th)−P(~th),~r]

‖~r‖X×M
. (2.43)

Next, according to the definitions of P and Ph (cf. (2.34) - (2.35)), and using the estimates (2.12) and
(2.19), and the definition of r0 (cf. (2.13)), we obtain∣∣∣[Ph(~th)−P(~th),~r]

∣∣∣ =
∣∣∣[a2(uS,h − uS)(th), r]

∣∣∣
≤ c2(ΩS) (κ2

1 + 1)1/2 ‖uS,h‖1,ΩS
‖uS − uS,h‖1,ΩS

‖r‖X

≤ c2(ΩS) (κ2
1 + 1)1/2 ‖~th‖X×M ‖~t−~th‖X×M ‖r‖X

≤ α0(Ω)

2r0
c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
‖~t−~th‖X×M ‖r‖X ,

which, thanks to the assumption (2.39) and the fact that
r

r0
≤ 1, yields

∣∣∣[Ph(~th)−P(~th),~r]
∣∣∣ ≤ CP

2
‖~t−~th‖X×M ‖r‖X .

Thus, replacing this estimate back into (2.43) we arrive at (2.40). Finally, the fact that R vanishes in
Xh ×Mh, that is (2.41), follows straightforwardly from (2.37).

According to the upper bound (2.40) provided by the previous lemma, it only remains now to
estimate ‖R‖(

X×M
)′ . To this end, we first observe that the functional R can be decomposed as

R(~r) := R1(τ S) + R2(vS) + R3(ηS) + R4(rS) + R5(vD) + R6(qD) + R7(ψ) + R8(ξ)
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for all ~r = ((r,ψ), qD) ∈ X×M, where

R1(τ S) := −κ2(fS + divσS,h,divτ S)S − κ1

(
σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d, τ d
S

)
S

−(tS,h, τ
d
S)S − (τ S,ρS,h)S − (divτ S,uS,h)S − 〈τ Sn,ϕh〉Σ ,

R2(vS) := (fS + divσS,h,vS)S − κ3(e(uS,h)− tS,h, e(vS))S,

R3(ηS) := (σS,h,ηS)S − κ4

(
ρS,h −

1

2

(
∇uS,h − (∇uS,h)t

)
,ηS

)
S

,

R4(rS) :=
(
σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d, rS

)
S
,

R5(vD) := −(K−1uD,h,vD)D + (div vD, pD,h)D + 〈vD·n, λh〉Σ ,

R6(qD) := −(fD − div uD,h, qD)D,

R7(ψ) := −〈σS,hn,ψ〉Σ +

2∑
l=1

ω−1
l 〈ϕ·tl,ψ·tl〉Σ − 〈ψ·n, λh〉Σ ,

R8(ξ) := 〈ϕh·n, ξ〉Σ + 〈uD,h·n, ξ〉Σ .

In this way, it follows that

‖R‖(
X×M

)′ ≤ {‖R1‖H(div;ΩS)′ + ‖R2‖H1
ΓS

(ΩS)′ + ‖R3‖L2
skew(ΩS)′ + ‖R4‖L2

tr (ΩS)′

+ ‖R5‖H0(div ;ΩD)′ + ‖R6‖L2
0(ΩD)′ + ‖R7‖H−1/2

00 (Σ)
+ ‖R8‖H−1/2(Σ)

}
,

(2.44)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the
right hand side of (2.44). We start with the following lemma, which is a direct consequence of the
Cauchy–Schwarz inequality.

Lemma 2.8. There exist C2, C3 > 0, independent of the meshsizes, such that

‖R2‖H1
ΓS

(ΩS)′ ≤ C2

∑
T∈T S

h

‖fS + divσS,h‖20,T + ‖e(uS,h)− tS,h‖20,T


1/2

and

‖R3‖L2
skew(ΩS)′ ≤ C3

∑
T∈T S

h

∥∥σS,h − σt
S,h

∥∥2

0,T
+

∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥2

0,T


1/2

.

In addition, there holds

‖R4‖L2
tr (ΩS)′ ≤

∑
T∈T S

h

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T


1/2

and

‖R6‖L2
0(ΩD)′ ≤

 ∑
T∈T D

h

‖fD − div uD,h‖20,T


1/2

.
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Next, we derive the upper bounds for R7 and R8, the functionals acting on the interface Σ.

Lemma 2.9. There exist C7, C8 > 0, independent of the meshsizes, such that

‖R7‖H−1/2
00 (Σ)

≤ C7

 ∑
e∈Eh(Σ)

he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh·tl)tl + λhn

∥∥∥2

0,e


1/2

, (2.45)

and

‖R8‖H−1/2(Σ) ≤ C8

 ∑
e∈Eh(Σ)

he
∥∥uD,h·n +ϕh·n

∥∥2

0,e


1/2

. (2.46)

Proof. It is clear from the definition of R7 that

R7(ψ) = −
〈
σS,hn −

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn,ψ

〉
Σ
∀ψ ∈ H

1/2
00 (Σ) ,

which certainly yields

‖R7‖H−1/2
00 (Σ)

=
∥∥∥σS,hn−

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥
−1/2,00,Σ

. (2.47)

Then, taking ψh ∈ ΛS
h(Σ) and then (rh,ψh) = (0, (ψh, 0)) ∈ Xh in the first equation of (2.17), we

deduce that 〈
σS,hn −

2∑
l=1

ω−1
l (ϕh · tl)tl + λhn,ψh

〉
Σ

= 0 ∀ψh ∈ ΛS
h(Σ) ,

which says that each component of σS,hn −
∑2

l=1 ω
−1
l (ϕh ·tl)tl + λhn belongs to ΛS,⊥

h (Σ) (cf. (2.24)).
In this way, (2.45) follows from (2.47) and a direct component-wise application of (2.26) (cf. Lemma
2.6). In turn, the proof of (2.46) proceeds analogously by noting now that uD,h·n + ϕh·n ∈ ΛD,⊥

h (Σ)

(cf. (2.25)), and then by applying (2.27) (cf. Lemma 2.6).

Our next goal is to derive the upper bound for R1, for which, given τ S ∈ H(div; ΩS), we consider
its Helmholtz decomposition provided by part a) of Lemma 2.5. More precisely, we let η ∈ H2(ΩS)

and χ ∈ H1(ΩS) be such that τ S = ∇η + curlχ in ΩS, and

‖η‖2,ΩS
+ ‖χ‖1,ΩS

≤ CS ‖τ S‖div,ΩS
. (2.48)

Then, defining τ S,h := ΠS
h(∇η) + curl (IS

hχ) ∈ Hh(ΩS) (cf. Section 2.3.1), which can be seen as a
discrete Helmholtz decomposition of τ S,h, and applying from (2.41) that R1(τ S,h) = 0, we can write

R1(τ S) = R1(τ S − τ S,h) = R1(∇η −ΠS
h(∇η)) + R1(curl (χ− IS

hχ)) .

Consequently, we now require to bound the expressions on the right hand side of the foregoing
equation, which is provided by the following two lemmas.
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Lemma 2.10. There exists C > 0, independent of the meshsizes, such that for each η ∈ H2(ΩS) there
holds

|R1(∇η −ΠS
h(∇η))| ≤ C

∑
T∈T S

h

Θ̂2
1,T


1/2

‖η‖2,Ω , (2.49)

where
Θ̂2

1,T = h2
T

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
+ ‖fS −PS

h(fS)‖20,T

+ h2
T

∥∥∇uS,h − (tS,h + ρS,h)
∥∥2

0,T
+

∑
e∈E(T )∩Eh(Σ)

he ‖ϕh + uS,h‖20,e .
(2.50)

Proof. It follows almost straightforwardly from a slight modification of the proof of [97, Lemma 3.10]
(see also [93, Lemma 3.6]). We omit further details.

Lemma 2.11. There exists C > 0, independent of the meshsizes, such that for each χ ∈ H1(ΩS) there
holds ∣∣R1(curl (χ− IS

hχ))
∣∣ ≤ C

∑
T∈T S

h

Θ̂2
2,T


1/2

‖χ‖1,ΩS
, (2.51)

where

Θ̂2
2,T =

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

he
∥∥(tS,h + ρS,h)×n + curl sϕh

∥∥2

0,e
.

(2.52)

Proof. Given χ ∈ H1(ΩS), we first notice from the definition of R1 that there holds

R1(curl (χ− IS
hχ)) = T̃1(χ) + T̂1(χ) ,

where
T̃1(χ) := −κ1

(
σd

S,h − µ(|tS,h|) tS,h + (uS,h ⊗ uS,h)d, curl (χ− IS
hχ)

)
S
,

and, denoting ζh := tS,h + ρS,h,

T̂1(χ) := − (ζh, curl (χ− IS
hχ))S −

〈
curl (χ− IS

hχ)n,ϕh
〉

Σ
.

For estimating T̃1(χ) we proceed as in the proof of [97, Lemma 3.9] and apply the boundedness of
IS
h : H1(ΩS) → H1(ΩS) ([69, Lemma 1.127, pag. 69]), as well as the Cauchy–Schwarz and triangle
inequalities, to obtain

|T̃1(χ)| ≤ C

∑
T∈T S

h

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T


1/2

‖χ‖1,ΩS
. (2.53)
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Next, for T̂1(χ) we first apply the identities from [100, Chapter I, eq. (2.17) and Theorem 2.11] to
deduce that〈

curl (χ− IS
hχ)n,ϕh

〉
Σ

=
〈
curl sϕh,χ− IS

hχ
〉

Σ
=

∑
e∈Eh(Σ)

∫
e
curl sϕh : (χ− IS

hχ) . (2.54)

Then, analogously to the proof of [97, Lemma 3.9], we integrate by parts
(
ζh, curl (χ−IS

hχ)
)

S
on each

T ∈ T S
h , and add (2.54) to the resulting expression, to obtain

T̂1(χ) = −
∑
T∈T S

h

∫
T

curl ζh : (χ− IS
hχ) −

∑
e∈Eh(ΩS)

∫
e
Jζh×nK : (χ− IS

hχ)

−
∑

e∈Eh(ΓS)

∫
e
ζh×n : (χ− IS

hχ) −
∑

e∈Eh(Σ)

∫
e

(ζh×n + curl sϕh) : (χ− IS
hχ) .

(2.55)

In this way, applying the Cauchy–Schwarz inequality, the approximation properties of the Clément
interpolator IS

h (cf. Lemma 2.4) and the fact that the number of triangles of the macro-elements
∆S(T ) and ∆S(e) are uniformly bounded, we deduce from (2.55) that

|T̂1(χ)| ≤
∑
T∈T S

h

h2
T ‖curl (ζh)‖20,T +

∑
e∈E(T )∩Eh(ΩS)

he ‖Jζh×nK‖20,e

+
∑

e∈E(T )∩Eh(ΓS)

he ‖ζh×n‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖ζh×n + curl sϕh‖
2
0,e


1/2

‖χ‖1,ΩS
,

(2.56)

which together with (2.53) implies (2.51) and concludes the proof.

As a direct consequence of Lemmas 2.10 and 2.11, and the stability estimate (2.48) for the Helmholtz
decomposition, we obtain the following upper bound for ‖R1‖H(div;ΩS)′ .

Lemma 2.12. There exists C1 > 0, independent of the meshsizes, such that

‖R1‖H(div;ΩS)′ ≤ C1

∑
T∈T S

h

Θ̂2
S,T


1/2

,

where
Θ̂2

S,T = Θ̂2
1,T + Θ̂2

2,T − h2
T

∥∥∥σd
S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d

∥∥∥2

0,T
,

that is

Θ̂2
S,T :=

∥∥fS −PS
h(fS)

∥∥2

0,T
+
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥2

0,T

+ h2
T

∥∥∇uS,h −
(
tS,h + ρS,h

)∥∥2

0,T
+ h2

T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e
+ he ‖ϕh + uS,h‖20,e

}
.
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Proof. It suffices to see that the first term defining Θ̂2
1,T (cf. (2.50) in Lemma 2.10) is dominated by

the first term defining Θ̂2
2,T (cf. (2.52) in Lemma 2.11), which explains the substraction of the former

in the original definition of Θ̂2
S,T .

Finally, the corresponding estimate for R5 is given by the following lemma.

Lemma 2.13. Assume that there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Then
there exists C5 > 0, independent of the meshsizes, such that

‖R5‖H0(div ;ΩD)′ ≤ C5

 ∑
T∈T D

h

Θ̂2
D,T


1/2

,

where
Θ̂2

D,T := h2
T

∥∥K−1uD,h

∥∥2

0,T
+ h2

T

∥∥curl (K−1uD,h)
∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩD)

he
∥∥qK−1uD,h×n

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓD)

he
∥∥K−1uD,h×n

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
+ he ‖pD,h − λh‖20,e

}
.

Proof. The result follows analogously to the proof of Lemmas 2.10, 2.11, and 2.12, taking into account
now the Helmholtz decomposition provided by part b) of Lemma 2.5, the fact that R5(vD,h) = 0

∀vD,h ∈ Hh,0(ΩD) (which also follows from (2.41)), and the analogue of the integration by parts
formula (2.54), which here becomes

〈curlφ · n, λh〉Σ = 〈curl sλh, φ〉Σ ∀φ ∈ H1(ΩD) ,

where curl s is the operator defined in Section 2.3.1. Additionally we refer to [93, Lemma 3.9] for the
proof of the 2D version of this lemma. We omit further details.

We end this section by concluding that the reliability of Θ, that is the upper bound in (2.33), is a
straightforward consequence of Lemmas 2.8, 2.9, 2.12, and 2.13.

2.3.4 Efficiency of Θ

We now aim to establish the lower bound in (2.33). For this purpose, we will make extensive use of the
original system of equations given by (2.4)–(2.5)–(2.6), which is recovered from the augmented-mixed
continuous formulation (2.7) by choosing suitable test functions and integrating by parts backwardly
the corresponding equations.

We begin the derivation of the efficiency estimates with the following result.
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Lemma 2.14. There hold∥∥fS −PS
h(fS)

∥∥
0,T
≤ 2‖σS − σS,h‖div,T ∀T ∈ T S

h ,

‖fS + divσS,h‖0,T ≤ ‖σS − σS,h‖div,T ∀T ∈ T S
h ,

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div ,T ∀T ∈ T D
h ,

and there exist constants ci > 0, i ∈ {1, . . . , 4}, independent of the meshsizes, such that

‖σS,h − σt
S,h‖0,T ≤ c1 ‖σS − σS,h‖0,T ∀T ∈ T S

h ,

‖e(uS,h)− tS,h‖0,T ≤ c2

{
‖uS − uS,h‖1,T + ‖tS − tS,h‖0,T

}
∀T ∈ T S

h ,∥∥∥∥ρS,h −
1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥∥
0,T

≤ c3

{
‖ρS − ρS,h‖0,T + ‖uS − uS,h‖1,T

}
∀T ∈ T S

h ,

and∥∥∥∇uS,h −
(
tS,h + ρS,h

) ∥∥∥
0,T
≤ c4

{
‖uS − uS,h‖1,T + ‖tS − tS,h‖0,T + ‖ρS − ρS,h‖0,T

}
∀T ∈ T S

h .

Proof. It suffices to recall that fS = −divσS, fD = div uD, tS = e(uS), ρS = 1
2

(
∇uS − (∇uS)t

)
,

and σS = σt
S. In particular, for the first estimate we refer to [97, Lemma 3.13]. Further details are

omitted.

Now we turn to provide the corresponding estimates for the rest of terms defining ΘS and ΘD.
To do that, we proceed similarly as in [93], [97], and [83] and apply some known results based on
inverse inequalities (see [47]) and the localization technique (see [150]) based on tetrahedron-bubble
and face-bubble functions. In particular, the following lemma provides local efficiency estimates for
several terms on Σ.

Lemma 2.15. There exist constants ci > 0, i ∈ {5, 6, 7, 8}, independent of the meshsizes, such that

a) he‖pD,h − λh‖20,e ≤ c5

{
‖pD − pD,h‖20,Te + h2

T ‖uD − uD,h‖20,Te + he‖λ− λh‖20,e
}
,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T D
h having e as a face,

b) he‖uD,h·n +ϕh·n‖20,e ≤ c6

{
‖uD − uD,h‖20,Te + h2

T ‖div (uD − uD,h)‖20,Te + he‖ϕ−ϕh‖20,e
}
,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T D
h having e as a face,

c) he

∥∥∥σS,hn−
2∑
l=1

ω−1
l (ϕh · tl)tl + λhn

∥∥∥2

0,e

≤ c7

{
‖σS − σS,h‖20,Te + h2

T ‖div(σS − σS,h)‖20,Te + he‖ϕ−ϕh‖20,e + he‖λ− λh‖20,e
}
,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T S
h having e as a face,

d) he‖uS,h +ϕh‖20,e ≤ c8

{
‖uS − uS,h‖20,Te + h2

T |uS − uS,h|21,Te + he‖ϕ−ϕh‖20,e
}
,

for all e ∈ Eh(Σ), where Te is the tetrahedron of T S
h having e as a face.
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Proof. We notice that all the estimates here can be easily obtained by adapting the proofs of their two-
dimensional counterparts. In fact, the estimate in a) can be easily obtained after a slight modification
of [10, Lemma 4.12], whereas the proofs of b), c), and d) readily follow from [93, Lemmas 3.15, 3.16
and 3.17], respectively.

The sixth residual expression defining Θ2
S,T (cf. (2.31)), that is the one containing the nonlinear

operator and the convective term, as well as the rest of terms acting on Σ, are estimated now.

Lemma 2.16. There exist ci > 0, i ∈ {9, 10, 11}, independent of the meshsizes, such that

a)
∥∥∥σd

S,h − µ(|tS,h|)tS,h + (uS,h ⊗ uS,h)d
∥∥∥

0,ΩS

≤ c9

{
‖σS − σS,h‖0,ΩS

+ ‖tS − tS,h‖0,ΩS
+ ‖uS − uS,h‖1,ΩS

}
.

b)
∑

e∈Eh(Σ)

he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e

≤ c10

 ∑
e∈Eh(Σ)

(
‖tS − tS,h‖20,Te + ‖ρS − ρS,h‖20,Te

)
+ ‖ϕ−ϕh‖21/2,Σ

 ,

and

c) ∑
e∈Eh(Σ)

he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
≤ c11

 ∑
e∈Eh(Σ)

‖uD − uD,h‖20,Te + ‖λ− λh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the tetrahedron of T D
h having e as a face.

Proof. The efficiency estimate a) follows exactly as in the first part of the proof of [97, Theorem 3.12].
Indeed, after introducing the identity σd

S − µ(|tS|)tS + (uS ⊗ uS)d = 0, the rest of the proof reduces
to employ the Lipschitz-continuity of the nonlinear operator induced by µ (cf. [91, Lemma 2.1]), the
compact imbedding ic : H1(ΩS)→ L4(ΩS), and the fact that ‖uS‖1,ΩS

and ‖uS,h‖1,ΩS
are both bounded

by r, thus obtaining
‖µ(|tS|)tS − µ(|tS,h|)tS,h‖0,ΩS

≤ Lµ ‖tS − tS,h‖0,ΩS

and ∥∥uS ⊗ uS − uS,h ⊗ uS,h

∥∥
0,ΩS

≤
∥∥(uS − uS,h

)
⊗ uS

∥∥
0,ΩS

+
∥∥uS,h ⊗

(
uS − uS,h

)∥∥
0,ΩS

≤ ‖ic‖2
{
‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

}
‖uS − uS,h‖1,ΩS

≤ 2‖ic‖2 r ‖uS − uS,h‖1,ΩS
.

Further details are omitted. In turn, the proofs of b) and c) follow after a straightforward adaptation
of that of [85, Lemma 20], and recalling from [21, Proposition 3.6] that the operators curl s and curl s
are bounded.

We observe here that b) and c) are the only non-local efficiency bounds obtained so far. However,
the following lemma shows that local estimates can still be derived for these terms under additional
regularity assumptions on ϕ and λ.
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Lemma 2.17. Assume that ϕ|e ∈ H1(e) and λ|e ∈ H1(e), for each e ∈ Eh(Σ). Then there exist
c12, c13 > 0, independent of the meshsizes, such that for each e ∈ Eh(Σ) there hold

he
∥∥(tS,h + ρS,h

)
×n + curl sϕh

∥∥2

0,e

≤ c12

{
‖tS − tS,h‖20,T + ‖ρS − ρS,h‖20,T + he ‖curl s(ϕ−ϕh)‖20,e

} (2.57)

and

he
∥∥K−1uD,h×n + curl sλh

∥∥2

0,e
≤ c13

{
‖uD − uD,h‖20,Te + he ‖curl s(λ− λh)‖20,e

}
, (2.58)

where Te is the tetrahedron of T S
h (respectively T D

h ) having e as a face.

Proof. The proof of both estimates follow exactly as in the proof of [85, Lemma 21]. We omit further
details.

Finally, the following lemma provides the corresponding upper bounds for the remaining terms
defining Θ2

S,T and Θ2
D,T . In particular, in order to deal with those involving K−1, we assume from now

on that K−1uD,h is polynomial on each T ∈ T D
h . Otherwise, assuming suitable regularity hypotheses

and proceeding similarly as in [41, Section 6.2], higher order terms are obtained, which explains the
expression h.o.t. in the lower bound of (2.33).

Lemma 2.18. There exist positive constants ci, i ∈ {14, . . . , 20}, independent of the meshsizes, such
that

a) h2
T ‖K−1uD,h‖20,T ≤ c14

{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖20,T
}
∀T ∈ T D

h ,

b) h2
T

∥∥curl (K−1uD,h)
∥∥2

0,T
≤ c15 ‖uD − uD,h‖20,T ∀T ∈ T D

h ,

c) he
∥∥qK−1uD,h×n

y∥∥2

0,e
≤ c16 ‖uD − uD,h‖20,ωe

for all e ∈ Eh(ΩD), where the set ωe is given by ωe := ∪
{
T ′ ∈ T D

h : e ∈ E(T ′)
}
,

d) he
∥∥K−1uD,h×n

∥∥2

0,e
≤ c17 ‖uD − uD,h‖20,Te

for all e ∈ Eh(ΓD), where Te is the tetrahedron of T D
h having e as a face,

e) h2
T

∥∥curl (tS,h + ρS,h)
∥∥2

0,T
≤ c18

{
‖tS − tS,h‖20,T + ‖ρS − ρS,h‖20,T

}
∀T ∈ T S

h ,

f) he
∥∥q(tS,h + ρS,h)×n

y∥∥2

0,e
≤ c19

{
‖tS − tS,h‖20,ωe + ‖ρS − ρS,h‖20,ωe

}
for all e ∈ Eh(ΩS), where the set ωe is given by ωe := ∪

{
T ′ ∈ T S

h : e ∈ E(T ′)
}
,

g) he
∥∥(tS,h + ρS,h)×n

∥∥2

0,e
≤ c20

{
‖tS − tS,h‖20,Te + ‖ρS − ρS,h‖20,Te

}
for all e ∈ Eh(ΓS), where Te is the tetrahedron of T S

h having e as a face.

Proof. For a) we refer to [34, Lemma 6.3] or alternatively [15, Lemma 4.3] (see also [90, Lemma 4.9]).
In turn, noting that

curl (K−1uD) = −curl (∇pD) = 0 and curl (tS + ρS) = curl (∇uS) = 0 ,
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we find that the proofs of b) and e) are direct consequences of [83, Lemma 4.9]. Similarly, the proofs of
c), d), f) and g) follow after a straightforward application of [83, Lemma 4.10] (see also [34, Lemma 6.2]
and [15, Lemma 4.4]).

We end this section by observing that the required efficiency of the a posteriori error estimator Θ

(cf. lower bound in (2.33)) is a direct consequence of Lemmas 2.14, 2.16, 2.18, and 2.15. In particular,
the terms he‖λ− λh‖20,e and he‖ϕ−ϕh‖20,e appearing in Lemma 2.15 (items a) – d)), are bounded as
follows: ∑

e∈Eh(Σ)

he ‖λ− λh‖20,e ≤ h ‖λ− λh‖20,Σ ≤ C h ‖λ− λh‖21/2,Σ ,

and ∑
e∈Eh(Σ)

he ‖ϕ−ϕh‖20,e ≤ h ‖ϕ−ϕh‖20,Σ ≤ C h ‖ϕ−ϕh‖21/2,00,Σ .

2.4 Numerical results

We now turn to the implementation of some numerical tests that confirm the predicted reliability
and efficiency of the proposed a posteriori error estimator. For the sake of simplicity, here we restrict
ourselves to the two-dimensional case. To do that we remark that the 2D version of the a posteriori
error indicators ΘS and ΘD described in (2.31) and (2.32) are defined exactly as their 3D counterparts,
considering where appropriate (with v := (v1, v2)t and τ := (τij)2×2), v · t and τ t instead of v × n

and τ × n,

rot v :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂11

∂x2
,
∂τ22

∂x1
− ∂21

∂x2

)t

,

instead of curl v and curl τ , and dϕh
ds and dλh

ds instead of curl sϕh and curl sλh, respectively, where
dϕh
ds and dλh

ds stand for the tangential derivatives of ϕh and λh, respectively, along Σ.

Our implementation is based on a FreeFem++ code (see [111]), in conjunction with the direct
linear solver UMFPACK (see [62]). Regarding the implementation of the Newton iterative method, the
iterations are terminated once the relative error of the entire coefficient vectors between two consecutive
iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces L2

tr ,h(ΩS), Hh(ΩS), H1
h,ΓS

(ΩS), L2
skew,h(ΩS), Hh,0(ΩD), ΛS

h(Σ),
ΛD
h (Σ), and L2

h,0(ΩD), and tol is a fixed tolerance to be specified later. As usual, the individual errors
are denoted by:

e(tS) := ‖tS − tS,h‖0,ΩS
, e(σS) := ‖σS − σS,h‖div,ΩS

, e(uS) := ‖uS − uS,h‖1,ΩS
,

e(ρS) := ‖ρS − ρS,h‖0,ΩS
, e(pS) := ‖pS − pS,h‖0,ΩS

, e(uD) := ‖uD − uD,h‖div ,ΩD
,

e(pD) := ‖pD − pD,h‖0,ΩD
, e(ϕ) := ‖ϕ−ϕh‖1/2,00,Σ, e(λ) := ‖λ− λh‖1/2,Σ,
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where pS,h is the postprocessed pressure given by

pS,h := −1

2
tr (σS,h + (uS,h ⊗ uS,h)) in ΩS.

In turn, the global error is computed as

e(~t) :=
{
e(tS)2 + e(σS)2 + e(uS)2 + e(ρS)2 + e(uD)2 + e(pD)2 + e(ϕ)2 + e(λ)2

}1/2
,

whereas the effectivity index with respect to Θ is given by

eff(Θ) :=
e(~t)

Θ
.

In addition, we define the experimental rates of convergence

r(�) :=
log(e(�)/e′(�))

log(h/h′)
for each � ∈ {tS,σS,uS,ρS, pS,uD, pD,ϕ, λ,~t} ,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively.
However, when the adaptive algorithm is applied (see details below), the expression log(h/h′) appearing
in the computation of the above rates is replaced by −1

2 log(N/N ′), where N and N ′ denote the
corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them we choose K = I,
ω1 = 1, and according to [40, eq. (3.26) in Section 3.2], the stabilization parameters are taken as
κ1 = µ1/L

2
µ, with Lµ := max{µ2, 2µ2 − µ1}, κ2 = κ1, κ3 = µ1/2, and κ4 = CKoµ1/4. Since the

Korn inequality constant is not known when considering mixed boundary conditions, CKo is taken here
heuristically as 0.5 (see [40, Section 7] for details). In addition, the tolerance tol is taken as 1E − 6 in
all the examples.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator Θ,
whereas Examples 2 and 3 are utilized to illustrate the behaviour of the associated adaptive algorithm,
which applies the following procedure from [149]:

(1) Start with a coarse mesh Th := T S
h ∪ T D

h .

(2) Solve the discrete problem (2.17) for the current mesh Th.

(3) Compute ΘT := Θ?,T for each triangle T ∈ T ?h , ? ∈ {S,D}.

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥
1

2
max
T∈Th

{
ΘT : T ∈ Th

}
(6) Define resulting meshes as current meshes T S

h and T D
h , and go to step 2.
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In Example 1 we consider the regions ΩS :=
{

(x1, x2) : (x1 − 0.5)2 + (x2 − 1)2 < 0.25, x2 > 1
}
and

ΩD := (0, 1)2. In this case, we set the nonlinear viscosity to

µ(s) := 2 +
1

1 + s
for s ≥ 0.

The data fS and fD are chosen so that the exact solution in the tombstone-shaped domain Ω is given
by the smooth functions

pS(x) = cos(πx1) cos(πx2), uS(x) = −curl (sin(πx1) sin(πx2)),

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD,

where curl (q) :=
(
∂q
∂x2

,− ∂q
∂x1

)t
for any sufficiently smooth function q. Notice that this solution satisfies

uS·n = uD·n on Σ and the boundary condition uD·n = 0 on ΓD. However, the Dirichlet boundary con-
dition for the Navier–Stokes velocity on ΓS is non-homogeneous. Then, we need to modify accordingly
the functional F (cf. (2.11)), as follows

[F, (r,ψ)] := −κ2(fS,divτ S)S + (fS,vS)S + 〈τ Sn,g〉ΓS
∀ (r,ψ) ∈ X,

where g := uS|ΓS
∈ H1/2(ΓS).

In Example 2 we consider the inverted L-shaped domain Ω = ΩS ∪ ΩD, where ΩS = (0, 1)2 and
ΩD := (−1, 1)× (−1, 0), representing a fluid channel on top of a porous basin. The viscosity follows a
Carreau law with α0 = 0.5, α1 = 0.5, and β = 1.5, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/4 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) = cos(πx1) cos(πx2), uS(x) = curl
(
x2

1(x1 − 1)2x2
2(x2 − 1)2

)
,

for all x := (x1, x2) ∈ ΩS, and

pD(x) =
(x2

1 − 1)2x2
2(x2 + 1)2

(x1 + 0.01)2 + (y − 0.01)2
∀x := (x1, x2) ∈ ΩD.

Notice that the Darcy velocity and pressure exhibit high gradients near the origin.

Finally, in Example 3 we consider ΩD := (−1, 0)2 and let ΩS be the L-shaped domain given by
(−1, 1)2 \ ΩD, which yields a porous medium partially surrounded by a fluid. The viscosity follows
again a Carreau law (cf. (2.3)) with α0 = 0.5, α1 = 0.5, and β = 1, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/2 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) =
1

100(x2
1 + x2

2) + 0.01
, uS(x) = curl

(
0.1(x2

2 − 1)2 sin2(πx1)
)
,
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for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

Note that the fluid pressure pS has high gradients around the origin.

Concerning a priori regularity estimates for the Navier–Stokes problem on polygonal domains, which
can be used to explain the singularities of the manufactured solutions of the examples, we refer in
particular to [61], where the corresponding results are derived first for the Stokes system, and then
extended to the nonlinear case through a linearization procedure. Related contributions for general
elliptic problems in non-smooth domains can be found in the classical references [105] and [106].

In Table 2.1 we summarize the convergence history of the fully-mixed finite element method (2.17),
as applied to Example 1, for a sequence of quasi-uniform triangulations of the domain, considering the
finite element spaces introduced in Section 2.2.3, and solving the nonlinear problem with around five
Newton iterations. We observe there, looking at the corresponding experimental rates of convergence,
that the O(h) predicted by Theorem 2.2 (here δ = 1) is attained in all the unknowns. In addition, we
notice that the effectivity index eff(Θ) remains always in a neighbourhood of 0.98, which illustrates
the reliability and efficiency of Θ in the case of a regular solution.

Next, in Tables 2.2, 2.3, 2.4, and 2.5, we provide the convergence history of the quasi-uniform and
adaptive schemes, as applied to Examples 2 and 3, solving the nonlinear problem with around three
and six Newton iterations, respectively. We observe that the errors of the adaptive procedure decrease
faster than those obtained by the quasi-uniform ones, which is confirmed by the global experimental
rates of convergence provided there. This fact is also illustrated in Figures 2.2 and 2.4 where we display
the total errors e(t,ϕ, pD) vs. the number of degrees of freedom N for both refinements. As shown
by the values of r(t,ϕ, pD), the adaptive method is able to keep the quasi-optimal rate of convergence
O(h) for the total error. Furthermore, the effectivity indexes remain bounded from above and below,
which confirms the reliability and efficiency of Θ in these cases of non-smooth solutions. Intermediate
meshes obtained with the adaptive refinements are displayed in Figures 2.3 and 2.5. Note that the
method is able to recognize the region with high gradients in Examples 2 and 3.
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dof hS e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(ρS) r(ρS)

854 0.1905 0.5866 – 4.6754 – 0.9306 – 1.7056 –
3195 0.0911 0.2909 1.0633 2.4721 0.9660 0.4707 1.0332 0.9970 0.8139
12543 0.0486 0.1460 1.0085 1.2793 0.9634 0.2381 0.9968 0.5015 1.0050
50188 0.0242 0.0679 1.1031 0.6398 0.9995 0.1142 1.0593 0.2371 1.0804
198838 0.0129 0.0352 0.9553 0.3493 0.8791 0.0580 0.9843 0.1256 0.9231
783886 0.0068 0.0179 0.9822 0.1742 1.0143 0.0294 0.9912 0.0639 0.9862

dof hS hD e(pS) r(pS) e(uD) r(uD) e(pD) r(pD)

854 0.1905 0.1901 0.6240 – 1.2480 – 0.0619 –
3195 0.0911 0.0966 0.3409 0.9165 0.6004 1.1092 0.0296 1.1159
12543 0.0486 0.0573 0.1470 1.2302 0.3035 0.9975 0.0150 0.9962
50188 0.0242 0.0259 0.0686 1.0987 0.1516 1.0018 0.0075 1.0023
198838 0.0129 0.0135 0.0364 0.9227 0.0756 1.0106 0.0037 1.0105
783886 0.0068 0.0070 0.0183 1.0003 0.0382 0.9945 0.0019 0.9935

dof ĥ e(ϕ) r(ϕ) e(λ) r(λ) e(~t) r(~t) Θ eff(Θ) iter

854 1/4 1.0668 – 0.2038 – 5.3590 – 5.5271 0.9696 5
3195 1/8 0.5573 0.9844 0.0980 1.1090 2.8448 0.9600 2.9156 0.9757 5
12543 1/16 0.2710 1.0545 0.0479 1.0485 1.4609 0.9746 1.4804 0.9868 5
50188 1/32 0.1345 1.0104 0.0243 0.9767 0.7245 1.0116 0.7312 0.9908 5
198838 1/64 0.0675 1.0025 0.0119 1.0336 0.3909 0.8963 0.3938 0.9926 5
783886 1/128 0.0336 1.0168 0.0064 0.9157 0.1956 1.0098 0.1967 0.9940 5

Table 2.1: Example 1, quasi-uniform scheme.

dof hS hD e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

588 0.2926 0.3297 0.2022 0.5672 0.1893 0.3651 0.1754 39.9583 0.4761
1931 0.1964 0.1901 0.1811 0.3955 0.2030 0.3665 0.1092 73.9004 0.4069
7317 0.0997 0.1000 0.0724 0.1796 0.0814 0.1344 0.0572 59.6887 0.1433
28860 0.0487 0.0534 0.0172 0.0726 0.0068 0.0425 0.0172 76.9741 0.0140
115506 0.0250 0.0263 0.0084 0.0363 0.0034 0.0206 0.0082 66.9770 0.0055
459154 0.0136 0.0147 0.0042 0.0181 0.0015 0.0106 0.0041 54.0296 0.0028

dof ĥ e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

588 1/2 0.2161 0.8872 39.9782 – 40.2227 0.9939 4
1931 1/4 0.2601 1.2136 73.9144 – 74.0108 0.9987 4
7317 1/8 0.0931 0.6470 59.6930 0.3208 59.7396 0.9992 4
28860 1/16 0.0092 0.1010 76.9742 – 76.9937 0.9997 3
115506 1/32 0.0057 0.0485 66.9770 0.2006 66.9905 0.9998 3
459154 1/64 0.0029 0.0320 54.0296 0.3113 54.0370 0.9999 3

Table 2.2: Example 2, quasi-uniform scheme.
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dof e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

588 0.2022 0.5672 0.1893 0.3651 0.1754 39.9583 0.4761
784 0.1505 0.5215 0.1347 0.2404 0.1385 65.1904 0.1957
1019 0.1031 0.4988 0.0802 0.1297 0.1271 73.1960 0.0295
1431 0.0996 0.4973 0.0889 0.0982 0.1536 55.1764 0.0284
2111 0.0991 0.4995 0.0891 0.0863 0.1419 29.5771 0.0283
3185 0.0994 0.5011 0.0890 0.0805 0.1364 12.6187 0.0282
5555 0.0999 0.5028 0.0893 0.0777 0.1493 7.1633 0.0280
9680 0.0996 0.5023 0.0887 0.0848 0.1481 5.2107 0.0208
17147 0.0916 0.3984 0.0628 0.1351 0.1290 3.8253 0.0152
31110 0.0691 0.3124 0.0398 0.1078 0.0935 2.8216 0.0124
59678 0.0490 0.1961 0.0197 0.0866 0.0536 2.0190 0.0076
112409 0.0394 0.1672 0.0165 0.0653 0.0484 1.4593 0.0063
221370 0.0245 0.1003 0.0084 0.0389 0.0271 1.0402 0.0038
427000 0.0206 0.0870 0.0068 0.0327 0.0226 0.7425 0.0032

dof e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

588 0.2161 0.8872 39.9782 – 40.2227 0.9939 4
784 0.1439 0.8114 65.1987 – 65.2262 0.9996 4
1019 0.0634 0.1014 73.1980 – 73.2245 0.9996 3
1431 0.0504 0.0475 55.1790 1.6645 55.2056 0.9995 3
2111 0.0444 0.0201 29.5818 3.2070 29.6221 0.9986 3
3185 0.0428 0.0155 12.6297 4.1387 12.7177 0.9931 3
5555 0.0416 0.0152 7.1828 2.0292 7.3110 0.9825 3
9680 0.0459 0.0130 5.2375 1.1374 5.3244 0.9837 3
17147 0.0479 0.0118 3.8503 1.0763 3.9225 0.9816 3
31110 0.0255 0.0060 2.8422 1.0192 2.8947 0.9819 3
59678 0.0217 0.0039 2.0312 1.0314 2.0692 0.9816 3
112409 0.0136 0.0021 1.4710 1.0192 1.4982 0.9818 3
221370 0.0085 0.0012 1.0461 1.0059 1.0651 0.9822 3
427000 0.0072 0.0006 0.7487 1.0184 0.7625 0.9819 3

Table 2.3: Example 2, adaptive scheme.
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dof hS hD e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

1037 0.3529 0.3019 1.2001 19.6901 2.6722 2.8717 0.6257 2.1914 0.1139
3664 0.1947 0.1964 2.1724 58.3515 4.5117 3.3283 1.1404 1.2395 0.0657
13956 0.0960 0.1025 2.4894 114.3013 5.8122 4.1176 1.0524 0.6207 0.0314
55663 0.0520 0.0495 1.7729 94.6633 3.2125 2.7450 0.8685 0.3093 0.0153
220100 0.0293 0.0260 0.8835 51.4952 1.0053 1.4521 0.5310 0.1513 0.0075
879198 0.0145 0.0143 0.5353 33.8233 0.3295 1.2531 0.3642 0.0759 0.0037

dof ĥ e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

1037 1/2 1.3033 0.9173 20.2949 – 20.6086 0.9848 5
3664 1/4 2.0423 0.6667 58.7129 – 58.7574 0.9992 5
13956 1/8 2.4754 0.4053 114.5792 – 114.5746 1.0000 5
55663 1/16 1.8369 0.2100 94.7926 0.2741 94.7881 1.0000 5
220100 1/32 0.7827 0.0855 51.5392 0.8865 51.5419 0.9999 5
879198 1/64 0.5891 0.0577 33.8576 0.6068 33.8559 1.0000 5

Table 2.4: Example 3, quasi-uniform scheme.
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Figure 2.2: Example 2, e(t,ϕ, pD) vs. N for quasi-uniform/adaptive schemes.
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dof e(tS) e(σS) e(uS) e(ρS) e(pS) e(uD) e(pD)

1037 1.2001 19.6901 2.6722 2.8717 0.6257 2.1914 0.1139
1579 3.0393 98.1488 6.1149 4.8488 1.2574 1.9106 0.0933
2092 2.0017 84.5704 2.9416 2.9343 1.0256 1.8860 0.0929
2766 0.7046 42.4930 0.8777 1.4751 0.3717 1.8982 0.0936
4748 0.5235 16.4829 0.7695 1.4233 0.2375 1.9012 0.0938
9936 0.4928 8.2112 0.7622 1.4148 0.2143 1.5623 0.0779
18993 0.3580 5.6827 0.5430 1.0980 0.1401 1.0019 0.0495
33974 0.2681 4.2302 0.3972 0.9634 0.1096 0.7945 0.0395
64472 0.1785 3.0476 0.2581 0.7001 0.0752 0.5697 0.0282
122011 0.1438 2.2169 0.2111 0.5401 0.0643 0.4319 0.0215
237874 0.0928 1.5864 0.1340 0.3908 0.0407 0.3042 0.0151
460024 0.0708 1.1390 0.1038 0.3028 0.0301 0.2232 0.0111
915408 0.0456 0.8086 0.0667 0.2074 0.0201 0.1567 0.0078

dof e(ϕ) e(λ) e(~t) r(~t) Θ eff(Θ) iter

1037 1.3033 0.9173 20.2949 – 20.6086 0.9848 5
1579 5.6381 1.0470 98.6908 – 98.8258 0.9986 5
2092 3.5592 0.5382 84.7936 1.0790 84.8825 0.9990 5
2766 0.6262 0.4790 42.5832 4.9324 42.6743 0.9979 5
4748 0.4162 0.4813 16.6915 3.4667 16.9205 0.9865 5
9936 0.3749 0.4612 8.5469 1.8128 8.7791 0.9736 5
18993 0.3330 0.2994 5.9270 1.1300 6.1023 0.9713 5
33974 0.2066 0.2053 4.4464 0.9885 4.5652 0.9740 5
64472 0.1455 0.1665 3.2017 1.0252 3.3074 0.9680 5
122011 0.1153 0.1202 2.3423 0.9799 2.4071 0.9731 5
237874 0.0839 0.0852 1.6742 1.0060 1.7299 0.9678 5
460024 0.0552 0.0664 1.2092 0.9865 1.2446 0.9716 5
915408 0.0436 0.0463 0.8556 1.0055 0.8850 0.9668 5

Table 2.5: Example 3, adaptive scheme.
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Figure 2.3: Example 2, adapted meshes with 588, 1019, 9680, 31110, 112409, and 447000 degrees of
freedom.

10
3

10
4

10
5

10
6

10
0

10
1

10
2

 

 

quasi−uniform refinement
adaptive refinement

Figure 2.4: Example 3, e(t,ϕ, pD) vs. N for quasi-uniform/adaptive schemes.
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Figure 2.5: Example 3, adapted meshes with 1037, 2092, 18993, 64472, 237874, and 915408 degrees of
freedom.



CHAPTER 3

A conforming mixed finite element method for the
Navier–Stokes/Darcy–Forchheimer coupled problem

In this chapter we analyse a mixed finite element method for the Navier–Stokes/Darcy–
Forchheimer coupled problem with constant density and viscosity. We consider the standard
velocity-pressure formulation for the Navier–Stokes equation and in the porous medium we con-
sider the Darcy–Forchheimer equation in its dual-mixed formulation.

3.1 Introduction

The modelling and numerical simulation of incompressible fluid flows in regions partially occupied by
porous media has become a very active research area during the last decades, mostly due to its rele-
vance in the fields of natural sciences and engineering branches. In particular, these kind of phenomena
can be found in several applications such as in vuggy porous media appearing in petroleum extrac-
tion (see, e.g., [7],[6]), groundwater system in karst aquifers (see, e.g., [74], [129]), reservoir wellbore
(see, e.g., [5, 8]), internal ventilation of a motorcycle helmet (see, e.g., [31, 48]), and blood motion
in tumors and microvessels (see, e.g., [138], [146]), to name a few. One of the most popular models
utilised to describe the aforementioned interaction is the Navier–Stokes/Darcy–Forchheimer (or Navier–
Stokes/Darcy, Stokes/Darcy) model, which consists in a set of differential equations where the Navier–
Stokes (or Stokes) problem is coupled with the Darcy–Forchheimer (or Darcy) model through a set of
coupling equations acting on a common interface, which are given by mass conservation, balance of nor-
mal forces, and the so called Beavers–Joseph–Saffman condition. In [64, 63, 43, 92, 11, 94, 93, 96, 65, 40],
and in the references therein, we can find a large list of contributions devoted to numerically approxi-
mate the solution of this interaction problem, including primal and mixed conforming formulations, as
well as nonconforming methods. At this point we remark that the Navier–Stokes/Darcy–Forchheimer
model is considered when the fluid velocity is higher and the porosity is nonuniform, which holds when
the kinematic forces dominates over viscous forces. We refer the reader to [9, 102, 135, 142] for the
derivation and analysis of the Darcy–Forchheimer equations.

Up to the authors’ knowledge, one of the first works in analysing the coupling of Navier–Stokes and
Darcy–Forchheimer equations is [5]. In that work, the authors study the coupling of a 2D reservoir
model with a 1.5D vertical wellbore model, both written in axisymmetric form. The physical problems
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are described by the Darcy–Forchheimer and the compressible Navier–Stokes equations, respectively,
together with an exhaustive energy equation. Later on, motivated by the study of the internal ven-
tilation of a motorcycle helmet, a penalization approach was introduced and analysed in [48]. In
particular, the authors consider the velocity and pressure in the whole domain as the main unknowns
of the system, and the corresponding Galerkin approximation employs piecewise quadratic elements
and piecewise linear for the velocity and pressure, respectively. Notice that this method is applied to
both 2D and 3D domains. More recently, in [147] a 3D discrete dynamical system was derived from the
generalized Navier–Stokes equations for incompressible flow with nonlinear drag forces (represented by
Forchheimer terms) in porous media via a Galerkin procedure. We observe that this method can be
employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow
through porous media.

Furthermore, and concerning simpler related models, we highlight that a conforming mixed method
for the Stokes–Darcy coupled problem has been introduced and analysed in [92]. In this work, the
velocity-pressure formulation in the Stokes equation and the dual-mixed approach in the Darcy region
is considered, which yields the introduction of the trace of the porous medium pressure as a suitable
Lagrange multiplier. Later on, it was shown in [94] that the use of any pair of stable Stokes and
Darcy elements guarantees the well-posedness of the corresponding Stokes–Darcy Galerkin scheme.
More recently, in [65] the authors extend the results from [92] to the Navier–Stokes/Darcy coupled
problem. Since this coupled system is nonlinear (due to the convective term in the free fluid region),
the analysis of the continuous problem begins with the linearisation of the Oseen problem in the free
fluid domain. This simplified model is then studied by means of the classical Babuška–Brezzi theory,
similarly as it was done for the Stokes–Darcy coupling in [92]. Then, a fixed-point strategy based on the
aforementioned linearisation is associate to the nonlinear coupling, which allows to establish existence
and uniqueness of solution thanks to Schauder’s and Banach’s fixed point theorems, respectively.

According to the above bibliographic discussion, in this chapter we aim to extend the results obtained
in [65, 92, 94] to the Navier–Stokes/Darcy–Forchheimer coupled problem. We consider the standard
velocity-pressure formulation for the Navier–Stokes equation and unlike [65], in the porous medium
we consider the Darcy–Forchheimer equation in its dual-mixed formulation. In this way, we obtain
the velocity and the pressure of the fluid in both media as the main unknowns of the coupled system.
Since one of the interface conditions becomes essential, we proceed similarly to [65, 92] and incorporate
the trace of the porous medium pressure as an additional unknown. The well-posedness of both the
continuous and discrete formulations is proved, employing a fixed-point argument and clasical results
on nonlinear monotone operators (see [144, 145]). In particular, for the continuous formulation, under
a smallness data assumption, we prove existence and uniqueness of solution by means of a fixed-point
strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point theorems are
employed. Using similar arguments (but applying Brower’s fixed-point theorem instead of Shauder’s
for the existence result) we prove the well-posedness of the discrete problem for a specific choice of
discrete space. More precisely, we consider Bernardi–Raugel elements for the velocity in the free
fluid region, Raviart–Thomas elements of lowest order for the filtration velocity in the porous media,
piecewise constants with null mean value for the pressures, and piecewise constant elements for the
Lagrange multiplier on the interface.

The rest of this chapter is organised as follows. In Section 3.2 we introduce the model problem and
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derive the variational formulation. Next, in Section 3.3, we establish that our variational formulation
is well posed. The corresponding Galerkin scheme is introduced and analysed in Section 3.4. In
Section 3.5 we derive the corresponding Céa’s estimate and a sub-optimal rate of convergence. Finally,
several numerical examples illustrating the performance of the method, confirming the theoretical sub-
optimal order of convergence and suggesting an optimal rate of convergence, are reported in Section 3.6.

3.2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation. For
simplicity of exposition we set the problem in R2. However, our study can be extended to the 3D case
with few modifications, which we will be pointed out appropriately in the paper.

3.2.1 The model problem

In order to describe the geometry, we let ΩS and ΩD be two bounded and simply connected polygonal
domains in R2 such that ∂ΩS∩∂ΩD = Σ 6= ∅ and ΩS∩ΩD = ∅. Then, let ΓS := ∂ΩS\Σ, ΓD := ∂ΩD\Σ,
and denote by n the unit normal vector on the boundaries, which is chosen pointing outward from
Ω := ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward to ΩD when seen on Σ). On Σ we also consider a unit
tangent vector t (see Figure 3.1 below). The problem we are interested in consists of the movement
of an incompressible viscous fluid occupying ΩS which flows towards and from a porous medium ΩD

through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined by two
separate groups of equations and by a set of coupling terms. In the free fluid domain ΩS, the motion
of the fluid can be described by the incompressible Navier–Stokes equations:

σS = −pSI + 2µe(uS) in ΩS, −divσS + ρ(∇uS)uS = fS in ΩS,

div uS = 0 in ΩS, uS = 0 on ΓS,
(3.1)

where the unknowns are the fluid velocity uS, the pressure pS, and the Cauchy stress tensor σS. In

addition, e(uS) :=
1

2

{
∇uS + (∇uS)t

}
stands for the strain tensor of small deformations, µ is the

viscosity of the fluid, ρ is the density, and fS ∈ L2(ΩS) is a given external force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 3.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer model
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In the porous medium ΩD we consider a nonlinear version of the Darcy problem to approximate the
velocity uD and the pressure pD, which is considered when the fluid velocity is higher and the porosity
is nonuniform. More precisely, we consider the Darcy–Forchheimer equations [142, 135]:

µ

ρ
K−1uD +

F

ρ
|uD|uD +∇pD = fD in ΩD, div uD = gD in ΩD, uD · n = 0 on ΓD, (3.2)

where F represents the Forchheimer number of the porous medium, and K ∈ L∞(ΩD) is a symmetric
tensor in ΩD representing the intrinsic permeability κ of the porous medium divided by the viscosity
µ of the fluid. Throughout the paper we assume that there exists CK > 0 such that

w ·K−1(x)w ≥ CK|w|2, (3.3)

for almost all x ∈ ΩD, and for all w ∈ R2. In turn, as will be explained below, fD and gD are
given functions in L3/2(ΩD) and L2(ΩD), respectively. In addition, according to the compressibility
conditions, the boundary conditions on uD and uS, and the principle of mass conservation (cf. (3.4)
below), gD must satisfy the compatibility condition:∫

ΩD

gD = 0.

Finally, the transmission conditions that couple the Navier–Stokes and the Darcy–Forchheimer models
through the interface Σ are given by

uS · n = uD · n on Σ and σSn +
αdµ√
t · κt

(uS · t) t = −pDn on Σ, (3.4)

where αd is a dimensionless positive constant which depends only on the geometrical characteristics of
the porous medium and usually assumes values between 0.8 and 1.2 (see [16, 48]). The first condition
in (3.4) is a consequence of the incompressibility of the fluid and of the conservation of mass across
Σ. The second transmission condition on Σ can be decomposed, at least formally, into its normal and
tangential components as follows:

(σSn) · n = −pD and (σSn) · t = − αdµ√
t · κt

(uS · t) on Σ. (3.5)

The first equation in (3.5) corresponds to the balance of normal forces, whereas the second one is
known as the Beavers–Joseph–Saffman condition, which establishes that the slip velocity along Σ is
proportional to the shear stress long Σ. We refer the reader to [12, Section 3.2] (see also [143, 117])
for further details on the choice of this interface condition.

3.2.2 The variational formulation

In this section we proceed analogously to [92, Section 2] and derive a weak formulation of the coupled
problem given by (3.1), (3.2), and (3.4). To this end, let us first introduce further notations and
definitions. In what follows, given ? ∈ {S,D}, we set

(p, q)? :=

∫
Ω?

p q, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ ,
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where, given two arbitrary tensors σ and τ , σ : τ = tr (σtτ ) =
∑2

i,j=1 σijτij . Furthermore, in the
sequel we will employ the following Banach space,

H3(div ; ΩD) :=
{

vD ∈ L3(ΩD) : div vD ∈ L2(ΩD)
}
,

endowed with the norm

‖vD‖H3(div ;ΩD) :=
(
‖vD‖3L3(ΩD) + ‖div vD‖30,ΩD

)1/3
,

and the following subspaces of H1(ΩS) and H3(div ; ΩD), respectively

H1
ΓS

(ΩS) :=
{

vS ∈ H1(ΩS) : vS = 0 on ΓS

}
,

H3
ΓD

(div ; ΩD) :=
{

vD ∈ H3(div ; ΩD) : vD · n = 0 on ΓD

}
.

Notice that H3(div ; ΩD) = H(div ; ΩD) ∩ L3(ΩD), which guarantees that vD · n is well defined for
vD ∈ H3

ΓD
(div ; ΩD).

To begin with the derivation of our variational formulation for the Navier–Stokes/Darcy–Forchheimer
problem we first proceed similarly to [65, 92] and test the second equation of (3.1) by vS ∈ H1

ΓS
(ΩS),

integrate by parts and utilize the second equation of (3.4) to obtain

2µ(e(uS), e(vS))S +

〈
αdµ√
t · κt

uS · t,vS · t
〉

Σ

+ ρ((∇uS)uS,vS)S

− (pS,div vS)S + 〈vS · n, λ〉Σ = (f ,vS)S ,

(3.6)

for all vS ∈ H1
ΓS

(ΩS), where λ is a further unknown representing the trace of the porous medium
pressure on Σ, that is λ = pD|Γ. The corresponding space of λ will be specified next. In turn, we
incorporate the incompressibility condition div uS = 0 in ΩS weakly as follows

(qS, div uS)S = 0 ∀ qS ∈ L2(ΩS). (3.7)

Next, we multiply the first equation of (3.2) by vD ∈ H3
ΓD

(div ; ΩD) and integrate by parts to obtain

µ

ρ
(K−1uD,vD)D +

F

ρ
(|uD|uD,vD)D − (pD,div vD)D − 〈vD · n, λ〉Σ = (fD,vD)D, (3.8)

for all vD ∈ H3
ΓD

(div ; ΩD). Observe that if uD ∈ H3(div ; ΩD) and pD ∈ L2(ΩD), then |uD|uD · vD ∈
L1(ΩD) and pD div vD ∈ L1(ΩD), and hence the second and third terms of (3.8) are well defined, which
justifies the introduction of the spaces H3(div ; ΩD) for the derivation of our weak formulation. On
the other hand, we observe that for each vD ∈ H3(div ; ΩD), the normal trace vD · n : H3(div ; ΩD)→
W− 1

3
,3(∂ΩD) is well defined and continuous. In fact, since W1, 3

2 (ΩD) is continuously embedded into
L2(ΩD) then for each ξ ∈W

1
3
, 3
2 (∂ΩD) the quantity

〈vD · n, ξ〉∂ΩD
:=

∫
ΩD

vD · ∇γ̃−1
0 (ξ) +

∫
ΩD

γ̃−1
0 (ξ)div vD,

is well defined, where 〈·, ·〉∂ΩD
stands for the duality pairing between W− 1

3
,3(∂ΩD) and W

1
3
, 3
2 (∂ΩD), and

γ̃−1
0 is the right inverse of the well known trace operator γ0 : W1, 3

2 (ΩD)→W
1
3
, 3
2 (∂ΩD). Furthermore,
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as will be explained next at the end of Section 3.3.1, vD · n|Σ ∈ W− 1
3
,3(Σ), which suggests to set

W
1
3
, 3
2 (Σ) as the appropriate space for the unknown λ, that is

λ = pD|Σ ∈W
1
3
, 3
2 (Σ).

Note that, in principle, the space for pD does not allow enough regularity for the trace λ to exist.
However, the solution of (3.2) has the pressure in W1, 3

2 (ΩD) ∩ L2(ΩD).

Finally, we impose the second equation of (3.2) and the first equation of (3.4) weakly as follows

(qD, div uD)D = (gD, qD)D ∀ qD ∈ L2(ΩD), (3.9)

and
〈uS · n− uD · n, ξ〉Σ = 0 ∀ ξ ∈W

1
3
, 3
2 (Σ). (3.10)

As a consequence of the above, we write Ω := ΩS ∪ Σ ∪ ΩD, and define p := pSχS + pDχD, with χ?
being the characteristic function:

χ? :=

{
1 in Ω?,

0 in Ω \ Ω?,

for ? ∈ {S,D}, to obtain the variational problem: Find uS ∈ H1
ΓS

(ΩS), p ∈ L2(Ω), uD ∈ H3
ΓD

(div ; ΩD)

and λ ∈W
1
3
, 3
2 (Σ) such that (3.6)–(3.10) hold.

Now, let us observe that if (uS,uD, p, λ) is a solution of the resulting variational problem, then for
all c ∈ R, (uS,uD, p + c, λ + c) is also a solution. Then, we avoid the non-uniqueness of (3.6)–(3.10)
by requiring from now on that p ∈ L2

0(Ω), where

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

In this way, we group the spaces and unknowns as follows:

H := H1
ΓS

(ΩS)×H3
ΓD

(div ; ΩD), Q := L2
0(Ω)×W

1
3
, 3
2 (Σ),

u := (uS,uD) ∈ H, (p, λ) ∈ Q,

and propose the mixed variational formulation: Find (u, (p, λ)) ∈ H×Q, such that

[a(uS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v := (vS,vD) ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q,
(3.11)

where, given wS ∈ H1
ΓS

(ΩS), the operator a(wS) : H→ H′ is defined by

[a(wS)(u),v] := [AS(uS),vS] + [BS(wS)(uS),vS] + [AD(uD),vD], (3.12)

with
[AS(uS),vS] := 2µ(e(uS), e(vS))S +

〈
αdµ√
t · κt

uS · t,vS · t
〉

Σ

,

[BS(wS)(uS),vS] := ρ((∇uS)wS,vS)S,

[AD(uD),vD] :=
µ

ρ

(
K−1uD,vD

)
D

+
F

ρ
(|uD|uD,vD)D ,

(3.13)
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whereas the operator b : H→ Q′ is given by

[b(v), (q, ξ)] := −(div vS, q)S − (div vD, q)D + 〈vS · n− vD · n, ξ〉Σ . (3.14)

In turn, the functionals f and g are defined by

[f ,v] := (fS,vS)S + (fD,vD)D and [g, (q, ξ)] := −(gD, q)D. (3.15)

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding operators.

3.2.3 Stability properties

Let us now discuss the stability properties of the operators in (3.13) and (3.14). We begin by observing
that the operators AS, BS and b are continuous:∣∣∣[AS(uS),vS]

∣∣∣ ≤ CAS
‖uS‖1,ΩS

‖vS‖1,ΩS
,∣∣∣[BS(wS)(uS),vS]

∣∣∣ ≤ ρC2
S‖wS‖1,ΩS

‖uS‖1,ΩS
‖vS‖1,ΩS

,∣∣∣[b(v), (q, ξ)]
∣∣∣ ≤ Cb‖v‖H‖(q, ξ)‖Q,

(3.16)

where CS is the continuity constant of the Sobolev embedding from H1(ΩS) into L4(ΩS). In turn, from
the definition of AD (cf. (3.13)), (3.3), and the triangle and Hölder inequalities, we obtain that there
exists LAD

> 0, depending only on µ, ρ, F,K, and ΩD, such that

‖AD(uD)−AD(vD)‖(H3(div ;ΩD))′

≤ LAD

{
‖uD − vD‖H3(div ;ΩD) + ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

(3.17)

for all uD,vD ∈ H3(div ; ΩD). In addition, using the Cauchy–Schwarz and Young inequalities, it is not
difficult to see that f and g are bounded, that is, there exist constants cf , cg > 0, such that

‖f‖H′ ≤ cf
{
‖fS‖0,ΩS

+ ‖fD‖L3/2(ΩD)

}
(3.18)

and
‖g‖Q′ ≤ cg‖gD‖0,ΩD

, (3.19)

which confirm the announced smoothness of fD. On the other hand, from the well known Korn and
Poincaré inequalities (see, e.g., [81]), we easily obtain that there exists a constant αS > 0, depending
only on ΩS, such that

[AS(vS),vS] ≥ 2µαS‖vS‖21,ΩS
∀vS ∈ H1

ΓS
(ΩS). (3.20)

In turn, integrating by parts and assuming that div wS = 0 in ΩS, similarly to [65, eq. (29)], we obtain

[BS(wS)(vS),vS] =
ρ

2

∫
Σ

(wS · n)|vS|2 ∀wS,vS ∈ H1
ΓS

(ΩS). (3.21)

Finally, from the definition of AD (cf. (3.13)) and the inequality (3.3), we deduce that for a fixed
tD ∈ L3(ΩD), there holds

[AD(uD + tD)−AD(vD + tD),uD − vD]

≥ µ

ρ
CK‖uD − vD‖20,ΩD

+
F

ρ
(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ,

(3.22)
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for all uD,vD ∈ L3(ΩD). Then, thanks to [103, Lemma 5.1], there exist CD > 0, depending only on
ΩD, such that

(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ≥ CD‖uD − vD‖3L3(ΩD),

which, together with (3.22), and neglecting the first term on the right hand side of (3.22), yields

[AD(uD + tD)−AD(vD + tD),uD − vD] ≥ αD‖uD − vD‖3L3(ΩD) ∀uD,vD ∈ L3(ΩD), (3.23)

with αD =
FCD

ρ
.

3.3 Analysis of the continuous formulation

In this section we analyse the well-posedness of problem (3.11) by means of a fixed-point argument
and classical results on nonlinear monotone operators. To that end we first collect some preliminaries
results and notations that will serve for the forthcoming analysis.

3.3.1 Preliminaries

First we introduce some definitions that will be utilized next. To this end we let X and Y be reflexive
Banach spaces. Then, we say that a nonlinear operator T : X → Y is bounded if T (S) is bounded for
each bounded set S ⊆ X. In addition, we say that a nonlinear operator T : X → X ′ is of type M if
un ⇀ u, Tun ⇀ f and lim sup [Tun, un] ≤ f(u) imply Tu = f . In turn, we say that T is coercive if

[Tu, u]

‖u‖
→ ∞ as ‖u‖ → ∞.

Now, we establish the following abstract result taken from [144, Proposition 2.3], which has been
adapted to our context where the nonlinear operator is defined on a product space X = X1×X2, with
X1 and X2 depending on parameters p1 and p2, respectively, in place of an space X depending on a
parameter p.

Theorem 3.1. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, set X = X1 × X2, and let X ′1, X

′
2, Y

′, and X ′ := X ′1 × X ′2, be their respective duals. Let
a : X → X ′ be a nonlinear operator and b : X → Y ′ be a linear bounded operator. In turn, we denote
by V the kernel of b, that is,

V :=
{
v ∈ X : [b(v), q] = 0 ∀q ∈ Y

}
.

Assume that

(i) a is hemi-continuous, that is, for each u, v ∈ X, the real mapping

J : R→ R, t→ J(t) = [a(u+ tv), v]

is continuous.
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(ii) there exist constants γ > 0 and p1, p2 ≥ 2, such that

‖a(u)− a(v)‖X′ ≤ γ
2∑
j=1

{
‖uj − vj‖Xj + ‖uj − vj‖Xj

(
‖uj‖Xj + ‖vj‖Xj

)pj−2}
,

for all u = (u1, u2), v = (v1, v2) ∈ X.

(iii) for fixed t ∈ X \ V , the operator a( · + t) : V → V ′ is strictly monotone in the following sense:
there exist α > 0 and p1, p2 ≥ 2, such that

[a(u+ t)− a(v + t), u− v] ≥ α
{
‖u1 − v1‖p1

X1
+ ‖u2 − v2‖p2

X2

}
,

for all u = (u1, u2), v = (v1, v2) ∈ V .

(iv) there exists β > 0 such that

sup
v∈X
v 6=0

[b(v), q]

‖v‖X
≥ β‖q‖Y ∀q ∈ Y .

Then, for each (f, g) ∈ X ′ × Y ′ there exists a unique (u, p) ∈ X × Y such that

[a(u), v] + [b(v), p] = [f, v] ∀v ∈ X,

[b(u), q] = [g, q] ∀q ∈ Y.
(3.24)

Moreover, there exists C > 0, depending only on α, γ, β, p1, and p2, such that

‖(u, p)‖X×Y ≤ CM(f, g), (3.25)

where
M(f, g) := max

{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1 ,N (f, g),N (f, g)

p1−1
p2−1 ,N (f, g)

p2−1
p1−1

}
,

and
N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′ .

Proof. We begin by noting that hypothesis (iv) establishes, equivalently, that b is surjective. Then,
given g ∈ Y ′ there exists a unique ug ∈ X \ V such that (see [125, Lemma A.1] for details):

b(ug) = g and ‖ug‖X ≤
1

β
‖g‖Y ′ . (3.26)

Then, given this ug in X \ V satisfying (3.26), we observe that problem (3.24) with v ∈ V leads to:
find ũ ∈ V , such that

[ag(ũ), v] := [a(ũ+ ug), v] = [f, v] ∀v ∈ V, (3.27)

which suggests to define later on u as ũ + ug. In this way, since f − a(u) ∈ ◦V and hypothesis (iv)
also guarantees that the adjoint operator b′ is an isomorphism from Y into ◦V , we deduce that there
exists a unique p ∈ Y such that b′(p) = f − a(u) and

‖p‖Y ≤
1

β
‖b′(p)‖X ≤

1

β

{
‖f‖X′ + ‖a(u)‖X′

}
. (3.28)
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Therefore to prove that problem (3.24) is well posed, in what follows we prove equivalently that
ag( · ) = a(· + ug) is bijective on V . We begin by observing that the injectivity of the operator
ag( · ) follows straightforwardly from hypothesis (iii). In addition, from hypotheses (i) and (iii) and
[145, Chapter II, Lemma 2.1] it can be readily seen that ag( · ) is an operator of type M. Now, given
v = (v1, v2) ∈ V , and denoting by ugj , j = 1, 2, the components of ug, we observe that, owing to (ii),
(iii) and using the inequality (a+ b)q ≤ C(q)(aq + bq), with C(q) depending only on q, which is valid
for all q ∈ [0,+∞) and a, b ≥ 0 [6, Lemma 2.2], there hold

‖ag(v)‖X′ ≤ ‖ag(v)− ag(0)‖X′ + ‖ag(0)‖X′ = ‖a(v + ug)− a(ug)‖X′ + ‖a(ug)‖X′

≤ γ
2∑
j=1

{
‖vj‖Xj + ‖vj‖Xj

(
‖vj + ugj‖Xj + ‖ugj‖Xj

)pj−2
}

+ ‖a(ug)‖X′

≤ C
2∑
j=1

{
‖vj‖Xj + ‖vj‖

pj−1
Xj

+ ‖vj‖Xj ‖u
g
j‖
pj−2
Xj

}
+ ‖a(ug)‖X′

≤ C
(

1 + ‖v1‖p1−2
X1

+ ‖v2‖p2−2
X2

+ ‖ug1‖
p1−2
X1

+ ‖ug2‖
p2−2
X2

)
‖v‖X + ‖a(ug)‖X′ ,

and

[ag(v), v]

‖v‖X
=

[a(v + ug)− a(0 + ug), v]

‖v‖X
+

[a(ug), v]

‖v‖X
≥ α

{
‖v1‖p1

X1
+ ‖v2‖p2

X2

}
‖v‖X

− ‖a(ug)‖X′

≥ C min
{
‖v‖p1−1

X , ‖v‖p2−1
X

}
− ‖a(ug)‖X′ ,

which clearly show that ag is bounded and coercive on V , respectively. In this way, by applying
[145, Chapter II, Corollary 2.2] it can be readily seen that ag is surjective on V . Having verified the
bijectivity of ag on V we deduce that problem (3.27) is well-posed, or equivalently (3.24) admits a
unique solution (u, p) = (ũ+ ug, p) ∈ X × Y . Now, in order to obtain (3.25), we proceed similarly to
[144, Proposition 2.3]. In fact, taking v = ũ ∈ V in (3.27), we have

[a(ũ+ ug)− a(0 + ug), ũ] = [f, ũ]− [a(ug), ũ].

Then, combining hypothesis (ii)− (iii) and (3.26), it is clear that

α
{
‖ũ1‖p1

X1
+ ‖ũ2‖p2

X2

}
≤
{
‖f‖X′ + ‖a(ug)‖X′

}
‖ũ‖X

≤ c1

{
‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′

}
‖ũ‖X ,

with c1 > 0 depending only on γ, β, p1, and p2, which yields

‖ũ‖X ≤ 2 max

{(
2c1

α
N (f, g)

) 1
p1−1

,

(
2c1

α
N (f, g)

) 1
p2−1

}
, (3.29)

where N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1
Y ′ + ‖g‖p2−1

Y ′ + ‖a(0)‖X′ . In this way, due to u = ũ + ug,
combining (3.26) and (3.29), we conclude that

‖u‖X ≤ ‖ũ‖X + ‖ug‖X ≤ c2 max
{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1

}
, (3.30)
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with c2 > 0 depending only on α, γ, β, p1, and p2. On the other hand, from (3.28) and using again (ii),
we deduce that

‖p‖Y ≤ c3

{
‖f‖X′ + ‖u‖X + ‖u1‖p1−1

X1
+ ‖u2‖p2−1

X2
+ ‖a(0)‖X′

}
, (3.31)

with c3 > 0 depending only on γ and β. Then, (3.30) and (3.31) conclude the proof.

We remark that when p1 = p2 = 2 and ‖a(0)‖X′ is equal to zero, the previous analysis leads to the
classical estimate

‖(u, p)‖X×Y ≤ C
{
‖f‖X′ + ‖g‖Y ′

}
,

with C > 0, depending only on α, γ, and β.

Now, we follow [70, Appendix A] (see also [96, 65]) to recall some preliminary results concerning
boundary conditions and extension operators. We start by recalling that, given vD ∈ H3

ΓD
(div ; ΩD),

the boundary condition vD · n = 0 on ΓD means

〈vD · n, E0,D(ξ)〉∂ΩD
= 0 ∀ ξ ∈W

1
3
, 3
2 (ΓD),

where E0,D : W
1
3
, 3
2 (ΓD)→W

1
3
, 3
2 (∂ΩD) is the extension operator defined by

E0,D(ξ) :=

{
ξ on ΓD

0 on Σ
∀ ξ ∈W

1
3
, 3
2 (ΓD),

We observe that according to [105, Theorem 1.5.2.3], the operator E0,D is well defined. In turn,
similarly to [70, eq. (A.6)] we can identify the restriction of vD ·n to Σ with an element of W− 1

3
,3(Σ),

namely
〈vD · n, ξ〉Σ := 〈vD · n, EΣ(ξ)〉∂ΩD

∀ξ ∈W
1
3
, 3
2 (Σ), (3.32)

where EΣ : W
1
3
, 3
2 (Σ) → W

1
3
, 3
2 (∂ΩD) is any bounded extension operator. In addition, analogously to

the proof of [70, Lemma A.2] one can show that for all ψ ∈ W
1
3
, 3
2 (∂ΩD), there exist unique elements

ψΣ ∈W
1
3
, 3
2 (Σ) and ψΓD

∈W
1
3
, 3
2 (ΓD) such that

ψ = EΣ(ψΣ) + E0,D(ψΓD
), (3.33)

and there exist C1, C2 > 0, such that

C1

{
‖ψΣ‖ 1

3
, 3
2

;Σ + ‖ψΓD
‖ 1

3
, 3
2

;ΓD

}
≤ ‖ψ‖ 1

3
, 3
2

;∂ΩD
≤ C2

{
‖ψΣ‖ 1

3
, 3
2

;Σ + ‖ψΓD
‖ 1

3
, 3
2

;ΓD

}
. (3.34)

In fact, although [70, Lemma A.2] is derived for W
1− 1

p
,p

(∂ΩD) with p ≥ 2, using a slight modification
of [103, Section 2] one can easily extend the analysis to the case p > 1. Finally, we observe that, since
H1/2(∂ΩS) is continuously embedded into Lp(∂ΩS) with p > 1, and the trace operator is continuous,
the following inequality holds:

‖vS‖Lp(Σ) ≤ ‖vS‖Lp(∂ΩS) ≤ Cs‖vS‖1/2,∂ΩS
≤ CsCtr‖vS‖1,ΩS

∀vS ∈ H1
ΓS

(ΩS), (3.35)

where Cs is the continuity constant of the Sobolev embedding from H1/2(∂ΩS) into Lp(∂ΩS), and Ctr

is the norm of the usual trace operator from H1(ΩS) into H1/2(∂ΩS).



3.3. Analysis of the continuous formulation 90

3.3.2 A fixed-point approach

We begin the solvability analysis of (3.11) by defining the operator T : H1
ΓS

(ΩS)→ H1
ΓS

(ΩS) by

T(wS) := uS ∀wS ∈ H1
ΓS

(ΩS), (3.36)

where u := (uS,uD) ∈ H is the first component of the unique solution (to be confirmed below) of the
nonlinear problem: Find (u, (p, λ)) ∈ H×Q, such that

[a(wS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q.
(3.37)

Hence, it is not difficult to see that (u, (p, λ)) ∈ H×Q is a solution of (3.11) if and only if uS ∈ H1
ΓS

(ΩS)

satisfies: uS ∈ H1
ΓS

(ΩS) and T(uS) = uS. In this way, in what follows we focus on proving that
T possesses a unique fixed-point. However, we remark in advance that the definition of T will make
sense only in a closed ball of H1

ΓS
(ΩS). Before continuing with the solvability analysis of (3.11), we

first provide the hypotheses under which operator T is well defined.

3.3.3 Well-definiteness of T

Given wS ∈ H1
ΓS

(ΩS), it is clear that problem (3.37) has the same structure of the one in Theorem 3.1.
Therefore, in what follows we apply this result to establish the well-posedness of (3.37), or equivalently,
the well-definiteness of T. We begin by observing that, thanks to the uniform convexity and separability
of Lp(Ω) for p ∈ (1,+∞), each space defining H and Q shares the same properties, which implies that
H and Q are uniformly convex and separable as well.

We continue with the required continuity property of a(wS) for each wS ∈ H1
ΓS

(ΩS).

Lemma 3.2. Given wS ∈ H1
ΓS

(ΩS), the operator a(wS) is hemi-continuous in H.

Proof. For fixed wS ∈ H1
ΓS

(ΩS), u = (uS,uD), and v = (vS,vD) ∈ H, we introduce the real function
J : R→ R defined by

J (t) := [a(wS)(u + tv),v] = [AS(uS + tvS),vS]

+ [BS(wS)(uS + tvS),vS] + [AD(uD + tvD),vD].

Then, the hemi-continuity of a(wS), that is the continuity of J , follows straightforwardly from the
linearity and continuity of AS and BS(wS) and from [102, Proposition 3]. We omit further details.

We continue our analysis with the verification of hypothesis (ii) of Theorem 3.1.

Lemma 3.3. Let wS ∈ H1
ΓS

(ΩS). Then, there exists γ > 0, depending on CAS
and LAD

(cf. (3.16),
(3.17)), such that

‖a(wS)(u)− a(wS)(v)‖H′ ≤ γ
{

(1 + ‖wS‖1,ΩS
)‖uS − vS‖1,ΩS

+ ‖uD − vD‖H3(div ;ΩD)

+ ‖uD − vD‖H3(div ;ΩD)

(
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)}
,

for all u = (uS,uD),v = (vS,vD) ∈ H.
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Proof. The result follows straightforwardly from the definition of a(wS) (cf. (3.12)), the triangle
inequality, and the stability properties (3.16) and (3.17). We omit further details.

Now, let us look at the kernel of the operator b, that is

V :=
{

v ∈ H : [b(v), (q, ξ)] = 0 ∀(q, ξ) ∈ Q
}
. (3.38)

According to the definition of b (cf. (3.14)), we observe that v = (vS,vD) ∈ V if and only if

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2
0(Ω)

and
〈vS · n− vD · n, ξ〉Σ = 0 ∀ξ ∈W

1
3
, 3
2 (Σ).

In this way, noting that L2(Ω) = L2
0(Ω)⊕ R, and taking ξ ∈ R in the latter equation, we deduce that

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2(Ω),

which implies
div vS = 0 in ΩS and div vD = 0 in ΩD. (3.39)

In the following result we provide the assumptions under which operator a(wS) satisfies hypothesis
(iii) of Theorem 3.1.

Lemma 3.4. Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

. (3.40)

Then, for each t ∈ H \V, the nonlinear operator a(wS)( ·+ t) is strictly monotone on V (cf. (3.38)).

Proof. Let t := (tS, tD) ∈ H \V fixed, and let wS ∈ H1
ΓS

(ΩS) as indicated. Then, according to (3.12),
the linearity of AS and BS(wS), the identity (3.39) and the stabilities properties (3.20) and (3.23), we
find that

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ 2µαS‖uS − vS‖21,ΩS

+ αD‖uD − vD‖3H3(div ;ΩD) + [BS(wS)(uS − vS),uS − vS],

for all u,v ∈ V. In addition, similarly to [65, Lemma 2], we deduce from (3.21), applying Cauchy–
Schwarz’s inequality and (3.35) with p = 4, that∣∣∣[BS(wS)(uS − vS),uS − vS]

∣∣∣ ≤ ρC2
trC

2
s

2
‖wS · n‖0,Σ ‖uS − vS‖21,ΩS

,

which implies

[a(wS)(u + t)− a(wS)(v + t),u− v]

≥

{
2µαS −

ρC2
trC

2
s

2
‖wS · n‖0,Σ

}
‖uS − vS‖21,ΩS

+ αD‖uD − vD‖3H3(div ;ΩD).

Consequently, the hypothesis (3.40) and the foregoing inequality imply

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ α(Ω)
{
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}
,

for all u,v ∈ V, with α(Ω) := min
{
µαS, αD

}
independent of wS.
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We remark that, similarly to the strict monotonicity of a(wS)( · + t) on V with t ∈ H \V fixed,
using (3.23) with tD = 0 ∈ L3(ΩD), we deduce that

[a(wS)(u)− a(wS)(v),u− v] ≥ α(Ω)
{
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}
, (3.41)

for all u,v ∈ H with div (uD − vD) = 0 in ΩD.

We end the verification of the hypotheses of Theorem 3.1 by proving the continuous inf-sup condition
for b. To that end, we adapt the proof of [92, Lemma 2.1] to the present case, using similar results
from [96, Lemma 3.3] and [65, Lemma 1] to handle the mixed boundary conditions on ∂ΩD.

Lemma 3.5. There exists β > 0 such that

S(q, ξ) := sup
v∈H
v 6=0

[b(v), (q, ξ)]

‖v‖H
≥ β ‖(q, ξ)‖Q ∀(q, ξ) ∈ Q. (3.42)

Proof. Let (q, ξ) ∈ Q. Since q ∈ L2
0(Ω), it is well known (see, e.g., [100, Corollary 2.4]) that there exists

z ∈ H1
0(Ω) such that div z = −q in Ω and ‖z‖1,Ω ≤ c‖q‖0,Ω. Setting v̂ := (v̂S, v̂D) with v̂? = z|Ω? for

? ∈ {S,D}, we find that v̂S · n = v̂D · n on Σ, and using the continuous embedding from H1(ΩD) into
L3(ΩD), we obtain ‖v̂‖H ≤ ĉ‖z‖1,Ω ≤ c̃‖q‖0,Ω, whence

S(q, ξ) ≥

∣∣∣[b(v̂), (q, ξ)]
∣∣∣

‖v̂‖H
=
‖q‖20,Ω
‖v̂‖H

≥ c1‖q‖0,Ω. (3.43)

On the other hand, given φ ∈W− 1
3
,3(Σ), we define η ∈W− 1

3
,3(∂ΩD) as

〈η, µ〉∂ΩD
:= 〈φ, µΣ〉Σ ∀µ ∈W

1
3
, 3
2 (∂ΩD),

where µΣ ∈W
1
3
, 3
2 (Σ) is given by the decomposition (3.33). It is not difficult to see that

〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ρ ∈W

1
3
, 3
2 (ΓD), (3.44)

〈η,EΣ(ϕ)〉∂ΩD
= 〈φ, ϕ〉Σ ∀ϕ ∈W

1
3
, 3
2 (Σ), (3.45)

and
‖η‖− 1

3
,3;∂ΩD

≤ C‖φ‖− 1
3
,3;Σ. (3.46)

Next, we set ṽD := ∇z in ΩD, with z ∈ W1,3(ΩD) being the unique solution of the boundary value
problem (see [99] for details):

−∆z = − 1

|ΩD|
〈η, 1〉∂ΩD

in ΩD, ∇z · n = η on ∂ΩD, (z, 1)D = 0.

It follows that div ṽD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD), ṽD · n = η on ∂ΩD, and using (3.46) we find that

‖ṽD‖H3(div ;ΩD) ≤ c‖η‖− 1
3
,3;∂ΩD

≤ C‖φ‖− 1
3
,3;Σ. (3.47)

In addition, using (3.32), (3.44) and (3.45), we deduce that

〈ṽD · n, ξ〉Σ = 〈ṽD · n, EΣ(ξ)〉∂ΩD
= 〈η,EΣ(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ,
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and
〈ṽD · n, E0,D(ρ)〉∂ΩD

= 〈η,E0,D(ρ)〉∂ΩD
= 0 ∀ρ ∈W

1
3
, 3
2 (ΓD).

The latter means that ṽD ∈ H3
ΓD

(div ; ΩD). In this way, defining ṽ := (0, ṽD) ∈ H, we obtain, thanks
to (3.46) and (3.47), that

S(q, ξ) ≥

∣∣∣[b(ṽ), (q, ξ)]
∣∣∣

‖ṽ‖H
=

∣∣∣ 〈φ, ξ〉Σ + 1
|ΩD| 〈η, 1〉∂ΩD

(q, 1)D

∣∣∣
‖ṽD‖H3(div ;ΩD)

≥ c2

∣∣∣ 〈φ, ξ〉Σ ∣∣∣
‖φ‖− 1

3
,3;Σ

− c3‖q‖0,Ω,

which, considering that φ ∈W− 1
3
,3(Σ) is arbitrary, yields

S(q, ξ) ≥ c2‖ξ‖ 1
3
, 3
2

;Σ − c3‖q‖0,Ω. (3.48)

Then, combining (3.43) and (3.48) we easily obtain that

S(q, ξ) ≥ c1c2

c1 + c3
‖ξ‖ 1

3
, 3
2

;Σ,

which, together with (3.43), completes the proof with β depending on c1, c2 and c3.

We are now in position of establishing the well-definiteness of T. To that end, and in order to
simplify the subsequent analysis, given wS ∈ H1

ΓS
(ΩS) we first note that ‖a(wS)(0)‖H′ = 0, and then,

by considering p1 = 2 and p2 = 3 in Theorem 3.1, we introduce the following notation

M(fS, fD, gD) := max
{
N (fS, fD, gD)1/2,N (fS, fD, gD),N (fS, fD, gD)2

}
, (3.49)

with
N (fS, fD, gD) := ‖fS‖0,ΩS

+ ‖fD‖L3/2(ΩD) + ‖gD‖0,ΩD
+ ‖gD‖20,ΩD

.

The main result of this section is established now.

Theorem 3.6. Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

,

and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Then, (3.37) has a unique solution (u, (p, λ)) ∈
H × Q, with u := (uS,uD), which allows to define T(wS) := uS. Moreover, there exists a constant
cT > 0, independent of the solution, such that

‖T(wS)‖1,ΩS
= ‖uS‖1,ΩS

≤ ‖(u, (p, λ))‖H×Q ≤ cTM(fS, fD, gD). (3.50)

Proof. It follows from Lemmas 3.4–3.5 and a straightforward application of Theorem 3.1. In turn,
estimate (3.50) is a direct consequence of (3.25) (cf. Theorem 3.1) and (3.18) - (3.19).
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3.3.4 Solvability analysis of the fixed-point equation

In this section we proceed analogously to [65, Section 2.4] (see also [28, 40]) and establish the existence
of a fixed-point of operator T (cf. (3.36)) by means of the well known Schauder fixed-point theorem
and a sufficiently small data assumption. In addition, under a more restrictive small data assumption,
the uniqueness of solution is also established by means of the Banach fixed-point theorem. We begin
by recalling the first of the aforementioned results (see, e.g., [47, Theorem 9.12-1(b)]).

Theorem 3.7. Let W be a closed and convex subset of a Banach space X, and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed-point.

The verification of the hypotheses of Theorem 3.7 is provided in what follows. To this aim, we start
by introducing the set

W :=
{

vS ∈ H1
ΓS

(ΩS) : div vS = 0 in ΩS and ‖vS‖1,ΩS
≤ cTM(fS, fD, gD)

}
. (3.51)

Then, assuming that (cf. (3.49)):

M(fS, fD, gD) ≤ 2µαS

cT ρC
3
trC

2
s

, (3.52)

with cT the positive constant satisfying (3.50), it is not difficult to see that T is well defined from W

to W. In fact, given wS ∈W, from (3.52) we deduce that

‖wS · n‖0,Σ ≤ Ctr‖wS‖1,ΩS
≤ 2µαS

ρC2
trC

2
s

, (3.53)

which together with Theorem 3.6 proves that T is well defined. In this way, we obtain the following
result.

Lemma 3.8. Let W be the closed ball defined by (3.51) and assume that the data satisfy (3.52). Then
there holds T(W) ⊆W.

We continue with the following result providing an estimate needed to derive next the required
continuity and compactness properties of the operator T (cf. (3.36)).

Lemma 3.9. Let W be the closed ball defined by (3.51) and assume that the data satisfy (3.52). Then,

‖T(wS)−T(w̃S)‖1,ΩS
≤ ρCS

µαS
‖T(w̃S)‖1,ΩS

‖wS − w̃S‖L4(ΩS) ∀wS, w̃S ∈W. (3.54)

Proof. Given wS, w̃S ∈W, we let uS := T(wS) and ũS := T(w̃S). According to the definition of T, it
follows that

[a(wS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q,

and
[a(w̃S)(ũ),v] + [b(v), (p̃, λ̃)] = [f ,v] ∀v ∈ H,

[b(ũ), (q, ξ)] = [g, (q, ξ)] ∀(q, ξ) ∈ Q.
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Then, recalling the definition of a(wS) (cf. (3.12)) and subtracting both problems we obtain

[a(wS)(u)− a(w̃S)(ũ),v] + [b(v), (p− p̃, λ− λ̃)] = 0

[b(u− ũ), (q, ξ)] = 0

for all (v, (q, ξ)) ∈ H × Q. In particular, taking v = u − ũ, q = p − p̃ and ξ = λ − λ̃ in the latter
system, the first equation becomes

[a(wS)(u)− a(w̃S)(ũ),u− ũ] = 0. (3.55)

Hence, adding and subtracting BS(wS)(ũS) in the second term of the left-hand side of (3.55), using
the fact that u− ũ ∈ V (cf. (3.39)), and the strict monotonicity of a(wS) (cf. (3.41)), it follows that

µαS‖uS − ũS‖21,ΩS
≤ [a(wS)(u)− a(wS)(ũ),u− ũ] = [BS(w̃S −wS)(ũS),uS − ũS].

In this way, the continuity of BS (cf. (3.16)) gives from the foregoing equation

µαS‖uS − ũS‖21,ΩS
≤ ρCS‖wS − w̃S‖L4(ΩS) ‖ũS‖1,ΩS

‖uS − ũS‖1,ΩS
,

which yields the result.

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.10. Assume that the estimate (3.52) holds. Then T has at least one fixed-point in W.

Proof. The required result follows straightforwardly from estimate (3.54), the continuity of the Sobolev
embedding from H1(ΩS) into L4(ΩS), and the Schauder theorem. We omit further details and refer to
[65, Lemma 5].

Under a more restrictive assumption on the data, in what follows we prove that T has exactly one
fixed-point by means of the well-known Banach fixed-point theorem.

Lemma 3.11. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that

M(fS, fD, gD) < r, (3.56)

where

r :=
µαS

cTρ
min

{
1

C2
S

,
2

C2
sC

3
tr

}
.

Then, T has a unique fixed-point.

Proof. The result follows straightforwardly from (3.54), the continuity of the compact injection from
H1(ΩS) into L4(ΩS), the fact that T(W) ⊆W, and the constraint (3.56).

We are now in position of establishing the main result of this section.
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Theorem 3.12. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Assume that (3.52) holds. Then
the problem (3.11) admits a solution (u, (p, λ)) ∈ H × Q. In addition, if it is assumed that (3.56)
holds, then the solution is unique. In any case, there exists a constant cT > 0 (cf. (3.50)), independent
of the solution, such that

‖(u, (p, λ))‖H×Q ≤ cTM(fS, fD, gD). (3.57)

Proof. The existence and uniqueness of solution of problem (3.11) follows by recalling the definition
of operator T and combining Lemmas 3.10 and 3.11. In addition, it is clear that the estimate (3.57)
is consequence of (3.50).

3.4 The Galerkin scheme

In this section we introduce the Galerkin scheme of problem (3.11) and analyse its well-posedness.

3.4.1 Discrete setting

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD formed by shape-regular
triangles of diameter hT and denote by hS and hD their corresponding mesh sizes. Assume that they
match on Σ so that Th := T S

h ∪T D
h is a triangulation of Ω := ΩS∪Σ∪ΩD. Hereafter h := max

{
hS, hD

}
.

For each T ∈ T D
h we consider the local Raviart–Thomas space of the lowest order [140]:

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}
.

In addition, for each T ∈ T S
h we denote by BR(T ) the local Bernardi–Raugel space (see [17, 100]):

BR(T ) := [P1(T )]2 ⊕ span
{
η2η3n1, η1η3n2, η1η2n3

}
,

where
{
η1, η2, η3

}
are the baricentric coordinates of T , and

{
n1,n2,n3

}
are the unit outward normals

to the opposite sides of the corresponding vertices of T . Hence, we define the following finite element
subspaces:

Hh(ΩS) :=
{

v ∈ H1(ΩS) : v|T ∈ BR(T ), ∀T ∈ T S
h

}
,

Hh(ΩD) :=
{

v ∈ H3(div ; ΩD) : v|T ∈ RT0(T ), ∀T ∈ T D
h

}
,

Lh(Ω) :=
{
q ∈ L2(Ω) : q|T ∈ P0(T ), ∀T ∈ Th

}
.

Then, the finite element subspaces for the velocities and pressure are, respectively,

Hh,ΓS
(ΩS) := Hh(ΩS) ∩H1

ΓS
(ΩS),

Hh,ΓD
(ΩD) := Hh(ΩD) ∩H3

ΓD
(div ; ΩD),

Lh,0(Ω) := Lh(Ω) ∩ L2
0(Ω).

Next, for introducing the finite element subspace of W
1
3
, 3
2 (Σ), we denote by Σh the partition of Σ

inherited from T D
h (or T S

h ), which is formed by edges e of length he, and set hΣ := max
{
he : e ∈ Σh

}
.

In turn, since the space
∏
e∈Σh

W
1− 1

p
,p

(e) coincides with W
1− 1

p
,p

(Σ), without extra conditions when
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1 < p < 2 [105, Theorem 1.5.2.3-(a)] (see also [106, Proposition 1.4.3] and [104, Section 2] for the 3D
case), it can be readily seen that a conforming finite element subspace for W

1
3
, 3
2 (Σ) can be defined by

Λh(Σ) :=
{
ξh : Σ→ R : ξh|e ∈ P0(e) ∀ edge e ∈ Σh

}
.

Notice that this space coincides with the set of discrete normal traces on Σ of Hh(ΩD). Notice also
that since T S

h and T D
h match on Σ, there holds hΣ ≤ min

{
hS, hD

}
.

In this way, grouping the unknowns and spaces as follows:

Hh := Hh,ΓS
(ΩS)×Hh,ΓD

(ΩD), Qh := Lh,0(Ω)× Λh(Σ),

uh := (uS,h,uD,h) ∈ Hh, (ph, λh) ∈ Qh,

where ph := pS,hχS + pD,hχD, our Galerkin scheme for (3.11) reads: Find (uh, (ph, λh)) ∈ Hh ×Qh,
such that

[ah(uS,h)(uh),vh] + [b(vh), (ph, λh)] = [f ,vh] ∀vh := (vS,h,vD,h) ∈ Hh,

[b(uh), (qh, ξh)] = [g, (qh, ξh)] ∀ (qh, ξh) ∈ Qh.
(3.58)

Here, ah(wS,h) : Hh → H′h is the discrete version of a(wS) (with wS,h ∈ Hh,ΓS
(ΩS) in place of

wS ∈ H1
ΓS

(ΩS)), which is defined by

[ah(wS,h)(uh),vh] := [AS(uS,h),vS,h] + [BhS(wS,h)(uS,h),vS,h] + [AD(uD,h),vD,h], (3.59)

where BhS(wS,h) is the well-known skew-symmetric convection form [148]:

[BhS(wS,h)(uS,h),vS,h] := ρ((∇uS,h)wS,h,vS,h)S +
ρ

2
(div wS,huS,h,vS,h)S,

for all uS,h,vS,h,wS,h ∈ Hh,ΓS
(ΩS). Observe that integrating by parts, similarly to (3.21), there holds

[BhS(wS,h)(vS,h),vS,h] =
ρ

2

∫
Σ

(wS,h · n)|vS,h|2 ≥ 0 ∀wS,h,vS,h ∈ Hh,ΓS
(ΩS). (3.60)

Moreover, proceeding as for BS (cf. (3.16)), it is easy to see that for all wS,h, uS,h,vS,h ∈ Hh,ΓS
(ΩS),

there holds ∣∣∣[BhS(wS,h)(uS,h),vS,h]
∣∣∣ ≤ Csk‖wS,h‖1,ΩS

‖uS,h‖1,ΩS
‖vS,h‖1,ΩS

, (3.61)

with Csk := ρC2
S

(
1 +

√
2

2

)
.

Now, let ΠS : H1
ΓS

(ΩS) → Hh,ΓS
(ΩS) be the Bernardi–Raugel interpolation operator [17], which is

linear and bounded with respect to the H1(ΩS)-norm. In this regard, we recall that, given v ∈ H1
ΓS

(ΩS),
there holds ∫

e
ΠS(v) · n =

∫
e
v · n for each edge e of T S

h , (3.62)

and hence
(div ΠS(v), qh)S = (div v, qh)S ∀qh ∈ Lh(Ω). (3.63)

Equivalently, if PS denotes the L2(ΩS)-orthogonal projection onto the restriction of Lh(Ω) to ΩS, then
the relation (3.63) can be written as

PS(div (ΠS(v))) = PS(div v) ∀v ∈ H1
ΓS

(ΩS). (3.64)
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On the other hand, let ΠD : H1(ΩD) → Hh(ΩD) be the well-known Raviart–Thomas interpolation
operator. We recall that, given v ∈ H1(ΩD), this operator is characterized by∫

e
ΠD(v) · n =

∫
e
v · n for each edge e of T D

h , (3.65)

which implies that
(div ΠD(v), qh)D = (div v, qh)D ∀qh ∈ Lh(Ω). (3.66)

Equivalently, if PD denotes the L2(ΩD)-orthogonal projection onto the restriction of Lh(Ω) to ΩD, then
the relation (3.66) can be written as

div (ΠD(v)) = PD(div v) ∀v ∈ H1(ΩD). (3.67)

At this point we recall, according to [69, Sections 1.2.7 and 1.4.7] (see also [19, Chapter III.3.3]),
that the Raviart–Thomas operator ΠD is also well defined for all v ∈ Vdiv (ΩD) :=

{
v ∈ Lp(ΩD) :

div v ∈ Ls(ΩD)
}
, with p > 2 and s ≥ q, 1

q = 1
p + 1

n , since the local space Vdiv (T ) coincides with

W1,t(T ) when t > 2n
n+2 , for each T ∈ T D

h . In particular, considering n = 2, p = 3, and s = 2, we
deduce that ΠD can be applied to functions in H3(div ; ΩD). We will use this fact later on in the proof
of the discrete inf-sup condition of b.

3.4.2 Well-posedness of the discrete problem

In this section, analogously to the analysis of the continuous problem, we apply a fixed-point argument
to prove the well-posedness of the Galerkin scheme (3.58). To that end, we now let Th : Hh,ΓS

(ΩS)→
Hh,ΓS

(ΩS) be the discrete operator defined by

Th(wS,h) := uS,h ∀wS,h ∈ Hh,ΓS
(ΩS), (3.68)

where uh := (uS,h,uD,h) ∈ Hh is the first component of the unique solution (to be confirmed below)
of the discrete nonlinear problem: Find (uh, (ph, λh)) ∈ Hh ×Qh, such that

[ah(wS,h)(uh),vh] + [b(vh), (ph, λh)] = [f ,vh] ∀vh ∈ Hh,

[b(uh), (qh, ξh)] = [g, (qh, ξh)] ∀(qh, ξh) ∈ Qh.
(3.69)

Then, similarly as for the continuous case, the Galerkin scheme (3.58) can be rewritten, equivalently,
as the fixed-point problem: Find uS,h ∈ Hh,ΓS

(ΩS) such that

Th(uS,h) = uS,h.

In this way, in what follows we focus on analysing the existence and uniqueness of such a fixed-point,
for which we require the following discrete version of Theorem 3.1.

Theorem 3.13. In addition to the spaces and operators defined in Theorem 3.1, let X1,h, X2,h and Yh be
finite dimensional subspaces of X1, X2, and Y , respectively, and set Xh = X1,h×X2,h ⊆ X := X1×X2.
In addition, let Vh be the discrete kernel of b, that is,

Vh :=
{
vh ∈ Xh : [b(vh), qh] = 0 ∀qh ∈ Yh

}
.

Assume that
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(i) a is hemi-continuous from Xh to X ′h, that is, for each u, v ∈ Xh, the real mapping

J : R→ R, t→ J(t) = [a(u+ tv), v]

is continuous.

(ii) there exist constants γ̃ > 0 and p1, p2 ≥ 2, such that

‖a(uh)− a(vh)‖X′ ≤ γ̃
2∑
j=1

{
‖uj,h − vj,h‖Xj + ‖uj,h − vj,h‖Xj

(
‖uj,h‖Xj + ‖vj,h‖Xj

)pj−2}
,

for all uh = (u1,h, u2,h), vh = (v1,h, v2,h) ∈ Xh.

(iii) for fixed th ∈ V ⊥h ≡ Xh \ Vh, the operator a( ·+ th) : Vh → V ′h is strictly monotone, that is, there
exists α̃ > 0 and p1, p2 ≥ 2, such that

[a(uh + th)− a(vh + th), uh − vh] ≥ α̃
{
‖u1,h − v1,h‖p1

X1
+ ‖u2,h − v2,h‖p2

X2

}
,

for all uh = (u1,h, u2,h), vh = (v1,h, v2,h) ∈ Vh.

(iv) there exists β̃ > 0 such that

sup
vh∈Xh
vh 6=0

[b(vh), qh]

‖vh‖X
≥ β̃‖qh‖Y ∀qh ∈ Yh.

Then, for each (f, g) ∈ X ′ × Y ′ there exists a unique (uh, ph) ∈ Xh × Yh, such that

[a(uh), vh] + [b(vh), ph] = [f, vh] ∀vh ∈ Xh,

[b(uh), qh] = [g, qh] ∀qh ∈ Yh.

Moreover, there exists C̃ > 0, depending only on α̃, γ̃, β̃, p1, and p2, such that

‖(uh, ph)‖X×Y ≤ C̃M(f, g),

where
M(f, g) := max

{
N (f, g)

1
p1−1 ,N (f, g)

1
p2−1 ,N (f, g),N (f, g)

p1−1
p2−1 ,N (f, g)

p2−1
p1−1

}
,

and
N (f, g) := ‖f‖X′ + ‖g‖Y ′ + ‖g‖p1−1

Y ′ + ‖g‖p2−1
Y ′ + ‖a(0)‖X′ .

Proof. It reduces to a simple application of Theorem 3.1 to the present discrete setting.

Similarly to the analysis developed in Section 3.3.3, in what follows we provide suitable assumptions
under which problem (3.69) is well posed or equivalently Th is well defined. For this purpose, we must
verify that the operators defining the discrete problem (3.69) satisfy the hypotheses of Theorem 3.13.
We begin with the hemi-continuity of ah.

Lemma 3.14. Given wS,h ∈ H1
h,ΓS

(ΩS), the operator ah(wS,h) is hemi-continuous in Hh.
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Proof. The proof follows analogously to the proof of Lemma 3.2, by using now the linearity and
continuity of BhS(wS,h) (in addition to those of AS).

Now we verify that hypothesis (ii) of Theorem 3.13 holds.

Lemma 3.15. Let wS,h ∈ Hh,ΓS
(ΩS). Then, there exists γ̃ > 0, depending on CAS

and LAD
(cf.

(3.16), (3.17)), such that

‖ah(wS,h)(uh)− ah(wS,h)(vh)‖H′ ≤ γ̃
{

(1 + ‖wS,h‖1,ΩS
)‖uS,h − vS,h‖1,ΩS

+ ‖uD,h − vD,h‖H3(div ;ΩD)

+ ‖uD,h − vD,h‖H3(div ;ΩD)

(
‖uD,h‖H3(div ;ΩD) + ‖vD,h‖H3(div ;ΩD)

)}
,

for all uh = (uS,h,uD,h),v = (vS,h,vD,h) ∈ H.

Proof. Similarly to the continuous case, the result follows straightforwardly from the definition of
ah(wS,h) (cf. (3.59)), the triangle inequality, and the stability properties (3.16), (3.17) and (3.61). We
omit further details.

Now, we proceed to establish the strict monotonicity of ah(wS,h) on the discrete kernel of b:

Vh :=
{

vh := (vS,h,vD,h) ∈ Hh : [b(vh), (qh, ξh)] = 0 ∀(qh, ξh) ∈ Qh

}
, (3.70)

for suitable wS,h ∈ Hh,ΓS
(ΩS). Observe that, similarly to the continuous case, vh ∈ Vh if and only if

(div vS,h, qh)S + (div vD,h, qh)D = 0 ∀qh ∈ Lh,0(Ω),

and
〈vS,h · n− vD,h · n, ξh〉Σ = 0 ∀ξh ∈ Λh(Σ),

which, in particular, imply that

(div vS,h, qh)S = 0 ∀qh ∈ Lh(ΩS) and div vD,h = 0 in ΩD, (3.71)

where Lh(ΩS) is the set of functions of Lh(Ω) restricted to ΩS. Then, the announced result is as follows.

Lemma 3.16. Let wS,h ∈ Hh,ΓS
(ΩS) such that

‖wS,h · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

. (3.72)

Then, for fixed th ∈ Hh \Vh, the nonlinear operator ah(wS,h)( ·+ th) is strictly monotone on Vh (cf.
(3.70)).

Proof. The proof follows analogously to the proof of Lemma 3.4. Further details are omitted.

We continue by adapting the results provided in [92, Section 4] to our domain and spaces configu-
ration to prove that b satisfies the corresponding discrete inf-sup condition. We start by establishing
the following two preliminary lemmas.
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Lemma 3.17. There exists C̃1 > 0, independent of h, such that for all (qh, ξh) ∈ Qh, there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ C̃1‖ξh‖ 1

3
, 3
2

;Σ − ‖qh‖0,Ω. (3.73)

Proof. Let ξh ∈ Λh(Σ) ⊆W
1
3
, 3
2 (Σ), ξh 6= 0. Since

sup

φ̃∈W−
1
3 ,3(Σ)

φ̃ 6=0

〈
φ̃, ξh

〉
Σ

‖φ̃‖− 1
3
,3;Σ

= ‖ξh‖ 1
3
, 3
2

;Σ ,

we deduce that there exists φ̃ ∈W− 1
3
,3(Σ)\{0} such that〈
φ̃, ξh

〉
Σ
≥ 1

2
‖φ̃‖− 1

3
,3;Σ‖ξh‖ 1

3
, 3
2

;Σ. (3.74)

Next, exactly as we did in the proof of Lemma 3.5, we “extend" φ̃ ∈W− 1
3
,3(Σ) to η ∈W− 1

3
,3(∂ΩD) by

〈η, µ〉∂ΩD
:=
〈
φ̃, µΣ

〉
Σ
∀µ ∈W

1
3
, 3
2 (∂ΩD),

where µΣ ∈ W
1
3
, 3
2 (Σ) is given by the decomposition (3.33). Then, proceeding again as in the second

part of the proof of Lemma 3.5, we find ṽD ∈ H3
ΓD

(div ; ΩD) satisfying ṽD · n = η on ∂ΩD, and (cf.
(3.47))

‖ṽD‖H3(div ;ΩD) ≤ C‖η‖− 1
3
,3;∂ΩD

≤ C‖φ̃‖− 1
3
,3;Σ,

which, combined with (3.74), implies

〈ṽD · n, ξh〉Σ := 〈ṽD · n, EΣ(ξh)〉∂ΩD
= 〈η,EΣ(ξh)〉∂ΩD

=
〈
φ̃, ξh

〉
Σ

≥ 1

2C
‖ṽD‖H3(div ;ΩD)‖ξh‖ 1

3
, 3
2

;Σ.
(3.75)

On the other hand, given vD ∈ H3(div ; ΩD), the properties of ΠD (cf. (3.65), (3.66)) and [72,
Lemma 3.2] allow to establish that

〈vD · n, ξh〉Σ =

∫
Σ

(ΠD(vD) · n)ξh ∀ξh ∈ Λh(Σ), (3.76)

and
‖ΠD(vD)‖H3(div ;ΩD) ≤ CD‖vD‖H3(div ;ΩD). (3.77)

Thus, defining ṽD,h := ΠD(ṽD) ∈ Hh,ΓD
(ΩD), and then using (3.75), (3.76), and (3.77), we obtain∣∣∣ 〈ṽD,h · n, ξh〉Σ
∣∣∣

‖ṽD,h‖H3(div ;ΩD)
≥ 1

CD

∣∣∣ 〈ṽD · n, ξh〉Σ
∣∣∣

‖ṽD‖H3(div ;ΩD)
≥ C̃1‖ξh‖ 1

3
, 3
2

;Σ. (3.78)

Finally, setting ṽh := (0, ṽD,h) ∈ Hh, we deduce that

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥

∣∣∣[b(ṽh), (qh, ξh)]
∣∣∣

‖ṽh‖H

=

∣∣∣ 〈ṽD,h · n, ξh〉Σ − (div ṽD,h, qh)D

∣∣∣
‖ṽD,h‖H3(div ;ΩD)

≥

∣∣∣ 〈ṽD,h · n, ξh〉Σ
∣∣∣

‖ṽD,h‖H3(div ;ΩD)
− ‖qh‖0,Ω ,

which, together with (3.78), imply (3.73) and complete the proof.
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Lemma 3.18. There exists C̃2 > 0, independent of h, such that for all (qh, ξh) ∈ Qh, there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ C̃2‖qh‖0,Ω. (3.79)

Proof. The proof follows similarly to the first part of the proof of Lemma 3.5. In fact, given (qh, ξh) ∈
Qh we recall that qh ∈ L2

0(Ω) and apply again [100, Corollary 2.4] to deduce that there exists z ∈ H1
0(Ω)

such that
div z = −qh in Ω and ‖z‖1,Ω ≤ c‖qh‖0,Ω. (3.80)

Then, we let z? := z|Ω? for ? ∈ {S,D} and observe that zS = zD on Σ, which implies that

(zS − zD) · n = 0 on Σ.

Hence, defining zh := (zS,h, zD,h), with zS,h = ΠS(zS) and zD,h = ΠD(zD), we observe from (3.62),
(3.65), and the fact that T S

h and T D
h match on Σ, that

〈(zS,h − zD,h) · n, ξh〉Σ = 〈(zS − zD) · n, ξh〉Σ = 0. (3.81)

In addition, since z = 0 on ∂Ω := ΓS ∪ ΓD, it is clear that zh ∈ Hh, and therefore, thanks to the
continuity of ΠS and the estimate (3.77), we obtain that

‖zh‖H ≤ C‖qh‖0,Ω, (3.82)

with C > 0 independent of h. Finally, from the identities (3.64) and (3.67), it can be readily seen that

div zh = −qh in Ω, (3.83)

which, together with (3.81) and (3.82), yield

sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ [b(zh), (qh, ξh)]

‖zh‖H
≥ 1

C
‖qh‖0,Ω,

which concludes the proof.

Owing to Lemmas 3.17 and 3.18, now we are in position of establishing the full discrete inf-sup
condition of b.

Lemma 3.19. There exists β̃ > 0, independent of h, such that for all (qh, ξh) ∈ Qh there holds

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

[b(vh), (qh, ξh)]

‖vh‖H
≥ β̃‖(qh, ξh)‖Q. (3.84)

Proof. It follows straightforwardly from the estimates (3.73) and (3.79).

The following result establishes the well-definiteness of operator Th.
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Theorem 3.20. Let wS,h ∈ Hh,ΓS
(ΩS) such that

‖wS,h · n‖0,Σ ≤
2µαS

ρC2
trC

2
s

, (3.85)

and assume that fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD). Then there exists a unique uS,h ∈
Hh,ΓS

(ΩS) such that Th(wS,h) = uS,h. Moreover, there exists a constant c̃T > 0, independent of the
solution, such that

‖Th(wS,h)‖1,ΩS
= ‖uS,h‖1,ΩS

≤ ‖(uh, (ph, λh))‖H×Q ≤ c̃TM(fS, fD, gD). (3.86)

Proof. Similarly to the continuous case, and noticing that the well-definiteness of Th is equivalent to
the well-posedness of problem (3.69), the result is a direct consequence of Lemmas 3.14, 3.15, 3.16 and
3.19, and Theorem 3.13.

Having verified the well-definiteness of operator Th, now we are in position of establishing the main
result of this section, namely, the well-posedness of problem (3.58).

Theorem 3.21. Let Wh be the compact convex subset of H1
h,ΓS

(ΩS) defined by

Wh :=
{

vS,h ∈ H1
h,ΓS

(ΩS) : ‖vS,h‖1,ΩS
≤ c̃TM(fS, fD, gD)

}
. (3.87)

Assume that the data fS, fD, and gD satisfy

M(fS, fD, gD) < r̃, (3.88)

where

r̃ :=
2µαS

c̃Tρ
min

{
1

C2
S(2 +

√
2)
,

1

C2
sC

3
tr

}
,

and c̃T > 0 is the constant in (3.86). Then, there exists a unique (uh, (ph, λh)) ∈ Hh ×Qh solution to
(3.58), which satisfies uS,h ∈Wh and

‖(uh, (ph, λh))‖H×Q ≤ c̃TM(fS, fD, gD). (3.89)

Proof. We first observe thanks to (3.86), that assumption (3.88) guarantees that Th(Wh) ⊆ Wh.
Next, proceeding analogously to the proof of Lemma 3.9, the assumption (3.88) implies the estimate

µαS‖Th(wS,h)−Th(w̃S,h)‖21,ΩS
≤ [ah(wS,h)(uh)− ah(wS,h)(ũh),uh − ũh]

= [BhS(w̃S,h −wS,h)(ũS,h),uS,h − ũS,h],

which, together with the continuity of BhS (see (3.61)) leads to

‖Th(wS,h)−Th(w̃S,h)‖1,ΩS
≤
ρC2

S(2 +
√

2)

2µαS
‖Th(w̃S,h)‖1,ΩS

‖wS,h − w̃S,h‖1,ΩS
, (3.90)

thus proving the continuity of Th. Then, the existence result follows from the Brower fixed-point
theorem. Moreover, from (3.90) and the fact that Th(w̃S,h) belongs to Wh, it is easy to see that Th

is a contraction mapping if and only if (3.88) holds, which due to the Banach fixed-point theorem,
implies the uniqueness of solution. In turn, the a priori estimate (3.89) follows directly from (3.86).
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3.5 A priori error analysis

Now we establish the corresponding Céa estimate and the theoretical rate of convergence of the Galerkin
scheme (3.58). To that end, we first introduce some notations and state some previous results. We
begin by defining the set

Hg
h :=

{
vh := (vS,h,vD,h) ∈ Hh : [b(vh), (qh, ξh)] = [g, (qh, ξh)] ∀(qh, ξh) ∈ Qh

}
,

which is clearly noempty, since (3.84) holds. Also, it is not difficult to see that, due to the inf-sup
condition (3.84), the following inequality holds (cf. [81, Theorem 2.6], [144, Théorème 2.1]):

inf
vh∈Hg

h

‖u− vh‖H ≤
(

1 +
Cb

β̃

)
inf

vh∈Hh

‖u− vh‖H. (3.91)

In turn, in order to simplify the subsequent analysis, we write euS = uS − uS,h, euD = uD − uD,h,
ep = p− ph, and eλ = λ−λh. As usual, for a given vh = (vS,h,vD,h) ∈ Hg

h and (qh, ξh) ∈ Qh, we shall
then decompose these errors into

euS = δuS + ηuS
, euD = δuD + ηuD

, ep = δp + ηp, eλ = δλ + ηλ, (3.92)

with

δuS = uS − vS,h, ηuS
= vS,h − uS,h, δuD = uD − vD,h, ηuD

= vD,h − uD,h,

δp = p− qh, ηp = qh − ph, δλ = λ− ξh, ηλ = ξh − λh.
(3.93)

Finally, since the exact solution uS ∈ H1
ΓS

(ΩS) satisfies div uS = 0 in ΩS, we have

[BhS(uS)(uS),vS,h] = [BS(uS)(uS),vS,h] ∀vS,h ∈ Hh,ΓS
(ΩS).

Consequently, the following Galerkin orthogonality property holds:

[AS(euS),vS,h] + [BhS(uS)(uS),vS,h]− [BhS(uS,h)(uS,h),vS,h]

+ [AD(uD)−AD(uD,h),vD,h] + [b(vh), (ep, eλ)] = 0

[b(euS , euD), (qh, ξh)] = 0

(3.94)

for all vh := (vS,h,vD,h) ∈ Hh and (qh, ξh) ∈ Qh.

We now establish the main result of this section.

Theorem 3.22. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that

M(fS, fD, gD) <
1

2
min

{
r, r̃
}
, (3.95)

where r and r̃ are the constants defined in Lemma 3.11 and Theorem 3.21, respectively. Let (u, (p, λ)) :=

((uS,uD), (p, λ)) ∈ H × Q and (uh, (ph, λh)) := ((uS,h,uD,h), (ph, λh)) ∈ Hh × Qh be the unique
solutions of the continuous and discrete problems (3.11) and (3.58), respectively. Then there exists
C > 0, independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ))− (uh, (ph, λh))‖H×Q

≤ C max
i∈{2,3}

{(
inf

vh∈Hh

(
‖u− vh‖H + ‖u− vh‖2H

)
+ inf

(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
) 1
i−1

}
.

(3.96)
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Proof. In what follows we adapt the proof of [65, Theorem 5] to the present case. To do that, we let
vh = (vS,h,vD,h) ∈ Hg

h and (qh, ξh) ∈ Qh, and define δuS , δuD , δp, δλ,ηuS
,ηuD

, ηp, and ηλ, as in (3.93).
In addition, we recall that thanks to assumption (3.95), it follows that uS ∈ W and uS,h ∈ Wh (cf.
(3.51) and (3.87)), which implies (cf. Theorems 3.12 and 3.21):

‖uD‖H3(div ;ΩD), ‖uS‖1,ΩS
≤ cTM(fS, fD, gD),

‖uD,h‖H3(div ;ΩD), ‖uS,h‖1,ΩS
≤ c̃TM(fS, fD, gD).

(3.97)

In turn, since uh,vh ∈ Hg
h, we observe that

(ηuS
,ηuD

) := vh − uh ∈ Vh. (3.98)

According to the above, we first note that for all vS,h ∈ Hh,ΓS
(ΩS), there holds

[BhS(uS)(uS),vS,h]− [BhS(uS,h)(uS,h),vS,h] = [BhS(euS)(uS),vS,h] + [BhS(uS,h)(euS),vS,h]

= [BhS(uS,h)(ηuS
),vS,h] +R(vS,h),

(3.99)

with
R(vS,h) = [BhS(uS,h)(δuS),vS,h] + [BhS(δuS)(uS),vS,h] + [BhS(ηuS

)(uS),vS,h].

Then, adding and subtracting suitable terms in the first equation of (3.94) with vh = (ηuS
,ηuD

) ∈ Vh

(cf. (3.98)), and observing that [b(ηuS
,ηuD

), (ηp, ηλ)] = 0, we obtain

[ah(uS,h)(vh)− ah(uS,h)(uh),vh − uh]

= − [AS(δuS),ηuS
]−R(ηuS

)− [AD(uD)−AD(vD,h),ηuD
]− [b(ηuS

,ηuD
), (δp, δλ)].

Hence, proceeding analogously to the proof of Lemma 3.4, using the continuity of AS, BhS and b (cf.
(3.16) and (3.61)), and inequality (3.17), we deduce that

µαS‖ηuS
‖21,ΩS

+ αD‖ηuD
‖3H3(div ;ΩD)

≤
{
CAS

+ Csk

(
‖uS,h‖1,ΩS

+ ‖uS‖1,ΩS

)}
‖δuS‖1,ΩS

‖ηuS
‖1,ΩS

+ Csk‖uS‖1,ΩS
‖ηuS

‖21,ΩS

+ LAD

{(
1 + 2‖uD‖H3(div ;ΩD)

)
‖δuD‖H3(div ;ΩD) + ‖δuD‖2H3(div ;ΩD)

}
‖ηuD

‖H3(div ;ΩD)

+ Cb‖(ηuS
,ηuD

)‖H‖(δp, δλ)‖Q,

which, together with (3.97) and assumption (3.95), implies that there exists C > 0, depending only on
parameters, data and other constants, all of them independent of h, such that

‖(ηuS
,ηuD

)‖H ≤ C max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
. (3.100)

In this way, from (3.92), (3.100), and the triangle inequality, we obtain

‖(euS , euD)‖H ≤ ‖(δuS , δuD)‖H + ‖(ηuS
,ηuD

)‖H

≤ C̃ max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
.

(3.101)
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In turn, to estimate ep and eλ we observe that from the discrete inf-sup condition (3.84), the first
equation of (3.94), and the first equation of (3.99), there holds

β̃‖(ηp, ηλ)‖Q ≤ sup
vh∈Hh
vh 6=0

[b(vh), (ηp, ηλ)]

‖vh‖H
= sup

vh∈Hh
vh 6=0

[b(vh), (ep, eλ)]− [b(vh), (δp, δλ)]

‖vh‖H

= sup
vh∈Hh
vh 6=0

−

{
[AS(euS),vS,h] + [BhS(euS)(uS),vS,h] + [BhS(uS,h)(euS),vS,h]

‖vh‖H

+
[AD(uD)−AD(uD,h),vD,h] + [b(vh), (δp, δλ)]

‖vh‖H

}
.

Then, the continuity of AS, BhS , and b (cf. (3.16) and (3.61)), and the inequality (3.17), imply

β̃‖(ηp, ηλ)‖Q ≤
{
CAS

+ Csk

(
‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

)}
‖euS‖1,ΩS

+ LAD

{
1 + ‖uD‖H3(div ;ΩD) + ‖uD,h‖H3(div ;ΩD)

}
‖euD‖H3(div ;ΩD) + Cb‖(δp, δλ)‖Q,

which, together with assumption (3.95), inequalities (3.97) and (3.101), yield

‖(ηp, ηλ)‖Q ≤ c max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
.

Thus, from (3.92), the triangle inequality, and the foregoing bound, we obtain

‖(ep, eλ)‖Q ≤ ‖(δp, δλ)‖Q + ‖(ηp, ηλ)‖Q

≤ c̃ max
i∈{2,3}

{(
‖(δuS , δuD)‖H + ‖(δuS , δuD)‖2H + ‖(δp, δλ)‖Q

) 1
i−1

}
,

(3.102)

where c̃ > 0 is independent of h. Therefore, recalling that vh ∈ Hg
h and (qh, λh) ∈ Qh are arbitrary,

(3.101) and (3.102) give

‖((euS , euD), (ep, eλ))‖H×Q

≤ C max
i∈{2,3}

{(
inf

vh∈Hg
h

(
‖u− vh‖H + ‖u− vh‖2H

)
+ inf

(qh,ξh)∈Qh

‖(p, λ)− (qh, ξh)‖Q
) 1
i−1

}
,

which, together with (3.91), concludes the proof.

Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (3.58), we recall
the approximation properties of the subspaces involved (see, e.g., [17, 69, 72, 81]). Note that each one
of them is named after the unknown to which it is applied later on.

(APuS
h ) For each vS ∈ H2(ΩS), there holds

‖vS −ΠS(vS)‖1,ΩS
≤ Ch‖vS‖2,ΩS

.

(APuD
h ) For each vD ∈W1,3(ΩD) with div vD ∈ H1(ΩD), there holds

‖vD −ΠD(vD)‖H3(div ;ΩD) ≤ Ch
{
‖vD‖1,3;ΩD

+ ‖div vD‖1,ΩD

}
.
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(APp
h) For each q ∈ H1(Ω) ∩ L2

0(Ω), there exists qh ∈ Lh,0(Ω) such that

‖q − qh‖0,Ω ≤ Ch‖q‖1,Ω.

(APλ
h) For each ξ ∈W1, 3

2 (Σ), there exists ξh ∈ Λh(Σ) such that

‖ξ − ξh‖ 1
3
, 3
2

;Σ ≤ Ch
2/3‖ξ‖1, 3

2
;Σ.

We remark that the sub-optimal approximation property (APλ
h) follows from the fact that W

1
3
, 3
2 (Σ)

is the interpolation space with index 1/3 between W1, 3
2 (Σ) and L3/2(Σ) (cf. [18, Corollary 3.2-(a)]),

and from the estimate ‖ξ−ξh‖L3/2(Σ) ≤ Ch‖ξ‖1, 3
2

;Σ, which is valid for all ξ ∈W1, 3
2 (Σ) and ξh := PΣ(ξ),

with PΣ being the L2(Σ)-orthogonal projection onto Λh(Σ) (cf. [69, Proposition 1.135]). In fact, given
ξ ∈W1, 3

2 (Σ) there exists a constant C > 0, depending on Σ, such that

‖ξ − ξh‖ 1
3
, 3
2

;Σ ≤ c‖ξ − ξh‖
1−1/3

L3/2(Σ)
‖ξ‖1/3

1, 3
2

;Σ
≤ Ch2/3‖ξ‖1, 3

2
;Σ,

where we have used the fact that ξh is piecewise constant and then ‖ξ − ξh‖1, 3
2

;Σ ≤ c‖ξ‖1, 3
2

;Σ.

The following theorem provides the theoretical sub-optimal rate of convergence of the Galerkin
scheme (3.58), under suitable regularity assumptions on the exact solution.

Theorem 3.23. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), such that (3.95) holds. Let
(u, (p, λ)) := ((uS,uD), (p, λ)) ∈ H×Q and (uh, (ph, λh)) := ((uS,h,uD,h), (ph, λh)) ∈ Hh ×Qh be the
unique solutions of the continuous and discrete problems (3.11) and (3.58), respectively, and assume
that uS ∈ H2(ΩS), uD ∈ W1,3(ΩD), div uD ∈ H1(ΩD), p ∈ H1(Ω), and λ ∈ W1, 3

2 (Σ). Then, there
exists C > 0, independent of h and the continuous and discrete solutions, such that

‖(u, (p, λ))− (uh, (ph, λh))‖H×Q ≤ Ch1/3 max
i∈{2,3}

{(
‖uS‖2,ΩS

+ ‖uD‖1,3;ΩD
+ ‖div uD‖1,ΩD

+ ‖uS‖22,ΩS
+ ‖uD‖21,3;ΩD

+ ‖div uD‖21,ΩD
+ ‖p‖1,Ω + ‖λ‖1, 3

2
;Σ

) 1
i−1

}
.

(3.103)

Proof. It suffices to apply Theorem 3.22 and the approximation properties of the discrete subspaces.
We omit further details.

3.6 Numerical results

In this section we present some examples illustrating the performance of our mixed finite element
scheme (3.58) on a set of quasi-uniform triangulations of the corresponding domains. Our implemen-
tation is based on a FreeFem++ code [111], in conjunction with the direct linear solver UMFPACK
[62].

In order to solve the nonlinear problem (3.58), given wD ∈ H3
ΓD

(div ; ΩD) we introduce the Gâteaux
derivative associated to AD (cf. (3.13)), i.e.,

DAD(wD)(uD,vD) :=
µ

ρ

(
K−1uD,vD

)
D

+
F

ρ
(|wD|uD,vD)D +

F

ρ

(
wD · uD

|wD|
,wD · vD

)
D

,
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for all uD,vD ∈ H3
ΓD

(div ; ΩD). In this way, we propose the Newton-type strategy: Given u0
h =

(u0
S,h,u

0
D,h) ∈ Hh, p

0
h ∈ Lh,0(Ω) and λ0

h ∈ Λh(Σ), for m ≥ 1, find umh = (umS,h,u
m
D,h) ∈ Hh, p

m
h ∈

Lh,0(Ω) and λmh ∈ Λh(Σ), such that

[AS(umS,h),vS,h] + [BhS(um−1
S,h )(umS,h),vS,h] + [BhS(umS,h)(um−1

S,h ),vS,h] +DAD(um−1
D,h )(umD,h,vD,h)

+ [b(vh), (pmh , λ
m
h )] = [BhS(um−1

S,h )(um−1
S,h ),vS,h] +

F

ρ

(
|um−1

D,h |u
m−1
D,h ,vD,h

)
D

+ [f ,vh]

[b(umh ), (qh, ξh)] = [g, (qh, ξh)]

(3.104)
for all vh = (vS,h,vD,h) ∈ Hh and (qh, ξh) ∈ Qh.

In all the numerical experiments below, the iterations are terminated once the relative error of the
entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Hh and Qh, and tol is a fixed tolerance chosen as tol = 1E − 06.
For each example shown below we simply take u0

h = (0, (0.1, 0)) and (p0
h, λ

0
h) = 0 as initial guess. As

usual, the individual errors are denoted by:

e(uS) := ‖uS − uS,h‖1,ΩS
, e(uD) := ‖uD − uD,h‖H3(div ;ΩD),

e(pS) := ‖pS − pS,h‖0,ΩS
, e(pD) := ‖pD − pD,h‖0,ΩD

, e(λ) := ‖λ− λh‖L3/2(Σ).

Notice that we considered ‖λ − λh‖L3/2(Σ) in place of ‖λ − λh‖ 1
3
, 3
2

;Σ because of the last norm is not
computable. Notice also that ‖λ − λh‖L3/2(Σ) satisfies the sub-optimal rate of convergence (3.103).
Next, we define the experimental rates of convergence

r(uS) :=
log(e(uS)/e′(uS))

log(hS/h′S)
, r(uD) :=

log(e(uD)/e′(uD))

log(hD/h′D)
,

r(pS) :=
log(e(pS)/e′(pS))

log(hS/h′S)
, r(pD) :=

log(e(pD)/e′(pD))

log(hD/h′D)
, r(λ) :=

log(e(λ)/e′(λ))

log(hΣ/h′Σ)
,

where h? and h′? (? ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective errors e and
e′.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we choose the parameters µ = 1, ρ = 1, αd = 1, κ = I, and K = I. In addition, the
condition

∫
Ω ph = 0 is imposed via a penalization strategy.

Example 1: Tombstone-shaped domain without source in the porous media.

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous unit square,
i.e., ΩS :=

{
(x1, x2) : x2

1 + (x2 − 0.5)2 < 0.52, x2 > 0.5
}

and ΩD := (−0.5, 0.5)2. We consider the
Forchheimer number F = 1 and the data fS, fD, and gD, are adjusted so that the exact solution in the
tombstone-shaped domain Ω = ΩS ∪ Σ ∪ ΩD is given by the smooth functions
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uS(x1, x2) =

(
π cos(πx1) sin(πx2)

−π sin(πx1) cos(πx2)

)
in ΩS,

uD(x1, x2) =

(
π sin(πx2) exp(x1)

cos(πx2) exp(x1)

)
in ΩD,

p?(x1, x2) = sin(πx1) sin(πx2) in Ω?, with ? ∈ {S,D}.

Notice that the source of the porous media is gD = 0. Notice also that this solution satisfies uS · n =

uD · n on Σ. However, the Beavers–Joseph–Saffman condition (cf. (3.4)) is not satisfied, the Dirichlet
boundary condition for the Navier–Stokes velocity on ΓS and the Neumann boundary condition for the
Darcy–Forchheimer velocity on ΓD are both non-homogeneous. In this way, the right-hand side of the
resulting system must be modified accordingly.

Example 2: Rectangle domain with a Kovasznay solution.

In our second example we consider a rectangular domain Ω = ΩS ∪ Σ ∪ ΩD, with ΩS := (−0.5, 1.5)×
(0, 0.5) and ΩD := (−0.5, 1.5) × (−0.5, 0). We consider the Forchheimer number F = 1 and the data
fS, fD, and gD, are adjusted so that the exact solution in the rectangle domain Ω is given by the smooth
functions

uS(x1, x2) =

(
1− exp(ωx1) cos(2πx2)
ω

2π
exp(ωx1) sin(2πx2)

)
in ΩS,

uD(x1, x2) =

(
(x1 + 0.5)(x1 − 1.5) exp(x2)

(x2 + 2)(2x2 + 1) exp(x1)

)
in ΩD,

p?(x1, x2) = −1

2
exp(2ωx1) + p0 in Ω?, with ? ∈ {S,D},

and

ω =
−8π2

µ−1 +
√
µ−1 + 16π2

.

The constant p0 is such that
∫

Ω p = 0. Notice that (uS, pS) is the well known analytical solution
for the Navier–Stokes problem obtained by Kovasznay in [121], which presents a boundary layer at
{−0.5}× (−0.5, 0.5). Notice also that in this example both the conservation of mass and the Beavers–
Joseph–Saffman boundary conditions (cf. (3.4)) are not satisfied and the right-hand side of the resulting
system must be modified accordingly.

Example 3: 2D helmet-shaped domain with different Forchheimer numbers.

In our last example we focus on the performance of the iterative method (3.104) with respect to the
Forchheimer number F . To that end, and motivated by [31, Section 2], we consider a 2D helmet-shaped
domain. More precisely, we consider the domain Ω = ΩS ∪ Σ ∪ ΩD, where ΩD := (−1, 1) × (−0.5, 0)

and ΩS := (−1,−0.75)× (0, 1.25) ∪ ΩS,1 ∪ (−0.5, 0.5)× (0, 0.25) ∪ ΩS,2 ∪ (0.75, 1)× (0, 1.25), with

ΩS,1 :=
{

(x1, x2) : (x1 + 0.5)2 + (x2 − 0.5)2 > 0.252, −0.75 < x1 < −0.5, x2 > 0
}
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and
ΩS,2 :=

{
(x1, x2) : (x1 − 0.5)2 + (x2 − 0.5)2 > 0.252, 0.5 < x1 < 0.75, x2 > 0

}
.

The data fS, fD, and gD, are chosen so that the exact solution in the 2D helmet-shaped domain Ω is
given by the smooth functions

uS(x1, x2) =

(
− sin(2πx1) cos(2πx2)

cos(2πx1) sin(2πx2)

)
in ΩS,

uD(x1, x2) =

(
sin(2πx1) exp(x2)

sin(2πx2) exp(x1)

)
in ΩD,

p?(x1, x2) = sin(πx1) exp(x2) + p0 in Ω?, with ? ∈ {S,D}.

The constant p0 is such that
∫

Ω p = 0. Notice that, this solution satisfies uS · n = uD · n on Σ and
uD · n = 0 on ΓD. However, the Beavers–Joseph–Saffman condition (cf. (3.4)) is not satisfied and the
Dirichlet boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous and therefore
the right-hand side of the resulting system must be modified accordingly.

In Tables 3.1, 3.2 and 3.4 we summarise the convergence history for a sequence of quasi-uniform trian-
gulations, considering the finite element spaces introduced in Section 3.4.1, and solving the nonlinear
problem (3.104), which require around eight, six and nine Newton iterations for the Examples 1, 2 and
3, respectively. We observe that the sub-optimal rate of convergence O(h1/3) provided by Theorem 3.23
is attained in all the cases. Even more, the numerical result suggest that there exist a way to prove
optimal rate of convergence O(h). In Table 3.3 we show the behaviour of the iterative method (3.104)
as a function of the Forchheimer number F , considering different mesh sizes h := max

{
hS, hD

}
, and

a tolerance tol = 1E − 06. Here we observe that the higher the parameter F the higher the number of
iterations as it occurs also in the Newton method for the Navier–Stokes/Darcy–Forchheimer coupled
problem. Notice also that when F = 0 the Darcy–Forchheimer equations reduce to the classical linear
Darcy equations and as expected the iterative Newton method (3.104) is faster.

On the other hand, the velocity components, velocity streamlines and pressure field in the whole
domain of the approximate solutions for the three examples are displayed in Figures 3.2, 3.3, and 3.4.
All the figures were obtained with 588445, 858658, and 883963 degrees of freedom for the Examples 1,
2, and 3, respectively. In particular, we can observe in Figure 3.2 that the second components of uS and
uD coincide on Σ as expected, and hence, the continuity of the normal components of the velocities on
Σ is preserved. In turn, we can see that the velocity streamlines are higher in the Darcy–Forchheimer
domain. Moreover, it can be seen that the pressure is continuous in the whole domain and preserves
the sinusoidal behaviour. Next, in Figure 3.3 we observe that the pressure presents a boundary layer
at {−0.5} × (−0.5, 0.5) as expected. Finally, similarly to Figure 3.2, in Figure 3.4 we can also observe
the continuity of the normal components of the velocities on Σ since their second components coincide
on the interface.
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N hS e(uS) r(uS) e(pS) r(pS)

691 0.1915 0.4439 – 0.1588 –
2491 0.0911 0.2293 0.8896 0.0725 1.0561
9562 0.0486 0.1188 1.0441 0.0382 1.0179
37815 0.0242 0.0531 1.1558 0.0175 1.1214
149693 0.0134 0.0288 1.0380 0.0094 1.0474
588445 0.0078 0.0147 1.2290 0.0048 1.2231

N hD e(uD) r(uD) e(pD) r(pD)

691 0.1901 0.3481 – 0.0643 –
2491 0.0978 0.1678 1.0974 0.0305 1.1202
9562 0.0535 0.0856 1.1169 0.0151 1.1629
37815 0.0249 0.0427 0.9122 0.0075 0.9206
149693 0.0145 0.0214 1.2713 0.0037 1.2840
588445 0.0068 0.0107 0.9140 0.0019 0.9087

N hΣ e(λ) r(λ) iter

691 0.1250 0.0718 – 7
2491 0.0625 0.0352 1.0308 7
9562 0.0313 0.0175 1.0084 8
37815 0.0156 0.0087 1.0060 8
149693 0.0078 0.0043 1.0012 8
588445 0.0039 0.0022 1.0004 8

Table 3.1: Example 1, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with F = 1.
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N hS e(uS) r(uS) e(pS) r(pS)

989 0.2001 10.3170 – 8.2614 –
3880 0.0966 4.5495 1.1249 3.9855 1.0015
13888 0.0492 2.2051 1.0713 1.8753 1.1151
55727 0.0270 1.1168 1.1342 0.9489 1.1357
213833 0.0161 0.5456 1.3877 0.4746 1.3423
858658 0.0078 0.2769 0.9419 0.2404 0.9444

N hD e(uD) r(uD) e(pD) r(pD)

989 0.2001 0.4678 – 7.2964 –
3880 0.0950 0.2249 0.9835 3.3197 1.0578
13888 0.0500 0.1145 1.0518 1.7322 1.0135
55727 0.0254 0.0569 1.0326 0.9133 0.9457
213833 0.0160 0.0278 1.5453 0.4353 1.5956
858658 0.0066 0.0141 0.7674 0.2295 0.7283

N hΣ e(λ) r(λ) iter

989 0.1250 8.9940 – 6
3880 0.0625 4.6538 0.9505 6
13888 0.0313 2.3459 0.9883 6
55727 0.0156 1.1788 0.9928 6
213833 0.0078 0.5962 0.9835 6
858658 0.0039 0.3078 0.9539 6

Table 3.2: Example 2, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with F = 1.

F h = 0.2001 h = 0.1088 h = 0.0494 h = 0.0262 h = 0.0146 h = 0.0077

0 4 4 4 4 4 4
1 5 5 5 6 6 6
10 7 8 9 9 9 9
100 8 9 10 10 11 11

Table 3.3: Example 3, Convergence behavior of the iterative method (3.104) with respect to the
Forchheimer number F .
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N hS e(uS) r(uS) e(pS) r(pS)

1007 0.1881 1.0274 – 0.5355 –
3790 0.1088 0.5114 1.2753 0.2156 1.6636
14014 0.0481 0.2472 0.8896 0.0978 0.9668
55428 0.0254 0.1243 1.0742 0.0483 1.1028
214828 0.0137 0.0620 1.1285 0.0237 1.1564
883963 0.0077 0.0307 1.2174 0.0123 1.1392

N hD e(uD) r(uD) e(pD) r(pD)

1007 0.2001 1.2760 – 0.1105 –
3790 0.0950 0.6135 0.9837 0.0385 1.4165
14014 0.0494 0.3115 1.0366 0.0150 1.4375
55428 0.0262 0.1566 1.0813 0.0067 1.2820
214828 0.0146 0.0784 1.1839 0.0033 1.2215
883963 0.0072 0.0393 0.9815 0.0016 0.9948

N hΣ e(λ) r(λ) iter

1007 0.1250 0.1930 – 7
3790 0.0625 0.0704 1.4545 8
14014 0.0313 0.0296 1.2527 9
55428 0.0156 0.0141 1.0638 9
214828 0.0078 0.0070 1.0217 9
883963 0.0039 0.0035 1.0093 9

Table 3.4: Example 3, Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with F = 10.
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Figure 3.2: Example 1: Velocity components (top panels), velocity streamlines and pressure field in
the whole domain (bottom panels).
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Figure 3.3: Example 2: Velocity components (top panels), velocity streamlines and pressure field in
the whole domain (bottom panels).
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Figure 3.4: Example 3: Velocity components (top panels), velocity streamlines and pressure field in
the whole domain (bottom panels).



CHAPTER 4

Analysis of an augmented fully-mixed formulation for the
non-isothermal Oldroyd–Stokes problem

In this chapter we develop and analyse a new augmented-mixed finite element method to numeri-
cally approximate the flow patterns of a non-isothermal incompressible viscoelastic fluid described
by the non-isothermal Oldroyd–Stokes equations.

4.1 Introduction

The numerical simulation of viscoelastic fluid flows has become increasingly important for a variety
of research areas in the fields of the natural sciences and engineering branches. This fact has been
motivated by its diverse applications in industry such as design of heat exchangers and chemical
reactors, cooling processes, and polymer processing (see, e.g., [113, 46, 120, 130]), to name a few. The
complexity of the governing equations and the physical domains makes analysis of the mathematical
models and the associated numerical methods especially difficult. Current efforts to model isothermal
viscoelastic flows often revolve around the solution of the Stokes problem for the Oldroyd viscoelastic
model (see, e.g., [14, 13, 33, 4], and the references therein). In particular, in [4] the authors analysed
an extra stress-vorticity formulation and proved that this formulation satisfies an inf-sup condition
and consequently, classical finite element spaces can be used for its approximation. We remark that,
although most of the research on the viscoelastic fluid flows concerns isothermal cases, many flows
of practical interest in polymeric melt processing are non-isothermal (see, e.g., [136, 123, 60, 118]).
The combination of high viscosities of polymeric melts and high deformation rates results in the
transformation of large amounts of mechanical energy into heat, and therefore in a temperature rise of
the material. This phenomenon is, for instance, used in extruders where viscous dissipation is employed
to enhance melting of the material (see [136] for details). This kind of fluid flows has motivated the
introduction of the coupled problem between the Stokes equation for the Oldroyd viscoelastic model
and the heat equation through a convective term and the viscosity of the fluid, thus arising the so
called non-isothermal Oldroyd–Stokes problem.

Up to the authors’ knowledge, [56] constitutes one of the first works in analysing a finite element
discretization for the non-isothermal Oldroyd–Stokes equations. In that work, the authors provide a
complete analysis of a mixed-primal formulation for the coupled problem, in which the main unknowns

117
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are the polymeric part of the extra-stress tensor, the velocity, the pressure and the temperature of
the fluid. The focus of this work is the discrete scheme, where by considering piecewise quadratic
elements for the velocity and the temperature, continuous piecewise linear elements for the pressure,
and discontinuous piecewise linear elements for the polymeric part of the extra-stress tensor, it is proved
existence of at least one solution by using inverse inequalities of L∞ into L2 and the Schaefer fixed-
point theorem. In addition, the Galerkin scheme has optimal rates of convergence under a smallness
assumption on the data. Later on, a new dual-mixed formulation was introduced and analysed in
[73], where the solvent part of the extra-stress tensor, the vorticity, and the heat flux vector are set as
further unknowns (besides the polymeric part of the extra-stress tensor, the velocity, the pressure and
the temperature). The corresponding mixed finite element scheme employs Raviart–Thomas elements
of lowest order plus bubble function for the solvent part of the extra-stress tensor, Raviart–Thomas
elements of lowest order for the heat flux vector, continuous piecewise linear elements for the vorticity,
and piecewise constants for the polymeric part of the extra-stress tensor, velocity, pressure and the
temperature of the fluid. Existence of solution and convergence of the numerical scheme are proved
and optimal error estimates are also provided by using inverse inequalities of L∞ into L2, smallnes
assumption on the data and the Schaefer fixed-point theorem. We remark that this formulation has
properties analogous to finite volume methods, namely local conservation of momentum and mass.

The purpose of the present chapter is to contribute in the development of new numerical methods
for the non-isothermal Oldroyd–Stokes problem. To that end, unlike to [56] and [73], and in order to
obtain a new fully-mixed formulation of this coupled problem, we first introduce the strain tensor as a
new unknown, which allows us, on one hand, to eliminate the polymeric part of the extra-stress tensor
from the system and compute it as a simple post-process of the solution, and on the other hand, to join
the polymeric and solvent viscosities in an adimensional viscosity. In addition, for convenience of the
analysis we also consider the stress and vorticity tensors as auxiliary unknowns, thanks to which the
pressure can be eliminated from the system and approximated later on by a postprocessing formula.
In turn, for deriving the mixed formulation of the heat equation we proceed similarly to [73] (see
also [51, 52]) and set the heat-flux vector as a further unknown. Furthermore, the difficulty given by
the fact that the fluid velocity and the temperature lives in H1 instead of L2 as usual, is resolved as
in [51, 52] by augmenting the variational formulation with suitable Galerkin type expressions arising
from the constitutive and equilibrium equations, the relation defining the strain and vorticity tensors,
and the Dirichlet boundary condition on the temperature. Then, following [51] and [2], we combine
classical fixed-point arguments, suitable regularity assumptions on the decoupled problems, the Lax–
Milgram lemma, the Sobolev embedding and Rellich–Kondrachov theorems, and sufficiently small data
assumptions to establish existence and uniqueness of solution of the continuous problem. Similarly, the
existence of solution of the discrete problem relies on the Brouwer fixed-point theorem and analogous
arguments to those employed in the continuous analysis. Moreover, applying a Strang-type lemma
valid for linear problems, we are able to derive the corresponding Céa estimate and to provide optimal
a priori error bounds for the Galerkin solution. Finally, we point out that the main advantages of
approximating the solution of the coupled system through this new approach include, on one hand, the
fact that no discrete inf-sup conditions are required for the discrete analysis, and therefore arbitrary
finite element subspaces can be employed, and on the other hand, the possibility of recovering by
post-processing formulae the pressure, the polymeric part and solvent part of the extra-stress tensor
in terms of the solution, conserving the same rates of convergence.
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We have organised the contents of this chapter as follows. In Section 4.2 we introduce the model
problem and derive the augmented fully-mixed variational formulation. Next, in Section 4.3 we esta-
blish the well-posedness of this continuous scheme by means of a fixed-point strategy and the Schauder
and Banach fixed point theorems. The corresponding Galerkin system is introduced and analysed
in Section 4.4, where the discrete analogue of the theory used in the continuous case is employed to
prove existence of solution. In addition, a suitable Strang-type lemma is utilized here to derive the
corresponding a priori error estimate and the resulting rates of convergence. Finally, in Section 4.5 we
report several numerical essays illustrating the accuracy of our augmented fully-mixed finite element
method.

4.2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

4.2.1 The model problem

The non-isothermal Oldroyd–Stokes problem consists of a system of equations where the Stokes equa-
tion for the Oldroyd viscoelastic model introduced in [14], is coupled with the heat equation through
a convective term and the viscosity of the fluid (cf. [56, 73]). More precisely, given a body force f , and
a heat source g, the aforementioned system of equations is given by

σP − 2µP(θ)e(u) = 0 in Ω,

−div(σP + 2εµN(θ)e(u)) +∇p = f in Ω,

div u = 0 in Ω,

−div (κ∇θ) + u · ∇θ = g in Ω,

u = 0 on Γ,

θ = θD on ΓD,

κ∇θ · n = 0 on ΓN,

(4.1)

where the unknowns are the polymeric part of the extra-stress tensor σP, the velocity u, the pressure

p, and the temperature θ of a fluid occupying the region Ω. In addition, e(u) :=
1

2

{
∇u + (∇u)t

}
stands for the strain tensor of small deformations, κ is the thermal conductivity coefficient, µP and µN

are the polymeric and solvent (or newtonian) viscosities, respectively, which are given by the following
Arrhenius relationship:

µP(θ) = a1 exp

(
b1
θ

)
, µN(θ) = a2 exp

(
b2
θ

)
, (4.2)

where the coefficients a1, b1, a2, and b2 are defined so that

0 < µP(s) ≤ 1, 0 < µN(s) ≤ 1 ∀s ≥ 0. (4.3)

Furthermore, we assume that both the polymeric and solvent viscosities are Lipschitz continuous and
bounded from above and from below, that is,

|µP(s)− µP(t)| ≤ LµP |s− t|, |µN(s)− µN(t)| ≤ LµN |s− t| ∀s, t ≥ 0, (4.4)
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and
µ1,P ≤ µP(s) ≤ µ2,P, µ1,N ≤ µN(s) ≤ µ2,N ∀s ≥ 0. (4.5)

Note that a small real parameter ε > 0 on the second equation of (4.1) is introduced to make the effect
of the solvent viscosity much smaller than that of the polymeric part. Moreover, it is well known that
uniqueness of a pressure solution of (4.1) (see, e.g., [134]) is ensured in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Now, in order to derive our augmented fully-mixed formulation we first need to rewrite (4.1) as a
first-order system of equations. To this end, unlike to [56] and [73], we begin by introducing the strain
tensor as an additional unknown t := e(u), whence the polymeric and solvent parts of the extra-stress
tensor can be written, respectively, as

σP = 2µP(θ)t and σN = 2εµN(θ)t in Ω . (4.6)

Next, defining the dimensionless effective viscosity as in [73], that is

µ(θ) := 2µP(θ) + 2εµN(θ) , (4.7)

and adopting the approach from [91] (see also [89, 40, 26]), we introduce the auxiliary unknowns

ρ := ∇u− e(u) and σ := µ(θ)t− pI in Ω,

where ρ is the vorticity (or skew-symmetric part of the velocity gradient). In this way, utilising the
incompressibility condition div u = tr (e(u)) = 0, we find that the equations modelling the fluid in
(4.1) can be rewritten, equivalently, as the set of equations with unknowns t,σ,ρ and u, given by

t + ρ = ∇u in Ω, σd = µ(θ)t in Ω, −divσ = f in Ω,

u = 0 on Γ, p = − 1

n
trσ in Ω,

∫
Ω

trσ = 0,
(4.8)

where both t and σ are symmetric tensors, and tr t = 0 holds in Ω. Note that the fifth equation in
(4.8) allows us to eliminate the pressure p from the system (which anyway can be approximated later
on by postprocessed), whereas the last equation takes care of the requirement that p ∈ L2

0(Ω). In
addition, it easy to see from (4.4) and (4.5) that the fluid viscosity µ(·) is Lipschitz continuous and
bounded from above and from below, that is, there exist constants Lµ > 0 and µ1, µ2 > 0, such that

|µ(s)− µ(t)| ≤ Lµ|s− t| ∀s, t ≥ 0, (4.9)

and
µ1 ≤ µ(s) ≤ µ2 ∀s ≥ 0. (4.10)

Similarly, for the convection-diffusion equation modelling the temperature of the fluid in (4.1), we
adopt the approach from [73] (see also [51, 52]) and introduce as a further unknown the heat flux
vector

p := κ∇θ − θ u in Ω,



4.2. The continuous formulation 121

so that, utilising the incompressibility condition div u = 0 in Ω and the homogenous Dirichlet boundary
condition u = 0 on Γ, the remaining equations in the system (4.1) can be rewritten, equivalently, as

κ−1p + κ−1θ u = ∇θ in Ω, −div p = g in Ω,

θ = θD on ΓD, p · n = 0 on ΓN.
(4.11)

We end this section emphasizing from (4.6) that we can recover the polymeric and solvent parts
of the extra-stress tensor in terms of θ and t, whereas from the fifth equation of (4.8) we obtain the
pressure in terms of σ. Alternatively, from (4.6), (4.7), and the second equation of (4.8), we arrive at
the identity

σP + σN = σd in Ω , (4.12)

from which each part of the extra stress can be computed in terms of σd and the other part. The
formulae provided by (4.6), (4.12), and the fifth equation of (4.8), will suggest in Section 4.5 suitable
approximations of the polymeric and solvent parts of the extra-stress tensor, and the pressure (cf.
(4.80)). They will all depend on the unique finite element solution of a Galerkin scheme to be introduced
below (cf. (4.57)), and hence the same rates of convergence will be obtained.

4.2.2 The augmented fully-mixed variational formulation

In this section we derive the weak formulation of the coupled system (4.8)–(4.11). We begin by recalling
(see, e.g., [19, 81, 100]) that there holds

H(div; Ω) = H0(div; Ω)⊕ RI, (4.13)

where
H0(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫
Ω

tr τ = 0

}
.

In this way, decomposing τ ∈ H(div; Ω) as τ = τ 0 + cI, with τ 0 ∈ H0(div; Ω) and c ∈ R, noticing
that τ d = τ d

0 and divτ = divτ 0, and using the last equation of (4.8), we deduce that both σ and τ
can be considered hereafter in H0(div; Ω). In addition, thanks to the incompressibility condition and
the first equation of (4.8), we can look for the strain tensor t in the space

L2
tr (Ω) :=

{
r ∈ L2(Ω) : rt = r and tr r = 0

}
,

whereas the vorticity ρ lives in

L2
skew(Ω) :=

{
η ∈ L2(Ω) : ηt = −η

}
.

In turn, the homogeneous Neumann boundary condition for p on ΓN (cf. fourth equation in (4.11))
suggests the introduction of the functional space

HΓN
(div ; Ω) :=

{
q ∈ H(div ; Ω) : q · n = 0 on ΓN

}
.

Hence, we begin the derivation of our weak formulation by testing the first equations of (4.8) and
(4.11) with arbitrary τ ∈ H0(div; Ω) and q ∈ HΓN

(div ; Ω), respectively. Then, integrating by parts,
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utilising the identity t : τ = t : τ d (which follows from the fact that t : I = tr t = 0), and imposing the
remaining equations weakly, which includes the symmetry of σ, we arrive at the variational problem:
Find t ∈ L2

tr (Ω), σ ∈ H0(div; Ω), ρ ∈ L2
skew(Ω), p ∈ HΓN

(div ; Ω), and u, θ in suitable spaces to be
defined, such that ∫

Ω
µ(θ)t : r−

∫
Ω
σd : r = 0 ∀r ∈ L2

tr (Ω),∫
Ω

t : τ d +

∫
Ω

u · divτ +

∫
Ω
ρ : τ = 0 ∀τ ∈ H0(div; Ω),

−
∫

Ω
v · divσ −

∫
Ω
σ : η =

∫
Ω

f · v ∀(v,η) ∈ L2(Ω)× L2
skew(Ω),

κ−1

∫
Ω

p · q +

∫
Ω
θ div q + κ−1

∫
Ω
θ u · q = 〈q · n, θD〉ΓD

∀q ∈ HΓN
(div ; Ω),

−
∫

Ω
ψ div p =

∫
Ω
g ψ ∀ψ ∈ L2(Ω).

(4.14)

Before continuing we observe that the third term on the left-hand side of the fourth equation in (4.14)
requires a suitable regularity for both unknowns u and θ. Indeed, by applying Cauchy–Schwarz and
Hölder’s inequalities, and then the continuous injection i of H1(Ω) into L4(Ω) (see, e.g., [1, Theorem
6.3] or [139, Theorem 1.3.5]), we find that there exist a positive constant c(Ω) := ‖i‖2, such that∣∣∣∣∫

Ω
θ u · q

∣∣∣∣ ≤ c(Ω)‖θ‖1,Ω‖u‖1,Ω‖q‖0,Ω ∀ θ ∈ H1(Ω) ∀u ∈ H1(Ω) ∀q ∈ L2(Ω). (4.15)

According to the above, and in order to be able to analyse the present variational formulation of
the coupled system (4.8)–(4.11), we propose to seek u ∈ H1

0(Ω) and θ ∈ H1(Ω), and to restrict the
set of corresponding test functions v and ψ to the same space, respectively. In this way, similarly
as in [51] (see also [52]), we augment (4.14) through the following redundant Galerkin terms arising
from the constitutive and equilibrium equations, the relation between the strain tensor and t, the
definition of the vorticity in terms of the velocity gradient, and the Dirichlet boundary condition on
the temperature:

κ1

∫
Ω

{
σd − µ(θ)t

}
: τ d = 0 ∀τ ∈ H0(div; Ω),

κ2

∫
Ω

divσ · divτ = −κ2

∫
Ω

f · divτ ∀τ ∈ H0(div; Ω),

κ3

∫
Ω

{
e(u)− t

}
: e(v) = 0 ∀v ∈ H1

0(Ω),

κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η = 0 ∀η ∈ L2

skew(Ω),

(4.16)

and
κ5

∫
Ω

{
∇θ − κ−1p− κ−1θ u

}
· ∇ψ = 0 ∀ψ ∈ H1(Ω),

κ6

∫
Ω

div p div q = −κ6

∫
Ω
g div q ∀q ∈ HΓN

(div ; Ω),

κ7

∫
ΓD

θ ψ = κ7

∫
ΓD

θD ψ ∀ψ ∈ H1(Ω),

(4.17)
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where (κ1, . . . , κ7) is a vector of positive parameters to be specified later.

At this point we remark that there are many different ways of ordering the augmented fully-mixed
variational formulation described above, but for the sake of subsequent analysis we proceed as in [51,
Section 3.1], and adopt one leading to an uncoupled structure. To that end, we start by grouping
appropriately some of the unknowns and spaces as follows:

t := (t,σ,ρ) ∈ H := L2
tr (Ω)×H0(div; Ω)× L2

skew(Ω),

where H is endowed with the norm

‖r‖2H := ‖r‖20,Ω + ‖τ‖2div;Ω + ‖η‖20,Ω ∀r := (r, τ ,η) ∈ H.

Hence, the augmented fully-mixed variational formulation for the non-isothermal Oldroyd–Stokes pro-
blem reads: Find (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) such that

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

(4.18)

where, given φ ∈ H1(Ω) and w ∈ H1
0(Ω), Aφ, Ã, and B̃w are the bilinear forms defined, respectively,

as
Aφ((t,u), (r,v)) :=

∫
Ω
µ(φ)t :

{
r− κ1τ

d
}

+

∫
Ω
σd :

{
κ1τ

d − r
}

+

∫
Ω

t : τ d

+

∫
Ω

{
u + κ2divσ

}
· divτ −

∫
Ω

v · divσ +

∫
Ω
ρ : τ −

∫
Ω
σ : η

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η,

(4.19)

Ã((p, θ), (q, ψ)) := κ−1

∫
Ω

p ·
{

q− κ5∇ψ
}

+

∫
Ω

{
θ + κ6div p

}
div q−

∫
Ω
ψ div p

+ κ5

∫
Ω
∇θ · ∇ψ + κ7

∫
ΓD

θ ψ,

(4.20)

and
B̃w((p, θ), (q, ψ)) := κ−1

∫
Ω
θw ·

{
q− κ5∇ψ

}
, (4.21)

for all (t,u), (r,v) ∈ H ×H1
0(Ω) and for all (p, θ), (q, ψ) ∈ HΓN

(div ; Ω) × H1(Ω). In turn, F and F̃

are the bounded linear functionals given by

F(r,v) :=

∫
Ω

f ·
{

v − κ2divτ
}
, (4.22)

for all (r,v) ∈ H×H1
0(Ω) and

F̃(q, ψ) := 〈q · n, θD〉ΓD
+

∫
Ω
g
{
ψ − κ6div q

}
+ κ7

∫
ΓD

θDψ, (4.23)

for all (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω).
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4.3 Analysis of the continuous formulation

In this section we proceed similarly as in [51] (see also [52, 2]) and utilise a fixed-point strategy to prove
that problem (4.18) is well posed. More precisely, in Section 4.3.1 we rewrite (4.18) as an equivalent
fixed-point equation in terms of an operator T. Next in Section 4.3.2 we show that T is well defined,
and finally in Section 4.3.3 we apply the well known Schauder and Banach theorems to conclude that
T has a unique fixed point.

4.3.1 The fixed-point approach

We start by defining the operator S : H1(Ω)→ H×H1
0(Ω) by

S(φ) := (S1(φ),S2(φ)) = (t,u) ∀φ ∈ H1(Ω), (4.24)

where S1(φ) := (St
1(φ),Sσ1 (φ),Sρ1 (φ)) and (t,u) is the unique solution of the problem: Find (t,u) ∈

H×H1
0(Ω) such that

Aφ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω), (4.25)

where the bilinear form Aφ is given by (4.19). In turn, the functional F is defined exactly as in (4.22).
In addition, we also introduce the operator S̃ : H1

0(Ω)→ HΓN
(div ; Ω)×H1(Ω) defined as

S̃(w) := (S̃1(w), S̃2(w)) = (p, θ) ∀w ∈ H1
0(Ω), (4.26)

where (p, θ) is the unique solution of the problem: Find (p, θ) ∈ HΓN
(div ; Ω)×H1(Ω) such that

Ã((p, θ), (q, ψ)) + B̃w((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω) . (4.27)

Here the bilinear form Ã and the functional F̃ are defined exactly as in (4.20) and (4.23), respectively.
In turn, the bilinear form B̃w is given by (4.21). In this way, we define the operator T : H1(Ω)→ H1(Ω)

as
T(φ) := S̃2(S2(φ)) ∀φ ∈ H1(Ω), (4.28)

and realise that (4.18) can be rewritten as the fixed-point problem: Find θ ∈ H1(Ω) such that

T(θ) = θ. (4.29)

This fact certainly requires that both operators S and S̃ be well defined. In other words, we first need
to analyse the well-posedness of the uncoupled problems (4.25) and (4.27). The next section is devoted
to this matter.

We end this section by recalling, for later use, that there exist positive constants c1(Ω) and c2(Ω),
such that (see [81, Lemma 2.3] and [122, Theorem 5.11.2], respectively, for details)

c1(Ω)‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀ τ ∈ H0(div; Ω), (4.30)

|ψ|1,Ω + ‖ψ‖0,ΓD
≥ c2(Ω)‖ψ‖1,Ω ∀ψ ∈ H1(Ω), (4.31)

and
‖e(v)‖20,Ω ≥

1

2
|v|21,Ω ∀v ∈ H1

0(Ω), (4.32)

where (4.32) is the well known Korn inequality (see [128, Theorem 10.1]).
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4.3.2 Well-posedness of the uncoupled problems

We begin by establishing a result that provides conditions under which the operator S in (4.24) is
well-defined, or equivalently, the problem (4.25) is well-posed.

Lemma 4.1. Assume that

κ1 ∈
(

0,
2δ1µ1

µ2

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
, κ4 ∈

(
0, 2δ3κ3

(
1− δ2

2

))
, and κ2 > 0,

with δ1 ∈
(

0,
2

µ2

)
, and δ2, δ3 ∈ (0, 2). Then, for each φ ∈ H1(Ω), the problem (4.25) has a unique

solution (t,u) := S(φ) ∈ H×H1
0(Ω). Moreover, there exists a constant cS > 0, independent of φ, such

that there holds
‖S(φ)‖ = ‖(t,u)‖ ≤ cS‖f‖0,Ω. (4.33)

Proof. For a given φ ∈ H1(Ω), we observe from (4.19) that Aφ is clearly a bilinear form. Also, from
Cauchy–Schwarz inequality we deduce that there exists a positive constant, which we denote by ‖Aφ‖,
only depending on κ1, κ2, κ3, κ4, and µ2 (cf. (4.10)), such that∣∣∣Aφ((t,u), (r,v))

∣∣∣ ≤ ‖Aφ‖‖(t,u)‖‖(r,v)‖, (4.34)

for all (t,u), (r,v) ∈ H×H1
0(Ω). It turn, we have from (4.19) that

Aφ((r,v), (r,v)) =

∫
Ω
µ(φ)r : r− κ1

∫
Ω
µ(φ)r : τ d + κ1‖τ d‖20,Ω + κ2‖divτ‖20,Ω + κ3‖e(v)‖20,Ω

− κ3

∫
Ω

r : e(v) + κ4‖η‖20,Ω − κ4

∫
Ω

{
∇v − e(v)

}
: η.

Hence, we proceed similarly to the proof of [26, Lemma 3.6], utilise the Cauchy–Schwarz and Young
inequalities, apply the boundedness of µ (cf. (4.10)), and the fact that

‖∇v − e(v)‖20,Ω = |v|21,Ω − ‖e(v)‖20,Ω,

to obtain that for any δ1, δ2, δ3 > 0, and for all (r,v) ∈ H×H1
0(Ω), there holds

Aφ((r,v), (r,v)) ≥
{(

µ1 −
κ1µ2

2δ1

)
− κ3

2δ2

}
‖r‖20,Ω + κ1

(
1− µ2δ1

2

)
‖τ d‖20,Ω + κ2‖divτ‖20,Ω

+

{
κ3

(
1− δ2

2

)
+
κ4

2δ3

}
‖e(v)‖20,Ω −

κ4

2δ3
|v|21,Ω + κ4

(
1− δ3

2

)
‖η‖20,Ω,

which, together with the Korn inequality (4.32), implies

Aφ((r,v), (r,v)) ≥
{(

µ1 −
κ1µ2

2δ1

)
− κ3

2δ2

}
‖r‖20,Ω + κ1

(
1− µ2δ1

2

)
‖τ d‖20,Ω + κ2‖divτ‖20,Ω

+

{
κ3

2

(
1− δ2

2

)
− κ4

4δ3

}
|v|21,Ω + κ4

(
1− δ3

2

)
‖η‖20,Ω.

(4.35)
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Then, assuming the stipulated hypotheses on δ1, κ1, κ3, δ2, δ3, κ4, and κ2, and applying the inequality
(4.30), we can define the positive constants

α1(Ω) :=

(
µ1 −

κ1µ2

2δ1

)
− κ3

2δ2
, α2(Ω) := min

{
κ1

(
1− µ2δ1

2

)
,
κ2

2

}
,

α3(Ω) := min

{
c1(Ω)α2(Ω),

κ2

2

}
, α4(Ω) :=

κ3

2

(
1− δ2

2

)
− κ4

4δ3
, and α5(Ω) := κ4

(
1− δ3

2

)
,

which allow us to deduce from (4.35) that

Aφ((r,v), (r,v)) ≥ α(Ω)‖(r,v)‖2 ∀(r,v) ∈ H×H1
0(Ω), (4.36)

where
α(Ω) := min

{
α1(Ω), α3(Ω), cpα4(Ω), α5(Ω)

}
,

and cp is the positive constant provided by Poincaré’s inequality (see [140, Théorème 1.2-5]). In turn,
concerning the linear functional F and using the Cauchy–Schwarz inequality, we find that

‖F‖ ≤MS‖f‖0,Ω, (4.37)

where MS := (1 + κ2
2)1/2. We conclude by Lax–Milgram theorem (see, e.g., [81, Theorem 1.1]) that

there is a unique solution (t,u) := S(φ) ∈ H × H1
0(Ω) of (4.25), and the corresponding continuous

dependence result together with the ellipticity constant α(Ω) and the estimate (4.37) imply (4.33) with
the positive constant cS := MS/α(Ω), which is clearly independent of φ.

On the other hand, again we use the Lax–Milgram theorem to establishes the well-posedness of
problem (4.27), or equivalently, that the operator S̃ (cf. (4.26)) is well-defined.

Lemma 4.2. Assume that κ5 ∈ (0, 2δ̃), with δ̃ ∈ (0, 2κ), and κ6, κ7 > 0. Let w ∈ H1
0(Ω) such

that ‖w‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, where c(Ω) is the constant in (4.15) and α̃(Ω) is the ellipticity

constant of the bilinear form Ã given below in (4.40). Then, there exist a unique (p, θ) := S̃(w) ∈
HΓN

(div ; Ω)×H1(Ω) solution of (4.27). Moreover, there exists a constant c
S̃
> 0, independent of w,

such that there holds

‖S̃(w)‖ = ‖(p, θ)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (4.38)

Proof. For a given w ∈ H1
0(Ω) as stated, we observe from (4.20) and (4.21) that Ã + B̃w is clearly a

bilinear form. Now, applying the Cauchy–Schwarz inequality and the estimate (4.15), we deduce that∣∣∣Ã((p, θ), (q, ψ))
∣∣∣ ≤ ‖Ã‖‖(p, θ)‖‖(q, ψ)‖

and ∣∣∣B̃w((p, θ), (q, ψ))
∣∣∣ ≤ κ−1(1 + κ2

5)1/2c(Ω)‖w‖1,Ω‖θ‖1,Ω‖(q, ψ)‖, (4.39)

for all (p, θ), (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω). Then, by gathering the foregoing inequalities, we find that

there exists a positive constant, which we denote by ‖Ã + B̃w‖, only depending on κ, κ5, κ6, κ7, c(Ω),
and the bound for ‖w‖1,Ω assumed here, such that∣∣∣(Ã + B̃w)((p, θ), (q, ψ))

∣∣∣ ≤ ‖Ã + B̃w‖‖(p, θ)‖‖(q, ψ)‖,
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for all (p, θ), (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω). In turn, from (4.20) we have that

Ã((q, ψ), (q, ψ)) = κ−1‖q‖20,Ω + κ6‖div q‖20,Ω − κ−1κ5

∫
Ω

q · ∇ψ + κ5|ψ|21,Ω + κ7‖ψ‖20,ΓD
,

and hence, using the Cauchy–Schwarz and Young inequalities, we obtain that for any δ̃ > 0 and for all
(q, ψ) ∈ HΓN

(div ; Ω)×H1(Ω), there holds

Ã((q, ψ), (q, ψ)) ≥ κ−1

(
1− κ5

2δ̃

)
‖q‖20,Ω + κ6‖div q‖20,Ω + κ5

(
1− κ−1

2
δ̃

)
|ψ|21,Ω + κ7‖ψ‖20,ΓD

.

In this way, applying the inequality (4.31), we can define the constants

α̃1(Ω) := min

{
κ−1

(
1− κ5

2δ̃

)
, κ6

}
and α̃2(Ω) := c2(Ω) min

{
κ5

(
1− κ−1

2
δ̃

)
, κ7

}
,

which are positive thanks to the hypotheses on δ̃, κ5, κ6, and κ7. In this way, it follows that

Ã((q, ψ), (q, ψ)) ≥ α̃(Ω)‖(q, ψ)‖2 ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω), (4.40)

with α̃(Ω) := min
{
α̃1(Ω), α̃2(Ω)

}
, which shows that Ã is elliptic. Therefore, combining now (4.39),

(4.40), and the bound for ‖w‖1,Ω assumed here, we deduce that for all (q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

there holds

(Ã + B̃w)((q, ψ), (q, ψ)) ≥
{
α̃(Ω)− κ−1(1 + κ2

5)1/2c(Ω)‖w‖1,Ω
}
‖(q, ψ)‖2 ≥ α̃(Ω)

2
‖(q, ψ)‖2, (4.41)

which proves the ellipticity of Ã + B̃w, with constant
α̃(Ω)

2
, independent of w. On the other hand, it

is easy to see from (4.23), by using Cauchy–Schwarz’s inequality and the trace theorems in H(div ; Ω)

and H1(Ω), whose boundedness constants are given by 1 and ‖γ0‖, respectively, that the functional F̃

is bounded with
‖F̃‖ ≤M

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (4.42)

where M
S̃

:= max
{

(1 +κ2
6)1/2, κ7‖γ0‖

}
. Summing up, and owing to the hypotheses on κ5, κ6 and κ7,

we have proved that for any sufficiently small w ∈ H1
0(Ω), the bilinear form Ã+B̃w and the functional

F̃ satisfy the hypotheses of the Lax–Milgram theorem (see, e.g., [81, Theorem 1.1]), which guarantees
the well-posedness of (4.27) and the continuous dependence estimate (4.38) with c

S̃
:= 2M

S̃
/α̃(Ω).

At this point we remark that the restriction on ‖w‖1,Ω in Lemma 4.2 could also have been taken

as ‖w‖1,Ω ≤ ω
α̃(Ω)

κ−1(1 + κ2
5)1/2c(Ω)

with any ω ∈ (0, 1). However, we have chosen ω =
1

2
for simplicity

and because it yields a joint maximization of the ellipticity constant of Ã + B̃w and the upper bound
for ‖w‖1,Ω. In addition, we also remark that the constants α(Ω) and α̃(Ω) yielding the ellipticity of
Aφ and Ã + B̃w, respectively, can be maximized by taking the parameters δ1, κ1, δ2, κ3, δ3, κ4, δ̃, and
κ5 as the middle points of their feasible ranges, and by choosing κ2, κ6 and κ7 so that they maximize
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the minima defining α2(Ω), α̃1(Ω), and α̃2(Ω), respectively. More precisely, we simply take

δ1 =
1

µ2
, κ1 =

δ1µ1

µ2
=
µ1

µ2
2

, δ2 = 1, κ3 = δ2

(
µ1 −

κ1µ2

2δ1

)
=
µ1

2
, δ3 = 1,

κ4 = δ3κ3

(
1− δ2

2

)
=
µ1

4
, κ2 = 2κ1

(
1− µ2δ1

2

)
=
µ1

µ2
2

, δ̃ = κ,

κ5 = δ̃ = κ, κ6 = κ−1

(
1− κ5

2δ̃

)
=
κ−1

2
, κ7 = κ5

(
1− κ−1

2
δ̃

)
=
κ

2
,

(4.43)

which yields
α1(Ω) =

µ1

4
, α2(Ω) =

µ1

2µ2
2

, α3(Ω) = min
{
c1(Ω), 1

} µ1

2µ2
2

,

α4(Ω) =
µ1

16
, α5(Ω) =

µ1

8
, α̃1(Ω) =

κ−1

2
, α̃2(Ω) = c2(Ω)

κ

2
,

and hence

α(Ω) = min

{
min

{
c1(Ω), 1

} µ1

2µ2
2

, cp
µ1

16
,
µ1

8

}
, and α̃(Ω) =

1

2
min

{
κ−1, c2(Ω)κ

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, . . . , 7}, given in (4.43), will be employed
in Section 4.5 for the corresponding numerical experiments.

4.3.3 Solvability analysis of the fixed-point equation

Having proved the well-posedness of the uncoupled problems (4.25) and (4.27), which ensures that the
operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed point
of the operator T. For this purpose, in what follows we verify the hypothesis of the Schauder and
Banach fixed-point theorems. We begin the analysis with the following straightforward consequence
of Lemmas 4.1 and 4.2.

Lemma 4.3. Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by Lemmas
4.1 and 4.2. Let W be the closed and convex subset of H1(Ω) defined by

W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,

where c
S̃
is the constant given by (4.38). In addition, assume that the datum f satisfy

cS‖f‖0,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, (4.44)

where cS is the constant given by (4.33). Then T(W) ⊆ W.

Proof. Given φ ∈ W, we get from (4.33) (cf. Lemma 4.1) that

‖S(φ)‖ = ‖(t,u)‖ ≤ cS‖f‖0,Ω,

and hence, thanks to the constraint (4.44), we observe that u = S2(φ) satisfies the hypotheses of
Lemma 4.2. Moreover, the corresponding estimate (4.38) gives

‖T(φ)‖1,Ω = ‖S̃2(u)‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
,

which implies that T(φ) ∈ W, thus finishing the proof.
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Next, we establish two lemmas that will be useful to derive conditions under which the operator T

is continuous and compact. To that end, and similarly as in [2, Section 3.3], we first introduce suitable
regularity hypotheses on the operator S, which will be employed later on. In fact, for the remainder
of this chapter we proceeds as in [2, eq. (3.22)], and suppose that f ∈ Hδ(Ω), for some δ ∈ (0, 1)

(when n = 2) or δ ∈ (1/2, 1) (when n = 3). Then, we assume that for each φ ∈ H1(Ω) there holds
S(φ) ∈

(
Hδ(Ω)× (H0(div; Ω) ∩Hδ(Ω))×Hδ(Ω)

)
×H1+δ(Ω), with

‖St
1(φ)‖δ,Ω + ‖Sσ1 (φ)‖δ,Ω + ‖Sρ1 (φ)‖δ,Ω + ‖S2(φ)‖1+δ,Ω ≤ ĈS‖f‖δ,Ω, (4.45)

where ĈS is a positive constant independent of φ. The reason of the stipulated ranges for δ will be
clarified in the forthcoming analysis (see below proof of Lemmas 4.4 and 4.7). More precisely, we
remark in advance that the regularity estimate (4.45) is needed in the proof of Lemmas 4.4 and 4.7 to
bound an expression of the form ‖St

1(φ)‖L2p(Ω) in terms of ‖St
1(φ)‖δ,Ω, and hence of the data at the

right-hand side of (4.45).

Lemma 4.4. There exists a positive constant CS, depending on Lµ, the parameter κ1, the ellipticity
constant α(Ω) of the bilinear form Aφ (cf. (4.36)), and δ (cf. (4.45)), such that

‖S(φ)− S(φ̃)‖ ≤ CS‖St
1(φ)‖δ,Ω‖φ− φ̃‖Ln/δ(Ω) ∀φ, φ̃ ∈ H1(Ω). (4.46)

Proof. We proceed as in [2, Lemma 3.9]. In fact, given φ, φ̃ ∈ H1(Ω), we let (t,u) := S(φ) and
(t̃, ũ) := S(φ̃) be the corresponding solutions of problem (4.25). Then, using the bilinearity of Aφ for
any φ, it follows easily from (4.25) that

A
φ̃
((t,u)− (t̃, ũ), (r,v)) = −

∫
Ω

{
µ(φ)− µ(φ̃)

}
t :
{

r− κ1τ
d
}
,

for all (r,v) ∈ H×H1
0(Ω). Hence, applying the ellipticity of Aφ (cf. (4.19)), Cauchy–Schwarz inequality,

the Lipschitz-continuity assumption (4.9), and then Hölder inequality, we find that

α(Ω)‖(t,u)− (t̃, ũ)‖2 ≤ A
φ̃
((t,u)− (t̃, ũ), (t,u)− (t̃, ũ))

= −
∫

Ω

{
µ(φ)− µ(φ̃)

}
t :
{(

t− t̃
)
− κ1

(
σd − σ̃d)}

≤ Lµ(1 + κ2
1)1/2‖t‖L2p(Ω)‖φ− φ̃‖L2q(Ω)‖(t,u)− (t̃, ũ)‖,

(4.47)

where p, q ∈ [1,+∞) are such that 1/p + 1/q = 1. Next, given the further regularity δ assumed in
(4.45), we recall that the Sobolev embedding theorem (cf. [1, Theorem 4.12], [139, Theorem 1.3.4])
establishes the continuous injection iδ : Hδ(Ω)→ Lδ

∗
(Ω) with boundedness constant Cδ > 0, where

δ∗ :=


2

1− δ
if n = 2,

6

3− 2δ
if n = 3.

Thus, choosing p such that 2p = δ∗ and recalling that t := St
1(φ), we find that

‖t‖L2p(Ω) = ‖St
1(φ)‖L2p(Ω) ≤ Cδ‖St

1(φ)‖δ,Ω. (4.48)
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In turn, according to the above choice of p, that is p = δ∗/2, it readily follows that

2q :=
2p

p− 1
=


2

δ
if n = 2

3

δ
if n = 3

=
n

δ
. (4.49)

Therefore, inequalities (4.47) and (4.48) together with identity (4.49) conclude (4.46) with constant
CS := Lµ(1 + κ2

1)1/2Cδ/α(Ω).

In turn, the following result establishes the Lipschitz-continuity of the operator S̃.

Lemma 4.5. There exists a positive constant C
S̃
, depending on κ, the parameter κ5, the ellipticity

constant α̃(Ω) of the bilinear form Ã (cf. (4.40)), and the constant c(Ω) (cf. (4.15)), such that for all

w, w̃ ∈ H1
0(Ω) with ‖w‖1,Ω, ‖w̃‖1,Ω ≤

α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, there holds

‖S̃(w)− S̃(w̃)‖ ≤ C
S̃
‖S̃2(w)‖1,Ω‖w − w̃‖1,Ω. (4.50)

Proof. It follows almost straightforwardly from a slight modification of the proof of [52, Lemma 3.7].
We omit further details.

As a consequence of the previous lemmas we establish the following result providing an estimate
needed to derive next the required continuity and compactness properties of the operator T.

Lemma 4.6. Let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfy (4.44). Then, there holds

‖T(φ)−T(φ̃)‖1,Ω ≤ CSCS̃
‖T(φ)‖1,Ω‖St

1(φ)‖δ,Ω‖φ− φ̃‖Ln/δ(Ω), (4.51)

where CS and C
S̃
are the constants given by (4.46) and (4.50), respectively.

Proof. It suffices to recall that T(φ) = S̃2(S2(φ)) ∀φ ∈ H1(Ω) (cf. (4.28)), and then apply Lem-
mas 4.3, 4.4 and 4.5.

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 4.7. Let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfy (4.44). Then, T :W →W is continuous and T(W) is compact.

Proof. The required result follows basically from (4.51), the Rellich–Kondrachov compactness Theorem
(cf. [1, Theorem 6.3], [139, Theorem 1.3.5]), the specified range of the constant δ involved in the
further regularity assumptions given by (4.45), and the well-known fact that every bounded sequence
in a Hilbert space has a weakly convergent subsequence. We omit further details and refer to [2,
Lemma 3.12].

Finally, the main result of this section is given as follows.
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Theorem 4.8. Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by Lem-
mas 4.1 and 4.2. LetW :=

{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfy (4.44). Then the augmented fully-mixed problem (4.18) has at least one solution
(t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) with θ ∈ W, and there holds

‖(t,u)‖ ≤ cS‖f‖0,Ω, (4.52)

and
‖(p, θ)‖ ≤ c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (4.53)

where cS and c
S̃
are the constants specified in Lemmas 4.1 and 4.2, respectively. Moreover, assume that

the data f , g and θD are sufficiently small so that, with the constants CS, CS̃
and ĈS from Lemmas

4.4 and 4.5, and estimate (4.45), respectively, and denoting by C̃δ the boundedness constant of the
continuous injection of H1(Ω) into Ln/δ(Ω), there holds

C̃δĈSCSCS̃
c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
‖f‖δ,Ω < 1. (4.54)

Then the solution θ is unique in W.

Proof. The equivalence between (4.18) and the fixed-point equation (4.29), together with Lemmas 4.3
and 4.7, confirm the existence of solution of (4.18) as a direct application of the Schauder fixed-point
theorem [47, Theorem 9.12-1(b)]. In addition, it is clear that the estimates (4.52) and (4.53) follow
straightforwardly from (4.33) and (4.38), respectively. Furthermore, given another solution θ̃ ∈ W of
(4.29), the estimates ‖T(θ)‖1,Ω = ‖θ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
,

‖St
1(θ)‖δ,Ω ≤ ĈS‖f‖δ,Ω,

and
‖φ‖Ln/δ(Ω) ≤ C̃δ‖φ‖1,Ω ∀φ ∈ H1(Ω), (4.55)

confirm (4.54) as a sufficient condition for concluding, together with (4.51), that θ = θ̃. In other
words, (4.54) constitutes the condition that makes the operator T to become a contraction, thus
yielding, thanks to the Banach fixed-point theorem, the existence of a unique fixed point of T in
W.

4.4 The Galerkin scheme

In this section we introduce and analyse the Galerkin scheme of the augmented fully-mixed formulation
(4.18). We analyse its solvability by employing a discrete version of the fixed-point strategy developed
in Sections 4.3.1 and 4.3.2. Finally, we derive the corresponding Céa estimate and rates of convergence
of our Galerkin scheme.

4.4.1 Discrete setting

Let Th be a regular triangulation of Ω made up of triangles K (when n = 2) or tetrahedra K (when
n = 3) of diameter hK , and define the meshsize h := max

{
hK : K ∈ Th

}
. Then, for each K ∈ Th
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we set the local Raviart–Thomas space of order k as

RTk(K) := Pk(K)⊕ Pk(K)x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we introduce the finite element subspaces
approximating the unknowns t,σ,ρ,u,p and θ as follows

Ht
h :=

{
rh ∈ L2

tr (Ω) : rh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div; Ω) : ctτ h|K ∈ RTk(K) ∀c ∈ Rn ∀K ∈ Th

}
,

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th, vh = 0 on Γ

}
,

Hp
h :=

{
qh ∈ HΓN

(div ; Ω) : qh|K ∈ RTk(K) ∀K ∈ Th
}
,

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
.

(4.56)

In this way, by defining th := (th,σh,ρh), rh := (rh, τ h,ηh) ∈ Hh := Ht
h × Hσh × Hρh, the Galerkin

scheme of (4.18) reads: Find (th,uh,ph, θh) ∈ Hh ×Hu
h ×Hp

h ×Hθ
h such that

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.
(4.57)

Similarly to the continuous context, in order to analyse problem (4.57) we rewrite it equivalently as
a fixed-point problem. Indeed, we firstly define Sh : Hθ

h → Hh ×Hu
h by

Sh(φh) := (S1,h(φh),S2,h(φh)) = (th,uh) ∀φh ∈ Hθ
h, (4.58)

where S1,h(φh) := (St
1,h(φh),Sσ1,h(φh),Sρ1,h(φh)) and (th,uh) is the unique solution of the discrete

version of the problem (4.25): Find (th,uh) ∈ Hh ×Hu
h such that

Aφh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h , (4.59)

where the bilinear form Aφh (with φh in place of φ) and the functional F are defined as in (4.19) and
(4.22), respectively. Secondly, we define the operator S̃h : Hu

h → Hp
h ×Hθ

h as

S̃h(wh) := (S̃1,h(wh), S̃2,h(wh)) = (ph, θh) ∀wh ∈ Hu
h , (4.60)

where (ph, θh) is the unique solution of the discrete version of the problem (4.27): Find (ph, θh) ∈
Hp
h ×Hθ

h such that

Ã((ph, θh), (qh, ψh)) + B̃wh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h, (4.61)

where the bilinear form Ã and the functional F̃ are defined as in (4.20) and (4.23), respectively,
whereas, B̃wh is the bilinear form given by (4.21) (with wh instead of w). Finally, we introduce the
operator Th : Hθ

h → Hθ
h as

Th(φh) := S̃2,h(S2,h(φh)) ∀φh ∈ Hθ
h, (4.62)

and realise that solving (4.57) is equivalent to seeking a fixed point of the operator Th, that is: Find
θh ∈ Hθ

h such that
Th(θh) = θh. (4.63)
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4.4.2 Solvability analysis

Now we establish the solvability of problem (4.57) by studying the equivalent fixed-point problem
(4.63). To that end, first we guarantee that the discrete problems (4.59) and (4.61) are well-posed.
Indeed, it is easy to see that the respective proofs are almost verbatim of the continuous analogues
provided in Section 4.3.2, and hence we simply state the corresponding results as follows.

Lemma 4.9. Assume that κi, i ∈ {1, . . . , 4}, satisfy the conditions required by Lemma 4.1. Then, for
each φh ∈ Hθ

h, the problem (4.59) has a unique solution (th,uh) := Sh(φh) ∈ Hh×Hu
h . Moreover, with

the same constant cS > 0 from (4.33), which is independent of φh, there holds

‖Sh(φh)‖ = ‖(th,uh)‖ ≤ cS‖f‖0,Ω. (4.64)

Lemma 4.10. Assume that κi, i ∈ {5, 6, 7}, satisfy the conditions required by Lemma 4.2. Let wh ∈ Hu
h

such that ‖wh‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, where c(Ω) and α̃(Ω) are the positive constants provided by

(4.15) and (4.40), respectively. Then, there exist a unique (ph, θh) := S̃h(wh) ∈ Hp
h × Hθ

h solution of
(4.61). Moreover, with the same constant c

S̃
> 0 from (4.38), which is independent of wh, there holds

‖S̃h(wh)‖ = ‖(ph, θh)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (4.65)

We now proceed to analyse the fixed-point equation (4.63). More precisely, in what follows we
verify the hypotheses of the Brouwer fixed-point theorem (cf. [47, Theorem 9.9-2]). We begin with
the discrete version of Lemma 4.3. Its proof, being a simple translation of the arguments proving that
lemma, is omitted.

Lemma 4.11. Let Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfy (4.44). Then T(Wh) ⊆ Wh.

The discrete analogues of Lemma 4.4 is provided next. We notice in advance that, instead of the
regularity assumptions employed in the proof of that result, which actually are not needed nor could
be applied in the present discrete case, we simply utilise a L4 − L4 − L2 argument.

Lemma 4.12. There exists a positive constant CSh, depending on Lµ, κ1, and α(Ω), such that

‖Sh(φh)− Sh(φ̃h)‖ ≤ CSh‖S
t
1,h(φh)‖L4(Ω)‖φh − φ̃h‖L4(Ω) ∀φh, φ̃h ∈ Hθ

h. (4.66)

Proof. Given φh, φ̃h ∈ Hθ
h, we first let (th,uh) := Sh(φh) and (t̃h, ũh) := Sh(φ̃h) be the corresponding

solutions of problem (4.59). Next, we proceed analogouly as in the proof of Lemma 4.4, except for
the derivation of the discrete analogue of the right-hand side of (4.47), where, instead of choosing the
values of p and q determined by the regularity parameter δ, it suffices to take p = q = 2 (see [2]), thus
obtaining

α(Ω)‖(th,uh)− (t̃h, ũh)‖2 ≤ Lµ(1 + κ2
1)1/2‖th‖L4(Ω)‖φh − φ̃h‖L4(Ω)‖(th,uh)− (t̃h, ũh)‖.

Then, the fact that the elements of Ht
h are piecewise polynomials insures that ‖th‖L4(Ω) < +∞,

and hence the foregoing equation yields (4.66) with CSh := Lµ(1 + κ2
1)1/2/α(Ω). Further details are

omitted.
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Next, we address the Lipschitz-continuity of S̃h, its proof is omitted since it is almost verbatim as
that of the corresponding continuous estimate provided by Lemma 4.5.

Lemma 4.13. Let C
S̃
be the constant provided by Lemma 4.5. Then, given wh, w̃h ∈ Hu

h such that

‖wh‖1,Ω, ‖w̃h‖1,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, there holds

‖S̃h(wh)− S̃h(w̃h)‖ ≤ C
S̃
‖S̃2,h(wh)‖1,Ω‖wh − w̃h‖1,Ω. (4.67)

Now, utilising Lemmas 4.12 and 4.13, we can prove the discrete version of Lemma 4.6.

Lemma 4.14. Let Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and assume

that the datum f satisfy (4.44). Then, there holds

‖Th(φh)−Th(φ̃h)‖1,Ω ≤ CShCS̃
‖T(φh)‖1,Ω‖St

1,h(φh)‖L4(Ω)‖φh − φ̃h‖L4(Ω), (4.68)

where C
S̃
and CSh are the constants provided by Lemmas 4.5 and 4.12, respectively.

Consequently, since the foregoing lemma and the continuous injection of H1(Ω) into L4(Ω) confirm
the continuity of Th, we conclude, thanks to the Brouwer fixed-point theorem (cf. [47, Theorem 9.9-2])
and Lemmas 4.11 and 4.14, the main result of this section.

Theorem 4.15. Suppose that the parameters κi, i ∈ {1, . . . , 7}, satisfy the conditions required by
Lemmas 4.1 and 4.2. Let Wh :=

{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
, and

assume that the datum f satisfy (4.44). Then the Galerkin scheme (4.57) has at least one solution
(th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h ×Hθ

h with θh ∈ Wh, and there holds

‖(th,uh)‖ ≤ cS‖f‖0,Ω, (4.69)

and
‖(ph, θh)‖ ≤ c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
, (4.70)

where cS and c
S̃
are the constants provided by Lemmas 4.1 and 4.2, respectively.

We end this section by remarking that the lack of suitable estimates for ‖St
1,h(φh)‖L4(Ω) stops us of

trying to use (4.68) to derive a contraction estimate for Th. This is the reason why in the foregoing
Theorem 4.15 we are able only to guarantee existence, but no uniqueness, of a discrete solution.

4.4.3 Convergence of the Galerkin scheme

Given (t,u,p, θ) ∈ H × H1
0(Ω) × HΓN

(div ; Ω) × H1(Ω) with θ ∈ W, and (th,uh,ph, θh) ∈ Hh ×
Hu
h × Hp

h × Hθ
h with θh ∈ Wh, solutions of (4.18) and (4.57), respectively, we now aim to derive a

corresponding a priori error estimate. For this purpose, we first observe from (4.18) and (4.57) that the
above problems can be rewritten as two pairs of corresponding continuous and discrete formulations,
namely

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

(4.71)
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and

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.

(4.72)
Then, as suggested by the structure of the foregoing systems, in what follows we apply the well-known
Strang lemma for elliptic variational problems (see, e.g., [141, Theorem 11.1]) to (4.71) and (4.72).
This auxiliary result is stated first.

Lemma 4.16. Let V be a Hilbert space, F ∈ V ′, and A : V × V → R be a bounded and V -elliptic
bilinear form. In addition, let {Vh}h>0 be a sequence of finite dimensional subspaces of V , and for each
h > 0 consider a bounded bilinear form Ah : Vh × Vh → R and a functional Fh ∈ V ′h. Assume that the
family {Ah}h>0 is uniformly elliptic, that is, there exists a constant α̃ > 0, independent of h, such that

Ah(vh, vh) ≥ α̃‖vh‖2V ∀vh ∈ Vh, ∀h > 0.

In turn, let u ∈ V and uh ∈ Vh such that

A(u, v) = F (v) ∀v ∈ V and Ah(uh, vh) = Fh(vh) ∀vh ∈ Vh.

Then, for each h > 0 there holds

‖u− uh‖V ≤ CST

 sup
wh∈Vh
wh 6=0

∣∣∣F (wh)− Fh(wh)
∣∣∣

‖wh‖V

+ inf
vh∈Vh
vh 6=0

‖u− vh‖V + sup
wh∈Vh
wh 6=0

∣∣∣A(vh, wh)−Ah(vh, wh)
∣∣∣

‖wh‖V


 ,

where CST := α̃−1 max
{

1, ‖A‖
}
.

In the sequel, for the sake of simplicity, we denote as usual

dist
(

(t,u),Hh ×Hu
h

)
:= inf

(rh,vh)∈Hh×Hu
h

‖(t,u)− (rh,vh)‖

and
dist

(
(p, θ),Hp

h ×Hθ
h

)
:= inf

(qh,ψh)∈Hp
h×Hθh

‖(p, θ)− (qh, ψh)‖.

The following Lemma provides a preliminary estimate for the error ‖(t,u)− (th,uh)‖.

Lemma 4.17. Let CST :=
1

α(Ω)
max

{
1, ‖Aθ‖

}
, where α(Ω) is the constant yielding the ellipticity of

Aφ for any φ ∈ H1(Ω) (cf. (4.36)). Then, there holds

‖(t,u)− (th,uh)‖ ≤ CST

{
Lµ(1 + κ2

1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω)

+ (1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)}
.

(4.73)
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Proof. We proceed similarly as in [2, Lemma 5.3]. In fact, from Lemmas 4.1 and 4.9, we have that the
bilinear forms Aθ and Aθh are both bounded and elliptic with the same constants ‖Aθ‖ and α(Ω),
respectively. In addition, F is a linear and bounded functional in H ×H1

0(Ω) and, in particular, in
Hh ×Hu

h . Then, by applying Lemma 4.16 to the context (4.71), we obtain

‖(t,u)− (th,uh)‖ ≤ CST inf
(rh,vh)∈Hh×Hu

h
(rh,vh)6=0

{
‖(t,u)− (rh,vh)‖

+ sup
(sh,wh)∈Hh×Hu

h
(sh,wh)6=0

∣∣∣Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh))
∣∣∣

‖(sh,wh)‖

}
.

(4.74)

In turn, in order to estimate the supremum in (4.74), we add and subtract suitable terms to write

Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh)) = Aθ((rh,vh)− (t,u), (sh,wh))

+ (Aθ −Aθh)((t,u), (sh,wh)) + Aθh((t,u)− (rh,vh), (sh,wh)),

whence, applying the boundedness (4.34) to the first and third terms on the right-hand side of the
foregoing equation, and proceeding analogously as for the derivation of (4.47) with the second one, we
find that

sup
(sh,wh)∈Hh×Hu

h
(sh,wh)6=0

∣∣∣Aθ((rh,vh), (sh,wh))−Aθh((rh,vh), (sh,wh))
∣∣∣

‖(sh,wh)‖

≤ Lµ(1 + κ2
1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω) + 2‖Aθ‖‖(t,u)− (rh,vh)‖.

(4.75)

Finally, by replacing the inequality (4.75) into (4.74), we get (4.73), which ends the proof.

Next, we have the following result concerning ‖(p, θ)− (ph, θh)‖.

Lemma 4.18. Let C̃ST :=
2

α̃(Ω)
max

{
1, ‖Ã+B̃u‖

}
, where α̃(Ω) is the constant yielding the ellipticity

of both Ã and Ã + B̃w, for any w ∈ H1
0(Ω) (cf. (4.40) and (4.41)). Then, there holds

‖(p, θ)− (ph, θh)‖ ≤ C̃ST

{
κ−1(1 + κ2

5)1/2c(Ω)‖θ‖1,Ω‖u− uh‖1,Ω

+
(

1 + κ−1(1 + κ2
5)1/2c(Ω)‖u− uh‖1,Ω

)
dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

(4.76)

Proof. It follows almost straightforwardly from a slight modification of the proof of [52, Lemma 5.3].
We omit further details.

We now combine the inequalities provided by Lemmas 4.17 and 4.18 to derive the a priori estimate
for the total error ‖(t,u,p, θ) − (th,uh,ph, θh)‖. Indeed, by gathering together the estimates (4.73)
and (4.76), it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃STκ
−1(1 + κ2

5)1/2c(Ω)‖θ‖1,Ω‖u− uh‖1,Ω

+ CSTLµ(1 + κ2
1)1/2Cδ‖t‖δ,Ω‖θ − θh‖Ln/δ(Ω) + CST(1 + 2‖Aθ‖)dist

(
(t,u),Hh ×Hu

h

)
+ C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
.
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Then, by noting that θ ∈ W, using the estimate (4.45) to bound ‖t‖δ,Ω, and recalling that C̃δ is the
boundedness constant of the continuous injection of H1(Ω) into Ln/δ(Ω) (cf. (4.55)), from the latter
inequality we find that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C(f , g, θD)‖(t,u,p, θ)− (th,uh,ph, θh)‖

+ CST(1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)
+ C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
,

(4.77)

where
C(f , g, θD) := max

{
C1(f , g, θD),C2(f , g, θD)

}
,

with
C1(f , g, θD) := C̃STκ

−1(1 + κ2
5)1/2c(Ω)c

S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
and

C2(f , g, θD) := CSTLµ(1 + κ2
1)1/2CδĈSC̃δ‖f‖δ,Ω.

Consequently, we can establish the following result providing the complete Céa estimate.

Theorem 4.19. Assume that the data f , g and θD satisfy:

Ci(f , g, θD) ≤ 1

2
∀i ∈ {1, 2}. (4.78)

Then, there exists a positive constant C, depending only on parameters, data and other constants, all
of them independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C
{

dist
(

(t,u),Hh ×Hu
h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
. (4.79)

Proof. From (4.77) and (4.78), it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ 2CST(1 + 2‖Aθ‖)dist
(

(t,u),Hh ×Hu
h

)
+ 2C̃ST

(
1 + κ−1(1 + κ2

5)1/2c(Ω)‖u− uh‖1,Ω
)

dist
(

(p, θ),Hp
h ×Hθ

h

)
,

and then, the rest of the proof reduces to employ the triangle inequality on the term ‖u− uh‖1,Ω and
use that both ‖u‖1,Ω and ‖uh‖1,Ω are bounded by cS‖f‖0,Ω (cf. Lemmas 4.1 and 4.9).

Now, in order to approximate the polymeric and solvent parts of the extra-stress tensor, as well as
the pressure, we propose, motivated by (4.6), (4.12), and the fifth equation of (4.8), the expressions

σ̃P,h = 2µP(θh)th, σN,h = 2εµN(θh)th, σ̂P,h = σd
h − σN,h, and ph = − 1

n
trσh , (4.80)

respectively, with (th,uh,ph, θh) ∈ Hh × Hu
h × Hp

h × Hθ
h being the unique solution of the discrete

problem (4.57). The corresponding error estimates are established in the following lemma.
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Lemma 4.20. Assume that the hypotheses of Theorem 4.19 hold. Let (t,u,p, θ) ∈ H × H1
0(Ω) ×

HΓN
(div ; Ω)× H1(Ω) and (th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h × Hθ

h be the unique solutions of the conti-
nuous and discrete problems (4.18) and (4.57), respectively. Then, there exists a positive constant C,
depending only on parameters, data and other constants, all of them independent of h, such that

‖p− ph‖0,Ω + ‖σN−σN,h‖0,Ω + ‖σP− σ̃P,h‖0,Ω ≤ C
{

dist
(

(t,u),Hh×Hu
h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

Proof. From (4.6) and (4.80), adding and subtracting 2µP(θh)t, it is clear that

σP − σ̃P,h = 2(µP(θ)− µP(θh))t + 2µP(θh)(t− th).

Next, employing the triangle and Hölder inequalities, the estimate (4.45) to bound ‖t‖δ,Ω, the conti-
nuous injection of H1(Ω) into Ln/δ(Ω), and the Lipschitz-continuity assumption (4.4), it is not difficult
to see that there exist a positive constant c, depending only on data and other constants, all of them
independent of h, such that

‖σP − σ̃P,h‖0,Ω ≤ c
{
‖t− th‖0,Ω + ‖θ − θh‖1,Ω

}
.

In this way, following similar arguments for the solvent part of the extra-stress tensor σN (cf. (4.80)),
we obtain

‖p− ph‖0,Ω + ‖σN − σN,h‖0,Ω + ‖σP − σ̃P,h‖0,Ω ≤ C
{
‖t− th‖0,Ω + ‖σ − σh‖div;Ω + ‖θ − θh‖1,Ω

}
.

Then, the result is a direct application of Theorem 4.19. Observe that the proof is also valid if we
consider σ̂P,h in place of σ̃P,h.

Finally, we complete our a priori error analysis with the following results which provides the corres-
ponding rate of convergence of our Galerkin scheme (4.57).

Theorem 4.21. In addition to the hypotheses of Theorems 4.8, 4.15 and 4.19, assume that there exists
s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), ρ ∈ Hs(Ω), u ∈ Hs+1(Ω), p ∈ Hs(Ω),
div p ∈ Hs(Ω), and θ ∈ Hs+1(Ω), and that the finite element subspaces are defined by (4.56). Then,
there exist C > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖ρ‖s,Ω

+ ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.

(4.81)

Proof. It follows directly from the Céa estimate (4.79) and the well-known approximation properties
of the discrete spaces Ht

h,Hσh ,H
ρ
h,H

u
h ,H

p
h , and Hθ

h (cf. [19, 47]).

Consequently, from Lemma 4.20 and Theorem 4.21 we obtain the optimal convergence of the post-
processed unknowns introduced in (4.80).

Lemma 4.22. Let (t,u,p, θ) ∈ H × H1
0(Ω) × HΓN

(div ; Ω) × H1(Ω) be the unique solutions of the
continuous problem (4.18), and let σP, σN, and p given by (4.6) and the fifth equation of (4.8) In
addition, let σ̃P,h (or σ̂P,h), σN,h, and ph be the discrete counterparts introduced in (4.80). Assume
that hypotheses of Theorem 4.21 hold. Then, there exist C > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σN − σN,h‖0,Ω + ‖σP − σ̃P,h‖0,Ω ≤ Chmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω

+ ‖ρ‖s,Ω + ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.
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4.5 Numerical results

In this section we present some examples illustrating the performance of our augmented fully-mixed
finite element scheme (4.57), and confirming the rates of convergence provided by Theorem 4.21 and
Lemma 4.22. Our implementation is based on a FreeFem++ code [111], in conjunction with the direct
linear solver UMFPACK [62]. A Picard algorithm with a fixed tolerance tol = 1E− 8 has been used for
the corresponding fixed-point problem (4.63) and the iterations are terminated once the relative error
of the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Ht

h,Hσh ,H
ρ
h,H

u
h ,H

p
h , and Hθ

h. As usual, the individual errors are
denoted by:

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div;Ω, e(ρ) := ‖ρ− ρh‖0,Ω, e(u) := ‖u− uh‖1,Ω,

e(p) := ‖p− ph‖div ;Ω, e(θ) := ‖θ − θh‖1,Ω, e(p) := ‖p− ph‖0,Ω,

e(σN) := ‖σN − σN,h‖0,Ω, e(σ̃P) := ‖σP − σ̃P,h‖0,Ω, e(σ̂P) := ‖σP − σ̂P,h‖0,Ω.

In addition, we let r(·) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
t,σ,ρ,u,p, θ, p,σN, σ̃P, σ̂P

}
,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively.

The examples to be considered in this section are described next. In all of them, as in [56, Section 2],
we choose the coefficients of the polymer and solvent viscosity a1, b1, a2 and b2 (cf. (4.2)) as follow:

b1 = b2 =
∆E

R
, a2 = exp

(
−∆E

RθR

)
, and a1 = (1− ε)a2,

where ∆E is the activation energy, R is the ideal gas constant, and θR is a reference temperature of
the fluid. Note that the constraint (4.3) will be satisfied as long as the temperature of the system stays
above θR. In turn, we consider κ = 1, ε = 0.01, and according to (4.43), the stabilization parameters
are taken as κ1 = µ1/µ

2
2, κ2 = κ1, κ3 = µ1/2, κ4 = µ1/4, κ5 = κ, κ6 = κ−1/2, and κ7 = κ/2. In

addition, the conditions
∫

Ω trσh = 0 is imposed via a penalization strategy.

In our first example we illustrate the accuracy of our method in 2D by considering the square domain
Ω := (0, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1) and ΓN := Γ \ ΓD. The following
viscosity parameters correspond to polystyrene [118, Section 4.2]:

∆E

R
= 14500, θR = 538.

The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
πx2

1(x1 − 1)2 sin(2πx2)

−2x1(x1 − 1)(2x1 − 1) sin(πx2)2

)
,

p(x) := cos(πx1) sin(πx2),

θ(x) := 10(x1 − 1)2 sin(πx2)2 + 540 ∀x := (x1, x2) ∈ Ω.
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In our second example we consider a four-to-one contraction domain Ω := (0, 2) × (0, 1) \ (1, 2) ×
(0.25, 1), the boundary Γ = ΓD∪ΓN, with ΓD := {0}× (0, 1) and ΓN := Γ\ΓD. The following viscosity
parameters correspond to Nylon-6,6 [118, Section 4.2]:

∆E

R
= 6600, θR = 563.

The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
2x2

1x2(x1 − 1)2(x1 − 2)2(x2 − 1)(4x2 − 1)(12x2
2 − 10x2 + 1)

−2x1x
2
2(x1 − 1)(x1 − 2)(3x2

1 − 6x1 + 2)(x2 − 1)2(4x2 − 1)2

)
,

p(x) := (x1 − 0.5) cos(4πx2),

θ(x) := x1(2x2
1 − 9x1 + 12) sin(2πx2)2 + 580 ∀x := (x1, x2) ∈ Ω.

In our third example we illustrate the accuracy of our method in 3D by considering the cube domain
Ω := (0, 1)3, the boundary Γ = ΓD ∪ ΓN, with ΓD := (0, 1)2 × {0} and ΓN := Γ \ ΓD. The viscosity
parameters are the same as in the first example and the data f , g, and θD are chosen so that the exact
solution is given by

u(x) :=


8x2

1x2x3(x1 − 1)2(x2 − 1)(x3 − 1)(x2 − x3)

−8x1x
2
2x3(x1 − 1)(x2 − 1)2(x3 − 1)(x1 − x3)

8x1x2x
2
3(x1 − 1)(x2 − 1)(x3 − 1)2(x1 − x2)

 ,

p(x) := (x1 − 0.5)3 sin(x2 + x3),

θ(x) := 10 sin(πx1)2 sin(πx2)2(x3 − 1)2 + 540 ∀x := (x1, x2, x3) ∈ Ω.

Finally, in our fourth example we illustrate the accuracy of the 3D version of the four-to-one domain
Ω := (0, 2) × (0, 1)2 \ (1, 2) × (0.25, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1)2 and
ΓN := Γ \ ΓD. The viscosity parameters are the same as in the second example and the data f , g, and
θD are chosen so that the exact solution is given by

u(x) :=


4x2

1(x1 − 1)2(x1 − 2)2x2(x2 − 1)(2x2 − 1)x3(x3 − 1)(4x3 − 1)(12x2
3 − 10x3 + 1)

4x1(x1 − 1)(x1 − 2)(3x2
1 − 6x1 + 2)x2

2(x2 − 1)2x3(x3 − 1)(4x3 − 1)(12x2
3 − 10x3 + 1)

−8x1(x1 − 1)(x1 − 2)(3x2
1 − 6x1 + 2)x2(x2 − 1)(2x2 − 1)x2

3(4x3 − 1)2(x3 − 1)2

 ,

p(x) := (x1 − 0.5)(x2 − 0.5) cos(4πx3),

θ(x) := x1(2x2
1 − 9x1 + 12) sin(πx2)2 sin(2πx3)2 + 570 ∀x := (x1, x2, x3) ∈ Ω.

We remark that in all the examples, the temperature is given as a function θ̂(x) plus a big constant
chosen such that c > θR, that is, θ(x) := θ̂(x) + c. Then, the heat-flux vector is compute as:

p(x) = κ∇θ̂(x)− θ̂(x)u(x)− cu(x),

which implies that the errors of p are influenced for c, and then they are higher than in the other
unknowns as we will see below.
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In Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, we summarise the convergence history for a sequence of
quasi-uniform triangulations, considering the finite element spaces introduced in Section 4.4.1, which
required around four fixed-point iterations. In particular, for the 2D examples in Tables 4.1, 4.2, 4.3,
and 4.4, we observe that the rate of convergence O(hk+1) predicted by Theorem 4.21 and Lemma 4.22
(when s = k + 1) is attained in all the variables (with k = 0 and k = 1). Notice that the higher the
order of the finite element chosen the lower the number of iterations. In turn, in Tables 4.5 and 4.6
we observe that optimal rates of convergence are also obtained (with k = 0) for our 3D examples. On
the other hand, some components of the approximate solutions for the four examples are displayed in
Figures 4.1, 4.2, 4.3, and 4.4. All the figures were built using the P0 − RT0 − P0 − P1 − RT0 − P1

approximation with 353853, 430221, 3314052, and 4148740 degrees of freedom for the Examples 1, 2,
3, and 4, respectively. In particular, we can observe in Figure 4.1 that the temperature is higher in the
left side and then it dissipates to the others sides meanwhile in Figure 4.2 the temperature is lightly
higher in the right side. Next, analogously to Figures 4.1 and 4.2, in Figures 4.3 and 4.4 we can observe
that the temperature is higher in the bottom of the cube and in the left side of the four-to-one domain
and then it dissipates to the others sides, respectively. Moreover, it can be seen that the velocity
streamlines of the fluid are higher inside of the domain and lower close to the boundary as expected.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1467 0.196 0.1540 – 1.2323 – 0.2549 – 0.2609 – 18.7854 –
5631 0.097 0.0759 1.002 0.6258 0.961 0.1452 0.784 0.1266 1.025 9.6388 0.946

22131 0.048 0.0376 0.995 0.3099 0.993 0.0799 0.844 0.0618 1.014 4.7401 1.003
87837 0.025 0.0189 1.031 0.1564 1.024 0.0396 1.052 0.0311 1.026 2.4056 1.015
353853 0.013 0.0092 1.096 0.0768 1.090 0.0193 1.103 0.0155 1.072 1.1875 1.082

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

3.6159 – 0.1322 – 0.3557 – 0.3521 – 0.3095 – 5
1.4896 1.257 0.0677 0.949 0.1717 1.033 0.1700 1.033 0.1493 1.033 5
0.6674 1.135 0.0325 1.039 0.0830 1.026 0.0822 1.026 0.0727 1.018 4
0.3326 1.042 0.0150 1.154 0.0417 1.031 0.0413 1.031 0.0361 1.047 4
0.1631 1.093 0.0073 1.105 0.0201 1.119 0.0199 1.119 0.0175 1.111 4

Table 4.1: Example 1, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 − P1 −RT0 − P1 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

3666 0.196 0.0264 – 0.1535 – 0.0227 – 0.0370 – 2.4423 –
14076 0.097 0.0063 2.037 0.0374 2.002 0.0056 1.987 0.0086 2.073 0.5847 2.027
55326 0.048 0.0015 2.045 0.0089 2.024 0.0013 2.048 0.0020 2.065 0.1379 2.041
219591 0.025 0.0004 1.989 0.0023 2.037 0.0003 1.998 0.0005 1.986 0.0357 2.024
884631 0.013 0.0001 2.187 0.0006 2.153 0.0001 2.196 0.0001 2.195 0.0088 2.148

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

0.2957 – 0.0155 – 0.0455 – 0.0450 – 0.0861 – 4
0.0692 2.060 0.0041 1.899 0.0107 2.049 0.0106 2.049 0.0177 2.246 4
0.0154 2.119 0.0010 1.965 0.0025 2.039 0.0025 2.039 0.0041 2.063 4
0.0039 2.047 0.0003 2.074 0.0007 2.006 0.0007 2.006 0.0011 2.018 4
0.0010 2.133 0.0001 2.138 0.0002 2.185 0.0002 2.185 0.0003 2.198 4

Table 4.2: Example 1, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P1 − RT1 − P1 − P2 −RT1 − P2 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 0.190 0.1627 – 2.3476 – 0.1990 – 0.2346 – 91.0099 –
6987 0.103 0.0872 1.017 1.1683 1.139 0.1209 0.814 0.1138 1.181 43.1779 1.217

27345 0.049 0.0432 0.953 0.5758 0.959 0.0650 0.841 0.0553 0.978 21.7689 0.929
107985 0.026 0.0219 1.052 0.2936 1.040 0.0326 1.066 0.0279 1.058 10.9728 1.059
430221 0.013 0.0108 1.062 0.1449 1.062 0.0168 0.996 0.0136 1.076 5.4528 1.051

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

10.2650 – 0.2544 – 0.2532 – 0.2507 – 0.2724 – 5
4.4925 1.348 0.1108 1.356 0.1339 1.040 0.1325 1.040 0.1387 1.101 4
2.1518 0.998 0.0495 1.092 0.0668 0.942 0.0662 0.942 0.0702 0.924 4
1.0794 1.066 0.0230 1.185 0.0339 1.051 0.0335 1.051 0.0349 1.078 3
0.5271 1.077 0.0112 1.085 0.0167 1.060 0.0166 1.060 0.0171 1.072 3

Table 4.3: Example 2, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 − P1 −RT0 − P1 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

4506 0.190 0.0357 – 0.4304 – 0.0318 – 0.0504 – 16.7122 –
17466 0.103 0.0085 2.334 0.1039 2.319 0.0073 2.397 0.0117 2.386 4.0081 2.330
68361 0.049 0.0021 1.906 0.0247 1.946 0.0018 1.927 0.0028 1.938 1.0104 1.868
269961 0.026 0.0005 2.096 0.0064 2.087 0.0005 2.097 0.0007 2.095 0.2605 2.095
1075551 0.013 0.0001 2.131 0.0016 2.117 0.0001 2.125 0.0002 2.136 0.0627 2.141

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

1.9318 – 0.0741 – 0.0509 – 0.0504 – 0.0911 – 4
0.4124 2.520 0.0152 2.582 0.0122 2.325 0.0121 2.325 0.0238 2.191 3
0.1039 1.869 0.0033 2.055 0.0030 1.909 0.0030 1.909 0.0056 1.952 3
0.0264 2.115 0.0087 2.087 0.0008 2.097 0.0008 2.097 0.0015 2.089 3
0.0065 2.097 0.0002 2.148 0.0002 2.131 0.0002 2.131 0.0003 2.156 3

Table 4.4: Example 2, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P1 − RT1 − P1 − P2 −RT1 − P2 approximation of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

7028 0.354 0.0149 – 0.1252 – 0.0181 – 0.0259 – 23.7426 –
53604 0.177 0.0082 0.862 0.0644 0.959 0.0119 0.606 0.0139 0.899 12.3360 0.945
419012 0.088 0.0042 0.970 0.0324 0.994 0.0068 0.812 0.0070 0.979 6.2286 0.986
3314052 0.044 0.0021 0.995 0.0162 1.001 0.0036 0.927 0.0035 0.998 3.1220 0.997

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

5.1532 – 0.0170 – 0.0328 – 0.0325 – 0.0312 – 4
2.8687 0.845 0.0096 0.817 0.0194 0.758 0.0192 0.758 0.0187 0.736 3
1.4810 0.954 0.0046 1.055 0.0103 0.908 0.0102 0.908 0.0103 0.868 3
0.7470 0.987 0.0022 1.076 0.0053 0.966 0.0052 0.966 0.0054 0.938 3

Table 4.5: Example 3, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 −P1 −RT0 − P1 approximations of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 0.354 0.0657 – 1.0895 – 0.0705 – 0.1070 – 120.9619 –
67396 0.177 0.0414 0.667 0.6751 0.691 0.0478 0.559 0.0711 0.590 55.2472 1.131
525316 0.088 0.0227 0.865 0.3443 0.971 0.0290 0.723 0.0376 0.917 28.2498 0.968
4148740 0.044 0.0116 0.966 0.1727 0.995 0.0157 0.882 0.0189 0.992 14.2047 0.992

e(θ) r(θ) e(p) r(p) e(σN)∗ r(σN) e(σ̃P) r(σ̃P) e(σ̂P) r(σ̂P) iter

7.6590 – 0.1087 – 0.1318 – 0.1305 – 0.1300 – 3
6.1383 0.319 0.0755 0.525 0.0793 0.732 0.0785 0.732 0.0810 0.683 3
3.2313 0.926 0.0337 1.165 0.0443 0.841 0.0439 0.841 0.0463 0.806 3
1.6359 0.982 0.0144 1.224 0.0233 0.926 0.0231 0.926 0.0244 0.926 3

Table 4.6: Example 4, Degrees of freedom, mesh sizes, errors, rates of convergence, and number of
iterations for the fully-mixed P0 − RT0 − P0 −P1 −RT0 − P1 approximations of the non-isothermal
Oldroyd–Stokes equations (∗ errors divided by ε = 0.01).
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Figure 4.1: Example 1: P0−RT0−P0−P1−RT0−P1 approximated spectral norm of strain tensor and
the stress tensor components (top panels), velocity and heat flux vector components (centre panels),
and temperature and pressure fields, and polymeric part of the extra-stress tensor component (bottom
row).
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Figure 4.2: Example 2: P0 − RT0 − P0 − P1 −RT0 − P1 approximation of some components of the
approximate solutions.
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Figure 4.3: Example 3: P0−RT0−P0−P1−RT0−P1 approximation of the strain tensor component,
approximated spectral norm of the stress tensor component, and vorticity streamlines (top panels),
velocity streamlines, heat flux streamlines, and temperature field (centre panels), and pressure field,
polymeric part and solvent part of the extra-stress tensor component (bottom row).
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Figure 4.4: Example 4: P0 − RT0 − P0 − P1 −RT0 − P1 approximation of some components of the
approximate solutions.



CHAPTER 5

A posteriori error analysis of an augmented fully-mixed formulation
for the non-isothermal Oldroyd–Stokes problem

In this chapter we develop an a posteriori error analysis for the variational formulation described
in Chapter 4 for the 2D and 3D versions of the associated mixed finite element scheme. We
derive two reliable and efficient residual-based a posteriori error estimators on arbitrary (convex
or non-convex) polygonal and polyhedral regions.

5.1 Introduction

We have recently introduced in Chapter 4, an augmented-mixed finite element method to numerically
approximate the flow patterns of a non-isothermal incompressible viscoelastic fluid described by the
non-isothermal Oldroyd–Stokes equations. The underlying model consists of the Stokes-type equation
for Oldroyd viscoelasticity, coupled with the heat equation through a convective term and the viscosity
of the fluid. The original unknowns are the polymeric part of the extra-stress tensor, the velocity,
the pressure, and the temperature of the fluid. In turn, for convenience of the analysis, the strain
tensor, the vorticity, and the stress tensor are introduced as further unknowns. This allows to join
the polymeric and solvent viscosities in an adimensional viscosity, and to eliminate the polymeric part
of the extra-stress tensor and the pressure from the system, which, together with the solvent part of
the extra-stress tensor, can anyway be approximated later on by postprocessed. In this way, a fully
mixed approach is applied, in which the heat flux vector is incorporated as an additional unknown as
well. Since the convective term in the heat equation forces both the velocity and the temperature to
live in H1 instead of L2 as usual, we proceed as for the Boussinesq model in [51, 50, 52] and augment
the variational formulation with suitable Galerkin type expressions arising from the constitutive and
equilibrium equations, the relation defining the strain and vorticity tensors, and the Dirichlet boundary
condition on the temperature. The resulting augmented scheme is then written equivalently as a
fixed-point equation, so that the well-known Schauder and Banach theorems, combined with the Lax–
Milgram theorem and certain regularity assumptions, are applied to prove the unique solvability of the
continuous system. As for the associated Galerkin scheme, whose solvability is established similarly to
the continuous case by using the Brouwer fixed-point and Lax-Milgram theorems, we employ Raviart–
Thomas approximations of order k for the stress tensor and the heat flux vector, continuous piecewise

149
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polynomials of order ≤ k+ 1 for velocity and temperature, and piecewise polynomials of order ≤ k for
the strain tensor and the vorticity. Optimal a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities or high gradients of the
solution, most of the standard Galerkin procedures such as finite element and mixed finite element
methods inevitably lose accuracy, and hence one usually tries to recover it by applying an adaptive
algorithm based on a posteriori error estimates. For example, residual-based a posteriori error analyses
for the aforementioned Boussinesq model have been developed in [54] and [53] for the associated mixed-
primal and fully-mixed formulations, respectively. In fact, standard arguments relying on duality
techniques, suitable decompositions and classical approximation properties, are combined there with
corresponding small data assumptions to derive the reliability of the estimators. In turn, inverse
inequalities and the usual localisation technique based on bubble functions are employed in both
works to prove the corresponding efficiency estimates. On the other hand, and concerning isothermal
viscoelastic flows, not much has been done and we just refer to [71, 131, 137] for the steady-state
case and [75, 76] for the time dependent case, where different contributions addressing this interesting
issue can be found. In particular, a fully local a posteriori error estimator for a simplified Oldroyd-
B model without convective terms in a convex polygonal domain was obtained in [137]. The main
unknowns are given by the velocity, the extra-stress and the pressure of the fluid, whereas continuous
piecewise linear finite elements together with a Galerkin Least Square (GLS) approach are used for
the associated discrete scheme. In turn, a fully local residual-based a posteriori error estimator for
the velocity-pressure-stress formulation of a more general model, namely the Giesekus and Oldroyd-B
type differential constitutive laws in 2D and 3D, was derived in [71] . In this case, the discrete spaces
employed are the Hood –Taylor pair for the velocity and the pressure, and continuous piecewise linear
elements for the viscoelastic stress component. Furthermore, and up to the authors’ knowledge, the
first work dealing with high gradients of the solution for the non-isothermal Oldroyd–Stokes problem is
[57]. An optimal control technique is proposed and analised there for a four-to-one contraction domain,
where a vortex is generated near the corner region of the contraction. However, we remark that this
work does not consider an adaptive algorithm.

According to the above discussion, and in order to complement the study started in Chapter 4 for
the non-isothermal Oldroyd–Stokes problem, in this chapter we proceed similarly to [3, 54, 53, 97], and
develop two reliable and efficient residual-based a posteriori error estimators for the augmented-mixed
finite element method studied in Chapter 4. This means that our analysis begins by applying the
uniform ellipticity of the bilinear form defining the continuous formulation. Next, we apply suitable
Helmholtz decompositions, local approximation properties of the Clément and Raviart–Thomas inter-
polants, and known estimates from [85, 91], to prove the reliability of a residual-based estimator. In
turn, the efficiency estimate is consequence of standard arguments such as inverse inequalities, the
localization technique based on bubble functions, and other known results to be specified later on in
Section 5.3.4. Alternative, a second reliable and efficient residual-based a posteriori error estimator
not making use of any Helmholtz decomposition is also proposed.

We have organised the contents of this chapter as follows. In Section 5.2 we recall from Chapter 4
the model problem and its continuous and discrete augmented fully-mixed variational formulations.
Next, in Section 5.3 we consider the 2D case, introduce two a posteriori error indicators, and assuming
small data and certain regularity assumptions, we derive the corresponding theoretical bounds yielding
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reliability and efficiency of each estimator. The analysis and results from Section 5.3 are then extended
to the 3D case in Section 5.4. Finally, some numerical results illustrating the good performance
and good effectivity indexes of both error estimators under diverse scenarios in 2D and 3D, and
confirming the satisfactory behaviour of the corresponding adaptive refinement strategies, are presented
in Section 5.5.

5.2 The non-isothermal Oldroyd–Stokes problem

In this section we recall from Chapter 4 the non-isothermal Oldroyd–Stokes model, its fully-mixed varia-
tional formulation, the associated Galerkin scheme, and the main results concerning the corresponding
solvability analysis.

5.2.1 The model problem

The non-isothermal Oldroyd–Stokes problem consists of a system of equations where the Stokes equa-
tion for the Oldroyd viscoelastic model introduced in [14], is coupled with the heat equation through
a convective term and the viscosity of the fluid (cf. [56, 73]). More precisely, given a body force f , and
a heat source g, the aforementioned system of equations is given by

σP − 2µP(θ)e(u) = 0 in Ω, −div(σP + 2εµN(θ)e(u)) +∇p = f in Ω,

div u = 0 in Ω, −div (κ∇θ) + u · ∇θ = g in Ω,

u = 0 on Γ, θ = θD on ΓD, κ∇θ · n = 0 on ΓN and
∫

Ω
p = 0,

(5.1)

where the unknowns are the polymeric part of the extra-stress tensor σP, the velocity u, the pressure

p, and the temperature θ of a fluid occupying the region Ω. In addition, e(u) :=
1

2

{
∇u + (∇u)t

}
stands for the strain tensor of small deformations, κ is the thermal conductivity coefficient, µP and µN

are the polymeric and solvent (or newtonian) viscosities, respectively, which are given by the following
Arrhenius relationship:

µP(θ) = a1 exp

(
b1
θ

)
, µN(θ) = a2 exp

(
b2
θ

)
, (5.2)

where the coefficients a1, b1, a2, and b2 are defined so that

0 < µP(s) ≤ 1, 0 < µN(s) ≤ 1 ∀s ≥ 0. (5.3)

Furthermore, we assume that both the polymeric and solvent viscosities are Lipschitz continuous and
bounded from above and from below, that is,

|µP(s)− µP(t)| ≤ LµP |s− t|, |µN(s)− µN(t)| ≤ LµN |s− t| ∀s, t ≥ 0, (5.4)

and
µ1,P ≤ µP(s) ≤ µ2,P, µ1,N ≤ µN(s) ≤ µ2,N ∀s ≥ 0. (5.5)
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Note that a small real parameter ε > 0 on the second equation of (5.1) is introduced to make the effect
of the solvent viscosity much smaller than that of the polymeric part.

Now, in order to derive our mixed approach (see [37, Section 2.1] for details), we begin by introducing
the strain tensor as an additional unknown t := e(u), whence the polymeric and solvent parts of the
extra-stress tensor can be written, respectively, as

σP = 2µP(θ)t and σN = 2εµN(θ)t in Ω . (5.6)

Next, defining the dimensionless effective viscosity as in [73], that is

µ(θ) := 2µP(θ) + 2εµN(θ) , (5.7)

and adopting the approach from [91] and [73] (see also [26, 51, 52]), we include as auxiliary variables
the vorticity tensor ρ, the stress tensor σ, and the heat-flux vector p, respectively, by

ρ := ∇u− e(u), σ := µ(θ)t− pI, and p := κ∇θ − θu in Ω.

In this way, utilising the incompressibility condition div u = tr (e(u)) = 0 in Ω and the homogeneous
Dirichlet boundary condition u = 0 on Γ, the equations in (5.1) can be rewritten, equivalently, as

t + ρ = ∇u in Ω, σd = µ(θ)t in Ω, −divσ = f in Ω,

p = − 1

n
trσ in Ω, κ−1p + κ−1θ u = ∇θ in Ω, −div p = g in Ω,

u = 0 on Γ, θ = θD on ΓD, p · n = 0 on ΓN and
∫

Ω
trσ = 0.

(5.8)

Note that the fourth equation in (5.8) allows us to eliminate the pressure p from the system and
compute it as a simple post-process of σ. In addition, it easy to see from (5.4) and (5.5) that the fluid
viscosity µ (cf. (5.7)) is Lipschitz continuous and bounded from above and from below, that is, there
exist constants Lµ > 0 and µ1, µ2 > 0, such that

|µ(s)− µ(t)| ≤ Lµ|s− t| ∀s, t ≥ 0, (5.9)

and
µ1 ≤ µ(s) ≤ µ2 ∀s ≥ 0. (5.10)

We end this section emphasizing from (5.6) that we can recover the polymeric and solvent parts of
the extra-stress tensor as a simple post-process of θ and t, whereas from the fourth equation of (5.8)
we can compute the pressure in terms of σ conserving the same rate of convergence of the solution as
we show theoretical and numerically in [37, Lemma 4.14 and Section 5], respectively. However, for the
sake of simplicity and physical interest, in Section 5.5 we will focus only on the formulae suggested for
the polymeric part of the extra-stress tensor and the pressure.

5.2.2 The fully-mixed variational formulation

In this section we recall from [37, Section 2.2] the weak formulation of the coupled problem given by
(5.8). To this end, let us first group appropriately some of the unknowns and spaces as follows:

t := (t,σ,ρ) ∈ H := L2
tr (Ω)×H0(div; Ω)× L2

skew(Ω),
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where H is endowed with the norm

‖r‖2H := ‖r‖20,Ω + ‖τ‖2div;Ω + ‖η‖20,Ω ∀r := (r, τ ,η) ∈ H.

Hence, the augmented fully-mixed variational formulation for the non-isothermal Oldroyd–Stokes prob-
lem reads: Find (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) such that

Aθ((t,u), (r,v)) = F(r,v) ∀(r,v) ∈ H×H1
0(Ω),

Ã((p, θ), (q, ψ)) + B̃u((p, θ), (q, ψ)) = F̃(q, ψ) ∀(q, ψ) ∈ HΓN
(div ; Ω)×H1(Ω),

(5.11)

where, given (φ,w) ∈ H1(Ω)×H1
0(Ω), Aφ, Ã, and B̃w are the bilinear forms defined, respectively, as

Aφ((t,u), (r,v)) :=

∫
Ω
µ(φ)t :

{
r− κ1τ

d
}

+

∫
Ω
σd :

{
κ1τ

d − r
}

+

∫
Ω

t : τ d

+

∫
Ω

{
u + κ2divσ

}
· divτ −

∫
Ω

v · divσ +

∫
Ω
ρ : τ −

∫
Ω
σ : η

+ κ3

∫
Ω

{
e(u)− t

}
: e(v) + κ4

∫
Ω

(
ρ−

{
∇u− e(u)

})
: η,

(5.12)

Ã((p, θ), (q, ψ)) := κ−1

∫
Ω

p ·
{

q− κ5∇ψ
}

+

∫
Ω

{
θ + κ6div p

}
div q−

∫
Ω
ψ div p

+ κ5

∫
Ω
∇θ · ∇ψ + κ7

∫
ΓD

θ ψ,
(5.13)

and
B̃w((p, θ), (q, ψ)) := κ−1

∫
Ω
θw ·

{
q− κ5∇ψ

}
, (5.14)

for all (t,u), (r,v) ∈ H ×H1
0(Ω) and for all (p, θ), (q, ψ) ∈ HΓN

(div ; Ω) × H1(Ω). In turn, F and F̃

are the bounded linear functionals given by

F(r,v) :=

∫
Ω

f ·
{

v − κ2divτ
}
, (5.15)

for all (r,v) ∈ H×H1
0(Ω) and

F̃(q, ψ) := 〈q · n, θD〉ΓD
+

∫
Ω
g
{
ψ − κ6div q

}
+ κ7

∫
ΓD

θDψ, (5.16)

for all (q, ψ) ∈ HΓN
(div ; Ω) × H1(Ω). Notice that κi, i ∈ {1, . . . , 7}, are positive parameters to

be specified next in Theorem 5.1. Indeed, the following result taken from [37] establishes the well-
posedness of (5.11).

Theorem 5.1. Assume that

κ1 ∈
(

0,
2δ1µ1

µ2

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1µ2

2δ1

))
, κ4 ∈

(
0, 2δ3κ3

(
1− δ2

2

))
, κ5 ∈ (0, 2δ̃),

and κ2, κ6, κ7 > 0, with δ1 ∈
(

0,
2

µ2

)
, δ2, δ3 ∈ (0, 2), and δ̃ ∈ (0, 2κ). Let

W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ cS̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,
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and assume that the datum f satisfy

cS‖f‖0,Ω ≤
α̃(Ω)

2κ−1(1 + κ2
5)1/2c(Ω)

, (5.17)

where c(Ω) is the constant in [37, eq. (2.15)], α̃(Ω) is the ellipticity constant of the bilinear form Ã

(cf. [37, eq. (3.17)]), and cS and c
S̃
are the positive constants, independent of the data, provided by

[37, Lemmas 3.1 and 3.2], respectively. Then the augmented fully-mixed problem (5.11) has at least one
solution (t,u,p, θ) ∈ H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) with θ ∈ W, and there holds

‖(t,u)‖ ≤ cS‖f‖0,Ω and ‖(p, θ)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (5.18)

Moreover, if the data f , g and θD are sufficiently small so that, with the constants CS, CS̃
and ĈS from

[37, Lemmas 3.4 and 3.5, and eq. (3.22)], respectively, and denoting by C̃δ the boundedness constant
of the continuous injection of H1(Ω) into Ln/δ(Ω), with δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when
n = 3), there holds

C̃δĈSCSCS̃
c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
‖f‖δ,Ω < 1. (5.19)

Then the solution θ is unique in W.

Proof. See [37, Theorem 3.8] for details.

5.2.3 The fully-mixed finite element method

Let Th be a regular triangulation of Ω made up of triangles T (when n = 2) or tetrahedra T (when
n = 3) of diameter hT , and define the meshsize h := max

{
hT : T ∈ Th

}
. Then, given an integer

k ≥ 0, we set for each T ∈ Th the local Raviart–Thomas space of order k as

RTk(T ) := Pk(T )⊕ Pk(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn. Then, we introduce the finite element subspaces
approximating the unknowns t,σ,ρ,u,p and θ as follows

Ht
h :=

{
rh ∈ L2

tr (Ω) : rh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div; Ω) : ctτ h|T ∈ RTk(T ) ∀c ∈ Rn ∀T ∈ Th

}
,

Hρh :=
{
ηh ∈ L2

skew(Ω) : ηh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th, vh = 0 on Γ

}
,

Hp
h :=

{
qh ∈ HΓN

(div ; Ω) : qh|T ∈ RTk(T ) ∀T ∈ Th
}
,

Hθ
h :=

{
ψh ∈ C(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

(5.20)
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In this way, by defining th := (th,σh,ρh), rh := (rh, τ h,ηh) ∈ Hh := Ht
h × Hσh × Hρh, the Galerkin

scheme of (5.11) reads: Find (th,uh,ph, θh) ∈ Hh ×Hu
h ×Hp

h ×Hθ
h such that

Aθh((th,uh), (rh,vh)) = F(rh,vh) ∀(rh,vh) ∈ Hh ×Hu
h ,

Ã((ph, θh), (qh, ψh)) + B̃uh((ph, θh), (qh, ψh)) = F̃(qh, ψh) ∀(qh, ψh) ∈ Hp
h ×Hθ

h.
(5.21)

The following theorem, also taken from [37], provides the well-posedness of (5.21), the associated
Céa estimate, and the corresponding theoretical rate of convergence.

Theorem 5.2. Assume that the conditions on κi, i ∈ {1, . . . , 7}, required by Theorem 5.1, hold. Let

Wh :=
{
φh ∈ Hθ

h : ‖φh‖1,Ω ≤ cS̃
{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}}
,

and assume that the datum f satisfy (5.17). Then the Galerkin scheme (5.21) has at least one solution
(th,uh,ph, θh) ∈ Hh ×Hu

h ×Hp
h ×Hθ

h with θh ∈ Wh, and there holds

‖(th,uh)‖ ≤ cS‖f‖0,Ω and ‖(ph, θh)‖ ≤ c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
. (5.22)

In addition, there exists C1 > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C1

{
dist

(
(t,u),Hh ×Hu

h

)
+ dist

(
(p, θ),Hp

h ×Hθ
h

)}
.

Assume further that there exists s > 0 such that t ∈ Hs(Ω), σ ∈ Hs(Ω), divσ ∈ Hs(Ω), ρ ∈ Hs(Ω),
u ∈ Hs+1(Ω), p ∈ Hs(Ω), div p ∈ Hs(Ω), and θ ∈ Hs+1(Ω), and that the finite element subspaces are
defined by (5.20). Then, there exist C2 > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C2h
min{s,k+1}

{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖ρ‖s,Ω

+ ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖θ‖s+1,Ω

}
.

Proof. We refer the reader to [37, Theorems 4.7, 4.11, and 4.13] for details.

5.3 A posteriori error analysis: the 2D-case

In this section we proceed analogously to [97, Section 3] and derive two reliable and efficient residual
based a posteriori error estimators for the two-dimensional version of (5.21). The corresponding a
posteriori error analysis for the 3D case, which follows from minor modifications of the one to be
presented next, will be addressed in Section 5.4.

5.3.1 Preliminaries

We start by introducing a few useful notations for describing local information on elements and edges.
Let Eh be the set of all edges of Th, and E(T ) denotes the set of edges of a given T ∈ Th. Then
Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) :=

{
e ∈ Eh : e ⊆ Ω

}
, Eh(ΓD) :=

{
e ∈ Eh : e ⊆ ΓD

}
, and

Eh(ΓN) :=
{
e ∈ Eh : e ⊆ ΓN

}
. Moreover, he stands for the length of a given edge e. Also for each
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edge e ∈ Eh we fix a unit normal vector ne := (n1, n2)t, and let se := (−n2, n1)t be the corresponding
fixed unit tangential vector along e. However, when no confusion arises, we simply write n and s

instead of ne and se, respectively. Now, let v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th. Then,
given T ∈ Th and e ∈ E(T ) ∩ Eh(Ω), we denote by Jv · sK the tangential jump of v across e, that
is, Jv · sK := (v|T − v|T ′)|e · s, where T and T ′ are the triangles of Th having e as a common edge.
Similar definitions hold for the tangential jumps of scalar and tensor fields φ ∈ L2(Ω) and τ ∈ L2(Ω),
respectively, such that φ|T ∈ C(T ) and τ |T ∈ C(T ) on each T ∈ Th. In addition, given scalar, vector
and matrix valued fields φ, v = (v1, v2)t and τ = (τi,j)1≤i,j≤2, respectively, we set

curl (φ) :=

( ∂φ
∂x2

− ∂φ
∂x1

)
, curl (v) :=

(
curl (v1)t

curl (v2)t

)
,

rot (v) =
∂v2

∂x1
− ∂v1

∂x2
, and rot (τ ) =

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)t

,

where the derivatives involved are taken in the distributional sense.

Let us now Πh : H1(Ω) → Hp
h (cf. (5.20)) be the Raviart–Thomas interpolation operator, which,

according to its characterisation properties (see, e.g., [81, Section 3.4.1]), verifies

div (Πhv) = Ph(div v) ∀v ∈ H1(Ω), (5.23)

where Ph is the L2(Ω)-orthogonal projector onto the picewise polynomials of degree ≤ k. A tensor
version of Πh, say Πh : H1(Ω) → Hσh , which is defined row-wise by Πh, and a vector version of Ph,
say Ph, which is the L2(Ω)-orthogonal projector onto the picewise polynomial vectors of degree ≤ k,
might also be required. The local approximation properties of Πh (and hence of Πh) are established
in what follows. For the corresponding proof we refer to [81, Lemmas 3.16 and 3.18] (see also [19]).

Lemma 5.3. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
hold

‖v −Πhv‖0,T ≤ c1hT ‖v‖1,T ∀T ∈ Th,

and
‖v · n−Πhv · n‖0,e ≤ c2h

1/2
e ‖v‖1,Te ∀ e ∈ Eh,

where Te is a triangle of Th containing the edge e on its boundary.

In turn, let Ih : H1(Ω)→ H1
h(Ω) be the Clément interpolation operator, where

H1
h(Ω) :=

{
v ∈ C(Ω) : v|T ∈ P1(T ) ∀T ∈ Th

}
.

The local approximation properties of this operator are established in the following lemma (see [49]).

Lemma 5.4. There exist constants c3, c4 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ihv‖0,T ≤ c3hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c4h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where
∆(T ) := ∪

{
T ′ ∈ Th : T ′ ∩ T 6= ∅

}
and ∆(e) := ∪

{
T ′ ∈ Th : T ′ ∩ e 6= ∅

}
.
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In what follows, a vector version of Ih, say Ih : H1(Ω) → H1
h(Ω), which is defined component-

wise by Ih, will be needed as well. For the forthcoming analysis we will also utilise a couple of results
providing stable Helmholtz decompositions for H0(div; Ω) and HΓN

(div ; Ω). In this regard, we remark
in advance that the decomposition for HΓN

(div ; Ω) will require the boundary ΓN to lie in a “convex
part” of Ω, which means that there exists a convex domain containing Ω, and whose boundary contains
ΓN. More precisely, we have the following lemma.

Lemma 5.5.

(a) For each τ ∈ H0(div; Ω) there exist z ∈ H2(Ω) and ϕ ∈ H1(Ω) such that

τ = ∇z + curlϕ in Ω and ‖z‖2,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div;Ω, (5.24)

where C is a positive constant independent of all the foregoing variables.

(b) Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and ΓN ⊆ ∂Ξ. Then, for each
q ∈ HΓN

(div ; Ω) there exist ζ ∈ H1(Ω) and χ ∈ H1
ΓN

(Ω) such that

q = ζ + curlχ in Ω and ‖ζ‖1,Ω + ‖χ‖1,Ω ≤ C‖q‖div ;Ω, (5.25)

where C is a positive constant independent of all the foregoing variables, and

H1
ΓN

(Ω) :=
{
η ∈ H1(Ω) : η = 0 on ΓN

}
.

Proof. For the proof of (a) we refer to [97, Lemma 3.7], whereas (b) follows from [3, Lemma 3.9]. We
omit further details.

5.3.2 The main result

In what follows we assume that the hypotheses of Theorems 5.1 and 5.2, hold and let (t,u,p, θ) ∈
H×H1

0(Ω)×HΓN
(div ; Ω)×H1(Ω) and (th,uh,ph, θh) ∈ Hh×Hu

h ×Hp
h ×Hθ

h be the unique solutions
of problems (5.11) and (5.21), respectively. Then, we define for each T ∈ Th the local a posteriori error
indicators

Θ̃2
1,T :=

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∥∥σh − σt
h

∥∥2

0,T

+ ‖th − e(uh)‖20,T + ‖ρh − (∇uh − e(uh))‖20,T + ‖g + div ph‖20,T

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥2

0,T
+

∑
e∈E(T )∩Eh(ΓD)

‖θD − θh‖20,e ,

(5.26)

Θ2
1,T := Θ̃2

1,T + ‖∇uh − (th + ρh)‖20,T , (5.27)

and
Θ2

2,T := Θ̃2
1,T + ‖f −Ph(f)‖20,T + ‖g − Ph(g)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖rot (th + ρh)‖20,T + h2

T

∥∥rot (κ−1ph + κ−1θhuh)
∥∥2

0,T

+
∑

e∈E(T )

he ‖J(th + ρh)sK‖20,e +
∑

e∈E(T )∩Eh(Ω)

he
∥∥J(κ−1ph + κ−1θhuh) · sK

∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he

∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

,

(5.28)
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so that the global a posteriori error estimators are given, respectively, by

Θ1 :=

∑
T∈Th

Θ2
1,T + ‖θD − θh‖21/2,ΓD


1/2

and Θ2 :=

∑
T∈Th

Θ2
2,T


1/2

. (5.29)

Note that the last term defining Θ2
2,T (cf. (5.28)) requires that dθD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD).

This is ensured below by assuming that θD ∈ H1(ΓD).

The main goal of the present Section 5.3 is to establish, under suitable assumptions, the existence
of positive constants Crel, Ceff , C̃rel, and C̃eff , independent of the meshsizes and the continuous and
discrete solutions, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1, (5.30)

and
C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2. (5.31)

The upper and lower bounds in (5.30) and (5.31), which are known as the reliability and efficiency
of the estimators Θ1 and Θ2, are derived below in Section 5.3.4 and 5.3.5, respectively, under the
assumption that θD is piecewise polynomials on the induced triangulation on ΓD. Otherwise, higher
order terms arising from polynomial approximations of these functions would appear in (5.30) and
(5.31).

At this point we remark that for the derivation of the first a posteriori error estimator we will use the
fact that u ∈ H1

0(Ω) and θ ∈ H1(Ω), so that we can integrate some terms by parts in the whole domain
Ω. In turn, for the second estimator we exploit the properties of the Helmholtz decompositions (cf.
Lemma 5.5) jointly with the Clément and Raviart–Thomas operators, whence new terms capturing
the jumps across the sides/edges of the triangulation appear.

5.3.3 A general a posteriori error estimate

In order to establish the reliability estimates of the a posteriori error estimators Θ1 and Θ2, that is
the upper bounds in (5.30) and (5.31), we first bound the unknowns related to the fluid and the heat
by applying the uniform ellipticity of the bilinear forms of the continuous formulation, and then we
conclude a preliminary upper bound for the total error by assuming that the data are small enough.
More precisely, we begin with the following auxiliary result.

Lemma 5.6. There exists C > 0, independent of h, such that

‖(t,u)− (th,uh)‖ ≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖Rf‖H0(div;Ω)′

}
+

2

α(Ω)
Lµ(1 + κ2

1)1/2ĈSCδC̃δ‖f‖δ,Ω‖θ − θh‖1,Ω,

(5.32)
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where Rf : H0(div; Ω)→ R is the functional defined by

Rf(τ ) := −κ1

∫
Ω

{
σd
h − µ(θh)th

}
: τ d − κ2

∫
Ω

{
f + divσh

}
· divτ

−
∫

Ω
(th + ρh) : τ d −

∫
Ω

uh · divτ ,

(5.33)

which satisfies
Rf(τ h) = 0 ∀τ h ∈ Hσh . (5.34)

Proof. According to [37, Lemma 3.1], we have that the bilinear form Aθ is uniformly elliptic on
H×H1

0(Ω) with a positive constant α(Ω). This implies that

α(Ω)‖(t,u)− (th,uh)‖ ≤ sup
(r,v)∈H×H1

0(Ω)
(r,v)6=0

Aθ((t,u)− (th,uh), (r,v))

‖(r,v)‖
. (5.35)

In turn, in order to estimate the right-hand side in (5.35), we first add and subtract suitable terms to
write

Aθ((t,u)− (th,uh), (r,v))

= F(r,v)−Aθh((th,uh), (r,v))− (Aθ −Aθh) ((th,uh), (r,v)) ,

and then proceed similarly to [3, eq. (3.15)]. Indeed, from the definitions of Aθ and F (cf. (5.12)
and (5.15), respectively), and employing the Cauchy–Schwarz inequality, the estimate given by [37, eq.
(3.24)] for |(Aθ −Aθh) ( · , (r,v))|, and the regularity assumption [37, eq. (3.22)], we deduce that∣∣∣Aθ((t,u)− (th,uh), (r,v))

∣∣∣
‖(r,v)‖

≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω

+
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖Rf‖H0(div;Ω)′

}
+ 2Lµ(1 + κ2

1)1/2ĈSCδC̃δ ‖f‖δ,Ω‖θ − θh‖1,Ω ,

(5.36)

where ĈS, Cδ, and C̃δ are the constants provided by [37, eqs. (3.22), (3.25), and (3.32)], respectively.
In this way, replacing the inequality (5.36) into (5.35), we get (5.32). Moreover, using the fact that

F(rh,vh)−Aθh((th,uh), (rh,vh)) = 0 ∀(rh,vh) ∈ Hh ×Hu
h ,

and taking in particular rh = (0, τ h,0) and vh = 0, we get (5.34), which completes the proof.

Next, we derive an analogous preliminary bound for the error associated to the heat variables.

Lemma 5.7. There exists C > 0, independent of h, such that

‖(p, θ)− (ph, θh)‖ ≤ C
{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rh‖HΓN

(div ;Ω)′

}
+

2

α̃(Ω)
κ−1(1 + κ2

5)1/2c(Ω) ‖θh‖1,Ω ‖u− uh‖1,Ω,
(5.37)

where Rh : HΓN
(div ; Ω)→ R is the functional defined by

Rh(q) := −κ6

∫
Ω

{
g+ div ph

}
div q−

∫
Ω

{
κ−1ph +κ−1θhuh

}
·q−

∫
Ω
θhdiv q + 〈q · n, θD〉ΓD

, (5.38)
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which satisfies
Rh(qh) = 0 ∀qh ∈ Hp

h . (5.39)

Proof. According to [37, Lemma 3.2] and using the fact that ‖u‖1,Ω ≤ cS‖f‖0,Ω (cf. (5.18)), we have
that the bilinear form Ã + B̃u is uniformly elliptic on HΓN

(div ; Ω) × H1(Ω) with a positive constant
α̃(Ω)/2. This implies that

α̃(Ω)

2
‖(p, θ)− (ph, θh)‖ ≤ sup

(q,ψ)∈HΓN
(div ;Ω)×H1(Ω)

(q,ψ)6=0

(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

‖(q, ψ)‖
. (5.40)

In turn, in order to estimate the right-hand side in (5.40), we add and subtract suitable terms to write

(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

= F̃(q, ψ)− (Ã + B̃uh)((ph, θh), (q, ψ))− B̃u−uh((ph, θh), (q, ψ)),

whence, using the definitions of Ã, B̃w, and F̃ (cf. (5.13), (5.14), and (5.16), respectively), the
continuity of B̃u−uh (see [37, eq. (3.16)]), and the Cauchy–Schwarz inequality, we find that∣∣∣(Ã + B̃u)((p, θ)− (ph, θh), (q, ψ))

∣∣∣
‖(q, ψ)‖

≤ C
{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rh‖HΓN

(div ;Ω)′

}
+ κ−1(1 + κ2

5)1/2c(Ω)‖θh‖1,Ω‖u− uh‖1,Ω,
(5.41)

where c(Ω) is the constant in [37, eq. (2.15)]. Then, replacing the inequality (5.41) into (5.40), we
obtain (5.37). Finally, using the fact that

F̃(qh, ψh)− (Ã + B̃uh)((ph, θh), (qh, ψh)) = 0 ∀ (qh, ψh) ∈ Hp
h ×Hθ

h ,

and taking in particular ψh = 0, we arrive at (5.39), which completes the proof.

We now combine the inequalities provided by Lemmas 5.6 and 5.7 to derive a preliminary upper
bound for the total error ‖(t,u,p, θ) − (th,uh,ph, θh)‖. Indeed, by gathering together the estimates
(5.32) and (5.37), and noting the fact that θh ∈ Wh, it follows that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C(f , g, θD)‖(t,u,p, θ)− (th,uh,ph, θh)‖

+ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω

+ ‖ρh − (∇uh − e(uh))‖0,Ω + ‖g + div ph‖0,Ω +
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥
0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rf‖H0(div;Ω)′ + ‖Rh‖HΓN

(div ;Ω)′

}
,

(5.42)

where
C(f , g, θD) := max

{
C1(f , g, θD),C2(f , g, θD)

}
,

with
C1(f , g, θD) :=

2

α̃(Ω)
κ−1(1 + κ2

5)1/2c(Ω)c
S̃

{
‖g‖0,Ω + ‖θD‖0,ΓD

+ ‖θD‖1/2,ΓD

}
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and
C2(f , g, θD) :=

2

α(Ω)
Lµ(1 + κ2

1)1/2ĈSCδC̃δ‖f‖δ,Ω.

Consequently, we can establish the following preliminary upper bound for the total error.

Lemma 5.8. Assume that the data f , g and θD satisfy:

Ci(f , g, θD) ≤ 1

2
∀i ∈ {1, 2}. (5.43)

Then, there exists C > 0, depending only on parameters, data and other constants, all of them inde-
pendent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C
{∥∥∥σd

h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω

+
∥∥σh − σt

h

∥∥
0,Ω

+ ‖th − e(uh)‖0,Ω + ‖ρh − (∇uh − e(uh))‖0,Ω + ‖g + div ph‖0,Ω

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥
0,Ω

+ ‖θD − θh‖0,ΓD
+ ‖Rf‖H0(div;Ω)′ + ‖Rh‖HΓN

(div ;Ω)′

}
.

(5.44)

Proof. It follows from a direct application of the assumption (5.43) in the inequality (5.42).

We end this section with equivalent definitions of the functionals Rf and Rh. In fact, noting that
th : I = tr th = 0 and ρh : I = 0, we first observe that∫

Ω
(th + ρh) : τ d =

∫
Ω

(th + ρh)d : τ =

∫
Ω

(th + ρh) : τ .

In this way, given τ ∈ H0(div; Ω), we integrate by parts the expression
∫

Ω uh · divτ and use the
homogeneous Dirichlet boundary condition on Γ of uh ∈ Hu

h (cf. (5.20)), to find that

Rf(τ ) = −κ1

∫
Ω

{
σd
h− µ(θh)th

}
: τ − κ2

∫
Ω

{
f + divσh

}
·divτ +

∫
Ω

{
∇uh− (th + ρh)

}
: τ . (5.45)

Analogously, given q ∈ HΓN
(div ; Ω), we integrate by parts the expression

∫
Ω θh div q and use now the

homogeneous Neumann boundary condition of q on ΓN, to arrive at

Rh(q) = −κ6

∫
Ω

{
g+ div ph

}
div q +

∫
Ω

{
∇θh− (κ−1ph +κ−1θhuh)

}
·q + 〈q · n, θD − θh〉ΓD

. (5.46)

5.3.4 Reliability of the a posteriori error estimators

We now proceed to bound the norms of the functionals Rf and Rh appearing on the right-hand side of
(5.44), by conveniently considering either their original definitions or the new expressions (5.45) and
(5.46), respectively. This task is actually performed in two different ways, which leads to the reliability
of the a posteriori error estimators Θ1 and Θ2. We begin with Θ1.

Theorem 5.9. Assume that the data f , g and θD satisfy (5.43). Then there exist Crel > 0, independent
of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1. (5.47)
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Proof. We first observe that, employing Cauchy–Schwarz inequality and recalling that 〈·, ·〉ΓD
stands

for the duality pairing between H−1/2(ΓD) and H1/2(ΓD), we deduce from (5.45) and (5.46) that

‖Rf‖H0(div;Ω)′ ≤ c1

{∥∥∥σd
h − µ(θh)th

∥∥∥
0,Ω

+ ‖f + divσh‖0,Ω + ‖∇uh − (th + ρh)‖0,Ω
}

(5.48)

and

‖Rh‖HΓN
(div ;Ω)′ ≤ c2

{
‖g + div ph‖0,Ω +

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥

0,Ω
+ ‖θD − θh‖1/2,ΓD

}
, (5.49)

respectively. In this way, the proof follows straightforwardly from the definition of Θ1 (cf. (5.27)),
Lemma 5.8, and inequalities (5.48) and (5.49).

Having proved Theorem 5.9, we now aim to establish the reliability of Θ2 (cf. (5.28)), which is ac-
complished by applying the Helmholtz decompositions provided by Lemma 5.5 to bound ‖Rf‖H0(div;Ω)′

and ‖Rh‖HΓN
(div ;Ω)′ . Actually, in what follows we provide the details only for Rf since those for Rh

follow analogously. In fact, given τ ∈ H0(div; Ω), and thanks to part (a) of Lemma 5.5, we first let
z ∈ H2(Ω) and ϕ ∈ H1(Ω) be such that τ = ∇z + curlϕ in Ω, and

‖z‖2,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div;Ω , (5.50)

and then define τ h := Πh(∇z) + curl (Ihϕ) + cI, where c ∈ R is chosen so that τ h belongs to Hσh (cf.
Section 5.3.1). Hence, employing from (5.34) that Rf(τ h) = 0, it readily follows from the foregoing
expressions that Rf(τ ) can be decomposed as

Rf(τ ) = Rf(τ − τ h) = Rf(∇z−Πh(∇z)) +Rf(curl (ϕ− Ihϕ)) . (5.51)

Consequently, we now require to bound the terms on the right-hand side of (5.51), which is done in
the following two lemmas.

Lemma 5.10. There exists C > 0, independent of h, such that for each z ∈ H2(Ω) there holds

∣∣∣Rf(∇z−Πh(∇z))
∣∣∣ ≤ C

∑
T∈Th

Θ̃2
f,T


1/2

‖z‖2,Ω,

where
Θ̃2

f,T = h2
T

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f −Ph(f)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T . (5.52)

Proof. Using the alternative definition of the functional Rf (cf. (5.45)), the proof follows from a slight
modification of that of [97, Lemma 3.10]. We omit further details.

Lemma 5.11. There exists C > 0, independent of h, such that for each ϕ ∈ H1(Ω) there holds

∣∣∣Rf(curl (ϕ− Ihϕ))
∣∣∣ ≤ C

∑
T∈Th

Θ̂2
f,T


1/2

‖ϕ‖1,Ω,

where

Θ̂2
f,T =

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ h2

T ‖rot (th + ρh)‖20,T +
∑

e∈E(T )

he ‖J(th + ρh)sK‖20,e . (5.53)
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Proof. Given ϕ ∈ H1(Ω), we first notice from the original definition (5.33) of Rf that there holds

Rf(curl (ϕ−Ihϕ)) = −κ1

∫
Ω

{
σd
h−µ(θh)th

}
: curl (ϕ−Ihϕ)−

∫
Ω

(th+ρh) : curl (ϕ−Ihϕ) . (5.54)

Then, for estimating the first term on the right-hand side of (5.54) we proceed as in the proof of [97,
Lemma 3.9] and apply the boundedness of Ih : H1(Ω)→ H1(Ω) ([69, Lemma 1.127, pag. 69]), as well
as the Cauchy–Schwarz and triangle inequalities, to obtain

∣∣∣∣κ1

∫
Ω

{
σd
h − µ(θh)th

}
: curl (ϕ− Ihϕ)

∣∣∣∣ ≤ C
∑
T∈Th

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T


1/2

‖ϕ‖1,Ω. (5.55)

Next, analogously to the proof of [97, Lemma 3.9], we decompose the second term on the right-hand
side of (5.54) according to the triangulation Th, and integrate by parts on each T ∈ Th to obtain∫

Ω
(th + ρh) : curl (ϕ− Ihϕ) =

∑
T∈Th

∫
T

rot (th + ρh) · (ϕ− Ihϕ)−
∑
e∈Eh

∫
e
J(th + ρh)sK · (ϕ− Ihϕ).

In this way, applying the Cauchy–Schwarz inequality, the approximation properties of the Clément
interpolator Ih (cf. Lemma 5.4), and the fact that the number of triangles of the macro-elements ∆(T )

and ∆(e) are uniformly bounded, we deduce that∣∣∣∣∫
Ω

(th + ρh) : curl (ϕ− Ihϕ)

∣∣∣∣
≤ C

∑
T∈Th

h2
T ‖rot (th + ρh)‖20,T +

∑
e∈E(T )

he ‖J(th + ρh)sK‖20,e


1/2

‖ϕ‖1,Ω.
(5.56)

Finally, by replacing the inequalities (5.55) and (5.56) into (5.54) we conclude the proof.

As a direct consequence of Lemmas 5.10 and 5.11, and the stability estimate (5.50) for the Helmholtz
decomposition, we obtain the following upper bound for ‖Rf‖H0(div;Ω)′ .

Lemma 5.12. There exists C > 0, independent of h, such that

‖Rf‖H0(div;Ω)′ ≤ C

∑
T∈Th

Θ2
f,T


1/2

,

where
Θ2

f,T :=
∥∥∥σd

h − µ(θh)th

∥∥∥2

0,T
+ ‖f −Ph(f)‖20,T + h2

T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖rot (th + ρh)‖20,T +

∑
e∈E(T )

he ‖J(th + ρh)sK‖20,e .
(5.57)

Proof. It suffices to see that the first term defining Θ̃2
f,T (cf. (5.52) in Lemma 5.10) is dominated by

the first term of Θ̂2
f,T (cf. (5.53) in Lemma 5.11), which explains the subtraction of the former in the

original definition of Θ2
f,T .
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Finally, the corresponding estimate for Rh is given by the following lemma.

Lemma 5.13. Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and ΓN ⊆ ∂Ξ. Assume
further that θD ∈ H1(ΓD). Then there exists C > 0, independent of h, such that

‖Rh‖HΓN
(div ;Ω)′ ≤ C

∑
T∈Th

Θ2
h,T

 ,

where

Θ2
h,T := ‖g − Ph(g)‖20,T + h2

T

∥∥∇θh − (κ−1ph + κ−1θhuh)
∥∥2

0,T

+ h2
T

∥∥rot (κ−1ph + κ−1θhuh)
∥∥2

0,T
+

∑
e∈E(T )∩Eh(Ω)

he
∥∥q(κ−1ph + κ−1θhuh) · s

y∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he

{∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

+ ‖θD − θh‖20,e

}
.

(5.58)

Proof. The result follows analogously to the proof of Lemma 5.12 (see also [53, Lemma 3.8]), taking
into account now the Helmholtz decomposition provided by part (b) of Lemma 5.5 and the fact that
Rh(qh) = 0 ∀qh ∈ Hp

h (cf (5.39)). In particular, using the alternative definition of Rh (cf. (5.46))
and proceeding similarly to Lemma 5.10, we find the first, second and last term of the local estimator
(5.58). On the other hand, considering the original definition (5.38) of Rh, noting that dθD

ds ∈ L2(ΓD),
applying the integration by parts formula on ΓD given by (cf. [67, Lemma 3.5, eq. (3.34)])

〈curlχ · n, θD〉ΓD
= −

〈
dθD

ds
, χ

〉
ΓD

∀χ ∈ H1(Ω) , (5.59)

and proceeding analogously to Lemma 5.11 (see also [53, Lemma 3.7]), we obtain the remaining terms
of (5.58). Further details are omitted.

The reliability estimate for Θ2 is stated now.

Theorem 5.14. Assume that the data f , g and θD satisfy (5.43). Assume further that θD ∈ H1(ΓD).
Then there exist C̃rel > 0, independent of h, such that

‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2. (5.60)

Proof. It is a straightforward consequence of the definition of Θ2 (cf. (5.28)), Lemmas 5.8, 5.12, and
5.13, and the fact that the terms h2

T ‖∇θh−(κ−1ph+κ−1θhuh)‖20,T and he‖θD−θh‖20,e, which form part
of Θ2

h,T (cf. (5.58)), are dominated by ‖∇θh−(κ−1ph+κ−1θhuh)‖20,T and ‖θD−θh‖20,e, respectively.

5.3.5 Efficiency of the a posteriori error estimators

We now aim to establish the lower bounds in (5.30) and (5.31). For this purpose, we will make
extensive use of the original system of equations given by (5.8), which is recovered from the augmented-
mixed continuous formulation (5.11) by choosing suitable test functions and then integrating by parts
backwardly the corresponding equations.
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We begin with the efficiency estimate for Θ1.

Theorem 5.15. There exists Ceff > 0, independent of h, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖. (5.61)

Proof. We first introduce the identity σd − µ(θ)t = 0 (cf. (5.8)), that is,

σd
h − µ(θh)th =

(
σd
h − σd

)
+ µ(θh) (t− th) + (µ(θ)− µ(θh)) t,

which, proceding as in [37, Lemma 3.4], and noting that ‖τ d‖0,Ω ≤ ‖τ‖0,Ω for each τ ∈ L2(Ω), yields∥∥∥σd
h − µ(θh)th

∥∥∥2

0,Ω
≤ 3
{
µ2

2‖t− th‖20,Ω + ‖σ − σh‖20,Ω + L2
µ‖t‖2δ,Ω‖θ − θh‖2Ln/δ(Ω)

}
.

Recall here from [37] that δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when n = 3) stands for the extra
regularity that we need to assume for the solution of (5.11). In turn, employing the estimate [37,
eq. (3.22)] to bound ‖t‖δ,Ω, and the continuous injection of H1(Ω) into Ln/δ(Ω), whose boundedness
constant is C̃δ (cf. Theorem 5.1), it is not difficult to see that there exist a positive constant c1,
depending only on data and other constants, all of them independent of h, such that∥∥∥σd

h − µ(θh)th

∥∥∥2

0,Ω
≤ c1

{
‖t− th‖20,Ω + ‖σ − σh‖20,Ω + ‖θ − θh‖21,Ω

}
. (5.62)

Analogously, by considering the identity ∇θ − (κ−1p + κ−1θu) = 0 (cf. (5.8)), we have

∇θh − (κ−1ph + κ−1θhuh) = ∇(θh − θ) + κ−1(p− ph) + κ−1 (θu− θhuh) ,

where the last term of the right-hand side can be rewritten as θu − θhuh = θ(u − uh) + (θ − θh)uh,
and then it can be bounded by

‖θu− θhuh‖0,Ω ≤ ‖θ‖L4(Ω)‖u− uh‖L4(Ω) + ‖uh‖L4(Ω)‖θ − θh‖L4(Ω).

Therefore, using the fact that H1(Ω) is continuously embedded into L4(Ω), θ lives in the ball W, and
the estimate ‖uh‖1,Ω ≤ cS‖f‖0,Ω holds (cf. (5.22)), we obtain

‖∇θh − (κ−1ph + κ−1θhuh)‖20,Ω ≤ c2‖(u,p, θ)− (uh,ph, θh)‖2, (5.63)

with c2 a positive constant independent of h. On the other hand, it is readily seen from (5.8) that

‖f + divσh‖20,Ω ≤ ‖div(σ − σh)‖20,Ω ,

‖g + div ph‖20,Ω ≤ ‖div (p− ph)‖20,Ω,

‖σh − σt
h‖20,Ω ≤ 4‖σ − σh‖20,Ω,

‖th − e(uh)‖20,Ω ≤ 2
{
‖t− th‖20,Ω + ‖u− uh‖21,Ω

}
,

‖ρh − (∇uh − e(uh)) ‖20,Ω ≤ 2
{
‖ρ− ρh‖20,Ω + ‖u− uh‖21,Ω

}
,

‖∇uh − (th + ρh)‖20,Ω ≤ 3
{
‖t− th‖20,Ω + ‖ρ− ρh‖20,Ω + ‖u− uh‖21,Ω

}
,

‖θD − θh‖20,ΓD
≤ c3‖θ − θh‖21,Ω,

(5.64)



5.3. A posteriori error analysis: the 2D-case 166

and
‖θD − θh‖21/2,ΓD

≤ c4‖θ − θh‖21,Ω, (5.65)

where the last two inequalities make use of the trace inequalities in L2(ΓD) and H1/2(ΓD), respectively.
In this way, the required efficiency estimate (5.61) follows straightforwardly from the definition of Θ1

(cf. (5.27)) and the inequalities (5.62)–(5.65).

Next, we continue with the derivation of the efficiency estimate of Θ2.

Lemma 5.16. There hold

(a) ‖f −Ph(f)‖0,T ≤ 2‖div(σ − σh)‖0,T ∀T ∈ Th,

(b) ‖g − Ph(g)‖0,T ≤ 2‖div (p− ph)‖0,T ∀T ∈ Th,

and there exist c1, c2 > 0, independent of h, such that

(c) h2
T ‖rot (th + ρh)‖20,T ≤ c1

{
‖t− th‖20,T + ‖ρ− ρh‖20,T

}
∀T ∈ Th,

(d) he‖J(th + ρh)sK‖20,e ≤ c2

{
‖t− th‖20,ωe + ‖ρ− ρh‖20,ωe

}
∀ e ∈ Eh,

where the set ωe is given by ωe := ∪
{
T ′ ∈ Th : e ∈ E(T ′)

}
.

Proof. For (a) and (b) we refer to [97, Lemma 3.18]. In turn, since rot (t + ρ) = rot (∇u) = 0, we
find that the proof of (c) and (d) follows after a straightforward application of [15, Lemmas 4.3 and
4.4], respectively.

The corresponding bounds for the remaining terms defining Θ2 are given next.

Lemma 5.17. There exist c1, c2 > 0, independent of h, such that

(a)
∑
T∈Th

h2
T ‖rot (κ−1ph + κ−1θhuh)‖20,T ≤ c1 ‖(u,p, θ)− (uh,ph, θh)‖2,

(b)
∑

e∈Eh(Ω)

he‖J(κ−1ph + κ−1θhuh) · sK‖20,e ≤ c2 ‖(u,p, θ)− (uh,ph, θh)‖2.

In addition, under the assumption that θD ∈ H1(ΓD), there exists c3 > 0, independent of h, such that

(c)
∑

e∈Eh(ΓD)

he

∥∥∥∥dθD

ds
− (κ−1ph + κ−1θhuh) · s

∥∥∥∥2

0,e

≤ c3‖(u,p, θ)− (uh,ph, θh)‖2.

Proof. It follows almost straightforwardly from a slight modification of the proof of [53, Lemma 3.11].
We omit further details.
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As a consequence of Theorem 5.15 and Lemmas 5.16 and 5.17, we are now in position to state the
efficiency of Θ2.

Theorem 5.18. Assume that θD ∈ H1(ΓD). Then, there exists C̃eff > 0, independent of h, such that

C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖. (5.66)

5.4 A posteriori error analysis: the 3D-case

In this section we extend the results from Section 5.3 to the three-dimensional version of (5.21).
Similarly as in the previous section, given a tetrahedron T ∈ Th, we let E(T ) be the set of its faces,
and let Eh be the set of all faces of the triangulation Th. Then, we write Eh = Eh(Ω)∪Eh(ΓD)∪Eh(ΓN),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD}, and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}.
Also, for each face e ∈ Eh we fix a unit normal ne to e, so that given τ ∈ L2(Ω) such that τ |T ∈ C(T )

on each T ∈ Th, and given e ∈ Eh(Ω), we let Jτ × neK be the corresponding jump of the tangential
traces across e, that is Jτ × neK := (τ |T − τ |T ′)|e × ne, where T and T ′ are the elements of Th having
e as a common face. In what follows, when no confusion arises, we simple write n instead of ne.

Now, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl (v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl (τ ) is the 3 × 3 tensor whose rows
are given by

curl (τ ) :=

 curl (τ11, τ12, τ13)

curl (τ21, τ22, τ23)

curl (τ31, τ32, τ33)

 .

In addition, τ × n stands for the 3 × 3 tensor whose rows are given by the tangential components of
each row of τ , that is,

τ × n :=

 (τ11, τ12, τ13)× n

(τ21, τ22, τ23)× n

(τ31, τ32, τ33)× n

 .

Having introduced these notations, we now set for each T ∈ Th the local a posteriori error indicators
Θ̃2

1,T and Θ2
1,T (exactly as in (5.26) and (5.27), respectively), and define

Θ2
2,T := Θ̃2

1,T + ‖f −Ph(f)‖20,T + ‖g − Ph(g)‖20,T + h2
T ‖∇uh − (th + ρh)‖20,T

+ h2
T ‖curl (th + ρh)‖20,T + h2

T

∥∥curl (κ−1ph + κ−1θhuh)
∥∥2

0,T

+
∑

e∈E(T )

he ‖J(th + ρh)× nK‖20,e +
∑

e∈E(T )∩Eh(Ω)

he
∥∥J(κ−1ph + κ−1θhuh)× nK

∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓD)

he
∥∥∇θD × n− (κ−1ph + κ−1θhuh)× n

∥∥2

0,e
.

(5.67)
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In this way, the corresponding global a posteriori error estimators are defined as in (5.29), that is

Θ1 :=

∑
T∈Th

Θ2
1,T + ‖θD − θh‖21/2,ΓD


1/2

and Θ2 :=

∑
T∈Th

Θ2
2,T


1/2

,

and the main estimates, which are the analogue of Theorems 5.9 and 5.14, are as follows.

Theorem 5.19. Assume that the data f , g and θD satisfy (5.43). Assume further that θD ∈ H1(ΓD).
Then, there exist positive constants Crel, Ceff , C̃rel, and C̃eff , independent of h, such that

CeffΘ1 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ CrelΘ1

and
C̃effΘ2 ≤ ‖(t,u,p, θ)− (th,uh,ph, θh)‖ ≤ C̃relΘ2.

The proof of Theorem 5.19 follows very closely the analysis of Section 5.3, except a few issues to be
described throughtout the following discussion. Indeed, we first observe that the general a posteriori
error estimate given by Lemma 5.8 is also valid in 3D, and that the corresponding upper bounds of
‖Rf‖H0(div;Ω)′ and ‖Rh‖HΓN

(div ;Ω)′ yielding the reliability of Θ1 are the same as those given in (5.48)
and (5.49), respectively.

Now, for the reliability of Θ2, we need to use a 3D version of the stable Helmholtz decompositions
provided by Lemma 5.5. These required results were established recently for arbitrary polyhedral
domains in [82, Theorems 3.1 and 3.2]. Next, the associated discrete Helmholtz decompositions and the
functionals Rf and Rh are set and rewritten exactly as in (5.45) and (5.46), respectively. Furthermore,
in order to derive the new upper bound of ‖Rf‖H0(div;Ω)′ and ‖Rh‖HΓN

(div ;Ω)′ , we now need the 3D
analogue of the integration by parts formula on the boundary given by (5.59). In fact, by applying the
identities from [100, Chapter I, eq. (2.17) and Theorem 2.11], we deduce that in this case there holds

〈curlχ · n, θD〉ΓD
= −〈∇θD × n,χ〉ΓD

∀χ ∈ H1(Ω).

In addition, the integration by parts formula on each tetrahedron T ∈ Th, which is employed in the
proof of the 3D analogue of Lemma 5.11, becomes (cf. [100, Chapter I, Theorem 2.11])∫

T
curl q · χ−

∫
T

q · curlχ = 〈q× n,χ〉∂T ∀q ∈ H(curl ; Ω), ∀χ ∈ H1(Ω),

where 〈·, ·〉∂T is the duality pairing between H−1/2(∂T ) and H1/2(∂T ), and, as usual, H(curl ; Ω) is the
space of vectors in L2(Ω) whose curl lie also in L2(Ω). Note that the foregoing identities explain the
appearing of the expressions (th+ρh)×n, (κ−1ph+κ−1θhuh)×n, and∇θD×n−(κ−1ph+κ−1θhuh)×n

in the 3D definitions of Θ2
2,T (cf. (5.67)). The rest of the proof of the reliability of Θ2 and the entire

analysis yielding the efficiency of both Θ1 and Θ2 proceed as in Sections 5.3.4 and 5.3.5, respectively,
taking into account that the proof of the 3D version of the Lemma 5.17 follows almost straightforwardly
from a slight modification of the proof of [53, Lemma 4.2].
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5.5 Numerical results

This section serves to illustrate the performance and accuracy of the proposed augmented finite element
scheme along with the properties of the a posteriori error estimators Θ1 and Θ2, in 2D and 3D domains,
derived in Sections 5.3 and 5.4, respectively. In this regard, we remark that for purposes of adaptivity,
which requires to have locally computable indicators, we use that

‖θD − θh‖21/2,ΓD
≤ cD‖θD − θh‖21,ΓD

= cD

∑
e∈Eh(ΓD)

‖θD − θh‖21,e,

and redefine Θ1 as

Θ1 :=

∑
T∈Th

Θ2
1,T


1/2

,

where

Θ2
1,T :=

∥∥∥σd
h − µ(θh)th

∥∥∥2

0,T
+ ‖f + divσh‖20,T +

∥∥σh − σt
h

∥∥2

0,T
+ ‖th − e(uh)‖20,T

+ ‖ρh − (∇uh − e(uh))‖20,T + ‖∇uh − (th + ρh)‖20,T + ‖g + div ph‖20,T

+
∥∥∇θh − (κ−1ph + κ−1θhuh)

∥∥2

0,T
+

∑
e∈E(T )∩Eh(ΓD)

‖θD − θh‖21,e .

Under this redefinition Θ1 is certainly still reliable, but efficient only up to all its terms, except for
the last one, associated to the boundary ΓD. Nevertheless, the numerical results to be displayed below
allow us to conjecture that this modified Θ1 actually verifies both properties.

Our implementation is based on the public domain finite element software FreeFem++ [111] which
provides for both 2D and 3D domains the automatic adaptation procedure tools adaptmesh and msh-
met, respectively. A Picard algorithm with a fixed tolerance tol = 1E − 6 has been used for the
corresponding fixed-point problem (5.21) and the iterations are terminated once the relative error of
the entire coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN, with N denoting the total number of degrees of freedom
defining the finite element subspaces Ht

h,Hσh ,H
ρ
h,H

u
h ,H

p
h , and Hθ

h. As usual, the individual errors are
denoted by:

e(t) := ‖t− th‖0,Ω, e(σ) := ‖σ − σh‖div;Ω, e(ρ) := ‖ρ− ρh‖0,Ω,

e(u) := ‖u− uh‖1,Ω, e(p) := ‖p− ph‖div ;Ω, e(θ) := ‖θ − θh‖1,Ω,

e(σP) := ‖σP − σP,h‖0,Ω, e(p) := ‖p− ph‖0,Ω,

where σP,h and ph, are the postprocessed polymeric part of the extra-stress tensor and the pressure,
respectively, given by

σP,h := 2µP(θh)th and ph := − 1

n
trσh in Ω.
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In turn, the global error is computed as

e :=
{
e(t)2 + e(σ)2 + e(ρ)2 + e(u)2 + e(p)2 + e(θ)2

}1/2
,

whereas the effectivity index with respect to Θi, i ∈ {1, 2} is given by

eff(Θi) :=
e

Θi
.

In addition, we define the experimental rates of convergence

r(�) :=
log(e(�)/e′(�))

log(h/h′)
for each � ∈

{
t,σ,ρ,u,p, θ,σP, p

}
,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively. Howe-
ver, when the adaptive algorithm is applied, the expression log(h/h′) appearing in the computation of
the above rates is replaced by − 1

n log(N/N′) with n = 2 (in 2D domains) or n = 3 (in 3D domains),
where N and N′ denote the corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them, as in [56, Section 2],
we choose the coefficients of the polymer and solvent viscosity a1, b1, a2 and b2 (cf. (5.2)) as follow:

b1 = b2 =
∆E

R
, a2 = exp

(
−∆E

RθR

)
, and a1 = (1− ε)a2,

where ∆E is the activation energy, R is the ideal gas constant, and θR is a reference temperature of
the fluid. Note that the constraint (5.3) will be satisfied as long as the temperature of the system stays
above θR. In turn, we consider κ = 1, ε = 0.01, and according to [37, eq. (3.20)], the stabilization
parameters are taken as κ1 = µ1/µ

2
2, κ2 = κ1, κ3 = µ1/2, κ4 = µ1/4, κ5 = κ, κ6 = κ−1/2, and

κ7 = κ/2. In addition, the condition
∫

Ω trσh = 0 is imposed via a penalization strategy.

Example 1. In our first example we concentrate on the accuracy of the augmented method. We
consider the square domain Ω := (0, 1)2, the boundary Γ = ΓD ∪ ΓN, with ΓD := {0} × (0, 1) and
ΓN := Γ \ ΓD. The following viscosity parameters correspond to polystyrene [118, Section 4.2]:

∆E

R
= 14500, θR = 538.

The data f , g, and θD are chosen so that a manufactured solution of (5.8) is given by the smooth
functions

u(x) :=

(
2πx2

1(x1 − 1)2 cos(πx2) sin(πx2)

−2x1(x1 − 1)(2x1 − 1) sin(πx2)2

)
,

p(x) := cos(πx1) cos(πx2),

θ(x) := 10(x1 − 1)2 sin(πx2)2 + 540 ∀x := (x1, x2) ∈ Ω.

The results reported in Tables 5.1 and 5.2 are in accordance with the theoretical bounds established in
Theorem 5.2. In addition, we also compute the global a posteriori error indicators Θ1,Θ2 and measure
their reliability and efficiency with the effectivity index. For the two orders tested, these estimators
remain always bounded.
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Example 2. Our second example is aimed at testing the features of adaptive mesh refinement after
the a posteriori error estimators Θ1 and Θ2. We consider a four-to-one contraction domain Ω :=

(0, 2)× (0, 1) \ (1, 2)× (0.25, 1), the boundary Γ = ΓD ∪ΓN, with ΓD := {0}× (0, 1) and ΓN := Γ \ΓD.
The following viscosity parameters correspond to Nylon-6,6 [118, Section 4.2]:

∆E

R
= 6600, θR = 563.

The data f , g, and θD are chosen so that the exact solution is given by

u(x) :=

(
x2(x2 − 1)(x2 − 0.25)(3x2

2 − 2.5x2 + 0.25) sin(πx1)2

−πx2
2(x2 − 1)2(x2 − 0.25)2 cos(πx1) sin(πx1)

)
,

p(x) :=
10(x2 − 0.25)

(x1 − 1.02)2 + (x2 − 0.27)2
+ p0,

θ(x) :=
4(x1 − 1)(x2 − 0.25)

(x1 − 1.02)2 + (x2 − 0.27)2
+ 570 ∀x := (x1, x2) ∈ Ω.

The constant p0 is such that
∫

Ω p = 0. Notice that both the pressure and the temperature exhibit
high gradients near the vertex (1, 0.25). Notice also that the only difference with respect to (5.8) is
a non-homogeneous heat flux p · n = fN imposed on ΓN, where fN is manufactured according to the
above solution. Therefore, the local estimators Θ1,T and Θ2,T have to be modified by adding the term∑

e∈E(T )∩Eh(ΓN)

he‖fN − ph · n‖20,e,

whose estimation from below and above follows in a straightforward manner.

Tables 5.3, 5.4, and 5.5 along with Figure 5.1, summarizes the convergence history of the method ap-
plied to a sequence of quasi-uniformly and adaptively refined triangulation of the domain. Sub-optimal
rates are observed in the first case, whereas adaptive refinement according to either a posteriori error
indicator yield optimal convergence and stable effectivity indexes. On the other hand, approximate
solutions builded using the augmented P0−RT0−P0−P1−RT0−P1 scheme with 562743 degrees of
freedom (via the indicator Θ1) are shown in Figure 5.2. In particular, we observe in both the velocity
and heat flux streamlines a vortex near the corner region of the four-to-one domain whereas both the
pressure and temperature exhibit high gradients in the same region. In turn, examples of some adapted
meshes generated using Θ1 and Θ2 are collected in Figure 5.3. We can observe a clear clustering of
elements near the corner region of the contraction as we expected. Notice that the meshes obtained
via the indicator Θ2 are lightly more refined in the interior of the contraction domain than the meshes
obtained via the indicator Θ1. This fact is justified by the terms that capture the jumps between
triangles obtained in the Helmoltz decomposition.

Example 3. To conclude, we replicate the Example 2 in a three-dimensional setting. In fact, we
consider the four-to-one domain Ω := (0, 2) × (0, 1)2 \ (1, 2) × (0.25, 1)2, the boundary Γ = ΓD ∪ ΓN,
with ΓD := {0} × (0, 1)2 and ΓN := Γ \ ΓD. The viscosity parameters are the same as in the second
example. However, this time the manufactured exact solutions adopt the form

u(x) :=


−x3(x3 − 1)(x3 − 0.25)(3x2

3 − 2.5x3 − π cos(πx2) + 0.25) sin(πx1)2 sin(πx2)

x3(x3 − 1)(x3 − 0.25)(3x2
3 − 2.5x3 − π cos(πx1) + 0.25) sin(πx1) sin(πx2)2

−πx2
3(x3 − 1)2(x3 − 0.25)2 sin(πx1) sin(πx2)(cos(πx2)− cos(πx1))

 ,
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p(x) :=
10(x3 − 0.25)

(x1 − 1.05)2 + (x3 − 0.3)2
+ p0,

θ(x) :=
4(x1 − 1)(x3 − 0.25)

(x1 − 1.05)2 + (x3 − 0.3)2
+ 570 ∀x := (x1, x2, x3) ∈ Ω.

Similarly, Tables 5.6 and 5.7 along with the Figure 5.4 confirm a disturbed convergence under quasi-
uniform refinement and an optimal convergence rates when using adaptive refinement guided by the a
posteriori error estimator Θ1. In turn, some approximated solutions after four mesh refinement steps
showing an analogous behaviour to its 2D counterpart are collected in Figure 5.5, whereas snapshots
of the last three meshes via Θ1 are shown in Figure 5.6.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1467 0.196 0.155 – 1.246 – 0.268 – 0.264 – 0.148 –
5631 0.097 0.075 1.025 0.633 0.960 0.146 0.859 0.127 1.040 0.063 1.214
22131 0.048 0.038 0.979 0.310 1.009 0.080 0.858 0.062 1.018 0.031 0.995
87837 0.025 0.019 1.032 0.157 1.018 0.040 1.045 0.031 1.027 0.015 1.105
353853 0.013 0.009 1.093 0.077 1.085 0.020 1.089 0.015 1.072 0.007 1.111

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

18.678 – 3.265 – 0.349 – 19.007 – 0.931 0.183 4
9.628 0.940 1.419 1.181 0.171 1.017 9.755 0.992 0.942 0.180 4
4.738 1.002 0.654 1.094 0.082 1.027 4.794 1.038 0.947 0.178 3
2.405 1.014 0.331 1.019 0.041 1.035 2.434 0.984 0.950 0.176 3
1.187 1.082 0.163 1.087 0.020 1.117 1.201 1.013 0.950 0.176 3

Table 5.1: Example 1, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.

N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

3666 0.196 0.026 – 0.151 – 0.023 – 0.037 – 0.016 –
14076 0.097 0.006 2.036 0.037 2.002 0.006 1.986 0.009 2.071 0.004 1.894
55326 0.048 0.001 2.044 0.009 2.019 0.001 2.048 0.002 2.065 0.001 1.998
219591 0.025 0.000 1.989 0.002 2.040 0.000 1.998 0.001 1.986 0.000 2.032
884631 0.013 0.000 2.186 0.000 2.153 0.000 2.196 0.000 2.195 0.000 2.167

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

2.435 – 0.296 – 0.045 – 2.458 – 0.951 0.114 3
0.584 2.024 0.069 2.060 0.011 2.048 0.590 2.122 0.953 0.116 3
0.138 2.041 0.015 2.120 0.003 2.039 0.139 2.111 0.951 0.115 3
0.036 2.023 0.004 2.047 0.001 2.006 0.036 1.961 0.956 0.115 3
0.009 2.148 0.001 2.133 0.000 2.185 0.009 2.011 0.957 0.115 3

Table 5.2: Example 1, P1 − RT1 − P1 −P2 −RT1 − P2 scheme with quasi-uniform refinement.
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 0.190 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
6987 0.103 0.692 1.285 540.574 – 1.742 0.260 3.783 – 11.448 –
27345 0.049 1.409 – 384.144 0.501 1.410 0.310 1.625 1.238 6.920 0.738
107985 0.026 1.135 0.315 231.471 0.738 0.932 0.603 0.673 1.285 2.842 1.296
430221 0.013 0.646 0.817 123.634 0.907 0.558 0.742 0.208 1.698 1.205 1.242

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) eff(Θ2) iter

260.136 – 82.410 – 5.521 – 557.149 – 1.010 0.701 8
453.925 – 105.853 – 6.172 – 713.786 – 1.013 0.712 6
338.485 0.430 31.700 1.767 4.031 0.624 512.982 0.484 1.002 0.708 5
221.602 0.617 10.676 1.585 1.674 1.280 320.629 0.684 1.001 0.707 4
125.639 0.821 2.834 1.919 0.970 0.789 176.293 0.865 1.000 0.707 3

Table 5.3: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.

N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
2793 1.152 1.645 477.153 0.042 0.887 3.893 2.440 0.491 5.918 2.854
3969 1.353 – 233.594 3.936 0.604 2.188 0.715 6.984 3.017 3.834
6465 1.108 0.818 95.506 3.515 0.503 0.751 0.524 1.274 2.464 0.829
12177 0.985 0.372 52.350 2.003 0.435 0.460 0.425 0.665 2.127 0.466
24309 0.789 0.641 35.354 1.156 0.358 0.558 0.286 1.139 1.696 0.655
42405 0.612 0.913 26.435 1.043 0.284 0.830 0.173 1.822 1.213 1.204
78363 0.507 0.615 19.354 1.030 0.238 0.581 0.126 1.033 0.957 0.772
148599 0.337 1.276 14.094 1.012 0.173 1.004 0.067 1.976 0.668 1.123
286053 0.268 0.702 10.136 0.989 0.138 0.682 0.047 1.045 0.513 0.807
562743 0.172 1.313 7.245 1.008 0.089 1.287 0.025 1.904 0.324 1.358

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

260.136 – 82.410 – 5.521 – 557.149 – 1.010 8
410.800 – 57.315 1.659 3.435 2.169 632.238 – 1.005 5
218.748 3.587 20.780 5.775 2.067 2.891 320.704 3.863 1.003 5
86.491 3.804 19.236 0.317 1.540 1.207 130.284 3.693 1.014 5
42.241 2.264 17.562 0.288 1.316 0.496 69.531 1.984 1.042 5
28.680 1.120 13.182 0.830 1.069 0.601 47.403 1.108 1.052 4
21.095 1.104 10.129 0.947 0.789 1.093 35.311 1.058 1.053 3
15.621 0.978 8.060 0.744 0.642 0.670 26.151 0.978 1.061 3
11.037 1.086 3.787 2.361 0.440 1.184 18.302 1.116 1.025 3
8.051 0.963 2.458 1.320 0.352 0.680 13.179 1.003 1.020 3
5.615 1.065 0.981 2.716 0.228 1.289 9.221 1.056 1.007 3

Table 5.4: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ1.
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N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

1803 1.651 – 485.735 – 2.078 – 2.717 – 11.050 –
3177 1.161 1.242 479.666 0.044 0.910 2.914 2.499 0.295 8.074 1.108
4395 1.358 – 233.586 4.434 0.720 1.447 0.688 7.946 2.966 6.170
6987 1.041 1.147 92.836 3.981 0.438 2.147 0.453 1.804 2.021 1.655
12759 0.953 0.230 51.210 1.976 0.374 0.518 0.404 0.384 1.785 0.413
24789 0.715 0.864 34.828 1.161 0.347 0.224 0.227 1.732 1.333 0.878
42729 0.576 0.793 26.799 0.963 0.258 1.091 0.152 1.481 1.070 0.807
81009 0.435 0.879 18.989 1.077 0.218 0.526 0.095 1.469 0.865 0.666
151581 0.319 0.993 14.100 0.950 0.157 1.055 0.055 1.719 0.607 1.131
297489 0.233 0.924 9.898 1.050 0.121 0.757 0.037 1.191 0.444 0.924
577731 0.162 1.093 7.223 0.949 0.078 1.342 0.020 1.901 0.304 1.140

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ2) iter

260.136 – 82.410 – 5.521 – 557.149 – 0.701 8
408.119 – 57.796 1.253 3.587 1.523 632.447 – 0.709 5
214.041 3.977 19.688 6.637 2.312 2.707 317.437 4.248 0.708 5
84.584 4.005 17.847 0.424 1.442 2.038 126.858 3.957 0.712 5
41.294 2.381 17.352 0.093 1.301 0.342 68.044 2.069 0.723 4
28.423 1.125 12.086 1.089 0.955 0.930 46.558 1.143 0.720 4
20.719 1.161 7.255 1.874 0.751 0.885 34.649 1.085 0.715 3
15.350 0.938 4.951 1.195 0.565 0.889 24.919 1.031 0.709 3
10.830 1.113 2.240 2.532 0.422 0.930 17.923 1.052 0.704 3
7.893 0.938 1.568 1.060 0.313 0.883 12.760 1.008 0.699 3
5.517 1.079 0.641 2.697 0.214 1.150 9.113 1.014 0.699 3

Table 5.5: Example 2, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ2.
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N h e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 0.354 2.808 – 202.828 – 3.755 – 2.133 – 13.714 –
67396 0.177 2.070 0.451 196.015 0.051 3.701 0.021 2.435 – 8.711 0.672
525316 0.088 1.703 0.285 134.581 0.549 2.871 0.371 1.288 0.930 4.323 1.024
4148740 0.044 1.168 0.548 79.625 0.762 1.811 0.669 0.524 1.307 2.078 1.063

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

160.643 – 74.310 – 5.237 – 269.247 – 1.040 7
180.583 – 68.476 0.121 3.958 0.415 275.218 – 1.037 6
121.390 0.580 33.893 1.027 3.120 0.347 184.416 0.585 1.020 5
73.642 0.726 12.062 1.500 1.933 0.695 109.150 0.761 1.007 4

Table 5.6: Example 3, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with quasi-uniform refinement.

N e(t) r(t) e(σ) r(σ) e(ρ) r(ρ) e(u) r(u) e(p) r(p)

8884 2.808 – 202.828 – 3.755 – 2.133 – 13.714 –
16760 2.912 – 195.934 0.163 3.105 0.898 1.136 2.978 10.403 1.306
121932 1.913 0.635 135.452 0.558 1.815 0.812 1.051 0.118 5.117 1.073
782480 1.197 0.757 72.896 1.000 1.078 0.841 0.390 1.598 2.536 1.133
4282528 0.649 1.081 36.213 1.235 0.601 1.031 0.161 1.561 1.246 1.255

e(p) r(p) e(θ) r(θ) e(σP) r(σP) e r eff(Θ1) iter

160.643 – 74.310 – 5.237 – 269.247 – 1.040 7
163.159 – 32.320 3.935 3.794 1.524 257.051 0.219 1.007 6
120.935 0.453 27.820 0.227 2.455 0.658 183.724 0.508 1.009 5
66.899 0.955 9.073 1.808 1.422 0.881 99.370 0.992 1.004 5
33.902 1.200 3.302 1.784 0.741 1.151 49.724 1.222 1.006 4

Table 5.7: Example 3, P0 − RT0 − P0 −P1 −RT0 − P1 scheme with adaptive refinement via Θ1.
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Figure 5.1: Example 2, e vs. N for quasi-uniform/adaptive schemes.

149.8

299.6

449.4

0.0127

 599
.

0.0058

0.012

0.017

2e-07

0.02
.

53.2  

234.  

415.  

-1e+02

6e+02
ph

60.12

120.2

180.3

0.0485

 240
.

568.9

569.8

570.7

 568

 572
.

0.045

0.178

0.312

-0.089

0.446
. Y

Figure 5.2: Example 2, approximated spectral norm of the stress tensor component, velocity stream-
lines, and pressure field (top panels), heat flux streamlines, temperature field, and polymeric part of
the extra-stress tensor component (bottom panels).
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Figure 5.3: Example 2, three snapshots of adapted meshes according to the indicators Θ1 and Θ2 (top
and bottom panels, respectively).
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Figure 5.4: Example 3, e vs. N for quasi-uniform/adaptive scheme via Θ1.
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Figure 5.5: Example 3, approximated spectral norm of the stress tensor component, velocity stream-
lines, and pressure field (top panels), heat flux streamlines, temperature field, and polymeric part of
the extra-stress tensor component (bottom panels).

Figure 5.6: Example 3, three snapshots of adapted meshes according to the indicators Θ1.



Conclusions and future works

Conclusions

In this thesis we develop mixed finite element methods for a set of partial differential equations of
physical interest in fluid mechanics, more precisely, linear and nonlinear coupled problems in porous
media and non-isothermal flows. We have proved solvability of both continuous and discrete problems
as well as their convergence, all illustrated by means of examples and numerical simulations. The main
conclusions of this work are:

1. We introduced a fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem
with nonlinear viscosity. The original problem was reformulated by an augmented variational
approach in the incompressible viscous fluid modelled by the Navier–Stokes equations (with non-
linear viscosity) coupled with a mixed formulation for the flow in a porous medium described
by the linear Darcy equations. Then, through a fixed-point strategy together with sufficiently
small data assumptions, the corresponding solvability analysis was developed. Consequently,
an augmented fully-mixed finite element method was derive for arbitrary spaces, and then we
showed it is well-posed. In particular, for Raviart–Thomas spaces in 2D and 3D convergence of
the method was proved. Finally, several numerical experiments were reported in order to validate
the good performance of the method and confirm the corresponding order of convergence.

2. We established the a posteriori error analysis for the fully-mixed finite element method associated
to the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. We derive a reliable and
efficient residual-based a posteriori error estimator for that scheme. In addition, several numerical
results were provided in order to illustrate the reliability and efficiency of the estimator, together
with the expected behavior of the associated adaptive algorithm.

3. We developed a mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled
problem with constant viscosity and density. By means of a fixed-point strategy, classical results
on nonlinear monotone operators, and small data assumptions, we developed the corresponding
solvability analysis of both the continuous and discrete problems. In particular, we considered
the discrete spaces of Bernardi–Raugel for the velocity in the fluid, Raviart–Thomas elements
of lowest order for the filtration velocity in the porous medium, piecewise constants with null
mean value for the pressures, and piecewise constants elements for the Lagrange multiplier on the
interface. Theoretical and numerically we obtained sub-optimal and optimal order of convergence,
respectively.
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4. We introduced a new fully-mixed finite element method for the non-isothermal Oldroyd-Stokes
problem. For convenience of the analysis, we introduced the strain tensor, vorticity, and stress
as additional unknowns (besides the polymeric part of the extra-stress tensor, the velocity, the
pressure, and the temperature of the fluid). Which allow us to join the polymeric and solvent
viscosities in a dimensionless viscosity, and to eliminate the polymeric part of the extra-stress
tensor and the pressure from the system, which, together with the solvent part of the extra-
stress tensor, were recovered through of an appropriate postprocessing formula. In this sense,
a fully-mixed approximation was applied, in which the heat-flux vector was incorporated as an
additional unknown. We prove solvability of both the continuous and discrete problems as well
as its corresponding a priori estimate.

5. We established the a posteriori error analysis for the fully-mixed finite element method associated
to the non-isothermal Oldroyd–Stokes problem. We derived two reliable and efficient residual-
based a posteriori error estimators.

Future works

The methods developed and the results obtained in this thesis have motivated to several ongoing and
future projects. Some of them are described below:

1. A posteriori error analysis for the Navier–Stokes/Darcy–Forchheimer coupled prob-
lem.
As a natural continuation, we are interested in carrying out an a posteriori error analysis for
the coupled problem studied in Chapter 3 to improve its robustness in the context of problems
involving complex geometries or solutions with high gradients.

2. Analysis of an augmented mixed-primal formulation for the non-isothermal Oldroyd–
Stokes problem.
As a complement and alternative to our fully-mixed method presented in Chapter 4, we are
interested in studying a formulation that is mixed in the fluid but without considering the vorticity
as an unknown of the system as in [29] and primal in the heat as in [50]. Consequently, this
approach allows us to eliminate two unknowns from the system (vorticity and heat-flux) and
several redundant Galerkin terms associated with them.

3. Development of new mixed finite element methods for the non-isothermal Stokes–
Darcy coupled problem.
In accordance with the theoretical and numerical techniques applied to coupled problems in
porous media and non-isothermal flows developed in this thesis. We are interested in extend our
study to the non-isothermal Stokes–Darcy coupled problem proposed in [55], in order to model
the movement of a non-isothermal quasi-Newtonian viscous fluid that occupies the region ΩS

(modelled by the Stokes equation with temperature-dependent viscosity) which flows towards
and from a porous medium ΩD through Σ, where ΩD is saturated with the same fluid (modelled
by the Darcy equation with temperature-dependent viscosity and permeability).
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4. Development of new mixed finite element methods for the double-diffusive non-linear
convection problem through a porous medium.
Finally, another future goal is to analyse the problem of double-diffusive non-linear convection
through a porous medium based upon the Brinkman–Forchheimer model proposed in [119]:

−µ0Da∆u + Mu + σDaRθ|u|u +∇p = f(θ, S) in Ω, div u = 0 in Ω,

−div (N∇θ) +Rθu · ∇θ = 0 in Ω, −div (Q∇S) + τRSu · ∇S = 0 in Ω,

u = uD on ∂Ω, θ = θD on ∂Ω, S = SD on ∂Ω,

where u is the filtration velocity, p is the pressure, θ is the temperature, and S is the concentration
of a fluid occuping the region Ω. In addition, M, N, and Q are the permeability, thermal
diffusion and concentration diffusion tensors, respectively, meanwhile Rθ, RS , Da, σ, τ , and µ0

are physical constants. According to the mathematical structure of this model, the study carried
out in Chapter 3 for porous media modelled by the Darcy–Forchheimer equation and the theory
for non-isothermal fluids developed in Chapters 4 and 5, we plan to extend our technical and
numerical techniques to this model, considering an approach based on mixed-primal and fully-
mixed finite element methods, as well as their corresponding adaptive algorithms. We advance
that by introducing the tensor T := µ0Da∇u− pI, the first two equations of the system can be
rewritten as:

1

µ0Da
Td = ∇u in Ω, −div (T) + Mu + σDaRθ|u|u = f(θ, S) in Ω,

where the pressure p = − 1

n
tr (T) in Ω, it has been removed from the system and can be recovered

by post-processing. This approach motivates the study of a mixed formulation for the Brinkman–
Forchheimer equations.



Conclusiones y trabajos futuros

Conclusiones

En esta tesis desarrollamos métodos de elementos finitos mixtos para un conjunto de ecuaciones dife-
renciales parciales de interés físico en mecánica de fluidos, más precisamente, problemas lineales y no
lineales acoplados en medios porosos y flujos no isotérmicos. Hemos demostrado solubilidad de los prob-
lemas continuo y discreto, así como su convergencia, todo ilustrado mediante ejemplos y simulaciones
numéricas. Las principales conclusiones de este trabajo son:

1. Introdujimos un método de elementos finitos completamente mixto para el problema acoplado de
Navier–Stokes/Darcy con viscosidad no lineal. El problema original fue reformulado mediante un
enfoque variacional aumentado para el fluido viscoso incompresible modelado por las ecuaciones
de Navier–Stokes (con viscosidad no lineal) acoplado con una formulación mixta para el flujo
en el medio poroso descrito por las ecuaciones de Darcy lineal. Seguidamente, a través de una
estrategía de punto fijo junto con supuestos de datos suficientemente pequeños, fue desarrollado
el análisis de solubilidad correspondiente. Consecuentemente, se derivó un método de elementos
completamente mixto aumentado para espacios genéricos, y luego se probó que el mismo estaba
bien puesto. En particular, para espacios de Raviart–Thomas en 2D y 3D se demostró conver-
gencia del método. Finalmente, se reportaron varios experimentos numéricos que validaron el
buen desempeño del método y que confirmaron los órdenes de convergencia correspondientes.

2. Establecimos el análisis de error a posteriori para el método de elementos finitos completamente
mixto aumentado asociado al problema acoplado de Navier–Stokes/Darcy con viscosidad no li-
neal. Derivamos un estimador de error a posteriori confiable y eficiente de tipo residual para dicho
esquema. Además, se proporcionaron varios resultados numéricos que ilustraron la confiabilidad
y la eficiencia del estimador, junto con el comportamiento esperado del algoritmo adaptativo
asociado.

3. Desarrollamos un método de elementos finitos mixto para el problema acoplado de Navier–
Stokes/Darcy–Forchheimer con viscosidad y densidad constantes. Por medio de una estrategía de
punto fijo, resultados clásicos de operadores monótonos no lineales, y supuestos de dato pequeño,
desarrollamos el análisis de solubilidad para los problemas continuo y discreto. En particular,
consideramos espacios de Bernardi–Raugel para la velocidad en el fluido, elementos de Raviart–
Thomas de bajo orden para la velocidad de filtración en el medio poroso, constantes a trozos
con medida nula para la presiones, y constantes a trozos para el multiplicador de Lagrange sobre
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la interfaz. Teóricamente y numéricamente obtuvimos órdenes de convergencia sub-óptimos y
óptimos, respectivamente.

4. Introdujimos un nuevo método de elementos finitos completamente mixto para el problema de
Oldroyd–Stokes no isotérmico. Por conveniencia del análisis, introdujimos el tensor de pequeñas
deformaciones, la vorticidad, y el esfuerzo como incógnitas adicionales (además de la parte
polimérica del tensor de extra-esfuerzo, la velocidad, la presión, y la temperatura del fluido).
Lo que nos permitió unir las viscosidades polimérica y solvente en una viscosidad adimensional,
y eliminar del sistema la parte polimérica del tensor de extra-esfuerzo y la presión, las que, junto
con la parte solvente del tensor de extra-esfuerzo, fueron recuperadas a través de una fórmula
de postproceso adecuada. En este sentido, una aproximación completamente mixta fué aplicada,
en la que el vector de flujo de calor se incorporó como una incógnita adicional. Demostramos
solubilidad de los problemas continuo y discreto, con su estimación a priori correspondiente.

5. Establecimos el análisis de error a posteriori para el método de elementos finitos completamente
mixto aumentado asociado al problema de Oldroyd–Stokes no isotérmico. Derivamos dos esti-
madores de error a posteriori confiables y eficientes de tipo residual para dicho esquema.

Trabajos futuros

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios proyectos en
proceso y a futuro. Algunos de ellos son descritos a continuación:

1. Análisis de error a posteriori para el problema acoplado de Navier–Stokes/Darcy–
Forchheimer.
Como una continuación natural, estamos interesados en llevar a cabo un análisis de error a
posteriori para el problema acoplado estudiado en el Capítulo 3 para mejorar su robustez ante
problemas en los cuales se involucran geometrías complejas o soluciones con altos gradientes.

2. Análisis de una nueva formulación mixta-primal aumentada para el problema de
Oldroyd–Stokes no isotérmico.
Como complemento y alternativa a nuestro método completamente mixto presentado en el Capí-
tulo 4, nos interesa estudiar una formulación que sea mixta en el fluido pero sin considerar la
vorticidad como incógnita del sistema al igual que en [29] y primal en el calor como en [50]. En
consecuencia, este enfoque nos permite eliminar dos incógnitas de sistema (la vorticidad y el flujo
de calor) y varios términos de Galerkin asociados a ellos.

3. Desarrollo de nuevos métodos de elementos finitos mixtos para el problema acoplado
de Stokes–Darcy no isotérmico.
Acorde a las técnicas teóricas y numéricas aplicadas a problemas acoplados en medios porosos
y flujos no isotérmicos desarrolladas en esta tesis. Estamos interesados en extender nuestro
estudio al problema acoplado de Stokes–Darcy no isotérmico propuesto en [55], el cual modela
el movimiento de un fluido viscoso cuasi-Newtoniano no isotérmico que ocupa el dominio ΩS

(modelado por la ecuación de Stokes con viscosidad dependiente de la temperatura) y que fluye
hacia y desde el dominio ΩD a través de la interfaz Σ, donde ΩD está saturado con el mismo
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fluido (modelado por la ecuación de Darcy con viscosidad y permeabilidad dependiente de la
temperatura).

4. Desarrollo de nuevos métodos de elementos finitos mixtos para el problema de con-
vección no lineal doble-difusivo a través de un medio poroso.
Finalmente, otro objetivo a futuro es analizar el problema de convección no lineal doble-difusivo
a través de un medio poroso modelado por las ecuaciones de Brinkman–Forchheimer propuesto
en [119]:

−µ0Da∆u + Mu + σDaRθ|u|u +∇p = f(θ, S) en Ω, div u = 0 en Ω,

−div (N∇θ) +Rθu · ∇θ = 0 en Ω, −div (Q∇S) + τRSu · ∇S = 0 en Ω,

u = uD sobre ∂Ω, θ = θD sobre ∂Ω, S = SD sobre ∂Ω,

donde u es la velocidad de filtración, p es la presión, θ es la temperatura, y S es la concentración
del fluido que ocupa la región Ω. Además, M, N, y Q son los tensores de permeabilidad, de
difusión térmica, y de difusión de la concentración, respectivamente, mientras que Rθ, RS , Da,
σ, τ , y µ0 son constantes físicas. Acorde a la estructura matemática de este modelo, el estudio
realizado en el Capítulo 3 para medios porosos modelados por la ecuación de Darcy–Forchheimer
y la teoría para fluidos no isotérmicos desarrollada en los Capítulos 4 y 5, pretendemos extender
nuestras técnicas teóricas y numéricas a dicho modelo, considerando un enfoque basado en méto-
dos de elementos finitos mixto-primal y completamente mixto, así como sus correspondientes
algoritmos adaptativos. Adelantamos que al introducir el tensor T := µ0Da∇u − pI, las dos
primeras ecuaciones del sistema pueden ser reescritas como:

1

µ0Da
Td = ∇u en Ω, −div (T) + Mu + σDaRθ|u|u = f(θ, S) en Ω,

donde la presión p = − 1

n
tr (T) en Ω, ha sido eliminada del sistema y puede ser recuperada por

postproceso. Este enfoque, motiva el estudio de una formulación mixta para las ecuaciones de
Brinkman–Forchheimer.
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