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Abstract

The main goal of this dissertation is to develop and to apply diverse mathematical and numerical
techniques, based on mixed finite element methods and fixed-point strategies, in order to establish the
solvability of coupled problems arising in the context of fluid mechanics and that are frequently found
in transport processes through viscous flows in porous media.

We firstly derive an augmented mixed–primal finite element method for a viscous flow–transport
problem. The model consists in the coupling of a scalar nonlinear convection–diffusion equation with
the Stokes problem (written in terms of Cauchy pseudostress) where the viscosity depends on the dis-
tribution of the solution to the transport equation, which in turn, exhibits a diffusivity term depending
on the gradient norm of that solution. One of the main difficulties to obtain numerical approximations
of such a coupling is due to the nonlinearities present in the field equations. A novel result in this
work is the derivation of a variational formulation for this system by introducing an augmented mixed
approach for the fluid flow coupled with a primal method for the transport equation. The solvabil-
ity of such formulation is stated by combining fixed point arguments and suitable estimates arising
from the connection between certain regularity assumptions, and the Sobolev embedding and Rellich-
Kondrachov compactness theorems. As a consequence, the existence of solution of the continuous and
discrete schemes is obtained by applying the classical Schauder and Brouwer fixed point theorems,
respectively. For the corresponding Galerkin scheme we make use of Raviart-Thomas spaces of order
k for the Cauchy pseudostress computation, and continuous piecewise polynomials of degree ≤ k + 1

for both velocity and the scalar field. Afterwards, under the assumption of sufficiently small data and
employing suitable Strang-type estimates, we provide optimal a priori error bounds. Secondly, we
derive two different efficient and reliable residual-based a posteriori error estimators for the associated
Galerkin scheme. Our analysis of reliability of the proposed estimators is mainly based on the use
of suitable ellipticity and inf-sup conditions together with a Helmholtz decomposition, and the local
approximation properties of the Clément interpolant and Raviart-Thomas operator. On the other
hand, the main tools employed to show their efficiency include suitable inverse inequalities and the
localization technique based on triangle-bubble and edge-bubble functions.

Next, the aforementioned methodology is extended to establish the a priori and a posteriori error
analysis of a mixed–primal finite element method for a sedimentation-consolidation system, where
the flow patterns are governed by the Brinkman equations with variable viscosity and the diffusion
coefficient in the transport equation depends only on the concentration. As a consequence, we derive
optimal a priori error estimates for the associated Galerkin scheme, together with two efficient and
reliable residual-based a posteriori error estimators, which constitutes one of the main contributions
of this work. Here the Cauchy pseudostress is approximated by Raviart-Thomas spaces of order k,
whereas the velocity and concentration are computed by using continuous piecewise polynomials of
degree ≤ k + 1.
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Finally, we close by providing a vorticity-based fully-mixed finite element method to numerically
approximate the flow patterns of a viscous fluid within a highly permeable medium, described by
Brinkman equations (written in terms of vorticity, velocity and pressure), and its interaction with
classical porous media flow governed by Darcy’s law. The two domains are separated by an essentially
fixed interface, across which the flow passes from viscous to a non-viscous regime. In turn, suitable
boundary and transmission conditions on velocities, pressures and the vorticity are considered. In this
work we introduce a mixed variational formulation which leads to the incorporation of a Lagrange
multiplier enforcing the pressure continuity across the interface. Then, the classical Babuška-Brezzi
theory is applied in such a way that the continuous inf-sup conditions of the main bilinear form
are obtained by employing the so-called T -coercivity approach, which allows us to guarantee the well-
posedness of the continuous formulation. Next, we adapt the aforementioned arguments to the discrete
case and show that, under suitable assumptions on the discrete subspaces involved, the corresponding
Galerkin scheme is well-posed. Here we use a finite element family for which the curl of the subspace
approximating the vorticity must be contained in the space where the discrete velocity of the fluid lives,
and hence Raviart-Thomas and Nédélec finite elements for velocities and vorticity, respectively, become
feasible choices. In turn, the pressures and the Lagrange multiplier are approximated, respectively,
by discontinuous and continuous piecewise polynomials. Later, we modify the mixed formulation
by incorporating a residual-type term arising from the Brinkman momentum equation, and show
that the resulting augmented scheme yields a strongly elliptic global bilinear form, without requiring
the aforementioned constraint on the discrete space approximating the vorticity. Whereby any finite
element subspace of continuous product space can be applied.

For all situations described above we provide several numerical experiments illustrating the satis-
factory performance of the proposed methods, and confirming the theoretical results such as the orders
of convergence as well as the reliability and efficiency of the proposed a posteriori error estimators.
These examples also serve to gain insight about the behavior of the underlying physical phenomena of
interest.



Resumen

El objetivo principal de esta disertación es desarrollar y aplicar diversas técnicas matemáticas y
numéricas, basadas en métodos de elementos finitos mixtos y estrategias de punto fijo, con el propósito
de establecer la solubilidad de problemas acoplados que surgen dentro del contexto de la mecánica
de fluidos y que se encuentran con frecuencia en procesos de transporte a través de flujos viscosos en
medios porosos.

En primer lugar, se deriva un método de elementos finitos mixto–primal aumentado para un pro-
blema acoplado de flujo viscoso con transporte. El modelo consiste en el acoplamiento de un problema
de convección-difusión escalar no lineal con el problema de Stokes (escrito en términos del pseudo-
esfuerzo de Cauchy) donde la viscosidad depende de la distribución de la solución a la ecuación de
transporte, la cual a su vez, exhibe un término de difusión que depende de la norma del gradiente
de esa solución. Una de las principales dificultades para obtener aproximaciones numéricas de un
acoplamiento de este tipo se debe a las no linealidades presentes en las ecuaciones de campo. Un resul-
tado novedoso en este trabajo es la derivación de una formulación variacional para este acoplamiento
mediante la introducción de un enfoque mixto aumentado para el flujo del fluido acoplado con un
método primal para el problema de transporte. La solubilidad de dicha formulación se establece
combinando argumentos de punto fijo y estimaciones adecuadas que surgen a partir de la conexión
entre ciertos supuestos de regularidad y los teoremas de inclusión y compacidad de Sobolev y Rellich-
Kondrachov, respectivamente. Como consecuencia de ello, la existencia de solución de los esquemas
continuo y discreto se concluye aplicando los teoremas clásicos de punto fijo de Schauder y Brouwer,
respectivamente. Para el esquema de Galerkin correspondiente se utilizan espacios de Raviart-Thomas
de orden k para el cálculo del pseudo-esfuerzo de Cauchy, y polinomios continuos a trozos de grado
≤ k+ 1 para la velocidad y el campo escalar. Luego, bajo datos suficientemente pequeños y aplicando
desigualdades adecuadas de tipo Strang, se proporcionan cotas de error a priori óptimas. En segundo
lugar, se desarrolla un análisis de error a posteriori para el esquema de Galerkin asociado. Aquí se
derivan dos estimadores de error a posteriori residuales para ese esquema, los cuales son confiables
y eficientes. El análisis de confiabilidad de los estimadores propuestos se basa principalmente en el
uso de elipticidades y condiciones inf-sup adecuadas junto con una descomposición de Helmholtz, y
las propiedades de aproximación locales del operador de interpolación de Clément y del operador de
Raviart-Thomas. Por otra parte, las principales herramientas empleadas para mostrar sus eficiencias
incluyen desigualdades inversas adecuadas y la técnica de localización que se basa en funciones burbujas
sobre triángulos y lados.

Luego, la metodología anterior es extendida para establecer el análisis de error a priori y a posteriori
de un método de elementos finitos mixto–primal para un sistema de sedimentación-consolidación, donde
los patrones de flujos se rigen por las ecuaciones de Brinkman con viscosidad variable y el coeficiente
de difusión en la ecuación de transporte depende solamente de la concentración. En consecuencia,
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se derivan estimaciones óptimas de error a priori para el esquema de Galerkin asociado, junto con
dos estimadores de error a posteriori residuales, confiables y eficientes, lo cual constituye una de las
principales contribuciones de este trabajo. Aquí el pseudo-esfuerzo de Cauchy es aproximado con
espacios de Raviart-Thomas de orden k, mientras que la velocidad y la concentración son calculadas
usando polinomios continuos a trozos de grado ≤ k + 1.

Finalmente, se cierra esta tesis con el desarrollo de un método de elementos finitos completamente
mixto basado en vorticidad para aproximar los patrones de flujo de un fluido viscoso dentro de un medio
altamente permeable, descrito por las ecuaciones de Brinkman (escritas en términos de la vorticidad,
velocidad y la presión del fluido), y su interacción con un flujo en un medio poroso gobernado por
la ley de Darcy. Los dos dominios están separados por una interfaz esencialmente fija, a través de la
cual el flujo pasa de viscoso a un régimen no viscoso. A su vez, se consideran condiciones de frontera
y de transmisión adecuadas sobre las velocidades, las presiones y la vorticidad. En este trabajo se
introduce una formulación variacional mixta, la cual conduce a la incorporación de un multiplicador
de Lagrange, el cual impone la continuidad de la presión a través de la interfaz. Despúes, la teoría
clásica de Babuška-Brezzi se aplica de tal forma que las condiciones inf-sup continuas de la forma
bilineal principal se obtienen empleando la técnica conocida como T -coercividad, lo cual nos permite
garantizar el buen planteamiento de la formulación continua. Luego, los argumentos mencionados
anteriormente son adaptados al caso discreto para mostrar que, bajo supuestos adecuados sobre los
subespacios discretos involucrados, el esquema de Galerkin correspondiente está bien puesto. Aquí
se utiliza una familia de elementos finitos donde el curl del subespacio que aproxima a la vorticidad
debe estar contenido en el espacio donde vive la velocidad discreta del fluido, y por lo tanto una
elección factible consiste en elementos finitos de Raviart-Thomas y de Nédélec para las velocidades y la
vorticidad, respectivamente. A su vez, las presiones y el multiplicador de Lagrange son aproximados,
respectivamente, por polinomios continuos y discontinuos a trozos. Posteriormente, la formulación
mixta es modificada incorporando un término de tipo residual que surge de la ecuación de momentum
de Brinkman, y se muestra que el esquema aumentado resultante, el cual conduce a una forma bilineal
global fuertemente elíptica, no requiere la restricción mencionada anteriormente sobre el espacio que
aproxima la vorticidad, con lo cual cualquier subespacio de elementos finitos del espacio producto
continuo puede ser aplicado.

Para todas las situaciones descritas anteriormente se proporcionan varios experimentos numéricos
que ilustran el desempeño satisfactorio de los métodos propuestos, y que confirman los resultados
teóricos de convergencia así como la confiabilidad y la eficiencia de los estimadores de error a posteriori
derivados. Estos ejemplos también sirven para obtener información sobre el comportamiento de los
fenómenos físicos subyacentes de interés.
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Introduction

Motivation

The modelling of phenomena arising from processes classically described by using continuum me-
chanics, as well as the design of suitable numerical methods to approximate the solution of the corre-
sponding systems of partial differential equations, remains a very active field of research in the scientific
community of Numerical Analysis. A notable example is the flow and transport of constituents within
incompressible fluids. Many of these phenomena involve linear and nonlinear couplings, for which nu-
merical approximations of the velocity field, pressure, temperature, stress, or pseudostress are usually
required. In such scenarios, mixed finite element methods are very suitable since, besides the original
unknowns, they yield direct computation of several quantities of physical interest. In particular, the
need of obtaining accurate approximations of additional fields has motivated the successful derivation
of a wide range of formulations in the framework of Stokes and Navier-Stokes equations, including for
instance, stress-velocity formulations (see [34, 53, 62, 75] and the references therein). They feature
the clear advantage (with respect to classical velocity-pressure formulations) that these auxiliary fields
of interest are computed directly, without resorting to any kind of post-process of the velocity by nu-
merical differentiation, which usually yields an important loss in accuracy. Other physical quantities
such as the vorticity and gradient of velocity (or temperature), can also be directly approximated by
a mixed finite element approach (see e.g. [11, 43, 65, 73]).

On the other hand, fully mixed finite element methods, mixed–primal approximations, and suitable
augmented versions allow us to derive new numerical schemes leading to the numerical solution of a wide
range of problems arising in fluid mechanics (see e.g. [11, 12, 35, 43, 44, 72, 73, 75]). In particular, one
advantage of augmented methods is given by the fact that, besides to greatly simplifying the analysis,
they lead to numerical approximations of the unknowns of interest using standard finite element spaces.

This thesis is motivated by the design and analysis of numerical schemes based on finite elements
to solve coupled problems that have a relevant physical interest in fluid mechanics and engineering
applications including: wastewater treatment, distillation processes, pulp-and-paper industries, cooling
systems for electronic devices, oil extraction processes, and contamination of the groundwater, among
others. More precisely, we are interested in studying transport problems through viscous flows in
porous media. Many of these phenomena can be governed by nonlinear systems of partial differential
equations consisting in the coupling of the Stokes, Brinkman, Navier-Stokes or Darcy equations with
a convection–diffusion equation. Solving these problems numerically, both accurately and efficiently,
is usually difficult due to the combination of strong nonlinearities with the coupling between the field
equations.
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Goals of the thesis

According to the above discussion, this thesis contributes to the development of new mixed finite
element methods to simulate several problems in fluid mechanics, specially oriented to the transport
of particles of low concentration through viscous flows in porous media. In turn, throughout the
mathematical and numerical analysis in this work, we aim to establish a general theoretical framework
to guarantee the solvability and stability of a wide class of coupled problems.

More precisely, we are interested in:

• Providing suitable variational formulations to establish existence and uniqueness of the continu-
ous solution for the set of governing equations, using fixed-point strategies and classical results
for variational problems.

• Deriving the corresponding Galerkin scheme and employing appropiate finite element spaces, in
order to respect the mathematical and physical structure of the underlying problem.

• Analyzing the solvability of the Galerkin scheme and establishing the corresponding convergence
results.

• Deriving a posteriori error estimators to establish adaptive methods allowing to improve the
accuracy of the numerical approximations, mainly under presence of singularities or high gradients
of the solution.

• Validating the theoretical results through extensive testing and illustrative numerical simulations,
covering both academic and application-oriented examples.

Model problems

First let us stress that modelling aspects are not part of the main objectives of this work, and
therefore the governing continuum-based models will be assumed as given, and no further effort will
be made to derive the particular set of equations.

We firstly are interested in studying the following system of partial differential equations

σ = µ(φ)∇u − p I , −divσ = fφ , divu = 0 ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k , − div σ̃ = g ,
(1)

which describes the stationary state of the transport of species φ (cf. second row in (1)) in an immiscible
fluid whose dynamic is governed by the Stokes equations (cf. first row of (1)) in a given domain Ω.
In this problem the sought quantities are: the Cauchy fluid stress σ, the velocity of fluid u, the
pressure p, and the local concentration of species φ. Here the viscosity µ, the diffusion coefficient ϑ,
and the flux function γ, depend nonlinearly on φ. In turn, f and g are given functions. In addition,
suitable mixed boundary conditions on u, σ, σ̃, and φ complement the system (1). Depending on
the nature of φ (which may represent the concentration of some chemical component, or temperature)
this problem can be relevant to a number of practical engineering applications including; natural and
thermal convection, aluminum production, chemical distillation processes, formation of fog, granular
flows, motion of biomenbranes, among others.
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Next, we address an extention of the problem given in (1), described by the following system of
equations

σ = µ(φ)∇u − p I , K−1u − divσ = fφ , divu = 0 ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k , β φ − div σ̃ = g .
(2)

where, in contrast with (1), the Brinkman termK−1u is incorporated into the equations modeling the
fluid. In turn, the diffusion coefficient ϑ depends on φ instead of |∇φ|, and the mass term β φ is added
to the second equation of the second row in (1). In this case, the model described by (2) has a relevant
physical interest, since it corresponds to a specific configuration in the modelling of sedimentation-
consolidation processes (see [31, 32, 96]). The numerical approximation of the macroscopic description
in sedimentation processes is needed in a wide variety of physical phenomena and industrial processes
including wasterwater treatment, mineral processing, clot formation within the blood, fluidized beds,
and many others.

It is important to remark that the problems given by (1) and (2) are strongly nonlinearly coupled,
representing a further difficulty. On the other hand, the solvability of the sedimentation-consolidation
problem has been previously discussed in [29], for the case of large fluid viscosity, using the technique
of parabolic regularization. Nevertheless, as we will see more precisely in Section 3.2.1 (see eq. (3.3)),
we still remain in the framework of non-degeneracy of the diffusion coefficient. On the other hand, it
is worth mentioning that models of sedimentation-consolidation share some structural similarities with
Boussinesq- and Oldroyd- type models, for which several mixed formulations have been proposed (see
[44, 45, 53, 54, 55, 90]). However, up to our knowledge, mixed formulations specifically tailored for the
study of sedimentation processes are not yet available from the literature.

Finally, we focus on the mathematical and numerical analysis for the following Brinkman-Darcy
coupled problem in R3

αuB + ν curlωB + ∇pB = fB

ωB − curluB = 0

divuB = 0

 en ΩB , (3)

and
µuD +∇pD = fD

divuD = 0

}
en ΩD , (4)

which is formulated in terms of the velocity uB, the vorticity ωB, and the pressure pB, for the Brinkman
model. In this case, the above model describes the flow patterns of a viscous fluid within a highly
permeable medium ΩB, given by Brinkman equations (cf. (3)), and its interaction with non-viscous
flow within classical porous media ΩD, governed by Darcy’s equations (cf. (4)). In this model, ν > 0

represents the viscosity of the fluid, µ > 0 depends on this viscosity and on the permeability of
the porous media, which is assumed to be homogeneous, and α > 0 is a parameter related to the
relaxation time. Here fB and fD are given functions. In addition, for the coupled problem (3)-(4)
suitable transmission conditions (on the interface that split the domains ΩB and ΩD) for the velocities
uB, uD, and the pressures pB and pD, are introduced. Finally, suitable boundary conditions on uB,
uD, and ωB complement the model problem (3)-(4). Such a model is often encountered in the modeling
petroleum reservoir, perfusion of physiological fluids into soft tissues, and other phenomena related
with filtration processes. Up to our knowledge, the coupling of Brinkman and Darcy flows has been
only addressed in terms of the primal unknowns of velocity and pressure (see [25, 52, 85]). Vorticity-
based formulations for the Stokes-Darcy coupling were introduced in [19] and later studied in [18, 51].
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In particular, the contributions [19] and [18] include a slightly different formulation for a model where
the fluid boundary coincides with the interface between both domains. On the other hand, in [18],
higher regularity of the fluid pressure is required for the analysis, whereas at discrete level a family of
nonconforming discretizations, consisting in Nédélec elements for vorticity, piecewise constant elements
for velocity, and Crouzeix-Raviart elements for the pressure, is employed.

Outline of the thesis

The present work is organized as follows. In Chapter 1 we begin by analyzing the nonlinear
coupling given in (1). An augmented variational approach for the fluid flow coupled with a primal
formulation for the transport model is proposed. The resulting Galerkin scheme yields an augmented
mixed–primal finite element method employing Raviart-Thomas spaces of order k for the Cauchy stress,
and continuous piecewise polynomials of degree≤ k+1 for the velocity and also for the scalar field. Here
the classical Schauder and Brouwer fixed point theorems are utilized to establish existence of solution
of the continuous and discrete formulations, respectively. In turn, suitable estimates arising from
the connection between a regularity assumption and the Sobolev embedding and Rellich-Kondrachov
compactness theorems, are also employed in the continuous analysis. Then, sufficiently small data
allow us to prove uniqueness and to derive optimal a priori error estimates. The contents of this
chapter originally appeared in the following paper:

[4] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed–primal finite
element method for a coupled flow–transport problem. ESAIM: Mathematical
Modelling and Numerical Analysis. Vol. 49, 3, pp. 1399–1427, (2015).

In Chapter 2 we develop an a posteriori error analysis for the augmented mixed–primal finite
element method of the coupled fow–transport problem studied in [4]. More precisely, we derive two
efficient and reliable residual-based a posteriori error estimators for that scheme: For the first estimator,
and under suitable assumptions on the domain, we apply a Helmholtz decomposition and exploit
local approximation properties of the Clément interpolant and Raviart-Thomas operator to show its
reliability. On the other hand, its efficiency follows from inverse inequalities and the localization
arguments based on triangle-bubble and edge-bubble functions. Next, an alternative error estimator is
proposed, whose reliability can be proved without resorting to Helmholtz decompositions. The contents
of this chapter are part of the following paper:

[7] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A posteriori error analysis for
a viscous flow–transport problem. ESAIM: Mathematical Modelling and Nu-
merical Analysis. Vol. 50, 6, 1789–1816, (2016).

The Chapter 3 is devoted to the mathematical and numerical analysis of the strongly coupled
flow and transport system given by (2). The model focuses on the steady-state regime of a solid-liquid
suspension immersed in a viscous fluid within a permeable medium, and the governing equations consist
in the Brinkman problem with variable viscosity, written in terms of Cauchy pseudostresses and bulk
velocity of the mixture; coupled with a nonlinear advection–diffusion equation describing the transport
of the solids volume fraction. Here, we extend the approach and the fixed point strategy introduced
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in [4] to the present context. The contents of this chapter gave rise to the following paper:

[5] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A mixed–primal finite element
approximation of a sedimentation-consolidation system. M3AS: Mathematical
Models and Methods in Applied Sciences. vol. 26, 5, pp. 867–900, (2016).

In the Chapter 4 we develop the a posteriori error analysis of an augmented mixed–primal finite
element method for the 2D and 3D versions of the sedimentation-consolidation system studied in [5].
In this chapter, we derive two efficient and reliable residual-based a posteriori error estimators for
the corresponding Galerkin scheme. The derivation of the 2D version of these estimators follows very
closely the analysis developed in [7]. For the first estimator we make use of suitable ellipticity and
inf-sup conditions together with a Helmholtz decomposition and the local approximation properties of
the Clément interpolant and Raviart-Thomas operator to show its reliability. Then, its efficiency is
derived from inverse inequalities and localization arguments based on triangle-bubble and edge-bubble
functions. Afterwards, we deduce a second reliable and efficient a posteriori error estimator, where the
Helmholtz decomposition is not employed in the corresponding proof of reliability. Next, we employ
the recent results from [64] to extend the analysis above to the 3D version of these two estimators.
The contents of this chapter have inspired the following paper, submitted for publication:

[6] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A posteriori error analysis for
a sedimentation–consolidation system. Preprint 2016-26, Centro de Investigación en
Ingeniería Matemática (CI2MA). Universidad de Concepción, Chile, (2016).

Finally, in Chapter 5, we propose and analyze a vorticity-based fully-mixed finite element method
to numerically approximate the flow patterns governed by the Brinkman-Darcy equations (3)-(4).
Here for sake of the analysis, the tangential component of the vorticity is supposed to vanish on the
whole boundary of the fluid, whereas null normal components of both velocities are assumed on the
respective boundaries, except on the interface where suitable transmission conditions are considered.
In this way, the derivation of the corresponding mixed variational formulation leads to incorporate
a Lagrange multiplier enforcing the pressure continuity across the interface, whereas mass balance
results from essential boundary conditions on each domain. As a consequence, a typical saddle-point
operator equation is obtained, and hence the classical Babuška-Brezzi theory is applied to show the
well-posedness of the continuous and discrete schemes. In particular, we remark that the continuous
and discrete inf-sup conditions of the main bilinear form are proved by using suitably chosen injective
operators to get lower bounds of the corresponding suprema, which constitutes a previously known
technique, introduced in [69, 70, 71], and recently denominated T -coercivity (see [22, 39]). In turn, and
consistently with the above, the stability of the Galerkin scheme requires that the curl of the finite
element subspace approximating the vorticity be contained in the space where the discrete velocity of
the fluid lives, which yields Raviart-Thomas and Nédélec finite element subspaces as feasible choices.
Then we show that the aforementioned constraint can be avoided by augmenting the mixed formulation
with a residual-type term arising from the Brinkman momentum equation. The contents of this chapter
originally appeared in the following paper:
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[8] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, Analysis of a vorticity-based fully-
mixed formulation for the 3D Brinkman-Darcy problem. Computer Methods in
Applied Mechanics and Engineering. vol. 307, pp. 68–95, (2016).

Throughout the five chapters of this thesis, our theoretical results such as orders of convergence
and the reliability and efficiency of the corresponding a posteriori error estimators, are illustrated via
several numerical tests, highlighting also the good performance of the discrete scheme proposed and
the associated adaptive algorithms. The set of numerical experiments includes examples in 2D and 3D,
where we provided even examples not fully covered by the theory. The computational implementations
were obtained employing the freely available finite element libraries; FreeFem++, Lifev, and FEniCS,
the open source mesh generator Gmsh, and the illustrator Paraview.

Preliminary Notations

Let us denote by Ω ⊆ Rn, n = 2, 3 a given bounded domain with polyhedral boundary Γ = Γ̄D∪Γ̄N,
with ΓD∩ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by ν the outward unit normal vector on Γ. Standard
notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω and
seminorm | · |s,Ω. In particular, H1/2(Γ) stands for the space of traces of functions of H1(Ω) and
H−1/2(Γ) denotes its dual. By M and M we will denote the corresponding vectorial and tensorial
counterparts of the generic scalar functional space M, and ‖ · ‖, with no subscripts, will stand for the
natural norm of either an element or an operator in any product functional space. In turn, for any
vector field v = (vi)i=1,n we set the gradient and divergence operators as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

and div v :=
n∑
j=1

∂vj
∂xj

.

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I .

Furthermore, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm

‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω ,

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows I stands for the
identity tensor in R := Rn×n, and | · | denotes the Euclidean norm in R := Rn.



Introducción

Motivación

El modelamiento de fenómenos provenientes de procesos clásicos descritos a través de la mecánica de
medios continuos, así como el diseño de métodos numéricos apropiados para aproximar la solución de los
sistemas de ecuaciones diferenciales parciales correspondientes, sigue siendo un campo de investigación
que mantiene muy activa a la comunidad científica del área de Análisis Numérico. Un ejemplo notable
corresponde al flujo y transporte de constituyentes dentro de fluidos incompresibles. Muchos de estos
fenómenos involucran acoplamientos lineales y no lineales, para los cuales por lo general se requieren
aproximaciones numéricas del campo de velocidad, presión, temperatura, esfuerzos, o pseudo-esfuerzos.
En este tipo de escenarios, los métodos de elementos finitos mixtos resultan muy apropiados ya que,
además de las incógnitas originales, ellos proporcionan el cálculo directo de varias otras cantidades de
interés físico. En particular, la necesidad de obtener aproximaciones precisas de campos adicionales ha
motivado la derivación con éxito de una amplia gama de formulaciones en el marco de las ecuaciones
de Stokes y Navier-Stokes, incluyendo por ejemplo formulaciones para el esfuerzo y la velocidad (ver
[34, 53, 62, 75]). Estas se caracterizan por la ventaja (con respecto a las formulaciones clásicas para la
velocidad y la presión) de que los campos auxiliares de interés se calculan directamente, sin recurrir a
ningún tipo de post-proceso del campo de velocidades por diferenciación numérica, que por lo general
produce una pérdida importante en la precisión. Otras cantidades físicas tales como la vorticidad y
el gradiente de la velocidad (o de la temperatura), también se pueden aproximar de manera directa a
través de un enfoque de elementos finitos mixtos (ver por ejemplo [11, 43, 65, 73]).

Por otra parte, métodos de elementos finitos completamente mixtos, aproximaciones de tipo mixto-
primal, y versiones aumentadas adecuadas, permiten derivar nuevos esquemas numéricos que conducen
a la solución numérica de una gran cantidad de problemas que surgen en mecánica de fluidos (ver por
ejemplo [11, 12, 35, 43, 44, 72, 73, 75]). En particular, una de las ventajas de los métodos aumentados
corresponde al hecho de que, además de simplificar enormemente el análisis, ellos conducen a aproxi-
maciones numéricas de las incógnitas de intéres utilizando espacios de elementos finitos habituales.

Esta tesis está motivada por el diseño y el análisis de esquemas numéricos basados en un enfoque de
elementos finitos para resolver problemas acoplados que tienen un gran interés físico en mecánica de
fluidos y en aplicaciones de ingeniería, las cuales incluyen: tratamiento de aguas residuales, procesos de
destilación, industrias de pulpa y papel, sistemas de enfriamiento para dispositivos electrónicos, proce-
sos de extracción de petróleo, y contaminación de aguas subterráneas, entre otras. Más precisamente,
interesa estudiar problemas de transporte a través de flujos viscosos en medios porosos. Muchos de
estos fenómenos pueden regirse por sistemas no lineales de ecuaciones diferenciales parciales los cuales
consisten en el acoplamiento de las ecuaciones de Stokes, Brinkman, Navier-Stokes, o Darcy, con una
ecuación de convección–difusión. Resolver numericamente estos problemas, de manera precisa y efi-
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ciente, es usualmente díficil debido a la combinación de fuertes no linealidades con los acoplamientos
de las ecuaciones de campo.

Objetivos de la tesis

De acuerdo a la discusión anterior, esta tesis contribuye con el desarrollo de nuevos métodos de
elementos finitos mixtos para simular varios problemas en mecánica de fluidos, especialmente orientados
al transporte de particulas de baja concentración a través de un flujo viscoso en medios porosos. A su
vez, durante el desarrollo matemático y numérico de esta tesis, se busca establecer un marco teórico
general para garantizar la solubilidad y la estabilidad de una clase amplia de problemas acoplados.

Más precisamente, interesa:

• Proporcionar formulaciones variacionales adecuadas para establecer existencia y unicidad de la
solución continua del conjunto de ecuaciones gobernantes, utilizando estrategias de punto fijo y
resultados clásicos para problemas variacionales.

• Derivar el esquema de Galerkin correspondiente y emplear espacios de elementos finitos apro-
piados con la finalidad de respetar la estructura física y matemática del problema subyacente.

• Analizar la solubilidad del esquema de Galerkin y establecer los resultados de convergencia corres-
pondientes.

• Derivar estimadores de error a posteriori para establecer métodos adaptativos que permitan
mejorar la precisión de las aproximaciones numéricas, principalmente bajo la presencia de singu-
laridades o altos gradientes de la solución.

• Validar los resultados teóricos a través de varios ensayos y simulaciones numéricas ilustrativas,
que incluyan ejemplos académicos y orientados a aplicaciones.

Problemas Modelo

En primer lugar se enfatiza en que los aspectos de modelamiento no son parte de los objetivos
principales de este trabajo, con lo cual los modelos que rigen (los cuales están basados en el continuo) se
asumirán como dados y no se hará esfuerzo adicional para derivar el conjunto particular de ecuaciones.

En primer instancia interesa estudiar el siguiente sistema de ecuaciones diferenciales parciales

σ = µ(φ)∇u − p I , −divσ = fφ , divu = 0 ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k , − div σ̃ = g ,
(5)

el cual describe el estado estacionario del transporte de especies φ (segunda fila en (5)) en un fluido
inmiscible cuya dinámica se rige por las ecuaciones de Stokes (primera fila en (5)) en una región dada
del espacio Ω. En este problema las incógnitas son: el tensor de esfuerzos de Cauchy σ, la velocidad
del fluido u, la presion p, y la concentración local de especies φ. Aquí la viscocidad µ, el coeficiente
de difusión ϑ, y la función de flujo γ, dependen no linealmente de φ. A su vez, f y g son funciones
dadas. Adicionalmente, al sistema (5) se incorporan condiciones de contorno mixtas sobre u, σ, σ̃,
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y φ, las cuales permiten cerrar el sistema de manera apropiada. Dependiendo de la naturaleza de
φ (el cual puede representar la concentración de algún componente químico, ó la temperatura) este
problema puede ser relevante en varias aplicaciones prácticas en ingeniería que incluyen; convección
térmica y natural, producción de aluminio, procesos de destilación química, formación de niebla, flujos
granulares, y movimiento de membranas, entre otros.

Luego, se aborda una extensión del problema dado en (5), descrita por el siguiente sistema de
ecuaciones

σ = µ(φ)∇u − p I , K−1u − divσ = fφ , divu = 0 ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k , β φ − div σ̃ = g .
(6)

el cual, a diferencia de (5), incorpora el término de Brinkman K−1u en las ecuaciones que modelan el
fluido. A su vez, el coeficiente de difusión ϑ ahora depende de φ en lugar de |∇φ|, y se agrega el término
de masa β φ a la segunda ecuación de la segunda fila en (5). En este caso, el modelo descrito por (6) es
de gran interés físico, debido a que corresponde a una configuración específica en el modelamiento de
procesos de sedimentación-consolidación (ver [31, 32, 96]). La aproximación numérica de la descripción
macroscópica en los procesos de sedimentación se necesita en una amplia variedad de fenómenos físicos
y procesos industriales que incluyen el tratamiento de aguas residuales, procesamiento de minerales,
la formación de coágulos en la sangre, lechos fluidizados, y muchos otros.

Es importante notar que los problemas dados por (5) y (6) involucran acoplamientos fuertemente
no lineales, donde la no linealidad representa una dificultad adicional. Por otra parte, la solubilidad del
problema de sedimentación-consolidación se ha discutido previamente en [29], para el caso de un fluido
altamente viscoso, utilizando la técnica de regularización parabólica. Sin embargo, como se verá pre-
cisamente en la Sección 3.2.1 (ver ecuación (3.3)), aquí se permanecerá en el marco no degenerativo del
coeficiente de difusión. Por otra parte, cabe mencionar que los modelos de sedimentación-consolidación
comparten algunas similitudes estructurales con los modelos del tipo Oldroyd y Boussinesq, para los
cuales varias formulaciones mixtas han sido propuestas (ver [44, 45, 53, 54, 55, 90]). No obstante,
hasta donde se sabe, formulaciones mixtas específicamente diseñadas para el estudio de procesos de
sedimentación no se encuentran todavía disponibles en la literatura.

Finalmente, la atención se centra en el análisis matemático y numérico para el siguente problema
acoplado Brinkman-Darcy en R3

αuB + ν curlωB + ∇pB = fB

ωB − curluB = 0

divuB = 0

 en ΩB , (7)

y
µuD +∇pD = fD

divuD = 0

}
en ΩD , (8)

el cual se formula para el modelo de Brinkman, en términos de la velocidad uB, la vorticidad ωB, y la
presión pB. En este caso, el modelo anterior describe los patrones de flujo de un fluido viscoso dentro de
un medio altamente permeable ΩB, modelado por las ecuaciones de Brinkman (cf. (7)), y su interacción
con un flujo no viscoso dentro de un medio poroso ΩD, gobernado por las ecuaciones de Darcy (cf.
(8)). En este modelo, ν > 0 representa la viscocidad del fluido, µ > 0 depende de la viscocidad y la
permeabilidad del medio poroso, el cual se asume homogéneo, y α > 0 es un parámetro relacionado
con el tiempo de relajación. Aquí fB y fD son funciones dadas. Adicionalmente al problema acoplado
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descrito por (7)-(8), se imponen condiciones de transmisión adecuadas (en la interfaz que separa los
dominios ΩB y ΩD) para las velocidades uB, uD, y las presiones pB y pD. Finalmente el sistema (7)-
(8) se cierra incorporando condiciones de frontera apropiadas sobre uB, uD, y ωB. Modelos como el
descrito anteriormente, se encuentran con frecuencia en el modelamiento de yacimientos petrolíferos,
perfusión de fluidos fisiológicos en tejidos blandos, y otros fenómenos relacionados con procesos de
filtración. Hasta donde se sabe, el acoplamiento de flujos Brinkman y Darcy solamente ha sido abordado
en términos de las incógnitas primales de la velocidad y la presión (ver [25, 52, 85]). Formulaciones
basadas en vorticidad para el acoplamiento Stokes-Darcy fueron introducidas en [19] y luego estudiadas
en [18, 51]. En particular, las contribuciones [19] y [18] incluyen una formulación ligeramente diferente
para un modelo en el cual la frontera del fluido coincide con la interfaz entre ambos dominios. Por
otra parte, el análisis en [18] requiere mayor regularidad de la presión del fluido, miestras que a nivel
discreto se utiliza una familia de discretizaciones no conformes que consiste en elementos de Nédélec
para la vorticidad, elementos constantes a trozos para la velocidad, y elementos Crouzeix-Raviart para
la presión.

Organización de la tesis

El presente trabajo está organizado como sigue. En el Capítulo 1 se estudia el acoplamiento no
lineal dado por (5). Se propone un enfoque variacional aumentado para el flujo del fluido acoplado con
una formulación primal para el modelo de transporte. El esquema de Galerkin resultante conduce a
un método de elementos finitos mixto-primal aumentado para el cual se emplean espacios de Raviart-
Thomas de orden k para el tensor de Cauchy, y polinomios continuos a trozos de grado ≤ k + 1 para
la velocidad del fluido y también para el campo escalar. Aquí los teoremas clásicos de punto de fijo
de Schauder y Brouwer son utilizados para establecer la existencia de solución de las formulaciones
continuas y discretas, respectivamente. A su vez, estimaciones adecuadas que surgen a partir de la
conexión entre un supuesto de regularidad y los teoremas de inclusión de Sobolev y de compacidad
de Rellich-Kondrachov, también son empleados en el análisis continuo. Luego, datos suficientemente
pequeños permiten probar unicidad y derivar estimaciones de error a priori óptimas. Este capítulo
está constituido por la siguiente publicación:

[4] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed–primal finite
element method for a coupled flow–transport problem. ESAIM: Mathematical
Modelling and Numerical Analysis. vol. 49, 3, pp. 1399–1427, (2015).

En el Capítulo 2 se desarrolla un análisis de error a posteriori para el método de elementos finitos
mixto-primal del problema acoplado de flujo con transporte estudiado en [4]. En este trabajo se derivan
dos estimadores de error a posteriori residuales para ese esquema, los cuales resultan ser confiables
y eficientes. Para el primer estimador, bajo supuestos adecuados sobre el dominio, se aplica una
descomposición de Helmholtz y se explotan las propiedades de aproximación locales del interpolador
de Clément y del operador de Raviart-Thomas para mostrar su confiabilidad. Por otra parte, su
eficiencia se sigue a partir de desigualdades inversas y argumentos de localización basados en funciones
burbujas sobre triángulos y lados. Luego, se propone un estimador alternativo cuya confiabilidad
se logra probar sin recurrir a descomposiciones de Helmholtz. Este capítulo está constituido por el
siguiente artículo:
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[7] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A posteriori error analysis for
a viscous flow–transport problem. ESAIM: Mathematical Modelling and Nu-
merical Analysis. Vol. 50, 6, 1789–1816, (2016).

El Capítulo 3 está dedicado al análisis matemático y numérico del sistema de flujo y transporte
fuertemente acoplado dado por (2). El modelo se enfoca en el regimen estacionario de una suspension
sólido-liquido inmersa en un fluido viscoso dentro de un medio permeable, y las ecuaciones gobernantes
corresponden al problema de Brinkman con viscosidad variable, escrito en términos del pseudo esfuerzo
de Cauchy y la velocidad de la mezcla; acoplado con una ecuación de advección-difusión no lineal que
describe el transporte de la fracción de volumen de sólidos. Aquí se extiende el enfoque y la estrategía
de punto fijo que se introdujó en [4] al presente contexto. Este capítulo dió origen a la siguiente
publicación:

[5] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A mixed–primal finite element
approximation of a sedimentation-consolidation system. M3AS: Mathematical
Models and Methods in Applied Sciences. vol. 26, 5, pp. 867–900, (2016).

En elCapítulo 4 se desarrolla el análisis de error a posteriori del método de elementos finitos mixto-
primal aumentado para las versiones 2D y 3D del sistema de sedimentación-consolidación estudiado
en [5]. En este capítulo se derivan dos estimadores de error a posteriori residuales para el esquema de
Galerkin correspondiente, los cuales son confiables y eficientes. La derivación de la version 2D de estos
dos estimadores sigue muy de cerca el análisis desarrollado en [7]. Para el primer estimador se hace
uso de elipticidades y condiciones inf-sup adecuadas, junto con una descomposición de Helmholtz y las
propiedades de aproximación locales del operador de interpolación de Clément y el operador de Raviart-
Thomas, para mostrar su confiabilidad. Luego, su eficiencia se deriva a partir de desigualdades inversas
y argumentos de localización basados en funciones burbujas sobre triángulos y lados. Posteriormente, se
deduce un segundo estimador de error a posteriori, donde la descomposición de Helmholtz no se emplea
en la prueba de confiabilidad correspondiente. Seguidamente, se emplean los resultados recientes en
[64] para extender el análisis anterior a la versión 3D de estos dos estimadores. Este capítulo ha
inspirado el siguiente artículo, el cual se encuentra sometido a publicación:

[6] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, A posteriori error analysis for
a sedimentation-consolidation system. Preprint 2016-26, Centro de Investigación en
Ingeniería Matemática (CI2MA). Universidad de Concepción, Chile, (2016).

Finalmente, en el Capítulo 5 se propone y se analiza un método de elementos finitos completa-
mente mixto basado en vorticidad para aproximar numéricamente los patrones de flujo gobernados
por las ecuaciones Brinkman-Darcy (3)-(4). Aquí, para efectos del análisis, se asume que la com-
ponente tangencial de la vorticidad se anula sobre toda la frontera del dominio Brinkman, mientras
que las componentes normales de ambas velocidades se suponen nulas sobre las fronteras respectivas,
excepto sobre la interfaz donde se consideran condiciones de transmisión adecuadas. De esta manera,
la derivación de la formulación variacional mixta correspondiente conduce a la incorporación de un
multiplicador de Lagrange, el cual impone la continuidad de la presión a través de la interfaz, mien-
tras que los balances de masas resultan a partir de las condiciones de fronteras esenciales sobre cada
dominio. En consecuencia, se obtiene una ecuación típica de operadores de punto silla, y por lo tanto
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la teoría clásica de Babuška-Brezzi se aplica para mostrar que el esquema continuo y discreto están
bien puestos. En particular, las condiciones inf-sup continuas y discretas de la forma bilinear princi-
pal se demuestran usando adecuadamente operadores inyectivos para obtener las cotas inferiores de
los supremos correspondientes, lo cual constituye una técnica previamente conocida, e introducida en
[69, 70, 71], y recientemente denominada T−coercividad (ver [22, 39]). A su vez, y consistentemente
con lo anterior, la estabilidad del esquema de Galerkin requiere que el curl del subespacio de elemen-
tos finitos que aproxima a la vorticidad este contenido en el espacio donde vive la velocidad discreta
del fluido, lo cual conduce a los subespacios de elementos finitos de Raviart-Thomas y Nédélec como
elecciones factibles. Luego, se prueba que las restricciones mencionadas anteriormente se pueden evitar
aumentando la formulación mixta con un término de tipo residual que surge a partir de la ecuación de
momentum de Brinkman. Este capítulo está constituido por la siguiente publicación:

[8] M. Álvarez, G.N. Gatica and R. Ruiz-Baier, Analysis of a vorticity-based fully-
mixed formulation for the 3D Brinkman-Darcy problem. Computer Methods in
Applied Mechanics and Engineering. vol. 307, pp. 68–95, (2016).

A lo largo de los cinco capítulos que conforman esta tesis, los resultados teóricos como órdenes de
convergencia y la confiabilidad y eficiencia de los estimadores de error a posteriori correspondientes,
son ilustrados a través de varios tests numéricos, que destacan también el buen desempeño de los
esquemas discretos propuestos y los algoritmos adaptativos asociados. El conjunto de experimentos
numéricos incluye ejemplos en 2D y 3D, donde incluso algunos de ellos no están cubiertos por la teoría.
A su vez, las implementaciones computacionales se obtuvieron empleando las librerías de elementos
finitos de acceso libre; FreeFem++, Lifev, y FEniCS, el generador de mallas de código abierto Gmsh,
y el ilustrador Paraview.



CHAPTER 1

An augmented mixed–primal finite element method for a coupled
flow–transport problem

1.1 Introduction

We are interested in studying mixed finite element approximations to simulate the transport of a
species density in an immiscible fluid. Depending on the nature of the species, this problem can be
relevant to a number of practical engineering applications including natural and thermal convection,
aluminum production, chemical distillation processes, formation of fog, impedance tomography, mo-
tion of bio-membranes, semiconductors, granular flows, and so on. In this chapter we pay particular
attention to the steady state regime in the phenomenon of sedimentation-consolidation of particles
(see e.g. [31, 32, 96]), where the sought physical quantities in the model include the velocity of the
flow and the local solids concentration. On the other hand, it is well known that other variables, such
as the principal components of the fluid or solids stress tensors, are of great interest in this context
(see e.g. [33, Chapter 3]). In a more general sense, the need of obtaining accurate approximations of
additional fields has motivated the successful derivation of a wide range of formulations in the frame-
work of Stokes and Navier-Stokes equations, including for instance, stress-velocity formulations (see
[34, 53, 62, 75] and the references therein). They feature the clear advantage (with respect to clas-
sical velocity-pressure formulations) that these auxiliary quantities of interest are computed directly,
without resorting to any kind of post-process of the velocity field by numerical differentiation, which
usually yields an important loss in accuracy. The attached difficulties are that the finite dimensional
spaces involved in the resulting discrete formulation must be properly selected in order to satisfy the
corresponding inf-sup condition [26], and that approximation of stresses may become quite expensive
if adequate finite elements are not used.

Now, concerning the problem we are interested in here, we realize that, in order to be able to analyze
the solvability of a mixed formulation for the fluid flow coupled with a primal method for the transport
model, we require H1(Ω) smoothness for the components of both the fluid velocity and its discrete
approximation. However, since the usual mixed approach is only able to guarantee that they live in
L2(Ω), in this chapter we follow [57] (see also [56], [62]) and propose an augmented mixed scheme
in which the stress stays in its original space H(div; Ω), but the velocity components lie now in the
smaller space H1(Ω). In other words, the original problem is reformulated as an augmented variational
approach for the fluid flow coupled with a primal formulation for the transport model, which constitutes
one of the key ideas of this work. According to the above, we will approximate each row of the fluid
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Cauchy stress tensor with Raviart-Thomas elements of order k, whereas the velocity and scalar field
(which will represent a solids concentration, or temperature, depending on the specific application)
will be approximated with continuous piecewise polynomials of degree ≤ k + 1. The existence of
solution of the continuous and associated Galerkin schemes is established by a combination of a suitable
regularity assumption, fixed point arguments, the well-know Lax-Milgram theorem, and a classical
result on bijective monotone operators. In addition, the Sobolev embedding and Rellich-Kondrachov
compactness theorems are also essential in the continuous analysis. Furthermore, the assumption of
sufficiently small data allows us to conclude uniqueness of solution and to derive optimal a priori error
estimates. The extension of the above described general approach to the more realistic case of steady
sedimentation-consolidation systems is under development in [4]. In addition, the incorporation of
a similar augmented formulation, and the consequent application of basically the same fixed point
theorems employed here, will appear in the forthcoming work [44] where a mixed-primal formulation
for the stationary Boussinesq problem is introduced and analyzed.

Outline

We have organized the contents of this chapter as follows. The remainder of this section introduces
some standard notations and functional spaces. In Section 1.2 we first describe the boundary value
problem of interest and then slightly simplify it by eliminating the pressure unknown in the fluid.
Next, in Section 1.3, we introduce and analyze the continuous formulation, which is defined by an
augmented mixed approach for the fluid flow coupled with a primal method for the transport equation.
The necessity of augmentation is clearly justified, and the solvability analysis is based on a fixed
point strategy that makes use of the Lax-Milgram and Schauder theorems together with a well-known
result on monotone operators. We prove existence of solution and for sufficiently small data we derive
uniqueness. The associated Galerkin scheme is introduced in Section 1.4 by employing Raviart-Thomas
elements for the stress, and continuous piecewise polynomial approximations for the velocity and
concentration. Here the solvability is established by applying now the Brouwer fixed point theorem
and analogous arguments to those employed in Section 1.3. In Section 1.5 we assume again sufficiently
small data and, applying a suitable Strang-type estimate for nonlinear problems, provide optimal a
priori error estimates. Finally, in Section 1.6 we present numerical examples illustrating the good
performance of the mixed-primal method and confirming the theoretical rates of convergence.

1.2 The model problem

The following system of partial differential equations describes the stationary state of the transport
of species φ in an immiscible fluid occupying the domain Ω:

σ = µ(φ)∇u − p I , −divσ = fφ , divu = 0 ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k , −div σ̃ = g ,
(1.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, the pressure p, and the local concentration of species φ. For sake of clarity in the presentation,
we will restrict ourselves to a specific physical scenario corresponding to the process of sedimentation-
consolidation of a mixture (see e.g. [32]). There, it is assumed that a suspension of solid particles
within a viscous fluid, undergoes settling due to gravity. The hypotheses of slow sedimentation velocity,
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short relaxation time, constant density, and negligible expansion viscosities, allow to derive (1.1) from
the classical principles of mass and momentum conservation in mixture theory. In this model, the
kinematic effective viscosity, µ; the diffusion coefficient, ϑ; and the one-dimensional flux function
describing hindered settling, γ; depend nonlinearly on φ, and k is a vector pointing in the direction of
gravity. In addition, ϑ is assumed of class C1 and we suppose that there exist positive constants µ1,
µ2, γ1, γ2, ϑ1, and ϑ2, such that

µ1 ≤ µ(s) ≤ µ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R , (1.2)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0 . (1.3)

Note that (1.2) and the first assumption in (1.3) guarantee, in particular, that the corresponding
Nemytsky operators, say U for µ, defined by U(φ)(x) := µ(φ(x)) ∀φ ∈ L2(Ω), ∀x ∈ Ω a.e., and
analogously for ϑ, γ, µ−1, ϑ−1, and γ−1, are all well defined and continuous from L2(Ω) into L2(Ω).
Furthermore, it is easy to show (see, e.g. [76, Theorem 3.8]) that the assumptions in (1.3) imply
Lipschitz-continuity and strong monotonicity of the nonlinear operator induced by ϑ. We will go back
to this fact later on in Section 1.3.

Some examples of concentration-dependent coefficients typically found in the literature are (see
[31, 33, 96, 97])

µ(φ) = µ∞

(
1− φ

φm

)−nµ
, γ(φ) = g∞φ(1− φ)nγ , ϑ(φ) = ϑ∞

(
1− φ

φm

)−nϑ
,

where µ∞, φm, γ∞, nµ, nγ , nϑ, ϑ∞ are positive model parameters. These functions violate assumptions
(1.2)-(1.3) required in the subsequent analysis. We will therefore consider regularized concentration-
dependent coefficients. In turn, some examples of nonlinear functions ϑ that indeed satisfy (1.3) are
the following:

ϑ(s) := 2 +
1

1 + s
and ϑ(s) := α0 + α1(1 + s2)(β−2)/2 ,

where α0, α1 > 0 and β ∈ (0, 2). The first example is basically academic but the second one corre-
sponds to a particular case of the well-known Carreau law in fluid mechanics. We also stress that the
structure of (1.1) may also serve as prototype model for generalized Boussinesq models and natural
convection equations describing the interaction of a fluid driven by gravity and thermal changes. In
such a context, φ can be viewed as the adimensional temperature of the fluid, and typical examples for
the variable coefficients (now interpreted as temperature-dependent viscosity and thermal diffusivity)
are

µ(φ) = µ∞ exp(−φ), ϑ(φ) = ϑ∞ exp(φ), γ = 0,

(see e.g. [45, 55, 90]).

The driving force of the mixture also depends on the local fluctuations of the concentration, so
the right hand side of the second equation in (1.1) is linear with respect to φ, and f ∈ L∞(Ω) and
g ∈ L2(Ω) are given functions. Finally, given uD ∈ H1/2(ΓD), the following mixed boundary conditions
complement (1.1):

u = uD on ΓD , σν = 0 on ΓN , φ = 0 on ΓD , and σ̃ · ν = 0 on ΓN . (1.4)

On the other hand, it is easy to see that the first and third equations in (1.1) are equivalent to

σ = µ(φ)∇u − p I and p +
1

n
tr(σ) = 0 in Ω ,
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which permits us to eliminate the pressure p from the first equation. Consequently, we arrive at the
following coupled system:

1

µ(φ)
σd = ∇u in Ω , −divσ = fφ in Ω ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω , −divσ̃ = g in Ω ,

u = uD on ΓD , σν = 0 on ΓN ,

φ = 0 on ΓD , and σ̃ · ν = 0 on ΓN .

(1.5)

We remark here that the incompressibility constraint is implicitly present in the first equation of (1.5),
that is in the constitutive equation relating σ and u.

1.3 The continuous formulation

1.3.1 The augmented mixed–primal formulation

We first observe that the homogeneous Neumann boundary condition for σ on ΓN (cf. second
relation of (1.4)) suggests to introduce the space

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on ΓN

}
.

Hence, multiplying the first equation of (1.5) by τ ∈ HN(div; Ω), integrating by parts, and using the
Dirichlet boundary condition for u (cf. third row of (1.5)), we obtain∫

Ω

1

µ(φ)
σd : τ d +

∫
Ω
u · divτ = 〈τν,uD〉ΓD

∀ τ ∈ HN(div; Ω) ,

where 〈·, ·〉ΓD
is the duality pairing between H−1/2(ΓD) and H1/2(ΓD). In addition, the equilibrium

equation is then rewritten as∫
Ω
v · divσ = −

∫
Ω
fφ · v ∀v ∈ L2(Ω) .

On the other hand, the Dirichlet boundary condition for φ (cf. fourth row of (1.5)) motivates the
introduction of the space

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
,

for which, thanks to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and
ΓD, such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω) . (1.6)

Therefore , given φ ∈ H1
ΓD

(Ω), we arrive at the following mixed formulation for the flow: Find (σ,u) ∈
HN(div; Ω)× L2(Ω) such that

aφ(σ, τ ) + b(τ ,u) = 〈τν,uD〉ΓD
∀ τ ∈ HN(div; Ω),

b(σ,v) = −
∫

Ω
fφ · v ∀v ∈ L2(Ω),

(1.7)
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where aφ : HN(div; Ω)×HN(div; Ω)→ R and b : HN(div; Ω)×L2(Ω)→ R are bounded bilinear forms
defined as

aφ(ζ, τ ) :=

∫
Ω

1

µ(φ)
ζd : τ d, b(τ ,v) :=

∫
Ω
v · divτ ,

for ζ, τ ∈ HN(div; Ω) and v ∈ L2(Ω).

In turn, given u ∈ L2(Ω), and using the homogeneous Neumann boundary condition for σ̃ (cf.
fourth row of (1.5)), we deduce that the primal formulation for the concentration equation becomes:
Find φ ∈ H1

ΓD
(Ω) such that

Au(φ, ψ) =

∫
Ω
γ(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) , (1.8)

where
Au(φ, ψ) :=

∫
Ω
ϑ(|∇φ|)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ ∀φ, ψ ∈ H1

ΓD
(Ω) . (1.9)

At this point we observe that the assumption on µ given in (1.2) and the well known Babuška-Brezzi
theory suffice to show that (1.7) is well-posed (see, e.g. [72, Theorem 2.1] for details). However, in
order to deal with the analysis of (1.8), and particularly to estimate the second term defining Au, we
would require u ∈ H1(Ω). In fact, we now recall from [90, eq. (2.20)] that Hölder’s inequality and
standard Sobolev embeddings estimates (cf. [1, Theorem 4.12], [92, Theorem 1.3.4]) yield the existence
of a positive constant c(Ω), depending only on Ω, such that∣∣∣∣∫

Ω
ϕv · ∇ψ

∣∣∣∣ ≤ c(Ω) ‖ϕ‖1,Ω ‖v‖1,Ω |ψ|1,Ω ∀ϕ, ψ ∈ H1(Ω) , ∀v ∈ H1(Ω) . (1.10)

Furthermore, while the exact solution of (1.7) actually satisfies ∇u =
1

µ(φ)
σd in D′(Ω), which implies

that u does belong to H1(Ω), the foregoing distributional identity does not necessarily extend to the
discrete setting of (1.7), and hence the aforementioned difficulty would appear again when trying to
analyze the Galerkin scheme associated to (1.8). Therefore, in order to circumvent this inconvenience,
we proceed similarly as in [57, Section 3] and incorporate into (1.7) the following redundant Galerkin
terms

κ1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇v = 0 ∀v ∈ H1(Ω) ,

κ2

∫
Ω
divσ · divτ = −κ2

∫
Ω
fφ · divτ ∀ τ ∈ HN(div; Ω) ,

κ3

∫
ΓD

u · v = κ3

∫
ΓD

uD · v ∀v ∈ H1(Ω) ,

(1.11)

where (κ1, κ2, κ3) is a vector of positive parameters to be specified later. Notice that the first and third
equations in (1.11) implicitly require the velocity u to live in H1(Ω). In this way, instead of (1.7), we
consider from now on the following augmented mixed formulation: Find (σ,u) ∈ HN(div; Ω)×H1(Ω)

such that
Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀ (τ ,v) ∈ HN(div; Ω)×H1(Ω) , (1.12)

where

Bφ((σ,u), (τ ,v)) := aφ(σ, τ ) + b(τ ,u) − b(σ,v) + κ1

∫
Ω

(
∇u − 1

µ(φ)
σd

)
: ∇v

+ κ2

∫
Ω
divσ · divτ + κ3

∫
ΓD

u · v ,
(1.13)
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and
Fφ(τ ,v) := 〈τν,uD〉ΓD

+

∫
Ω
fφ · v − κ2

∫
Ω
fφ · divτ + κ3

∫
ΓD

uD · v . (1.14)

We remark in advance that the well-posedness of (1.12) is proved below in Section 1.3.3. In particular,
we emphasize that the positiveness of the parameter κ2 in (1.13) is crucial for the ellipticity of the
bilinear form Bφ in the product space HN(div; Ω) ×H1(Ω) (see below (1.23) - (1.24) in the proof of
Lemma 1.4), which enables to choose arbitrary finite element subspaces to define the associated discrete
formulation. Otherwise, one would need inf-sup conditions for the bilinear form b, which, involving the
spaces HN(div; Ω) and H1(Ω), and suitable subspaces of them, do not seem to be easily verifiable. In
turn, the term multiplying κ2 in (1.13) just adds a minor complexity to the Galerkin scheme since the
corresponding matrix becomes block-diagonal. On the other hand, since the unique solution of (1.7) is
obviously a solution of (1.12) as well, we will conclude that both continuous problems share the same
unique solution.

In this way, the augmented mixed-primal formulation of our original coupled problem (1.5) reduces
to (1.12) and (1.8), that is: Find (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)×H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Au(φ, ψ) =

∫
Ω
γ(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) .

(1.15)

1.3.2 A fixed point strategy

Having proposed the alternative formulation (1.12), whose continuous and discrete solutions have
second components living in H1(Ω), we are able now to take a second look at (1.8). More precisely,
given φ ∈ H1

ΓD
(Ω) and the corresponding solution (σ,u) ∈ HN(div; Ω)×H1(Ω) of (1.12), we can set,

instead of (1.8), the modified primal formulation: Find φ̃ ∈ H1
ΓD

(Ω) such that

Au(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω) , (1.16)

where
Gφ(ψ̃) :=

∫
Ω
γ(φ)k · ∇ψ̃ +

∫
Ω
g ψ̃ ∀ ψ̃ ∈ H1

ΓD
(Ω) . (1.17)

The well-posedness of this nonlinear problem will also be addressed in Section 1.3.3. Alternatively, one
could also deal, instead of (1.16), with the linear problem: Find φ̃ ∈ H1

ΓD
(Ω) such that

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω) ,

where
Aφ,u(φ̃, ψ̃) :=

∫
Ω
ϑ(|∇φ|)∇φ̃ · ∇ψ̃ −

∫
Ω
φ̃u · ∇ψ̃ ∀ φ̃, ψ̃ ∈ H1

ΓD
(Ω) .

Nevertheless, and for easiness of the analysis, throughout the rest of the chapter we stay with (1.16).

Hence, the description of problems (1.12) and (1.16) suggests a fixed point strategy to analyze
(1.15). Indeed, let S : H1

ΓD
(Ω) −→ HN(div; Ω)×H1(Ω) be the operator defined by

S(φ) = (S1(φ),S2(φ)) := (σ,u) ∈ HN(div; Ω)×H1(Ω) ∀φ ∈ H1
ΓD

(Ω) ,
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where (σ,u) is the unique solution of (1.12) with the given φ. In turn, let S̃ : H1
ΓD

(Ω) ×H1(Ω) −→
H1

ΓD
(Ω) be the operator defined by

S̃(φ,u) := φ̃ ∀ (φ,u) ∈ H1
ΓD

(Ω)×H1(Ω) ,

where φ̃ is the unique solution of (1.16) with the given (φ,u). Then, we define the operator T :

H1
ΓD

(Ω) −→ H1
ΓD

(Ω) by
T(φ) := S̃(φ,S2(φ)) ∀φ ∈ H1

ΓD
(Ω) ,

and realize that solving (1.15) is equivalent to seeking a fixed point of T, that is: Find φ ∈ H1
ΓD

(Ω)

such that
T(φ) = φ . (1.18)

1.3.3 Well-posedness of the uncoupled problems

In this section we show that the uncoupled problems (1.12) and (1.16) are in fact well-posed. We
begin by recalling (see, e.g. [26]) that H(div; Ω) = H0(div; Ω)⊕ R I, where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω
tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω) there exist unique ζ0 := ζ −
{

1

n|Ω|

∫
Ω
tr(ζ)

}
I ∈ H0(div; Ω)

and d :=
1

n|Ω|

∫
Ω
tr(ζ) ∈ R, such that ζ = ζ0 + dI. The following three lemmas from [26, 57, 62],

which concern the above decomposition and an equivalence of norm, will be employed to show the
well-posedness of (1.12) for a given φ.

Lemma 1.1. There exists c1 = c1(Ω) > 0 such that

c1 ‖τ 0‖20,Ω ≤ ‖τ
d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ = τ 0 + cI ∈ H(div; Ω) ,

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Proof. See [26, Proposition 3.1].

Lemma 1.2. There exists c2 = c2(Ω,ΓN) > 0 such that

c2 ‖τ‖2div;Ω ≤ ‖τ 0‖2div;Ω ∀ τ = τ 0 + cI ∈ HN(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Proof. See [62, Lemma 2.2].

Lemma 1.3. There exists c3 = c3(Ω,ΓD) > 0 such that

|v|21,Ω + ‖v‖20,ΓD
≥ c3 ‖v‖21,Ω ∀v ∈ H1(Ω) .

Proof. It corresponds to a slight modification of the proof of [57, Lemma 3.3].
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Furthermore, for sake of the subsequent analysis we will also require Lipschitz continuity assump-
tions for γ and µ. More precisely, we assume that there exist positive constants Lγ and Lµ such
that

|γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R , (1.19)

and
|µ(s)− µ(t)| ≤ Lµ |s− t| ∀ s, t ∈ R . (1.20)

We now begin the solvability analysis of the uncoupled problems with the following result.

Lemma 1.4. Assume that κ1 ∈
(

0, 2δµ1

µ2

)
with δ ∈ (0, 2µ1), and that 0 < κ2, κ3. Then, for each

φ ∈ H1
ΓD

(Ω) the problem (1.12) has a unique solution S(φ) := (σ,u) ∈ H := HN(div; Ω)×H1(Ω).
Moreover, there exists CS > 0, independent of φ, such that

‖S(φ)‖H = ‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω
}

∀φ ∈ H1
ΓD

(Ω) . (1.21)

Proof. We first observe from (1.13) that, given φ ∈ H1
ΓD

(Ω), Bφ is clearly a bilinear form. Next,
applying the Cauchy-Schwarz inequality, the lower bound for µ (cf. (1.2)), and the trace theorem
(with constant c0), we also obtain from (1.13) that

|Bφ((σ,u), (τ ,v))| ≤ 1

µ1
‖σd‖0,Ω ‖τ d‖0,Ω + ‖u‖0,Ω ‖divτ‖0,Ω + ‖v‖0,Ω ‖divσ‖0,Ω

+ κ1 |u|1,Ω |v|1,Ω +
κ1

µ1
‖σd‖0,Ω |v|1,Ω + κ2 ‖divσ‖0,Ω ‖divτ‖0,Ω + c2

0 κ3 ‖u‖1,Ω ‖v‖1,Ω .

It follows that there exists a positive constant, denoted ‖B‖ and depending on µ1, κ1, κ2, κ3, and c0,
such that

|Bφ((σ,u), (τ ,v))| ≤ ‖B‖ ‖(σ,u)‖H ‖(τ ,v)‖H ∀ (σ,u), (τ ,v) ∈ H , (1.22)

and hence Bφ is bounded independently of φ ∈ H1
ΓD

(Ω).

In turn, we now aim to show that Bφ is H-elliptic. In fact, given (τ ,v) ∈ H, we have again from
(1.13) that

Bφ((τ ,v), (τ ,v)) =

∫
Ω

1

µ(φ)
τ d : τ d + κ1 |v|21,Ω − κ1

∫
Ω

1

µ(φ)
τ d : ∇v + κ2‖divτ‖20,Ω + κ3 ‖v‖20,ΓD

,

which, using the bounds for µ (cf. (1.2)), the Young inequality, and Lemmas 1.1, 1.2, and 1.3, and
taking δ, κ1, κ2, and κ3 as stated in the hypotheses, yields

Bφ((τ ,v), (τ ,v)) ≥
(

1

µ2
− κ1

2δµ1

)
‖τ d‖20,Ω + κ2‖divτ‖20,Ω + κ1

(
1− δ

2µ1

)
|v|21,Ω + κ3 ‖v‖20,ΓD

≥ c1α1 ‖τ 0‖20,Ω +
κ2

2
‖divτ‖20,Ω + κ1

(
1− δ

2µ1

)
|v|21,Ω + κ3 ‖v‖20,ΓD

≥ α2 ‖τ 0‖2div;Ω + α3

{
|v|21,Ω + ‖v‖20,ΓD

}
≥ c2α2 ‖τ‖2div;Ω + c3α3 ‖v‖21,Ω ,

(1.23)
where α1 := min

{(
1
µ2
− κ1

2δµ1

)
, κ2

2

}
, α2 := min

{
c1α1,

κ2
2

}
, and α3 := min

{
κ1

(
1− δ

2µ1

)
, κ3

}
. In

this way, defining α := min {c2α2, c3α3}, which depends on µ1, µ2, δ, κ1, κ2, κ3, c1, c2, and c3, we
conclude that

Bφ((τ ,v), (τ ,v)) ≥ α ‖(τ ,v)‖2H ∀ (τ ,v) ∈ H , (1.24)
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thus confirming the H-ellipticity of Bφ independently of φ ∈ H1
ΓD

(Ω) as well. In particular, choosing

the feasible values δ = µ1 and κ1 =
µ2

1
µ2
, and then taking κ2 = 2

(
1
µ2
− κ1

2δµ1

)
and κ3 = κ1

(
1− δ

2µ1

)
,

we find that κ2 = 1
µ2
, κ3 =

µ2
1

2µ2
, and α = 1

2µ2
min{c1c2, c2, c3µ

2
1}.

Next, given φ ∈ H1
ΓD

(Ω), we look at the functional Fφ (cf. (1.14)), which is certainly linear. Then,
using the Cauchy-Schwarz inequality and the trace estimates in H(div; Ω) and H1(Ω), with constants
1 and c0, respectively, we deduce that for each (τ ,v) ∈ H there holds

|Fφ(τ ,v)| ≤ ‖τ‖div;Ω ‖uD‖1/2,ΓD
+ ‖f‖∞,Ω ‖φ‖0,Ω

{
‖v‖0,Ω + κ2 ‖divτ‖0,Ω

}
+ c0 κ3 ‖uD‖1/2,ΓD

‖v‖1,Ω ,

which provides the existence of a positive constant, denoted ‖F‖ and depending on κ2, κ3, and c0,
such that

|Fφ(τ ,v)| ≤ ‖F‖
{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω
}
‖(τ ,v)‖ ∀ (τ ,v) ∈ H . (1.25)

The foregoing inequality shows the boundedness of Fφ with

‖Fφ‖ ≤ ‖F‖
{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω
}
. (1.26)

Finally, a straightforward application of the Lax-Milgram Lemma (see, e.g. [63, Theorem 1.1]),
proves that, for each φ ∈ H1

ΓD
(Ω), problem (1.12) has a unique solution S(φ) := (σ,u) ∈ H.

Moreover, the corresponding continuous dependence result together with the estimates (1.24) and
(1.25) give

‖S(φ)‖H = ‖(σ,u)‖H ≤
1

α
‖Fφ‖H′ ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω
}
,

with CS := ‖F‖
α , thus completing the proof.

Throughout the rest of the chapter we suppose further regularity for the problem defining the
operator S. More precisely, we assume that uD ∈ H1/2+ε(ΓD) for some ε ∈ (0, 1) (when n = 2) or
ε ∈ (1

2 , 1) (when n = 3), and that for each ψ ∈ H1
ΓD

(Ω) with ‖ψ‖1,Ω ≤ r, r > 0 given, there hold
(ζ,w) := S(ψ) ∈ HN(div; Ω) ∩ Hε(Ω) × H1+ε(Ω) and

‖ζ‖ε,Ω + ‖w‖1+ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖ψ‖0,Ω
}
, (1.27)

with a positive constant C̃S(r) independent of the given ψ but depending on the upper bound r of its
H1-norm. We remark that the reason of the stipulated ranges for ε will be clarified in the forthcoming
analysis (see below proof of Lemma 1.11). In turn, while the actual verification of (1.27) is beyond
the goals of the present work, we observe that the fact that (1.7) and (1.12) share the same solution
implies that this issue reduces finally to the regularity of the Stokes problem with variable viscosity
µ depending on φ (see, e.g. [10] for analogous regularity results). To this respect, we would like to
mention that the equilibrium equation −div ζ = f ψ in Ω, obviously controls div ζ, whereas the
constitutive equation 1

µ(ψ) ζ
d = ∇w in Ω, may serve to control the curl of ζ. Certainly, the Lipschitz-

continuity of µ (cf. (1.20)) and the upper bound of ‖ψ‖1,Ω are essential here. In addition, the Dirichlet
boundary condition on w should be used under the form of its tangential derivative, and the eventual
presence of corners in Γ should not be a problem.
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According to the above, the present assumption is indeed quite reasonable at least for n = 2 since
just ε ∈ (0, 1) is required in this case. However, due to the hypothesis ε ∈ (1

2 , 1) when n = 3, we
conjecture that mixed boundary conditions for u and σ will have to be excluded of the corresponding
3D problem and that either Dirichlet or Neumann boundary conditions only will be allowed. Finally,
and while the estimate (1.27) will be employed only to bound ‖ζ‖ε,Ω, we have stated it including the
term ‖w‖1+ε,Ω since, because of the constitutive equation, the regularities of ζ and w will most likely
be connected.

We now establish the unique solvability of the nonlinear problem (1.16).

Lemma 1.5. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω < ϑ1
cp c(Ω) ( cf. (1.3), (1.6), (1.10)).

Then, there exists a unique φ̃ := S̃(φ,u) ∈ H1
ΓD

(Ω) solution of (1.16), and there holds

‖S̃(φ,u)‖1,Ω = ‖φ̃‖1,Ω ≤
c2
p(

ϑ1 − cpc(Ω)‖u‖1,Ω
) {γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
. (1.28)

Proof. We begin by recalling from [76, Theorem 3.8] that the nonlinear operator induced by the first
term defining Au (cf. (1.9)) is strongly monotone and Lipschitz-continuous with constants ϑ1 and
ϑ̃2 := max

{
ϑ2, 2ϑ2−ϑ1

}
(cf. (1.3)), respectively. It follows, using also the Cauchy-Schwarz inequality,

(1.10), and (1.6), that for all ϕ̃, ψ̃ ∈ H1
ΓD

(Ω) there holds

Au(ϕ̃, ϕ̃− ψ̃) − Au(ψ̃, ϕ̃− ψ̃)

=

∫
Ω

{
ϑ(|∇ϕ̃|)∇ϕ̃− ϑ(|∇ψ̃|)∇ψ̃

}
· ∇(ϕ̃− ψ̃)−

∫
Ω

(ϕ̃− ψ̃)u · ∇(ϕ̃− ψ̃)

≥ ϑ1 |ϕ̃− ψ̃|21,Ω − c(Ω) ‖ϕ̃− ψ̃‖1,Ω ‖u‖1,Ω |ϕ̃− ψ̃|1,Ω

≥
{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
|ϕ̃− ψ̃|21,Ω

≥ c−2
p

{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
‖ϕ̃− ψ̃‖21,Ω ,

which shows that Au is strongly monotone with constant α̃u := c−2
p

{
ϑ1 − cp c(Ω) ‖u‖1,Ω

}
. In turn,

proceeding similarly, we find that for all ϕ̃, ψ̃, ρ̃ ∈ H1
ΓD

(Ω) there holds∣∣Au(ϕ̃, ρ̃) − Au(ψ̃, ρ̃)
∣∣ =

∣∣∣∣∫
Ω

{
ϑ(|∇ϕ̃|)∇ϕ̃− ϑ(|∇ψ̃|)∇ψ̃

}
· ∇ρ̃ −

∫
Ω

(ϕ̃− ψ̃)u · ∇ρ̃
∣∣∣∣

≤ ϑ̃2 |ϕ̃− ψ̃|1,Ω |ρ̃|1,Ω + c(Ω) ‖ϕ̃− ψ̃‖1,Ω ‖u‖1,Ω |ρ̃|1,Ω

≤
{
ϑ̃2 + c(Ω) ‖u‖1,Ω

}
‖ϕ̃− ψ̃‖1,Ω ‖ρ̃‖1,Ω ,

which proves that Au is Lipschitz-continuous with constant L̃u := ϑ̃2 + c(Ω) ‖u‖1,Ω. Therefore, a
direct application of a classical result on the bijectivity of monotone operators (see, e.g. [88, Theorem
3.3.23]) implies the existence of a unique solution φ̃ := S̃(φ,u) ∈ H1

ΓD
(Ω) of (1.16). Moreover, applying

the strong monotonicity of Au to ϕ̃ = φ̃ and ψ̃ = 0, and noting from (1.9) that Au(0, ·) = 0, we deduce
that

α̃u ‖φ̃‖21,Ω ≤ Au(φ̃, φ̃) = Gφ(φ̃) ,

which gives α̃u ‖φ̃‖1,Ω ≤ ‖Gφ‖. Finally, using the Cauchy-Schwarz inequality and the upper bound of
γ (cf. (1.2)), it follows from (1.17) that ‖Gφ‖ ≤ γ2 |Ω|1/2 |k| + ‖g‖0,Ω, which yields (1.28) and finishes
the proof.
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A simple corollary of the above lemma, which removes the dependence on u of the strong mono-
tonicity constant of Au and of the estimate (1.28), is given as follows.

Lemma 1.6. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω < ϑ1
2 cp c(Ω) ( cf. (1.3), (1.6), (1.10)).

Then, there exists a unique φ̃ := S̃(φ,u) ∈ H1
ΓD

(Ω) solution of (1.16), and there holds

‖S̃(φ,u)‖1,Ω = ‖φ̃‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
. (1.29)

Proof. It follows directly from the proof of Lemma 1.5. Note in particular that the strong monotonicity
of Au holds with the constant α̃ := ϑ1

2 c2p
. Further details are omitted.

We end this section by remarking that the restriction on ‖u‖1,Ω in Lemma 1.6 could also have been
taken as ‖u‖1,Ω < δ ϑ1

cp c(Ω) with any δ ∈ (0, 1). However, we have chosen δ = 1
2 for simplicity and

because it yields a joint maximization of the constant α̃ and the upper bound for ‖u‖1,Ω.

1.3.4 Solvability analysis of the fixed point equation

Having established in the previous section the well-posedness of the uncoupled problems (1.12) and
(1.16), which confirms that the operators S, S̃, and T (cf. Section 1.3.2) are well defined, we now
address the solvability analysis of the fixed point equation (1.18). For this purpose, in what follows
we verify the hypotheses of the Schauder fixed point theorem, which is stated as follows (see, e.g. [41,
Theorem 9.12-1(b)]).

Theorem 1.1. Let W be a closed and convex subset of a Banach space X and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

We begin the analysis with the following result.

Lemma 1.7. Given r > 0, we let W be the closed and convex subset of H1
ΓD

(Ω) defined by

W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
,

and assume that the data satisfy

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

. (1.30)

Then T(W ) ⊆ W .

Proof. Given φ ∈W , we get from (1.21) (cf. Lemma 1.4) that

‖S(φ)‖H = ‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
}
,

and hence, thanks to the first restriction in (1.30), we observe that u = S2(φ) satisfies the hypotheses
of Lemma 1.6. Moreover, the corresponding estimate (1.29) gives

‖T(φ)‖1,Ω = ‖S̃(φ,u)‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
,

which, due to the second inequality in (1.30), proves that T(φ) ∈ W , thus finishing the proof.
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Next, we aim to prove the continuity and compactness properties of T, which basically will be
direct consequences of the following two lemmas providing the continuity of S and S̃, respectively. We
remark in advance that a combination of the Cauchy-Schwarz and Hölder inequalities with the further
regularity assumption specified by (1.27) plays a key role in the proof of the first result.

Lemma 1.8. There exists a positive constant C, depending on µ1, κ1, κ2, Lµ, α, and ε ( cf. (1.2),
(1.11), (1.20), (1.24), (1.27)), such that

‖S(φ)−S(ψ)‖H ≤ C
{
‖f‖∞,Ω ‖φ−ψ‖0,Ω + ‖S1(ψ)‖ε,Ω ‖φ−ψ‖Ln/ε(Ω)

}
∀φ, ψ ∈ H1

ΓD
(Ω) . (1.31)

Proof. Given φ, ψ ∈ H1
ΓD

(Ω), we let (σ,u) = S(φ) and (ζ,w) = S(ψ), that is

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) and Bψ((ζ,w), (τ ,v)) = Fψ(τ ,v) ∀ (τ ,v) ∈ H .

It follows, using the ellipticity of Bφ (cf. (1.24)) and then subtracting and adding the expression
Fψ((σ,u)− (ζ,w)) = Bψ((ζ,w), (σ,u)− (ζ,w)), that

α ‖(σ,u)− (ζ,w)‖2H ≤ Bφ((σ,u), (σ,u)− (ζ,w)) − Bφ((ζ,w), (σ,u)− (ζ,w))

= (Fφ − Fψ)
(
(σ,u)− (ζ,w)

)
+ (Bψ −Bφ)

(
(ζ,w), (σ,u)− (ζ,w)

)
.

(1.32)

Then, according to the definition of Fφ (cf. (1.14)), and applying the Cauchy-Schwarz inequality, we
deduce that∣∣∣(Fφ − Fψ)

(
(σ,u)− (ζ,w)

)∣∣∣ =

∣∣∣∣∫
Ω
f(φ− ψ) · (u−w) − κ2

∫
Ω
f(φ− ψ) · div(σ − ζ)

∣∣∣∣
≤ ‖f‖∞,Ω ‖φ− ψ‖0,Ω

{
‖u−w‖0,Ω + κ2 ‖div(σ − ζ)‖0,Ω

}
≤

(
1 + κ2

2

)1/2 ‖f‖∞,Ω ‖φ− ψ‖0,Ω ‖(σ,u)− (ζ,w)‖H .

(1.33)

In turn, it follows easily from (1.13) that

(Bψ −Bφ)
(
(ζ,w), (σ,u)− (ζ,w)

)
=

∫
Ω

{
µ(φ)− µ(ψ)

µ(φ)µ(ψ)

}
ζd :

{
(σ − ζ)d − κ1∇(u−w)

}
,

from which, thanks to the lower bound of µ (cf. (1.2)) and its Lipschitz-continuity assumption (1.20),
and applying Cauchy-Schwarz and Hölder inequalities, we find that∣∣∣(Bψ −Bφ)

(
(ζ,w), (σ,u)− (ζ,w)

)∣∣∣ ≤ Lµ
µ2

1

∫
Ω

∣∣(φ− ψ) ζd
∣∣ ∣∣(σ − ζ)d − κ1∇(u−w)

∣∣
≤ Lµ

µ2
1

∥∥ (φ− ψ) ζ
∥∥

0,Ω

∥∥(σ − ζ)d − κ1∇(u−w)
∥∥

0,Ω

≤ Lµ
µ2

1

‖ζ‖L2p(Ω) ‖φ− ψ‖L2q(Ω)

{
‖σ − ζ‖0,Ω + κ1 |u−w|1,Ω

}
≤ Lµ (1 + κ2

1)1/2

µ2
1

‖ζ‖L2p(Ω) ‖φ− ψ‖L2q(Ω) ‖(σ,u)− (ζ,w)‖H ,

(1.34)

where p, q ∈ [1,+∞) are such that 1
p + 1

q = 1. Next, bearing in mind the further regularity ε assumed
in (1.27), we notice that the Sobolev embedding Theorem (cf. [1, Theorem 4.12], [92, Theorem 1.3.4])
establishes the continuous injection iε : Hε(Ω) −→ Lε

∗
(Ω) with boundedness constant Cε, where

ε∗ :=


2

1−ε if n = 2 ,

6
3−2ε if n = 3 .
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Thus, choosing p such that 2p = ε∗, we deduce that ζ := S1(ψ) does in fact belong to L2p(Ω), and
hence, thanks to the aforementioned continuity, there holds

‖ζ‖L2p(Ω) ≤ Cε ‖ζ‖ε,Ω , (1.35)

which, when needed, can be bounded by (1.27), yielding for each ψ with ‖ψ‖1,Ω ≤ r

‖ζ‖L2p(Ω) ≤ Cε C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖ψ‖0,Ω
}
.

In addition, according to the above choice of p, that is p = ε∗/2, we readily find that

2q :=
2p

p− 1
=


2
ε if n = 2 ,

3
ε if n = 3 .

=
n

ε
. (1.36)

In this way, inequalities (1.32), (1.33), (1.34), and (1.35), together with the identity (1.36), imply (1.31)
and complete the proof.

Lemma 1.9. Let α̃ := ϑ1
2 c2p

be the strong monotonicity constant provided in the proof of Lemma 1.6.

Then, there exists a positive constant C̃, depending on α̃, c(Ω), and Lγ ( cf. (1.10), (1.19)), such that
for all (φ,u), (ϕ,w) ∈ H1

ΓD
(Ω)×H1(Ω), with ‖u‖1,Ω, ‖w‖1,Ω < ϑ1

2 cp c(Ω) , there holds

‖S̃(φ,u)− S̃(ϕ,w)‖1,Ω ≤ C̃
{
|k| ‖φ− ϕ‖0,Ω + ‖S̃(ϕ,w)‖1,Ω ‖u−w‖1,Ω

}
. (1.37)

Proof. Given (φ,u), (ϕ,w) as stated, we let φ̃ := S̃(φ,u) and ϕ̃ := S̃(ϕ,w), that is (cf. (1.16))

Au(φ̃, ψ̃) = Gφ(ψ̃) and Aw(ϕ̃, ψ̃) = Gϕ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω) .

It follows, according to the strong monotonicity of Au with constant α̃, and then subtracting and
adding Gϕ(φ̃− ψ̃) = Aw(ϕ̃, φ̃− ψ̃), that

α̃ ‖φ̃− ϕ̃‖21,Ω ≤ Au(φ̃, φ̃− ϕ̃) − Au(ϕ̃, φ̃− ϕ̃)

= Gφ(φ̃− ϕ̃)−Gϕ(φ̃− ϕ̃) + Aw(ϕ̃, φ̃− ψ̃)−Au(ϕ̃, φ̃− ϕ̃)

=

∫
Ω

(
γ(φ)− γ(ψ)

)
k · ∇(φ̃− ψ̃) +

∫
Ω
ϕ̃ (u−w) · ∇(φ̃− ψ̃) ,

where the last equality has employed the definitions given by (1.9) and (1.17). Then, applying the
Lipschitz-continuity of γ (cf. (1.19)), the Cauchy-Schwarz inequality, and the estimate (1.10), we
deduce from the foregoing equation that

α̃ ‖φ̃− ϕ̃‖21,Ω ≤
{
Lγ |k| ‖φ− ψ‖0,Ω + c(Ω) ‖ϕ̃‖1,Ω ‖u−w‖1,Ω

}
|φ̃− ψ̃|1,Ω ,

which gives (1.37) and finishes the proof.

The following result is a straightforward corollary of Lemmas 1.8 and 1.9.

Lemma 1.10. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

.
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Then, with the constants C and C̃ from Lemmas 1.8 and 1.9, for all φ, ϕ ∈ H1
ΓD

(Ω) there holds

‖T(φ)−T(ϕ)‖1,Ω ≤
{
C̃ |k| + C C̃ ‖T(ϕ)‖1,Ω ‖f‖∞,Ω

}
‖φ− ϕ‖0,Ω

+ C C̃ ‖T(ϕ)‖1,Ω ‖S1(ϕ)‖ε,Ω ‖φ− ϕ‖Ln/ε(Ω) .
(1.38)

Proof. It suffices to recall from Section 1.3.2 that T(φ) = S̃(φ,S2(φ)) ∀φ ∈ H1
ΓD

(Ω), and then apply
Lemmas 1.7, 1.8, and 1.9.

The announced properties of T are proved now.

Lemma 1.11. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

.

Then, T : W −→W is continuous and T(W ) is compact.

Proof. We first observe, thanks now to the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem
6.3], [92, Theorem 1.3.5]), that the injection i : H1(Ω) −→ Ls(Ω) is compact, and hence continuous,
for each s ≥ 1 (when n = 2), and for each s ∈ [1, 6) (when n = 3). Then, according to the assumptions
on the further regularity ε (cf. (1.27)), namely ε ∈ (0, 1) in R2 and ε ∈ (1

2 , 1) in R3, we realize that
n/ε belongs to the indicated ranges for s, and therefore H1(Ω) is compactly, and hence continuously,
embedded in Ln/ε(Ω), which together with (1.38) imply the continuity of T. In turn, let {φk}k∈N

be a sequence of W , which is clearly bounded. It follows that there exist a subsequence {φ(1)
k }k∈N ⊆

{φk}k∈N and φ ∈ H1
ΓD

(Ω) such that φ(1)
k

w−→ φ. In this way, since the injections i1 : H1
ΓD

(Ω) −→ L2(Ω)

and ĩ1 : H1
ΓD

(Ω) −→ Ln/ε(Ω) are compact, we deduce that φ(1)
k −→ φ in L2(Ω) and φ

(1)
k −→ φ in

Ln/ε(Ω), which, combined with (1.38), implies that T(φ
(1)
k ) −→ T(φ) in H1

ΓD
(Ω). This proves the

compactness of T(W ) and finishes the proof.

Finally, the main result of this section is given as follows.

Theorem 1.2. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

. (1.39)

Then the augmented mixed-primal problem (1.15) has at least one solution (σ,u, φ) ∈ HN(div; Ω) ×
H1(Ω)×H1

ΓD
(Ω) with φ ∈W , and there holds

‖φ‖1,Ω ≤
2 c2

p

ϑ1 r

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
(1.40)

and
‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φ‖1,Ω
}
. (1.41)

Moreover, if the data k, f , and uD are sufficiently small so that, with the constants C, C̃, and C̃S(r)

from Lemmas 1.8 and 1.9, and estimate (1.27), and denoting by C̃ε the boundedness constant of the
continuous injection of H1(Ω) into Ln/ε(Ω), there holds

C̃ |k| + C C̃ r
{(

1 + r C̃ε C̃S(r)
)
‖f‖∞,Ω + C̃ε C̃S(r) ‖uD‖1/2+ε,ΓD

}
< 1 , (1.42)

then the solution φ is unique in W .
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Proof. According to the equivalence between (1.15) and the fixed point equation (1.18), and thanks to
the previous Lemmas 1.7 and 1.11, the existence of solution is just a straightforward application of the
Schauder fixed point theorem (cf. Theorem 1.1). In turn, the estimates (1.40) and (1.41) follow from
(1.21) (cf. Lemma 1.4) and (1.29) (cf. Lemma 1.6). Furthermore, given another solution ϕ ∈ W of
(1.18), the estimates ‖T(ϕ)‖1,Ω = ‖ϕ‖1,Ω ≤ r, ‖S1(ϕ)‖ε,Ω ≤ C̃S(r)

{
‖uD‖1/2+ε,ΓD

+‖f‖∞,Ω ‖ϕ‖1,Ω
}

(cf. (1.27)), and ‖ψ‖Ln/ε(Ω) ≤ C̃ε ‖ψ‖1,Ω ∀ψ ∈ H1(Ω), confirm (1.42) as a sufficient condition for
concluding, together with (1.38), that φ = ϕ.

It is important to highlight here that the uniqueness of φ certainly implies, according to Lemma
1.4, the uniqueness of the solution S(φ) := (σ,u) ∈ H of problem (1.12), and hence the foregoing
theorem actually guarantees that, under the asumption (1.39) on the data, there exists a unique
solution (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)×H1

ΓD
(Ω) of problem (1.15) such that φ ∈W .

1.4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the augmented mixed-primal
problem (1.15). To this end, we now let Th be a regular triangulation of Ω by triangles K (resp.
tetrahedra K in R3) of diameter hK , and define the meshsize h := max

{
hK : K ∈ Th

}
. In addition,

given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial functions on K of
degree ≤ k, and define the corresponding local Raviart-Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,

where, according to the notations described in Section 1.1, Pk(K) = [Pk(K)]n, and x is the generic
vector in Rn. Then, we introduce the finite element subspaces approximating the unknowns σ, u, and
φ, respectively, as the global Raviart-Thomas space of order k, and the corresponding Lagrange spaces
given by the continuous piecewise polynomials of degree ≤ k + 1, that is

Hσh :=
{
τ h ∈ HN(div; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀K ∈ Th

}
, (1.43)

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th

}
, (1.44)

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

ΓD
(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
. (1.45)

In this way, the underlying Galerkin’s scheme, given by the discrete counterpart of (1.15), reads:
Find (σh,uh, φh) ∈ Hσh ×Hu

h ×Hφ
h such that

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

Auh(φh, ψh) =

∫
Ω
γ(φh)k · ∇ψh +

∫
Ω
gψh ∀ψh ∈ Hφ

h .
(1.46)

Throughout the rest of this section we adopt the discrete analogue of the fixed point strategy introduced
in Section 1.3.2. Hence, we now let Sh : Hφ

h −→ Hσh ×Hu
h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∀φh ∈ Hφ
h ,
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where (σh,uh) ∈ Hσh ×Hu
h is the unique solution of

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀ (τ h,vh) ∈ Hσh ×Hu
h , (1.47)

with Bφh and Fφh being defined by (1.13) and (1.14), respectively, with φ = φh. In addition, we let
S̃h : Hφ

h ×Hu
h −→ Hφ

h be the operator defined by

S̃h(φh,uh) := φ̃h ∀ (φh,uh) ∈ Hφ
h ×Hu

h ,

where φ̃h ∈ Hφ
h is the unique solution of

Auh(φ̃h, ψ̃h) = Gφh(ψ̃h) ∀ ψ̃h ∈ Hφ
h , (1.48)

with Auh and Gφh being defined by (1.9) and (1.17), respectively, with u = uh and φ = φh. Finally,
we define the operator Th : Hφ

h −→ Hφ
h by

Th(φh) := S̃h(φh,S2,h(φh)) ∀φh ∈ Hφ
h ,

and realize that (1.46) can be rewritten, equivalently, as: Find φh ∈ Hφ
h such that

Th(φh) = φh . (1.49)

Certainly, all the above makes sense if we guarantee that the discrete problems (1.47) and (1.48) are
well-posed. Indeed, it is easy to see that the respective proofs are almost verbatim of the continuous
analogues provided in Section 1.3.3, and hence we simply state the corresponding results as follows.

Lemma 1.12. Assume that κ1 ∈
(

0, 2δµ1

µ2

)
with δ ∈ (0, 2µ1), and that 0 < κ2, κ3. Then, for each

φh ∈ Hφ
h the problem (1.47) has a unique solution Sh(φh) := (σh,uh) ∈ Hσh ×Hu

h . Moreover, with
the same constant CS > 0 from Lemma 1.4, there holds

‖Sh(φh)‖H = ‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φh‖0,Ω
}

∀φh ∈ Hφ
h .

Proof. It suffices to see that for each φh ∈ Hφ
h, Bφh is elliptic on Hσh ×Hu

h with the same constant α
from Lemma 1.4 (cf. (1.24)), and that ‖Fφh‖(Hσh×Huh)′ is bounded as in (1.26) with φh in place of φ.

The rest of the proof is a direct application of the Lax-Milgram lemma.

Lemma 1.13. Let φh ∈ Hφ
h and uh ∈ Hu

h such that ‖uh‖1,Ω < ϑ1
2 cp c(Ω) ( cf. (1.3), (1.6), (1.10)).

Then, there exists a unique φ̃h := S̃h(φh,uh) ∈ Hφ
h solution of (1.48), and there holds

‖S̃h(φh,uh)‖1,Ω = ‖φ̃h‖1,Ω ≤
2 c2

p

ϑ1

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
.

Proof. It basically follows by observing that, under the assumption on ‖uh‖1,Ω, Auh becomes Lipschitz-
continuous and strongly monotone on Hφ

h × Hφ
h with the constants L̃uh := ϑ̃2 + c(Ω) ‖uh‖1,Ω and

α̃ := ϑ1
2 c2p

given in the proofs of Lemmas 1.5) and 1.6, respectively, and then applying again [88,
Theorem 3.3.23]. In addition, the fact that ‖Gφ‖ is bounded independently of φ (cf. proof of Lemma
1.5), confirms the same upper bound for ‖Gφh‖(Hφh)′ .
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We now aim to show the solvability of (1.46) by analyzing the equivalent fixed point equation (1.49).
To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem, which is
given as follows (see, e.g. [41, Theorem 9.9-2]).

Theorem 1.3. Let W be a compact and convex subset of a finite dimensional Banach space X and let
T : W →W be a continuous mapping. Then T has at least one fixed point.

We begin with the discrete version of Lemma 1.7.

Lemma 1.14. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

.

Then Th(Wh) ⊆ Wh.

Proof. It is a straightforward consequence of Lemmas 1.12 and 1.13.

The discrete analogue of Lemma 1.8 is provided next. We notice in advance that, instead of the
regularity assumption employed in the proof of that result, which actually is not needed nor could be
applied in the present discrete case, we simply utilize a L4 − L4 − L2 argument.

Lemma 1.15. There exists a positive constant C, depending on µ1, κ1, κ2, Lµ, and α ( cf. (1.2),
(1.11), (1.20), (1.24)), such that

‖Sh(φh)− Sh(ψh)‖H ≤ C
{
‖f‖∞,Ω ‖φh − ψh‖0,Ω + ‖S1,h(ψh)‖L4(Ω) ‖φh − ψh‖L4(Ω)

}
, (1.50)

for all φh, ψh ∈ Hφ
h.

Proof. It proceeds exactly as in the proof of Lemma 1.8, except for the derivation of the discrete
analogue of (1.34), where, instead of choosing the values of p and q determined by the regularity
parameter δ, it suffices to take p = q = 2, thus obtaining∣∣∣(Bψh −Bφh)

(
(ζh,wh), (σh,uh)− (ζh,wh)

)∣∣∣
≤ Lµ (1 + κ2

1)1/2

µ2
1

‖ζh‖L4(Ω) ‖φh − ψh‖L4(Ω) ‖(σh,uh)− (ζh,wh)‖H ,

for all φh, ψh ∈ Hφ
h, with (σh,uh) := Sh(φh) and (ζh,wh) := Sh(ψh). Thus, the fact that the

elements of Hσh are piecewise polynomials insures that ‖ζh‖L4(Ω) < +∞ for each ζh ∈ Hσh . Further
details are omitted.

Now, utilizing Lemma 1.15 and the discrete analogue of Lemma 1.9 (which for sake of space saving
is not specified here), we can prove the discrete version of Lemma 1.10.

Lemma 1.16. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

.



1.5. A priori error analysis 30

Then, with the constants C and C̃ from Lemmas 1.15 and 1.9, for all φh, ϕh ∈ Hφ
h there holds

‖Th(φh)−Th(ϕh)‖1,Ω ≤
{
C̃ |k| + C C̃ ‖Th(ϕh)‖1,Ω ‖f‖∞,Ω

}
‖φh − ϕh‖0,Ω

+ C C̃ ‖Th(ϕh)‖1,Ω ‖S1,h(ϕh)‖L4(Ω) ‖φh − ϕh‖L4(Ω) .
(1.51)

Consequently, since the foregoing lemma and the continuous injection of H1(Ω) into L4(Ω) confirm
the continuity of Th, we conclude, thanks to the Brouwer fixed point theorem (cf. Theorem 1.3) and
Lemmas 1.14 and 1.16, the main result of this section.

Theorem 1.4. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}
, and assume that

‖uD‖1/2,ΓD
+ r ‖f‖∞,Ω <

ϑ1

2CS cp c(Ω)
and γ2 |Ω|1/2 |k| + ‖g‖0,Ω ≤

ϑ1 r

2 c2
p

.

Then the Galerkin scheme (1.46) has at least one solution (σh,uh, φh) ∈ Hσh ×Hu
h ×Hφ

h with φh ∈Wh,
and there holds

‖φh‖1,Ω ≤
2 c2

p

ϑ1 r

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
and

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖f‖∞,Ω ‖φh‖1,Ω
}
.

1.5 A priori error analysis

Given (σ,u, φ) ∈ HN(div; Ω) ×H1(Ω) × H1
ΓD

(Ω) with φ ∈ W , and (σh,uh, φh) ∈ Hσh ×Hu
h × Hφ

h

with φh ∈ Wh, solutions of (1.15) and (1.46), respectively, we now aim to derive a corresponding a
priori error estimate. For this purpose, we now recall from (1.15) and (1.46), that the above means
that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

(1.52)

and
Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1

ΓD
(Ω) ,

Auh(φh, ψh) = Gφh(ψh) ∀ψh ∈ Hφ
h .

(1.53)

Next, we recall from [68] a Strang-type lemma, which will be utilized in our subsequent analysis.

Lemma 1.17. Let H be a Hilbert space, F ∈ H ′, and A : H → H ′ a nonlinear operator. In addition, let
{Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N consider a nonlinear
operator An : Hn → H ′n and a functional Fn ∈ H ′n. Assume that the family {A} ∪ {An}n∈N is
uniformly Lipschitz continuous and strongly monotone with constants ΛLC and ΛSM, respectively. In
turn, let u ∈ H and un ∈ Hn such that

[A(u), v] = [F, v] ∀ v ∈ H and [An(un), vn] = [Fn, vn] ∀ vn ∈ Hn ,
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where [·, ·] denotes the duality pairings of both H ′×H and H ′n×Hn. Then for each n ∈ N there holds

‖u− un‖H ≤ ΛST

 sup
wn∈Hn
wn 6=0

∣∣ [F,wn]− [Fn, wn]
∣∣

‖wn‖H

+ inf
vn∈Hn
vn 6=0

‖u− vn‖H + sup
wn∈Hn
wn 6=0

∣∣ [A(vn), wn]− [An(vn), wn]
∣∣

‖wn‖H


 ,

with ΛST := Λ−1
SM max

{
1,ΛSM + ΛLC

}
.

Proof. It is a particular case of [68, Theorem 6.4].

We begin our analysis by denoting as usual

dist
(
φ,Hφ

h

)
:= inf

ϕh∈Hφh

‖φ− ϕh‖1,Ω,

and
dist

(
(σ,u),Hσh ×Hu

h

)
:= inf

(τh,vh)∈Hσh×H
u
h

‖(σ,u)− (τ h,vh)‖H .

Then, we have the following result concerning ‖φ− φh‖1,Ω.

Lemma 1.18. Let C̃ST := α̃−1 max
{

1, α̃+ L̃
}
, with α̃ := ϑ1

2 c2p
and L̃ := ϑ̃2 + ϑ1

2 cp
. Then there holds

‖φ− φh‖1,Ω ≤ C̃ST

{
Lγ |k| ‖φ− φh‖0,Ω + c(Ω) ‖φ‖1,Ω ‖u− uh‖1,Ω

+

(
1 + c(Ω) ‖u− uh‖1,Ω

)
dist(φ,Hφ

h)

}
.

(1.54)

Proof. We first observe from Lemmas 1.5, 1.6, and 1.13, that the nonlinear operators Au and Auh are
both strongly monotone and Lipschitz-continuous on their corresponding spaces with constants α̃ and
L̃, respectively. Then, by applying the abstract Lemma 1.17 to the context (1.53), we find that

‖φ− φh‖1,Ω ≤ C̃ST

 sup
ψh∈H

φ
h

ψh 6=0

∣∣Gφ(ψh)−Gφh(ψh)
∣∣

‖ψh‖1,Ω

+ inf
ϕh∈H

φ
h

ϕh 6=0

(
‖φ− ϕh‖1,Ω + sup

ψh∈H
φ
h

ψh 6=0

∣∣Au(ϕh, ψh)−Auh(ϕh, ψh)
∣∣

‖ψh‖1,Ω

) .

(1.55)

Next, we proceed similarly as in the proof of Lemma 1.9 to estimate each term in the foregoing equation
involving a supremum. In fact, according to the definition of Gφ (cf. (1.17)), and applying the same
arguments from that proof, we readily see that

sup
ψh∈H

φ
h

ψh 6=0

∣∣Gφ(ψh)−Gφh(ψh)
∣∣

‖ψh‖1,Ω
≤ Lγ |k| ‖φ− φh‖0,Ω . (1.56)
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In turn, it is clear from the definition of Au (cf. (1.9)) and the estimate (1.10) that for each ϕh ∈ Hφ
h

there holds

sup
ψh∈H

φ
h

ψh 6=0

∣∣Au(ϕh, ψh)−Auh(ϕh, ψh)
∣∣

‖ψh‖1,Ω
≤ c(Ω) ‖ϕh‖1,Ω ‖u− uh‖1,Ω

≤ c(Ω) ‖φ− ϕh‖1,Ω ‖u− uh‖1,Ω + c(Ω) ‖φ‖1,Ω ‖u− uh‖1,Ω .

(1.57)

In this way, replacing (1.56) and (1.57) back into (1.55), we arrive at (1.54) and end the proof.

The following lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖H .

Lemma 1.19. Let CST := α−1 max
{

1, α+‖B‖
}
, where ‖B‖ and α are the boundedness and ellipticity

constants, respectively, of the bilinear forms Bφ ( cf. (1.22), (1.24)). Then there holds

‖(σ,u)− (σh,uh)‖H ≤ CST

{(
1 + 2 ‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+

(
1 + κ2

2

)1/2 ‖f‖∞,Ω ‖φ− φh‖0,Ω +
Lµ (1 + κ2

1)1/2

µ2
1

Cε ‖σ‖ε,Ω ‖φ− φh‖Ln/ε(Ω)

}
.

(1.58)

Proof. By applying the abstract Lemma 1.17 to the context (1.52), we obtain

‖(σ,u)− (σh,uh)‖H

≤ CST

{
sup

(τh,vh)∈Hσ
h
×Hu

h
(τh,vh)6=0

∣∣Fφ(τ h,vh)− Fφh(τ h,vh)
∣∣

‖(τ h,vh)‖H

+ inf
(ζh,wh)∈Hσ

h
×Hu

h
(ζh,wh) 6=0

(
‖(σ,u)− (ζh,wh)‖H

+ sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh) 6=0

∣∣Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh))
∣∣

‖(τ h,vh)‖H

)}
.

(1.59)

Then, proceeding analogously as in the proof of Lemma 1.8 (cf. (1.33)), we first deduce that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh)6=0

∣∣Fφ(τ h,vh)− Fφh(τ h,vh)
∣∣

‖(τ h,vh)‖H
≤
(
1 + κ2

2

)1/2 ‖f‖∞,Ω ‖φ− φh‖0,Ω . (1.60)

In turn, in order to estimate the supremum in (1.59), we add and substract suitable terms to write

Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh)) = Bφ((ζh,wh)− (σ,u), (τ h,vh))

+
(
Bφ −Bφh

)
((σ,u), (τ h,vh)) + Bφh((σ,u)− (ζh,wh), (τ h,vh)) ,

whence, applying the boundedness (1.22) to the first and third terms on the right hand side of the
foregoing equation, and proceeding analogously as for the derivation of (1.34) and (1.35) with the
second one, we find that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh)6=0

∣∣Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh))
∣∣

‖(τ h,vh)‖H

≤ 2 ‖B‖ ‖(σ,u)− (ζh,wh)‖H +
Lµ (1 + κ2

1)1/2

µ2
1

Cε ‖σ‖ε,Ω ‖φ− φh‖Ln/ε(Ω) .

(1.61)
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Finally, by replacing (1.60) and (1.61) into (1.59), we arrive at (1.58), which ends the proof.

We now combine the inequalities provided by Lemmas 1.18 and 1.19 to derive the Céa estimate for
the total error ‖φ−φh‖1,Ω + ‖(σ,u)−(σh,uh)‖H . To this end, and in order to simplify the subsequent
writing, we introduce the following constants

C1 := C̃ST Lγ , C2 := C̃ST c(Ω) r CST (1+κ2
2)1/2 , C3 := C̃ST c(Ω) r CST

Lµ (1 + κ2
1)1/2

µ2
1

Cε C̃S(r) C̃ε .

Hence, by replacing the bound for ‖u−uh‖1,Ω given by (1.58) into the second term on the right hand
side of (1.54), recalling that ‖φ‖1,Ω ≤ r, employing from (1.27) that

‖σ‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,ΓD

+ ‖f‖∞,Ω ‖φ‖0,Ω
}
,

using again that C̃ε is the boundedness constant of the continuous injection of H1(Ω) into Ln/ε(Ω),
and performing several algebraic manipulations, we can assert that

‖φ− φh‖1,Ω ≤
{
C1 |k| +

(
C2 + r C3

)
‖f‖∞,Ω + C3 ‖uD‖1/2+ε,ΓD

}
‖φ− φh‖1,Ω

+ C̃ST c(Ω) r CST

(
1 + 2‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+ C̃ST

(
1 + c(Ω) ‖u− uh‖1,Ω

)
dist(φ,Hφ

h) .

(1.62)

Note here that ‖u‖1,Ω and ‖uh‖1,Ω are estimated according to (1.21), and hence the expression in
(1.62) multiplying dist(φ,Hφ

h) is already controlled by constants, parameters, and data only. As a
consequence of the foregoing discussion, we can establish the following result providing the requested
Céa estimate.

Theorem 1.5. Assume that the data k, f , and uD are sufficiently small so that

C1 |k| +
(
C2 + r C3

)
‖f‖∞,Ω + C3 ‖uD‖1/2+ε,ΓD

<
1

2
. (1.63)

Then, there exist positive constants C4 and C5, depending only on parameters, data, and other cons-
tants, all them independent of h, such that

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H ≤ C4 dist
(
(σ,u),Hσh ×Hu

h

)
+ C5 dist(φ,Hφ

h) . (1.64)

Proof. The estimate for ‖φ − φh‖1,Ω follows straightforwardly from (1.62) and (1.63), and then, the
replacement of it back into (1.58), using also that ‖φ − φh‖Ln/ε(Ω) ≤ C̃ε ‖φ − φh‖1,Ω, completes the
proof.

We end this section with the corresponding rates of convergence of our Galerkin scheme (1.46).

Theorem 1.6. In addition to the hypotheses of Theorems 1.2, 1.4, and 1.5, assume that there exists
s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ H1+s(Ω), and φ ∈ H1+s(Ω). Then, there exists
Ĉ > 0, independent of h, such that, with the finite element subspaces defined by (1.43), (1.44), and
(1.45), there holds

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H

≤ Ĉ hmin{s,k+1}
{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖φ‖1+s,Ω

}
.

(1.65)
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Proof. It follows directly from the Céa estimate (1.64) and the approximation properties of Hσh , Hu
h ,

and Hφ
h (cf. [26, 40, 63]).

1.6 Numerical results

We illustrate the performance of our mixed–primal finite element method with some numerical
tests. We first study the accuracy of the approximations by manufacturing an exact solution of the
nonlinear problem (1.1) defined on Ω = (0, 1)2. We introduce the coefficients µ(φ) = (1 − cφ)−2,
γ(φ) = cφ(1 − cφ)2, ϑ(|∇φ|) = m1 + m2(1 + |∇φ|2)m3/2−1, and the source terms on the right hand
sides are adjusted in such a way that the exact solutions are given by the smooth functions

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)), u(x1, x2) =

(
sin(2πx1) cos(2πx2)

− cos(2πx1) sin(2πx2)

)
,

σ(x1, x2) = 2π


cos(2πx1) cos(2πx2)

(1− bc+ bce−x1(x1−1)x2(x2−1))2

− sin(2πx1) sin(2πx2)

(1− bc+ bce−x1(x1−1)x2(x2−1))2

sin(2πx1) sin(2πx2)

(1− bc+ bce−x1(x1−1)x2(x2−1))2

− cos(2πx1) cos(2πx2)

(1− bc+ bce−x1(x1−1)x2(x2−1))2

− (x2
1 − x2

2)I,

for (x1, x2) ∈ Ω. We take b = 15, c = m1 = m2 = 1/2,m3 = 3/2 and set ΓD = ∂Ω, where φ vanishes
and uD is imposed accordingly to the exact solution. The mean value of tr(σ)h over Ω is fixed via
a penalization strategy. As defined above, the scalar field φ is bounded in Ω and so the coefficients
are also bounded. In particular we have µ1 = 0.99 and µ2 = 3.35. Therefore, and as suggested by
Lemma 1.4, the stabilization constants are chosen as κ1 = µ2

1/µ2 = 0.2976, κ2 = 1/µ2 = 0.2985, and
κ3 = κ1/2 = 0.1488.

Nhk = 0
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Figure 1.1: Example 1: Computed errors e(φ), e(σ), e(u) associated to the mixed–primal approxima-
tion versus the number of degrees of freedom Nh for RT0−P1−P1 and RT1−P2−P2 finite elements
(left and right, respectively). See values in Table 1.1.

The domain is partitioned into quasi-uniform meshes with 2n + 3, n = 0, 1, . . . , 8 vertices on each
side of the domain. The convergence of the approximate solutions is assessed by computing errors in
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Nh h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iter

Augmented RT0 −P1 − P1 scheme

187 0.353553 58.80212 − 16.97841 − 0.891473 − 8
278 0.282843 48.21425 0.852938 13.99512 1.014962 0.711188 0.970463 7
514 0.202031 35.19082 0.935794 8.041585 1.424675 0.512189 0.975540 7
1202 0.128565 22.67913 0.972039 3.573343 1.579459 0.327347 0.990462 7
3442 0.074432 13.16677 0.994888 1.461483 1.563582 0.189813 0.997142 6
11378 0.040406 7.138732 1.002043 0.639297 1.235346 0.103089 0.999241 6
41074 0.021107 3.722753 1.002661 0.305779 1.113577 0.053859 0.999801 6
155762 0.010795 1.904552 1.002240 0.152283 1.034021 0.027705 0.999948 6
606322 0.005460 0.961174 1.001041 0.076408 1.010863 0.013933 0.999987 6

Augmented RT1 −P2 − P2 scheme

595 0.353553 19.88141 − 3.675443 − 0.123752 − 7
903 0.282843 13.55213 1.717465 2.237812 2.223581 0.079988 1.955574 6
1711 0.202031 7.213065 1.874291 1.026756 2.215637 0.041028 1.984189 6
4095 0.128565 2.989083 1.949025 0.343355 2.223416 0.016689 1.990120 6
11935 0.074432 1.012340 1.981522 0.089977 2.150313 0.005607 1.995567 6
39903 0.040406 0.299392 1.994287 0.022247 2.187332 0.001654 1.998442 6
144991 0.021107 0.081778 1.998531 0.005629 2.116371 0.000451 1.999545 6
551775 0.010795 0.021401 1.999468 0.001439 2.034801 0.000118 1.999836 6
2164783 0.005460 0.005014 2.006076 0.000357 2.013878 0.000026 1.999935 6

Table 1.1: Example 1: Convergence history and Newton iteration count for the mixed–primal RTk −
Pk+1 − Pk+1 approximations of the coupled problem, k = 0, 1. Here Nh stands for the number of
degrees of freedom associated to each triangulation Th.

the respective norms and experimental rates, that we define as usual

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u− uh‖1,Ω, e(φ) := ‖φ− φh‖1,Ω,

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(u) :=

log(e(u)/ê(u))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ, respectively.
Notice that these errors are computed between the finite element approximation and the corresponding
interpolate of the exact solution. Values and plots of errors and corresponding rates associated to
RTk−Pk+1−Pk+1 approximations with k = 0 and k = 1 are summarized in Table 1.1 and Figure 1.1,
respectively, where we observe convergence rates of O(hk+1) for stresses, velocities and the scalar field
in the relevant norms. These findings are in agreement with the theoretical error bounds of Section 1.5
(cf. (1.65)). A Newton-Raphson algorithm with a tolerance of 1E-08 has been applied to the resolution
of the nonlinear problem (1.46), and at each iteration the linear systems resulting from the linearization
were solved by means of the multifrontal massively parallel solver (MUMPS [9]). We mention that an
average number of 7 Newton steps were required to reach the desired tolerance. All remaining examples
were carried out using k = 0, i.e., lowest-order Raviart-Thomas finite element approximations for the
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Figure 1.2: Example 1: RT0 −P1 − P1 approximation of stress components σh (top panels), velocity
components uh (with vector directions, bottom left and center, respectively), and scalar field φh
(bottom right) solving (1.15). The mesh has 37249 vertices and 74496 triangular elements.

rows of the Cauchy stress tensor, and piecewise linear approximations of velocity components and the
scalar field φ. The augmented mixed–primal approximations computed on a mesh of 37249 vertices
and 74496 elements are depicted in Figure 1.2.

In our second example we assess the capability of a 3D implementation by carrying out the bench-
mark test of thermal convection on the cube Ω = (0, 1)3 (see e.g. [58, 84]). The relevant equations,
here written in terms of stresses σ, velocities u, and temperature φ correspond to the Boussinesq
approximation and can be readily recovered from (1.5) by setting g = 0, fφ = 1

ρ(0, φ − 1, 0)t,
µ(φ) = Re−1 = (Ra/Pr)−1/2, ϑ(φ) = (Re Pr)−1, γ(φ) = 0, where Pr = 0.71, Ra =1E05, and ρ = 0.1

are the Prandtl (ratio between the viscous and thermal diffusions), Rayleigh (only parameter remaining
after nondimensionalization of the Boussinesq approximation), and overheat ratio coefficients, respec-
tively. Notice that this problem is linear, except for the convection term. Even if the problem setting
does not coincide exactly with the case analyzed previously, our goal is to illustrate the applicability
of the present coupling strategy in diverse scenarios. In fact, if we redefine f := 1

ρ(0, 1, 0)t, then the
functional (1.14) will eventually contain two additional terms independent of f , and all the subsequent
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Figure 1.3: Example 2: Computed temperature iso-surfaces (top left) and velocity streamlines and
vectors colored by magnitude (top center and right, respectively) and principal components of the
Cauchy stress (center and bottom rows) for the thermal cavity test.

continuous and discrete analysis would remain unchanged after replacing fφ by fφ− f .

The stabilization constants are chosen as κ1 = µ, κ2 = 1/µ, and κ3 = µ/2. As boundary data we
impose uD = 0 on the whole ∂Ω, whereas we put φ = (2 − ρ)/2 at x1 = 0 and φ = (2 + ρ)/2 at
x1 = 1. On the remainder of ∂Ω we impose zero-flux conditions for φ, that is σ̃ ·ν = 0. The domain is
discretized on a mesh Th of 46656 vertices and 271950 tetrahedra, and we represent the field quantities
of interest in Figure 1.3. From these plots we can observe a satisfactory qualitative agreement with
respect to published data (see e.g. [47, 58, 84]).
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Moreover, Figure 1.4 reports on the mid-plane (x3 = 0.5) profiles and a comparison with respect to
values described in [58], including the average Nusselt number associated to a plane S (at fixed x1) and
computed as Nu =

∫
S Pr Reu1φ− ∂1φ. Our findings, after an average of 9 Newton iterations to reach

a tolerance of 1E-08, satisfactorily match the benchmark data in terms of maximum and minimum
velocities and temperature profiles at the symmetry lines x1 = 0.5 and x2 = 0.5. More quantitative
comparisons are also presented in Table 1.2, where we have collected some outputs of interest for
different values of the Rayleigh number. For larger Rayleigh numbers, an homotopy (or continuation)
method was carried out on the Rayleigh number in order to ensure convergence of the algorithm.
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Figure 1.4: Example 2: Temperature profiles (solid blue, left axis) and velocity components (dashed
green, right axis) at x3 = 0.5, and comparison with respect to benchmark solutions.

Ra Nu max(|û1,h|) max(|û2,h|) x∞1 x∞2

Computed 103 1.134 0.129 0.131 0.176 0.845
[47] 103 1.117 0.136 0.138 0.178 0.813
[58] 103 − 0.132 0.131 0.200 0.833
Computed 104 2.030 0.195 0.229 0.121 0.819
[47] 104 2.054 0.192 0.234 0.119 0.823
[58] 104 2.100 0.201 0.225 0.117 0.817
Computed 105 4.321 0.145 0.244 0.064 0.843
[47] 105 4.337 0.153 0.261 0.066 0.855
[58] 105 4.361 0.147 0.247 0.065 0.855

Table 1.2: Example 2: Outputs of interest (Nusselt number, maximum value of the normalized horizon-
tal velocity on the mid-plane attained at (0.5, x∞2 , 0.5), and maximum value of the normalized vertical
velocity and its position (x∞1 , 0.5, 0.5) on the central horizontal plane, respectively) for different values
of the Rayleigh number, and comparison with respect to values from [47, 58].

Our last example focuses on the simulation of the steady state of a clarifying-thickening process.
The basin, the different boundaries of the geometry, and the generated volumetric mesh consisting of
64135 vertices and 370597 tetrahedra are sketched in Figure 1.5. The size of the mesh and the finite
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Figure 1.5: Example 3: Geometry of the clarifier-thickener unit (left panel) and tetrahedral mesh Th
with 64135 vertices and 370597 elements (right panel).

element choice (row-wise Raviart-Thomas approximations for stresses and piecewise linear elements
for velocity components and concentration) implies that at each Newton step we solve for a total
of 2515211 degrees of freedom. The nonlinear functions of the concentration are taken as in [32]:
µ(φ) = (1 − φ/φmax)−2.5, γ(φ) = u∞(1 + φ(1 − φ/φmax))2, ϑ(φ) = γ(φ)σ0α(φ/φc)α−1

φφcG∆ρ + u∞ and the
source terms are f = (0, 0,−G)t, g = 0. The physical values assumed by the concentration (it remains
bounded between 0 and φmax) imply that the viscosity, hindered flux, and compressibility coefficients
satisfy (1.2)-(1.3) with µ1 = 1, µ2 = 2.7, γ1 = u∞, γ2 = 1.15u∞, ϑ1 = 4.28, ϑ2 = 29.74. However,
notice that ϑ depends explicitly on φ and not on the concentration gradient, which was not addressed
in the solvability analysis of the model problem. While one could try to analyze this case by using
some classical results on pseudomonotone operators (see, e.g. [41, Section 9.3], [88, Section 3.3]), in
the forthcoming work [5] we have chosen to extend the present approach to this modified model since
in this way we are able to derive not only the existence of continuous and discrete solutions but also
the corresponding a priori error analysis.

Boundary conditions are set as follows: Concentration and velocities are fixed on the inlet disc Γin

according to φ = φin and u = uin = (0, 0,−u3,in)t. At the outlet disk Γout we prescribe u = uout =

(0, 0,−u3,out)
t, at the overflow annulus we do not constraint the velocity field, and on the remainder of

∂Ω we put no slip boundary data for the velocity and zero-flux conditions for the concentration. Model
parameters are set as u3,in =1.29E-02, u3,out =2.54E-03, ∆ρ = 1562, φmax = 0.9, φc = 0.1, u∞ =2.2E-
03, G = 9.81, φin = 0.08, α = 5, and σ0 =5E-02. We mimic the behavior of a transient simulation by
adding a mass term ηφ to the concentration equation, with η =1E-03. Such a modification does not
entail a major change in the analysis: it suffices to replace the part of the flux φu by φ(u+ η).

According to the bounds of the viscosity, the stabilization parameters were set as κ1 = κ2 = 0.4784,
and κ3 = 0.2392. We mention that 8 Newton iterations were needed to achieve a tolerance of 1E-07 for
the energy norm of the incremental approximations. The numerical results are depicted in Figure 1.6
(we show half of the tank for visualization purposes), including concentration profile, velocity vectors,
pressure approximation (computed in terms of the trace of the Cauchy stress), and velocity components.
We can observe that the material is removed from the unit at the boundary Γout with concentration
φ ≈ 0.24, which agrees with the results in e.g. [31, Example 3].
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Figure 1.6: Example 3: Simulation of a clarifier-thickener unit. From left-top: Approximated concen-
tration profile, opposite of the trace of the Cauchy stress tensor (which corresponds to the suggested
approximation of the pressure field), and velocity components.



CHAPTER 2

A posteriori error analysis for a viscous flow–transport problem

2.1 Introduction

Chapter 1 was concerned with the solvability of a three-field flow-transport problem given by
the coupling of a scalar nonlinear convection-diffusion problem with the Stokes equations where the
viscosity depends on the distribution of the solution to the transport problem. There, an augmented
mixed–primal variational formulation was proposed, where the Cauchy stresses are sought in H(div; Ω),
the velocity is inH1(Ω), and the solution to the transport problem has H1(Ω) regularity. The associated
numerical scheme employed Raviart-Thomas spaces of order k for the Cauchy stress, whereas the
velocity and a coupled scalar field (e.g. concentration as in [5], or temperature) were approximated
with continuous piecewise polynomials of degree ≤ k + 1. Optimal a priori error estimates were also
derived.

Our goal in this chapter is to propose reliable and efficient residual-based a posteriori error estimators
for the coupled flow–transport problem studied in [4]. Estimators of this kind are typically used to
guide adaptive mesh refinement in order to guarantee an adequate convergence behavior of the Galerkin
approximations, even under the eventual presence of singularities. The global estimator θ depends on
local estimators θT defined on each element T of a given mesh Th. Then, θ is said to be efficient (resp.
reliable) if there exists a constant Ceff > 0 (resp. Crel > 0), independent of meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. A number of a
posteriori error estimators specifically targeted for non-viscous (e.g., Darcy) flow coupled with transport
problems area available in the literature (see, e.g. [17, 48, 82, 99, 104]). However, only a couple of
contributions deal with a posteriori error analysis for coupled viscous flow-transport problems. In
particular, we mention the reactive flow equations studied in [24] and the adaptive finite element
method for heat transfer in incompressible fluid flow proposed in [83], which is based on dual weighted
residual error estimation.

In contrast, here we apply a Helmholtz decomposition, local approximation properties of the Clé-
ment interpolant and Raviart-Thomas operator, and known estimates from [15, 60, 66, 72, 73], to
prove the reliability of a residual-based estimator. Then, inverse inequalities, the localization tech-
nique based on triangle-bubble and edge-bubble functions imply the efficiency of the estimator. An
alternative (also reliable and efficient) residual-based a posteriori error estimator is proposed, where

41
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the Helmholtz decomposition is not employed in the corresponding proof of reliability. The remainder
of this chapter is structured as follows. In Section 2.2, we first recall from [4] the model problem and
a corresponding augmented mixed-primal formulation as well as the associated Galerkin scheme. In
Section 2.3, we derive a reliable and efficient residual-based a posteriori error estimator for our Galerkin
scheme. A second estimator is introduced and studied in Section 2.4. Finally, in Section 2.5 we provide
some numerical results confirming the reliability and efficiency of the estimators, and illustrating the
good performance of the associated adaptive algorithm for the augmented mixed-primal finite element
method.

2.2 A coupled viscous flow–transport problem

2.2.1 The three-field formulation

The following system of partial differential equations describes the stationary state of the transport
of species φ in an immiscible fluid occupying the domain Ω (cf. [4]):

1

µ(φ)
σd = ∇u in Ω , −divσ = fφ in Ω ,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω , −divσ̃ = g in Ω ,

(2.1)

u = uD on ΓD , σν = 0 on ΓN ,

φ = φD on ΓD , and σ̃ · ν = 0 on ΓN .
(2.2)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, and the local concentration of species φ. In this model, the kinematic effective viscosity, µ; the
diffusion coefficient, ϑ; and the one-directional flux function describing hindered settling, γ; depend
nonlinearly on φ. In turn, k is a vector pointing in the direction of gravity and f ∈ L∞(Ω), uD ∈
H1/2(ΓD), g ∈ L2(Ω) are given functions. For sake of the subsequent analysis, the Dirichlet datum
for the concentration will be assumed homogeneous, that is φD = 0, ϑ is assumed of class C1, and we
suppose that there exist positive constants µ1, µ2, γ1, γ2, ϑ1, ϑ2, Lµ and Lγ , such that

µ1 ≤ µ(s) ≤ µ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R , (2.3)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0, (2.4)

|µ(s)− µ(t)| ≤ Lµ |s− t| ∀ s, t ∈ R , (2.5)

|γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R . (2.6)

2.2.2 The augmented mixed–primal formulation

The homogeneous Neumann boundary condition for σ on ΓN and the Dirichlet datum for φ (cf.
second and third relations of (2.2), respectively) suggest the introduction of the spaces

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on ΓN

}
,

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
.
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Also, due to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and ΓD,
such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω) . (2.7)

An augmented mixed-primal formulation for our original coupled problem (2.1) reads as follows:
Find (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)×H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1
ΓD

(Ω)
(2.8)

where

Bφ((σ,u), (τ ,v)) :=

∫
Ω

1

µ(φ)
σd : τ d +

∫
Ω
u · divτ −

∫
Ω
v · divσ (2.9)

+ κ1

∫
Ω

(
∇u − 1

µ(φ)
σd

)
: ∇v + κ2

∫
Ω
divσ · divτ + κ3

∫
ΓD

u · v ,

Fφ(τ ,v) := 〈τν,uD〉ΓD
+

∫
Ω
fφ · v − κ2

∫
Ω
fφ · divτ + κ3

∫
ΓD

uD · v , (2.10)

Au(φ, ψ) :=

∫
Ω
ϑ(|∇φ|)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ ∀φ, ψ ∈ H1

ΓD
(Ω), (2.11)

Gφ(ψ) :=

∫
Ω
γ(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) ,

where κi, i ∈ {1, 2, 3}, are the stabilization parameters specified in [4, Lemma 4.1]. Further details
yielding the weak formulation (2.8) can be found in [4, Section 3.1], whereas its solvability follows from
the fixed point strategy developed in [4, Theorem 3.13].

2.2.3 The augmented mixed–primal finite element method

We denote by Th a regular partition of Ω into triangles T (resp. tetrahedra T in R3) of diameter hT ,
and meshsize h := max

{
hT : T ∈ Th

}
. In addition, given an integer k ≥ 0, the space Pk(T ) contains

polynomial functions on T of degree ≤ k, and we define the corresponding local Raviart-Thomas space
of order k as RTk(T ) := Pk(T ) ⊕ Pk(T )x , where, according to the notations described in Section
2.2, Pk(T ) = [Pk(T )]n, and x ∈ Rn. Then, the Galerkin scheme associated to (2.8) is as follows: Find
(σh,uh, φh) ∈ Hσh ×Hu

h ×Hφ
h such that

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

Auh(φh, ψh) =

∫
Ω
γ(φh)k · ∇ψh +

∫
Ω
gψh ∀ψh ∈ Hφ

h ,
(2.12)

where the involved finite element spaces are defined as

Hσh :=
{
τ h ∈ HN(div; Ω) : ct τ h|T ∈ RTk(T ) ∀ c ∈ Rn , ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

ΓD
(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

The solvability analysis and a priori error bounds for (2.12) are established in [4, Section 5].
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2.3 A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (2.12). The analysis will be restricted to the two-dimensional case, with the discrete
spaces introduced in Section 2.2.3. However, we point out that a straightforward extension of our
analysis to 3D does also apply since the key estimate given by the stability of the corresponding
Helmholtz decomposition (see (2.48) below for our 2D case) follows from the technique suggested in
[67, Lemma 4.3] and the results provided in [10, Theorems 2.17 and 3.12, and Corollary 3.16].

Now, given a suitable chosen r > 0 (see [4] for details), we define the balls

W := {φ ∈ HΓD
: ‖φ‖1,Ω ≤ r} and Wh := {φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r} , (2.13)

and throughout the rest of the chapter we let (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)× H1
ΓD

(Ω) with φ ∈ W
and (σh,uh, φh) ∈ Hσh × Hu

h × Hφ
h with φh ∈ Wh be the solutions of the continuous and discrete

formulations (2.8) and (2.12), respectively. In addition, we set

H := HN(div,Ω)×H1(Ω) , ‖(τ ,v)‖H := ‖τ‖div;Ω + ‖v‖1,Ω ∀ (τ ,v) ∈ H ,

and recall from [4, Theorems 3.13 and 4.7] that the following a priori estimates hold

‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φ‖1,Ω ‖f‖∞,Ω
}
,

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φh‖1,Ω ‖f‖∞,Ω
}
,

(2.14)

where CS is a positive constant independent of φ and φh.

2.3.1 The local error indicator

Given T ∈ Th, we let Eh(T ) be the set of its edges, and let Eh be the set of all edges of the
triangulation Th. Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω},
Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD} and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh we fix a
unit normal vector νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed unit tangential
vector along e. Then, given e ∈ Eh(Ω) and τ ∈ L2(Ω) such that τ |T ∈ [C(T )]2 on each T ∈ Th, we let
Jτ · νeK be the corresponding jump across e, that is, Jτ · νeK := (τ |T − τ |T ′)|e · νe, where T and T ′ are
the triangles of Th having e as a common edge. Similarly, given τ ∈ L2(Ω) such that τ |T ∈ [C(T )]2×2

on each T ∈ Th, we let JτseK be the corresponding jump across e, that is, JτseK := (τ |T −τ |T ′)|e se. If
no confusion arises, we will simple write s and ν instead of se and νe, respectively. The curl operator
applied to scalar, vector and tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively, will be
denoted as

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.
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Then, we let σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k and define for each T ∈ Th a local error indicator
θT as follows

θ2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + divσ̃h‖20,T

+ h2
T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

(2.15)

The residual character of each term defining θ2
T is clear, and hence, proceeding as usual, a global

residual error estimator can be defined as

θ :=

∑
T∈Th

θ2
T


1/2

. (2.16)

Note that the last term defining θ2
T requires that

duD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD). This is

ensured below by assuming that uD ∈ H1
0(ΓD).

2.3.2 Reliability

The following theorem constitutes the main result of this section

Theorem 2.1. Assume that Ω is a connected domain and that ΓN is the boundary of a convex part of
Ω, that is Ω can be extended to a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Figure 2.1
below). In addition, assume that uD ∈ H1

0(ΓD) and that for some ε ∈ (0, 1) (when n = 2) or some
ε ∈ (1/2, 1)(when n = 3) there holds

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
, (2.17)

where C3, C6 and C7 are the constants given below in (2.34). Then, there exists a constant Crel > 0,
which depends only on parameters, ‖uD‖1/2+ε,ΓD

, ‖f‖∞,Ω, and other constants, all them independent
of h, such that

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H ≤ Crel θ . (2.18)

We begin the proof of (2.18) with the upper bounds derived in the following two subsections.

2.3.2.1 A preliminary estimate for ‖(σ,u)− (σh,uh)‖H

In order to simplify the subsequent writing, we first introduce the following constants

C0 :=
1

α
, C1 := 2C0Cε C̃ε C̃S(r)

Lµ(1 + κ2
1)1/2

µ2
1

, C2 := C0 (1 + κ2
2)1/2 + r C1, (2.19)

where C̃S(r) and Cε, C̃ε are defined in [4, cf. (3.22) ] and [4, Lemma 3.9 and Theorem 3.13], respectively.
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Lemma 2.1. Let θ2
0 :=

∑
T∈Th

θ2
0,T , where for each T ∈ Th we set

θ2
0,T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e . (2.20)

Then there exists C̄ > 0, depending on C0, κ1, κ3, and the trace operator in H1(Ω), such that

‖(σ,u)− (σh,uh)‖H

≤ C̄
{
θ0 + ‖Eh‖HN(div,Ω)′

}
+
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω ,

(2.21)

where C1 and C2 are given by (2.19), and Eh ∈ HN(div,Ω)′, defined for each ζ ∈ HN(div,Ω) by

Eh(ζ) := 〈ζ ν,uD〉ΓD
−
∫

Ω

1

µ(φh)
σd
h : ζ −

∫
Ω
uh · divζ − κ2

∫
Ω

(fφh + divσh) · divζ , (2.22)

satisfies
Eh(ζh) = 0 ∀ ζh ∈ Hσh . (2.23)

Proof. We first deduce from the H-ellipticity of Bφ (see [4, Lemma 3.4]) that there holds the global
inf-sup condition

α ‖(τ ,v)‖H ≤ sup
(ζ,w)∈H

(ζ,w) 6=0

Bφ((τ ,v), (ζ,w))

‖(ζ,w)‖H
∀ (τ ,v) ∈ H, (2.24)

where α is the constant of ellipticity, which depends only on µ1, µ2,Ω,ΓN and ΓD (see [4, Lemma 3.4]).
Then, applying (2.24) to the error (τ ,v) := (σ − σh,u− uh), we find that

α ‖(σ,u)− (σh,uh)‖H ≤ sup
(ζ,w)∈H

(ζ,w)6=0

Fφ(ζ,w)−Bφ((σh,uh), (ζ,w))

‖(ζ,w)‖H
. (2.25)

Next, using the definitions of Bφ (cf. (2.9)) and Fφ (cf. (2.10)), and adding and subtracting suitable
terms, we can write

Fφ(ζ,w) − Bφ((σh,uh), (ζ,w)) = Fφh(ζ,w) − Bφh((σh,uh), (ζ,w))

+ Bφh((σh,uh), (ζ,w)) − Bφ((σh,uh), (ζ,w)) + Fφ(ζ,w) − Fφh(ζ,w) .
(2.26)

In this way, employing the estimate for |Bφh( · , (ζ,w)) − Bφ( · , (ζ,w))| (see [4, eq. (3.29)]) and
|Fφ(ζ,w)− Fφh(ζ,w)| (see [4, eq. (3.28)]), we deduce from (2.25) and (2.26) that

‖(σ,u)− (σh,uh)‖H ≤ C0 ‖Fφh( · )−Bφh((σh,uh), · )‖H′

+
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω,

(2.27)

where, bearing in mind (2.22), there holds

Fφh(ζ,w) − Bφh((σh,uh), (ζ,w)) = Eh(ζ) + Êh(w) ∀ (ζ,w) ∈ H , (2.28)

with Êh ∈ H1(Ω)′ defined for each w ∈ H1(Ω) by

Êh(w) := =

∫
Ω

(fφh + divσh) ·w + κ1

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: ∇w + κ3

∫
ΓD

(uD − uh) ·w .
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Then, applying the Cauchy-Schwarz inequality we readily deduce the existence of a constant ĉ > 0,
depending on κ1, κ3, and the trace operator in H1(Ω), such that

‖Êh‖H1(Ω)′ ≤ ĉθ0 ,

which, together with (2.27) and (2.28), imply the main inequality (2.21). Moreover, using the fact that

Fφh(ζh,wh)−Bφh((σh,uh), (ζh,wh)) = 0 ∀ (ζh,wh) ∈ Hh ,

and taking in particular wh = 0, we deduce (2.23), which completes the proof.

Observe, according to (2.23), that for each ζ ∈ HN(div,Ω) there holds

Eh(ζ) = Eh(ζ − ζh) ∀ ζh ∈ Hσh ,

and hence the upper bound of ‖Eh‖HN(div,Ω)′ to be derived below (see Section 2.3.2.4) will employ the
foregoing expression with a suitable choice of ζh ∈ Hσh .

2.3.2.2 A preliminary estimate for ‖φ− φh‖1,Ω

We begin with the following results.

Lemma 2.2. The nonlinear operator Au : H1
ΓD

(Ω)→ [H1
ΓD

(Ω)]′ induced by Au (cf. (2.11)), that is

[Au(φ), ψ] :=

∫
Ω
ϑ(|∇φ|)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ ∀ψ ∈ H1

ΓD
(Ω) , (2.29)

where [·, ·] is the duality pairing between H1
ΓD

(Ω) and [H1
ΓD

(Ω)]′, is Gâteaux differentiable in H1
ΓD

(Ω).

Proof. We begin by observing, thanks to simple computations and the C1-regularity of ϑ, that for all
φ̂, ψ, ϕ ∈ H1

ΓD
(Ω), with ∇φ̂ 6= 0 there holds

lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
=

∫
Ω
ϑ′(|∇φ̂|)

(
∇φ̂ · ∇ψ

)
|∇φ̂|

∇φ̂ · ∇ϕ

+

∫
Ω
ϑ(|∇φ̂|)∇ψ · ∇ϕ −

∫
Ω
ψu · ∇ϕ,

(2.30)

whereas for ∇φ̂ = 0, we find that

lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
=

∫
Ω
ϑ(0)∇ψ · ∇ϕ −

∫
Ω
ψu · ∇ϕ. (2.31)

In this way, the identities (2.30) and (2.31) show that Au is Gâteaux differentiable at φ̂. Moreover,
DAu(φ̂) is the bounded linear operator of H1

ΓD
(Ω) into [H1

ΓD
(Ω)]′ that can be identified with the

bilinear form DAu(φ̂) : H1
ΓD

(Ω)×H1
ΓD

(Ω)→ R defined by

DAu(φ̂)(ψ,ϕ) := lim
ε→0

[Au(φ̂+ ε ψ)−Au(φ̂), ϕ]

ε
∀ψ,ϕ ∈ H1

ΓD
(Ω). (2.32)
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Lemma 2.3. Let cp and c(Ω) be the constants given by (2.7) and [4, eq. (3.5)], respectively, and let
u ∈ H1(Ω) be such that

‖u‖1,Ω <
ϑ1

2 cp c(Ω)
.

Then, the family of Gâteaux derivates {DAu(φ̂)}
φ̂∈H1

ΓD
(Ω)

is uniformly bounded and uniformly elliptic

on H1
ΓD

(Ω)×H1
ΓD

(Ω). More precisely, there exist positive constants λ̃, α̃, depending only on ϑ1, ϑ2 (cf.
(2.4)), c(Ω), and cp, such that for all φ̂, ϕ, ψ ∈ H1

ΓD
(Ω), there holds

|DAu(φ̂)(ψ,ϕ)| ≤ λ̃ ‖ψ‖1,Ω ‖ϕ‖1,Ω and DAu(φ̂)(ψ,ψ) ≥ α̃ ‖ψ‖21,Ω.

Proof. It proceeds similarly to the proof of [60, Lemma 5.1].

As a consequence of the ellipticity of the family {DAu(φ̂)}
φ̂∈H1

ΓD
(Ω)

, we obtain the following global

inf-sup condition

α̃ ‖ψ‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ6=0

DAu(φ̂)(ψ,ϕ)

‖ϕ‖1,Ω
∀ψ ∈ H1

ΓD
(Ω). (2.33)

Next, similarly as before, we simplify the subsequent writing by introducing the following constants

C̃ :=
1

α̃
, C3 := C̃ Lγ , C4 := r c(Ω) C̄, C5 := r c(Ω) C̃, C6 := C1C5 C7 := C2C5 , (2.34)

where C̄ is the constant provided by Lemma 2.1.

Lemma 2.4. Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
. (2.35)

Then, there exists Ĉ > 0, depending on C̃ and C4 ( cf. (2.34)), such that

‖φ− φh‖1,Ω ≤ Ĉ
{
θ0 + ‖Eh‖HN(div,Ω)′ + ‖Ẽh‖H1

ΓD
(Ω)′

}
, (2.36)

where θ0 and Eh are given in the statement of Lemma 2.1 and (2.22), respectively, and Ẽh ∈ H1
ΓD

(Ω)′,
defined for each ϕ ∈ H1

ΓD
(Ω) by

Ẽh(ϕ) :=

∫
Ω
g ϕ −

∫
Ω

{
ϑ(|∇φh|)∇φh − φh uh − γ(φh)k

}
· ∇ϕ , (2.37)

satisfies
Ẽh(ϕh) = 0 ∀ϕh ∈ Hφ

h . (2.38)

Proof. Since φ and φh belong to H1
ΓD

(Ω), a straightforward application of the mean value theorem
yields the existence of a convex combination of φ and φh, say φ̂h ∈ H1

ΓD
(Ω), such that

DAu(φ̂h)(φ− φh, ϕ) = [Au(φ)−Au(φh), ϕ] ∀ϕ ∈ H1
ΓD

(Ω).
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Next, applying (2.33) to the Galerkin error ψ := φ− φh, we find that

α̃ ‖φ− φh‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ6=0

[Au(φ)−Au(φh), ϕ]

‖ϕ‖1,Ω
.

(2.39)

Now, using the fact that [Au(φ), ϕ] = [Gφ, ϕ], the definition of Au (cf. (2.29)), and adding and
substracting suitable terms, it follows that

[Au(φ)−Au(φh), ϕ] = [Gφh − Auh(φh), ϕ] + [Gφ − Gφh , ϕ] + [Auh(φh) − Au(φh), ϕ]. (2.40)

In this way, applying the estimate for |[Gφ − Gφh , ϕ]| (see [4, eq. (5.5)]) and |[Au(φh) − Auh(φh), ϕ]|
(see [4, eq. (5.6)]), we deduce from (2.39) and (2.40) that

‖φ− φh‖1,Ω ≤ C̃ ‖Gφh −Auh(φh)‖[H1
ΓD

(Ω)]′ + C̃ Lγ |k| ‖φ− φh‖1,Ω + r c(Ω) C̃ ‖u− uh‖1,Ω. (2.41)

Then, bounding ‖u − uh‖1,Ω by the error estimate provided by (2.21) (cf. Lemma 2.1), and then
employing (2.35), we arrive at

‖φ− φh‖1,Ω ≤ 2 C̃
{
‖Gφh −Auh(φh)‖[H1

ΓD
(Ω)]′ + C4

(
θ0 + ‖Eh‖HN(div,Ω)′

)}
,

where, bearing in mind (2.37), there holds

[Gφh −Auh(φh), ϕ] = Ẽh(ϕ) ∀ϕ ∈ H1
ΓD

(Ω).

Finally, using the fact that [Gφh − Auh(φh), ϕh] = 0 ∀ϕh ∈ Hφ
h, we obtain (2.38) and the proof

concludes.

At this point we remark, similarly as we did at the end of Section 2.3.2.1, and thanks now to (2.38),
that for each ϕ ∈ H1

ΓD
(Ω) there holds

Ẽh(ϕ) = Ẽh(ϕ− ϕh) ∀ϕh ∈ Hφ
h ,

and therefore ‖Ẽh‖H1
ΓD

(Ω)′ will be estimated below (see Section 2.3.2.4) by employing the foregoing

expression with a suitable choice of ϕh ∈ Hφ
h.

2.3.2.3 A preliminary estimate for the total error

We now combine the inequalities provided by Lemmas 2.1 and 2.4 to derive a first estimate for the
total error ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H . To this end, we now introduce the constants

C(uD,f) := Ĉ
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω + 1
}

and c(uD,f) := C̄ + C(uD,f) ,

where C̄ and Ĉ are provided by Lemmas 2.1 and 2.4, respectively, and C1 and C2 are given by (2.19).

Theorem 2.2. Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
.

Then there holds

‖φ−φh‖1,Ω + ‖(σ,u)−(σh,uh)‖H ≤ C(uD,f) ‖Ẽh‖H1
ΓD

(Ω)′ + c(uD,f)
{
θ0+‖Eh‖HN(div,Ω)′

}
. (2.42)
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Proof. It suffices to replace the upper bound for ‖φ− φh‖1,Ω given by (2.36) into the second term on
the right hand side of (2.21), and then add the resulting estimate to the right hand side of (2.36). We
omit further details.

It is clear from (2.42) that, in order to obtain an explicit estimate for the total error, it only remains
to derive suitable upper bounds for ‖Ẽh‖H1

ΓD
(Ω)′ and ‖Eh‖HN(div,Ω)′ . This is precisely the purpose of

the next subsection.

2.3.2.4 Upper bounds for ‖Ẽh‖H1
ΓD

(Ω)′ and ‖Eh‖HN(div,Ω)′

In what follows we make use of the Clément interpolation operator Ih : H1(Ω) → Xh (cf. [42]),
where Xh is given by

Xh := {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th}.

The following Lemma establishes the local approximation properties of Ih.

Lemma 2.5. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ c1hT ‖v‖1,∆(T ) ∀T ∈ Th, (2.43)

and
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh, (2.44)

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.

Proof. See [42].

We now recall from Subsection 2.3.1 that we have defined there

σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k . (2.45)

Then, the following lemma provides an upper bound for ‖Ẽh‖H1
ΓD

(Ω)′ .

Lemma 2.6. Let η̃2 :=
∑
T∈Th

η̃2
T , where for each T ∈ Th we set

η̃2
T := h2

T ‖g + divσ̃h‖20,T +
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e .

Then there exists c > 0, independent of h, such that

‖Ẽh‖H1
ΓD

(Ω)′ ≤ c η̃ . (2.46)

Proof. Given ϕ ∈ H1
ΓD

(Ω) we let ϕh := Ih(ϕ) ∈ Hφ
h, and observe, according to (2.37), (2.38), and

(2.45), that

Ẽh(ϕ) = Ẽh(ϕ− ϕh) =
∑
T∈Th

∫
T
g (ϕ− ϕh) −

∑
T∈Th

∫
T
σ̃h · ∇(ϕ− ϕh) .
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Next, integrating by parts on each T ∈ Th in the last term on the right hand side of the foregoing
equation, we find that

Ẽh(ϕ) =
∑
T∈Th

∫
T

(g + divσ̃h) (ϕ− ϕh) −
∑

e∈Eh(Ω)

∫
e
(ϕ− ϕh) Jσ̃h · νeK −

∑
e∈Eh(ΓN)

∫
e
(ϕ− ϕh) σ̃h · ν ,

from which, applying Cauchy-Schwarz inequality, employing the approximation properties of the Clé-
ment operator given by (2.43) and (2.44), and performing some algebraic rearrangements, we readily
conclude that

|Ẽh(ϕ)| ≤ c η̃ ‖ϕ‖1,Ω ,

which yields (2.46) and finishes the proof.

We now aim to provide an upper bound for ‖Eh‖HN(div,Ω)′ (cf. (2.22)), which, being less straight-
forward than Lemma 2.6, requires several preliminary results and estimates. We begin by introducing
the space

H1
ΓN

(Ω) :=
{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓN

}
,

and establishing a suitable Helmholtz decomposition of our space HN(div,Ω).

Lemma 2.7. Assume that Ω is a connected domain and that ΓN is contained in the boundary of a
convex part of Ω, that is there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Figure
2.1). Then, for each ζ ∈ HN(div,Ω), there exist τ ∈ H1(Ω) and χ ∈ H1

ΓN
(Ω) such that

ζ = τ + curl(χ) in Ω , (2.47)

and
‖τ‖1,Ω + ‖χ‖1,Ω ≤ C ‖ζ‖div,Ω , (2.48)

with a positive constant C independent of ζ.

Proof. Given ζ ∈ HN(div,Ω), we let z ∈ H2(B) be the unique weak solution of the boundary value
problem:

∆z =


divζ in Ω

−1

|B\Ω |

∫
Ω
divζ in B\Ω

, ∇z ν = 0 on ∂B,

∫
Ω
z = 0. (2.49)

Thanks to the elliptic regularity result of (2.49) we have that z ∈ H2(B) and

‖z‖2,B ≤ c ‖divζ‖0,Ω , (2.50)

where c > 0 is independent of z. In addition, it is clear that τ := (∇z)|Ω ∈ H1(Ω), divτ = ∆z =

divζ in Ω, τ ν = 0 on ∂B (which certainly yields τ ν = 0 on ΓN), and

‖τ‖1,Ω ≤ ‖z‖2,Ω ≤ ‖z‖2,B ≤ c ‖divζ‖0,Ω . (2.51)

On the other hand, since div(ζ − τ ) = 0 in Ω, and Ω is connected, there exists χ ∈ H1(Ω) such that

ζ − τ = curl(χ) in Ω . (2.52)
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ΓD

ΓN
Ω

∂B

B

Figure 2.1: Extension of Ω to a convex domain B for the Helmholtz decomposition.

In turn, noting that 0 = (ζ − τ )ν = curl(χ)ν = dχ
ds on ΓN, we deduce that χ is constant on

ΓN, and therefore χ can be chosen so that χ ∈ H1
ΓN

(Ω), which, together with (2.52), gives (2.47). In
addition, from the equivalence between ‖χ‖1,Ω and |χ|1,Ω = ‖curl(χ)‖0,Ω (which is a consequence of
the generalized Poincaré inequality), and employing (2.51) and (2.47), we deduce that there exists a
constant c̃ > 0 such that

‖χ‖1,Ω ≤ c̃ ‖ζ‖div,Ω . (2.53)

Finally, it is clear that (2.51) and (2.53) yield (2.48), which is the stability estimate for (2.47).

We remark here, as already announced at the beginning of this section, that Lemma 2.7 also holds
in the 3D case. The corresponding proof follows by combining the extension technique introduced in
[67, Lemma 4.3] with the approach suggested in the foregoing proof (cf. auxiliary problem (2.49)), and
the results stated in [10, Theorems 2.17 and 3.12, and Corollary 3.16].

We now consider the finite element subspace of HΓN
(Ω) given by

Xh,N :=
{
ϕh ∈ C(Ω) : ϕh|T ∈ P1(T ) ∀ T ∈ Th, ϕh = 0 on ΓN

}
,

and introduce, analogously as before, the Clément interpolation operator Ih,N : HΓN
(Ω) → Xh,N . In

addition, we let Πh : H1(Ω)→ Hσh be the Raviart-Thomas interpolation operator (see [26],[95]), which,
given τ̄ ∈ H1(Ω), is characterized by the identities:∫

e
Πh(τ̄ )ν · p =

∫
e
τ̄ ν · p, ∀ edge e ∈ Th, ∀p ∈ Pk(e), when k ≥ 0, (2.54)

and ∫
T

Πh(τ̄ ) : ρ =

∫
T
τ̄ : ρ, ∀ T ∈ Th, ∀ρ ∈ Pk−1(T ), when k ≥ 1, (2.55)

where Pk(e) := [Pk(e)]
2 and Pk−1(T ) := [Pk−1(T )]2×2. It is easy to show, using (2.54) and (2.55), that

(see, e.g. [63, Lemma 3.7], [92, eq. (3.4.23)])

div(Πh(τ̄ )) = Ph(divτ̄ ) , (2.56)



2.3. A residual-based a posteriori error estimator 53

where Ph : L2(Ω)→ Qh is the L2(Ω)-orthogonal projector and

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
.

Note that Ph can also be identified with (Ph, Ph), where Ph is the orthogonal projector from L2(Ω) into
Qh with Qh := {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th}. Furthermore, the following approximation
properties hold (cf. [26, 40, 63, 95]):

‖v − Ph(v)‖0,T ≤ c hmT |v|m,T ∀T ∈ Th , (2.57)

for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖τ̄ −Πh(τ̄ )‖0,T ≤ c hmT |τ̄ |m,T ∀T ∈ Th , (2.58)

for each τ̄ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ̄ −Πh(τ̄ ))‖0,T ≤ c hmT |divτ̄ |m,T ∀T ∈ Th , (2.59)

for each τ̄ ∈ H1(Ω) such that divτ̄ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ̄ ν −Πh(τ̄ )ν‖0,e ≤ c h1/2
e ‖τ̄‖1,Te ∀ edge e ∈ Th , (2.60)

for each τ̄ ∈ H1(Ω), where Te ∈ Th contains e on its boundary.

Then, given ζ ∈ HN(div,Ω) and its Helmholtz decomposition (2.47), we define χh := Ih,N(χ),
and set

ζh := Πh(τ ) + curl(χh) ∈ Hσh (2.61)

as its associated discrete Helmholtz decomposition. It follows that

ζ − ζh = τ − Πh(τ ) + curl(χ− χh) ,

from which, using (2.56) and the fact that div τ = ∆z = div ζ in Ω, yields

div(ζ − ζh) = div(τ −Πh(τ )) = (I− Ph)(divζ) . (2.62)

Hence, according to (2.22) and (2.23), and noting from (2.62) that∫
Ω
uh · div(τ −Πh(τ )) =

∫
Ω
uh · (I − Ph)(div ζ) = 0 ,

we find that
Eh(ζ) = Eh(ζ − ζh) = Eh,1(τ ) + Eh,2(χ) , (2.63)

where
Eh,1(τ ) := 〈(τ −Πh(τ ))ν,uD〉ΓD

−
∫

Ω

1

µ(φh)
σd
h :
(
τ −Πh(τ )

)
+ κ2

∫
Ω

(fφh + divσh) · (I− Ph)(div τ )) ,

(2.64)

and
Eh,2(χ) := 〈curl(χ− χh)ν,uD〉ΓD

−
∫

Ω

1

µ(φh)
σd
h : curl(χ− χh) . (2.65)

It is now evident from (2.63) that, in order to estimate ‖Eh‖HN(div,Ω)′ , it only remains to bound
|Eh,1(τ )| and |Eh,2(χ)| in terms of a multiple of ‖ζ‖div,Ω, which is indeed the purpose of the following
two lemmas.
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Lemma 2.8. Let θ2
1 :=

∑
T∈Th

θ2
1,T , where for each T ∈ Th we set

θ2
1,T := h2

T

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ ‖fφh + divσh‖20,T +
∑

e∈Eh(T )∩Eh(ΓD)

he ‖uD − uh‖20,e .

Then there exists c > 0, independent of h, such that

|Eh,1(τ )| ≤ cθ1 ‖ζ‖div,Ω . (2.66)

Proof. The analysis for the first two terms defining Eh,1 (cf. (2.64)) follows as in the proof of [72,
Lemma 4.4], after replacing Γ by ΓD, and then employing the characterization (2.54) - (2.55), the
Cauchy-Schwarz inequality, the approximation properties (2.58) and (2.60), and the stability estimate
(2.48). In turn, for the corresponding third term it suffices to see that∣∣∣∣∫

Ω
(fφh + divσh) · (I− Ph)(div τ ))

∣∣∣∣
≤ ‖fφh + divσh‖0,Ω ‖div τ‖0,Ω ≤ ‖fφh + divσh‖0,Ω ‖ζ‖div,Ω ,

which concludes the proof.

Lemma 2.9. Assume that uD ∈ H1
0(ΓD), and let θ2

2 :=
∑
T∈Th

θ2
2,T , where for each T ∈ Th we set

θ2
2,T := h2

T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
hs

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

Then there exists c > 0, independent of h, such that

|Eh,2(χ)| ≤ cθ2 ‖ζ‖div,Ω . (2.67)

Proof. We proceed similarly as in the proof of [72, Lemma 4.3]. In fact, using that curl(χ− χh)ν =

d
ds(χ− χh), noting that

duD
ds
∈ L2(ΓD), and then integrating by parts on ΓD, we find that

〈curl(χ− χh)ν,uD〉ΓD
= −〈χ− χh,

duD

ds
〉ΓD

= −
∑

e∈Eh(ΓD)

∫
e
(χ− χh)

duD

ds
.

On the other hand, integrating by parts on each T ∈ Th, we obtain that∫
Ω

1

µ(φh)
σd
h : curl(χ− χh) =

∑
T∈Th

{∫
T
curl

{
1

µ(φh)
σd
h

}
· (χ− χh) −

∫
∂T

1

µ(φh)
σd
h s · (χ− χh)

}
=
∑
T∈Th

∫
T
curl

{
1

µ(φh)
σd
h

}
· (χ− χh) −

∑
e∈Eh(Ω)

∫
e

s
1

µ(φh)
σd
hs

{
· (χ− χh)

−
∑

e∈Eh(ΓD)

∫
e

1

µ(φh)
σd
h s · (χ− χh) −

∑
e∈Eh(ΓN)

∫
e

1

µ(φh)
σd
h s · (χ− χh).
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Then, replacing the above expressions on the right hand side of (2.65), and using the fact that χ|ΓN
=

χh|ΓN
= 0, we deduce that

Eh,2(χ) =
∑

e∈Eh(Ω)

∫
e

s
1

µ(φh)
σd
hs

{
· (χ− χh) −

∑
T∈Th

∫
T
curl

{
1

µ(φh)
σd
h

}
· (χ− χh)

−
∑

e∈Eh(ΓD)

∫
e

{
duD

ds
− 1

µ(φh)
σd
h

}
· (χ− χh) .

Next, since χh := Ih,N(χ), the approximation properties of Ih,N (cf. Lemma 2.5) yield

‖χ− χh‖0,T ≤ c1 hT ‖χ‖1,∆(T ) ∀T ∈ Th, (2.68)

and
‖χ− χh‖0,e ≤ c2 h

1/2
e ‖χ‖1,∆(e) ∀ e ∈ Eh. (2.69)

In this way, applying the Cauchy-Schwarz inequality to each term in the above expression for Eh,2(χ),
and making use of (2.68), (2.69), and (2.48), together with the fact that the number of triangles in
∆(T ) and ∆(e) are bounded, the proof is finished.

As a consequence of Lemmas 2.8 and 2.9 we conclude the following upper bound for ‖Eh‖HN(div,Ω)′ .

Lemma 2.10. There exists c > 0, independent of h, such that

‖Eh‖HN(div,Ω)′ ≤ c
{
θ1 + θ2

}
.

Proof. It follows straightforwardly from (2.63) and the upper bounds (2.66) and (2.67).

We now observe that the terms h2
T ‖∇uh −

1
µ(φh)σ

d
h‖20,T and he‖uD − uh‖20,e, which appear in the

definition of θ2
1,T (cf. Lemma 2.8), are dominated by ‖∇uh− 1

µ(φh)σ
d
h‖20,T and ‖uD−uh‖20,e, respectively,

which form part of θ2
0,T (cf. (2.20)). In this way, the reliability estimate (2.18) (cf. Theorem 2.1) is

a direct consequence of Theorem 2.2, the definition of θ0 (cf. Lemma 2.1), and Lemmas 2.6, 2.8, 2.9,
and 2.10.

We end this section by remarking that the assumption (2.17) on the data k, uD, and f , which,
as shown throughout the foregoing analysis, is a key estimate to derive (2.18), is, unfortunately,
unverifiable in practice. In fact, while the data are certainly known in advance, the constants C3,
C6, and C7 involved in that condition (cf. (2.34)), which in turn are expressed in terms of the previous
constants C1 and C2 (cf. (2.19)), depend all on boundedness and regularity constants of operators, as
well as on parameters, some of which are not explicitly calculable, and hence it is not possible to check
whether (2.17) is indeed satisfied or not. This is, however, a quite common fact arising in the analysis
of many nonlinear problems, and only in very particular cases (usually related to simple geometries of
the domain) it could eventually be circumvented.

2.3.3 Efficiency

The following theorem is the main result of this section.



2.3. A residual-based a posteriori error estimator 56

Theorem 2.3. There exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD
,

‖f‖∞,Ω, and other constants, all them independent of h, such that

Ceff θ ≤ ‖φ−φh‖1,Ω + ‖u−uh‖1,Ω + ‖div(σ−σh)‖0,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

+ h.o.t. (2.70)

where h.o.t. stands for one or several terms of higher order. Moreover, under the assumption that
σ ∈ L4(Ω), there exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD

,
‖f‖∞,Ω, ‖σ‖L4(Ω), and other constants, all them independent of h, such that

Ceff θ ≤ ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H + h.o.t. (2.71)

Throughout this and the following sections we assume for simplicity that the nonlinear functions µ,

ϑ, and γ are such that
1

µ(φh)
, ϑ(|∇φh|), γ(φh), and hence σ̃h as well, are all piecewise polynomials.

The same is assumed for the data uD and g. Otherwise, and if µ−1, ϑ, γ, uD, and g are sufficiently
smooth, higher order terms given by the errors arising from suitable polynomial approximations of
these expressions and functions would appear in (2.70) and (2.71) (cf. Theorem 2.3), which explains
the eventual h.o.t. in these inequalities. In this regard, we remark that (2.70) constitutes what we
call a quasi-efficiency estimate for the global residual error estimator θ (cf. (2.16)). Indeed, the
quasi-efficiency concept refers here to the fact that the expression appearing on the right hand side of
(2.70) is not exactly the error, but part of it plus the nonlinear term given by ‖ 1

µ(φ)σ
d − 1

µ(φh)σ
d
h‖0,Ω.

However, assuming additionally that σ ∈ L4(Ω), we show at the end of this section that the latter can
be bounded by ‖σ − σh‖0,Ω + ‖φ− φh‖1,Ω, thus yielding the efficiency estimate given by (2.71).

In order to prove (2.70) and (2.71), in what follows we derive suitable upper bounds for the ten
terms defining the local error indicator θ2

T (cf. (2.15)). We first notice, using that fφ = −divσ in Ω,
that there holds

‖fφh + divσh‖20,T ≤ 2 ‖f(φ− φh)‖20,T + 2 ‖div(σ − σh)‖20,T

≤ 2 ‖f‖2∞,Ω ‖φ− φh‖20,T + 2 ‖div(σ − σh)‖20,T .
(2.72)

In addition, since ∇u = 1
µ(φ)σ

d in Ω, we find that∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

≤ 2 ‖∇u−∇uh‖20,T + 2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

. (2.73)

Furthermore, employing that u = uD on ΓD and applying the trace theorem, we obtain that∑
e∈Eh(ΓD)

‖uD − uh‖20,e = ‖u− uh‖20,ΓD
≤ c2

0 ‖u− uh‖21,Ω , (2.74)

where c0 is the norm of the trace operator in H1(Ω).

The upper bounds of the remaining seven terms, which depend on the mesh parameters hT and
he, will be derived next. We proceed as in [37, 38] (see also [61]), and apply results ultimately based
on inverse inequalities (see [40]) and the localization technique introduced in [103], which is based
on triangle-bubble and edge-bubble functions. To this end, we now introduce further notations and
preliminary results. In fact, given T ∈ Th and e ∈ Eh(T ), we let ψT and ψe be the usual triangle-bubble
and edge-bubble functions, respectively (see [103, eqs. (1.4) and (1.6)]), which satisfy:
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i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh(T ′)}, ψe = 0 on ∂T\{e}, and 0 ≤ ψe ≤ 1 in
ωe.

We also recall from [102] that, given k ∈ N ∪ {0}, there exists a linear operator L : C(e)→ C(T ) that
satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀p ∈ Pk(e). A corresponding vectorial version of L, that is the
component-wise application of L, is denoted by L. Additional properties of ψT , ψe and L are collected
in the following Lemma.

Lemma 2.11. Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3, and c4, depending only on
k and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ Eh(T ), there hold

‖ψT q‖20,T ≤ ‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ),

‖ψe L(p)‖20,T ≤ ‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e),

c3 he ‖p‖20,e ≤ ‖ψ1/2
e L(p)‖20,T ≤ c4 he ‖p‖20,e ∀ p ∈ Pk(e).

(2.75)

Proof. See [102, Lemma 4.1].

The following inverse estimate is also needed.

Lemma 2.12. Let l,m ∈ N∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ). (2.76)

Proof. See [40, Theorem 3.2.6].

The following Lemma is required for the terms involving the curl operator and the tangential jumps
across the edges of Th. It proofs, which makes use of Lemmas 2.11 and 2.12, can be found in [37].

Lemma 2.13. Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ρ ∈ L2(Ω) be such that curl(ρ) = 0 on each T ∈ Th. Then, there exist c, c̃ > 0, independent of h,
such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th

and
‖JρhseK‖0,e ≤ c̃ h−1/2

e ‖ρ− ρh‖0,ωe ∀ e ∈ Eh .

Proof. For the first estimate we refer to [37, Lemma 4.3], whereas the second one follows from a slight
modification of the proof of [37, Lemma 4.4]. Further details are omitted.

We now apply Lemma 2.13 to obtain upper bounds for two other terms defining θ2
T .



2.3. A residual-based a posteriori error estimator 58

Lemma 2.14. There exist c̃1, c̃2 > 0, independent of h such that

h2
T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

≤ c̃1

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

∀T ∈ Th,

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

≤ c̃2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,ωe

∀ e ∈ Eh(Ω).

Proof. It suffices to apply Lemma 2.13 to ρh := 1
µ(φh)σ

d
h and ρ := 1

µ(φ)σ
d = ∇u.

Lemma 2.15. There exists c̃3 > 0, independent of h, such that

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

≤ c̃3

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,Te

∀ e ∈ Eh(ΓD). (2.77)

Proof. We proceed similarly as in the proof of [72, Lemma 4.15], by replacing g, Γ, and 1
µσ

d
h by uD,

ΓD, and 1
µ(φh)σ

d
h, respectively.

Finally, it only remains to provide upper bounds for the three terms completing the definition of
the local error indicator θ2

T (cf. (2.15)). This requires, however, the preliminary result given by the
following a priori estimate for the error ‖σ̃ − σ̃h‖20,T .

Lemma 2.16. There exists C > 0, depending on ϑ1, ϑ2, Lγ ( cf. (2.4), (2.6)), and |k|, such that

‖σ̃ − σ̃h‖20,T ≤ C
{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
. (2.78)

Proof. According to the definitions of σ̃ (cf. (1.5)) and σ̃h (cf. Section 2.3.1), and applying the triangle
inequality, we obtain that

‖σ̃ − σ̃h‖20,T ≤ 2

{
‖ϑ(|∇φ|)∇φ− ϑ(|∇φh|)∇φh‖20,T + 2 ‖k(γ(φ)− γ(φh))‖20,T

+ 4 ‖u(φ− φh)‖20,T + 4 ‖φh(u− uh)‖20,T
}
.

(2.79)

We now recall from [76, Theorem 3.8] that the nonlinear operator induced by the first term defining
Au (cf. (2.29)) is Lipschitz-continuous with constant L := max{ϑ2, 2ϑ2 − ϑ1}. In this way, applying
the aforementioned Lipschitz continuity, but restricted to each triangle T ∈ Th instead of Ω, and using
the Lipschitz continuity assumption for γ (cf. (2.6)), we deduce from (2.79) that

‖σ̃ − σ̃h‖20,T ≤ 2

{
L2 ‖∇φ−∇φh‖20,T + 2L2

γ |k|2 ‖φ− φh‖20,T

+ 4 ‖u(φ− φh)‖20,T + 4 ‖φh(u− uh)‖20,T
}
,

(2.80)

which readily yields (2.78) and ends the proof.

Having proved the previous result we now establish the efficiency estimates given by the following
three lemmas.
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Lemma 2.17. There exists c̃4 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that

h2
T ‖g + divσ̃h‖20,T ≤ c̃4

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
. (2.81)

Proof. We proceed as in the proof of [15, Lemma 4.4]. In fact, given T ∈ Th we first observe, using
that divσ̃ = −g in Ω, and integrating by parts, that

‖g + divσ̃h‖20,T ≤ c1 ‖ψ1/2
T (g + divσ̃h)‖20,T = −c1

∫
T
∇
(
ψT (g + divσ̃h)

)
· (σ̃ − σ̃h) .

Next, the Cauchy-Schwarz inequality, the inverse estimate (2.76), the fact that 0 ≤ ψT ≤ 1, and the
triangle inequality imply that

‖g + divσ̃h‖20,T ≤ c1 |ψT (g + divσ̃h)|1,T ‖σ̃ − σ̃h‖0,T ≤ C h−1
T ‖g + divσ̃h‖0,T ‖σ̃ − σ̃h‖0,T ,

which gives
‖g + divσ̃h‖0,T ≤ C h−1

T ‖σ̃ − σ̃h‖0,T .

The foregoing inequality and (2.78) (cf. Lemma 2.16) imply (2.81) and complete the proof.

Lemma 2.18. There exists c̃5 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that for each e ∈ Eh(Ω) there holds

he ‖Jσ̃h · νeK‖20,e ≤ c̃5

∑
T⊆ωe

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
, (2.82)

where ωe is the union of the two triangles in Th having e as an edge.

Proof. Proceeding analogously as in the proof of [15, Lemma 4.5], we find that

he ‖Jσ̃h · νeK‖20,e ≤ c
∑
T⊆ωe

{
h2
T ‖g + divσ̃h‖20,T + ‖σ̃h − σ̃‖20,T

}
,

which, together with (2.78) and (2.81) (cf. Lemmas 2.16 and 2.17), yields (2.82) and ends the proof.

Lemma 2.19. There exists c̃6 > 0, which depends only on L, Lγ, |k|, and other constants, all them
independent of h, such that for each e ∈ Eh(ΓN) there holds

he ‖σ̃h · ν‖20,e ≤ c̃6

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

}
, (2.83)

where T is the triangle of Th having e as an edge.

Proof. Following a similar reasoning to the proof of [15, Lemma 4.6], we find that

he ‖σ̃h · ν‖20,e ≤ c
{
h2
T ‖g + divσ̃h‖20,T + ‖σ̃h − σ̃‖20,T

}
,

which, thanks again to (2.78) and (2.81), provides (2.83) and ends the proof.
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In order to complete the global efficiency given by (2.70), we now need to estimate the terms
‖u(φ−φh)‖20,T and ‖φh(u−uh)‖20,T appearing in the upper bounds provided by the last three lemmas.
In fact, applying Cauchy-Schwarz’s inequality, the compactness (and hence continuity) of the injections
i : H1(Ω)→ L4(Ω) and i : H1(Ω)→ L4(Ω) (cf. [1, Theorem 6.3], [92, Theorem 1.3.5]), and the a priori
bound for ‖u‖1,Ω given by (2.14), we find that∑

T∈Th

‖u(φ− φh)‖20,T ≤
∑
T∈Th

‖u‖2L4(T ) ‖φ− φh‖
2
L4(T )

≤ ‖u‖2L4(Ω) ‖φ− φh‖
2
L4(Ω) ≤ C ‖φ− φh‖21,Ω ,

(2.84)

where C is a positive constant, independent of h, that depends only on ‖i‖, ‖i‖, ‖uD‖1/2,ΓD
, ‖f‖∞,Ω,

and r (cf. (2.13)). Similar arguments allow to establish the existence of another constant C > 0, also
independent of h, and depending now on ‖i‖, ‖i‖, and r, such that∑

T∈Th

‖φh(u− uh)‖20,T ≤ C ‖u− uh‖21,Ω . (2.85)

Consequently, it is not difficult to see that (2.70) follows straightforwardly from (2.72), (2.73),
(2.74), Lemmas 2.14, 2.15, 2.17, 2.18, and 2.19, and the final estimates given by (2.84) and (2.85).
Furthermore, adding and subtracting a suitable term, using the lower bound (cf. (2.3)) and the
Lipschitz continuity (cf. (2.5)) of µ, and applying the boundedness of τ → τ d, we find that∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

≤ 1

µ1
‖σ − σh‖0,Ω +

Lµ
µ2

1

‖(φ− φh)σ‖0,Ω , (2.86)

from which, assuming now that σ ∈ L4(Ω), and estimating ‖(φ − φh)σ‖0,Ω almost verbatim as we
derived (2.84) and (2.85), we arrive at (2.71), thus concluding the proof of Theorem 2.3.

2.4 A second a posteriori error estimator

In this section we introduce and analyze another a posteriori error estimator for our augmented
mixed-primal finite element scheme (2.12), which is not based on the Helmholtz decomposition. More
precisely, this second estimator arises simply from a different way of bounding ‖Eh‖HN(div,Ω)′ in the
preliminary estimate for the total error given by (2.42) (cf. Theorem 2.2). Then, with the same
notations and discrete spaces introduced in Sections 2.2 and 2.3, we now set for each T ∈ Th the local
error indicator

θ̃2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + divσ̃h‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e ,

and define the following global residual error estimator

θ̃
2

:=
∑
T∈Th

θ̃2
T + ‖uD − uh‖21/2,ΓD

. (2.87)

In what follows we establish quasi-local reliability and efficiency for the estimator θ̃. The name
quasi-local refers here to the fact that the last term defining θ̃ can not be decomposed into local
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quantities associated to each triangle T ∈ Th (unless it is either conveniently bounded or previously
modified, as we will see below).

Theorem 2.4. Assume that uD ∈ H1
0(ΓD) and

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
,

where C3, C6 and C7 are the constants given in (2.34). Then, there exists a constant C̃rel > 0, which
depends only on ‖uD‖1/2+ε,ΓD

, ‖f‖∞,Ω and other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ C̃rel θ̃
2
. (2.88)

Proof. As mentioned at the beginning of this section, the proof reduces basically to derive another upper
bound for ‖Eh‖HN(div,Ω)′ . Indeed, Integrating by parts the third term defining Eh (cf. (2.22)), and
then using the homogeneous Neumann boundary condition on ΓN, we find that for each ζ ∈ HN(div,Ω)

there holds

Eh(ζ) = 〈ζ ν,uD − uh〉ΓD
+

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: ζ − κ2

∫
Ω

(fφh + divσh) · divζ ,

from which, applying the Cauchy-Schwarz inequality, we readily deduce that

‖Eh‖HN(div,Ω)′ ≤ C

{
‖uD − uh‖1/2,ΓD

+
∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥
0,Ω

+ ‖fφh + divσh‖0,Ω
}
, (2.89)

where C is a positive constant independent of h. In this way, replacing (2.89) back into (2.42) (cf.
Theorem 2.2), and employing again the upper bound for ‖Ẽh‖H1

ΓD
(Ω)′ (cf. Lemma 2.6), and the

definition of θ0 (cf. Lemma 2.1), we obtain (2.88) and finish the proof.

Theorem 2.5. There exists a constant C∗eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD
,

‖f‖∞,Ω, and other constants, all them independent of h, such that

C∗eff θ̃
2
≤ ‖φ−φh‖21,Ω + ‖u−uh‖21,Ω + ‖div(σ−σh)‖20,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥2

0,Ω

+ h.o.t. (2.90)

where h.o.t. stands for one or several terms of higher order. Moreover, assuming σ ∈ L4(Ω), there
exists a constant C̃eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω, ‖σ‖L4(Ω), and
other constants, all them independent of h, such that

C̃eff θ̃
2
≤ ‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H + h.o.t. (2.91)

Proof. We simply observe, thanks to the trace theorem in H1(Ω), that there exists c > 0, depending
on ΓD and Ω, such that

‖uD − uh‖21/2,ΓD
≤ c ‖u− uh‖21,Ω . (2.92)

The rest of the arguments are contained in the proof of Theorem 2.3 (cf. Section 2.3.3), and hence we
omit further details.

At this point we remark that the eventual use of θ̃ (cf. (2.87)) in an adaptive algorithm solving
(2.12) would be discouraged by the non-local character of the expression ‖uD−uh‖21/2,ΓD

. In order to
circumvent this situation, we now apply an interpolation argument and replace this term by a suitable
upper bound, which yields a reliable and fully local a posteriori error estimate.
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Theorem 2.6. Assume that uD ∈ H1
0(ΓD) and that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD
+ C7 ‖f‖∞,Ω <

1

2
,

where C3, C6 and C7 are given in (2.34). In turn, let θ̂
2

:=
∑
T∈Th

θ̂2
T , where for each T ∈ Th we set

θ̂2
T := ‖fφh + divσh‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + divσ̃h‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖21,e .

Then, there exists a constant Ĉrel > 0, which depends only on parameters, ‖uD‖1/2+ε,ΓD
, ‖f‖∞,Ω, and

other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ Ĉrel θ̂
2
. (2.93)

Proof. It reduces to bound ‖uD − uh‖1/2,ΓD
. In fact, since H1/2(ΓD) is the interpolation space with

index 1/2 between H1(ΓD) and L2(ΓD), there exists a constant cD > 0, depending on ΓD, such that

‖uD − uh‖21/2,ΓD
≤ cD ‖uD − uh‖0,ΓD

‖uD − uh‖1,ΓD

≤ cD ‖uD − uh‖21,ΓD
= cD

∑
e∈Eh(ΓD)

‖uD − uh‖21,e ,
(2.94)

which, together with (2.88), implies (2.93) and finishes the proof.

The same remark stated at the end of Section 2.3.2 concerning the assumption (2.17) (which is also
required in Theorem 2.6) is valid here.

2.5 Numerical tests

This section serves to illustrate the properties of the estimators introduced in Sections 2.3-2.4.
The domain of each example to be considered below is discretized into a series of nested uniform
triangulations, where errors and experimental convergence rates will be computed as usual

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u− uh‖1,Ω, e(φ) := ‖φ− φh‖1,Ω,

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(u) :=

log(e(u)/ê(u))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

with e and ê denoting errors associated to two consecutive meshes of sizes h and ĥ, respectively. In
addition, the total error, the modified error suggested by (2.70) and (2.90), and the effectivity and
quasi-effectivity indexes associated to a given global estimator η are defined, respectively, as

e =
{

[e(σ)]2 + [e(u)]2 + [e(φ)]2
}1/2

, eff(η) =
e

η
,

m =

{
[e(u)]2 + [e(φ)]2 + ‖divσ − divσh‖20,Ω +

∥∥∥∥ σd

µ(φ)
−

σd
h

µ(φh)

∥∥∥∥2

0,Ω

}1/2

, qeff(η) =
m

η
.
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h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iN iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 − P1 − P1 scheme

0.7071 99.1853 – 10.1168 – 1.5980 – 4 12 1.8570 1.8603 1.8740 1.8773
0.4714 83.1416 0.4351 8.6706 0.3804 1.1558 0.7990 3 15 1.5604 1.5627 1.5950 1.5973
0.2828 56.1085 0.7698 6.1721 0.6653 0.7191 0.9288 5 17 1.2142 1.2158 1.2474 1.2490
0.1571 31.7872 0.9667 2.9676 1.2458 0.4035 0.9828 4 16 1.0694 1.0707 1.1021 1.1034
0.0831 16.7731 1.0051 1.3190 1.2749 0.2136 0.9998 4 16 1.0088 1.0101 1.0409 1.0421
0.0428 8.5927 1.0083 0.6226 1.1316 0.1100 1.0009 4 16 0.9861 0.9873 1.0180 1.0193
0.0217 4.3466 1.0053 0.3071 1.0422 0.0558 1.0003 5 16 0.9777 0.9789 1.0097 1.0110

Augmented RT1 − P2 − P2 scheme

0.7071 51.6128 – 7.1534 – 0.4563 – 5 13 1.0353 1.0370 1.1487 1.1506
0.4714 29.6423 1.3677 3.2044 1.9805 0.2157 1.8475 4 14 0.9638 0.9650 1.0549 1.0562
0.2828 15.2131 1.3058 1.2003 1.9222 0.0799 1.9439 4 16 0.9573 0.9580 1.0198 1.0205
0.1571 4.9972 1.8940 0.3289 2.2022 0.0249 1.9837 5 15 0.9525 0.9532 1.0088 1.0095
0.0831 1.4251 1.9726 0.0868 2.0947 0.0070 1.9944 5 16 0.9515 0.9522 1.0045 1.0052
0.0428 0.3799 1.9928 0.0225 2.0320 0.0018 1.9984 4 16 0.9488 0.9495 1.0003 1.0011
0.0217 0.0980 1.9983 0.0057 2.0070 0.0004 1.9996 5 16 0.9396 0.9403 0.9895 0.9902

Table 2.1: Test 1: convergence history, average Newton iteration count, Picard steps to reach the
desired tolerance, effectivity and quasi-effectivity indexes for the mixed–primal RTk − Pk+1 − Pk+1

approximations of concentration, Cauchy stress, and velocity, with k = 0, 1.

According to the coupling structure of the scheme (2.12), the linearization of the coupled problem can
follow a Newton method solving the nonlinear transport problem, nested within a Picard iteration
to establish the coupling with the Stokes problem. This procedure requires the computation of the
Gâteaux derivative (2.32). When the residuals from Newton-Raphson and Picard iterations reach the
tolerances εN = 1e-8 and εP = 1e-7, respectively, the algorithms are terminated. The unsymmetric
multi-frontal direct solver for sparse matrices (UMFPACK) is used to solve the linear systems appearing
at each linearization step.

In a first example, the following exact solutions to system (2.1) are considered

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)), u(x1, x2) =

(
sin(2πx1) cos(2πx2)

− cos(2πx1) sin(2πx2)

)
,

σ(x1, x2) = µ(φ)∇u− µ(φ)
∂u1

∂x1
I,

defined on the unit square Ω = (0, 1)2 and satisfying the first and third conditions of (2.2) on the whole
boundary ΓD = ∂Ω. The data uD,f , g are constructed with these manufactured exact solutions, and
the involved coefficients in the equations (and in the solutions) are k = (0,−1)T , µ(φ) = (1 − cφ)−2,
γ(φ) = cφ(1− cφ)2, ϑ(|∇φ|) = m1 +m2(1 + |∇φ|2)m3/2−1, with b = 15, c = m1 = m2 = 1/2,m3 = 3/2.
These values imply µ1 = 0.99, µ2 = 3.35, and consequently the stabilization parameters adopt the
values κ1 = µ2

1/µ2 = 0.2976, κ2 = 1/µ2 = 0.2985, and κ3 = κ1/2 = 0.1488.

The manufactured solutions on the considered (convex) domain are smooth, and the a posteriori
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Figure 2.2: Test 2: approximate solutions obtained with the lowest order method, after six steps of
adaptive mesh refinement following the second indicator θ̃. Concentration, velocity components, and
stress components are depicted.

error indicators show effectivity (and quasi-effectivity) indexes close to one in all studied cases. This
behavior can be observed in Table 2.1, where errors in different norms indicate optimal convergence
rates for the two lowest order methods (k = 0, 1). We also show the average number of Newton steps to
achieve the tolerance εN and the total Picard iteration count at each refinement level. The subsequent
examples will be restricted to the lowest order method k = 0.

Our second test focuses on the case where, under uniform mesh refinement, the convergence rates are
affected by the loss of regularity of the exact solutions. The problem setting is as follows: the domain
is taken as the non-convex pacman-shaped domain Ω = {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1} \ (0, 1)2, where

an exact solution to (2.1) is given by the same velocity as in the previous test, while concentration and
Cauchy stress now read

φ(x1, x2) = b− b exp(x2
1(x2

1 + x2
2 − 1)) ,

σ(x1, x2) = µ(φ)∇u−
[
µ(φ)

∂u2

∂x2
+

x2

((x1 − a1)2 + (x2 − a2)2)2

]
I .

(2.95)

Now the boundary is indeed split into ΓN = (0, 1)×{0} (the horizontal segment of ∂Ω) and ΓD = ∂Ω\ΓN

(the arch and vertical borders of the domain), and the only difference with respect to (2.1) is that a
non-homogeneous concentration flux σ̃ · ν = j is imposed on ΓN, where j is manufactured according
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e with quasi-uniform refinement

m with quasi-uniform refinement
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e with adaptive refinement by θ̃

m with adaptive refinement by θ̃

Figure 2.3: Test 2: log-log plot of the total errors vs. degrees of freedom associated to uniform and
adaptive mesh refinements using the two proposed indicators.

to (2.95). In this case, the relevant term in the a posteriori error estimators will be evidently replaced
by ∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν − j‖20,e,

whose estimation from below and above follows in a straightforward manner. For this example, the
individual and total convergence rates are determined by the expression

r(·) := −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where N and N̂ denote the total number of degrees of freedom associated to each triangulation.
Alternatively to the first test, here the Picard tolerance is set to εP = 1e-6, and no inner Newton
linearization will be employed for the transport problem.

The viscosity, hindered settling and diffusivity functions µ, γ, ϑ are taken as in the first example
with the parameters a1 = 0.1, a2 = 0.5, b = 3, c = 4/3. Notice that the isotropic part of the stress
in (2.95) exhibits a singularity just outside the domain, at (a1, a2). With the chosen parameters, the
concentration has a high gradient near ΓD, and the viscosity vanishes whenever the concentration
attains its maximum value. Therefore, and according to (2.95), high gradients are also expected in
the stress approximation; and optimal convergence, especially in that field, is no longer evidenced
under uniform mesh refinement (see first rows of Table 2.2). On the other hand, if an adaptive mesh
refinement step (guided by the proposed residual error indicators) is applied, optimal convergence can
be restored, as shown in the last two blocks of Table 2.2. This feature is also seen in Figure 2.3, where
we plot the total errors e, m versus the degrees of freedom associated to each triangulation. Total errors
under adaptive refinement exhibit a superconvergence whereas uniform refinement yields suboptimal
rates. From the figure we also observe that the curves for e and m coincide for each algorithm.

Once the local and global error indicators are computed, the adaptation procedure uses the auto-
matic adaptmesh tool (see particulars in e.g. [80]) to construct the next triangulation. The algorithm
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Figure 2.4: Test 2: from left to right, four snapshots of successively refined meshes according to the
indicators θ and θ̃ (top and bottom panels, respectively).

is based on an equi-distribution of the discrete a posteriori error indicators, where the diameter of each
triangle in Thi+1

, which is contained in a generic element T ∈ Thi in the new step of the algorithm, is
proportional to hT times the ratio ζ̂T /ζT , where ζ̂ denotes the mean value of an estimator over Th.
Approximate solutions obtained after six adaptation steps are depicted in Figure 2.2, whereas a few
adaptive meshes generated using the two proposed indicators are collected in Figure 2.4. At least for
this particular configuration, the second a posteriori error estimator produces smaller errors but the
convergence rates coincide with the ones obtained with the first indicator.

In our last example the assumptions on the diffusivity ϑ will not hold anymore: we allow ϑ to be
constant and very small for any concentration below a so-called gel point φ ∈ [0, φc]. This extension
(whose limit case translates into a loss of ellipticity in the concentration equation) implies that for low
volume fractions, one may expect shock-like fronts to develop (see e.g. the monograph [33] and the
recent review [20]). Adaptive mesh refinement would then be highly appreciated in this particular case;
not only to restitute optimal convergence orders, but also to resolve concentration profiles accurately
without the need of refining the grid everywhere (even more important if higher-order schemes are used,
or transient models are studied). The problem configuration corresponds to the so-called Boycott effect
(cf. [23]), where the sedimentation-consolidation of small particles within an enclosure is enhanced by
tilting the vessel (from the gravity direction), thus allowing the formation of recirculation zones carrying
low concentration fluid along the underside of the inclined wall (see also [30]). The diffusivity function
will be set to

ϑ(φ) =


ε for φ ≤ φc,

ϑ0
α

φc

(
φ

φc

)α−1

otherwise,

with α = 5, ϑ0 = 0.055, ε =1e-6. As computational domain we consider an inclined rectangle of height
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Figure 2.5: Test 3: approximate solutions obtained with the lowest order method, after six steps of
adaptive mesh refinement following the second indicator θ̃. Concentration, velocity components, and
stress components are depicted.

1.5m and width of 6m forming an angle of 2π/3 with the positive x1−axis, which we initially discretize
into a coarse mesh of 102 triangular elements. Viscosity is set as in the previous examples and the
remaining coefficients are f = ∆ρk, g = 0, uD = 0, φD = {0.8 on the bottom and overside inclined
wall; 0.0001 elsewhere in ∂Ω}, γ(φ) = {γ0φ(1 − φ)2 if φ ≥ φc; 0 otherwise}, φc = 0.07, c = 2/3,
γ0 = 4.4e-3, ∆ρ = 700, The stabilization constants will depend on µ1 = 1 and µ2 = 4.75.

The numerical solutions are collected in Figure 2.5, where velocity shows a main circulation zone
at the center of the domain, directing the flow towards the bottom along the lower inclined side and
moving upwards on the opposite side. In addition, high concentration zones are located at the bottom
of the vessel, while clear fluid forms at the top. These flow patterns are in accordance with the
observations in [28, 30]. Four intermediate steps of mesh adaptation guided by the second a posteriori
error estimator θ̃ are displayed in Figure 2.6. We can see the capturing of the high concentration
gradient and velocity boundary layer near the upper inclined side of the domain.
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Figure 2.6: Test 3: from left to right, four snapshots of successively refined meshes according to the
indicator θ̃.
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N e(σ) r(σ) e(u) r(u) e(φ) r(φ) iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 − P1 − P1 scheme with quasi-uniform refinement

135 497.2285 – 172.3239 – 1.6796 – 25 1.0930 1.0855 1.0736 1.0662
403 501.6796 -0.0174 189.3379 -0.1835 1.5883 0.1090 29 0.9688 0.9610 0.9654 0.9576
1191 325.2386 0.8264 136.1004 0.6295 0.7731 1.3728 28 1.0512 1.0490 1.0413 1.0391
4090 150.5401 1.2842 35.1355 2.2575 0.4022 1.0896 29 1.0112 1.0078 1.0096 1.0062
15074 81.0276 0.9336 12.4395 1.5649 0.1990 1.0606 28 1.0022 0.9988 1.0031 0.9997
58289 41.1328 1.0175 3.0515 2.1089 0.1012 1.0146 31 1.0004 0.9968 1.0031 0.9996
238705 20.5693 1.0063 0.8447 1.8650 0.0510 0.9956 29 0.9997 0.9962 1.0032 0.9997

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ

409 482.0538 – 229.0604 – 1.1557 – 21 1.1461 1.1431 – –
1215 325.3517 0.7222 151.3681 0.7610 0.5798 1.2670 20 1.0059 1.0040 – –
3108 160.3139 1.5071 47.6470 2.4614 0.4017 0.7817 19 1.0032 1.0007 – –
6346 82.9351 1.8466 13.4484 3.5441 0.3298 0.5527 18 1.0060 1.0030 – –
13629 44.6689 1.6201 4.6110 2.8026 0.2538 0.6851 21 0.9984 0.9949 – –
31278 25.1967 1.3780 1.8416 2.2089 0.1908 0.6873 20 0.9941 0.9893 – –
79064 15.0459 1.1118 0.8192 1.7468 0.1332 0.7739 19 0.9903 0.9849 – –

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ̃

409 482.0538 – 229.0604 – 1.1557 – 21 – – 1.1219 1.1190
1206 318.9239 0.7641 148.2081 0.8052 0.5510 1.3700 19 – – 0.9979 0.9962
3247 160.2352 1.3899 49.7563 2.2041 0.3399 0.9758 20 – – 0.9986 0.9965
6703 79.3292 1.9399 12.8689 3.7315 0.3024 0.3221 21 – – 1.0038 1.0011
15393 41.1173 1.5928 3.7409 2.9945 0.2553 0.4104 20 – – 1.0073 1.0039
36869 22.9177 1.3296 1.2198 2.5490 0.1777 0.8247 20 – – 1.0055 1.0008
94817 13.4813 1.1231 0.5302 1.7635 0.1289 0.6790 19 – – 1.0058 1.0006

Table 2.2: Test 2: convergence history, Picard iteration count, effectivity and quasi-effectivity in-
dexes for the mixed–primal approximation of the coupled problem under quasi-uniform, and adaptive
refinement according to the indicators introduced in Sections 2.3,2.4.



CHAPTER 3

A mixed–primal finite element approximation of a
sedimentation–consolidation system

3.1 Introduction

The interaction of solid-liquid suspensions is often encountered in a wide variety of natural and
engineering applications, including fluidized beds, clot formation within the blood, solid-liquid separa-
tion and purification in wastewater treatment, macroscopic biofilm characterization, and many others.
In sedimentation-consolidation processes, suspended solid particles settle down due to gravity acceler-
ation and can be subsequently removed from the fluid. Here we are interested in a continuum-based
framework where the viscous fluid is incompressible and the flow patterns are laminar so the mass and
momentum balances are governed by the Brinkman equations with variable viscosity, and the mass
balance of the solid phase (here allowed to sediment into the fluid phase) is described by a nonlinear
advection-diffusion equation. A number of difficulties are associated to the understanding and predic-
tion of the behavior of such a problem, including highly nonlinear (and typically degenerate) advection
and diffusion terms, strong interaction of velocity and solids volume fraction via the Cauchy stress
tensor and the forcing term, nonlinear structure of the overall coupled flow and transport problem,
saddle-point structure of the flow problem, non-homogeneous and mixed boundary conditions, and so
on. These complications are usually reflected, not only in the solvability analysis of the governing
equations, but also in the construction of appropriate schemes for their numerical approximation, and
in the derivation of stability results and error bounds.

The solvability of the sedimentation-consolidation problem has been previously discussed in [29]
for the case of large fluid viscosity, using the technique of parabolic regularization. Moreover, a
modified formulation based on Stokes flow has been recently studied in [4], where the solution of the
transport equation required an explicit dependence of the effective diffusivity on the gradient of the
concentration. With a similar restriction (the viscosity depending on the concentration and on the
velocity gradient), the existence of solutions to a model of chemically reacting non-Newtonian fluid
has been established in [27]. In contrast, here these hypotheses have been modified, enlarging the
applicability of the present results, in particular to classical models of sedimentation of suspensions.
More specifically, we assume both the viscosity and the diffusivity to depend only on the scalar value
of the concentration. Nevertheless, we still remain in the framework of non-degeneracy of the diffusion
term. On the other hand, it is worth mentioning that models of sedimentation-consolidation share some
structural similarities with Boussinesq- and Oldroyd- type models, for which several mixed formulations

70
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have been proposed [44, 45, 53, 54, 55, 90]. In particular, the mixed finite element method for the
Boussinesq problem developed in [54] is based on the introduction of the gradient of velocity as an
auxiliary unknown, and the utilization of refined meshes near the singular corners and suitable finite
element subspaces. In turn, the approach from [44] first introduces the same nonlinear pseudostress
tensor linking the pseudostress and the convective term that has been employed before in [36] for the
Navier-Stokes problem, and then augment the resulting mixed formulation of the stationary Boussinesq
problem with Galerkin type terms arising from the constitutive and equilibrium equations, and the
Dirichlet boundary condition. In this way, the Banach and Brouwer fixed point theorems, together
with the Lax-Milgram lemma and the Babuška-Brezzi theory are applied to conclude the well-posedness
of the continuous and discrete formulations. Nevertheless, up to our knowledge, mixed formulations
specifically tailored for the study of sedimentation processes are not yet available from the literature.

According to the above bibliographic discussion, our present purpose is to examine mixed finite
element approximations of the model problem, where also the Cauchy stress enters in the formulation
as an additional unknown. Given the arrangement of the equations and the implicit smoothness
requirements of the fluid velocity and its discrete approximation, we realize as in [4] that applying an
augmentation strategy to the Brinkman problem simplifies the treatment of both the continuous and
Galerkin schemes. More precisely, we propose an augmented variational formulation where stresses
are sought in H(div; Ω), the velocity is in H1(Ω), and the solids volume fraction has H1(Ω) regularity.
Consequently, the rows of the Cauchy stress tensor will be approximated with Raviart-Thomas elements
of order k, whereas the velocity and solids concentration will be discretized with continuous piecewise
polynomials of degree ≤ k + 1. The solvability analysis of the continuous formulation is based on a
strategy combining classical fixed-point arguments, suitable regularity assumptions on the decoupled
problems, the Lax-Milgram lemma, and the Sobolev embedding and Rellich-Kondrachov compactness
theorems. In addition, and provided that the data are sufficiently small, we also establish uniqueness
of weak solution. On the other hand, well-posedness of the discrete problem relies on the Brouwer fixed
point theorem and analogous arguments to those employed in the continuous analysis. Finally, applying
a suitable Strang-type lemma valid for linear problems to the fluid flow equations, and explicitly
deriving our own Strang-type estimate for the transport equations, we are also able to derive the
corresponding Céa estimate, and to provide optimal a priori error bounds for the Galerkin solution.

The rest of the chapter is organized as follows. Section 3.2 compiles some preliminary notation
and outlines the boundary value problem of interest, which is rewritten by eliminating the pressure
unknown from the system. In Section 3.3 we introduce the corresponding variational formulation
following an augmented mixed approach for the Brinkman equations, coupled with a primal method
for the transport problem. The associated Galerkin scheme is introduced in Section 3.4, followed by
the development of its solvability analysis. In Section 3.5 we proceed with the study of accuracy of
the augmented formulation, establishing optimal error bounds; and we close in Section 3.6 with some
numerical examples illustrating the good performance of the mixed-primal method and confirming the
predicted rates of convergence.
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3.2 The model problem

3.2.1 The sedimentation-consolidation system

We consider the steady state of the sedimentation-consolidation process consisting on the transport
and suspension of a solid phase into an immiscible fluid contained in a vessel Ω. The flow patterns
are influenced by gravity and by the local fluctuations of the solids volume fraction. The process is
governed by the following system of partial differential equations:

σ = µ(φ)∇u − p I , K−1u − divσ = fφ , divu = 0 ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k , β φ − div σ̃ = g .
(3.1)

The sought quantities are the Cauchy fluid pseudo-stress σ, the average velocity of the mixture u,
the fluid pressure p, and the volumetric fraction of the solids (in short, concentration) φ. In this
model we also assume that the vessel initially contains an array of fixed-concentration particles (see
the discussion in [14]). In this context, the parameter β is a positive constant representing the porosity
of the medium, and the permeability tensor K ∈ C(Ω̄) := [C(Ω̄)]n×n and its inverse are symmetric
and uniformly positive definite, which means that there exists αK > 0 such that

vtK−1(x)v ≥ αK |v|2 ∀ v ∈ Rn, ∀ x ∈ Ω. (3.2)

Here k is a constant vector pointing in the direction of gravity, and we assume that the kinematic
effective viscosity, µ; the one-directional Kynch batch flux density function describing hindered settling,
fbk; and the diffusion or sediment compressibility, ϑ; are nonlinear scalar functions of the concentration
φ. In particular, we can take

µ(φ) := µ∞

(
1− φ

φm

)−γµ
, fbk(φ) := f∞

[
1 + φ

(
1− φ

φm

)γf]
, ϑ(φ) := ϑ∞

[
φ+

(
1− φ

φm

)−γϑ]
,

where µ∞, φm, f∞, γµ, γf , γϑ, ϑ∞ are positive model parameters. Notice that fbk and ϑ are regular-
ized versions of the Kynch flux and compressibility functions typically employed in sedimentation
models (see e.g. [28, 29, 31]). Nevertheless, the subsequent analysis allows for arbitrary concentration-
dependent functions, as long as the following properties are satisfied: there exist positive constants µ1,
µ2, γ1, γ2, ϑ1, and ϑ2, such that

µ1 ≤ µ(s) ≤ µ2 , ϑ1 ≤ ϑ(s) ≤ ϑ2 , and γ1 ≤ fbk(s) ≤ γ2 ∀ s ∈ R . (3.3)

Note that (3.3) guarantees, in particular, that the corresponding Nemytsky operators, say U for µ,
defined by U(φ)(x) := µ(φ(x)) ∀φ ∈ L2(Ω), ∀x ∈ Ω a.e., and analogously for ϑ, fbk, µ−1, ϑ−1, and
f−1
bk , are all well defined and continuous from L2(Ω) into L2(Ω).

The driving force of the mixture also depends on the local fluctuations of the concentration, so
the right hand side of the second equation in (3.1) is linear with respect to φ, and f ∈ L∞(Ω) and
g ∈ L2(Ω) are given functions. Finally, given uD ∈ H1/2(ΓD), the following mixed boundary conditions
complement (3.1):

u = uD on ΓD , σν = 0 on ΓN , φ = 0 on ΓD , and σ̃ · ν = 0 on ΓN ,

where we remark that the homogeneous datum for σ represents a pseudo-traction boundary condition,
since we are employing ∇u instead of the symmetrized gradient e(u) := 1

2(∇u+∇ut) in the definition
of the stress.
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On the other hand, it is easy to see that the first and third equations in (3.1) are equivalent to

σ = µ(φ)∇u − p I and p +
1

n
tr(σ) = 0 in Ω ,

which permits us to eliminate the pressure p from the first equation. Consequently, we arrive at the
following coupled system:

1

µ(φ)
σd = ∇u in Ω , K−1u − divσ = fφ in Ω ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k in Ω , β φ − divσ̃ = g in Ω ,

u = uD on ΓD , σν = 0 on ΓN ,

φ = 0 on ΓD , and σ̃ · ν = 0 on ΓN .

(3.4)

We stress that the incompressibility constraint is implicitly present in the constitutive equation (3.4)1
relating σ and u. Systems like (3.1) are well established and have been extensively validated to describe
sediment-flow patterns in permeable media (see [81, 89] and the references therein). Furthermore, if
we wanted to deal with a traction boundary condition on ΓN, then (3.1)1 and (3.4)1 would be replaced

simply by σ = µ(φ) e(u) − p I and
1

µ(φ)
σd = ∇u − γ, respectively, where γ := 1

2(∇u − ∇ut)

is the additional unknown given by the vorticity. In this case, however, the rest of the corresponding
analysis would be very close to the one to be developed in what follows.

3.3 The variational formulation

In this section we proceed similarly as in [4] to derive a suitable variational formulation of (3.4) and
analyze its corresponding solvability by using a fixed-point strategy.

3.3.1 An augmented mixed–primal approach

Notice that the homogeneous boundary condition for σ on ΓN (cf. third row of (3.4)) suggests the
introduction of the functional space

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on ΓN

}
.

Multiplying the first equation of (3.4) by τ ∈ HN(div; Ω), integrating by parts, and using the Dirichlet
boundary condition for u (cf. third row of (3.4)), we obtain∫

Ω

1

µ(φ)
σd : τ d +

∫
Ω
u · div τ = 〈τν,uD〉ΓD

∀ τ ∈ HN(div; Ω) ,

where 〈·, ·〉ΓD
is the duality pairing between H−1/2(ΓD) and H1/2(ΓD). Moreover, the momentum

balance is then rewritten as

−
∫

Ω
K−1u · v +

∫
Ω
v · divσ = −

∫
Ω
fφ · v ∀v ∈ L2(Ω) .

On the other hand, the Dirichlet boundary condition for φ (cf. fourth row of (3.4)) motivates the
introduction of the space

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
,
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for which, thanks to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and
ΓD, such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω) . (3.5)

Therefore, given φ ∈ H1
ΓD

(Ω), we arrive at the following mixed formulation for the Brinkman flow:
Find (σ,u) ∈ HN(div; Ω)× L2(Ω) such that

aφ(σ, τ ) + b(τ ,u) = 〈τν,uD〉ΓD
∀ τ ∈ HN(div; Ω),

b(σ,v) − c(u,v) = −
∫

Ω
fφ · v ∀v ∈ L2(Ω),

(3.6)

where aφ : HN(div; Ω) × HN(div; Ω) → R, b : HN(div; Ω) × L2(Ω) → R and c : L2(Ω) × L2(Ω) → R
are bounded bilinear forms defined as

aφ(ζ, τ ) :=

∫
Ω

1

µ(φ)
ζd : τ d, b(τ ,v) :=

∫
Ω
v · divτ , c(u,v) :=

∫
Ω
K−1u · v (3.7)

for ζ, τ ∈ HN(div; Ω) and u, v ∈ L2(Ω).

In turn, given u ∈ L2(Ω), and using the homogeneous Neumann boundary condition for σ̃ (cf.
fourth row of (3.4)), we deduce that the primal formulation for the concentration equation becomes:
Find φ ∈ H1

ΓD
(Ω) such that

Au(φ, ψ) =

∫
Ω
fbk(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) , (3.8)

where
Au(φ, ψ) :=

∫
Ω
ϑ(φ)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ +

∫
Ω
β φψ ∀φ, ψ ∈ H1

ΓD
(Ω) . (3.9)

We remark at this point that the well-posedness of (3.6) is a straightforward consequence of the
assumption on µ given in (3.3) and the well known Babuška-Brezzi theory (see, e.g. [72, Theorem 2.1]
and [21, Proposition 4.3.1] for details). However, in order to deal with the analysis of (3.8) - (3.9), and
particularly to estimate the second term defining Au, we would require u ∈ H1(Ω). In fact, we know
from the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem 6.3] , [92, Theorem 1.3.5]), that
the injection ic : H1(Ω) −→ L4(Ω) is compact, and hence continuous, which, after applying Hölder’s
inequality, yields the existence of a positive constant c(Ω) = ‖ic‖2, depending only on Ω, such that∣∣∣∣∫

Ω
φv · ∇ψ

∣∣∣∣ ≤ c(Ω) ‖φ‖1,Ω ‖v‖1,Ω |ψ|1,Ω ∀φ, ψ ∈ H1(Ω) , ∀v ∈ H1(Ω) . (3.10)

Furthermore, we now observe, as we did in [4], that while the exact solution of (3.6) actually satisfies

∇u =
1

µ(φ)
σd in D′(Ω), which implies that u does belong to H1(Ω), the foregoing distributional

identity does not necessarily extend to the discrete setting of (3.6), and hence the aforementioned
difficulty would appear again when trying to analyze the Galerkin scheme associated to (3.8). In order
to overcome this inconvenience, we proceed similarly as in [4, Section 3.1] (see also [57, Section 3]) and
incorporate into (3.6) the following residual Galerkin type terms

κ1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇v = 0 ∀v ∈ H1(Ω) ,

−κ2

∫
Ω
K−1u · divτ + κ2

∫
Ω
divσ · divτ = −κ2

∫
Ω
fφ · divτ ∀ τ ∈ HN(div; Ω) ,

(3.11)
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where (κ1, κ2) is a vector of positive parameters to be specified later. In this way, instead of (3.6), we
consider from now on the following augmented mixed formulation: Find (σ,u) ∈ HN(div; Ω)×H1(Ω)

such that
Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀ (τ ,v) ∈ HN(div; Ω)×H1(Ω) , (3.12)

where

Bφ((σ,u), (τ ,v)) := aφ(σ, τ ) + b(τ ,u) − b(σ,v) + c(u,v)

+κ1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇v − κ2

∫
Ω
K−1u · divτ + κ2

∫
Ω
divσ · divτ ,

(3.13)

and
Fφ(τ ,v) := 〈τν,uD〉ΓD

+

∫
Ω
fφ · v − κ2

∫
Ω
fφ · divτ . (3.14)

We remark in advance that the well-posedness of (3.12) is proved below in Section 3.3.3. To this respect,
it is important to highlight that, differently from [4], here we do not need to add any stabilization term
on the Dirichlet boundary, as we did in [4, eq. (3.6)], since the required H1(Ω)-norm is obtained thanks
to the first equation in (3.11) and the presence now of the positive definite bilinear form c (cf. (3.7))
in the definition of Bφ. Furthermore, since the unique solution of (3.6) is obviously a solution of (3.12)
as well, we will conclude that both continuous problems share the same unique solution.

Summarizing the foregoing discussion, we find that the augmented mixed-primal formulation of
the initial coupled problem (3.4) reduces to (3.12) and (3.8), that is: Find (σ,u, φ) ∈ HN(div; Ω) ×
H1(Ω)×H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Au(φ, ψ) =

∫
Ω
fbk(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) .

(3.15)

3.3.2 Fixed point strategy

We begin by noticing that the alternative formulation (3.12) will certainly require continuous and
discrete solutions with second components living in H1(Ω). Now, given φ ∈ H1

ΓD
(Ω) and the corre-

sponding solution (σ,u) ∈ HN(div; Ω) ×H1(Ω) of (3.12), we can set, instead of (3.8), the modified
primal formulation: Find φ̃ ∈ H1

ΓD
(Ω) such that

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω) , (3.16)

where

Aφ,u(φ̃, ψ̃) :=

∫
Ω
ϑ(φ)∇φ̃ · ∇ψ̃ −

∫
Ω
φ̃u · ∇ψ̃ +

∫
Ω
β φ̃ψ̃ ∀ φ̃, ψ̃ ∈ H1

ΓD
(Ω) , (3.17)

and
Gφ(ψ̃) :=

∫
Ω
fbk(φ)k · ∇ψ̃ +

∫
Ω
g ψ̃ ∀ ψ̃ ∈ H1

ΓD
(Ω) . (3.18)

The well-posedness of (3.16) will also be addressed in Section 3.3.3.

In turn, the description of problems (3.12) and (3.16) naturally suggests a fixed point strategy to
analyze (3.15). Indeed, let S : H1

ΓD
(Ω) −→ HN(div; Ω)×H1(Ω) be the operator defined by

S(φ) = (S1(φ),S2(φ)) := (σ,u) ∈ HN(div; Ω)×H1(Ω) ∀φ ∈ H1
ΓD

(Ω) ,
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where (σ,u) is the unique solution of (3.12) with the given φ. In turn, let S̃ : H1
ΓD

(Ω) ×H1(Ω) −→
H1

ΓD
(Ω) be the operator defined by

S̃(φ,u) := φ̃ ∀ (φ,u) ∈ H1
ΓD

(Ω)×H1(Ω) ,

where φ̃ is the unique solution of (3.16) with the given (φ,u). Then, we define the operator T :

H1
ΓD

(Ω) −→ H1
ΓD

(Ω) by
T(φ) := S̃(φ,S2(φ)) ∀φ ∈ H1

ΓD
(Ω) ,

and realize that solving (3.15) is equivalent to seeking a fixed point of T, that is: Find φ ∈ H1
ΓD

(Ω)

such that
T(φ) = φ . (3.19)

We find it important to remark here that, due to the dependence on φ (instead of |∇φ| as in [4])
of the diffusivity ϑ, our nonlinear operator Au (cf. (3.9)) does not become strongly monotone (as it
was the case for the corresponding nonlinear operator in [4, eq. (3.4) and Lemma 3.5]), and hence we
realize that for easing the present analysis we need to stay with the linear problem (3.16) instead of
the nonlinear one suggested by (3.8) and (3.9).

3.3.3 Well-posedness of the uncoupled problems

In this section we show that the uncoupled problems (3.12) and (3.16) are in fact well-posed. We
begin by recalling (see, e.g. [26]) that H(div; Ω) = H0(div; Ω)⊕ R I, where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω
tr(ζ) = 0

}
.

More precisely, for each ζ ∈ H(div; Ω) there exist unique ζ0 := ζ −
{

1

n|Ω|

∫
Ω
tr(ζ)

}
I ∈ H0(div; Ω)

and d :=
1

n|Ω|

∫
Ω
tr(ζ) ∈ R, such that ζ = ζ0 + dI. As for the analysis in [4], the following two

Lemmas concerning the above decomposition will be instrumental in showing the well-posedness of
(3.12) for a given φ.

Lemma 3.1 (Proposition 3.1 in [26]). There exists c1 = c1(Ω) > 0 such that

c1 ‖τ 0‖20,Ω ≤ ‖τ
d‖20,Ω + ‖div τ‖20,Ω ∀ τ = τ 0 + cI ∈ H(div; Ω) ,

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Lemma 3.2 (Lemma 2.2 in [62]). There exists c2 = c2(Ω,ΓN) > 0 such that

c2 ‖τ‖2div;Ω ≤ ‖τ 0‖2div;Ω ∀ τ = τ 0 + cI ∈ HN(div; Ω),

with τ 0 ∈ H0(div; Ω) and c ∈ R.

We now begin the solvability analysis of the uncoupled problems with the following result.

Lemma 3.3. Assume that κ1 ∈
(

0, 2δµ1

µ2

)
and κ2 ∈

(
0, 2δ̃ αK

n‖K−1‖∞

)
, with δ ∈ (0, 2µ1) and δ̃ ∈(

0, 2
n‖K−1‖∞

)
. Then, for each φ ∈ H1

ΓD
(Ω), problem (3.12) has a unique solution S(φ) := (σ,u) ∈

H := HN(div; Ω)×H1(Ω). Moreover, there exists CS > 0, independent of φ, such that

‖S(φ)‖H = ‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φ‖0,Ω ‖f‖∞,Ω
}

∀φ ∈ H1
ΓD

(Ω) . (3.20)
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Proof. We first observe from (3.13) that, given φ ∈ H1
ΓD

(Ω), Bφ is clearly a bilinear form. Next,
applying Cauchy-Schwarz inequality and the lower bound for µ (cf. (3.3)), we find from (3.13) that
there exists a positive constant ‖B‖, depending on µ1, κ1, κ2, n, and ‖K−1‖∞, such that

|Bφ((σ,u), (τ ,v))| ≤ ‖B‖ ‖(σ,u)‖H ‖(τ ,v)‖H ∀ (σ,u), (τ ,v) ∈ H , (3.21)

which confirms the boundedness of Bφ independently of φ ∈ H1
ΓD

(Ω). Next, we show that Bφ is
H-elliptic. In fact, given (τ ,v) ∈ H, we have again from (3.13) that

Bφ((τ ,v), (τ ,v)) =

∫
Ω

1

µ(φ)
|τ d|2 + κ1 |v|21,Ω − κ1

∫
Ω

1

µ(φ)
τ d : ∇v

+ κ2‖div τ‖20,Ω +

∫
Ω
K−1v · v − κ2

∫
Ω
K−1v · div τ ,

which, using the lower and upper bounds for µ (cf. (3.3)), the Cauchy-Schwarz and Young inequalities,
and the estimate (3.2), yields for any δ, δ̃ > 0,

Bφ((τ ,v), (τ ,v)) ≥
(

1

µ2
− κ1

2δµ1

)
‖τ d‖20,Ω + κ2

(
1− n δ̃

2
‖K−1‖∞

)
‖div τ‖20,Ω

+ κ1

(
1− δ

2µ1

)
|v|21,Ω +

(
αK −

nκ2

2δ̃
‖K−1‖∞

)
‖v‖20,Ω .

(3.22)

Then, assuming the indicated hypotheses on δ, κ1, δ̃, and κ2, we can introduce the positive constants

α0(Ω) := min

{(
1

µ2
− κ1

2δµ1

)
,
κ2

2

(
1− n δ̃

2
‖K−1‖∞

)}
,

α1(Ω) := c2 min

{
c1 α0(Ω) ,

κ2

2

(
1− n δ̃

2
‖K−1‖∞

)}
,

α2(Ω) := min

{
κ1

(
1− δ

2µ1

)
,
(
αK −

nκ2

2δ̃
‖K−1‖∞

)}
,

which, according to Lemmas 3.1 and 3.2, and defining α(Ω) := min
{
α1(Ω), α2(Ω)

}
, implies from

(3.22) that
Bφ((τ ,v), (τ ,v)) ≥ α(Ω) ‖(τ ,v)‖2 ∀ (τ ,v) ∈ H , (3.23)

thus confirming the H-ellipticity of Bφ independently of φ ∈ H1
ΓD

(Ω) as well. Next, given φ ∈ H1
ΓD

(Ω),
it is easy to see from (3.14) that there exists a positive constant ‖F‖, depending only on κ2, such that

‖Fφ‖ ≤ ‖F‖
{
‖uD‖1/2,ΓD

+ ‖φ‖0,Ω ‖f‖∞,Ω
}
. (3.24)

Finally, a straightforward application of the Lax-Milgram Lemma (see, e.g. [63, Theorem 1.1]), proves
that, for each φ ∈ H1

ΓD
(Ω), problem (3.12) has a unique solution S(φ) := (σ,u) ∈ H. Moreover, the

corresponding continuous dependence result together with the estimates (3.23) and (3.24) yield (3.20)

with CS :=
‖F‖
α(Ω)

, which completes the proof.

We now establish the unique solvability of the linear problem (3.16).
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Lemma 3.4. Let φ ∈ H1
ΓD

(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω < ϑ1
2 cp c(Ω) ( cf. (3.3), (3.5), (3.10)).

Then, there exists a unique φ̃ := S̃(φ,u) ∈ H1
ΓD

(Ω) solution of (3.16). Moreover, there exists C
S̃
> 0,

independent of (φ,u), such that

‖S̃(φ,u)‖1,Ω = ‖φ̃‖1,Ω ≤ C
S̃

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
. (3.25)

Proof. First all, notice that Aφ,u (cf. (3.17)) is clearly a bilinear form. In turn, according to (3.3) and
(3.10), it readily follows from (3.17) that there exists a positive constant ‖A‖, depending on ϑ2, c(Ω),
and the bound for ‖u‖1,Ω assumed here, that

|Aφ,u(φ̃, ψ̃)| ≤ ‖A‖ ‖φ̃‖1,Ω ‖ψ̃‖1,Ω ∀ φ̃, ψ̃ ∈ H1
ΓD

(Ω) ,

which proves that Aφ,u is bounded independently of φ and u. Next, applying the estimate (3.10) and
the inequality (3.5), we find that for each φ̃ ∈ H1

ΓD
(Ω) there holds

Aφ,u(φ̃, φ̃) =

∫
Ω
ϑ(φ) |∇φ̃|2 −

∫
Ω
φ̃u · ∇φ̃ + β ‖φ̃‖20,Ω

≥
(
ϑ1 − cp c(Ω) ‖u‖1,Ω

)
|φ̃|21,Ω ≥

ϑ1

2
|φ̃|21,Ω ≥

ϑ1

2 c2
p

‖φ̃‖21,Ω ,
(3.26)

which proves that Aφ,u is H1
ΓD

(Ω)-elliptic with constant α̃ := ϑ1
2 c2p

, independently of φ and u as well.
On the other hand, applying Cauchy-Schwarz inequality and the upper bound for fbk given in (3.3),
we easily deduce that

|Gφ(ψ̃)| ≤
{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
‖ψ̃‖1,Ω ∀ ψ̃ ∈ H1

ΓD
(Ω) ,

which says that Gφ ∈ H1
ΓD

(Ω)′ and ‖Gφ‖ ≤
{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
. Consequently, a direct applica-

tion of the Lax-Milgram Lemma implies the existence of a unique solution φ̃ := S̃(φ,u) ∈ H1
ΓD

(Ω) of

(3.16), and the corresponding continuous dependence result becomes (1.29) with C
S̃

=
1

α̃
=

2 c2
p

ϑ1
.

At this point we remark that the restriction on ‖u‖1,Ω in Lemma 3.4 could also have been taken
as ‖u‖1,Ω < ε ϑ1

cp c(Ω) with any ε ∈ (0, 1). However, we have chosen ε = 1
2 for simplicity and because

it yields a joint maximization of the ellipticity constant of Aφ,u and the upper bound for ‖u‖1,Ω.
In addition, when dropping the term β ‖φ̃‖20,Ω in (3.26) we have first assumed that β is small and
then utilized the Poincaré inequality (3.5). In turn, when β is sufficiently large, say β ≥ ϑ1, then the
aforementioned expression is kept along the whole derivation of (3.26), so that in this case the Poincaré
inequality (3.5) does not need to be applied.

We end this section by introducing suitable regularity hypotheses on the operators S and S̃, which
will be employed later on. In fact, for the remainder of this chapter we follow [4, eq. (3.22)], and
suppose that uD ∈ H1/2+δ(ΓD) and g ∈ Hδ(Ω), for some δ ∈ (0, 1) (when n = 2) or δ ∈ (1/2, 1) (when
n = 3). Then, we assume that for each φ ∈ H1

ΓD
(Ω) and (ϕ,w) ∈ H1

ΓD
(Ω)×H1(Ω), with ‖φ‖1,Ω ≤ r

and ‖ϕ‖1,Ω +‖w‖1,Ω ≤ r, r > 0 given, there holds, respectively, S(φ) ∈ HN(div; Ω)∩Hδ(Ω)×H1+δ(Ω)

and S̃(ϕ,w) ∈ H1+δ
ΓD

(Ω), with

‖S1(φ)‖δ,Ω + ‖S2(φ)‖1+δ,Ω ≤ ĈS(r)
{
‖uD‖1/2+δ,ΓD

+ ‖φ‖0,Ω ‖f‖∞,Ω
}
, (3.27)
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and
‖S̃(ϕ,w)‖1+δ,Ω ≤ Ĉ

S̃
(r)
{
γ2 |Ω|1/2 |k| + ‖g‖δ,Ω

}
, (3.28)

where ĈS(r) and Ĉ
S̃

(r) are positive constants independent of φ and (ϕ,w), respectively, but depending
on the upper bound r of their norms. The reason of the stipulated ranges for δ will be clarified in the
forthcoming analysis (see below proofs of Lemmas 1.8 and 1.9). More precisely, we remark in advance
that the regularity estimate (3.27) is needed in the proof of Lemma 1.8 to bound an expression of
the form ‖S1(φ)‖L2p(Ω) in terms of ‖S1(φ)‖δ,Ω, and hence of the data at the right hand side of (3.27)
(further details are available in the proof of [4, Lemma 3.9]). In turn, (3.28) is employed in the proof
of Lemma 1.9 to bound an expression of the form ‖∇S̃(ϕ,w)‖L2p(Ω) in terms of ‖S̃(ϕ,w)‖1+δ,Ω, and
hence of the data at the right hand side of (3.28) (see (3.35) below for details).

Though the actual verification of (3.27) - (3.28) is beyond the goals of this chapter, we remark that
some insights confirming the feasibility of the assumed regularity for the nonlinear problem defining S

were already provided in [4, remarks below eq. (3.22)]. In turn, the assumed regularity of the linear
problem defining S̃ is quite standard in the realm of elliptic boundary value problems, and we just
refer the interested reader to [46] or [78].

3.3.4 Solvability of the fixed point equation

We begin by emphasizing that the well-posedness of the uncoupled problems (3.12) and (3.16)
confirms that the operators S, S̃ and T (cf. Section 3.3.2) are well defined, and hence now we can
address the solvability analysis of the fixed point equation (3.19). To this end, we will verify below
the hypotheses of the Schauder fixed point theorem (see, e.g. [41, Theorem 9.12-1(b)]), for which we
require Lipschitz continuity of the nonlinear functions fbk, ϑ and µ. More precisely, we assume that
there exist positive constants Lµ, Lϑ, and Lf , such that for each s, t ∈ R there hold

|µ(s)− µ(t)| ≤ Lµ |s− t| , |ϑ(s)− ϑ(t)| ≤ Lϑ |s− t| , and |fbk(s)− fbk(t)| ≤ Lf |s− t| . (3.29)

We begin the analysis with the following straightforward consequence of Lemmas 3.3 and 3.4.

Lemma 3.5. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that

CS

{
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
}
<

ϑ1

2 cp c(Ω)
and C

S̃

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
≤ r , (3.30)

where CS and C
S̃
are the constants specified in Lemmas 3.3 and 3.4, respectively. Then T(W ) ⊆ W .

Proof. It corresponds to a slight modification of the proof of [4, Lemma 3.8].

Next, similarly as in [4], the continuity and compactness of T will essentially be direct consequences
of the following two Lemmas providing the continuity of S and S̃, respectively.

Lemma 3.6. There exists a positive constant C, depending on µ1, κ1, κ2, Lµ, α(Ω), and δ ( cf. (3.3),
(3.11), (3.29), (3.23), (3.27)), such that

‖S(φ)− S(ϕ)‖H ≤ C
{
‖f‖∞,Ω ‖φ− ϕ‖0,Ω + ‖S1(ϕ)‖δ,Ω ‖φ− ϕ‖Ln/δ(Ω)

}
∀φ, ϕ ∈ H1

ΓD
(Ω)
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Proof. Even though the present bilinear form Bφ (cf. (3.13)) and the corresponding one from [4]
differ in a couple of linear terms, the present proof is almost verbatim as [4, Lemma 3.9]), particularly
concerning the utilization of the Lipschitz-continuity of µ (cf. (3.29)), the regularity estimate (3.27),
and the Sobolev embedding Theorem (cf. [1, Theorem 4.12], [92, Theorem 1.3.4]), and hence further
details are omitted.

On the contrary to the foregoing lemma, and due to the fact already mentioned that the diffusivity
ϑ depends now on the scalar value of the concentration instead of the magnitude of its gradient (as it is
in [4]), the proof of the Lipschitz-continuity of the operator S̃, being more involved, differs substantially
from the one given for the analogue result of [4, Lemma 3.10]. In particular, as a consequence of the
aforementioned dependences, the regularity assumption (3.28), which was not required for the proof
of [4, Lemma 3.10], will definitely be employed next.

Lemma 3.7. Let C
S̃
be the constant provided by Lemma 3.4. Then, there exists a positive constant

C̃, depending on C
S̃
, c(Ω), Lf , Lϑ and δ ( cf. (3.10), (3.29), (3.28)), such that for all (φ,u), (ϕ,w) ∈

H1
ΓD

(Ω)×H1(Ω), with ‖u‖1,Ω, ‖w‖1,Ω < ϑ1
2 cp c(Ω) , there holds

‖S̃(φ,u)− S̃(ϕ,w)‖1,Ω

≤ C̃
{
|k| ‖φ− ϕ‖0,Ω + ‖S̃(ϕ,w)‖1,Ω‖u−w‖1,Ω + ‖S̃(ϕ,w)‖1+δ,Ω ‖φ− ϕ‖Ln/δ(Ω)

}
.

(3.31)

Proof. Given (φ,u), (ϕ,w) as stated, we let φ̃ := S̃(φ,u) and ϕ̃ := S̃(ϕ,w), that is (cf. (3.16))

Aφ,u(φ̃, ψ̃) = Gφ(ψ̃) and Aϕ,w(ϕ̃, ψ̃) = Gϕ(ψ̃) ∀ ψ̃ ∈ H1
ΓD

(Ω) .

It follows, according to the ellipticity of Aφ,u with constant α̃, and then subtracting and adding
Gϕ(φ̃− ϕ̃) = Aϕ,w(ϕ̃, φ̃− ϕ̃), that

α̃ ‖φ̃− ϕ̃‖21,Ω ≤ Aφ,u(φ̃, φ̃− ϕ̃) − Aφ,u(ϕ̃, φ̃− ϕ̃)

= Gφ(φ̃− ϕ̃)−Gϕ(φ̃− ϕ̃) + Aϕ,w(ϕ̃, φ̃− ϕ̃)−Aφ,u(ϕ̃, φ̃− ϕ̃)

=

∫
Ω

(
fbk(φ)− fbk(ϕ)

)
k · ∇(φ̃− ϕ̃) +

∫
Ω
ϕ̃ (u−w) · ∇(φ̃− ϕ̃)

+

∫
Ω

(
ϑ(ϕ)− ϑ(φ)

)
∇ϕ̃ · ∇(φ̃− ϕ̃) ,

(3.32)

where the last equality has employed the definitions given by (3.17) and (3.18). Then applying Cauchy-
Schwarz’s inequality, the Lipschitz-continuity assumption (3.29) on the last term in (3.32), and then
Hölder’s inequality, we obtain

α̃ ‖φ̃− ϕ̃‖21,Ω ≤
{
Lf |k| ‖φ − ϕ‖0,Ω + c(Ω) ‖ϕ̃‖1,Ω ‖u−w‖1,Ω

}
|φ̃− ϕ̃|1,Ω

+ Lϑ ‖φ− ϕ‖L2q(Ω) ‖∇ϕ̃‖L2p(Ω) |φ̃− ϕ̃|1,Ω ,
(3.33)

where p, q ∈ [1,+∞) are such that 1/p + 1/q = 1. Next, given the further regularity δ assumed in
(3.28), we recall that the Sobolev embedding Theorem (cf. [1, Theorem 4.12], [92, Theorem 1.3.4])
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establishes the continuous injection iδ : Hδ(Ω) −→ Lδ
∗
(Ω) with boundedness constant Cδ, where

δ∗ :=


2

1− δ
if n = 2 ,

6

3− 2δ
if n = 3 .

(3.34)

Thus, choosing p such that 2p = δ∗, we find that

‖∇ϕ̃‖L2p(Ω) = ‖∇S̃(ϕ,w)‖L2p(Ω) ≤ Cδ ‖∇S̃(ϕ,w)‖δ,Ω ≤ Cδ ‖S̃(ϕ,w)‖1+δ,Ω . (3.35)

In turn, according to the above choice of p, that is p = δ∗/2, it readily follows that

2q :=
2p

p− 1
=


2

δ
if n = 2 ,

=
n

δ
.

3

δ
if n = 3

(3.36)

In this way, inequalities (3.32), (3.33), and (3.35) together with identity (3.36) imply (3.31), which
finishes the proof.

The following result, which is the analogue of [4, Lemma 3.11], is a straightforward corollary of
Lemmas 3.5, 3.6, and 3.7.

Lemma 3.8. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume (3.30) ( cf. Lemma

3.5). Then, with the constants C and C̃ from Lemmas 3.6 and 3.7, for all φ, ϕ ∈ H1
ΓD

(Ω) there holds

‖T(φ)−T(ϕ)‖1,Ω ≤ C̃
{
|k| + C ‖T(ϕ)‖1,Ω ‖f‖∞,Ω

}
‖φ− ϕ‖0,Ω

+ C̃
{
C ‖T(ϕ)‖1,Ω ‖S1(ϕ)‖δ,Ω + ‖T(ϕ)‖1+δ,Ω

}
‖φ− ϕ‖Ln/δ(Ω) .

(3.37)

Proof. It suffices to recall from Section 3.3.2 that T(φ) = S̃(φ,S2(φ)) ∀φ ∈ H1
ΓD

(Ω), and then apply
Lemmas 3.5, 3.6, and 3.7.

The announced properties of T are proved now.

Lemma 3.9. Given r > 0, we let W :=
{
φ ∈ H1

ΓD
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume (3.30) ( cf. Lemma

3.5). Then, T : W −→W is continuous and T(W ) is compact.

Proof. It follows almost verbatim as the proof of [4, Lemma 3.12]. Indeed, it is basically consequence
of the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem 6.3], [92, Theorem 1.3.5]), the
specified range of the constant δ involved in the further regularity assumptions given by (3.27) and
(3.28), and the well-known fact that every bounded sequence in a Hilbert space has a weakly convergent
subsequence. We omit the rest of details.

Finally, the main result of this section is given as follows, where the proof can be obtained very
much as in [4, Theorem 3.13].
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Theorem 3.1. Assume that the hypotheses of the Lemmas 3.5 – 3.9 are met. Then the augmented
mixed-primal problem (3.15) has at least one solution (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)×H1

ΓD
(Ω) with

φ ∈W , and there holds
‖φ‖1,Ω ≤ C

S̃

{
γ2 |Ω|1/2 |k| + ‖g‖δ,Ω

}
, (3.38)

and
‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
}
, (3.39)

where CS and C
S̃
are the constants specified in Lemmas 3.3 and 3.4, respectively. Moreover, if the

data k, f , g and uD are sufficiently small so that, with the constants C, C̃, ĈS(r), and Ĉ
S̃

(r) from
Lemmas 3.6 and 3.7, and estimates (3.27) and (3.28), and denoting by C̃δ the boundedness constant
of the continuous injection of H1(Ω) into Ln/δ(Ω), there holds

C̃ (1 + Ĉ
S̃

(r) C̃δ C γ2 |Ω|1/2) |k| + Ĉ
S̃

(r) C̃ C̃δ ‖g‖δ,Ω + C̃ C̃δ C ĈS(r) ‖uD‖1/2+δ,ΓD

+ r C̃ C
(

1 + r C̃δ ĈS(r)
)
‖f‖∞,Ω < 1 ,

(3.40)

then the solution φ is unique in W .

Proof. According to the equivalence between (3.15) and the fixed point equation (3.19), and thanks to
the previous Lemmas 3.5 and 3.9, the existence of solution is just a straightforward application of the
Schauder fixed point theorem (cf. [41, Theorem 9.12-1(b)]). In turn, the estimates (3.38) and (3.39)
follow from (3.20) (cf. Lemma 3.3) and (3.25) (cf. Lemma 3.4). Furthermore, given another solution
ϕ ∈W of (3.19), the estimates ‖T(ϕ)‖1,Ω = ‖ϕ‖1,Ω ≤ r,

‖S1(ϕ)‖δ,Ω ≤ ĈS(r)
{
‖uD‖1/2+δ,ΓD

+ ‖ϕ‖0,Ω ‖f‖∞,Ω
}

(cf. (3.27)) ,

‖ϕ̃‖1+δ,Ω ≤ Ĉ
S̃

(r)
{
γ2 |Ω|1/2 |k| + ‖g‖δ,Ω

}
(cf. (3.28)) ,

and
‖ψ‖Ln/δ(Ω) ≤ C̃δ ‖ψ‖1,Ω ∀ψ ∈ H1(Ω) , (3.41)

confirm (3.40) as a sufficient condition for concluding, together with (3.37), that φ = ϕ.

In other words, (3.40) constitutes the condition arising from (3.37) – once (3.41), and the a priori
and regularity estimates for ‖T(ϕ)‖1,Ω, ‖S1(ϕ)‖δ,Ω and ‖T(ϕ)‖1+δ,Ω, respectively, are employed – that
makes the operator T to become a contraction, thus yielding the existence of a unique fixed point of
T in W .

3.4 The Galerkin scheme

Let Th be a regular triangulation of Ω by triangles K (resp. tetrahedra K in R3) of diameter hK ,
and define the meshsize h := max

{
hK : K ∈ Th

}
. In addition, given an integer k ≥ 0, for eachK ∈ Th

we let Pk(K) be the space of polynomial functions on K of degree ≤ k, and define the corresponding
local Raviart-Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,

where, according to the notations described in Section 3.1, Pk(K) = [Pk(K)]n, and x is the generic
vector in Rn. Then, we introduce the finite element subspaces approximating the unknowns σ, u, and
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φ, respectively, as the global Raviart-Thomas space of order k, and the corresponding Lagrange spaces
given by the continuous piecewise polynomials of degree ≤ k + 1, that is

Hσh :=
{
τ h ∈ HN(div; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀K ∈ Th

}
, (3.42)

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th

}
, (3.43)

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

ΓD
(Ω) : ψh|K ∈ Pk+1(K) ∀K ∈ Th

}
. (3.44)

In this way, the underlying Galerkin scheme, given by the discrete counterpart of (3.15), reads:
Find (σh,uh, φh) ∈ Hσh ×Hu

h ×Hφ
h such that

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

Auh(φh, ψh) =

∫
Ω
fbk(φh)k · ∇ψh +

∫
Ω
gψh ∀ψh ∈ Hφ

h .
(3.45)

Throughout the rest of this section we adopt the discrete analogue of the fixed point strategy
introduced in Section 3.3.2. Hence, we now let Sh : Hφ

h −→ Hσh ×Hu
h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∀φh ∈ Hφ
h ,

where (σh,uh) ∈ Hσh ×Hu
h is the unique solution of

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀ (τ h,vh) ∈ Hσh ×Hu
h , (3.46)

with Bφh and Fφh being defined by (3.13) and (3.14), respectively, with φ = φh. In addition, we let
S̃h : Hφ

h ×Hu
h −→ Hφ

h be the operator defined by

S̃h(φh,uh) := φ̃h ∀ (φh,uh) ∈ Hφ
h ×Hu

h ,

where φ̃h ∈ Hφ
h is the unique solution of

Aφh,uh(φ̃h, ψ̃h) = Gφh(ψ̃h) ∀ ψ̃h ∈ Hφ
h , (3.47)

with Aφh,uh and Gφh being defined by (3.17) and (3.18), respectively, with u = uh and φ = φh. Finally,
we define the operator Th : Hφ

h −→ Hφ
h by

Th(φh) := S̃h(φh,S2,h(φh)) ∀φh ∈ Hφ
h ,

and realize that (3.45) can be rewritten, equivalently, as: Find φh ∈ Hφ
h such that

Th(φh) = φh . (3.48)

Certainly, all the above makes sense if we guarantee that the discrete problems (3.46) and (3.47) are
well-posed. Indeed, it is easy to see that the respective proofs are almost verbatim of the continuous
analogues provided in Section 3.3.3, and hence we simply state the corresponding results as follows.

Lemma 3.10. Assume that κ1 ∈
(

0, 2δµ1

µ2

)
and κ2 ∈

(
0, 2δ̃ αK

n‖K−1‖∞

)
, with δ ∈ (0, 2µ1) and δ̃ ∈(

0, 2
n‖K−1‖∞

)
. Then, for each φh ∈ Hφ

h the problem (3.46) has a unique solution Sh(φh) := (σh,uh) ∈
Hσh ×Hu

h . Moreover, with the same constant CS > 0 from Lemma 3.3, there holds

‖Sh(φh)‖H = ‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φh‖0,Ω ‖f‖∞,Ω
}

∀φh ∈ Hφ
h .
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Lemma 3.11. Let φh ∈ Hφ
h and uh ∈ Hu

h such that ‖uh‖1,Ω < ϑ1
2 cp c(Ω) ( cf. (3.3), (3.5), (3.10)).

Then, there exists a unique φ̃h := S̃h(φh,uh) ∈ Hφ
h solution of (3.47). Moreover, with the same

constant C
S̃
> 0 from Lemma 3.4, there holds

‖S̃h(φh,uh)‖1,Ω = ‖φ̃h‖1,Ω ≤ C
S̃

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
.

We now aim to show the solvability of (3.45) by analyzing the equivalent fixed point equation
(3.48). To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem (cf.
[41, Theorem 9.9-2]). We begin with the discrete version of Lemma 3.5.

Lemma 3.12. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}
, and assume (3.30) ( cf.

Lemma 3.5). Then Th(Wh) ⊆ Wh.

Proof. It is a straightforward consequence of Lemmas 3.10 and 3.11.

The discrete analogues of Lemmas 3.6 and 3.7 are provided next. We notice in advance that, instead
of the regularity assumptions employed in the proof of those results, which actually are not needed nor
could be applied in the present discrete case, we simply utilize a L4 − L4 − L2 argument.

Lemma 3.13. There exist a positive constant C, depending on µ1, κ1, κ2, Lµ, and α(Ω) ( cf. (3.3),
(3.11), (3.29), (3.23)), such that

‖Sh(φh)− Sh(ϕh)‖H ≤ C
{
‖f‖∞,Ω ‖φh − ϕh‖0,Ω + ‖S1,h(ϕh)‖L4(Ω) ‖φh − ϕh‖L4(Ω)

}
,

for all φh, ϕh ∈ Hφ
h.

Proof. It proceeds exactly as in the proof of Lemma 3.6 (see [4, Lemma 3.9]), except for the derivation
of the discrete analogue of [4, eq. (3.29), Lemma 3.9], where, instead of choosing the values of p and q
determined by the regularity parameter δ, it suffices to take p = q = 2, thus obtaining∣∣(Bϕh −Bφh)

(
(ζh,wh), (σh,uh) − (ζh,wh)

)∣∣
≤ Lµ(1 + κ2

1)1/2

µ2
1

‖ζh‖L4(Ω) ‖φh − ϕh‖L4(Ω) ‖(σh,uh)− (ζh,wh)‖H ,

for all φh, ϕh ∈ Hφ
h, with (σh,uh) := Sh(φh) and (ζh,wh) := Sh(ϕ). Thus, the fact that the elements

of Hσh are piecewise polynomials insures that ‖ζh‖L4(Ω) < +∞ for each ζh ∈ Hσh . Further details are
omitted.

Lemma 3.14. Let C
S̃
be the constant provided by Lemma 3.4. Then, there exists a positive constant C̃,

depending on C
S̃
, c(Ω), Lf , and Lϑ( cf. (3.10), (3.29)), such that for all (φh,uh), (ϕh,wh) ∈ Hφ

h×H
u
h ,

with ‖uh‖1,Ω, ‖wh‖1,Ω < ϑ1
2 cp c(Ω) , there holds

‖S̃h(φh,uh)− S̃h(ϕh,wh)‖1,Ω ≤ C̃
{
|k| ‖φh − ϕh‖0,Ω

+ ‖S̃h(ϕh,wh)‖1,Ω ‖uh −wh‖1,Ω + ‖∇S̃h(ϕh,wh)‖L4(Ω) ‖φh − ϕh‖L4(Ω)

}
.

(3.49)
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Proof. Given (φh,uh) and (ϕh,wh) as stated, we first let φ̃h := S̃h(φh,uh) and ϕ̃h := S̃h(ϕh,wh).
Next, we proceed analogously as in the proof of Lemma 3.7, except for the derivation of the discrete
analogue of the third term in (3.33), where, employing the same argument of the previous Lemma 3.13,
it suffices to take p = q = 2, thus obtaining

α̃ ‖φ̃h − ϕ̃h‖21,Ω ≤
{
Lf |k| ‖φh − ϕh‖0,Ω + c(Ω) ‖ϕ̃h‖1,Ω ‖uh −wh‖1,Ω

}
|φ̃h − ϕ̃h|1,Ω

+ Lϑ ‖φh − ϕh‖L4(Ω) ‖∇ϕ̃h‖L4(Ω) |φ̃h − ϕ̃h|1,Ω .

Then, since the elements of Hφ
h are piecewise polynomials it follows that ‖∇ϕ̃h‖L4(Ω) < +∞, and

hence the foregoing equation yields (3.49). Further details are omitted.

Now, utilizing Lemmas 3.13 and 3.14, we can prove the discrete version of Lemma 3.8.

Lemma 3.15. Suppose that the assumptions in Lemma 3.12 are satisfied. Then, with the constants C
and C̃ from Lemmas 3.13 and 3.14, for all φh, ϕh ∈ Hφ

h there holds

‖Th(φh)−Th(ϕh)‖1,Ω ≤ C̃
{
|k| + C ‖Th(ϕh)‖1,Ω ‖f‖∞,Ω

}
‖φh − ϕh‖0,Ω

+ C̃
{
C ‖Th(ϕh)‖1,Ω ‖S1,h(ϕh)‖L4(Ω) + ‖∇Th(ϕh)‖L4(Ω)

}
‖φh − ϕh‖L4(Ω) .

(3.50)

Consequently, since the foregoing lemma and the continuous injection of H1(Ω) into L4(Ω) confirm
the continuity of Th, we conclude, thanks to the Brouwer fixed point theorem (cf. [41] [Theorem 9.9-2])
and Lemmas 3.12 and 3.15, the main result of this section.

Theorem 3.2. Under the assumptions of Lemma 3.12, the Galerkin scheme (3.45) has at least one
solution (σh,uh, φh) ∈ Hσh ×Hu

h ×Hφ
h with φh ∈Wh, and there holds

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ |k| ‖φh‖1,Ω
}
,

and
‖φh‖1,Ω ≤ C

S̃

{
γ2 |Ω|1/2 |k| + ‖g‖0,Ω

}
,

where CS and C
S̃
are the constants provided by Lemmas 3.3 and 3.4, respectively.

We end this section by remarking that the lack of suitable estimates for ‖S1,h(ϕh)‖L4(Ω) and
‖∇Th(ϕh)‖L4(Ω) stops us of trying to use (3.50) to derive a contraction estimate for Th. This is
the reason why in the foregoing Theorem 3.2 we are able only to guarantee existence, but not unique-
ness, of a discrete solution.

3.5 A priori error analysis

Given (σ,u, φ) ∈ HN(div; Ω) ×H1(Ω) × H1
ΓD

(Ω) with φ ∈ W , and (σh,uh, φh) ∈ Hσh ×Hu
h × Hφ

h

with φh ∈ Wh, solutions of (3.15) and (3.45), respectively, we now aim to derive a corresponding a
priori error estimate. For this purpose, we first observe from (3.15) and (3.45) that the above problems
can be rewritten as two pairs of corresponding continuous and discrete formulations, namely

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

(3.51)
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and
Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1

ΓD
(Ω) ,

Auh(φh, ψh) = Gφh(ψh) ∀ψh ∈ Hφ
h .

(3.52)

Then, as suggested by the structure of the foregoing systems, in what follows we apply a suitable
Strang-type lemma valid for linear problems to (3.51), and then derive our own Strang-type estimate
for (3.52). The reason of the latter is that the present form Au is not strongly monotone as it was in [4]
where ϑ depended on |∇φ| instead of just φ, and hence it does not fit the corresponding Strang-type
estimates for nonlinear problems (see, e.g. [4, Lemma 5.1]).

We begin our analysis by recalling from [40] the first Strang Lemma for linear problems.

Lemma 3.16. Let H be a Hilbert space, F ∈ H ′, and A : H ×H → R a bounded and elliptic bilinear
form. In addition, let {Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N

consider a functional Fn ∈ H ′n and a bounded bilinear form An : Hn×Hn → R. Assume that the family
{A} ∪ {Ah}n∈N is uniformly bounded and uniformly elliptic with constants ΛB and ΛE, respectively.
In turn, let u ∈ H and un ∈ Hn such that

A(u, v) = F (v) ∀ v ∈ H and An(un, vn) = Fn(vn) ∀ vn ∈ Hn .

Then for each n ∈ N there holds

‖u− un‖H ≤ CST

 sup
wn∈Hn
wn 6=0

∣∣F (wn)− Fn(wn)
∣∣

‖wn‖H

+ inf
vn∈Hn
vn 6=0

‖u− vn‖H + sup
wn∈Hn
wn 6=0

∣∣A(vn, wn)−An(vn, wn)
∣∣

‖wn‖H


 ,

with CST := Λ−1
E max

{
1,ΛE + ΛB

}
.

Proof. See [40, Lemma 4.1.1].

We now denote as usual
dist

(
φ,Hφ

h

)
:= inf

ϕh∈Hφh

‖φ− ϕh‖1,Ω ,

and
dist

(
(σ,u),Hσh ×Hu

h

)
:= inf

(τh,vh)∈Hσh×H
u
h

‖(σ,u)− (τ h,vh)‖H .

The following Lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖H .

Lemma 3.17. Let CST := α−1(Ω) max
{

1, α(Ω) + ‖B‖
}
, where ‖B‖ and α(Ω) are the boundedness

and ellipticity constants, respectively, of the bilinear forms Bφ ( cf. (3.21), (3.23)). Then there holds

‖(σ,u)− (σh,uh)‖H ≤ CST

{(
1 + 2‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+ (1 + κ2

2)1/2 ‖f‖∞,Ω ‖φ− φh‖0,Ω +
Lµ (1 + κ2

1)1/2

µ2
1

Cδ ‖σ‖δ,Ω ‖φ− φh‖Ln/δ(Ω)

}
.

(3.53)
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Proof. By applying Lemma 3.16 to the context (3.51), we obtain

‖(σ,u)− (σh,uh)‖H

≤ CST

{
sup

(τh,vh)∈Hσ
h
×Hu

h
(τh,vh)6=0

∣∣Fφ(τ h,vh)− Fφh(τ h,vh)
∣∣

‖(τ h,vh)‖H

+ inf
(ζh,wh)∈Hσ

h
×Hu

h
(ζh,wh) 6=0

(
‖(σ,u)− (ζh,wh)‖H

+ sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh) 6=0

∣∣Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh))
∣∣

‖(τ h,vh)‖H

)}
.

(3.54)

Then, proceeding analogously as in the proof of [4, Lemma 3.9], we easily deduce that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh)6=0

∣∣Fφ(τ h,vh)− Fφh(τ h,vh)
∣∣

‖(τ h,vh)‖H
≤
(
1 + κ2

2

)1/2 ‖f‖∞,Ω ‖φ− φh‖0,Ω . (3.55)

In turn, in order to estimate the supremum in (3.54), we add and subtract suitable terms to write

Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh)) = Bφ((ζh,wh)− (σ,u), (τ h,vh))

+ (Bφ −Bφh)((σ,u), (τ h,vh)) + Bφh((σ,u)− (ζh,wh), (τ h,vh)),

whence, applying the boundedness (3.21) to the first and third terms on the right hand side of the
foregoing equation, and proceeding analogously as for the derivation of [4, eqs. (3.29), (3.30)] with the
second one, we find that

sup
(τh,vh)∈Hσ

h
×Hu

h
(τh,vh)6=0

∣∣Bφ((ζh,wh), (τ h,vh))−Bφh((ζh,wh), (τ h,vh))
∣∣

‖(τ h,vh)‖H

≤ 2‖B‖ ‖(σ,u)− (ζh,wh)‖H +
Lµ (1 + κ2

1)1/2

µ2
1

Cδ ‖σ‖δ,Ω ‖φ− φh‖Ln/δ(Ω) .

(3.56)

Finally, by replacing the inequalities (3.55) and (3.56) into (3.54), we get (3.53), which ends the
proof.

Next, we have the following result concerning ‖φ−φh‖1,Ω. To this end, and in order to simplify the
subsequent writing, we introduce the following constants, independent of the data k, g, uD, and f ,

K1 := C
S̃

{
Lf + LϑCδ C̃δ ĈS̃(r) γ2 |Ω|1/2

}
, K2 := C

S̃
LϑCδ C̃δ ĈS̃(r) ,

K3 := 1 + C
S̃

(ϑ2 + β) , K4 := 3C
S̃
c(Ω)CS , and K5 := C

S̃
c(Ω) r ,

where Cδ is the boundedness constant of the continuous injection iδ : Hδ(Ω) −→ Lδ
∗
(Ω), with δ∗ given

by (3.34), and C̃δ is the boundedness constant of the compact injection i : H1
ΓD

(Ω) −→ Ln/δ(Ω).

Lemma 3.18. Assume that the data k and g satisfy

K1 |k| + K2 ‖g‖δ,Ω ≤
1

2
. (3.57)
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Then, there holds
‖φ− φh‖1,Ω ≤ K̃3(uD,f) dist(φ,Hφ

h) + K̃5 ‖u− uh‖1,Ω , (3.58)

where
K̃3(uD,f) := 2

{
K3 +K4

(
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
)}

and K̃5 := 2K5 . (3.59)

Proof. We first observe by triangle inequality that

‖φ− φh‖1,Ω ≤ ‖φ− ϕh‖1,Ω + ‖φh − ϕh‖1,Ω ∀ϕh ∈ Hφ
h . (3.60)

Then employing the ellipticity of the bilinear form Aφh,uh with constant α̃, using that (cf. (3.52))
Aφh,uh(φh, φh − ϕh) = Auh(φh, φh − ϕh) = Gφh(φh − ϕh), and then adding and subtracting the
expression (cf. (3.52)) Gφ(φh − ϕh) = Au(φ, φh − ϕh) = Aφ,u(φ, φh − ϕh), we deduce that

α̃ ‖φh − ϕh‖21,Ω ≤ Aφh,uh(φh − ϕh, φh − ϕh)

≤ |Gφh(φh − ϕh) − Gφ(φh − ϕh)| + |Aφ,u(φ, φh − ϕh)−Aφh,uh(ϕh, φh − ϕh)| .
(3.61)

Next, according to the definition of Gφ (cf. (3.18)), and applying Cauchy-Schwarz inequality, we get

|Gφh(φh − ϕh) − Gφ(φh − ϕh)| ≤ Lf |k| ‖φ− φh‖0,Ω |φh − ϕh|1,Ω . (3.62)

In turn, adding and subtracting ϑ(φh) and u within appropriate expressions of Aφ,u(φ, φh − ϕh) and
Aφh,uh(ϕh, φh − ϕh), respectively, and then applying Hölder’s inequality, the upper bound of ϑ (cf.
(3.3)), and (3.10), we find that

|Aφ,u(φ, φh − ϕh)−Aφh,uh(ϕh, φh − ϕh)|

≤ Lϑ ‖φ− φh‖L2q(Ω) ‖∇φ‖L2p(Ω) |φh − ϕh|1,Ω + ϑ2 |φ− ϕh|1,Ω |φh − ϕh|1,Ω

+ c(Ω) ‖ϕh‖1,Ω ‖u− uh‖1,Ω |φh − ϕh|1,Ω + c(Ω) ‖φ− ϕh‖1,Ω ‖u‖1,Ω |φh − ϕh|1,Ω

+ β ‖φ− ϕh‖0,Ω ‖φh − ϕh‖0,Ω ,

(3.63)

where p, q ∈ [1,+∞) are such that 1/p+ 1/q = 1. In this way, using the Sobolev embedding Theorem
(cf. [1, Theorem 4.12], [92, Theorem 1.3.4]), the regularity estimate (3.28), and applying the same
arguments used for the derivation of (3.33) (cf. proof of Lemma 3.7), in particular the fact that H1(Ω)

is compactly, and hence continuously embedded in Ln/δ(Ω) with boundedness constant C̃δ, it follows
from (3.63) that

|Aφ,u(φ, φh − ϕh)−Aφh,uh(ϕh, φh − ϕh)|

≤ LϑCδ C̃δ ĈS̃(r)
{
γ2|Ω|1/2|k| + ‖g‖δ,Ω

}
‖φ− φh‖1,Ω ‖φh − ϕh‖1,Ω

+ ϑ2 ‖φ− ϕh‖1,Ω ‖φh − ϕh‖1,Ω + c(Ω) ‖ϕh‖1,Ω ‖u− uh‖1,Ω ‖φh − ϕh‖1,Ω

+ c(Ω) ‖φ− ϕh‖1,Ω ‖u‖1,Ω ‖φh − ϕh‖1,Ω + β ‖φ− ϕh‖1,Ω ‖φh − ϕh‖1,Ω .

(3.64)

Thus, by replacing (3.62) and (3.64) into (3.61), and then the resulting estimate into (3.60), employing
the constants defined previously to the statement of the present lemma, using that both ‖u‖1,Ω and
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‖uh‖1,Ω are bounded by CS
{
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
}

(cf. Lemmas 3.3 and 3.10), and recalling from

the proof of Lemma 3.4 that α̃ = C−1

S̃
, we find, after several algebraic manipulations, that

‖φ− φh‖1,Ω ≤
{
K1 |k| + K2 ‖g‖δ,Ω

}
‖φ− φh‖1,Ω

+
{
K3 +K4

(
‖uD‖1/2,ΓD

+ r ‖f‖∞,Ω
)}
‖φ− ϕh‖1,Ω + K5 ‖u− uh‖1,Ω ∀ϕh ∈ Hφ

h ,

which, according to the assumption (3.57) and the notation (3.59), and taking the infimum on ϕh ∈ Hφ
h,

yields (3.58) and completes the proof.

We now combine the inequalities provided by Lemmas 3.17 and 3.18 to derive the Céa estimate for
the total error ‖(σ,u)− (σh,uh)‖ + ‖φ− φh‖1,Ω. To this end, we now introduce the constants

K6 := CST
Lµ (1 + κ2

1)1/2

µ2
1

CS C̃δ ĈS(r) ,

and

K7 := CST (1 + κ2
2)1/2 +

Lµ (1 + κ2
1)1/2

µ2
1

CS C̃δ ĈS(r) r .

Then, employing from (3.27) that ‖σ‖δ,Ω ≤ ĈS(r)
{
‖uD‖1/2+δ,ΓD

+ ‖φ‖0,Ω ‖f‖∞,Ω
}
, recalling that

‖φ‖1,Ω ≤ r, and using that C̃δ is the boundedness constant of the continuous injection of H1(Ω) into
Ln/δ(Ω), we can assert from (3.53) that

‖(σ,u)− (σh,uh)‖H ≤ CST

(
1 + 2 ‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+

{
K6 ‖uD‖1/2+δ,ΓD

+ K7 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω ,

which, employing the estimate for ‖φ− φh‖1,Ω given by (3.58), implies

‖(σ,u)− (σh,uh)‖H ≤ CST

(
1 + 2 ‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+ K̃6(uD,f) dist

(
φ,Hφ

h

)
+ K̃5

{
K6 ‖uD‖1/2+δ,ΓD

+ K7 ‖f‖∞,Ω
}
‖u− uh‖1,Ω ,

where
K̃6(uD,f) := K̃3(uD,f)

{
K6 ‖uD‖1/2+δ,ΓD

+ K7 ‖f‖∞,Ω
}
.

In this way, assuming now that uD and f satisfy

K̃5

{
K6 ‖uD‖1/2+δ,ΓD

+ K7 ‖f‖∞,Ω
}
≤ 1

2
,

we conclude from the foregoing equations that

‖(σ,u)− (σh,uh)‖H ≤ 2CST

(
1 + 2 ‖B‖

)
dist

(
(σ,u),Hσh ×Hu

h

)
+ 2 K̃6(uD,f) dist

(
φ,Hφ

h

)
. (3.65)

Consequently, we can establish the following result providing the complete Céa estimate.
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Theorem 3.3. Assume that the data k, g, uD, and f are sufficiently small so that

K1 |k| + K2 ‖g‖δ,Ω ≤
1

2
and K̃5

{
K6 ‖uD‖1/2+δ,ΓD

+ K7 ‖f‖∞,Ω
}
≤ 1

2
.

Then, there exists a positive constant C, independent of h, but depending on data, parameters, and
other constants, such that

‖(σ,u)− (σh,uh)‖H + ‖φ− φh‖1,Ω

≤ C
{

dist
(
(σ,u),Hσh ×Hu

h

)
+ dist(φ,Hφ

h)
}
.

(3.66)

Proof. It follows straightforwardly from (3.65) and (3.58).

We end this section with the corresponding rates of convergence of our Galerkin scheme (3.45).

Theorem 3.4. In addition to the hypotheses of Theorems 3.1, 3.2, and 3.3, assume that there exists
s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ H1+s(Ω), and φ ∈ H1+s(Ω). Then, there exists
Ĉ > 0, independent of h, such that, with the finite element subspaces defined by (3.42), (3.43), and
(3.44), there holds

‖(σ,u)− (σh,uh)‖H + ‖φ− φh‖1,Ω

≤ Ĉ hmin{s,k+1}
{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖φ‖1+s,Ω

}
.

Proof. It follows directly from the Céa estimate (3.66) and the approximation properties of Hσh , Hu
h ,

and Hφ
h (cf. [26, 40, 63]).

3.6 Numerical tests

Example 1. Our first example aims at testing the accuracy of our augmented finite element formu-
lation. As usual, experimental errors and convergence rates are defined as

e(σ) := ‖σ − σh‖div,Ω , e(u) := ‖u− uh‖1,Ω ,

e(φ) := ‖φ− φh‖1,Ω , r(·) := log(e(·)/ê(·))[log(h/ĥ)]−1 ,

where e and ê stand for errors computed on two consecutive meshes of sizes h and ĥ, respectively. In
all examples we consider K = KI, with K constant. The following exact solution to (3.1) defined on
the unit disk is manufactured

φ(x1, x2) = c−c exp(1−x2
1−x2

2), u(x1, x2) =

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, σ(x1, x2) = µ(φ)∇u−(x2

1−x2
2)I ,

where K−1 = 0.01, β = 10, k = (0,−1)t, µ(φ) = (1−bφ)−2, fbk(φ) = bφ(1−bφ)2, ϑ(φ) = φ+(1−bφ)2,
and the source terms are

f(x1, x2) = φ−1(K−1u− divσ), g(x1, x2) = βφ− div(ϑ(φ)∇φ) + u · ∇φ+ f ′bk(φ)k · ∇φ,



3.6. Numerical tests 91

Nh h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iter

Augmented RT0 −P1 − P1 scheme

45 1.000000 37.83630 – 5.078982 – 0.794267 – 7
150 0.752986 29.63322 0.861350 3.864984 0.962793 0.551649 1.284790 6
567 0.381608 14.53602 1.047988 1.893370 1.049950 0.261571 1.097927 6
1986 0.202981 7.685891 1.009446 0.917330 1.147899 0.142439 0.962789 5
7587 0.107277 3.855674 1.081757 0.449265 1.119414 0.071858 1.072957 5
29652 0.056293 1.929090 1.073920 0.222210 1.091739 0.036226 1.062147 5
116820 0.029796 0.967180 1.085224 0.111677 1.081444 0.018210 1.081158 5
465243 0.015539 0.480698 1.073919 0.056004 1.060163 0.009068 1.070848 5
1840545 0.008139 0.243228 1.053393 0.028080 1.067485 0.004619 1.043095 5

Augmented RT1 −P2 − P2 scheme

129 1.000000 32.06255 – 3.909169 – 0.549477 – 7
447 0.752986 16.36007 1.505829 1.686632 1.605829 0.163634 1.919349 6
2043 0.381608 6.518447 1.697863 0.374835 1.820361 0.040489 1.899365 5
6835 0.202981 2.511864 1.781622 0.097825 1.967394 0.011124 1.841454 5
26243 0.107277 0.695590 1.902700 0.026791 2.146465 0.002491 1.857032 5
104867 0.056293 0.209899 1.925679 0.006716 1.743774 0.000774 1.864551 5
412611 0.029796 0.056163 1.945132 0.001700 2.095484 0.000182 1.928363 5
1643907 0.015539 0.014448 1.960714 0.000427 2.132144 0.000039 1.987836 5

Table 3.1: Example 1: Convergence history and Newton iteration count for the mixed–primal RTk −
Pk+1 − Pk+1 approximations of the coupled problem, k = 0, 1. Here Nh stands for the number of
degrees of freedom associated to each triangulation Th.

for (x1, x2) ∈ Ω. We take b = 1/2, c = 1/(1− e) and set ΓD = ∂Ω, where φ vanishes and the velocity is
imposed accordingly to the exact solution. The mean value of tr(σh) over Ω is fixed via a penalization
strategy. As defined above, the concentration is bounded in Ω and so are the concentration-dependent
coefficients as well. In particular we have µ1 = 1, µ2 = 4 and as suggested by Lemma 3.3, the
stabilization constants are chosen as κ1 = δµ1

µ2
with δ = µ1, and κ2 = 0.025 for δ̃ = 1

4|K−1| .

A Newton-Raphson algorithm with a fixed tolerance of 1e-6 has been used for the nonlinear problem
(3.45). At each iteration the linear systems resulting from the linearization were solved by means of the
multifrontal solver MUMPS. Independently of the refinement level, we observe that an average number
of 5 steps was required to reach the desired tolerance. Values and plots of errors and corresponding
rates associated to RTk − Pk+1 − Pk+1 approximations with k = 0 and k = 1 are summarized in
Table 3.1 and Figure 3.1. The results show optimal asymptotic convergence rates for all fields (of
order k + 1 for the pseudo-stress, the velocity and the concentration), which agree with the accuracy
predicted in Theorem 3.4. We also remark that for both degrees of approximation, the concentration
errors are always below the velocity errors, and both are dominated by the errors in the pseudo-stress
approximation. The augmented mixed–primal approximations computed on a mesh of 204847 vertices
and 409692 elements are depicted in Figure 3.2, where stress, velocity, and concentration profiles are
well resolved.
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Figure 3.1: Example 1: Computed errors associated to the mixed–primal approximation versus the
number of degrees of freedom Nh for RT0−P1−P1 and RT1−P2−P2 finite elements (left and right,
respectively). Values are detailed in Table 3.1.

For all remaining examples we stick to the case k = 0, i.e., row-wise lowest-order Raviart-Thomas
finite element approximations for the Cauchy pseudo-stress, and piecewise linear approximations of
velocity and concentration.

Example 2. Our next example corresponds to a test of batch sedimentation in a cylinder with
a contraction (see e.g. [91, 93]). In this case the model parameters and concentration-dependent

coefficients assume the values K = 60, β = K−1, µ(φ) = µ0

(
1 − φ

φmax

)−η
, fbk(φ) = C1C2

(1−φ0)
µφ

φ,

ϑ(φ) = C1

(
C3γφ

2 + C2

)
and f = ∆ρGk, with C1 = (ρ1 + φmax∆ρ)(ρ1ρ2)−1, C2 = 2

9µ0
∆ρGa2,

C3 = 0.68355a2, ∆ρ = ρ2 − ρ1, and γ = 0.88. Values for the remaining dimensional constants are
collected in Table 3.2, and the model parameters yield the following stabilization constants µ1 = µ0,
µ2 = 6.5365, κ1 = δµ1/µ2 with δ = µ1 and κ2 = 0.025 for δ̃ = 1

4|K−1| .

Quantity Value

Density glycerol/water solution, ρ1 1.175 g/cm3

Density PMMA, ρ2 1.18 g/cm3

Viscosity glycerol/water solution, µ0 0.184 g/cm3

Initial volume fraction, φ0 0.192

Maximum volume fraction, φmax 0.64

Particle radius, a 0.0397 cm

Viscosity constant, η 1.82

Gravity, G 980.665 cm/s2

Table 3.2: Example 2: Model constants employed in the simulation of steady sedimentation of PMMA
into glycerol/water within a contracted cylinder.

On ∂Ω we impose zero-flux conditions for φ, that is σ̃ · ν = 0. In addition, the following boundary
conditions are imposed for the velocity (see sketch in Figure 3.3): u|Γ1 = u|Γ3 = 0, and u2|Γ2 = 0
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Figure 3.2: Example 1: RT0 − P1 − P1 approximation of pseudo-stress components (top panels),
velocity components with vector directions (bottom left and center, respectively), and concentration
profile (bottom right), solutions to (3.15). The finest mesh has 204847 vertices and 409692 triangular
elements.

(representing a symmetry axis). The domain is discretized into 13131 vertices and 26260 triangles,
and we represent the obtained field quantities of interest in Figure 3.4. The maximum concentration
has been packed at the bottom of the vessel, whereas throughout the rest of the domain is filled with
low-concentration material. More interesting phenomena are observed from the velocity plots, where
a main recirculation zone is observed at the center of the domain. Moreover, a countercurrent flow
is observed along the symmetry axis (clearly identified in the horizontal velocity plot), and these flow
patterns are further highlighted in the diagonal components of the pseudo-stress.

Example 3. Finally we turn to the simulation of the steady state of flow patterns on a box (see
the domain, dimensions and boundary configuration illustrated in Figure 3.5), using a modification to
the single phase model described in [100] to reproduce the so-called Coandă effect, which corresponds
to the tendency of a fluid jet to be attracted to a nearby surface [101]. In this case the nonlinear
concentration-dependent coefficients are µ(φ) = µ0(1 − φ/φmax)η, fbk(φ) = u∞φ(1 − φ/φmax)η and
ϑ(φ) = ϑ0(φ3 + 1) where η = 1.82, µ0 = 0.02, ϑ0 = 0.0001, β = 0.01, K = 1000, g = 0 and f = ∆ρGk,
with ∆ρ = 0.0045 and G = 0.98.



3.6. Numerical tests 94

Figure 3.3: Example 2: Typical dimensions and boundary setting for a two-dimensional computational
domain representing the batch sedimentation within a cylinder with a contraction (left), and magnitude
of the velocity field shown on the rotationally extruded domain (right).

Concentration and velocities are fixed at the inlet surface Γin (a rectangle of width 0.5 cm and height
0.35 cm located on the top, at x1 = 0) according to φ = φin and u = uin = (u1,in, 0, 0)t. At the outlet
Γout (a rectangle with the same dimensions as the inlet, but located at x1 = 6, on the bottom) we
let the material exit the domain with a velocity u = uout = (u1,out, 0, 0)t, but the concentration is
not prescribed. On the remainder of ∂Ω we put no slip boundary data for the velocity and zero-flux
conditions for the concentration. Other model parameters are set as u1,in = u1,out = 0.01, φmax = 0.9,
u∞ = 0.0022, and φin = 0.3.

According to the bounds of the viscosity, the stabilization parameters were set as µ1 = µ0, µ2 =

µ0(1 − φin/φmax)−η, κ1 = δ µ1

µ2
with δ = µ1 and κ2 = 0, 055 for δ̃ = 1

6|K−1| . For this problem, 7
Newton iterations were needed to achieve a tolerance of 1e-6 for the energy norm of the incremental
approximations. The numerical results are depicted in Figure 3.6 including concentration profiles,
velocity vectors and streamlines, and trace of the Cauchy pseudo-stress tensor. As in [100], from the
center plot of Figure 3.6 we see a clear attachment of the fluid stream to the side walls, whereas the
material with high concentration at the inlet dissolves almost completely at the outlet. This effect
corresponds to a relatively high inlet velocity, and since higher concentration material is injected, it
penetrates the clear fluid pushing it towards the outlet.
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Figure 3.4: Example 2: principal principal components of the Cauchy pseudo-stress (top rows), veloc-
ity components uh with vector directions (bottom left and center), and computed concentration φh
(bottom right) for the test of batch sedimentation in a cylinder with a contraction.

Figure 3.5: Example 3: sketch of the computational domain Ω = [0, 6]× [0, 4]× [0, 0.8], a coarse mesh,
and boundary setting, with ∂Ω = Γ ∪ Γin ∪ Γout.
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Figure 3.6: Example 3: approximate solutions to the so-called Coanda effect using an augmented
mixed formulation. Trace of the Cauchy pseudo-stress tensor (left), velocity vectors and streamlines
(middle), and concentration profile (right).



CHAPTER 4

A posteriori error analysis for a sedimentation-consolidation system

4.1 Introduction

We have recently analyzed in Chapter 3, the solvability of a strongly coupled flow and transport
system typically encountered in continuum-based models of sedimentation-consolidation processes.
More precisely, the steady-state regime of a solid-liquid suspension immersed in a viscous fluid within
a permeable medium is considered in [5], and the governing equations consist in the Brinkman problem
with variable viscosity coupled with a nonlinear advection – nonlinear diffusion equation describing
the transport model. An augmented variational formulation is then proposed there with main un-
knowns given by the Cauchy pseudo-stress and bulk velocity of the mixture, and the solids volume
fraction, which are sought in H(div; Ω), H1(Ω), and H1(Ω), respectively. Fixed point arguments, cer-
tain regularity assumptions, and some classical results concerning variational problems and Sobolev
spaces are combined to establish the solvability of the continuous and discrete coupled formulations.
Consequently, the rows of the Cauchy stress tensor were approximated with Raviart-Thomas elements
of order k, whereas the velocity and solids concentration were discretized with continuous piecewise
polynomials of degree ≤ k+ 1. Suitable Strang-type estimates are employed to derive optimal a priori
error estimates for the Galerkin solution.

The purpose of this work is to provide reliable and efficient residual-based a posteriori error esti-
mators for the steady sedimentation-consolidation system studied in [5]. Estimators of this kind are
frequently employed to guide adaptive mesh refinement in order to guarantee an adequate convergence
behavior of the Galerkin approximations, even under the eventual presence of singularities. The global
estimator η depends on local estimators ηT defined on each element T of a given mesh Th. Then, η is
said to be efficient (resp. reliable) if there exists a constant Ceff > 0 (resp. Crel > 0), independent of
meshsizes, such that

Ceff η + h.o.t. ≤ ‖error‖ ≤ Crel η + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. Up to the au-
thors knowledge, a number of a posteriori error estimators specifically targeted for non-viscous flow
(e.g, Darcy) with transport problems are available in the literature [17, 48, 82, 99, 104]. However,
only [24, 83] and [7] are devoted to the a posteriori error analysis for coupled viscous flow-transport
problems. In particular, we derive in [7], two efficient and reliable residual-based a posteriori error
estimators for an augmented mixed–primal finite element approximation of a stationary viscous flow
and transport problem, which serves as a prototype model for sedimentation-consolidation processes

97
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and other phenomena where the transport of species concentration within a viscous fluid is of interest.

In this chapter, as well as in [7], we make use of ellipticity and inf-sup conditions together with
a Helmholtz decomposition, local approximation properties of the Clément interpolant and Raviart-
Thomas operator, and known estimates from [15, 60, 66, 72] and [73], to prove the reliability of a
residual-based estimator. Then, inverse inequalities, the localization technique based on triangle-bubble
and edge-bubble functions imply the efficiency of the estimator. Alternatively, we deduce a second
reliable and efficient residual-based a posteriori error estimator, where the Helmholtz decomposition is
not employed in the corresponding proof of reliability. The rest of this chapter is organized as follows.
In Section 4.2, we first recall from [5] the model problem and a corresponding augmented mixed-primal
formulation as well as the associated Galerkin scheme. In Section 4.3, we derive a reliable and efficient
residual-based a posteriori error estimator for our Galerkin scheme. A second estimator is introduced
and analyzed in Section 4.4. Next, the analysis and results from Section 4.3 and 4.4 are extend to the
three-dimensional case in Section 4.5. Finally, in Section 4.6, our theoretical results are illustrated via
some numerical examples, highlighting also the good performance of the scheme and properties of the
proposed error indicators.

4.2 The sedimentation-consolidation system

4.2.1 The governing equations

The following model describes the steady state of the sedimentation-consolidation process consisting
on the transport and suspension of a solid phase into an immiscible fluid contained in a vessel Ω (cf.
[5]). The flow patterns are influenced by gravity and by the local fluctuations of the solids volume
fraction. After elimination of the fluid pressure (cf. [5]), the process is governed by the following
system of partial differential equations:

1

µ(φ)
σd = ∇u , K−1u − divσ = fφ , divu = 0 in Ω ,

σ̃ = ϑ(φ)∇φ − φu − fbk(φ)k , β φ − div σ̃ = g in Ω ,

(4.1)

along with the following boundary conditions:

u = uD on ΓD , σν = 0 on ΓN ,

φ = φD on ΓD , and σ̃ · ν = 0 on ΓN ,
(4.2)

where (·)d denotes the deviatoric operator. The sought quantities are the Cauchy fluid pseudo-stress σ,
the average velocity of the mixture u, and the volumetric fraction of the solids (in short, concentration)
φ. In this context, the parameter β is a positive constant representing the porosity of the medium, and
the permeability tensor K ∈ C(Ω̄) := [C(Ω̄)]n×n and its inverse are symmetric and uniformly positive
definite, which means that there exists αK > 0 such that

vtK−1(x)v ≥ αK |v|2 ∀ v ∈ Rn, ∀ x ∈ Ω.

Here, we assume that the kinematic effective viscosity, µ; the one-directional Kynch batch flux density
function describing hindered settling, fbk; and the diffusion or sediment compressibility, ϑ; are nonlinear
scalar functions of the concentration φ. In turn, k is a vector pointing in the direction of gravity and
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f ∈ L∞(Ω), uD ∈ H1/2(ΓD), g ∈ L2(Ω) are given functions. For sake of the subsequent analysis, the
Dirichlet datum for the concentration will be assumed homogeneous φD = 0; ϑ is assumed of class C1;
and we suppose that there exist positive constants µ1, µ2, γ1, γ2, ϑ1, ϑ2, Lµ, Lϑ, and Lf , such that
for each s, t ∈ R there holds

µ1 ≤ µ(s) ≤ µ2 , γ1 ≤ fbk(s) ≤ γ2, ϑ1 ≤ ϑ(s) ≤ ϑ2, (4.3)

|µ(s)− µ(t)| ≤ Lµ |s− t| , |ϑ(s)− ϑ(t)| ≤ Lϑ |s− t| , and |fbk(s)− fbk(t)| ≤ Lf |s− t| . (4.4)

4.2.2 The augmented mixed–primal formulation

The homogeneous Neumann and Dirichlet boundary conditions for σ on ΓN and φ on ΓD (second
and third relations of (4.2), respectively) suggest the introduction of the following functional spaces

HN(div; Ω) :=
{
τ ∈ H(div; Ω) : τν = 0 on ΓN

}
,

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
.

Consequently, an augmented mixed-primal formulation for our original coupled problem (4.1) reads as
follows: Find (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)×H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div; Ω)×H1(Ω) ,

Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1
ΓD

(Ω) ,
(4.5)

where

Bφ((σ,u), (τ ,v)) :=

∫
Ω

1

µ(φ)
σd : τ d +

∫
Ω
u · divτ −

∫
Ω
v · divσ +

∫
Ω
K−1u · v (4.6)

+ κ1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇v − κ2

∫
Ω
K−1u · divτ + κ2

∫
Ω
divσ · divτ ,

Fφ(τ ,v) := 〈τν,uD〉ΓD
+

∫
Ω
fφ · v − κ2

∫
Ω
fφ · divτ ,

Au(φ, ψ) :=

∫
Ω
ϑ(φ)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ +

∫
Ω
β φψ ∀φ, ψ ∈ H1

ΓD
(Ω) , (4.7)

Gφ(ψ) :=

∫
Ω
fbk(φ)k · ∇ψ +

∫
Ω
gψ ∀ψ ∈ H1

ΓD
(Ω) ,

and κ1, κ2 are positive parameters satisfying κ1 ∈
(

0, 2δµ1

µ2

)
and κ2 ∈

(
0, 2δ̃αK

n‖K−1‖∞

)
, with δ ∈ (0, 2µ1)

and δ̃ ∈
(

0, 2
n‖K−1‖∞

)
. Further details yielding the weak formulation (4.5), along with its fixed-point

based solvability analysis can be found in [5, Section 3].

4.2.3 The augmented mixed–primal finite element method

We denote by Th a regular partition of Ω into triangles T (resp. tetrahedra T in R3) of diameter hT ,
and meshsize h := max

{
hT : T ∈ Th

}
. In addition, given an integer k ≥ 0, Pk(T ) denotes the space of

polynomial functions on T of degree ≤ k, and we define the corresponding local Raviart-Thomas space
of order k as RTk(T ) := Pk(T ) ⊕ Pk(T )x , where, according to the notations described in Section
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4.1, Pk(T ) = [Pk(T )]n, and x ∈ Rn. Then, the Galerkin scheme associated to (4.5), corresponds to:
Find (σh,uh, φh) ∈ Hσh ×Hu

h ×Hφ
h such that

Bφh((σh,uh), (τ h,vh)) = Fφh(τ h,vh) ∀(τ h,vh) ∈ Hσh ×Hu
h ,

Auh(φh, ψh) =

∫
Ω
fbk(φh)k · ∇ψh +

∫
Ω
gψh ∀ψh ∈ Hφ

h ,
(4.8)

where the involved finite element spaces are defined as

Hσh :=
{
τ h ∈ HN(div; Ω) : ct τ h|T ∈ RTk(T ) ∀ c ∈ Rn , ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

ΓD
(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

The solvability analysis and a priori error estimates for (4.8) have been derived in [5, Section 5].

4.3 A residual-based a posteriori error estimator

In this section we introduce a reliable and efficient residual-based a posteriori error estimator for
the Galerkin scheme (4.8). In particular, as well as in [7], a Helmholtz decomposition will be employed
in the corresponding proof of reliability. Even if this analysis will be restricted to the two-dimensional
case using the discrete spaces from Section 4.2.3, an extension to the 3D case will be addressed in
detail in Section 4.5, below.

Given a suitably chosen r > 0 (see [5] for details), we define the balls

W := {φ ∈ H1
ΓD

(Ω) : ‖φ‖1,Ω ≤ r} and Wh := {φh ∈ Hφ
h : ‖φh‖1,Ω ≤ r} , (4.9)

and throughout the rest of the chapter we let (σ,u, φ) ∈ HN(div; Ω)×H1(Ω)× H1
ΓD

(Ω) with φ ∈ W
and (σh,uh, φh) ∈ Hσh × Hu

h × Hφ
h with φh ∈ Wh be the solutions of the continuous and discrete

formulations (4.5) and (4.8), respectively. In addition, we set

H := HN(div,Ω)×H1(Ω) , ‖(τ ,v)‖H := ‖τ‖div;Ω + ‖v‖1,Ω ∀ (τ ,v) ∈ H ,

and recall from [5, Theorems 3.13 and 4.7] that the following a priori estimates hold

‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φ‖1,Ω ‖f‖∞,Ω
}
,

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD

+ ‖φh‖1,Ω ‖f‖∞,Ω
}
,

where CS is a positive constant independent of φ and φh.

4.3.1 The local error indicator

Given T ∈ Th, we let Eh(T ) be the set of its edges, and let Eh be the set of all edges of the
triangulation Th. Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω},
Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD} and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh we fix a unit
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normal vector νe := (ν1, ν2)t, and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector
along e. Then, given e ∈ Eh(Ω) and v ∈ L2(Ω) such that v|T ∈ C(T ) on each T ∈ Th, we let Jv ·νeK be
the corresponding jump across e, that is, Jv ·νeK := (v|T −v|T ′)|e ·νe, where T and T ′ are the triangles
of Th having e as a common edge. Similarly, given a tensor field τ ∈ L2(Ω) such that τ |T ∈ C(T ) on
each T ∈ Th, we let JτseK be the corresponding jump across e, that is, JτseK := (τ |T − τ |T ′)|e se. If
no confusion arises, we will simple write s and ν instead se and νe, respectively.

Moreover, given scalar, vector, and tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij), respectively,
we denote

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1
− ∂τ11

∂x2
∂τ22
∂x1
− ∂τ21

∂x2

)
.

Then we let σ̃h := ϑ(φh)∇φh − φhuh − fbk(φh)k and define for each T ∈ Th a local error indicator as
follows

θ2
T := ‖fφh − (K−1uh − divσh)‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g − (βφh − divσ̃h)‖20,T

+ h2
T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

(4.10)

We remark that the last term defining θ2
T requires that

duD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD). This is

fixed by assuming from now on that uD ∈ H1
0(ΓD). In turn, it is not difficult to see that each term

defining θ2
T has a residual character, and hence, proceeding as usual, a global residual error estimator

can be defined as

θ :=

∑
T∈Th

θ2
T


1/2

. (4.11)

4.3.2 Reliability

Throughout the rest of the chapter we assume that ΓN is contained in the boundary of a convex
extension of Ω, that is, there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see, e.g.
[64, Theorem 3.2 and Figure 3.1]). Furthermore, according to the regularity estimate given in [5, eq.
(3.24)], we also suppose from now on that g ∈ Hδ(Ω) for some δ ∈ (0, 1). Then the main result of this
section is stated as follows.

Theorem 4.1. Assume that Ω is a connected domain and that uD, ΓN, and g are as stated above. In
addition, assume that the data k, g, ϑ, uD, and f are sufficiently small so that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
, (4.12)
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where the involved constants are made precise in (4.20), below. Then, there exists a constant Crel > 0,
which depends only on the model parameters, on ‖uD‖1/2+δ,ΓD

, ‖f‖∞,Ω, and possibly other constants,
but all independent of h, such that

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H ≤ Crel θ. (4.13)

A couple of preliminary estimates aiming to prove (4.13) are given in the following two subsections.

4.3.2.1 A preliminary estimate for ‖(σ,u)− (σh,uh)‖H

In order to simplify the subsequent writing, we introduce in advance the following constants

C0 :=
1

α(Ω)
, C1 := 2C0Cδ C̃δ ĈS(r)

Lµ(1 + κ2
1)1/2

µ2
1

, C2 := C0 (1 + κ2
2)1/2 + r C1, (4.14)

where ĈS(r) and Cδ, C̃δ are defined in [5, eq. (3.23) ] and [5, Lemma 3.6 and Theorem 3.10], respec-
tively.

Lemma 4.1. Let θ2
0 :=

∑
T∈Th

θ2
0,T , where for each T ∈ Th we set

θ2
0,T := ‖fφh − (K−1uh − divσh)‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

. (4.15)

Then there exists C̄ > 0, depending on C0, κ1, such that

‖(σ,u)− (σh,uh)‖H ≤ C̄
{
θ0 + ‖Eh‖HN(div,Ω)′

}
+
{
C1 ‖uD‖1/2+δ,ΓD

+ C2 ‖f‖∞,Ω
}
‖φ− φh‖1,Ω ,

(4.16)
where C1 and C2 are given by (4.14), and the functional Eh ∈ HN(div,Ω)′ is defined by

Eh(ζ) := 〈ζ ν,uD〉ΓD
−
∫

Ω

1

µ(φh)
σd
h : ζ −

∫
Ω
uh · divζ

−κ2

∫
Ω

(fφh − (K−1uh − divσh)) · divζ ∀ ζ ∈ HN(div,Ω) .

(4.17)

In addition, there holds
Eh(ζh) = 0 ∀ ζh ∈ Hσh . (4.18)

Proof. Even though the present bilinear form Bφ (cf. (4.6)) and the corresponding one from [7, eq.
(2.9)] differ in a couple of linear terms, the present proof is almost verbatim as [7, Lemma 3.2],
particularly concerning the application of the H-ellipticity (see [5, Lemma 3.3]) of Bφ to the error
(σ,u)− (σh,uh), and the estimates for |Bφh( · , (ζ,w))−Bφ( · , (ζ,w))| and |Fφ(ζ,w)− Fφh(ζ,w)|,
and hence further details are omitted.

Observe, according to (4.18), that for each ζ ∈ HN(div,Ω) we can write

Eh(ζ) = Eh(ζ − ζh) ∀ ζh ∈ Hσh ,

and hence the upper bound of ‖Eh‖HN(div,Ω)′ to be derived below (see Section 4.3.2.4) will employ the
foregoing expression with a suitable choice of ζh ∈ Hσh .



4.3. A residual-based a posteriori error estimator 103

We end this section with an alternative expression for the functional Eh, which will be used later
on in Section 4.3.2.4 to obtain a partial estimate for θ, and then in Section 4.4 to derive a second

a posteriori error estimator. In fact, integrating by parts the expression
∫

Ω
uh · divζ, and using the

homogeneous Neumann boundary condition on ΓN, we find that Eh can be rewritten as

Eh(ζ) := 〈ζ ν,uD − uh〉ΓD
+

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: ζ

−κ2

∫
Ω

(fφh − (K−1uh − divσh)) · divζ ∀ ζ ∈ HN(div,Ω) .

(4.19)

4.3.2.2 A preliminary estimate for ‖φ− φh‖1,Ω

In contrast with [7, Section 3.2.2], in this section we establish an estimate for the error ‖φ−φh‖1,Ω
by employing the ellipticity of the bilinear form Aφ,u [5, eq. (3.13)]. The reason of the latter is due
to fact that the Gâteaux derivative of the nonlinear induced operator by the form Au (cf. (4.7)) is
not elliptic as it was in [7], and hence we can not apply [7, Lemma 3.4] to derive the corresponding
preliminary bound. In light of the above, we now set the following constants

C̃ :=
1

α̃
, C3 := LϑCδ C̃δ ĈS̃(r), C4 := C̃ (Lf + C3 γ2|Ω|1/2 ), C5 := C̃ C3,

C6 := 2 C̃, C7 := r c(Ω) C̃ C1, C8 := r c(Ω) C̃ C2, C9 := r c(Ω) C̄,

(4.20)

where Ĉ
S̃

(r), Cδ, C̃δ and C̄ are the constants provided by [5, eq. (3.24)], [5, Lemma 3.7, Theorem
3.10], and Lemma 4.1, respectively.

Lemma 4.2. Assume that the data k, g, ϑ, uD, and f are sufficiently small so that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
. (4.21)

Then, there exists Ĉ > 0, depending on C̃ and C9 (cf. (4.20)), such that

‖φ− φh‖1,Ω ≤ Ĉ
{
θ0 + ‖Eh‖HN(div,Ω)′ + ‖Ẽh‖H1

ΓD
(Ω)′

}
, (4.22)

where θ0 and Eh are given in the statement of Lemma 4.1 and (4.17), respectively, and Ẽh ∈ H1
ΓD

(Ω)′

is defined for each ψ ∈ H1
ΓD

(Ω) by

Ẽh(ψ) :=

∫
Ω

(g − β φh)ψ −
∫

Ω

{
ϑ(φh)∇φh − φh uh − fbk(φh)k

}
· ∇ψ . (4.23)

In addition, there holds
Ẽh(ψh) = 0 ∀ψh ∈ Hφ

h . (4.24)

Proof. We begin by recalling, from [5, Lemma 3.4], that the bilinear form

Aφ,u(ϕ,ψ) :=

∫
Ω
ϑ(φ)∇ϕ · ∇ψ −

∫
Ω
ϕu · ∇ψ +

∫
Ω
β ϕψ ∀ϕ,ψ ∈ H1

ΓD
(Ω), (4.25)

is H1
ΓD

(Ω)-elliptic with constant α̃ := ϑ1
2 c2p

, from which we deduce the following global inf-sup condition

α̃ ‖ϕ‖1,Ω ≤ sup
ψ∈H1

ΓD
(Ω)

ψ 6=0

Aφ,u(ϕ,ψ)

‖ψ‖1,Ω
∀ϕ ∈ H1

ΓD
(Ω).

(4.26)
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Next, applying (4.26) to the Galerkin error ϕ := φ− φh, we find that

α̃ ‖φ− φh‖1,Ω ≤ sup
ψ∈H1

ΓD
(Ω)

ψ 6=0

Aφ,u(φ, ψ) − Aφ,u(φh, ψ)

‖ψ‖1,Ω
.

(4.27)

Now, using the fact that Aφ,u(φ, ψ) = Au(φ, ψ) = Gφ(ψ), and adding and subtracting suitable terms,
it follows that

Aφ,u(φ, ψ)−Aφ,u(φh, ψ) = Gφ(ψ)−Gφh(ψ)+Gφh(ψ)−Auh(φh, ψ)+Auh(φh, ψ)−Aφ,u(φh, ψ) . (4.28)

In turn, using the definition of Auh (cf. (4.7)) and Aφ,u (cf. (4.25)), we find that

Auh(φh, ψ) − Aφ,u(φh, ψ) =

∫
Ω

(ϑ(φ)− ϑ(φh))∇(φ− φh) · ∇ψ

+

∫
Ω
φh (u− uh) · ∇ψ −

∫
Ω

(ϑ(φ)− ϑ(φh))∇φ · ∇ψ,
(4.29)

from which, employing the upper bound of ϑ (cf. (4.3)), (4.9), and proceeding as in [5, eq. (5.13)-(5.14)]
on the third term to the right hand side of (4.29), we arrive at

|Auh(φh, ψ) − Aφ,u(φh, ψ)| ≤
{

2ϑ2 + C3

(
γ2 |Ω|1/2 |k| + ‖g‖δ,Ω

)}
‖φ− φh‖1,Ω |ψ|1,Ω

+ r c(Ω) ‖u− uh‖1,Ω |ψ|1,Ω .
(4.30)

Thus, applying the estimate for |Gφ(ψ)−Gφh(ψ)| (see [5, eq. (5.12)]) and estimate (4.30), we obtain
from (4.27) and (4.28) that

‖φ− φh‖1,Ω ≤ C̃ ‖Gφh −Auh(φh, ·)‖H1
ΓD

(Ω)′

+
{
C4|k| + C5‖g‖δ,Ω + C6ϑ2

}
‖φ− φh‖1,Ω + r c(Ω) C̃ ‖u− uh‖1,Ω .

Then, bounding ‖u−uh‖1,Ω by the error estimate provided by (4.16) (cf. Lemma 4.1), and employing
(4.21), we deduce that

‖φ− φh‖1,Ω ≤ 2 C̃
{
‖Gφh −Auh(φh, ·)‖H1

ΓD
(Ω)′ + C9

(
θ0 + ‖Eh‖HN(div,Ω)′

)}
, (4.31)

where, bearing in mind (4.23), there holds

Gφh − Auh(φh, ·) = Ẽh ,

and hence (4.31) yields (4.22). Finally, using the fact that Gφh(ψh)−Auh(φh, ψh) = 0 ∀ψh ∈ Hφ
h, we

obtain (4.24) and the proof concludes.

We observe here that the upper bound in the assumption (4.21) could have been taken as any
constant in (0, 1). We have chosen 1

2 for simplicity and also in order to minimize the resulting constant
Ĉ in (4.22). Furthermore, it is important to remark, according to (4.24), that for each ψ ∈ H1

ΓD
(Ω)

there holds Ẽh(ψ) = Ẽh(ψ−ψh) ∀ψh ∈ Hφ
h, and therefore ‖Ẽh‖H1

ΓD
(Ω)′ will be estimated below (see

Section 4.3.2.4) by employing the foregoing expression with a suitable choice of ψh ∈ Hφ
h.
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4.3.2.3 A preliminary estimate for the total error

We now combine the inequalities provided by Lemmas 4.1 and 4.2 to derive a first estimate for the
total error ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H . To this end, we now introduce the constants

C(uD,f) := Ĉ
{
C1 ‖uD‖1/2+ε,ΓD

+ C2 ‖f‖∞,Ω + 1
}

and c(uD,f) := C̄ + C(uD,f) ,

where C̄ and Ĉ are provided by Lemmas 4.1 and 4.2, respectively, and C1 and C2 are given by (4.14).

Theorem 4.2. Assume that

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
.

Then there holds

‖φ−φh‖1,Ω + ‖(σ,u)−(σh,uh)‖H ≤ C(uD,f) ‖Ẽh‖H1
ΓD

(Ω)′ + c(uD,f)
{
θ0+‖Eh‖HN(div,Ω)′

}
. (4.32)

Proof. The estimate (4.32) is obtained by replacing the upper bound for ‖φ− φh‖1,Ω, given by (4.22),
into the second term on the right hand side of (4.16), and then adding the result to the right hand
side of (4.22).

Having established the upper bound (4.32), and in order to obtain an explicit estimate for the total
error, we turn to the derivation of suitable upper bounds for ‖Ẽh‖H1

ΓD
(Ω)′ and ‖Eh‖HN(div,Ω)′ .

4.3.2.4 Upper bounds for ‖Ẽh‖H1
ΓD

(Ω)′ and ‖Eh‖HN(div,Ω)′

We begin by recalling the Clément interpolation operator Ih : H1(Ω)→ Xh (cf. [42]), where

Xh := {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th}.

The following result states the local approximation properties of Ih (for a proof, see [42]).

Lemma 4.3. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ c1hT ‖v‖1,∆(T ) ∀T ∈ Th,

and
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.

We now recall the definition of the concentration flux

σ̃h := ϑ(φh)∇φh − φhuh − fbk(φh)k . (4.33)

Then, the following lemma provides an upper bound for ‖Ẽh‖H1
ΓD

(Ω)′ .
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Lemma 4.4. Let η̃2 :=
∑
T∈Th

η̃2
T , where for each T ∈ Th we set

η̃2
T := h2

T ‖g − (βφh − divσ̃h)‖20,T +
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e .

Then there exists c > 0, independent of h, such that

‖Ẽh‖H1
ΓD

(Ω)′ ≤ c η̃ . (4.34)

Proof. It corresponds to a slight modification in the proof of [7, Lemma 3.8].

Our next goal is to provide an upper bound for ‖Eh‖HN(div,Ω)′ (cf. (4.17)), which, being less straight-
forward than Lemma 4.4, requires several preliminary results. To this end, we start by introducing the
space

H1
ΓN

(Ω) :=
{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓN

}
,

and establishing a suitable Helmholtz decomposition of our space HN(div,Ω).

Lemma 4.5. Assume that Ω is a connected domain and that ΓN is contained in the boundary of a
convex extension of Ω. Then, for each ζ ∈ HN(div,Ω), there exist τ ∈ H1(Ω) and χ ∈ H1

ΓN
(Ω) such

that
ζ = τ + curl(χ) in Ω , (4.35)

and
‖τ‖1,Ω + ‖χ‖1,Ω ≤ C ‖ζ‖div,Ω , (4.36)

with a positive constant C independent of ζ.

Proof. See [7, Lemma 3.9].

We continue our analysis by introducing the following finite element subspace of HΓN
(Ω)

Xh,N :=
{
ϕh ∈ C(Ω) : ϕh|T ∈ P1(T ) ∀ T ∈ Th, ϕh = 0 on ΓN

}
,

and considering, analogously as before, the Clément interpolation operator Ih,N : HΓN
(Ω) → Xh,N .

In addition, we let Πh : H1(Ω) → Hσh be the Raviart-Thomas interpolation operator (see [26, 95]),
which, according to its characterization properties (see e.g. [63, Section 3.4.1]), verifies

div(Πh(τ̄ )) = Ph(divτ̄ ) ∀ τ̄ ∈ H1(Ω), (4.37)

where Ph : L2(Ω)→ Qh is the L2(Ω)-orthogonal projector and

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
.

Further approximation properties of Πh are summarized as follows (see [63, Lemmas 3.16 and 3.18]).
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Lemma 4.6. There exist c3, c4 > 0, independent of h, such that for all τ̄ ∈ H1(Ω) there holds

‖τ̄ −Πh(τ̄ )‖0,T ≤ c3 hT ‖τ̄‖1,T ∀T ∈ Th ,

and
‖(τ̄ −Πh(τ̄ ))ν‖0,e ≤ c4 h

1/2
e ‖τ̄‖1,Te ∀ e ∈ Eh(Ω) ∪ Eh(ΓD) ,

where Te is a triangle of Th containing the edge e on its boundary.

Next, given ζ ∈ HN(div,Ω) and its Helmholtz decomposition (4.35), we define χh := Ih,N (χ),
and set

ζh := Πh(τ ) + curl(χh) ∈ Hσh (4.38)

as its associated discrete Helmholtz decomposition. Then, from (4.35) and (4.38), it follows that

ζ − ζh = τ − Πh(τ ) + curl(χ− χh) .

Therefore, according to (4.17) and (4.18), we deduce that

Eh(ζ) = Eh(ζ − ζh) = Eh(τ −Πh(τ )) + Eh(curl(χ− χh)) . (4.39)

Notice from (4.39) that, in order to estimate ‖Eh‖HN(div,Ω)′ , it only remains to bound |Eh(τ −Πh(τ ))|
and |Eh(curl(χ − χh))| in terms of a multiple of ‖ζ‖div,Ω, which is done in the rest of the present
Section 4.3.2.4. To this end, we now recall from [50] the following integration by parts formula on the
boundary.

Lemma 4.7. There holds

〈curlχν,φ〉 = −〈dφ
ds
,χ〉 ∀χ,φ ∈ H1(Ω). (4.40)

Proof. It follows from suitable applications of the Green formulae provided in [77, Chapter I, eq. (2.17)
and Theorem 2.11].

Lemma 4.8. Let θ2
1 :=

∑
T∈Th

θ2
1,T , where for each T ∈ Th we set

θ2
1,T := h2

T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
hs

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

.

Then there exists c > 0, independent of h, such that

|Eh(curl(χ− χh)| ≤ cθ1 ‖ζ‖div,Ω . (4.41)

Proof. See [7, Lemma 3.11].
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Lemma 4.9. Let θ2
2 :=

∑
T∈Th

θ2
2,T , where for each T ∈ Th we set

θ2
2,T := h2

T

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ ‖fφh − (K−1uh − divσh)‖20,T +
∑

e∈Eh(T )∩Eh(ΓD)

he ‖uD−uh‖20,e .

Then there exists c > 0, independent of h, such that

|Eh(τ −Πh(τ ))| ≤ cθ2 ‖ζ‖div,Ω . (4.42)

Proof. Using the alternative definition of the functional Eh (cf. (4.19)), applying the identity (4.37),
and denoting by I a generic identity operator, we find that

Eh(τ −Πh(τ )) = 〈(τ −Πh(τ ))ν,uD − uh〉ΓD
+

∫
Ω

(
∇uh −

1

µ(φh)
σd
h

)
: (τ −Πh(τ ))

− κ2

∫
Ω

(fφh − (K−1uh − divσh)) · (I − Ph)(divτ ).

(4.43)

Next, the first two terms on the right hand side of (4.43) are simply bounded by applying the Cauchy-
Schwarz in L2(ΓD) and L2(Ω), and then employing the approximation properties of Πh provided by
Lemma 4.6. In turn, for the corresponding third term, it suffices to see, thanks to the Cauchy-Schwarz
inequality and the stability estimate (4.36), that∣∣∣∣∫

Ω
(fφh − (K−1uh − divσh)) · (I − Ph)(div τ ))

∣∣∣∣
≤ ‖fφh − (K−1uh − divσh)‖0,Ω ‖div τ‖0,Ω ≤ ‖fφh − (K−1uh − divσh)‖0,Ω ‖ζ‖div,Ω ,

which ends the proof.

By virtue of Lemmas 4.8 and 4.9 we deduce the following upper bound for ‖Eh‖HN(div,Ω)′ .

Lemma 4.10. There exists c > 0, independent of h, such that

‖Eh‖HN(div,Ω)′ ≤ c
{
θ1 + θ2

}
.

Proof. It follows straightforwardly from (4.39) and the upper bounds (4.41) and (4.42).

At this point we remark that the terms h2
T ‖∇uh −

1
µ(φh)σ

d
h‖20,T and he‖uD − uh‖20,e, which appear

in the definition of θ2
2,T (cf. Lemma 4.9), are dominated by ‖∇uh − 1

µ(φh)σ
d
h‖20,T and ‖uD − uh‖20,e,

respectively, which form part of θ2
0,T (cf. (4.15)). Therefore, the reliability estimate (4.13) (cf. Theorem

4.1) is a direct consequence of Theorem 4.2, the definition of θ0 (cf. Lemma 4.1), and Lemmas 4.4,
4.8, 4.9, and 4.10.

We close this section by mentioning that the assumption (4.12) on the data ϑ, k, g, uD, and f ,
which, as shown throughout the foregoing analysis, is a key estimate to derive (4.13), is, unfortunately,
unverifiable in practice. In fact, while the data are certainly known in advance, the constants C4, C5,
C6, C7, C8 involved in that condition (cf. (4.20)), which in turn are expressed in terms of the previous
constants C1 and C2 (cf. (4.14)), depend all on boundedness and regularity constants of operators, as
well as on parameters, some of which are not explicitly calculable, and hence it is not possible to check
whether (4.12) is indeed satisfied or not. This is, however, a quite common fact arising in the analysis
of many nonlinear problems, and only in very particular cases (usually related to simple geometries of
the domain) it could eventually be circumvented.
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4.3.3 Efficiency

The main result of this section is stated as follows.

Theorem 4.3. Assume that ∇φ ∈ L4(Ω). Then, there exists a constant Ceff > 0, which depends
only on parameters, ‖K−1‖∞, |k|, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω, ‖∇φ‖L4(Ω) and other constants, all them
independent of h, such that

Ceff θ ≤ ‖φ−φh‖1,Ω + ‖u−uh‖1,Ω + ‖div(σ−σh)‖0,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

+ h.o.t. (4.44)

where h.o.t. stands for one or several terms of higher order. Moreover, under the assumption that
σ ∈ L4(Ω), there exists a constant Ceff > 0, which depends only on parameters, ‖K−1‖∞, |k|,
‖uD‖1/2,ΓD

, ‖f‖∞,Ω, ‖σ‖L4(Ω), ‖∇φ‖L4(Ω) and other constants, all them independent of h, such that

Ceff θ ≤ ‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H + h.o.t. (4.45)

In the subsequent analysis, such as in [7], we assume for simplicity that the nonlinear functions µ,

ϑ, and fbk are such that
1

µ(φh)
, ϑ(φh), fbk(φh), and hence σ̃h as well, are all piecewise polynomials.

In addition, we assume that the data uD and g are piecewise polynomials. Otherwise, and if µ−1, ϑ,
fbk, uD, and g are sufficiently smooth, higher order terms given by the errors arising from suitable
polynomial approximations of these expressions and functions would appear in (4.44) and (4.45) (cf.
Theorem 4.3), which explains the eventual h.o.t. in these expressions. In this regard, and similarly as
observed in [7], we remark that (4.44) constitutes a quasi-efficiency estimate for the global residual
error estimator θ (cf. (4.11)). Indeed, the fact that the expression appearing on the right hand side of
(4.44) is not exactly the error, but part of it plus the nonlinear term given by ‖ 1

µ(φ)σ
d − 1

µ(φh)σ
d
h‖0,Ω,

explains the quasi-efficiency concept employed here. Nevertheless, we show at the end of this section
that, under the assumption that σ ∈ L4(Ω), the latter can be bounded by ‖σ−σh‖0,Ω + ‖φ− φh‖1,Ω,
thus yielding the efficiency estimate given by (4.45).

In order to prove (4.44) and (4.45), in the rest of this section we derive suitable upper bounds for
the ten terms defining the local error indicator θ2

T (cf. (4.10)). We begin by observing, thanks to the
fact that fφ = K−1u − divσ in Ω, that there holds

‖fφh − (K−1uh − divσh)‖20,T ≤ 2 ‖f‖2∞,Ω ‖φ− φh‖20,T

+ 4 ‖K−1‖2∞ ‖u− uh‖20,T + 4 ‖div(σ − σh)‖20,T .
(4.46)

On the other hand, using that ∇u = 1
µ(φ)σ

d in Ω, u = uD on ΓD, and proceeding as in [7, Section
3.3], we deduce that∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

≤ 2 ‖∇u−∇uh‖20,T + 2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

(4.47)

and ∑
e∈Eh(ΓD)

‖uD − uh‖20,e ≤ c2
0 ‖u− uh‖21,Ω , (4.48)

where c0 is the norm of the trace operator in H1(Ω).
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The efficiency estimates for the remaining seven terms given in (4.11), are provided next. To this
end, we proceed as in [37] and [38] (see also [61]), and apply the localization technique (see [103])
based on triangle-bubble and edge-bubble functions, together with extension operators, and inverse
inequalities. Therefore, we now introduce further notations and preliminary results. In fact, given
T ∈ Th and e ∈ Eh(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble functions,
respectively (see [103, eqs. (1.4) and (1.6)]), which satisfy:

i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .

ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh(T ′)}, ψe = 0 on ∂T\{e}, and 0 ≤ ψe ≤ 1 in
ωe.

We also know from [102] that, given k ∈ N ∪ {0}, there exists an extension operator L : C(e)→ C(T )

that satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀p ∈ Pk(e). A corresponding vectorial version of L, that
is the component-wise application of L, is denoted by L. Additional properties of ψT , ψe and L are
collected in the following Lemma.

Lemma 4.11. Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3, and c4, depending only on
k and the shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th
and e ∈ Eh(T ), there hold

‖ψT q‖20,T ≤ ‖q‖20,T ≤ c1 ‖ψ1/2
T q‖20,T ∀ q ∈ Pk(T ),

‖ψe L(p)‖20,T ≤ ‖p‖20,e ≤ c2 ‖ψ1/2
e p‖20,e ∀ p ∈ Pk(e),

c3 he ‖p‖20,e ≤ ‖ψ1/2
e L(p)‖20,T ≤ c4 he ‖p‖20,e ∀ p ∈ Pk(e).

(4.49)

Proof. See [102, Lemma 4.1].

The following inverse estimate is also required.

Lemma 4.12. Let l,m ∈ N∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−mT |q|l,T ∀ q ∈ Pk(T ). (4.50)

Proof. See [40, Theorem 3.2.6].

In turn, the following lemma, whose proof make use of lemmas 4.11 and 4.12, will be required for
the terms involving the curl operator and the tangential jumps across the edges of Th.

Lemma 4.13. Let ρh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ρ ∈ L2(Ω) be such that curl(ρ) = 0 on each T ∈ Th. Then, there exist c, c̃ > 0, independent of h,
such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th

and
‖JρhseK‖0,e ≤ c̃ h−1/2

e ‖ρ− ρh‖0,ωe ∀ e ∈ Eh .
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Proof. For the first estimate we refer to [37, Lemma 4.3], whereas the second one follows from a slight
modification of the proof of [37, Lemma 4.4]. Further details are omitted.

We now apply Lemma 4.13 to obtain upper bounds for two other terms defining θ2
T .

Lemma 4.14. There exist c̃1, c̃2 > 0, independent of h such that

h2
T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

≤ c̃1

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

∀T ∈ Th,

he

∥∥∥∥s 1

µ(φh)
σd
h s

{∥∥∥∥2

0,e

≤ c̃2

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,ωe

∀ e ∈ Eh(Ω).

Proof. It suffices to apply Lemma 4.13 to ρh := 1
µ(φh)σ

d
h and ρ := 1

µ(φ)σ
d = ∇u.

Lemma 4.15. There exists c̃3 > 0, independent of h, such that

he

∥∥∥∥duD

ds
− 1

µ(φh)
σd
h s

∥∥∥∥2

0,e

≤ c̃3

∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥2

0,Te

∀ e ∈ Eh(ΓD).

Proof. We proceed similarly as in the proof of [72, Lemma 4.15], by replacing g, Γ, and 1
µσ

d
h in [72]

by uD, ΓD, and 1
µ(φh)σ

d
h, respectively.

We now aim to provide upper bounds for the three terms completing the definition of the local error
indicator θ2

T (cf. (4.10)). This requires, however, the preliminary result given by the following a priori
estimate for the error ‖σ̃ − σ̃h‖20,T .

Lemma 4.16. There exists C > 0, depending on ϑ2, Lf (cf. (1.2), (4.4)), and |k|, such that

‖σ̃−σ̃h‖20,T ≤ C
{
‖φ−φh‖21,T + ‖u(φ−φh)‖20,T + ‖φh(u−uh)‖20,T + ‖(ϑ(φ)−ϑ(φh))∇φ‖20,T

}
. (4.51)

Proof. Employing the definitions of σ̃ (cf. (4.1)) and σ̃h (cf. (4.33)), applying the triangle inequality,
and using the Lipschitz continuity assumption on fbk (cf. (4.4)), but restricted to each T ∈ Th instead
of Ω, we obtain that

‖σ̃ − σ̃h‖20,T ≤ 2

{
‖ϑ(φ)∇φ− ϑ(φh)∇φh‖20,T + 2L2

f |k|2 ‖φ− φh‖20,T

+ 4 ‖u(φ− φh)‖20,T + 4 ‖φh(u− uh)‖20,T
}
.

(4.52)

In turn, applying Cauchy-Schwarz’s inequality and the upper bound for ϑ (cf. (4.21)), we deduce that

‖ϑ(φ)∇φ− ϑ(φh)∇φh‖20,T ≤ 2 ‖(ϑ(φ)− ϑ(φh))∇φ‖20,T + 2ϑ2
2 ‖∇φ−∇φh‖20,T . (4.53)

In this way, (4.52) and (4.53) imply (4.51), which finalizes the proof.

We consider important to remark here that, due to the dependence on φ (instead of |∇φ| as in [7])
of the diffusivity ϑ, the first term of our nonlinear operator Au is not necessarily Lipschitz-continuous
(as it was the case for the corresponding nonlinear operator in [7, eq. (2.11)]) and hence, in contrast
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with [7, Lemma 3.19], now the term ‖(ϑ(φ)− ϑ(φh))∇φ‖20,T appears in the estimate (4.51) of Lemma
4.16. The treatment of such additional term will be postponed to Lemma 4.20.

We now establish the aforementioned efficiency estimates, split into three separate results.

Lemma 4.17. There exists c̃4 > 0, which depends only on ϑ2, Lf , β (cf. (4.3), (4.4), (1.5)), |k|, and
other constants, all them independent of h, such that

h2
T ‖g − (βφh − divσ̃h)‖20,T ≤ c̃4

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T

+ ‖φh(u− uh)‖20,T + ‖(ϑ(φ)− ϑ(φh))∇φ‖20,T + h2
T ‖φ− φh‖20,T

}
.

(4.54)

Proof. It is an adaptation of the proof of [7, Lemma 3.22]. Indeed, given T ∈ Th, using the properties
(4.49), the fact that βφ− divσ̃ = g in Ω, and integrating by parts, we deduce that

‖g − (βφh − divσ̃h)‖20,T ≤ c1 ‖ψ1/2
T (g − (βφh − divσ̃h))‖20,T

= −c1

∫
T
∇
(
ψT (g − (βφh − divσ̃h)

)
· (σ̃ − σ̃h) + c1 β

∫
T
ψT (g − (βφh − divσ̃h)) (φ− φh).

Then, the Cauchy-Schwarz inequality, the inverse estimate (4.50), the fact that 0 ≤ ψT ≤ 1, and the
triangle inequality imply that

‖g − (βφh − divσ̃h)‖20,T ≤ c1 c h
−1
T ‖g − (βφh − divσ̃h)‖0,T ‖σ̃ − σ̃h‖0,T

+ c1β ‖g − (βφh − divσ̃h)‖0,T ‖φ− φh‖0,T ,

which gives
hT ‖g − (βφh − divσ̃h)‖0,T ≤ C

{
‖σ̃ − σ̃h‖0,T + hT ‖φ− φh‖0,T

}
.

The foregoing inequality together with (4.51) imply (4.54), and thus the proof is completed.

Lemma 4.18. There exists c̃5 > 0, which depends only on ϑ2, Lf , β (cf. (4.3), (4.4), (1.5)), |k|, and
other constants, all them independent of h, such that for each e ∈ Eh(Ω) there holds

he ‖Jσ̃h · νeK‖20,e ≤ c̃5

∑
T⊆ωe

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

+ ‖(ϑ(φ)− ϑ(φh))∇φ‖20,T + h2
T ‖φ− φh‖20,T

}
,

where ωe is the union of the two triangles in Th having e as an edge.

Proof. See [7, Lemma 3.21].

Lemma 4.19. There exists c̃6 > 0, which depends only on ϑ2, Lf , β (cf. (4.3), (4.4), (1.5)), |k|, and
other constants, all them independent of h, such that for each e ∈ Eh(ΓN) there holds

he ‖σ̃h · ν‖20,e ≤ c̃6

{
‖φ− φh‖21,T + ‖u(φ− φh)‖20,T + ‖φh(u− uh)‖20,T

+ ‖(ϑ(φ)− ϑ(φh))∇φ‖20,T + h2
T ‖φ− φh‖20,T

}
,

where T is the triangle of Th having e as an edge.
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Proof. See [7, Lemma 3.22].

In order to complete the proof of global efficiency given by (4.44), it only remains to estimate
properly the three terms: ‖u(φ − φh)‖20,T , ‖φh(u − uh)‖20,T and ‖(ϑ(φ) − ϑ(φh))∇φ‖20,T , appearing
in the upper bounds provided by the last four lemmas, which is indeed the purpose of the following
lemma.

Lemma 4.20. There exist positive constants c̃7, c̃8, independent of h, such that∑
T∈Th

‖u (φ− φh)‖20,T ≤ c̃7 ‖φ− φh‖21,Ω and
∑
T∈Th

‖φh(u− uh)‖20,T ≤ c̃8 ‖u− uh‖21,Ω, (4.55)

where c̃7 depends on ‖uD‖1/2,ΓD
, ‖f‖∞,Ω and r (cf. (4.9)), and c̃8 depends on r. In addition, assuming

∇φ ∈ L4(Ω), there exists a positive constant c̃9, independent of h, such that∑
T∈Th

‖(ϑ(φ)− ϑ(φh))∇φ‖20,T ≤ c̃9 ‖φ− φh‖21,Ω , (4.56)

where c̃9 depends on Lϑ (cf. (4.4)) and ‖∇φ‖L4(Ω).

Proof. The estimates given in (4.55) were established in [7, eq. (3.71)-(3.72)]. On the other hand,
using the Lipschitz continuity assumption on ϑ (cf. (4.4)), but restricted to each triangle T ∈ Th
instead of Ω, employing Cauchy-Schwarz’s inequality and the compactness (and hence continuity) of
the injection i : H1(Ω)→ L4(Ω) (cf. [1, Theorem 6.3], [92, Theorem 1.3.5]), we deduce that∑

T∈Th

‖(ϑ(φ)− ϑ(φh))∇φ‖20,T ≤
∑
T∈Th

L2
ϑ ‖φ− φh‖2L4(T ) ‖∇φ‖

2
L4(T )

≤ L2
ϑ ‖φ− φh‖2L4(Ω) ‖∇φ‖

2
L4(Ω) ≤ c̃9 ‖φ− φh‖21,Ω ,

where c̃9 depends only on ‖i‖, Lϑ, and ‖∇φ‖L4(Ω), which gives (4.56) and finishes the proof.

By virtue of the estimates (4.46), (4.47), (4.48), Lemmas 2.14, 4.15, 4.17, 4.18, and 4.19, and the
final estimates given by (4.55) and (4.56), we deduce (4.44). Finally, assuming now that σ ∈ L4(Ω)

and proceeding as at the end of the proof of [7, Theorem 3.13], we find that∥∥∥∥ 1

µ(φ)
σd − 1

µ(φh)
σd
h

∥∥∥∥
0,Ω

≤ C

{
‖σ − σh‖0,Ω + ‖φ− φh‖1,Ω

}
, (4.57)

where C is a positive constant, independent of h, that depends only on µ1 (cf. (4.3)), Lµ (cf. (4.4))
and ‖σ‖L4(Ω). In this way, combining (4.57) and (4.44), we arrive at (4.45), which completes the proof
of Theorem 4.3.

4.4 A second a posteriori error estimator

In this section we derive another a posteriori error estimator for our augmented mixed-primal finite
element scheme (4.8), with the same discrete spaces introduced in the Section 4.2.3. In turn, the
reliability of our new estimator can be proved without resorting to Helmholtz decompositions. More
precisely, this second estimator arises simply employing the alternative definition of the functional Eh
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(cf. (4.19)) and bounding ‖Eh‖HN(div,Ω)′ in the preliminary estimate for the total error given by (4.32)
(cf. Theorem 4.2). Then, with the same notations and discrete spaces introduced in Sections 4.2 and
4.3, we now set for each T ∈ Th the local error indicator

θ̃2
T := ‖fφh − (K−1uh − divσh)‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g − (βφh − divσ̃h)‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e ,

(4.58)

and define the following global residual error estimator

θ̃
2

:=
∑
T∈Th

θ̃2
T + ‖uD − uh‖21/2,ΓD

. (4.59)

Throughout the rest of this section, we establish quasi-local reliability and efficiency for the estimator
θ̃. The name quasi-local refers here to the fact that the last term defining θ̃ can not be decomposed
into local quantities associated to each triangle T ∈ Th (unless it is either conveniently bounded or
previously modified, as we will see below).

Theorem 4.4. Assume that the data k, g, ϑ, uD, and f are sufficiently small so that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
,

where C4, C5, C6, C7 and C8 are the constants given in (4.20). Then, there exists a constant C̃rel > 0,
which depends only on ‖uD‖1/2+δ,ΓD

, ‖f‖∞,Ω and other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ C̃rel θ̃
2
. (4.60)

Proof. Using the alternative definition of the functional Eh (cf. (4.19)), and then applying the Cauchy-
Schwarz inequality, we deduce that

‖Eh‖HN(div,Ω)′ ≤ C
{
‖uD − uh‖1/2,ΓD

+
∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥
0,Ω

+ ‖fφh − (K−1uh − divσh)‖0,Ω
}
,

(4.61)

where C is a positive constant independent of h. Then, replacing (4.61) back into (4.32) (cf. Theorem
4.2), and employing again the upper bound for ‖Ẽh‖H1

ΓD
(Ω)′ (cf. Lemma 4.4), and the definition of θ0

(cf. Lemma 4.1), we obtain (4.60) and finish the proof.

Theorem 4.5. Assume that ∇φ ∈ L4(Ω). Then, there exists a constant C∗eff > 0, which depends
only on parameters, ‖K−1‖∞, |k|, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω, ‖∇φ‖L4(Ω), and other constants, all them
independent of h, such that

C∗eff θ̃
2
≤ ‖φ−φh‖21,Ω + ‖u−uh‖21,Ω + ‖div(σ−σh)‖20,Ω +

∥∥∥∥ 1

µ(φ)
σd− 1

µ(φh)
σd
h

∥∥∥∥2

0,Ω

+ h.o.t. (4.62)

where h.o.t. stands for one or several terms of higher order. Moreover, assuming σ ∈ L4(Ω), there
exists a constant C̃eff > 0, which depends only on parameters, ‖K−1‖∞, |k|, ‖uD‖1/2,ΓD

, ‖f‖∞,Ω,
‖∇φ‖L4(Ω), ‖σ‖L4(Ω), and other constants, all them independent of h, such that

C̃eff θ̃
2
≤ ‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H + h.o.t. (4.63)
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Proof. We proceed as in the proof of [7, Theorem 4.2]. In fact, thanks to the trace theorem in H1(Ω),
there exists c > 0, depending on ΓD and Ω, such that

‖uD − uh‖21/2,ΓD
≤ c ‖u− uh‖21,Ω .

Next, the estimates (4.62) and (4.63) are obtained by applying the same arguments employed in the
proof of Theorem 4.3 (cf. Section 4.3.3), and hence we omit further details.

We point out here that, in order to use the indicator θ̃ (cf. (4.59)) in an adaptive algorithm that
solves (4.8), we need to estimate the expression ‖uD − uh‖21/2,ΓD

through local terms. To this end, as
well as in [7], we now employ an interpolation argument and replace the aforementioned expression by
a suitable upper bound, which yields a reliable and fully local a posteriori error estimate.

Theorem 4.6. Assume that the data k, g, ϑ, uD, and f are sufficiently small so that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
,

where C4, C5, C6, C7 and C8 are the constants given in (4.20) In turn, let θ̂
2

:=
∑
T∈Th

θ̂2
T , where for

each T ∈ Th we set

θ̂2
T := ‖fφh − (K−1uh − divσh)‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g − (βφh − divσ̃h)‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖21,e .

Then, there exists a constant Ĉrel > 0, which depends only on parameters, ‖uD‖1/2+δ,ΓD
, ‖f‖∞,Ω and

other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ Ĉrel θ̂
2
.

Proof. The proof reduces to bound the term ‖uD−uh‖1/2,ΓD
. To this end, it suffices to apply the fact

that H1/2(ΓD) is the interpolation space with index 1/2 between H1(ΓD) and L2(ΓD), and proceed as
in [7, Theorem 4.3].

4.5 Residual-based a posteriori error estimators: The 3D case

In this section we extend the results from Sections 4.3 and 4.4 to the three-dimensional version
of (4.8). Analogously, as in Section 4.3, given a tetrahedron T ∈ Th, we let Eh(T ) be the set of its
faces, and let Eh be the set of all faces of the triangulation Th. Then, we write Eh = Eh(Ω) ∪ Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Also, for each face e ∈ Eh
we fix a unit normal νe to e, so that given τ ∈ L2(Ω) such that τ |T ∈ C(T ) on each T ∈ Th, and
given e ∈ Eh(Ω), we let Jτ × νeK be the corresponding jump of the tangential traces across e, that is
Jτ × νeK := (τ |T − τ |T ′)|e× νe, where T and T ′ are the elements of Th having e as a common face. In
what follows, when no confusion arises, we simple write ν instead of νe.
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Now, we recall that the curl of a 3D vector v := (v1, v2, v3) is the 3D vector

curl(v) = ∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

and that, given a tensor function τ := (τij)3×3, the operator curl denotes curl acting along each row
of τ , and τ × ν is a tensor whose rows are the tangential components of each row of τ , that is,

curl(τ ) :=

 curl(τ11, τ12, τ13)

curl(τ21, τ22, τ23)

curl(τ31, τ32, τ33)

 , and τ × ν :=

 (τ11, τ12, τ13)× ν
(τ21, τ22, τ23)× ν
(τ31, τ32, τ33)× ν

 .

We now set for each T ∈ Th the local a posteriori error indicator θ2
T as follows

θ2
T := ‖fφh − (K−1uh − divσh)‖20,T +

∥∥∥∥∇uh − 1

µ(φh)
σd
h

∥∥∥∥2

0,T

+ h2
T ‖g − (βφh − divσ̃h)‖20,T

+ h2
T

∥∥∥∥curl{ 1

µ(φh)
σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ(φh)
σd
h × ν

{∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖Jσ̃h · νeK‖20,e +
∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖20,e

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖20,e +
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥∇uD × ν −
1

µ(φh)
σd
h × ν

∥∥∥∥2

0,e

,

(4.64)

whereas θ̃2
T stays exactly as in (4.58). In this way, the corresponding global a posteriori error estimators

are defined as (4.11) and (4.59), that is

θ 2 :=
∑
T∈Th

θ2
T and θ̃

2
:=

∑
T∈Th

θ̃2
T + ‖uD − uh‖21/2,ΓD

.

We now establish the analogue of Theorems 4.1 and 4.4, respectively.

Theorem 4.7 (Reliability of θ). Assume that Ω is a connected domain and that ΓN is the boundary
of a convex extension of Ω. In addition, assume that the data k, g, ϑ, uD, and f are sufficiently small
so that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
,

where C4, C5, C6, C7 and C8 are the constants given below in (4.20). Then, there exists a constant
Crel > 0, which depends only on parameters, ‖uD‖1/2+δ,ΓD

, ‖f‖∞,Ω, and other constants, all them
independent of h, such that

‖φ− φh‖1,Ω + ‖(σ,u)− (σh,uh)‖H ≤ Crel θ.

The proof of Theorem 4.7 follows from a very similar analysis to the Section 4.3.2, except in a few
points to be described throughout the following discussion. Indeed, we first need to use a 3D version
of the stable Helmholtz decomposition, provided by Lemma 4.5, which was established recently in
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[64, Theorem 3.2]. We remark that the proof of [64, Theorem 3.2] makes use of several estimates
available in [10] and combines similar arguments to those from the proofs of [64, Theorem 3.1] and
[7, Lemma 3.9]. Then, the associated discrete Helmholtz decomposition and the functional Eh are
set and rewritten exactly as in (4.38) and (4.39), respectively. Secondly, in order to derive the upper
bound to ‖Eh‖HN(div,Ω)′ , we need to employ the 3D analogue of the integration by parts formula on
the boundary given by (4.40) (cf. Lemma 4.7). In fact, by employing the identities from [77, Chapter
I, eq. (2.17) and Theorem 2.11], we find that in the 3D case, there holds

〈curlχν,φ〉 = −〈∇φ× ν,χ〉 ∀χ ∈ H1(Ω), ∀φ ∈ H1(Ω). (4.65)

On the other hand, the integration by parts formula on each tetrahedron T ∈ Th, which is employed
in the proof of the 3D analogue of Lemma 4.8 (see also [7, Lemma 3.11]), becomes (cf. [77, Chapter I,
Theorem 2.11])∫

T
curl τ : χ −

∫
T
τ : curlχ = 〈τ × ν,χ〉∂T ∀ τ ∈ H(curl; Ω), ∀χ ∈ H1(Ω), (4.66)

where 〈·, ·〉∂T is the duality pairing between H−1/2(T ) and H1/2(T ), and, as usual, H(curl; Ω) corre-
sponds to the space of tensors in L2(Ω) whose curl belongs to L2(Ω). Notice that the identities (4.65)

and (4.66) explain the appearing of the expressions
1

µ(φh)
σd
h× ν and ∇uD× ν −

1

µ(φh)
σd
h× ν in the

3D definition of θ (cf. (4.64)).

Theorem 4.8 (Reliability of θ̃). Assume that the data k, g, ϑ, uD, and f are sufficiently small so
that there holds

C4 |k| + C5 ‖g‖δ,Ω + C6 ϑ2 + C7 ‖uD‖1/2+δ,ΓD
+ C8 ‖f‖∞,Ω <

1

2
,

where C4, C5, C6, C7 and C8 are the constants given in (4.20). Then, there exists a constant C̃rel > 0,
which depends only on ‖uD‖1/2+δ,ΓD

, ‖f‖∞,Ω and other constants, all them independent of h, such that

‖φ− φh‖21,Ω + ‖(σ,u)− (σh,uh)‖2H ≤ C̃rel θ̃
2
.

The proof of Theorem 4.8 proceeds similarly as in the proof of Theorem 4.4. In fact, notice that
the upper bounds for ‖Ẽh‖H1

ΓD
(Ω)′ and ‖Eh‖HN(div,Ω)′ given by (4.34) (cf. Lemma 4.4) and (4.61) (cf.

Theorem 4.4), respectively, are also valid in 3D and hence the corresponding reliability of θ̃ is obtained.

We end this section by remarking that the efficiency of the estimators θ and θ̃ follows as in Section
4.3.3 and Theorem 4.5, respectively. In particular, we remark that the 3D version of estimates provided
in Lemmas 4.13, 4.14, and 4.15 can be derived from [67, Lemmas 4.9, 4.10, 4.11 and 4.13].

4.6 Numerical tests

This section serves to illustrate the properties of the estimators introduced in Sections 4.3-4.5.
Fixed point iterations were used for the linearization of the coupled mixed-primal scheme, and a
residual tolerance of 1e-7 was prescribed for the termination of the Picard algorithm. All linear solves
are performed with the unsymmetric multifrontal direct solver UMFPACK. In addition, all tests in
this Section use a classical adaptive mesh refinement procedure based on the equi-distribution of the
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error indicators, where the diameter of each element in the new adapted mesh (contained in a generic
element K on the initial coarse mesh) is proportional to the diameter of the initial element times the
ratio η̄h

ηK
, where η̄h is the mean value of a given indicator η over the initial mesh (cf. [102]).

Example 1: accuracy assessment. Our first example focuses on the case where, under uniform
mesh refinement, the convergence rates are affected by the singularities of the exact solutions. A non-
convex domain Ω := (0, 1)2\[0, 1

2 ]2 is considered, and its boundary ∂Ω is split into ΓN := (1, 0) × {0}
and ΓD := ∂Ω\ΓN. We construct a sequence of nested unstructured triangulations, where measured
errors and experimental convergence rates will be computed as usual

e(σ) = ‖σ−σh‖div,Ω, e(φ) = ‖φ−φh‖1,Ω, e(u) = ‖u−uh‖1,Ω, r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1,

with e and ê denoting errors produced on two consecutive meshes representing N and N̂ degrees of
freedom, respectively. In addition, the total error, the modified error suggested by (4.44) and (4.62),
and the effectivity and quasi-effectivity indexes associated to a given global estimator η are defined,
respectively, as

e =
{

[e(σ)]2 + [e(u)]2 + [e(φ)]2
}1/2

, eff(η) =
e

η
,

m =

{
[e(u)]2 + [e(φ)]2 + ‖divσ − divσh‖20,Ω +

∥∥∥∥ σd

µ(φ)
−

σd
h

µ(φh)

∥∥∥∥2

0,Ω

}1/2

, qeff(η) =
m

η
.

An exact solution to (1.5) is given as follows

φ(x1, x2) = mx1x2(1− x2)(x1 − 1/2)2(x2 − 1/2)2 + b,

u(x1, x2) =

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, σ(x1, x2) = µ(φ)u−

[
µ(φ)

∂u1

∂x1
+

(x1 − 1)2

(x2 − a1)(x2 − a2)

]
I ,

(4.67)
where K−1 = K−1I, k = (0,−1)t, µ(φ) = (1 − aφ)−2, fbk(φ) = aφ(1 − aφ)2, ϑ(φ) = φ + (1 − aφ)2,
and the source terms are

f(x1, x2) = φ−1(K−1u− divσ), g(x1, x2) = βφ− div(ϑ(φ)∇φ) + u · ∇φ+ f ′bk(φ)k · ∇φ.

Notice that the only difference with respect to (4.1) is a non-homogeneous concentration flux σ̃ ·ν = s

imposed on ΓN, where s is manufactured according to (4.67). Therefore, the relevant term in the a
posteriori error estimators will be replaced by∑

e∈Eh(T )∩Eh(ΓN)

he‖σ̃h · ν − s‖20,e,

whose estimation from below and above follows in a straightforward way. The model parameters
specifying (4.67) correspond to m = 200, b = 0.008, a = 0.35, K = 0.01, β = 0.35, and a1 = −0.05,
a2 = 1.1. Notice that the pressure defining the isotropic part of the stress in (4.67) exhibits a singularity
near the upper right corner of the domain, at (a1, a2) (see Fig. 4.3). As a consequence, optimal
convergence for the stress is no longer evidenced under uniform mesh refinement (see first rows of
Table 4.1). In turn, if an adaptive mesh refinement step (employing the residual error indicators θ
and θ̃) is applied, optimal convergence can be restored, as shown in the last two blocks of Table 4.1.
Approximated solutions obtained after six adaptation steps are collected in Figure 4.1, and a few
adapted meshes produced using the two indicators are depicted in Figure 4.2. It is observed that the
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D.o.f. h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iP e m eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 −P1 − P1 scheme with quasi-uniform refinement

105 0.53 140.05 – 3.40 – 1.43 – 12 140.10 139.42 1.11 1.10 1.10 1.10
192 0.49 225.45 -6.44 8.81 -12.90 1.35 0.80 16 225.63 222.53 0.55 0.55 0.55 0.55
492 0.30 139.34 0.97 3.36 1.95 0.87 0.88 14 139.38 138.77 1.07 1.07 1.07 1.07
1488 0.16 74.51 1.01 0.82 2.27 0.47 0.98 12 74.52 74.36 0.92 0.92 0.92 0.92
4902 0.09 44.05 0.88 0.28 1.77 0.26 0.98 13 44.05 43.98 0.96 0.96 0.96 0.95
17800 0.04 21.46 1.05 0.12 1.25 0.14 0.88 13 21.46 21.43 0.98 0.98 0.98 0.98
67800 0.02 11.47 1.14 0.05 1.36 0.07 1.33 14 11.48 11.46 1.00 1.00 0.99 0.99

Augmented RT0 −P1 − P1 scheme with adaptive refinement according to θ

64 0.61 203.22 – 8.93 – 1.40 – 16 203.42 197.77 0.49 0.48 – –
171 0.35 138.78 0.77 3.07 2.17 1.18 0.34 16 138.82 138.09 1.24 1.23 – –
303 0.33 99.71 1.15 1.98 1.52 1.10 0.26 14 99.74 99.37 0.95 0.94 – –
499 0.30 68.36 1.51 1.27 1.78 1.09 0.03 13 68.38 68.07 1.05 1.05 – –
1014 0.21 39.04 1.58 0.78 1.35 0.85 0.69 13 39.06 38.83 1.17 1.17 – –
3763 0.10 16.51 1.31 0.26 1.66 0.37 1.26 13 16.52 16.45 1.07 1.07 – –
14690 0.05 7.81 1.09 0.11 1.27 0.17 1.07 13 7.81 7.79 1.03 1.03 – –

Augmented RT0 −P1 − P1 scheme with adaptive refinement according to θ̃

64 0.61 203.22 – 8.93 – 1.40 – 16 203.42 197.77 – – 0.49 0.47
171 0.35 138.78 0.77 3.07 2.17 1.18 0.34 16 138.82 138.09 – – 1.24 1.23
303 0.33 99.63 1.15 1.97 1.54 1.10 0.26 14 99.66 99.29 – – 0.95 0.94
535 0.28 71.12 1.18 1.41 1.18 1.08 0.04 13 71.14 70.61 – – 1.06 1.05
1145 0.21 37.86 1.65 0.60 2.24 0.80 0.79 13 37.88 37.64 – – 1.08 1.08
4270 0.10 16.93 1.22 0.24 1.35 0.38 1.11 13 16.94 16.88 – – 1.05 1.05
16790 0.05 8.28 1.04 0.10 1.25 0.18 1.10 13 8.28 8.26 – – 1.02 1.01

Table 4.1: Test 1: convergence history, Picard iteration count, error e and quasi-error m, effectivity
and quasi-effectivity indexes for the approximation of the coupled Brinkman-transport problem, under
quasi-uniform, and adaptive refinement according to the indicators introduced in Sections 4.3 and 4.4.

agglomeration of points follows the regions of high concentration gradients occurring near ΓN, as well
as the sharp pressure profile localized at (a1, a2).

Example 2: sedimentation below downward-facing inclined walls. This test illustrates the
properties of the second estimator (4.59) in a 2D setting, where we simulate the sedimentation of a
mixture within an heterogeneous porous medium. The domain consists of an isosceles trapeze of height
3, maximal width 2.82, and walls having an angle of inclination of 4/9π with respect to the horizontal
axis. The permeability of the medium is constant K0, except for 20 randomly placed spots (consisting
of disks with radii 2.5e-3) of much lower permeability K1. Viscosity, hindering sedimentation, and
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Figure 4.1: Test 1: approximate solutions obtained with the lowest order method, after six steps of
adaptive mesh refinement following the second indicator θ̃. Concentration, velocity components, and
stress components are depicted.

compaction coefficients (all concentration-dependent) are respectively specified as

µ(φ) = µ0(1− φ/φmax)−η1 , fbk(φ) = u∞φ(1− φ/φmax)η2 , ϑ(φ) =
σ0α

φαc ∆ρG
φα−2fbk + u∞, (4.68)

where the adimensional model parameters and remaining constants assume the values µ0 =2.5e-4,
σ0 = 5.5e-4, G = 9.81, α = 5, β = 0.25, η = 2, φc = 0.07, φmax = 0.95, K0 = 10, K1 = 0.01,
k = (0,−1)T , f = (0,−1/2)T , u∞ = 2.5e-3, ∆ρ = 1562. From the physical bounds of the concentration
we find µ1 = µ0 and µ2 = 5µ1, yielding the following stabilization coefficients κ1 = 1/5µ2

0 = 5e-5,
αK = 0.1, δ̃ = 4.88e-3, κ2 = 2.38e-6.

A pseudo time-advancing algorithm is employed to capture the transient nature of the phenomenon
(this can be achieved by setting g = βφk, where φk is the concentration distribution at the previous
pseudo timestep). The initial guess for the concentration is a high concentration φ = 0.75 on the top
of the domain and a random perturbation of amplitude 0.05 around φ = 0.15. We assume that the
vessel is open on the top and closed elsewhere on ∂Ω, so that a clear fluid φ = φc and zero normal
stresses σν = 0 are prescribed on top, whereas on the remainder of the boundary we set zero fluxes
σ̃ · ν = 0 and no-slip conditions u = 0.

The adaptive algorithm applies mesh refinement according to the second a posteriori error indicator
(4.59), and it is invoked at the end of each pseudo-time step. We point out that due to the roughness
of the permeability for coarser meshes, a continuation technique is applied on the viscosity scaling µ0
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Figure 4.2: Test 1: from left to right, four snapshots of successively refined meshes according to the
indicators θ and θ̃ (top and bottom panels, respectively).

Figure 4.3: Test 1: approximate postprocessed pressure and adapted mesh near (a1, a2), after six
refinement steps following the second estimator θ̃.

(using µ̃0 = 8µ0 as initial guess, and halving it until reaching µ0). A set of snapshots of the numerical
solution obtained after ten pseudo-time steps are displayed in Figure 4.4. Apart from the main flow
features expected in the pure-fluid case (acceleration of the deposition near the inclined walls, as
discussed in [98] and simulated in [96]), we also observe tortuous concentration and velocity patterns
produced by a combination of tight flow-transport coupling, the highly heterogeneous coefficients, and
the random initial distribution. The velocity plots (second row) indicate that the flow tends to avoid
the regions of low permeability, and recirculation zones are formed near the transition from clear to
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Figure 4.4: Test 2: approximate solutions at 3 (left), 6 (middle) and 12 (right) pseudo-time steps. A
lowest order method and mesh adaptive refinement guided by (4.59) were used.

high-concentration mixture. In addition, the concentration plots (panels in the first row) suggest that
solid particles remain attached to the low-permeability spots and reverse plumes are formed. We also
show a sequence of refined meshes after two, four, and six steps (see Figure 4.5), where it is seen that
the a posteriori error indicator yields more refinement near the high gradients of concentration and
the aforementioned recirculation zones. As these irregularities spread throughout large portions of
the domain, a substantial gain in computational cost with respect to a uniformly refined mesh is not
expected.

Example 3: sedimentation in a clarifier-thickener unit. We close this section with a numerical
test that illustrates the performance of the proposed numerical scheme and the first a posteriori error
indicator (4.64) on a 3D computation. The example reproduces the steady-state of a sedimentation-
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Figure 4.5: Test 2: adapted meshes at 2, 4, and 6 steps, generated following the second estimator
(4.59).

consolidation process in a clarifier-thickener unit. Model parameters and domain configuration are
adapted from those in [4, Example 3], but here the device has a radial length of 14.6m and a total
height of 7.6m. It features a feed inlet Γin consisting of an horizontal disk of radius 1.5m, an underflow
outlet for the discharge of sediment Γout (an horizontal disk of smaller radius 0.5m), and a peripheral
overflow annular region Γofl (see a sketch in the top left panel of Figure 4.6). A suspension is fed through
Γin with velocity u = uin = (0, 0,−u3,in)T and having a concentration of φ = φin. At the outlet Γout

we set u = uout = (0, 0,−u3,out)
T ; at the overflow annulus we impose zero normal pseudo-stresses; and

on the remainder of ∂Ω we put no slip boundary data for the velocity and zero-flux conditions for the
concentration.

The concentration-dependent coefficients are defined as in (4.68), and the remaining parameters
are chosen as in Example 2, except for u3,in =1.25e-2, u3,out =1.25e-3, φc = 0.1, u∞ =2.2e-3, φin =

0.08, σ0 =5.5e-2, and β =1e-3. Again, the bounds for the concentration imply that the stabilization
parameters assume the following values κ1 = 0.256, κ2 = 0.25.

The proposed primal-mixed method is used to generate the approximate solutions depicted in
Figure 4.6 (where we show only half of the domain, for visualization purposes). As in [4, 31], we
can observe that the mixture concentrates near the outlet boundary Γout. The velocity arrows show
recirculating patterns, and a very small underflow. In contrast with Example 2, here the Picard
iterations until convergence are embedded inside the adaptive refinement loop, consisting of solving,
estimating, marking and refining using the error equi-distribution strategy mentioned above. The plots
in Figure 4.7 show a sequence of three adapted meshes, forming a clustering of elements near the zones
of high concentration gradients (connecting inflow and underflow boundaries), where also the velocity
and postprocessed pressure profiles are more pronounced.
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Figure 4.6: Test 3: sketch of the clipped domain and different boundaries in a clarifier-thickener device
(top left panel), and snapshots of the approximate concentration, postprocessed pressure, and velocity
components and streamlines computed with the proposed lowest order mixed-primal method.



4.6. Numerical tests 125

Figure 4.7: Test 3: zoom on the produced meshes after the first three steps of adaptive refinement
using the first estimator as defined in (4.64).



CHAPTER 5

A vorticity-based fully-mixed formulation for the 3D
Brinkman-Darcy problem

5.1 Introduction

This chapter is motivated by the numerical approximation of flow patterns in an heterogeneous me-
dia composed by a porous medium, where Darcy equations govern the flow behavior of a non-viscous
incompressible fluid, and a much more permeable domain, where the laminar flow exhibits viscous
effects and can be described by the linear Brinkman model. The two domains are separated by an
essentially fixed interface, across which the flow passes from viscous to a non-viscous regime. Accord-
ing to the discussion in [14], we can assume that the Brinkman domain consists of an array of low
concentration fixed particles, whereas the Darcy domain is a classical porous medium constituted by
connected porous matrices. Such a scenario is often encountered in e.g. the modelling of surface and
subsurface flow in porous media, petroleum reservoirs, or perfusion of physiological fluids into soft
tissues, focusing typically on filtration or other similar processes of interest. We are also interested in
accurately recovering the additional vorticity field (vectorial for three-dimensional flows and perpen-
dicular to the plane of the flow and therefore considered scalar in 2D), which yields better information
on circulation effects of the free fluid, sometimes observed near interfaces.

At the interface of the two domains, and depending on the specific form of the problem at hand,
one typically requires preservation of physical quantities such as normal velocities, normal stresses,
and so on. An abundant body of literature is devoted to different ways of treating the interface
conditions, from both mathematical and numerical perspectives. These basically include sequential
sub-structuring methods, where decoupled subproblems are solved on each subdomain, followed by
an updating of the interface field values, then using these values as boundary data to solve a local
problem on the other subdomain, and iterating in some adequate manner (see e.g. [16, 49, 85, 94]);
and monolithic, fully coupled approaches where all sought fields are computed at once, for instance by
a single operator acting on the two media or with the aid of Lagrange multipliers specifically designed
to impose continuity of fields to be conserved across the interface (see for instance [13, 35, 52, 59]).
Our method follows the latter strategy. Up to our knowledge, the coupling of Brinkman and Darcy
flows has been only addressed in terms of the primal unknowns of velocity and pressure [25, 52, 85].
Vorticity-based formulations for the Stokes-Darcy coupling were introduced in [19] and later studied in
[18, 51]. Differences with respect to these contributions include a slightly different formulation (we do
not assume that the fluid boundary coincides with the interface between both domains, which is used

126
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in [18, 19]); the analysis itself differs in that here we set pressure continuity across the interface using a
Lagrange multiplier, and the normal stress conditions are weakly imposed. In addition, the proposed
treatment does not require higher regularity of the fluid pressure as in e.g. [18]. At the discrete level,
that work involves a family of nonconforming discretizations consisting in Nédélec elements for vorticity,
piecewise constant elements for velocity, and Crouzeix-Raviart elements for the pressure. In contrast,
here we use a finite element family where the curl of the subspace approximating the vorticity must
be contained in the space where the discrete velocity of the fluid lives, and hence Raviart-Thomas and
Nédélec finite elements for velocities and vorticity, respectively, become feasible choices. In turn, the
pressures and the Lagrange multiplier are approximated, respectively, by discontinuous and continuous
piecewise polynomials. Finally, our numerical tests also include the 3D case.

A general advantage of formulations involving vorticity is that this additional field can be accessed
directly, without postprocessing; and it is straightforward to include non-inertial effects by modifying
initial and boundary data [11, 12]. For instance, for external flows it is known that boundary conditions
are better suited for vorticity than for pressure. Moreover, in many flow regimes the vorticity is
concentrated in a specific region of the domain, which suggests the use of vorticity as guide to mesh
refinement.

The contents of the chapter are organized as follows. In the remainder of the present section we
recall basic terminology and some properties of functional spaces, and introduce further standard
notations. In Section 5.2 we describe the coupled problem of interest and derive a first version of its
mixed variational formulation. The solvability analysis of the later is carried out in Section 5.3. We
first identify the non-trivial solutions of the associated homogeneous problem, and then reformulate the
original continuous formulation in order to be able to guarantee unique solvability of it. The classical
Babuška-Brezzi is then applied in such a way that the continuous inf-sup conditions of the main bilinear
form are established by employing a known approach that has been recently referred as T -coercivity.
Then, in Section 5.4 we introduce the associated Galerkin scheme and adapt the arguments from the
continuous case to prove that, under suitable assumptions on the finite element subspaces involved,
it is well-posed. Next, in Section 5.5 we modify the mixed formulation by incorporating a residual
arising from the Brinkman momentum equation, and show that the resulting augmented scheme,
yielding a strongly elliptic main bilinear form, does not require the aforementioned constraint. Finally,
several numerical examples illustrating the good performance of the mixed finite element methods and
confirming the theoretical rates of convergence are provided in Section 5.6.

We end this section by specifying some notations to be employed throughout the chapter. In parti-
cular, we utilize standard simplified terminology for Sobolev spaces and norms. For instance, if O ⊆ R3

is a domain, S ⊆ R3 is a Lipschitz surface, and r ∈ R, we define

Hr(O) := [Hr(O)]3 and Hr(S) := [Hr(S)]3 .

However, when r = 0 we usually write L2(O) and L2(S) instead of H0(O) and H0(S), respectively.
The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O) and Hr(O)) and ‖ · ‖r,S (for Hr(S) and
Hr(S)). In general, given any Hilbert space H, we use H to denote H3. In turn, in the realm of mixed
methods (see [26]) one usually needs the Hilbert spaces

H(div;O) :=
{
v ∈ L2(O) : div v ∈ L2(O)

}
, H(curl;O) :=

{
v ∈ L2(O) : curlv ∈ L2(O)

}
,

normed, respectively, with

‖v‖div;O :=
{
‖v‖20,O + ‖div v‖20,O

}1/2
, ‖v‖curl;O :=

{
‖v‖20,O + ‖curlv‖20,O

}1/2
,
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where, for any vector field v := (v1, v2, v3)t ∈ L2(O),

div v :=
3∑
i=1

∂ivi and curlv := ∇× v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 .

In addition, we also recall the orthogonal decomposition

L2(O) = L2
0(O) ⊕ P0(O) , (5.1)

where P0(O) is the space of constant functions on O, and

L2
0(O) = P0(O)⊥ :=

{
q ∈ L2(O) :

∫
O
q = 0

}
. (5.2)

Equivalently, each q ∈ L2(O) can be uniquely decomposed as q = q0 + c, with

q0 := q − 1

|O|

∫
O
q ∈ L2

0(O) and c :=
1

|O|

∫
O
q ∈ R . (5.3)

Certainly, L2
0(O) is endowed with the usual norm of L2(O), and it is easy to see that there holds

‖q‖20,O = ‖q0‖20,O + |O| c2 . (5.4)

Finally, in what follows 0 stands for a generic null vector (including the null functional and operator),
and we use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values in different occurrences.

5.2 The coupled problem and its mixed formulation

We first let ΩB and ΩD be bounded and simply connected polyhedral Lipschitz domains in R3 such
that ∂ΩB ∩ ∂ΩD =: Σ 6= ∅ and ΩB ∩ ΩD = ∅, and set Ω := ΩB ∪ ΩD with boundary Γ = ∂Ω split
into ΓB and ΓD (see the sketch in Figure 5.1). Note that the interface Σ between ΩB and ΩD does
not necessarily coincide with ∂ΩB (as it was assumed in e.g. [18, 51]). Then, given source terms
fD ∈ L2(ΩD) and fB ∈ L2(ΩB), we are interested in the Brinkman-Darcy coupled problem, which is
formulated in what follows in terms of the fluid velocity uB, the fluid pressure pB, the fluid vorticity
ωB, the Darcy velocity uD, and the Darcy pressure pD. More precisely, the sets of equations in the
Brinkman and Darcy domains ΩB and ΩD, are given, respectively, by

αuB + ν curlωB + ∇pB = fB

ωB − curluB = 0

divuB = 0

 in ΩB , (5.5)

and
µuD +∇pD = fD

divuD = 0

}
in ΩD , (5.6)

where ν > 0 is the kinematic viscosity of the fluid, µ > 0 depends on this viscosity and on the
permeability of the porous medium, which is assumed to be homogeneous, and α > 0 is a parameter
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Figure 5.1: Sketch of the domains occupied by the incompressible fluid and by the porous medium (ΩB

and ΩD, respectively), interface Σ, and corresponding boundaries.

related to the relaxation time (typically proportional to the inverse of the timestep after a Rothe type
time discretization). In turn, the corresponding transmission conditions become

uD · n = uB · n and pD = pB on Σ , (5.7)

where n stands for the outward normal at ΩB and ΩD, whereas the boundary conditions reduce to

ωB × n = 0 on ∂ΩB = Σ ∪ ΓB , uB · n = 0 on ΓB , and uD · n = 0 on ΓD . (5.8)

Evidently, this choice of boundary data (especially those applied on the vorticity) is driven mainly by
easiness of the subsequent analysis, but we stress that other conditions could be incorporated without
compromising the main ideas in this work.

We now aim to derive the mixed variational formulation of (5.5) - (5.8). We begin by testing the
first equation in (5.5) with functions in the space

HB(div; ΩB) :=
{
vB ∈ H(div; ΩB) : vB · n = 0 on ΓB

}
.

To this end, we need to recall that the fact that vB ·n = 0 on ΓB guarantees that vB ·n|Σ belongs to
H−1/2(Σ) for each vB ∈ HB(div; ΩB) (see the beginning of Section 5.3 below for further details on this
issue). In this way, integrating by parts and using the respective boundary conditions, we find that

α

∫
ΩB

uB · vB + ν

∫
ΩB

vB · curlωB −
∫

ΩB

pB div vB + 〈vB ·n, λ〉Σ =

∫
ΩB

fB · vB ∀vB ∈ HB(div; ΩB),

(5.9)
where, thanks to the second transmission condition in (5.7), we have introduced the auxiliary unknown

λ := pD|Σ = pB|Σ ∈ H1/2(Σ) ,

and 〈·, ·〉Σ denotes the duality pairing of H−1/2(Σ) and H1/2(Σ) with respect to the L2(Σ)-inner product.
Furthermore, it will become clear below that λ can also be seen as the Lagrange multiplier enforcing
the continuity of pressure across the interface Σ. Next, we define

H0(curl; ΩB) :=
{
zB ∈ H(curl; ΩB) : zB × n = 0 on ∂ΩB

}
,
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so that testing the second equation in (5.5) with functions in this space, and integrating by parts, we
obtain ∫

ΩB

ωB · zB −
∫

ΩB

uB · curlzB = 0 ∀ zB ∈ H0(curl; ΩB) . (5.10)

In turn, the third equation in (5.5) is initially tested as∫
ΩB

qB divuB = 0 ∀ qB ∈ L2(ΩB) . (5.11)

On the other hand, in order to deal with the equations in the Darcy domain, we now set

HD(div; ΩD) :=
{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
,

and test the first equation of (5.6) with functions in this space. Thus, integrating by parts, using the
corresponding boundary conditions, noting that the normal n on Σ points inward ΩD, and recalling
that λ := pD|Σ, we get

µ

∫
ΩD

uD · vD −
∫

ΩD

pD div vD − 〈vD · n, λ〉Σ =

∫
ΩD

fD · vD ∀vD ∈ HD(div; ΩD) . (5.12)

In addition, similarly as for the incompressibility condition in ΩB, the second equation in (5.6) is
initially tested as ∫

ΩD

qD div vD = 0 ∀ qD ∈ L2(ΩD) . (5.13)

We end the present derivation with the weak imposition of the essential transmission condition given
by the first equation in (5.7), that is

〈uB · n − uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) . (5.14)

Consequently, reordering (5.9) - (5.14) in a suitable way, namely placing each set of equations
{(5.9), (5.10), (5.12)} and {(5.11), (5.13), (5.14)} into a single equation each, we arrive at the mixed
formulation of (5.5) - (5.8): Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q such that

a(~u, ~v) + b(~v, ~p) = F(~v) ∀~v := (vB, zB,vD) ∈ H ,

b(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q ,
(5.15)

where

H := HB(div; ΩB)×H0(curl; ΩB)×HD(div; ΩD) , Q := L2(ΩB)× L2(ΩD)×H1/2(Σ) ,

a : H×H→ R and b : H×Q→ R are the bilinear forms defined by

a(~u, ~v) := α

∫
ΩB

uB · vB + ν

∫
ΩB

ωB · zB + ν

∫
ΩB

vB · curlωB

− ν

∫
ΩB

uB · curlzB + µ

∫
ΩD

uD · vD ∀ (~u, ~v) ∈ H×H ,
(5.16)

b(~v, ~q) := −
∫

ΩB

qB div vB −
∫

ΩD

qD div vD + 〈vB · n− vD · n, ξ〉Σ ∀ (~v, ~q) ∈ H×Q , (5.17)

and F ∈ H′ and G ∈ Q′ are the functionals defined by

F(~v) :=

∫
ΩB

fB · vB +

∫
ΩD

fD · vD ∀~v ∈ H , and G = 0 . (5.18)
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5.3 Solvability analysis of the mixed formulation

In this section we analyze the solvability of (5.15). For this purpose, we first recall some definitions
and technical results concerning Sobolev spaces on ΓD, ΓB, and Σ. We begin by mentioning that, given
η ∈ H−1/2(∂ΩD), its restriction to ΓD, say η|ΓD

, is defined as

〈η|ΓD
, ρ〉ΓD

:= 〈η,ED,0(ρ)〉∂ΩD
∀ ρ ∈ H

1/2
00 (ΓD) ,

where ED,0 : H1/2(ΓD)→ L2(∂ΩD) is the extension by zero in Σ := ∂ΩD\ΓD, and

H
1/2
00 (ΓD) :=

{
ρ ∈ H1/2(ΓD) : ED,0(ρ) ∈ H1/2(∂ΩD)

}
,

which is endowed with the natural norm ‖ρ‖1/2,00,ΓD
:= ‖ED,0(ρ)‖1/2,∂ΩD

. It is quite clear, then, that
η|ΓD

belongs to H
−1/2
00 (ΓD), the dual of H

1/2
00 (ΓD), and that η = 0 on ΓD (equivalently η|ΓD

= 0) if and
only if

〈η,ED,0(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) .

Hereafter, 〈·, ·〉ΓD
(resp. 〈·, ·〉∂ΩD

) stands for the duality pairing of the spaces H
−1/2
00 (ΓD) and H

1/2
00 (ΓD)

(resp. H−1/2(∂ΩD) and H1/2(∂ΩD)) with respect to the L2(ΓD) (resp. L2(∂ΩD)) inner product. Fur-
thermore, it is not difficult to show (see, e.g. [59, Section 2]) that there holds the decomposition

H1/2(∂ΩD) = ED

(
H1/2(Σ)

)
⊕ ED,0

(
H

1/2
00 (ΓD)

)
,

where ED : H1/2(Σ)→ H1/2(∂ΩD) is the bounded linear extension defined by ED(ξ) := zξ|∂ΩD
∀ ξ ∈

H1/2(Σ), with zξ ∈ H1(ΩD) being the unique weak solution of the boundary value problem with mixed
boundary conditions:

∆zξ = 0 in ΩD , zξ = ξ on Σ , ∇zξ · n = 0 on ΓD .

In this way, given ϕ ∈ H1/2(∂ΩD), there exist unique ξϕ ∈ H1/2(Σ) and ρϕ ∈ H
1/2
00 (ΓD) such that

ϕ = ED(ξϕ) + ED,0(ρϕ) , (5.19)

and hence
〈η, ϕ〉∂ΩD

= 〈η,ED(ξϕ)〉∂ΩD
+ 〈η,ED,0(ρϕ)〉∂ΩD

, (5.20)

which can be rewritten as
〈η, ϕ〉∂ΩD

= 〈ηΣ , ξϕ〉Σ + 〈ηD , ρϕ〉ΓD
,

where ηΣ ∈ H−1/2(Σ) and ηD ∈ H
−1/2
00 (ΓD) are defined accordingly. In addition, it is clear from (5.19)

and the definitions of ED and ED,0 that actually ξϕ = ϕ|Σ for each ϕ ∈ H1/2(∂ΩD). In particular, when
η = 0 on ΓD, the foregoing equations yield 〈η, ϕ〉∂ΩD

= 〈η,ED(ξϕ)〉∂ΩD
=: 〈ηΣ , ξϕ〉Σ = 〈ηΣ , ϕ|Σ〉Σ,

and hence η can be identified with a functional ηΣ ∈ H−1/2(Σ). In other words, one simply says that
η|Σ = ηΣ ∈ H−1/2(Σ). Note that an interesting application of this result arises when we consider
vD ∈ HD(div; ΩD) and define η := vD · n ∈ H−1/2(∂ΩD). In fact, since vD · n = 0 on ΓD, we readily
deduce that vD ·n|Σ ∈ H−1/2(Σ). Moreover, the analogue conclusion obtained by exchanging ΩD, ΓD,
and HD(div; ΩD) by ΩB, ΓB, and HB(div; ΩB), respectively, is precisely what we used in Section 5.2
for the derivation of (5.9).

We are now in position to provide the following preliminary result, which establishes a continuous
inf-sup condition on HD(div; ΩD)×

(
L2

0(ΩD)×H1/2(Σ)
)
.
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Lemma 5.1. There exists βD > 0 such that

SD(qD, ξ) := sup
vD∈HD(div;ΩD)

vD 6=0

∫
ΩD

qD div vD + 〈vD · n, ξ〉Σ

‖vD‖div;ΩD

≥ βD

{
‖qD‖0,ΩD

+ ‖ξ‖1/2,Σ
}

(5.21)

for all (qD, ξ) ∈ L2
0(ΩD)×H1/2(Σ).

Proof. It proceeds almost verbatim as the 2D version provided in [75, Lemma 3.3]. However, for sake
of completeness, most details are given in what follows. The first part of the proof reduces to show
that the operator div : HD(div; ΩD) → L2

0(ΩD) is surjective, for which, given qD ∈ L2
0(ΩD), it suffices

to define the pre-image ṽD := ∇z ∈ HD(div; ΩD), where z ∈ H1(ΩD) is the unique weak solution of
the Neumann boundary value problem

∆z = qD in ΩD , ∇z · n = 0 on ∂ΩD ,

∫
ΩD

z = 0 . (5.22)

Indeed, it is clear that div ṽD = ∆z = qD in ΩD, and the continuous dependence result for (5.22) estab-
lishes that ‖ṽD‖0,ΩD

= |z|1,ΩD
≤ ‖z‖1,ΩD

≤ c‖qD‖0,ΩD
, whence we readily deduce that ‖ṽD‖div;ΩD

≤
C̃ ‖qD‖0,ΩD

. In this way, since

SD(qD, ξ) ≥ sup
vD∈HD(div;ΩD)

vD 6=0

∫
ΩD

qD div vD

‖vD‖div;ΩD

− ‖ξ‖1/2,Σ ≥

∣∣∣∣∫
ΩD

qD div ṽD

∣∣∣∣
‖ṽD‖div;ΩD

− ‖ξ‖1/2,Σ ,

the foregoing identity and estimates imply the existence of C > 0 such that

SD(qD, ξ) ≥ C ‖qD‖0,ΩD
− ‖ξ‖1/2,Σ . (5.23)

In turn, the main ingredient of the second part has to do with the construction of a proper extension
of an arbitrary φ ∈ H−1/2(Σ) to a functional η ∈ H−1/2(∂ΩD). More precisely, given ξ ∈ H1/2(Σ),
we consider φ ∈ H−1/2(Σ) and, following the previous analysis and notations, we simply define η ∈
H−1/2(∂ΩD) as

〈η, ϕ〉∂ΩD
:= 〈φ, ξϕ〉Σ = 〈φ, ϕ|Σ〉Σ ∀ϕ ∈ H1/2(∂ΩD) ,

which yields ‖η‖−1/2,∂ΩD
≤ ‖φ‖−1/2,Σ. It follows straightforwardly from (5.19) and (5.20) that

〈η,ED,0(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) and 〈η,ED(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ∀ ξ ∈ H1/2(Σ) ,

which says, equivalently, that η = 0 on ΓD and η = φ on Σ. Next, we let zη ∈ H1(ΩD) be the unique
weak solution of the boundary value problem

∆zη =
1

|ΩD|
〈η, 1〉∂ΩD

in ΩD , ∇zη · n = η on ∂ΩD ,

∫
ΩD

zη = 0 ,

define wD := ∇zη in ΩD, and observe that divwD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD) (which yields wD ∈
H(div; ΩD)), wD · n = η on ∂ΩD, and ‖wD‖div;ΩD

≤ C ‖η‖−1/2,∂ΩD
≤ C ‖φ‖−1/2,Σ. It follows that

wD ∈ HD(div; ΩD) and hence

SD(qD, ξ) ≥

∣∣∣∣∫
ΩD

qD divwD + 〈wD · n, ξ〉Σ
∣∣∣∣

‖wD‖div;ΩD

=
|〈φ, ξ〉Σ|
‖wD‖div;ΩD

≥ c
|〈φ, ξ〉Σ|
‖φ‖−1/2,Σ

,
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which, being valid for any φ ∈ H−1/2(Σ), implies that SD(qD, ξ) ≥ c ‖ξ‖1/2,Σ. This inequality and
(5.23) yield (5.21), thus completing the proof.

The following result is basically a “mirror reflection" through Σ of the previous lemma.

Lemma 5.2. There exists βB > 0 such that

SB(qB, ξ) := sup
vB∈HB(div;ΩB)

vB 6=0

∫
ΩB

qB div vB − 〈vB · n, ξ〉Σ

‖vB‖div;ΩB

≥ βB

{
‖qB‖0,ΩB

+ ‖ξ‖1/2,Σ
}

(5.24)

for all (qB, ξ) ∈ L2
0(ΩB)×H1/2(Σ).

Proof. It proceeds exactly as the proof of Lemma 5.1 by replacing ΩD, ΓD, and HD(div; ΩD) by ΩB,
ΓB, and HB(div; ΩB), respectively.

Lemma 5.1 and 5.2 imply the following continuous inf-sup condition for b.

Lemma 5.3. There exists β > 0 such that

S(~q) := sup
~v∈H
~v 6=0

b(~v, ~q)

‖~v‖H
≥ β

{
‖qB,0‖0,ΩB

+ ‖qD,0‖0,ΩD
+ ‖ξ − cB‖1/2,Σ + ‖ξ − cD‖1/2,Σ

}
(5.25)

for all ~q := (qB, qD, ξ) ∈ Q, where, according to (1.1), qB = qB,0 + cB and qD = qD,0 + cD, with
qB,0 ∈ L2

0(ΩB), qD,0 ∈ L2
0(ΩD), and cB := 1

|ΩB|
∫

ΩB
qB , cD := 1

|ΩD|
∫

ΩD
qD ∈ R.

Proof. Given ~q := (qB, qD, ξ) ∈ Q, with qB and qD decomposed as indicated above, we integrate by
parts in ΩB and ΩD, respectively, to deduce that∫

ΩB

qB div vB − 〈vB · n, ξ〉Σ =

∫
ΩB

qB,0 div vB − 〈vB · n, ξ − cB〉Σ ∀vB ∈ HB(div; ΩB) ,

and ∫
ΩD

qD div vD + 〈vD · n, ξ〉Σ =

∫
ΩD

qD,0 div vD + 〈vD · n, ξ − cD〉Σ ∀vD ∈ HD(div; ΩD) .

Hence, bearing in mind the definitions of the bilinear form b (cf. (5.17)) and the operators SD and SB

(cf. (5.21), (5.24)), and employing the foregoing equations, we easily find that

S(~q) ≥ SD(qD,0, ξ − cD) and S(~q) ≥ SB(qB,0, ξ − cB)

Consequently, these inequalities, along with straightforward applications of Lemmata 5.1 and 5.2,
imply (5.25) and complete the proof.
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Having proved a first property for b, we now observe that the bilinear form a satisfies a positiveness
condition. More precisely, it follows directly from its definition (cf. (5.16)) that

a(~v, ~v) = α ‖vB‖20,ΩB
+ ν ‖zB‖20,ΩB

+ µ ‖vD‖20,ΩD
∀~v := (vB, zB,vD) ∈ H . (5.26)

A first result concerning the solvability of our mixed formulation (5.15) is established next.

Theorem 5.1. Let (~u, ~p) :=
(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H ×Q be a solution of the homogeneous

problem associated to (5.15), that is with F = G = 0. Then ~u = 0 and there exists c ∈ R such that
~p = (c, c, c).

Proof. We first notice from the second equation of (5.15) with ~q = ~p that b(~u, ~p) = 0, and hence,
taking ~v = ~u in the first equation of (5.15) and using the identity (5.26), we arrive at

0 = a(~u, ~u) = α ‖uB‖20,ΩB
+ ν ‖ωB‖20,ΩB

+ µ ‖uD‖20,ΩD
,

from which it follows that ~u = 0. In this way, the first equation of (5.15) becomes now b(~v, ~p) = 0

for all ~v ∈ Q, which, according to the continuous inf-sup condition for b given by Lemma 5.3, yields
pB,0 = 0, pD,0 = 0, and λ = 1

|ΩB|
∫

ΩB
pB = 1

|ΩD|
∫

ΩD
pD =: c ∈ R, so that pB = pB,0 + c = c and

pD = pD,0 + c = c.

As a straightforward consequence of Theorem 5.1 we conclude that whenever (5.15) has solution, it
is not unique. Therefore, in order to overcome this drawback, we need to remove the constant c ∈ R
from the solutions of the associated homogeneous system, for which from now on we propose to look
for the unknown ~p in the space

Q0 := L2
0(ΩB)× L2(ΩD)×H1/2(Σ) . (5.27)

Alternatively, one could also consider Q0 := L2(ΩB)×L2
0(ΩD)×H1/2(Σ) or Q0 := L2(ΩB)×L2(ΩD)×

H
1/2
0 (Σ), where H

1/2
0 (Σ) :=

{
ξ ∈ H1/2(Σ) : 〈1, ξ〉Σ = 0

}
.

Throughout the rest of the chapter we stay with (5.27) and consider, instead of (5.15), the following
mixed formulation: Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q0 such that

a(~u, ~v) + b(~v, ~p) = F(~v) ∀~v := (vB, zB,vD) ∈ H ,

b(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q0 .
(5.28)

Note that the second equation of (5.15), which is tested against ~q ∈ Q, is equivalent to the present
second equation of (5.28), which is tested against ~q ∈ Q0. In fact, one implication is obvious because
of the inclusion Q0 ⊆ Q. Conversely, assume that the second equation of (5.28) holds. Then, given
c ∈ R, we integrate by parts and, noting that (0, qD − c, ξ − c) ∈ Q0 := L2

0(ΩB)× L2(ΩD)×H1/2(Σ),
we find that

b(~u, (c, qD, ξ)) = b(~u, (0, qD − c, ξ − c)) = 0 ,

which yields b(~u, (qB, qD, ξ)) = 0 = G(~q) for all ~q := (qB, qD, ξ) ∈ Q, thus confirming that the
second equation of (5.15) holds.

We now aim to establish the well-posedness of (5.28) by applying the classical Babuška-Brezzi
theory. We begin with the inf-sup condition for b on H×Q0.
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Lemma 5.4. There exists β̃ > 0 such that

S(~q) := sup
~v∈H
~v 6=0

b(~v, ~q)

‖~v‖H
≥ β̃ ‖~q‖Q ∀ ~q ∈ Q0 . (5.29)

Proof. Given ~q = (qB, qD, ξ) ∈ Q0 := L2
0(ΩB)× L2(ΩD)×H1/2(Σ), we obtain from Lemma 5.3 that

S(~q) := sup
~v∈H
~v 6=0

b(~v, ~q)

‖~v‖H
≥ β

{
‖qB‖0,ΩB

+ ‖qD,0‖0,ΩD
+ ‖ξ‖1/2,Σ + ‖ξ − cD‖1/2,Σ

}
, (5.30)

where, according to (1.1), qD = qD,0 + cD, with qD,0 ∈ L2
0(ΩD) and cD := 1

|ΩD|
∫

ΩD
qD ∈ R. In turn, a

simple application of the triangle inequality shows that

|Σ| |cD| = ‖cD‖1/2,Σ ≤ ‖ξ‖1/2,Σ + ‖ξ − cD‖1/2,Σ ,

which, combined with (5.30) and the fact that ‖qD‖20,ΩD
= ‖qD,0‖20,ΩD

+ |ΩD| c2
D (cf. (5.4)), imply

(5.29) and finish the proof.

Next, we address the coerciveness of a on the kernel V of b. Indeed, we first deduce from the
definitions of b (cf. (5.17)) and Q0 (cf. (5.27)) that

V = VB,D ∩ VΣ , (5.31)

with

VB,D :=
{
~v := (vB, zB,vD) ∈ H : div vB ∈ P0(ΩB) and div vD = 0 in ΩD

}
, (5.32)

and
VΣ :=

{
~v := (vB, zB,vD) ∈ H : vB · n = vD · n on Σ

}
. (5.33)

Lemma 5.5. There exists %̃ > 0 such that

sup
~w∈V
~w 6=0

a(~v, ~w)

‖~w‖H
≥ %̃ ‖~v‖H ∀~v ∈ V , (5.34)

and
sup
~v∈V
~v 6=0

a(~v, ~w)

‖~v‖H
≥ %̃ ‖~w‖H ∀ ~w ∈ V , (5.35)

Proof. We begin by recalling from [74, Lemma 3.2] that there exists %0 > 0 such that

‖vB‖0,ΩB
≥ %0 ‖vB‖div,ΩB

∀vB ∈ H(div; ΩB) such that div vB ∈ P0(ΩB) . (5.36)

Hence, thanks to the foregoing inequality and (5.26), we find that

a(~v, ~v) ≥ %̃1

{
‖vB‖2div;ΩB

+ ‖zB‖20,ΩB
+ ‖vD‖2div;ΩD

}
∀~v := (vB, zB,vD) ∈ VB,D , (5.37)
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with %̃1 := min{α%2
0, ν, µ} > 0. Next, given a particular ~v := (vB, zB,vD) ∈ V, we certainly have

zB ∈ H0(curl; ΩB), and thus, due to a well-known result (see, e.g. [77, Chapter I, Section 2.3, Remark
2.5]), there holds curl zB ∈ H0(div; ΩB), where

H0(div; ΩB) :=
{
vB ∈ H(div; ΩB) : vB · n = 0 on ∂ΩB

}
.

In this way, denoting
T0(~v) := (curl zB, zB,0) ,

which clearly belongs to V, we find, according to the definition of a (cf. (5.16)), that

a(~v, T0(~v)) = (α− ν)

∫
ΩB

vB · curlzB + ν ‖curlzB‖20,ΩB
+ ν ‖zB‖20,ΩB

,

which, applying Cauchy-Schwarz’s inequality and simple algebraic manipulations, yields

a(~v, T0(~v)) ≥ − |α− ν|
2

2ν
‖vB‖20,ΩB

+
ν

2
‖curlzB‖20,ΩB

+ ν ‖zB‖20,ΩB
. (5.38)

Therefore, introducing now T (~v) := c ~v + c0 T0(~v), with suitable chosen positive constants c and c0

(depending on %̃1, α, and ν), and utilizing (5.37) and (5.38), we obtain that

T (~v) ∈ V , ‖T (~v)‖H ≤ C ‖~v‖H , and a(~v, T (~v)) ≥ %̃2 ‖~v‖2H ,

with C and %̃2 positive constants depending on %̃1, α, and ν as well. Then, we can write

sup
~w∈V
~w 6=0

a(~v, ~w)

‖~w‖H
≥ a(~v, T (~v))

‖T (~v)‖H
,

which, due to the foregoing estimates, gives (5.34). On the other hand, introducing the operator
T̃ : H→ H as T̃ (~v) := (−vB, zB,−vD) ∀~v := (vB, zB,vD) ∈ H, we realize that ‖T̃ (~v)‖H = ‖~v‖H,
a(~v, ~w) = a(T̃ (~w), T̃ (~v)) ∀~v, ~w ∈ H, T̃ (~v) ∈ V ∀~v ∈ V, and T̃ : V → V is an isomorphism.
It follows easily that

sup
~v∈V
~v 6=0

a(~v, ~w)

‖~v‖H
= sup

~v∈V
~v 6=0

a(T̃ (~w), T̃ (~v))

‖T̃ (~v)‖H
= sup

~v∈V
~v 6=0

a(T̃ (~w), ~v)

‖~v‖H
,

which, thanks to (5.34), yields (5.35) and completes the proof.

As a consequence of the previous analysis we can state the following main result.

Theorem 5.2. Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). Then there exists a unique
(~u, ~p) :=

(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H × Q0 solution of the modified mixed formulation (5.28).

Moreover, there exists C > 0 such that

‖~u‖H + ‖~p‖Q ≤ C
{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
. (5.39)

Proof. Thanks to Lemma 5.4 and 5.5, the proof is a straightforward application of the continuous
Babuška-Brezzi theory. In particular, it is clear from the definition of F (cf. (5.18)) that ‖F‖H′ is
bounded by the right hand side of (5.39).
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We end this section by remarking that the way of proving the inf-sup conditions for the bilinear
form a (cf. Lemma 5.5), namely using suitable operators T and T̃ to get a lower bound of the
suprema involved, corresponds basically to what has been recently denominated in the literature as
T -coercivity (see, e.g. [22] and [39]). Nevertheless, the same idea, without any particular name of
it, had been employed previously at least in the context of fluid-solid interaction problems (see, e.g.
[69, 70], and [71]).

5.4 The mixed finite element method

In this section we introduce and analyze a mixed finite element scheme for (5.28). More precisely,
we first define the associated Galerkin scheme and establish suitable assumptions on the finite element
subspaces ensuring that it becomes well posed. Then, we provide specific examples satisfying the
required hypotheses. In what follows, given an integer k ≥ 0 and a subset S of R3, we denote by Pk(S)

the space of polynomials in S of total degree ≤ k. In addition, according to the notation introduced
in Section 5.1, we let Pk(S) = [Pk(S)]3.

5.4.1 Preliminaries and main results

We begin by selecting a set of arbitrary discrete spaces, namely

HBh ⊆ HB(div; ΩB) , HB
0,h ⊆ H0(curl; ΩB) , HDh ⊆ HD(div; ΩD) ,

QBh ⊆ L2(ΩB) , QD
h ⊆ L2(ΩD) , and QΣ

h ⊆ H1/2(Σ) .
(5.40)

In addition, in order to deal with the mean value condition for the Brinkman pressure pB, and also to
handle the assumptions guaranteeing the discrete inf-sup condition for b, we need to define

QB
h,0 := QB

h ∩ L2
0(ΩB) and QD

h,0 := QD
h ∩ L2

0(ΩD) . (5.41)

Hence, setting the global spaces

Hh := HB
h ×HB

0,h ×HD
h and Q0,h := QB

h,0 ×QD
h ×QΣ

h , (5.42)

the Galerkin scheme for (5.28) becomes: Find ~uh := (uB
h ,ω

B
h ,u

D
h ) ∈ Hh and ~ph := (pB

h , p
D
h , λh) ∈ Q0,h

such that
a(~uh, ~vh) + b(~vh, ~ph) = F(~vh) ∀~vh := (vB

h , z
B
h ,v

D
h ) ∈ Hh ,

b(~uh, ~qh) = G(~qh) ∀ ~qh := (qB
h , q

D
h , ξh) ∈ Q0,h .

(5.43)

We now aim to derive general hypotheses on the finite element subspaces introduced in (5.40)
ensuring, by means of the discrete Babuška-Brezzi theory, that the Galerkin scheme (5.43) becomes
well-posed. Our approach consists of adapting to the present discrete case the arguments employed in
Section 5.3 for the analysis of the continuous problem, mainly those from the proofs of Lemmas 5.4
and 5.5. We begin by observing that in order to have meaningful spaces QB

h,0 and QD
h,0 (cf. (5.41)), we

need to be able to eliminate constants polynomials from QB
h and QD

h . This request is certainly satisfied
if we assume that:

(H.0) P0(ΩB) ⊆ QB
h and P0(ΩD) ⊆ QD

h ,
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which, in turn, yields the analogue orthogonal decompositions suggested by (1.1), that is

QB
h = QB

h,0 ⊕ P0(ΩB) and QD
h = QD

h,0 ⊕ P0(ΩD) . (5.44)

Next, according to the same arguments utilized in the proof of Lemma 5.4, which actually are
determined by those employed in the proofs of Lemmata 5.1, 5.2, and 5.3, we realize that in order to
show the discrete inf-sup condition for b on Hh ×Q0,h, we need to assume the following hypothesis:

(H.1) there holds P0(Σ) ⊆ QΣ
h and there exist β̃B, β̃D > 0, independent of h, such that

SB
h (qB

h , ξh) := sup
vB
h
∈HB

h

vB
h 6=0

∫
ΩB

qB
h div vB

h − 〈vB
h · n, ξh〉Σ

‖vB
h‖div;ΩB

≥ β̃B

{
‖qB
h ‖0,ΩB

+ ‖ξh‖1/2,Σ
}

(5.45)

for all (qB
h , ξh) ∈ QB

h,0 ×QΣ
h , and

SD
h (qD

h , ξh) := sup
vD
h
∈HD

h

vD
h 6=0

∫
ΩD

qD
h div vD

h + 〈vD
h · n, ξh〉Σ

‖vD
h ‖div;ΩD

≥ β̃D

{
‖qD
h ‖0,ΩD

+ ‖ξh‖1/2,Σ
}

(5.46)

for all (qD
h , ξh) ∈ QD

h,0 ×QΣ
h .

On the other hand, we now look at the discrete kernel of b, which is defined by

Vh :=
{
~vh := (vB

h , z
B
h ,v

D
h ) ∈ Hh : b(~vh, ~qh) = 0 ∀ ~qh := (qB

h , q
D
h , ξh) ∈ Q0,h

}
. (5.47)

Actually, in order to have a more explicit definition of Vh, similarly as obtained for the continuous
kernel V (cf. (5.31)), we now introduce the following assumption

(H.2) divHB
h ⊆ QB

h and divHD
h ⊆ QD

h ,

which, together with (5.42) and (5.44), implies

Vh = Vh
B,D ∩ Vh

Σ , (5.48)

with

Vh
B,D :=

{
~vh := (vB

h , z
B
h ,v

D
h ) ∈ Hh : div vB

h ∈ P0(ΩB) and div vD
h = 0 in ΩD

}
, (5.49)

and

Vh
Σ :=

{
~vh := (vB

h , z
B
h ,v

D
h ) ∈ Hh : 〈vB

h · n− vD
h · n, ξh〉Σ = 0 ∀ ξh ∈ QΣ

h

}
. (5.50)

Since Vh
B,D ⊆ VB,D (cf. (5.32)), it is clear that inequality (5.37) is also valid in Vh

B,D and hence
in the discrete kernel Vh. Consequently, in order to show the discrete coerciveness of a on Vh by
adapting the procedure utilized in the proof of Lemma 5.5, it just remains to assume the following
hypothesis
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(H.3) curlHB
0,h ⊆ HB

h .

Having established hypotheses (H.0), (H.1), (H.2), and (H.3), we now reconfirm that they suffice
to show that our Galerkin scheme (5.43) is well-posed and convergent. We begin with the discrete inf-
sup condition for b.

Lemma 5.6. There exists β̂ > 0, independent of h, such that

Sh(~qh) := sup
~vh∈Hh
~vh 6=0

b(~vh, ~qh)

‖~vh‖H
≥ β̂ ‖~qh‖Q ∀ ~qh ∈ Q0,h . (5.51)

Proof. Given ~qh := (qB
h , q

D
h , ξh) ∈ Q0,h, we let qD

h,0 ∈ QD
h,0 and cD ∈ R such that qD

h = qD
h,0 + cD. Then,

reasoning as in the proof of Lemma 5.3, which in this case reduces to integrate by parts in ΩD only
(since qB

h is already in QB
h,0), we find, using the notations from (H.1), that

Sh(~qh) ≥ SB
h (qB

h , ξh) and Sh(~qh) ≥ SD
h (qD

h,0, ξh − cD) .

In this way, since thanks to the first assumption in (H.1) we have that ξh − cD belongs to QΣ
h , the

foregoing inequalities and a straightforward application of the discrete inf-sup conditions (5.45) and
(5.46), imply

Sh(~qh) ≥ 1

2

(
β̃B + β̃D

){
‖qB
h ‖0,ΩB

+ ‖ξh‖1/2,Σ + ‖qD
h,0‖0,ΩD

+ ‖ξh − cD‖1/2,Σ
}
.

The proof is concluded by employing the triangle inequality, exactly as we did for Lemma 5.4.

The discrete inf-sup condition for a on Vh is proved next. Since Vh is finite dimensional, it suffices
to show one of the discrete analogues of the inequalities provided in Lemma 5.5.

Lemma 5.7. There exists %̂ > 0, independent of h, such that

sup
~wh∈Vh
~wh 6=0

a(~vh, ~wh)

‖~wh‖H
≥ %̂ ‖~vh‖H ∀~vh ∈ Vh . (5.52)

Proof. Given ~vh := (vB
h , z

B
h ,v

D
h ) ∈ Vh, we know from (5.37) that

a(~vh, ~vh) ≥ %̃1

{
‖vB

h‖2div;ΩB
+ ‖zB

h‖20,ΩB
+ ‖vD

h ‖2div;ΩD

}
.

In addition, thanks to the result in [77, Chapter I, Section 2.3, Remark 2.5] and our assumption (H.3),
we find that curl zB

h ∈ H0(div; ΩB) ∩ HB
h , and hence T0(~vh) := (curl zB

h , z
B
h ,0) clearly belongs to

Vh (cf. (5.48)). The rest of the proof proceeds as in Lemma 5.5. Moreover, it is easy to realize that
the constants c and c0 defining now T (~vh) := c ~vh + c0 T0(~vh) can be taken exactly as those chosen
in the proof of that lemma, so that the resulting constant %̂ of the present result coincides with %̃ in
(5.34) and (5.35).

The following main result is a direct consequence of the previous analysis.
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Theorem 5.3. Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). In addition, suppose that (H.0), (H.1),
(H.2), and (H.3) hold. Then there exists a unique (~uh, ~ph) :=

(
(uB

h ,ω
B
h ,u

D
h ), (pB

h , p
D
h , λh)

)
∈ Hh ×

Q0,h solution of the Galerkin scheme (5.43). Moreover, there exist C1, C2 > 0, independent of h, such
that

‖~uh‖H + ‖~ph‖Q ≤ C1

{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
, (5.53)

and
‖(~u, ~p)− (~uh, ~ph)‖H×Q ≤ C2

{
dist(~u,Hh) + dist(~p,Q0,h)

}
. (5.54)

Proof. Thanks to Lemma 5.6 and 5.7, the proof results as a straightforward application of the discrete
Babuška-Brezzi theory.

5.4.2 Specific finite element subspaces

We now specify concrete examples of finite element subspaces satisfying the hypotheses introduced
in the previous section. For this purpose, we now let Th be a regular family of triangulations of
Ω̄B ∪ Ω̄D by tetrahedra K of diameter hK with mesh size h := max{hK : K ∈ Th}, such that
Th(Ω?) :=

{
K ∈ Th : K ⊆ Ω̄?

}
is a triangulation of Ω? for each ? ∈

{
B,D

}
. Then, we denote

by Th(Σ) the triangulation on Σ induced by Th (either from ΩB or ΩD). Also, for reasons that will
become clear below, we introduce an independent triangulation Th̃(Σ) of Σ by triangles T̃ of diameter
h
T̃
, and define h̃ := max

{
h
T̃

: T̃ ∈ Th̃(Σ)
}
.

5.4.2.1 Definition of subspaces

We first introduce the finite element subspaces

H?
h :=

{
v?h ∈ H?(div; Ω?) : v?h|K ∈ RT0(K) ∀K ∈ Th(Ω?)

}
,

Q?
h :=

{
qh ∈ L2(Ω?) : qh|K ∈ P0(K) ∀K ∈ Th(Ω?)

}
,

Q?
h,0 := Q?

h ∩ L2
0(Ω?),

where ? ∈ {B,D}, and for any K ∈ Th(Ω?)

RT0(K) := P0(K)⊕ P0(K)x

is the local Raviart-Thomas space of lowest order. In addition, we set

HB
0,h :=

{
zB
h ∈ H0(curl; ΩB) : zB

h |K ∈ ND1(K) ∀K ∈ Th(ΩB)
}
,

where for any K ∈ Th(ΩB)

ND1(K) := P0(K)⊕P0(K)× x

is the local edge space of Nédélec, that is

ND1(K) :=
{
w : K → C3 : w(x) = a+ b× x ∀x ∈ K, a, b ∈ C3

}
.

Finally for the interface Σ we consider the finite element subspace

QΣ
h̃

:=
{
λh̃ ∈ C

0(Σ) : λh̃|T̃ ∈ P1(T̃ ) ∀ T̃ ∈ Th̃(Σ)
}
.
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It is easy to check that these subspaces satisfy the hypotheses (H.0), (H.2) and (H.3).

On the other hand, for purposes of the analysis, we also need to define

Φh(Σ) :=
{
ψh ∈ L2(Σ) : ψh|T ∈ P0(T ) ∀T ∈ Th(Σ)

}
.

5.4.2.2 Approximation properties

In what follows ? is a mute symbol taken in {B,D}. We let Π?
h : H1(Ω?) → H?

h be the usual
Raviart-Thomas interpolation operator, that is, given a sufficiently smooth vector field v : Ω? → R3,
we define Π?

h(v) as the only element of H?
h such that∫

F
Π?
h(v) · n =

∫
F
v · n ∀F ∈ E?h, (5.55)

where E?h is the set of faces of the triangulation Th(Ω?). We now recall some properties of Π?
h and its

local counterparts Π?
K for each K ∈ Th(Ω?) (see, e.g [63]):

(a) Π?
h is well defined in Hδ(Ω?) ∩H(div; Ω?) for any δ ∈ (0, 1).

(b) There holds div Π?
h(v) = P?h(div v), where P?h : L2(Ω?) → Q?

h is the orthogonal projector.
Equivalently ∫

Ω?

qh div Π?
h(v) =

∫
Ω?

qh div (v) ∀ qh ∈ Q?
h.

(c) For each face F of K there holds Π?
K(v) ·nF = PF (v ·nF ), where nF is the unit outward normal

on F and PF : L2(F )→ P0(F ) is the orthogonal projector.

(d) Given δ ∈ (0, 1) and v ∈ Hδ(Ω?) ∩H(div; Ω?), there holds

‖v −Π?
K(v)‖0,K ≤ ChδK

{
|v|δ,K + ‖div (v)‖0,K

}
∀K ∈ Th(Ω?). (5.56)

Next, for any ε > 0 we introduce the Sobolev space

Hε(curl; ΩB) :=
{
v ∈ Hε(ΩB) : curlv ∈ Hε(ΩB)

}
,

and endow it with its Hilbertian norm

‖v‖Hε(curl;ΩB) :=
{
‖v‖2ε,ΩB

+ ‖curl(v)‖2ε,ΩB

}1/2
.

Then for each face F of Th(ΩB) we let tF be a unit tangential vector on F . It follows from [10, Lemma
4.7] that if ε > 1/2 the interpolation operator Πh : Hε(curl; ΩB)→ HB

0,h associated with the face finite
element, which is characterized by∫

F
Πh(v) · tF =

∫
F
v · tF ∀ faces F of Th(ΩB),

is well defined and uniformly bounded. In addition, the following property of Πh holds.

Lemma 5.8. There exists C > 0, independent of h, such that

‖v −Πh(v)‖curl;ΩB
≤ Chε‖v‖Hε(curl;ΩB) (5.57)

for all v ∈ Hε(curl; ΩB) and for all ε ∈ (1/2, 1].
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Proof. See, [3, Proposition 5.6].

The approximation properties of the finite element subspaces involved are then established as follows
(see, e.g [26, 87]):

(APu?h ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each v ∈
Hδ(Ω?), with div (v) ∈ Hδ(Ω?), there holds

‖v −Π?
h(v)‖div;Ω? ≤ Chδ

{
‖v‖δ,Ω? + ‖div (v)‖δ,Ω?

}
(? ∈ {B,D}).

(AP p?
h ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each q ∈

Hδ(Ω?), there holds

‖q − P?h(q)‖0,Ω? ≤ Chδ‖q‖δ,Ω? (? ∈ {B,D}).

(APωB
h ) there exists C > 0, independent of h, such that for each δ ∈ (1/2, 1] and for each

zB ∈ Hδ(curl; ΩB), there holds

‖zB −Πh(zB)‖curl;ΩB
≤ C hδ ‖zB‖Hδ(curl;ΩB).

(APλ
h̃

) there exists C > 0, independent of h̃, such that for each δ ∈ (0, 1] and for each ξ ∈
H1/2+δ(Σ), there holds

‖ξ − Ph̃(ξ)‖1/2,Σ ≤ C h̃δ ‖ξ‖1/2+δ,Σ,

where Ph̃ : H1/2(Σ)→ QΣ
h̃
is the orthogonal projector.

(APh
ψ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each ϕ ∈

H−1/2+δ(Σ), there holds

‖ϕ− P−1/2
h (ϕ)‖−1/2,Σ ≤ C hδΣ ‖ϕ‖−1/2+δ,Σ,

where P−1/2
h : H−1/2(Σ)→ Φh(Σ) is the orthogonal projector.

5.4.2.3 Stable discrete liftings

In this section, as usual we let ? be a mute symbol taken in {B,D}, and provide sufficient conditions
for the existence of a stable discrete lifting Lh : Φh(Σ) → H?

h. To this end, we proceed as in [63,
Theorem 4.1], and assume first that Th(Ω?) is quasi-uniform in a neighborhood of Σ. This means that
there exists a neighborhood of Σ, say ΩΣ, and a constant c > 0, independent of h, such that, denoting

T ?h,Σ := {K ∈ Th(Ω?) : K ∩ ΩΣ 6= ∅}, (5.58)

there holds
max
K∈T ?h,Σ

hK ≤ c min
K∈T ?h,Σ

hK .

Now, because of the regularity of Th(Ω?), the quasi-uniformity assumption around Σ implies that the
partition Th(Σ) inherited from Th(Ω?) is quasi-uniform as well, which implies that Φh(Σ) satisfies the
inverse inequality (see, [63, Lemma 4.6])

‖ψh‖−1/2+δ,Σ ≤ C h−δΣ ‖ψh‖−1/2,Σ ∀ψh ∈ Φh(Σ), ∀ δ ∈ [0, 1/2], (5.59)

where hΣ := max
{
hT : T ∈ Th(Σ)

}
.
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Lemma 5.9. There exist a linear operator Lh : Φh(Σ)→ H?
h and a constant CL > 0, independent of

h, such that for each ψh ∈ Φh(Σ) there hold

Lh(ψh) · n = ψh on Σ, ‖Lh(ψh)‖div,Ω? ≤ CL ‖ψh‖−1/2,Σ, and divLh(ψh) ∈ P0(Ω?).

Proof. Let ψh ∈ Φh(Σ), and let z ∈ H1(Ω?) be the unique solution of the boundary value problem

∆z =
1

|Ω?|
〈ψh, 1〉Σ in Ω?, ∇z · n =

{
ψh on Σ

0 on Γ?
,

∫
Ω?

z = 0.

The corresponding continuous dependence result says that ‖z‖1,Ω? ≤ c1 ‖ψh‖−1/2,Σ. In turn, the
elliptic regularity result (cf. [79]) establishes that there exists δ > 0 such that

‖z‖1+δ,Ω? ≤ c2 ‖ψh‖−1/2+δ,Σ.

In addition, notice that

div (∇z) = ∆z =
1

|Ω?|
〈ψh, 1〉Σ ∈ R in Ω?.

It follows that ∇z ∈ Hδ(Ω?) ∩H(div; Ω?), and hence we can define

Lh(ψh) := Π?
h(∇z).

Next, from properties (b) and (c) of the Raviart-Thomas interpolation operator, we find that

divLh(ψh) = div Π?
h(∇z) = P?h(div∇z) = P?h(∆z) =

1

|Ω?|
〈ψh, 1〉Σ in Ω?, (5.60)

and
Lh(ψh) · n = Π?

h(∇z) · n = Ph,Σ(∇z · n) = Ph,Σ(ψh) = ψh on Σ , (5.61)

where Ph,Σ : L2(Σ) → Φh(Σ) is the orthogonal projector. It remains to show that Lh is uniformly
bounded. To this end, we first observe that

‖Lh(ψh)‖2div,Ω? = ‖Lh(ψh)‖20,Ω? +
∥∥∥ 1

|Ω?|
〈ψh, 1〉Σ

∥∥∥2

0,Ω?
≤ ‖Lh(ψh)‖20,Ω? + c3 ‖ψh‖2−1/2,Σ. (5.62)

Now, we divide Ω? into two regions

Ω1
?,h := ∪

{
K ∈ Th(Ω?) : K /∈ T ?h,Σ

}
⊆ Ω?\ΩΣ, Ω2

?,h := Ω?\Ω1
?,h = ∪

{
K ∈ T ?h,Σ

}
,

where we recall that T ?h,Σ :=
{
K ∈ Th(Ω?) : K ∩ ΩΣ 6= ∅

}
. Then, since Ω?\ΩΣ is strictly contained

in Ω?, the interior elliptic regularity result [86, Theorem 4.16] implies that z|Ω?\ΩΣ
∈ H2(Ω?\ΩΣ) and

‖z‖2,Ω?\ΩΣ
≤ c4 ‖ψh‖−1/2,Σ.

It follows that

‖Lh(ψh)‖0,Ω? ≤ ‖Lh(ψh)‖0,Ω1
?,h

+ ‖Lh(ψh)‖0,Ω2
?,h

= ‖Π?
h(∇z)‖0,Ω1

?,h
+ ‖Π?

h(∇z)‖0,Ω2
?,h

≤ c5 ‖∇z‖1,Ω1
?,h

+ ‖∇z‖0,Ω2
?,h

+ ‖∇z −Π?
h(∇z)‖0,Ω2

?,h

≤ c5 ‖z‖2,Ω1
?,h

+ ‖z‖1,Ω2
?,h

+ ‖∇z −Π?
h(∇z)‖0,Ω2

?,h

≤ c5 c4 ‖ψh‖−1/2,Σ + c1 ‖ψh‖−1/2,Σ + ‖∇z −Π?
h(∇z)‖0,Ω2

?,h
. (5.63)
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On the other hand, applying estimate (5.56) and inverse inequality (5.59), we obtain that

‖∇z −Π?
h(∇z)‖20,Ω2

?,h
=

∑
K∈T ?h,Σ

‖∇z −Π?
K(∇z)‖20,K

≤ c6

∑
K∈T ?h,Σ

h2δ
K

{
|∇z|2δ,K +

∥∥∥ 1

|Ω?|
〈ψh, 1〉Σ

∥∥∥2

0,K

}
≤ c7 max

K∈T ?h,Σ
h2δ
K

{
‖z‖21+δ,Ω2

?,h
+ ‖ψh‖2−1/2,Σ

}
≤ c7 max

K∈T ?h,Σ
h2δ
K

{
‖z‖21+δ,Ω? + ‖ψh‖2−1/2,Σ

}
≤ c8 max

K∈T ?h,Σ
h2δ
K

{
‖ψh‖2−1/2+δ,Σ + ‖ψh‖2−1/2,Σ

}
≤ c8 max

K∈T ?h,Σ
h2δ
K

{
h−2δ

Σ ‖ψh‖2−1/2,Σ + ‖ψh‖2−1/2,Σ

}
≤ c9 ‖ψh‖2−1/2,Σ ,

(5.64)

where the fact that hK ≤ c hΣ ∀K ∈ T ?h,Σ has been used in the last inequality. In this way, from
(5.62), (5.63) and (5.64) we conclude that

‖Lh(ψh)‖div,Ω? ≤ CL ‖ψh‖−1/2,Σ ∀ψh ∈ Φh(Σ),

which, together with the identities (5.60) and (5.61), complete the proof.

We remark at this point that the quasi-uniformity assumption of Th(Ω∗) around Σ, which is needed
here for the stable discrete lifting provided by Lemma 5.9, has been removed recently in [2, Theorem
2.1] for the case of locally refined meshes, when the lifting is from the whole boundary of the given
domain. However, it is not clear from the analysis in [2] whether that result is also valid for a discrete
lifting from part of the boundary (as it is required in the present case).

We now assume that the family of independent triangulations Th̃(Σ) is also quasi-uniform, which
implies that QΣ

h̃
satisfies the inverse inequality, that is there exists a constant C > 0, independent of

h̃, such that for each δ ∈ [0, 1) there holds (cf. [69, Lemma 7.4])

‖ξ‖1/2+δ,Σ ≤ C h̃−δ‖ξ‖1/2,Σ ∀ ξ ∈ QΣ
h̃
. (5.65)

Then, we have the following result.

Lemma 5.10. There exist C0, β > 0, independent of hΣ and h̃, such that for all hΣ ≤ C0 h̃ there
holds

sup
ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

≥ β ‖ξh̃‖1/2,Σ ∀ ξh̃ ∈ QΣ
h̃
. (5.66)

Proof. We proceed similarly as in [63, Lemma 4.11]. In fact, given ξh̃ ∈ QΣ
h̃
\{0}, we let z ∈ H1(Ω?) be

the unique solution of the boundary value problem with mixed boundary conditions:

−∆z + z = 0 in Ω?, z = ξh̃ on Σ, ∇z · n = 0 on Γ?.

Notice that the corresponding continuous dependence result gives

‖z‖1,Ω? ≤ C1 ‖ξh̃‖1/2,Σ, (5.67)
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and thanks to the trace theorem and a simple integration by parts procedure, we also have that

C2 ‖ξh̃‖
2
1/2,Σ ≤ ‖z‖

2
1,Ω? = 〈∇z · n, ξh̃〉Σ. (5.68)

On the other hand, since QΣ
h̃
⊂ H1(Σ), we obtain that z ∈ H1+δ(Ω?) for some δ > 0 (see [79]), and

there holds
‖∇z · n‖−1/2+δ,Σ ≤ C3‖z‖1+δ,Ω? ≤ C4 ‖ξh̃‖1/2+δ,Σ. (5.69)

We now let ψ∗h := P−1/2
h (∇z · n) ∈ Φh(Σ). Then, applying the approximation property (APψ

h ), the
regularity estimate (5.69), and the inverse inequality (5.65), we deduce that

‖∇z · n− ψ∗h‖−1/2,Σ ≤ C5 h
δ
Σ‖∇z · n‖−1/2+δ,Σ ≤ C6 h

δ
Σ‖ξh̃‖1/2+δ,Σ ≤ C7

(hΣ

h̃

)δ
‖ξh̃‖1/2,Σ.

Next, using that ‖∇z‖div,Ω? = ‖z‖1,Ω? , it follows that

‖ψ∗h‖−1/2,Σ = ‖P−1/2
h (∇z · n)‖−1/2,Σ ≤ ‖∇z · n‖−1/2,Σ ≤ ‖∇z‖div,Ω? = ‖z‖1,Ω? ,

which together with the estimate (5.67), imply

‖ψ∗h‖−1/2,Σ ≤ C8 ‖ξh̃‖1/2,Σ.

Now, using (5.68) and the foregoing estimates, we find that

〈ψ∗h, ξh̃〉Σ = 〈∇z · n, ξh̃〉Σ − 〈∇z · n− ψ
∗
h, ξh̃〉Σ

≥
{
C2 − C7

(hΣ

h̃

)δ}
‖ξh̃‖

2
1/2,Σ

≥
{C2

C8
− C7

C8

(hΣ

h̃

)δ}
‖ξh̃‖1/2,Σ ‖ψ

∗
h‖−1/2,Σ.

Consequently, we can write

sup
ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

≥
〈ψ∗h, ξh̃〉Σ
‖ψ∗h‖−1/2,Σ

≥
{C2

C8
− C7

C8

(hΣ

h̃

)δ}
‖ξh̃‖1/2,Σ,

from which, taking hΣ ≤ C0 h̃ with C0 :=
(
C2
2C7

)1/δ
, we conclude the proof.

5.4.2.4 Verification of the discrete inf-sup conditions

We are now in a position to prove the discrete inf-sup conditions required by hypotheses (H.1). To
this end, we assume from now on that Th(ΩD) and Th(ΩB) are quasi-uniform in a neighborhood ΩΣ of
Σ, and that Th̃(Σ) is quasi-uniform.

Lemma 5.11. There exist C0, β̃D > 0, independent of h, hΣ and h̃, such that for all hΣ ≤ C0 h̃, there
holds

SD
h (qD

h , ξh̃) := sup
vD
h
∈HD

h

vD
h 6=0

∫
ΩD

qD
h div vD

h + 〈vD
h · n, ξh̃〉Σ

‖vD
h ‖div;ΩD

≥ β̃D

{
‖qD
h ‖0,ΩD

+ ‖ξh̃‖1/2,Σ
}

(5.70)

for all (qD
h , ξh̃) ∈ QD

h,0 ×QΣ
h̃
.
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Proof. We begin by observing that

SD
h (qD

h , ξh̃) ≥ sup
vD
h
∈HD

h

vD
h 6=0

∫
ΩD

qD
h div vD

h

‖vD
h ‖div;ΩD

− ‖ξh̃‖1/2,Σ.

Then according to the results in [26, Chapter IV] (see also [63, Section 4.2]), we know that there exists
CD > 0, independent of h, hΣ and h̃, such that

sup
vD
h
∈HD

h

vD
h 6=0

∫
ΩD

qD
h div vD

h

‖vD
h ‖div;ΩD

≥ CD ‖qD
h ‖0,ΩD

∀ qD
h ∈ QD

0,h,

and hence
SD
h (qD

h , ξh̃) ≥ CD ‖qD
h ‖0,ΩD

− ‖ξh̃‖1/2,Σ ∀ (qD
h , ξh̃) ∈ QD

h,0 ×QΣ
h̃
. (5.71)

On the other hand, we know from Lemma 5.9, that there exist a linear operator Lh : Φh(Σ) → HD
h

and a constant CL > 0, independent of h, such that for each ψh ∈ Φh(Σ) there hold

Lh(ψh) · n = ψh on Σ, ‖Lh(ψh)‖div,ΩD
≤ CL ‖ψh‖−1/2,Σ, and divLh(ψh) ∈ P0(ΩD).

In this way, we deduce that

SD
h (qD

h , ξh̃) ≥

∫
ΩD

qD
h divLh(ψh) + 〈Lh(ψh) · n, ξh̃〉Σ

‖Lh(ψh)‖div;ΩD

∀ψh ∈ Φh(Σ),

from which, using that divLh(ψh) ∈ P0(ΩD) and that qD
h ∈ QD

h,0, it follows that

SD
h (qD

h , ξh̃) ≥
|〈Lh(ψh) · n, ξh̃〉Σ|
‖Lh(ψh)‖div,ΩD

≥ 1

CL

|〈ψh, ξh̃〉Σ|
‖ψh‖−1/2,Σ

∀ψh ∈ Φh(Σ),

and hence
SD
h (qD

h , ξh̃) ≥ 1

CL
sup

ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

∀ ξh̃ ∈ QΣ
h̃
. (5.72)

Therefore, (5.72) and a straightforward application of Lemma 5.10 imply the existence of C̃D > 0,
independent of h, hΣ and h̃, such that for all hΣ ≤ C0h̃ there holds

SD
h (qD

h , ξh̃) ≥ C̃D ‖ξh̃‖1/2,Σ ∀ ξh̃ ∈ QΣ
h̃
. (5.73)

Finally, it easy to see that estimates (5.71) and (5.73) imply the discrete inf-sup condition (5.70), thus
finishing the proof.

Lemma 5.12. There exist C0, β̃B > 0, independent of h, hΣ and h̃, such that for all hΣ ≤ C0 h̃ there
holds

SB
h (qB

h , ξh̃) := sup
vB
h
∈HB

h

vB
h 6=0

∫
ΩB

qB
h div vB

h − 〈vB
h · n, ξh̃〉Σ

‖vB
h‖div;ΩB

≥ β̃B

{
‖qB
h ‖0,ΩB

+ ‖ξh̃‖1/2,Σ
}

(5.74)

for all (qB
h , ξh̃) ∈ QB

h,0 ×QΣ
h̃
.
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Proof. It proceeds exactly as the proof of Lemma 5.11 by replacing ΩD, ΓD, QD
h,0 and HD

h by ΩB, ΓB,
QB
h,0 and HB

h , respectively.

The following theorem provides the rate of convergence of our Galerkin scheme (5.43).

Theorem 5.4. Let Hh := HB
h×HB

0,h×HD
h and Qh,0 := QB

h,0×QD
h ×QΣ

h̃
be the subspaces specified above,

and let (~u, ~p) := ((uB,ωB,uD), (pB, pD, λ)) ∈ H×Q0 and (~uh, ~ph) := ((uB
h ,ω

B
h ,u

D
h ), (pB

h , p
D
h , λh̃)) ∈

Hh×Q0,h be the unique solutions of the continuous and discrete problems (5.28) and (5.43), respectively.
Assume that u? ∈ Hδ(Ω?), divu? ∈ Hδ(Ω?), p? ∈ Hδ(Ω?) where ? ∈ {B,D}, ωB ∈ Hδ(curl; ΩB) and
λ ∈ H1/2+δ(Σ), for some δ ∈ (1/2, 1]. Then, there exists C > 0 and C̃ > 0 independent of h and h̃
such that

‖(~u, ~p)− (~uh, ~ph)‖H ≤ Chδ
{
‖uB‖δ,ΩB

+ ‖div (uB)‖δ,ΩB
+ ‖ωB‖Hδ(curl;ΩB) + ‖uD‖δ,ΩD

+ ‖div (uD)‖δ,ΩD
+ ‖pB‖δ,ΩB

+ ‖pD‖δ,ΩD

}
+ C̃h̃δ‖λ‖δ+1/2,Σ.

Proof. It follows from the Céa estimate (5.54) and the approximation properties (APu?
h ), (AP p?

h ),
(APωB

h ) and (APλ
h ).

We end this section by remarking that the analysis from Section 5.4.2 can be extended without
difficulties, to Raviart-Thomas and Nédélec spaces of higher order.

5.5 An augmented mixed formulation

In this section we propose an augmented variational formulation of problem (5.28). Indeed, though
many finite element subspaces HB

0,h ⊆ H0(curl; ΩB) and HB
h ⊆ HB(div; ΩB) do satisfy (H.3), we

would like to explore the possibility of getting rid of that assumption. To this end, we suggest to
enrich the mixed variational formulation (5.28) with a residual arising from the Brinkman momentum
equation in (5.5). More precisely, we include into the variational problem (5.28) the following Galerkin
least-squares equation in ΩB:

κ

∫
ΩB

(αuB + ν curlωB + ∇pB − fB) · curl zB = 0 ∀ zB ∈ H0(curl; ΩB) , (5.75)

where κ is a positive parameter to be specified later. Actually, integrating by parts, and using again
that curl zB ∈ H0(div; ΩB) for each zB ∈ H0(curl; ΩB) (cf. [77, Chapter I, Section 2.3, Remark 2.5]),
we easily find that ∫

ΩB

∇pB · curl zB = 0 ∀ zB ∈ H0(curl; ΩB) ,

whence (5.75) can be recast in the form

κα

∫
ΩB

uB · curl zB + κ ν

∫
ΩB

curlωB · curl zB = κ

∫
ΩB

fB · curl zB ∀ zB ∈ H0(curl; ΩB). (5.76)

In this way, adding (5.76) to the first equation of (5.28), we obtain the following augmented variational
formulation: Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q0 such that

A(~u, ~v) + B(~v, ~p) = F(~v) ∀~v := (vB, zB,vD) ∈ H ,

B(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q0 ,
(5.77)
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where

A(~u, ~v) := α

∫
ΩB

uB · vB + ν

∫
ΩB

ωB · zB + κ ν

∫
ΩB

curlωB · curl zB

+ ν

∫
ΩB

vB · curlωB +
(
κα − ν

) ∫
ΩB

uB · curlzB + µ

∫
ΩD

uD · vD ∀ (~u, ~v) ∈ H×H ,

(5.78)

F(~v) :=

∫
ΩB

fB · vB +

∫
ΩD

fD · vD + κ

∫
ΩB

fB · curl zB ∀~v ∈ H , (5.79)

B = b, and G = G = 0.

In what follows we address the solvability of (5.77). We first observe that the continuous inf-sup
condition for B on H × Q0 is already proved by Lemma 5.4. In turn, the continuous kernel of B is
certainly given by V (cf. (5.31) - (5.33)). Then, we have the following result establishing the ellipticity
of A on VB,D and hence on V.

Lemma 5.13. Assume that the stabilization parameter κ ∈
(
0, 2δ

)
with δ ∈

(
0,

2ν

α

)
. Then, there

exists % > 0, depending on κ and δ, such that

A(~v, ~v) ≥ % ‖~v‖2H ∀~v ∈ VB,D . (5.80)

Proof. Given ~v := (vB, zB,vD) ∈ VB,D, we obtain from the definition of A (cf. (5.78)) and the
Cauchy-Schwarz inequality, that

A(~v, ~v) = α ‖vB‖20,ΩB
+ ν ‖zB‖20,ΩB

+ κ ν ‖curl zB‖20,ΩB
+ κα

∫
ΩB

vB · curl zB + µ ‖vD‖20,ΩD

≥ α ‖vB‖20,ΩB
+ ν ‖zB‖20,ΩB

+ κ ν ‖curl zB‖20,ΩB
− κα‖vB‖0,ΩB

‖curl zB‖0,ΩB
+ µ ‖vD‖20,ΩD

.

Next, for each δ > 0 we find that

−κα ‖vB‖0,ΩB
‖curl zB‖0,ΩB

≥ − κα
2δ
‖vB‖20,ΩB

− δ κα

2
‖curl zB‖20,ΩB

,

which, replaced back into the foregoing estimate, yields

A(~v, ~v) ≥ α
(

1− κ

2δ

)
‖vB‖20,ΩB

+ ν ‖zB‖20,ΩB
+ κ

(
ν − δ α

2

)
‖curl zB‖20,ΩB

+ µ ‖vD‖20,ΩD
.

Next, using (5.36) and noting that ‖vD‖20,ΩB
= ‖vD‖2div;ΩD

, we obtain

A(~v, ~v) ≥ α
(

1 − κ

2δ

)
%2

0 ‖vB‖2div,ΩB
+ ν ‖zB‖20,ΩB

+ κ

(
ν − δ α

2

)
‖curl zB‖20,ΩB

+ µ ‖vD‖2div,ΩD
.

(5.81)
Hence, since 1 − κ

2 δ > 0 and ν − δ α
2 > 0, we conclude that

A(~v, ~v) ≥ %‖~v‖2H ~v ∈ VB,D,

where % := min
{
α
(
1− κ

2δ

)
%2

0, ν, κ
(
ν − δ α

2

)
, µ
}
.

Note that, taking in particular κ = δ =
ν

α
, we obtain the optimal ellipticity constant

% :=
1

2
min

{
α%2

0, 2ν, κν, 2µ
}
.

The foregoing analysis yields the following main result.
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Theorem 5.5. Assume that fD ∈ L2(ΩD), fB ∈ L2(ΩB), and that κ satisfies the assumption from
Lemma 5.13. Then there exists a unique (~u, ~p) :=

(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H ×Q0 solution of

the augmented mixed formulation (5.77). Moreover, there exists C > 0 such that

‖~u‖H + ‖~p‖Q ≤ C
{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
. (5.82)

Proof. Thanks to Lemmata 5.4 and 5.13, the proof is a straightforward application of the continuous
Babuška-Brezzi theory.

We now look at the Galerkin scheme of (5.77). More precisely, employing the same generic finite
elements subspaces and related notations introduced in Section 5.4.1, we now consider the augmented
mixed finite element scheme: Find ~uh := (uB

h ,ω
B
h ,u

D
h ) ∈ Hh and ~ph := (pB

h , p
D
h , λh) ∈ Q0,h such that

A(~uh, ~vh) + B(~vh, ~ph) = F(~vh) ∀~vh := (vB
h , z

B
h ,v

D
h ) ∈ Hh ,

B(~uh, ~qh) = G(~qh) ∀ ~qh := (qB
h , q

D
h , ξh) ∈ Q0,h .

(5.83)

Then, assuming that hypotheses (H.0), (H.1), and (H.2) from Section 5.4 are satisfied, we cer-
tainly deduce that B verifies the discrete inf-sup condition on Hh×Q0,h (cf. Lemma 5.6), the discrete
kernel of B is given again by Vh = Vh

B,D ∩ Vh
Σ (cf. (5.48) - (5.50)), and hence, since Vh

B,D is contained
in VB,D, the bilinear form A is elliptic in Vh

B,D (cf. Lemma 5.13) and therefore in Vh. Consequently,
a straightforward application of the discrete Babuška-Brezzi theory allows to conclude the following
result.

Theorem 5.6. Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). In addition, suppose that (H.0), (H.1),
and (H.2) hold. Then there exists a unique (~uh, ~ph) :=

(
(uB

h ,ω
B
h ,u

D
h ), (pB

h , p
D
h , λh)

)
∈ Hh × Q0,h

solution of the augmented Galerkin scheme (5.83). Moreover, there exist C1, C2 > 0, independent of
h, such that

‖~uh‖H + ‖~ph‖Q ≤ C1

{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
, (5.84)

and
‖(~u, ~p)− (~uh, ~ph)‖H×Q ≤ C2

{
dist(~u,Hh) + dist(~p,Q0,h)

}
. (5.85)

We end this section by providing a specific example of finite element subspaces satisfying (H.0),
(H.1), and (H.2), but not (H.3), whence only the augmented formulation described in this section
can be employed with them. In fact, for each K ∈ Th(ΩB) we now let ND2(K) be the local Nédélec
space of order 2, that is

ND2(K) := P1(K)⊕ P̃1(K)× x ,

where P̃1(K) is the space of polynomials of degree = 1, and introduce

HB
0,h :=

{
zB
h ∈ H0(curl; ΩB) : zB

h |K ∈ ND2(K) ∀K ∈ Th(ΩB)
}
. (5.86)

In turn, the remaining subspaces HB
h , H

D
h , QB

h,0, QD
h , and QΣ

h are exactly as those defined in Section
5.4.2.1, that is with local Raviart-Thomas spaces of order 0 and discontinuous piecewise constant
polynomials on the domains, and with continuous piecewise polynomials of degree ≤ 1 on the interface
Σ. Then, it is not difficult to see that there exist zB

h ∈ HB
0,h for which curl zB

h does not belong to
HB
h , thus confirming that (H.3) does not hold in this case. Numerical results illustrating optimal

convergence rates of the augmented formulation with the aforementioned finite element subspaces are
reported below in Section 5.6.
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5.6 Numerical results

Figure 5.2: Example 1: Two-domain geometry and mesh (top left), approximated Darcy velocity
streamlines (top middle), approximated Darcy pressure isosurfaces (top right), zoom of approximated
Brinkman vorticity vectors (bottom left), zoom of approximated Brinkman velocity streamlines (bot-
tom middle), and isosurfaces of the computed Brinkman pressure (bottom right).

In this section we provide three computer experiments confirming the convergence rates anticipated
by Theorem 5.4 and illustrating the applicability of the method in surface-subsurface flow problems.

5.6.1 Accuracy of the mixed and augmented formulations on two embedded cubes

We start by evaluating the convergence of the fully-mixed and the augmented finite element methods
applied to (5.5)-(5.6) and defined on the two cubes ΩB = [−rB, rB]3 and ΩD = [−rD, rD]3, with rD =
1
2 , rB = 3

20 . Notice that this particular domain configuration does not fall exactly in the theoretical
framework analyzed in this chapter. However, both the continuous and discrete study could be carried
out using the analogous tools as those used here. We employ the model parameters α = µ = 1, ν = 0.01,
yielding the stabilization constant κ = 2ν/α = 0.02 suggested by Lemma 5.13. The convergence of the
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method is assessed by computing errors between the following manufactured smooth exact solutions

ωB(x1, x2, x3) =

−3π sin(πx1) cos(πx2) cos(πx3)

3π cos(πx1) sin(πx2) cos(πx3)

0

,u(x1, x2, x3) =

 cos(πx1) sin(πx2) sin(πx3)

sin(πx1) cos(πx2) sin(πx3)

−2 sin(πx1) sin(πx2) cos(πx3)

,
p(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3), uB = u|ΩB

, uD = u|ΩD
, pB = p|ΩB

, pD = p|ΩD
, λ = p|Σ,

and their finite element approximations using a RT0 − ND1 − RT0 − P0 − P0 − P1 family (and
using the fully-mixed and augmented formulations), and also an augmented method based on the
RT0−ND2−RT0−P0−P0−P1 family, which, in particular, does not satisfy assumption (H.3). The
computations are carried out on a sequence of successively refined tetrahedral meshes ThBi and ThDi
of sizes hBi = rB21−i and hDi = rD2−i, respectively, i = 0, 1, . . .. We adequately choose forcing terms
fB = αuB + curlωB +∇pB, fD = µuD +∇pD, and suitable nonhomogeneous slip velocity on ∂Ω and
nonhomogeneous Dirichlet data for the tangential vorticity on ∂ΩB, such that (5.5)-(5.6) holds. For
sake of convenience we define a conforming partition for Σ, that is Th̃ = Th. The approximate solutions
are depicted in Figure 5.2 and the error history, written in terms of the quantities

e(uB) :=‖uB − uBh‖div,ΩB
, e(ωB) := ‖ωB − ωBh‖curl,ΩB

, e(uD) := ‖uD − uDh‖div,ΩD
,

e(pB) := ‖pB − pBh‖0,ΩB
, e(pD) := ‖pD − pDh‖0,ΩD

, e(λ) := ‖λ− λh‖1/2,Σ, r(·) :=
log(e(·)/ê(·))

log(h/ĥ)
,

is reported in Table 5.1, where e, ê denote errors on two consecutive meshes of sizes h = max{hB, hD}
and ĥ. We observe that all studied methods deliver optimal convergence rates for vorticity, velocity
and pressure in the corresponding norms.

5.6.2 Flow into a cracked porous medium

Our second example focuses on the simulation of flow in a porous medium with a smoothed V-
shaped crack, similar to the 2D simulations presented in the Stokes-Darcy examples of [18, Section 7.1]
and [35, Section 6.3]. The full domain is the box Ω = [0, 2]× [0, 0.2]× [0, 1], the Brinkman domain on
the top is 0.75 ≤ x1 ≤ 1.25 and goes down to x3 = 0.5. Viscosity and porosity correspond to the case
of water flowing in a mixture of calcarenite and sand: ν = 0.01, µ = 10000, and we set α = 0.001. The
external forces on both domains correspond to gravity fD = fB = (0, 0,−0.98)t, and a constant flowrate
uD ·n = (10, 0, 0)t ·n, is imposed on the right wall Γin

D , at x1 = 0 (see sketch in figure 5.3), representing
a subsurface flow in the x1-direction. Normal Darcy velocities are set to zero everywhere else on ΓD.
As in [18] we impose a smooth vorticity profile on the top of ΓB ωB×n = (0, 1/16− (x1−1)2, 0)t×n,
which takes into account the wind on the surface, and we also assume a compatible normal velocity
on that same surface uB · n = (0, 0,−x1/16 + [(x1 − 1)3]/3)t · n. Everywhere else we set zero normal
fluid velocity and zero tangential vorticity. A tetrahedral mesh with conforming interface is generated
having 57426 vertices and 307544 elements, which in total correspond to 962639 degrees of freedom for
RT0 −ND1 −RT0 −P0 −P0 −P1 finite elements. Figure 5.3 depicts the domain configuration along
with the approximate solutions, matching qualitatively the results from [18, 35].

5.6.3 Perpendicular infiltration through a porous capsule

In this test we present a model of coupled surface and subsurface flow where the top domain is the
flow region and the bottom half of the domain represents e.g. a pellet, or a capsule. On the top left
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h e(uB) r(uB) e(ωB) r(ωB) e(uD) r(uD) e(pB) r(pB) e(pD) r(pD) e(λ) r(λ)

Fully mixed scheme (5.43)

0.70711 1.02802 − 0.08636 − 0.65565 − 0.00404 − 0.64650 − 0.51608 −
0.38079 0.66329 0.63216 0.04547 0.86511 0.30143 0.96758 0.00167 0.86588 0.24919 1.54026 0.37415 0.94712
0.30610 0.45239 1.30206 0.03253 1.13929 0.21869 1.46952 0.00130 1.44871 0.12438 1.18266 0.22579 0.93668
0.18503 0.29153 0.93254 0.02240 0.79149 0.16048 0.61483 0.00073 1.21498 0.05130 1.15932 0.17396 0.95387
0.14412 0.18023 1.02275 0.01527 0.85417 0.10498 0.89264 0.00042 1.15692 0.02337 1.14603 0.10985 0.96014
0.05487 0.11716 0.95707 0.00833 0.95944 0.05076 0.99002 0.00027 0.96289 0.01207 0.98594 0.05139 0.96765
0.03564 0.07258 0.97681 0.00561 0.98670 0.03123 0.99197 0.00019 0.98441 0.00896 0.99455 0.02987 0.97732

Augmented mixed scheme (5.83)

0.70711 1.02681 − 0.08574 − 0.65549 − 0.00416 − 0.64537 − 0.51899 −
0.38079 0.62020 0.98418 0.04306 0.87429 0.26781 0.94902 0.00158 0.95434 0.24503 0.94234 0.38461 0.97729
0.30610 0.42963 0.99011 0.02763 0.91368 0.17061 0.96547 0.00109 0.93939 0.10942 0.96471 0.21733 1.07908
0.18503 0.27689 0.94556 0.01916 0.94842 0.12903 0.95084 0.00066 0.98741 0.04873 0.96933 0.16430 0.98544
0.14412 0.16540 0.96134 0.01344 0.96083 0.08211 0.95171 0.00039 0.98177 0.01998 0.96297 0.08127 0.97476
0.05487 0.10214 0.98608 0.00703 0.95798 0.04714 0.90989 0.00024 0.97506 0.00987 0.97250 0.04550 0.97732
0.03564 0.06071 0.96110 0.00416 0.98465 0.02595 1.01103 0.00016 0.98411 0.00593 1.00141 0.02831 0.97460

Augmented mixed scheme (5.83) with vorticity space as in (5.86)

0.70711 1.02643 − 0.06194 − 0.65421 − 0.00381 − 0.64501 − 0.49673 −
0.38079 0.60941 0.96599 0.02469 1.12048 0.26554 0.95410 0.00155 0.95308 0.24394 0.95725 0.34426 1.02005
0.30610 0.42550 0.98731 0.01822 1.51635 0.17022 0.92217 0.00102 0.94694 0.10922 0.96820 0.20871 0.97632
0.18503 0.23411 1.01620 0.01014 1.85309 0.12850 0.98436 0.00061 0.93551 0.04855 0.95735 0.15809 0.99401
0.14412 0.13869 0.98807 0.00607 1.92486 0.08173 0.96728 0.00039 0.93754 0.01980 0.96443 0.08067 0.95866
0.05487 0.08619 0.97615 0.00413 1.93952 0.04684 0.93863 0.00022 0.98965 0.00982 0.94538 0.04491 0.97210
0.03564 0.05175 0.99054 0.00279 1.97943 0.02433 0.98461 0.00013 1.90241 0.00563 1.10394 0.02635 0.96955

Table 5.1: Example 1: Error history associated to fully mixed and augmented RT0 − ND1 − RT0 −
P0−P0−P1 discretizations (top and middle rows), and augmented RT0−ND2−RT0−P0−P0−P1

FE family (bottom row) for problem (5.5)-(5.6) on a 3D domain.

octant of ΩB, denoted by Γin
B , we consider an inflow rate of uB ·n = −0.01 and on Γout

D (see the domain
sketch in Figure 5.4) we set an outflow of fluid at rate uB ·n = 0.01. Also on Γin

B , we impose a smooth
vorticity ωB×n = (0,−0.01x1x2x3, 0)t×n. On the remainder of ∂Ω we set zero normal velocities and
tangential vorticity. As in the previous example, we take into account the gravity force acting on both
domains fD = fB = (0, 0,−0.98)t, and employ the model parameters α = 10, ν = 0.001, µ = 10000.
The mesh for Ω consists of 32768 vertices and 191452 tetrahedral elements representing 700835 degrees
of freedom. As expected, from Figure 5.4 we observe flow patterns entering the domain through Γin

B ,
percolating through Σ, and leaving the domain through Γout

D . These results have been obtained with
the augmented mixed scheme (5.83).

5.6.4 Flow simulations imposing Dirichlet conditions for the velocity

Finally, we perform a test quite similar to Examples 2 and 3, but this time we impose Dirichlet con-
ditions for the Brinkman and Darcy velocities on the external boundaries (which implies, in particular,
that no boundary datum is required for the vorticity field), and employ an augmented formulation using
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Figure 5.3: Example 2: Two-domain geometry and boundaries (top left), approximated Brinkman
vorticity magnitude (top right), approximated velocity magnitude and vectors (bottom left), and com-
puted pressure profiles (bottom right) for the Brinkman-Darcy coupling, using a fully-mixed scheme.

Figure 5.4: Example 3: From left to right: Two-domain geometry and boundaries, approximated
Brinkman vorticity magnitude and vectors, approximated velocity magnitude and vectors, and com-
puted pressure profile for the Brinkman-Darcy coupling, using an augmented finite element formulation.

a RT0−ND2−RT0−P0−P0−P1 FE family. Now the Brinkman domain ΩB = [0, 3]× [0, 0.2]× [1, 3/2]

is on top of the Darcy domain ΩD = [0, 3] × [0, 0.2] × [0, 1] (as in e.g. a two-layer subsurface flow).
These domains are discretized into structured tetrahedral meshes of 63195 and 94847 elements, respec-
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Figure 5.5: Example 4: Two-domain geometry and boundaries (top left), approximated Brinkman
vorticity and Darcy permeability field (top right), approximated velocity (bottom left), and computed
pressure profile (bottom right) for the Brinkman-Darcy coupling imposing Dirichlet boundary condi-
tions for the velocity.

tively. The parameter µ (viscosity over permeability of the Darcy domain) is now highly heterogeneous
(see top-left panel of Figure 5.5), and the remaining parameters take the values α = 1/100, ν = 1,
κ = 2ν/α. We also assume the presence of a slight current along with gravity in the Brinkman domain,
i.e. fB = (1, 0,−0.98)t. The boundary conditions for velocity are: uB = (100(x3 − 1)(3/2− x3), 0, 0)t

on Γin
B ∪ Γout

B , uB = (100(1 − x2
1/9), 0, 0)t on the top surface, uD = (1, 0, 0)t on Γin

D , and on the sink
at the lower part of Γout

D , and no-slip Darcy velocity (uD = 0) on the bottom surface. No other con-
ditions are imposed (e.g. on the front or back sides of the domain). Notice that Dirichlet conditions
are implemented via a penalization strategy. We stress that even if this setting is not covered by our
analysis, the obtained results (see the remaining panels in Figure 5.5) suggest that the augmented for-
mulation proposed herein is capable to successfully handle problems involving Dirichlet velocity data.
Nevertheless, the performance of the method in conditions where vorticity develops into more involved
patterns, remains to be addressed.



Conclusions and future works

Conclusions

In this thesis we developed mixed finite element methods for a set of partial differential equations
of physical interest in transport problems through viscous flows in porous media. Theoretical results
that guarantee the well-posedness of the proposed methods, as well as the corresponding numerical
tests and simulations, have been provided.

The main conclusions of this work are:

1. We have introduced an augmented mixed–primal finite element method for a coupled flow–
transport problem, where the flow is described by the Stokes equations (with variable viscosity)
and the transport of species is governed by a convection–diffusion equation. The original problem
was reformulated through an augmented variational approach for the fluid flow coupled with
a primal formulation for the transport model. Next, by a fixed point strategy together with
suitable regularity assumptions, we were able to develop the corresponding analysis of solvability.
Consequently, we derived an augmented mixed–primal finite element method, and then we showed
its well-posedness. In particular, a feasible choice of finite element subspaces for the associated
Galerkin scheme, was given by Raviart-Thomas elements of order k for the pseudostress, and
piecewise polinomials of degree ≤ k + 1 for both velocity of fluid and scalar field. Afterwards,
suitable Strang-type inequalities were utilized to rigorously derive a priori error estimates in their
natural norms. Finally, several numerical experiments validating the good performance of the
method and confirming the corresponding rates of convergence were reported. The numerical
examples reported includes a benchmark test of thermal convection employing a Boussinesq
approximation, as well as the simulation of the steady state of a clarifying-thickening process.

2. We provided the a posteriori error analysis for the augmented mixed–primal finite element method
associated to the flow–transport coupling. Here two efficient and reliable residual-based a poste-
riori error estimators for that scheme, were derived. In particular, to show the reliability of the
first estimator, a Helmholtz decomposition for H(div; Ω) with homogeneous Neumann bound-
ary condition was introduced for the 2D case. Finally, several numerical results illustrating the
reliability and efficiency of the estimators, and showing the expected behavior of the associated
adaptive algorithm were provided.

3. We extended the approach employed for the analysis of coupled flow–transport problem to the
more realistic case of a sedimentation-consolidation system. More precisely, we introduced an
augmented mixed–primal formulation for the Brinkman problem with variable viscosity; coupled
with a scalar nonlinear convection–diffusion equation. Then, we showed the well-posedness of
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the continuous and discrete formulations. In particular, for the Galerkin scheme, we employed
Raviart-Thomas spaces of order k for the Cauchy stress, and continuous piecewise polynomials
of degree ≤ k + 1 for the velocity and also for the scalar field associated to the concentration.
Next, we derived the corresponding a priori error analysis. Finally, we presented some numerical
results confirmig the predicted rates of convergence, and highlighting the good performance of the
method. In particular, we applied the proposed method to simulate a batch sedimentation within
a cylinder with a contraction, and also to the simulation of the steady state of flow patterns,
under the so-called Coanda effect, in sedimentation processes.

4. By similar arguments to those employed in the a posteriori error analysis for the flow–transport
coupling, we derived two efficient and reliable residual-based a posteriori error estimators for the
augmented mixed–primal finite element method associated to the sedimentation-consolidation
system. In particular, in this work we presented the 2D and 3D versions of these estimators for
that scheme. Finally, we provided several numerical test confirmig the reliability and efficiency of
the estimators, and illustrating the good performance of the corresponding adaptive algorithm.

5. We derived a vorticity-based fully-mixed finite element method to numerically approximate the
flow patterns in an heterogeneous media composed by a porous medium, where Darcy equations
govern the flow behavior of a non-viscous incompressible fluid, and a much more permeable
medium, where the lamimnar flow exhibits viscous effects described by the linear Brinkman
model. The system was formulated in terms of velocity and pressure in the porous medium,
together with vorticity, velocity and pressure of the viscous fluid. In contrast with others works
available in the literature such as [18] and [19], we do not assume here that the fluid boundary
coincides with the interface between both domains. In addition, here we established the pressure
continuity across the interface using a Lagrange multiplier, whereas the normal stress condi-
tions were weakly imposed. On the other hand, for the resulting mixed variational formulation,
higher regularity of the fluid pressure as in e.g. [18] was not required. Next, we applied the
classical Babuška-Brezzi theory together with the so-called T -coercivity approach to show the
well-posedness of the continuous formulation and the corresponding discrete scheme. For the as-
sociated mixed finite element method it was required that the curl of the finite element subspace
approximating the velocity be contained in the space where the discrete velocity of the fluid
lives. In this way, a feasible choise of finite element subspaces for the Galerkin scheme was given
by Raviart-Thomas for the velocities, Nédélec elements for vorticity, continuous piecewise poly-
nomials for the pressures, and discontinuous piecewise polynomials for the Lagrange multiplier.
Alternatively, we showed that the aforementioned constraint can be avoided by augmenting the
mixed formulation with a residual-type term arising from the Brinkman momentum equation.
Finally, we reported several numerical examples illustrating the satisfactory performance of the
methods and confirming the theoretical rates of convergence.

Future works

1. We plan to derive the a posteriori error analysis for the proposed methods in Chapter 5. We
expect to provided reliable and efficient residual-based a posteriori error estimators for the fully-
mixed finite element method and also for the augmented mixed finite element method, respec-
tively.
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2. We are interested in extending the results and techniques of Chapters 3 and 5 to analyze the solv-
ability of a Brinkman-Darcy-Transport coupling. At first glance, the extension of such techniques
looks immediate, however even though the analysis for the coupled Brinkman-Darcy problem can
be easily derived from Chapter 5, a suitable handle to estimate the trilinear term

∫
Ω φu ·∇ψ ap-

pearing in the primal formulation for the transport problem, is required for both the continuous
and discrete levels. In particular, the global velocity u initially belongs to H(div; Ω), and we can
not exploit augmentation techniques to recover a H1(Ω) velocity as was the case in Chapter 3. It
is because of this that we expect to introduce suitable assumptions on u and to derive appropiate
fixed-point strategies for the continuous and discrete case, respectively, in order to establish the
solvability analysis.

3. We plan to study the transient state of the Brinkman-Darcy-Transport coupling in order to simu-
late more realistic physical phenomena concerning biomedical and environment applications such
as, the flow of air in the lungs, perfusion of soft living tissues, CO2 sequestration, contamination
of the groundwater, and the flow of air in the atmospheric boundary layer over vegetation, among
others.

4. Finally, a longer term objective of much interest, is the extension of the mathematical and numer-
ical techniques introduced inChapter 3, to the study of degenerate diffusion equations modelling
the compaction mechanisms leading to physically relevant sedimentation-consolidation models.
We anticipate the use of entropy solutions, discretizations involving low regularity coefficients,
and conservative methods.



Conclusiones y trabajos futuros

Conclusiones

En esta tesis se desarrollaron métodos de elementos finitos mixtos para un conjunto de ecuaciones
diferenciales parciales de interés físico en problemas de transporte a través de flujos viscosos en medios
porosos. A su vez, todos los resultados teóricos que garantizan el buen planteamiento de los métodos
propuestos así como los tests y las simulaciones numéricas correspondientes, han sido proporcionados.

Las principales conclusiones de este trabajo son:

1. Se introdujo un método de elementos finitos mixto-primal aumentado para un problema acoplado
de flujo con transporte, donde la dinámica del fluido está descrita por las ecuaciones de Stokes (con
viscosidad variable) y el transporte de especies se rige por una ecuación de convección–difusión.
El problema original fue reformulado mediante un enfoque variacional aumentado para el flujo
del fluido acoplado con una formulación primal para el modelo de transporte. Seguidamente, a
través de una estrategía de punto fijo junto con supuestos de regulidad adecuados, fue posible
desarrollar el análisis de solubilidad correspondiente. Consecuentemente, se derivó un método de
elementos finitos mixto-primal aumentado, y luego se probó que el mismo estaba bien puesto. En
particular, se estableció que es posible emplear los espacios de Raviart-Thomas de grado k para
el pseudo-esfuerzo, así como polinomios a trozos de grado ≤ k + 1 para la velocidad del fluido
y el campo escalar. Después, desigualdades adecuadas de tipo Strang fueron utilizadas para
derivar rigurosamente las estimaciones de error a priori en las normas naturales. Finalmente, se
reportaron varios experimentos numéricos que validaron el buen desempeño del método y que
confirmaron los ordenes de convergencia correspondientes. Los ejemplos numéricos reportados
incluyen un test de convección térmica empleando una aproximación de Boussinesq, así como la
simulación del estado estacionario de un proceso de clarificación-espesamiento.

2. Se estableció el análisis de error a posteriori para el método de elementos finitos mixto-primal
aumentado asociado al acoplamiento de flujo con transporte. Aquí se derivaron dos estimadores
de error a posteriori, de tipo residual, confiables y eficientes para ese esquema. En particular, para
probar la confabilidad del primer estimador, una descomposición de Helmholtz para H(div; Ω)

con condición de frontera de Neumann homogénea, fue introducida para el caso 2D. Finalmente,
se proporcionaron varios resultados numéricos que ilustraron la confiabiidad y la eficiencia de
los estimadores, y que también mostraron el comportamiento esperado del algoritmo adaptativo
asociado.

3. Se logró extender el enfoque empleado para el análisis del problema acoplado de flujo-transporte
al caso más realista de un sistema de sedimentación-consolidación. Más precisamente, se intro-
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dujo una formulación mixta-primal aumentada para el problema de Brinkman con viscosidad
variable; acoplado con una ecuación escalar no lineal de convección-difusión. Luego, se demostró
que las formulaciones continuas y discretas estaban bien puestas. En particular, para el esquema
de Galerkin, se emplearon espacios de Raviart-Thomas de orden k para el tensor de Cauchy, y
polinomios continuos a trozos de grado ≤ k+1 para la velocidad y también para el campo escalar
asociado a la concentración. Seguidamente, se derivó el análisis de error a priori correspondiente.
Finalmente, se presentaron algunos resultados numéricos que confirmaron los ordenes de conver-
gencia predichos, y que destacaron el buen desempeño del método. En particular, el método
propuesto se aplicó para simular una sedimentación de lotes dentro de un cilindro con contrac-
ción, y también para la simulación del estado estacionario de patrones de flujo, bajo el llamado
efecto Coanda, en procesos de sedimentación.

4. Mediante argumentos similares a los que se emplearon en el análisis de error a posteriori para el
acoplamiento de flujo con transporte, se logró derivar dos estimadores de error a posteriori, de
tipo residual, confiables y eficientes para el método de elementos finitos mixto-primal aumentado
asociado al sistema de sedimentación-consolidación. En particular, en este trabajo se presentaron
las versiones 2D y 3D de estos estimadores para ese esquema. Finalmente, se proporcionaron
varios tests numéricos que confirmaron la confiabilidad y la eficiencia de los estimadores, y que
ilustraron el buen desempeño del algoritmo adaptativo correspondiente.

5. Se derivó un método de elementos finitos completamente mixto basado en vorticidad para apro-
ximar los patrones de flujo en un medio heterogéneo compuesto por un medio poroso, donde
las ecuaciones de Darcy gobiernan el comportamiento del flujo de un fluido incompresible no
viscoso, y un medio más permeable, donde los flujos laminares exhiben efectos viscosos descritos
mediante el modelo lineal de Brinkman. El sistema fue formulado en términos de la velocidad
y la presión en el medio poroso, junto con la vorticidad, la velocidad y la presión del fluido
viscoso. En contraste con otros trabajos disponibles en la literatura como [18] y [19], en este
trabajo no se asumió que la frontera del fluido coincide con la interfaz entre ambos dominios.
Además, aquí la continuidad de la presión a través de la interfaz se estableció utilizando un mul-
tiplicador de Lagrange, mientras que las condiciones de las tensiones normales fueron impuestas
débilmente. Por otra parte, para la formulación variacional mixta resultante no se necesitó alta
regularidad de la presión del fluido como por ejemplo en [18]. Después, se aplicó la teoría clásica
de Babuška-Brezzi junto con el enfoque conocido como T -coercividad para mostrar que la formu-
lación continua y el esquema discreto correspondiente estaban bien puestos. Para el método de
elementos finitos mixto asociado se necesitó que el curl del subespacio de elementos finitos que
aproxima la velocidad esté contenido en el espacio donde vive la velocidad discreta del fluido.
De esta manera, para el esquema de Galerkin se recomienda elegir los subespacios de elementos
finitos dados por; Raviart-Thomas para las velocidades, elementos de Nédélec para la vorticidad,
polinomios continuos a trozos para las presiones, y discontinuos a trozos para el multiplicador
de Lagrange. Alternativamente, se mostró que la restricción mencionada anteriormente se puede
evitar aumentando la formulación mixta con un término de tipo residual que surge a partir de la
ecuación de momentum de Brinkman. Finalmente, se reportaron varios ejemplos numéricos que
ilustraron el desempeño satisfactorio de los métodos y que confirmaron los ordenes teóricos de
convergencia.
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Trabajos futuros

1. Se derivará el análisis de error a posteriori para los métodos introducidos en el Capítulo 5. Se
espera proporcionar estimadores de error a posteriori, de tipo residual, confiables y eficientes
para el método de elementos finitos completamente mixto y también para el aumentado, respec-
tivamente.

2. Interesa extender los resultados y las técnicas introducidas en los Capítulos 3 y 5 para analizar
la solubilidad de un acoplamiento Brinkman-Darcy con transporte. A primera vista, la extensión
de tales técnicas parece inmediata, sin embargo aún cuando el análisis para el problema acoplado
Brinkman-Darcy se puede derivar facilmente a partir del Capítulo 5, se requiere de un manejo
adecuado, tanto a nivel continuo como discreto, para estimar el término trilineal

∫
Ω φu · ∇ψ que

aparece en la formulación para el problema de transporte. En particular, la velocidad global
u inicialmente vive en H(div; Ω), y no se pueden explotar técnicas de aumento para recuperar
una velocidad en H1(Ω) como lo fue en el Capítulo 3. Es debido a esto que se espera introducir
supuestos adecuados sobre u y derivar estrategias de punto fijo apropiadas para el caso continuo
y discreto, respectivamente, con la finalidad de establecer el análisis de solubilidad.

3. Se estudiará el estado transitorio del acoplamiento Brinkman-Darcy-Transporte, con la finalidad
de simular fenómenos físicos más realistas en relación con la salud humana y el medio ambiente,
tales como; el flujo de aire en los pulmones, perfusión de tejidos blandos, captación de CO2,
contaminación de aguas subterraneas, y el flujo de aire en la capa límite atmosférica sobre la
vegetación, entre otros.

4. Finalmente, un objetivo a largo plazo de mucho interés es la extensión de las técnicas matemáti-
cas y numéricas, introducidas en el Capítulo 3, al estudio de las ecuaciones de difusión degene
rada que modelan los mecanismos de compactación que conducen a modelos, físicamente rele-
vantes, de sedimentación-consolidación. Anticipamos que se utilizaran soluciones de entropía,
discretizaciones que involucran bajos coeficientes de regularidad, y métodos conservativos.
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