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RESUMEN

El objetivo principal de esta tesis es proponer, analizar y testear modelos matematicos y
computacionales eficientes a través de los cuales poder localizar actividad cerebral a partir de
mediciones de los campos eléctricos y magnéticos en la superficie de la cabeza. Estas mediciones
se pueden obtener a través de un electroencefalograma y un magnetoencefalograma. En términos
matematicos, esta tesis se centra en resolver un problema inverso.

En primer lugar se estudia el problema inverso usando como modelo las ecuaciones de co-
rrientes inducidas. Igual que para el sistema completo de ecuaciones de Maxwell, se demuestra
que una fuente de corriente volumétrica no puede ser identificada por el conocimiento de las
componentes tangenciales de los campos electromagnéticos sobre la frontera, y se caracteriza el
espacio de las fuentes no radiantes. Por otro lado, se prueba que el problema inverso tiene una
unica solucién si la fuente estd soportada en la frontera de un subdominio o si es la suma de un
numero finito de dipolos. También este trabajo se enfoca en la aplicabilidad de estos resultados
para la localizacién de la actividad cerebral a partir de las mediciones que se obtienen mediante
la electroencefalografia y la magnetoencefalografia.

Posteriormente, se analiza el problema electrostatico con fuente de corriente dipolar. Este es
un problema singular, ya que tal modelo considera derivadas de primer orden de una distribucién
delta de Dirac. Su solucién pertenece a LP, con 1 < p < 3/2 en el caso tridimensional y con
1 < p < 2 en el caso bidimensional. Se consideran la aproximacién numérica del problema
directo a través de elementos finitos lineales a trozos y continuos. Se prueba una estima a priori
del error en norma LP. Ademas, se propone un estimador de error a posteriori de tipo residual.
Se demuestra que tal estimador es confiable y eficiente. Por 1ltimo, se utiliza este estimador
para guiar un procedimiento adaptativo, el cual experimentalmente muestra un orden éptimo
de convergencia.

Luego, se comparan distintos métodos de approximacion de la soluciéon del problema directo
considerando un dominio con varias regiones con diferentes conductividades. Para el problema
directo, se analiza el caso en el que el dipolo se encuentra en una interfaz. En este caso especifico,
se usa una aproximacion de la distribucion delta de Dirac ya que los otros métodos considerados
anteriormente no estan definidos. Por otro lado, para el problema inverso, se analizan los resul-
tados obtenidos utilizando los distintos métodos ya usados en el problema directo y se anaden
a estos, un ultimo método que consiste en usar un procedimiento adaptativo guiado por el es-
timador de error a posteriori encontrado en el Capitulo 4. Se consideran dos situaciones: una
fuente dipolar situada en una regién con conductividad regular y lejana a la interfaz y por otra

parte, el caso en el que la tal fuente es cercana a una interfaz. Se estudia también el caso de una
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fuente distribuida y se compara las matrices de influencia cuando el soporte de dicha fuente se
encuentra dentro de una regién homogénea y es lejana a la interfaz y en el caso en que el soporte
es cercano a la interfaz.

Por tltimo, se considera el problema de corrientes inducidas dependiente del tiempo. Se
formula el problema en términos de dos variables, una definida sélo en el dominio conductor y
la otra, en la frontera del dominio. Se combinan el método de elementos finitos (FEM) y los
elementos de frontera (BEM) para obtener una formulacién variacional acoplada FEM-BEM.
Se establece la existencia y unicidad de la solucién en el caso continuo y en el caso totalmente

discreto. Finalmente, se investiga el orden de convergencia del esquema totalmente discreto.



ABSTRACT

The main goal of this thesis is to propose, test and analyze mathematical and computa-
tional efficient models for the localization of brain activity from measurements of the electric
and magnetic fields on the surface of the head. These measurements can be obtained using
electroencephalography or magnetoencephalography. In mathematical terms, this thesis focus in
the study of an inverse problem.

First, we consider the inverse source problem for the eddy current approximation of Maxwell
equations. We show that as for the full system of Maxwell equations, a volume current source
cannot be uniquely identified by the knowledge of the tangential components of the electromag-
netic fields on the boundary, and we characterize the space of non-radiating sources. On the other
hand, we prove that the inverse source problem has a unique solution if the source is supported
on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address
the applicability of this result for the localization of brain activity from electroencephalography
and magnetoencephalography measurements.

Afterwards, we analyze the electrostatics problem with a current dipole source. This is a
singular problem, since the current dipole model involves first-order derivatives of a Dirac delta
measure. Its solution lies in LP for 1 < p < 3/2 in three dimensional domains and 1 < p < 2 in
the two dimensional case. We consider the numerical approximation of the forward problem by
means of standard piecewise linear continuous finite elements. We prove a priori error estimates
in LP norm. Then, we propose a residual-type a posteriori error estimator. We prove that it is
reliable and efficient; namely, it yields global upper and local lower bounds for the corresponding
norms of the error. Finally, we use this estimator to guide an adaptive procedure, which is
experimentally shown to lead to an optimal order of convergence.

Subsequently, we compare different approximation methods for the solution of the direct
problem in the case of a domain with several regions with different conductivities. For the
direct problem, we analyze the case in which the dipole is located at an interface between two
regions with different conductivities. In this specific case we use an approximation of the delta
function since other methods are not defined in this situation. On the other hand, for the inverse
problem, we analyze the results obtained using the previous methods and one last method that
incorporates an adaptive procedure guided by the a posteriori error estimator found in Chapter
4. Two situations are considered: a source located within a homogeneous region and the case
where the source is close to an interface. We study also the case of a distributed source and we

compare the lead field matrices when the support of such source is located within a homogeneous
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region and when its support is close to an interface.

Finally, the three-dimensional eddy current time-dependent problem is considered. We for-
mulate it in terms of two variables, one lying only on the conducting domain and the other on
its boundary. We combine finite elements (FEM) and boundary elements (BEM) to obtain a
FEM-BEM coupled variational formulation. We establish the existence and uniqueness of the
solution in the continuous and the fully discrete case. Finally, we investigate the convergence

order of the fully discrete scheme.
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Chapter 1

Introduccion

El lograr reconstruir las fuentes de corrientes del cerebro humano es materia de interés en la
investigacién cognitiva y en la rutina clinica. Tal reconstruccién es posible a través de medidas
del potencial eléctrico y del flujo magnético generados. El potencial eléctrico se mide mediante
electrodos fijados en el cuero cabelludo (EEG) y el flujo magnético, mediante magnetémetros
particularmente sensibles, situados a poca distancia de la superficie de la cabeza (MEG).

La actividad electromagnética del cerebro se debe al movimiento de iones en las regiones
activadas. Este movimiento genera las llamadas corrientes impresas (o corrientes primarias) que
a su vez generan las corrientes 6hmicas en el medio que las rodea llamadas corrientes de retorno.
Las mediciones que se obtienen mediante EEG y MEG corresponden a ambas corrientes, pero
la fuente de interés son las corrientes impresas, dado que ellas representan el area de actividad
neuronal asociada a un estimulo sensorial.

El primer EEG en una persona fue efectuado por H. Berger en 1924. El midié diferencias
de potencial eléctrico entre pares de electrodos ubicados en el cuero cabelludo. Hoy en dia estos
electrodos pueden ser pegados directamente a la piel o insertados en una gorra elastica, y es
usual que hayan hasta 256 electrodos.

El primer MEG fue realizado a finales de 1960 por D. Cohen. La sefial magnética en relacién
con la actividad cerebral es extremadamente débil, aproximadamente 100 veces menor que el
campo geomagnético de la tierra. Su medicién sélo llega a ser posible con el magnetémetro
SQUID (Superconducting QUantum Interface Devices) introducido por Zimmerman [70]. Esta
instrumentacion mide algunas componentes de la inducciéon magnética en diferentes ubicaciones,
hoy en dfa hasta 100, cercanas pero externas a la cabeza.

La localizacién de la fuente es un problema inverso: conociendo el valor del campo magnético
o del campo eléctrico sobre la superficie de la cabeza (o, posiblemente, externo a la cabeza, pero

cercano a su superficie), el objetivo es determinar la posicién y algunas caracteristicas fisicas de



la densidad de corriente que ha generado esos valores.

Dado que la distribuciéon dentro de un conductor no se puede recuperar inicamente a partir
del conocimiento del campo electromagnético fuera del conductor, el problema matematico no
tiene una unica solucién si no se asumen algunas condiciones adicionales sobre la fuente (ver
Sarvas [61]). Han sido utilizados principalmente dos aproximaciones distintas para reconstruir
la fuente de actividad cerebral: el modelo dipolar y de corriente distribuida con espacios de
parametros discretos. En el modelo dipolar la densidad de corriente primaria es representada

como

Jp:p(smoa

donde x( corresponde a la localizacion del dipolo y p # 0, recibe el nombre de polarizacion.
Este enfoque es coherente con la realidad dado que las corrientes impresas son unidireccionales
y se deben a la activaciéon de un gran ntimero de células piramidales concentradas en una regiéon
pequenia. En general, se asume que la densidad de corriente primaria se puede descomponer
como una suma de un numero fijo (y no muy alto) de dipolos. Encontrar la posicién de estos
dipolos, se transforma en una busqueda no lineal por minimos cuadrados.

Por otra parte, en el caso de la fuente distribuida con espacio de parametros discretos, se dis-
cretiza la regién del cerebro donde se sabe que se genera la corriente impresa. Después se resuelve
un problema de tipo lineal donde sdlo los momentos dipolares tienen que ser reconstruidos, no
la localizacién ni la orientacion.

Dado que el espectro de frecuencias para senales electrofisioldgicas en EEG y MEG esta bajo
los 1000 Hz, frecuentemente entre 0.1 y 100 Hz, la mayoria de los trabajos tedricos sobre aplica-
ciones biomédicas, tales como [29, 34, 36, 44, 67] usan la aproximacion estdtica de las ecuaciones
de Mazwell en la cual la variacién temporal tanto del campo eléctrico como magnético se omiten.
El modelo estatico no es la tunica simplificacién posible de las ecuaciones de Maxwell. Otros mo-
delos que se pueden tener en cuenta son el modelo electro-cuasiestdtico, en el cual la variacién
temporal de la induccién magnética no es considerada, y el modelo magneto-cuasiestdtico o
ecuactones de corrientes inducidas, las cuales se derivan de las ecuaciones de Maxwell donde
lo que se desprecia es la derivada temporal del campo eléctrico. También es posible estudiar el
problema usando el sisterna completo de Maxwell. Algunas referencias respecto a este punto de
vista son [7, 3, 40].

El objetivo de esta tesis es analizar y proponer nuevos modelos en el estudio matematico,
tedrico y numeérico de la electroencefalografia y la magnetoencefalografia. Se ha comenzado
estudiando el modelo de corrientes inducidas y la posibilidad de usarlo en este contexto. En
relacién a estas ecuaciones, dentro de esta tesis se ha analizado un nuevo método numérico.

También se ha estudiado el modelo electrostatico usado generalmente en estas aplicaciones. En
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concreto, para el modelo estatico se ha desarrollado un andlisis a priori y a posteriori del error
en la aproximaciéon mediante elementos finitos. El estimador encontrado se ha utilizado para
idear una estrategia computacional mediante la cual es posible resolver el problema inverso en
modo eficiente. Se han investigado también nuevos modelos para la aproximacién de la corriente
primaria, robustos desde el punto de vista computacional.

A continuacién se introducen en forma detallada cada uno de los conjuntos de ecuaciones

previamente mencionados.

1.1 Modelizacién del problema

Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones que describen por completo
los fenémenos electromagnéticos. James Clerk Maxwell contribuyé reuniendo en estas ecuaciones
largos anos de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros.

El sistema completo de ecuaciones de Maxwell corresponde a

( 0D
%—t +J =curlH (ley de Maxwell - Ampere)
95 +curl€ =0  (ley de Faraday)
ot (1.1)
divD =p (ley Eléctrica de Gauss)
divB =0 (ley Magnética de Gauss)

donde £ es el campo eléctrico, D es el desplazamiento eléctrico, H es el campo magnético, B es
la induccién magnética, J es la densidad de corriente y p es la densidad de carga libre. Todos los
campos que aparecen en estas ecuaciones son funciones vectoriales que dependen de la variable
espacial © € R? y del tiempo ¢.

Los distintos campos &, D, B y H estan relacionados por medio de las leyes constitutivas, las
cuales dependen de los materiales que forman el dominio de estudio. Usualmente se asume una
dependencia lineal de la forma D = €€, B = pH, donde € y p reciben el nombre de permitividad
eléctrica y permeabilidad magnética, respectivamente. En los problemas maés interesantes de la
fisica e ingenieria, la region de interés estd compuesta de un medio no homogéneo y no isotrépico:
esto es, € y p no son constantes, pero son matrices simétricas y uniformemente definidas positi-
vas con coeficientes que son funciones acotadas dependientes de la posiciéon. En general, también
puede considerarse una dependencia no lineal entre Dy £, By H (por ejemplo, para problemas
de histéresis). Sin embargo en esta tesis, se considerard sélo una dependencia de tipo lineal.

El sistema se completa con la ley de Ohm que relaciona la densidad de corriente en el
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conductor con el campo eléctrico de la siguiente manera:
J =o¢&,

donde o recibe el nombre de conductividad eléctrica, la cual, en regiones conductoras se supone
que es una matriz simétrica y definida positiva (con coeficientes que son funciones acotadas
dependientes de la posicién), mientras que es nula en regiones no conductoras o dieléctricos.

Cuando el problema estd dado por una densidad de corriente aplicada 7., uno necesita con-
siderar la ley de Ohm generalizada J = o0& + J.. Como consecuencia de la ecuacién de Maxwell-
Ampere y la ecuacién eléctrica de Gauss, es necesario asumir que div J, = 0 en cualquier regién
no conductora y libre de cargas.

Esta tesis, con excepcion del Capitulo 6, se centra en problemas en donde las cantidades
fisicas varian periddicamente en el tiempo, lo cual generalmente sucede cuando la densidad de

corriente aplicada J. es una corriente alterna, a saber,
Te(x,t) = Ju(x) cos(wt + ),

donde J, es una funcién vectorial en R3, w # 0 es la frecuencia angular y ¢ es el dngulo de fase.

Esto es equivalente a la representacion

To(@,t) = Re[J.(2)ei @] = Re[J.(z)el )]

donde se ha introducido la funcién de variable compleja J.(x) = J.(2)e™?. De acuerdo a esto,

se busca una solucién periddica en el tiempo dada por

E(@.1) = Re[E()e™)],
H(w,t) = Re[H ()e)],
donde E y H son funciones vectoriales cuyas entradas corresponden a valores complejos (a

menudo llamadas “fasores”). Las ecuaciones de Maxwell arménicas en el tiempo que correspon-

den a las siguientes:

curl H — (iwe+o)E = J. en Q,
(1.2)
curl B 4+ iwpH = 0 en {2,

donde ) corresponde al dominio fisico. Tales ecuaciones se derivan directamente del sistema
completo bajo las suposiciones que se hicieron previamente.

Notar que la ecuacién magnética de Gauss div (uH) = 0 es una consecuencia de la ecuacién
de Faraday.

Como se ha observado en experimentos y también establece la ley de Faraday, una variacién

temporal del campo magnético genera un campo eléctrico. Por tanto, en cada conductor surge
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una densidad de corriente J.q4y = o E; este término expresa la presencia en un medio conductor
de las corrientes inducidas.

Cuando el término de desplazamiento de corriente %—? (o en forma equivalente, iweFE) es
despreciado, el sistema de ecuaciones que se obtiene recibe el nombre de aproximaciéon por
corrientes inducidas de las ecuaciones de Maxwell (o aproximacién magneto-cuasiestatica). En

el caso armonico en el tiempo, el sistema de ecuaciones corresponde a

curlH —ocFE =J. en(},
curl E + iwpH =0 en §, (1.3)
div(eE) =0 en Qr,

donde Q7 corresponde al dieléctrico. Como en el caso del sistema completo de Maxwell, se debe

asumir que

divde =0 en Q. (1.4)

También se desprende de este conjunto de ecuaciones la restriccién div (uH) = 0, la cual se
sigue de la ley de Faraday. Finalmente, notamos que en la aproximacion por corrientes inducidas
div (e E) = 0 en {27, lo que asegura que la carga eléctrica se anula en el dieléctrico, lo cual no es
una consecuencia de la ecuaciéon de Ampere ni de (1.4).

Cuando se condideran problemas dependientes del tiempo y la variacién temporal de los
campos es lenta, uno puede simplificar el modelo de ecuaciones de Maxwell, despreciando las
derivadas temporales %—? y %—? (o en el caso de las ecuaciones armonicas en el tiempo, esto
equivale a considerar w = 0). Tal modelo recibe el nombre de modelo electro-magnetostatico.

En el caso armédnico en el tiempo, las ecuaciones corresponden a

( curlH —ocE =J, en(},

curl E=0 en {2,
(1.5)

div(pH) =0 en 1,

div(eE) =0 en (1.

De la segunda ecuacién de (1.5), se deriva que el campo eléctrico es un gradiente de un

potencial escalar E = —VV y por tanto, de la primera ecuacién en (1.5) se obtiene

div(eVV) =divJ,.
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Asi, se obtiene el siguiente sistema de ecuaciones:

div(eVV) =divd, en Qc¢,

curlH —oVV =J, en(Q,
(1.6)
div(pH) =0 en 1,

div(eVV) =0 en (1.

donde ¢ corresponde al conductor. Ahora se presentan las geometrias, propiedades de las
cantidades fisicas y ecuaciones junto con condiciones de frontera, que se utilizaron en cada
capitulo de esta tesis.

En el Capitulo 3 se considera un conductor Q- C R3, el cual representa una parte del cuerpo
humano. Se asume que ¢ es un dominio acotado con una frontera Lipschitz y conexa I'. En
el conductor, la conductividad es una matriz simétrica y uniformemente definida positiva con
coeficientes en L. También se considera un dominio computacional Q@ C R3, que contiene
completamente a Q. El dominio 2 es un dominio acotado y simplemente conexo y con frontera
Lipschitz 9. El dieléctrico se define como Q7 := Q\ Q¢. Este es un conjunto conexo y corres-
ponde al aire que rodea la cabeza. La permeabilidad magnética y la permitividad eléctrica son
matrices simétricas y uniformemente definidas positivas con coeficientes en L. Por otra parte,
en la frontera exterior 9€) se impone la condicién de frontera magnética H x n = 0. Ademss,
agregamos la condicién necesaria para la unicidad div (eE) = 0 en §2;. Cuando se impone una
condicién de frontera magnética sobre la frontera, se debe imponer otra condicién de frontera

necesaria: eE - n = 0 sobre 0f). Asi, el sistema de ecuaciones se convierte en

curlH —ocFE =J., en{},

curl E + iwpH =0 en (2,

div(eE) =0, en (1.7)
eE-n=0 sobre 92,
| Hxn=0 sobre 92,

donde la fuente J. es una fuente distribuida (J. € (L*(Q¢))?) o una corriente superficial (J, €
H~'/2(div ;;0B) con B C R? abierto y conexo, con frontera Lipschitz OB y satisface B C Q¢)
o una corriente dipolar (J, = Z]szl Pidz,, con xp punto interior de Q¢, k = 1,..., M). Seran
necesarias condiciones adicionales sobre la conductividad o, condiciones sobre las cuales se dara
més detalle en este capitulo.

En Capitulos 4 y 5, se considera el modelo electrostatico, en el cual sélo es de interés encontrar

el campo eléctrico y deriva del modelo electro-magnetostatico. Como conductor, se considera un
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abierto acotado Q¢ C R?, donde d puede tomar los valores 2 o 3 en Capitulo 4 y toma el valor 2
en Capitulo 5. Se considera como condicién de frontera (eVV') -n = 0 sobre )¢, la cual viene
del hecho que div (J. —oVV) = div (curl H) = 0 en 2, de aqui (J. — oVV) - n no tiene saltos
sobre 0€)¢. Ademas J. se localiza en el interior de la cabeza y la conductividad se anula fuera

de ella. Por tanto, el conjunto de ecuaciones que modelan tal problema es el siguiente:

div (eVV) = div (pdg,) en Qc,

(1.8)
(eVV)-n=0 sobre 0Q¢ .

La conductividad o corresponde a una matriz simétrica y uniformemente definida positiva,
con coeficientes en L (). Para probar existencia y unicidad de solucién de tal problema, es
necesario asumir una mayor regularidad de o en un entorno del soporte de la delta; en concreto
los coeficientes de la matriz o deben pertenecer a W1 (B, (x0)), donde B,,(xo) := {x € R? :
| — xo| < ro} para un ro adecuado.

Finalmente, en el Capitulo 6, se considera como dominio conductor Q¢ C R? el cual es un
poliedro conexo, acotado, con frontera I' conexa y Lipschitz continua. El dieléctrico, corresponde
aQ:=R3 \QC el cual también es conexo. Se consideran las ecuaciones de corrientes inducidas

dependientes del tiempo que corresponden a

O(pH) + curlE =0 in R x (0,7),
curl H —oE = J, in R? x [0, 77,
div(eE) =0 in Q7 x (0,77, (1.9)
H(z,t), E(x,t) = O(lz|™")  as |&| = oo,
| H(z,0) = Hy(x) x € R3,

donde T > 0, la densidad de corriente J. € L%(0,T;(L*(Q¢))?) y ademéds tiene soporte com-
pacto en el conductor. La cuarta condicién de (1.9) se satisface uniformemente en [0,77]. El
dato inicial Hy € (L?(2c))? y satisface div (uHg) = 0 en R3. Los coeficientes o, p y € son
matrices simétricas con componentes acotadas. La conductividad es nula en el dieléctrico. La
permeabilidad magnética p es definida positiva en todo R? y satisface p = pgl en Q7, donde
I se entiende como la matriz identidad. La permitividad eléctrica € es necesaria sélo en el
dieléctrico en esta formulacién y se asume satisfacer € = ggl en Qj; ug v €9 son los coeficientes

correspondientes en el vacio.

1.2 Organizacion de la tesis

Este trabajo se organiza de la siguiente manera. En el Capitulo 3, se estudia la unicidad de

la solucién del problema inverso para el problema de corrientes inducidas, siguiendo el enfoque
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propuesto por Albanese y Monk [3] para el sistema de ecuaciones de Maxwell. Como fuente de
corriente, se han considerado tres situaciones distintas: una fuente de corriente distribuida, una
corriente superficial y finalmente, una corriente dipolar. En relacion a la primera, se demuestra
que cuando la fuente estd en L? el problema inverso no tiene una tinica solucién y se caracteriza
el espacio de fuentes no radiantes. Con respecto a la segunda, se demuestra que conociendo
la componente tangencial del campo eléctrico sobre la frontera del dominio, existe una tnica
corriente superficial que la genera. En el caso de la fuente dipolar, primero se demuestra existencia
y unicidad del problema directo y posteriormente, se analiza el problema inverso. Como en el
caso de la corriente superficial se demuestra que la componente tangencial del campo eléctrico
en el borde del conductor determina de manera tunica el ntimero de dipolos, localizacién y
polarizacién. Ademas, se presenta una férmula mediante el cual es posible encontrar la fuente
dipolar, sabiendo a priori la componente tangencial del campo eléctrico sobre la frontera del
dominio. Finalmente, se estudia como encontrar la componente tangencial del campo eléctrico
a partir de los datos medidos a través de EEG y MEG. Este capitulo esta constituido por el

siguiente articulo:

A. ALoNso RoDRIGUEZ, J. CAMANO AND A. VALLI, Inverse source problems for eddy

current equations. Inverse Problems, vol. 28, 1, (2012).

En el Capitulo 4 usando la formulacién estudiada por Valli [65], se desarrolla un andlisis a
priori y a posteriori para una formulacién variacional del problema electrostatico, el cual es un
problema con singularidad dado que la fuente de corriente contiene derivadas de primer orden de
la distribucién delta de Dirac. En [65] se demostrd que la solucién de este problema pertenece a
LP para 1 < p < 3/2 en dominios tridimensionales y siguiendo la misma técnica de demostracion,
se prueba que la solucién en el caso bidimensional también pertenece a LP, con 1 < p < 2. En
este capitulo, se da una estima de error a priori en norma LP, valida para mallas cuasiuniformes,
y se propone un estimador de error a posteriori, el cual se demuestra que resulta confiable y
eficiente bajo las hipotesis de convexidad del dominio y mayor regularidad de la conductividad.
Todo este andlisis se presenta inicialmente en un dominio bidimensional y posteriormente en
un dominio tridimensional, pero este ltimo caso bajo suposiciones més restrictivas (geometria
ctbica y conductividad constante). Finalmente, el estimador se usa para guiar un procedimiento
adaptativo, el cual muestra experimentalmente un orden éptimo de convergencia. Este capitulo

esta constituido por el siguiente articulo:

A. ALoNSO RODRIGUEZ, J. CAMANO, R. RODRIGUEZ AND A. VALLI, A posteriori error

estimates for the problem of electrostatics with a dipole source. (enviado).
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En el Capitulo 5 se compara la soluciéon aproximada del problema directo usando el método
de substraccion y el método directo en el caso concreto de un dominio con varias regiones con
distintas conductividades. Para el problema directo, se analiza el caso en el cual el dipolo se
localiza cerca o exactamente en una interfaz entre dos regiones con conductividades diferentes.
Se estudia también un tercer método que aproxima a la distribucién delta de Dirac usando la
funcién caracteristica. Numéricamente se observa que en esta situacion el tercer modelo es el
Unico que da buenos resultados. Para el problema inverso se analizan los resultados obtenidos
usando los tres métodos ya mencionados y se agrega a estos tres, un iltimo método que corres-
ponde a trabajar el método directo en conjunto con un procedimiento adaptativo guiado por el
estimador encontrado en el Capitulo 4. Se consideran dos situaciones: una fuente localizada en el
interior de una region y el caso en que la fuente es cercana a una interfaz. Se estudia también el
caso de una fuente distribuida y se comparan las matrices de influencia en distintas situaciones.

Este capitulo estd constituido por el siguiente articulo:

A. ALONSO RODRIGUEZ, J. CAMANO, R. RODRIGUEZ AND A. VALLI, Numerical behavior
of different approximation methods for the direct and inverse problems of electrostatics with

a dipole source. (en preparacién).

Finalmente, en paralelo al trabajo que se presenta en el Capitulo 3, en el Capitulo 6 se
estudia un nuevo método numérico para las ecuaciones de corrientes inducidas dependientes del
tiempo en un dominio conductor acotado contenido en R3. El problema se reformula expresando
los campos magnético y eléctrico en términos de nuevas variables que resultan ser mas conve-
nientes: la primitiva temporal del campo eléctrico la cual desempena el papel de un potencial
vectorial para el campo magnético en el conductor y la traza del potencial escalar magnético en
el aislante. Luego, se deriva una formulacién FEM-BEM y se demuestra existencia y unicidad
de solucién para el problema. Se discretiza el problema usando como espacios de discretizacion
el de elementos finitos de Nédélec para la variable definida en el conductor y funciones lineales a
trozos y continuas para una variable adicional en la frontera del dominio, la cual surge a partir
de las ecuaciones integrales. Para la discretizacién temporal se usa un método backward Euler.
Finalmente, se prueba que el esquema discreto converge con un orden 6ptimo a la solucién. Este

capitulo estd constituido por el siguiente articulo:

J. CAMANO AND R. RODRIGUEZ, Analysis of a FEM-BEM model posed on the conduc-
ting domain for the time-dependent eddy current problem. Journal of Computational and

Applied Mathematics, vol. 236, issue 13, pp. 3084-3100, (2012).

Es importante resaltar que con respecto al problema inverso, en el primer capitulo son nece-

sarias tanto las mediciones que se obtienen con EEG como con MEG, no asf en el tercer y cuarto
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capitulo, donde lo que se estudia es el modelo electrostatico y por esta misma razon, los tinicos

datos necesarios son los que se obtienen mediante EEG.



Chapter 2

Introduction

The reconstruction of electromagnetic sources in the human brain is of great interest in
cognitive research and in clinical routine. Such reconstruction is possible through measurements
of the scalp electric potential and the external magnetic flux. The electric potential is measured
by electrodes attached to the scalp (EEG) and magnetic flux through particularly sensitive
magnetometers, located within short distance from the surface of the head (MEG).

Electromagnetic activity of the brain is due to the motion of ions in activated regions.
This movement generates the so called impressed currents (or primary currents) that in turn
create ohmic currents in the surrounding environment called return currents. The measurements
obtained by EEG and MEG correspond to both currents, but the source of interest are the
impressed currents, since they represent the area of neural activity associated with sensory
stimuli.

The first EEG was performed by H. Berger in 1924. He measured the electric potential diffe-
rences between pairs of electrodes placed on the scalp. Today these electrodes can be attached
directly to the skin or inserted into an elastic cap. Up to 256 electrodes can be used.

The first MEG was realized in late 1960 by D. Cohen. The magnetic signal due to brain
activity is extremely weak, approximately 100 times less than the geomagnetic field of the
earth. Its measurement becomes possible only with the SQUID magnetometer (Superconducting
QUantum Interface Devices) introduced by Zimmerman [70]. This instrumentation measures
some components of the magnetic induction in different locations; today these can reach the
quantity of 100, near but outside the head.

The location of the source is an inverse problem: knowing the value of the magnetic field
or the electric field on the surface of the head (or possibly outside the head, but close to the
surface), the goal is to determine the position and some physical characteristics of the current

density that generated these values.
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Since the distribution inside a conductor can not be recovered only from knowledge of the
electromagnetic field outside the conductor, the mathematical problem does not have a unique
solution unless some additional conditions are assumed on the source (see Sarvas [61]). There
have been used mainly two different approaches to reconstruct the source of the brain activity:
the dipole model and the model of a distributed source (with a discrete spaces). The primary

current density in the dipolar model is modeled as
J p = p(smo 5

where xy corresponds to the location of the dipole and p # 0 is called polarization. This is a
good approximation of unidirectional impressed currents, due to activation of a large number of
pyramidal cells concentrated in a small region. It can also be assumed that the primary current
density is decomposed as the sum of a fixed number (not too high) of dipoles. Finding the
position of these dipoles becomes a nonlinear least squares search.

On the other hand, in the case of a distributed source with a discrete parameter space, the
region of the brain where it is known that the impressed current is generated is triangulated
and dipolar sources are placed at fixed points of each element. Then, a linear inverse problem is
solved where only the dipole moments have to be rebuilt, not the locations.

Since the frequency spectrum for electrophysiological signals in EEG and MEG is below 1000
Hz, often between 0.1 and 100 Hz, most theoretical works on biomedical applications, such as
[29, 34, 36, 44, 67], use the static approzimation of the Mazwell equations in which the time
variation of both electric and magnetic fields are disregarded. The static model is not the only
possible simplification of the Maxwell equations. Other models that can be taken into account
are the electro-quasistatic model, in which the time variation of the magnetic induction is not
considered and the magneto-quasistatic model or eddy current equations, which are derived from
the Maxwell equations neglecting is the time derivative of the electric field. It is also possible to
study the problem using the full system of Maxwell. Some references on this last approach are
[7, 3, 40].

The aim of this thesis is to analyze and to propose new models in the mathematical theoretical
and numerical study of electroencephalography and magnetoencephalography. We start studying
the eddy currents model and the possibility of using it in this context. We analyze a new
numerical method for this model. We have also studied the electrostatic model, which is more
often used in these applications. Specifically, for the static model a priori and a posteriori analysis
of the error in the finite element approximation have been developed. The estimate found has
been used to devise a computational strategy by which it is possible to solve the inverse problem
in an efficient way. We have also investigated new models for the approximation of the primary

current, that are robust from the computational point of view.
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In the next section each of the aforementioned sets of equations are introduced in detail.

2.1 Modelization the problem

Maxwell equations are a set of four equations completely describing electromagnetic pheno-
mena. James Clerk Maxwell gathered in these equations, after long years of experimental results,
due to Coulomb, Gauss, Ampere, Faraday and others.

The full system of Maxwell equations reads

( 0D

T +J =curlH (Maxwell - Ampere equation)
oB .
— +curl€ =0  (Faraday equation)
ot (2.1)
divD =p (Gauss electrical equation)
| divB=0 (Gauss magnetic equation)

where £ is the electric field, D is the electric displacement, H is the magnetic field, B is the
magnetic induction, J is the current density and p is the free charge density. All the fields that
appear in these equations are vector functions that depend on the spatial variable € R? and
the time t¢.

The fields £, D, B and H are related by constitutive laws, which depend on the materials
that constitute the considered physical domain. Usually a linear dependence of the form D = €&,
B = pH is assumed, where € and p are called electric permittivity and magnetic permeability,
respectively. In physiological applications the media are non-homogeneous and anisotropic: that
is, € and p are not constant, but are symmetric and uniformly positive definite matrices with
coefficients that are bounded functions of the position.

The system is completed by Ohm law relating the current density in the conductor with the
electric field as follows:

J =o¢&,

where o is called electric conductivity, is a symmetric and positive definite matrix in conduc-
tive regions (with coefficients that are bounded functions of the position), while it is null in
nonconductive regions or dielectrics.

When the problem is driven by an applied current density J., the generalized Ohm law
J = o0& + J. is considered. As a consequence of the Maxwell-Ampere equation and the Gauss
electrical equation, it is necessary to assume that div 7. = 0 in any free of charge non-conductive

region.
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This thesis, with the exception of Chapter 6, is centered on problems where the physical
quantities vary periodically in time, which usually happens when the current density 7. is an
alternating current, namely

Te(x,t) = Ji(x)cos(wt + @),

where J, is a vector function in R?, w # 0 is the angular frequency and ¢ is the phase angle.

This is equivalent to the representation

Te(z,t) = Re[J*(m)ei(wt-‘r(ﬁ)} — Re[Je(m)e(iwt)]

where the complex variable function J.(x) = J.(x)e™? has been introduced. Accordingly, we

look for a periodic in time solution given by

E(x,t) = Re[E(x)e™)]
H(x,t) = Re[H (z)e™Y)],

where E and H are vector functions whose entries correspond to complex values (often called
“ phasors 7). The time-harmonic Maxwell equations read:
curl H — (iwe+o)E = J. inQ,
(2.2)
curl B 4+ iwpH = 0 in Q,
where €2 corresponds to the physical domain. They are derived directly from the complete system
under the assumptions above.
Note that the Gauss magnetic equation div (uH) = 0 is a consequence of the Faraday
equation.
A time-variation of the magnetic field generates an electric field. Therefore, in each conductor
a current density J.qqy, = o FE arises; this term expresses the presence in conducting media of
the so-called eddy current.
When the displacement current term %—? (or equivalently, iwe E) is neglected, the system of
equations obtained is called eddy current approximation of the Maxwell equations (or magneto-

quasistatic approximation). In the time-harmonic case, the system of equations is
curlH —ocFE =J, in(),
curl E + iwpH =0 in Q, (2.3)
div(eE) =0 in Qr,

where 7 corresponds to the dielectric. As for the full-Maxwell system, it must be assumed that

divJ, =0 1in Q. (2.4)
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From Faraday law it follows that div (uH) = 0. Equation div (e E) = 0 in §; ensures that
the electric charge vanishes in the dielectric, which is not a consequence of the Ampeére equation
or (2.4).

When time-dependent problems are considered and time-variation of the fields is slow, one
can simplify the model of the Maxwell equations, neglecting both time derivatives %—? and %
(or in the time-harmonic case, this is equivalent to consider w = 0). Such a model is called
electro-magnetostatic model. In the time-harmonic case, the equations are

/

curlH —ocFE =J. in (),
curlE =0 in
(2.5)
div(pH) =0 in 2,
div(eE) =0 in Qr.

From the second equation in (2.5), for a simply-connecetd domain Q it follows that the
electric field is a gradient of a scalar potential E = —VV and therefore from the first equation
in (2.5) we obtain

div(eVV) =divd,.

Thus, we have the following system of equations:
div(eVV) =divJ,. in Qc¢,
curlH —oVV =J,. in Q,
div(pH) =0 in Q,

div(eVV) =0 in Qr,

where Q¢ corresponds to the conductor. In the chapters of this thesis we consider different
electromagnetic models.

In Chapter 3 we focus on the time-harmonic eddy-current model. We consider a conductor
Q¢ C R3, which represents a part of the human body. We assume that Q¢ is a bounded
domain with a Lipschitz and connected boundary I'. In the conductor, the conductivity is a
symmetric and uniformly positive definite matrix with coefficients in L°°. Also we consider a
computational domain  C R3, which completely contains Qc. The domain € is a bounded and
simply-connected domain with Lipschitz boundary 9. The dielectric is defined as Q7 := Q\ Qc¢.
It is assumed to be connected and corresponds to the air surrounding the head. The magnetic
permeability and the electric permittivity are symmetric and uniformly positive definite matrices
with coefficients in L*°. Moreover, at the external border 92 we impose a magnetic boundary

condition H x n = 0. Also, we add the condition div (e E) = 0 in € that is necessary for
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uniqueness. When we impose a magnetic boundary condition on the boundary, we must impose

the other necessary boundary condition e E-n = 0 on 0f2. Thus, the system of equations becomes

([ cwlH — oE =J., inQ,

curl E 4 iwpH =0 in ),

div(eE) =0, in Qr, (2.7)
eE-n=0 on 0},
Hxn=0 on 0§2,

where the source J. is a distributed source (J. € (L?(Q¢))?) or a surface current (J, €
HY 2(div ,; 0B) with B C R? open and connected, with Lipschitz boundary 0B and satisfying
B C Q¢) or a current dipole (J, = Zﬁil D10z, , With x an internal point of Q¢, k =1, ..., M).
Additional necessary conditions on the conductivity o, have to be added, and about them we
give more details in this chapter.

In Chapters 4 and 5 we consider the electrostatic model, a reduced form of the electro-
magnetostatic model. We work in an open bounded conductor domain Q¢ C R?, where d can
take the values 2 or 3 in Chapter 4 and take the value 2 in Chapter 5. The boundary condition
is (6VV)-n =0 on 9Q¢. This comes from the fact that div (J, —oVV) =div(curl H) = 0 in
Q, hence (J — oVV) -n does not jump on 9Q¢c; moreover, J. is located inside the head and

conductivity vanishes outside it. Therefore, the boundary value problem that we study is:

div (eVV) = div (pdg,) in Qc,
(2.8)
(eVV)-n=0 sobre 0Q¢ .

The conductivity o corresponds to a symmetric and uniformly positive definite matrix, with
coefficients in L>°(Q¢). To prove existence and uniqueness of solution of this problem, it is
necessary to assume higher regularity of o in a vicinity of the support of the delta distribution,
in particular the coefficients of & must belong to W1>(B,, (z)), where B,,(xo) := {x € R? :
| — x| < ro} for a suitable ry.

Finally, in Chapter 6 we focus on the time-dependent eddy current model in the whole space.
The conductor Q¢ C R? is a bounded connected polyhedron with boundary I' connected and
Lipschitz continuous. The dielectric, 27 := R3 \ ¢ is assumed to be connected. The boundary

value problem reads:
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O(pH) + curl E =0 in R? x (0,7),
curlH —oE =J, in R3 x [0, 77,
div (eE) =0 in Q; x [0, 7], (2.9)
H(z,t), E(x,t) = O(lz|™")  as |&| = oo,
H(x,0) = Hy(x) x € R3,

where T > 0, the current density J. € L?(0,T;(L?(2¢))?) and has compact support in the
conductor. The fourth condition of (2.9) is satisfied uniformly in [0, T']. The initial datum satisfies
H, € (L*(Q¢))? and div (uH) = 0 in R3. The coefficients o, pu and € are symmetric matrices
with bounded elements. The conductivity vanishes in the dielectric. The magnetic permeability
p is positive definite at all R® and satisfies u = pgl in Q7, where I is the identity matrix. In
this formulation the electric permittivity € appears only in the dielectric in this formulation and
therefore we assume that € = ¢ol in Qr; po and g are the corresponding coefficients in the

vacuuinl.

2.2 Organization of the thesis

This thesis is organized as follows. In Chapter 3, we study the uniqueness of the solution of
the inverse problem for the eddy current problem, following the approach proposed by Albanese
and Monk [3] for the complete system of Maxwell equations. We considere three different kinds
of current sources: a distributed source, a surface current source and a dipole source. Concerning
to the first one, we show that the inverse problem has not a unique solution when the source is
in L? and we characterize the space of non-radiating sources. On the other hand, we prove that
the inverse problem has a unique solution if we assume that the source is supported on a surface
internal to 2. In the case of the dipole source, we first prove existence and uniqueness of the
direct problem and then we analyze the inverse problem. As in the case of the surface current
we show that the tangential component of the electric field at the boundary of the conductor
uniquely determines the number of dipoles, location and polarization. In addition, we present a
formula by which it is possible to determine the source dipole, knowing a priori the tangential
component of the electric field on the boundary of the domain. Finally, we study how to find
the tangential component of the electric field from the measured data through EEG and MEG.
This chapter has been published in:

A. ALonso RoDRIGUEZ, J. CAMANO AND A. VALLI, Inverse source problems for eddy

current equations. Inverse Problems, vol. 28, 1, (2012).
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In Chapter 4 we use the formulation studied by Valli [65], and we develop an a priori and
a posteriori analysis for a variational formulation of the electrostatic problem. This is a singular
problem since the current source contains first-order derivatives of the Dirac delta distribution.
In [65] it is proved that the solution belongs to LP for 1 < p < 3/2 in three-dimensional domains
and following the same demonstration technique, we prove that the solution in the bidimensional
case belongs to LP, with 1 < p < 2. In this chapter, we give an a priori error estimate in LP-
norm, which is valid for quasiuniform meshes, and we propose an a posteriori error estimator.
We show that it is reliable and efficient under the hypothesis of convexity of domain and higher
regularity of the conductivity. All this analysis is presented initially in a two-dimensional domain
and then in a three-dimensional domain, but in the last case under more restrictive assumptions
(cubic geometry and constant conductivity). Finally, the estimator is used to guide an adaptive
procedure, which shows experimentally optimal convergence rate. This chapter corresponds to

the following article:

A. ALoNSO RODRIGUEZ, J. CAMANO, R. RODRIGUEZ AND A. VALLI, A posteriori error

estimates for the problem of electrostatics with a dipole source. (submitted).

In Chapter 5 we compare the approximate solution of the direct problem using different
methods, including the subtraction method and the direct method, in the case of a domain with
several regions with different conductivities. We analyze the cases in which the dipole is close to
or exactly located at an interface between two regions with different conductivities. Numerically
we see that, when the source is on the interface, the only method that gives good results is
a third one, in which the delta distribution is approximated by a characteristic function. For
the inverse problem we analyze the results obtained using the three methods mentioned above
and a last one that corresponds to the direct method with an adaptive procedure guided by
the estimates found in Chapter 4. Two situations are considered: the case of a source located
well inside a homogeneous region and the case of a source close to an interface between two
homogeneous regions. We study also the case of a distributed source (the sum of several dipoles)
and we compare the lead field matrices in different situations. This chapter corresponds to the

following article:

A. ALoNSO RODRIGUEZ, J. CAMANO, R. RODRIGUEZ AND A. VALLI, Numerical behavior
of different approximation methods for the direct and inverse problems of electrostatics with

a dipole source. (in preparation).

Finally, in parallel to the work presented in Chapter 3, in Chapter 6 we study a new

numerical method for the time-dependent eddy currents equations in a conductor bounded
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domain contained in R3. The problem is reformulated by expressing the electric and magnetic
fields in terms of new variables that turn out to be more convenient: the temporal primitive
electric field which plays the role of a vector potential for the magnetic field in the conductor, and
the magnetic scalar potential trace on the interface. Then, we derive a FEM-BEM formulation
and prove existence and uniqueness of the solution to the problem. It is discretized using Nédélec
finite elements for the variable defined in the conductor and piecewise linear and continuous
finite elements for an additional variable on the boundary of the domain. For the temporal
discretization we use the backward Euler method. Finally, we prove that the discrete scheme

converges with optimal order to the solution. This chapter has been published in:

J. CAMANO AND R. RODRIGUEZ, Analysis of a FEM-BEM model posed on the conduc-
ting domain for the time-dependent eddy current problem. Journal of Computational and

Applied Mathematics, vol. 236, issue 13, pp. 3084-3100, (2012).






Chapter 3

Inverse source problems for eddy

current equations

3.1 Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-invasive
techniques used to localize electric activity in the brain from measurements of external electro-
magnetic signals. EEG measures the scalp electric potential, while MEG measures the external
magnetic flux. From the mathematical point of view the goal is to solve an inverse problem for
determining the source current distribution in a heterogeneous media from boundary measure-
ments of the fields.

The frequency spectrum for electrophysiological signals in EEG and MEG is typically below
1000 Hz, most frequently between 0.1 and 100 Hz. For this reason most theoretical works on
biomedical applications focus on the static approximation of the Maxwell equations, in which
the time variation of both electric and magnetic fields is disregarded.

Recently He and Romanov [40], Ammari et al. [7] and Albanese and Monk [3] investigated
the localization of brain activity through the inverse source problem for the full Maxwell system
of equations. In this chapter we analyze the inverse source problem for an alternative model:
the eddy current (or low frequency approximation) of Maxwell equations. In the eddy current
model the time variation of the electric field is disregarded, while time variation of the magnetic
field is kept.

Let us consider electromagnetic phenomena at frequency w # 0. The time-harmonic full

Maxwell system of equations read

curl H —iweE = oE + J. (Maxwell-Ampere equation) (3.1)
curl E + iwpH =0 (Faraday equation). '

21
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Here E, H denote the electric and magnetic fields, respectively; J . is the applied current density;
€ is the electric permittivity, u the magnetic permeability and o the electric conductivity.

The eddy current model is formally obtained by neglecting the displacement current term:

curlH = ocFE + J,

(3.2)
curl E 4+ iwuH =0.

Let us consider a conductor Q¢ C R3, say, the human head. We assume that Q¢ is a bounded
domain with a Lipschitz and connected boundary I'. In Q¢ the conductivity ¢ is a symmetric
and uniformly positive definite matrix with entries in L>°(Q¢). We consider also a computational
domain  C R3, say, the room where the problem is studied. We assume that €2 is a bounded
simply-connected domain, completely containing Q2 and with Lipschitz boundary 0€2. Moreover
we assume that 7 := Q\ Q¢ is connected. Q; is an insulator, the air surrounding the head,
hence ¢ is vanishing in ;. We also assume that the electric permeability p and the electric
permittivity € are symmetric and uniformly positive definite matrices with entries in L ().

On the boundary 02, we can impose either the magnetic boundary condition H x n = 0 or
the electric boundary condition E x n = 0 (Here n denotes the unit outward normal vector on
09).

Since o is equal zero in insulators, equations (3.2) do not completely determine the electric
field in Q7. In that region, one has to add div (eE) = 0 because there are no charges in an
insulator. This is a “gauge” condition necessary for having uniqueness. When imposing the
magnetic boundary condition, the additional “gauge” condition eE-n = 0 on 052 is also necessary.

1

From Faraday law, p~" curl E = —iw H and inserting this result in Ampeére law one has

curl(p=t curl E) = —iw(cE + J.). So the E-based formulation of the eddy current model reads

curl(p~tcurl E) + iwoE = —iwJ, in Q

div(eE) =0 in Qf (3.3)
(pleurl E) xn =0 on 0}
eE-n=0 on 02
for the magnetic boundary condition, and
curl(p=t curl E) + iwoE = —iwJ, in
div(eE) =0 in Qy (3.4)

Exn=0 on 0f)

for the electric boundary condition. In this chapter, we will focus on problem (3.3); the same

results can be proved for problem (3.4).
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In the static approximation also the time variation of the magnetic field is disregarded; thus,

one has:
curlH = ocFE + J,

(3.5)
curl E =0

(where J, can still depend on time, which has to be regarded as a parameter). From the second
equation in (3.5), the electric field is the gradient of a scalar potential E = —grad V' and then
from the first equation in (3.5), we obtain div (o grad V') = divJ, in Q¢. On the other hand,
oE + J. is divergence free in §); hence, we have (o gradV —J o) -nr = —Jq, *nr on I', with
nr being the unit normal vector on I' pointing outwards 2¢. Since we are interested in electric
sources located in the conductor, namely supp J. C ¢, the boundary condition for the static

approximation is the homogeneous Neumann boundary condition o gradV - nr = 0 on I'. The

static problem thus reads

{ div(cgradV) =divJ, in Q¢ (3.6)

ocgradV -nr =0 on I,

and the related magnetic field is computed in terms of the primary current J. and the return

current 0 E = —o grad V using the Biot-Savart law in R3:
1 r—y
H(x :/ Je(y) —ogradV(y)| x —=dy. 3.7
@) =4 19 W% (3.7)

The inverse source problem consists in the determination of the current source J. from
boundary measurements of the electromagnetic fields. Helmholtz had already observed that this
problem does not have a unique solution. For instance, if the source is a radial dipole, the
magnetic field given by (3.7) vanishes outside a spherical conductor Q¢ (see, e.g., Sarvas [61]),
hence, when using the static model, knowledge of the magnetic field on I' does not contribute
to the localization of radial dipoles.

The characterization of the source currents that can be reconstructed from suitable measure-
ments on the boundary is not an easy task and depends on the model considered. For the static
model in Kress et al. [44], the authors prove that the Biot—Savart operator has a non-trivial
null space. Fokas et al. [36] characterized which part of a volume current source in a spheri-
cal conductor can be reconstructed from knowledge of the magnetic field on the boundary. In
the same framework, Dassios and Hadjiloizi [29] determined which part of the source can be
reconstructed from the electric potential. Instead, concerning dipole sources, He and Romanov
[40] showed that the measurement of the electric potential on the boundary of the conductor
is enough to identify their location and polarization, and proposed an identification procedure.
In the case of a layered spherical model, Dassios and Fokas [27] derived an algorithm for the
identification of a source consisting of a finite number of dipoles from measurements of the elec-

tric potential or the magnetic potential. For a general layered domain, El Badia and Nara [34]
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proposed an algebraic algorithm for the identification of the number, locations and moments of
the dipoles from knowledge of the tangential components of the electric and magnetic fields.

Considering the full Maxwell system, the existence of non-radiating sources was proved in
Bleistein and Cohen [18]. On the other hand, He and Romanov [40] showed that the location
and the polarization of a current dipole in a conducting object can be uniquely determined by
measuring at a fixed frequency the magnetic field and its normal derivative on the whole surface.
The same result was obtained by Ammari et al. [7] from knowledge of the tangential component
of either the electric or the magnetic field on I'. Albanese and Monk [3] have characterized which
part of a volume source confined in {2¢ can be uniquely identified from measurements of the
tangential component of the electric field on I'. Moreover, they also proved the uniqueness of
the inverse source problem if the source is supported on the surface of a priori known subdo-
main contained in Q¢ or if it is the sum of a finite number of dipole sources. In the last case,
the tangential component of the electric field uniquely determines the number, position and
polarization of the dipoles.

The reconstruction of a current source from boundary measurements of the electromagnetic
fields is interesting also for other types of applications. For instance, the imaging of small electro-
magnetic inclusions can be reduced to inverse source problems for the full Maxwell system where
the current is a sum of a finite number of dipoles. Localization techniques for these problems
have been developed by Ammari et al. [12], [11], [10].

The aim of this chapter is to study the uniqueness of the solution of the inverse source pro-
blem for the eddy current approximation of Maxwell equations, mainly following the approach
proposed by Albanese and Monk [3] for the full Maxwell system of equations. The outline
of the chapter is as follows. Section 3.2 is devoted to volume source currents. We prove that
when looking for J. € (L?(2¢))?, the inverse problem does not have a unique solution and we
characterize the space of non-radiating sources. In Section 3.3, we obtain the uniqueness result
for a source current supported on the boundary of a subdomain of €)¢; it is worth noting that
the support of the surface source is not assumed to be known, but it is uniquely determined
from the boundary data. In Section 3.4, we consider the case of dipole sources. First, we study
the well-posedness of the direct problem, that is, the existence and uniqueness of the solution
for the eddy current model assuming that the source is a finite sum of dipoles. Then we prove
uniqueness of the inverse source problem, determining the number, location and polarization
of the dipole source. We also present an algebraic algorithm for the determination of a dipole
source assuming that the tangential component of the electric field on I' is known. In the last
section, we study how to recover the tangential component of the electric field on I', the data

that we use in the inverse problem, from the data that are measured in MEG and EEG.
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To conclude this section, let us introduce some notation that will be used in the following. The
space H (curl; Q) indicates the set of real or complex vector valued functions v € (L%(Q2))3 such
that curlv € (L%(2))3. We also use the spaces H~/?(curl;T) := {(np x v x np)r|v € H(curl; Qc) }
and H™Y2(div;T) := {(v x nr)r|v € H(curl; Q) }. These two spaces are in duality and the
following formula of integration by parts holds true:

/ (w~curlv—curlw~v):/('wxnp)-'v Vw, v € H(curl; Q¢) .
Qe r

The last integral is indeed the duality paring between w xnp € H~'/2(div,;T) and npxvxnr €
H~1'2(curl,;T).

3.2 Non-uniqueness of volume currents

In this section, we investigate the uniqueness of the inverse source problem assuming that
the unknown source J. is a function in (L?(€¢))3. First we will prove that without additional
information, the source cannot be reconstructed from the knowledge of the tangential component
of the electric field on I'. We then characterize the space of non-radiating sources (those sources
in (L?(2¢))? that generate an electric field normal to the surface I') and prove that sources J. €
(L?(2c))? that are orthogonal to the space of non-radiating sources are uniquely determined by
the tangential component on I' of the electric field. The result is analogous to the one obtained
by Albanese and Monk [3] for the full Maxwell system.

If J. € (L3(Q0))3, it is known that problems (3.3) has a unique solution E and the magnetic
field can be computed from Faraday law: H = —(iwp) ! curl E in €.

Multiplying the first equation in (3.3) by a regular enough test function z, integration by
parts in Q¢ easily yields

—iw/ J. - z= E - [curl(p ! curl 2) + iwoz] — /[E xnr - (pteurl2) —iwH x np - Z].
Qo Qc r

Therefore, if z € H(curl; ¢) is such that
curl(p ! eurl 2) — iwoz = 0 in Q¢
the current density J. satisfies the representation formula

/ Je-z—(iw)_l/Exnp-(u_lcurlz)—/Hxnp-z. (3.8)
Qe r r

The right hand term in (3.8) has been called reciprocity functional, taking the name from the
Lorentz reciprocity principle in electromagnetism, or else the Maxwell-Betti reciprocity principle

in elastostatics (see, e.g., Andrieux and Ben Abda [14], El Badia and Ha-Duong [33]). It is often
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used in the analysis of inverse source problems (see, e.g., Novikov [55], Isakov [41], Ammari and
Kang [9]).
Let us define

W = {z € H(curl; Q¢) | curl(p ! curl 2) — iwoz = 0 in Q.

It is clear that W is not a trivial subspace of (L?(£2¢))3, since both p and o are bounded and
uniformly positive definite in §2; for each £ € H, dnl,/f(F ), there exists a unique u(§) € H(curl; Q¢)

such that u(§) € Wand u(§) x npr =& on I
Denoting by W the closure of W in (L?(€2¢))? we have the orthogonal splitting

(L*(Q0))* =W e W,

Lemma 3.2.1 Consider n € (C§°(Qc))? and set ¢ = curl(u~! curln) + iwon. Then ¢ € W+

(and W+ is not a trivial subspace).
Proof. Take z € W. Then
oz = / [curl(p~ ! curl p) + iwon] - Z
Qc

Q¢

= n - [curl(p~ ! curl 2) + iwoZ] = 0,
Q¢

and a density argument shows that ¢ € W,
Note that, if 1 is a non-vanishing real vector field, one obtains Ime # 0, hence W is not a
trivial subspace. O

Let us split the current density J. as
Jo=J 4+ JLr | Jew, Jrewt.

Theorem 3.2.1 (i) Let us assume that J, = Jﬁe € W and that E* is the corresponding solution
of the eddy current problem. Then knowledge of E* x np on T uniquely determines JEZ.

(ii) Let us assume that J. = Jé‘ € W+ and that E* is the corresponding solution of the eddy
current problem. Then E+ x np = 0 and H+ x np = 0 on T, namely, JeL 18 a non-radiating

source.

Proof. (i) The electric field in the insulator satisfies

curl(p~tcurl E¥) =0 in Q;
div (e¢E*) =0 in Q
(plcurlE*) x n =0 on 09
€Ef -n =0 on 0.
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If B xnr=0onT, multiplying the first equation by E*' and integrating by parts, one easily
finds curl E* = 0, then Ef = 0 in Q;. Consequently, H? = —(iwp) "t curl E! = 0 in Q; and
in particular H* x np = 0 on I'. Therefore, from (3.8), we know that ch J! .z =0 for each
z € W, hence, by a density argument, for each z € W. Taking z = J ﬁe € W, the thesis follows.

(ii) Since JL € W, from (3.8), we have that for all z € W
/Eanp-(,u1cur1z)—iw/HJ‘><np-z:0. (3.9)
r r

—-1/2

For each n € Hy; /7(I'), we denote by Z € H(curl;(2) the solution to

curl(p=tcurl Z) — iwocZ =0 in Qc U Qg

div(eZ) =0 in Q

(pteurlZ) xn =0 on 0f) (3.10)
eZ-n=0 on 02

(pt curl Z) g, x nr = (ut curl Z) o, xnr+n on T,

which in weak form reads
find Z eV : /(u_lcur1Z~curlv—iw0Z-v) :/77-1) VveV,
Q r

where V := {v € H(curl;?) : div(ev) = 0in Q7 and ev - n = 0 on 9Q}. It is well known that
the sesquilinear form on the left-hand side is coercive in V' (see Alonso Rodriguez and Valli [5],
theorem 2.3); therefore, the problem is uniquely solvable.

As a test function in (3.9) we can thus select Z|o, € W, obtaining

/FEJ‘ X -t cur17|gc = — | Et.- 75— | EX (! cur17|91 X nr)
= —ZEL-n—i-Z2 pteurl B - curl Z g,
I
—z'(,u/FHL xnr-Zg, = —/,u_lcurlEL - Z)g, X nr

= —f /flcurlEL-curlZ‘QI.
Qr

/Ei-nzo
T

('), hence ny x EX x npr =0 on I,

In conclusion, we have found

for each m € Hd_i\ll/f

Proceeding as in the proof of (i), we show that E+ xnp=0onT, implies H- X np = 0 on

I', and the proof is complete. O
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3.3 Uniqueness of surface currents

In this section, we prove that if the source current is known to be supported on the surface
of a subdomain contained in ¢, then both the surface and the value of the surface current are
uniquely determined by the tangential component of the electric field on I'. A similar result, but
assuming that the surface is a priori known, has been previously obtained for the full Maxwell
systems (see Albanese and Monk [3]).

First, we start by considering a surface current J, € H -1/ 2(div,; OB), where B is an open
connected set with Lipschitz and connected boundary B and satisfying B C Q¢.

The direct problem reads

;

curl B, +iwuH, =0 in Q

curlH, = oE, in BU(Q\ B)

div(eE,) =0 in Q (3.11)
H,.xn=0 on 0f)

eF, n=0 on 0f)
H*|B><nB—H*|Q\§><nB:J* on 0B,

where np is the unit normal vector on 0B, pointing outward B. It is easy to see that its weak

formulation in terms of the electric field is

find E, €V : /(u_lcurlE*-curlv+iwaE*"v):—iw/ J.v VoeV,
Q OB

with V' being the space introduced for the weak formulation of (3.10). Since the sesquilinear
form at the left hand side is coercive, for each given J, € H~Y/ 2(div,; OB) the direct problem
has a unique solution.

Our first result in this section is the following.

Theorem 3.3.1 Assume that the coefficients p and o are Lipschitz continuous and piecewise
C' scalar functions in Qc, and that the discontinuity surfaces of their gradients are Lipschitz
surfaces. Let (E., H,) be the solution of the eddy current problem driven by the surface current
J, € H_l/z(diVT; 0B). The knowledge of E. x nr on I uniquely determines J .

Proof. It is enough to show that if E, x np = 0 on I, then J, = 0 on dB. As in the
preceding case, by solving the problem in €7, we easily show that E, x nr = 0 on I" also gives
E,=0in Q;, H, =0 in Q7 and in particular H, X nr = 0 on I'. By virtue of the assumptions

on the coefficients 1 and o, we can apply the unique continuation principle in Q¢ \ B (see Okaji

[56]) and deduce that E, =0 and H, =0 in Q\ B.
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Multiplying the second equation in (3.11) by a function 2z € H(curl; B) with curl(u~! curl 2) €
(L?(B))? and integrating by parts, we have

/UE*‘z:/curlH*-z:— H*|B><n3-z+/H*-curlz.
B B dB B

1

Since H, = —(iwp) ™" curl E, taking into account that E, X np = 0 on 0B, another integration

by parts gives
/ oE, - z=— H,pxnpg-z— (iw)l/ E, -curl(ptcurlZ).
B OB B

Hence for each z € H(curl; B) such that curl(y~! curl z) —iwoz = 0 in B, one finds [, H, 5 x

np -z = 0. Therefore,

/ J*-Z:/ |:H*|BXTLB—H*|Q\§X’I’LB:|'Z:O
OB OB

for each z € H(curl; B) such that curl(y~! curl z) — iwoz = 0 in B.
Given p € H~'/?(curl,;T"), we can choose z € H(curl; B), the solution to

{ curl(u~!curl 2) — iwoz =0 in B

zXng=pxXng on 0B.

Hence faB J.p=0foreachp € H*1/2(cur17; I'), and this space is the dual space ofol/Q(divT; ).
This ends the proof. O

Remark 3.3.1 Proceeding as in Section 3.2, we can obtain a representation formula similar to
(3.8), namely

/ Ji-Z= (z’w)l/E* ><np~(,u1curlz)—/H* Xnr-zZ (3.12)
OB r r
for each z € H(curl; Q¢) satisfying

curl(p~teurl 2) —iwoz =0 in Q¢ .

3.4 Uniqueness for dipole sources

Let us consider now the eddy current problem with a dipole source

curl(p™tcurl E) + iwoc E = —iwpydz, in
div(eE) =0 in Q7
(plcurlE)xn =0 on 0f)
eE-n=20 on 0f),

(3.13)
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where py # 0, o € Q¢ and 04, denotes the Dirac delta distribution centered at .

First, we study the well posedness of this problem. We will assume that the magnetic per-
meability p and the conductivity o satisfy the homogeneity condition: there exist ro > 0, pug > 0
and oy > 0 such that

wu(x) = pol and o(x) = ool for each x € B,,(xy), (3.14)

where I is the identity matrix and B,,(zo) :=={x € Q : |x — x| < 1o}
We set k2 = —iwpgog and gy = —iwpepy. The following result is quite classical (and also
appears in the theory of linear elasticity, see, e.g., [45]). It can be found in Ammari et al. [7],

and we report the proof for the sake of completeness.

Theorem 3.4.1 The fundamental solution K of the operator curl curl —x21, that is, the solution

to
curlcurl K — k2K = g% ,
s given by
K ein|w| 1 q q ein\w\ (3 15)
(x)—QOMTL?(QO'gFa ) gra inla] :

Proof. We start from the fundamental solution ® of the Helmholtz operator

—AD — k2D =6,
which, as it is well known, is given by
ein\m\
d(x) = :
@) = 1]

From this, we obtain at once

—A(gqy®) - "92((10‘1’) = qpd0 -
Then we look for K in the form
K =4q,?+gq,
and we have

curlcurl K — k2K
= —A(qy®) + grad div (g, ®) — x%(qy®) + curl curl ¢ — x%q
= qodo + grad div (qo®) + curl curl ¢ — x%q.
Hence, q has to satisfy
curl curl ¢ — k%2q = — grad div (q,®),
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and we easily find
1
= — dd' @ .
q = — graddiv(q,®)

In conclusion, we have obtained

K(x) = qy®(x) + 7 grad div (go®(z))

eif@|w| 1 q q ein\m\
= 90 gy T 2 (0 srad)srad o
namely, the representation formula (3.15). O

Note that the fundamental solution K is much more singular than the fundamental solution

2

i o+ the second one

of the Laplace or the Helmholtz operator; while the first term belongs to L
has a singularity like || 3. It can also be remarked that setting K (z) := K (a — ), we have
K e H~2(€), the dual space of HZ(f2); however, K is a regular function far from & = xg; in

particular, it is regular in ;.

Theorem 3.4.2 Assuming that condition (3.14) is satisfied, there exists a solution E € H~2(Q)
to (3.13), satisfying (E — K) € H(curl; Q). It is unique among all the solutions E* such that
(E* — K) € H(curl; Q).

Proof. We split the solution to (3.13) in the following way: E(z) = K(x) + Q(x). It is easily
seen that we have to look for the solution Q € H(curl; ) to

curl(p=teurl Q) + iwoQ = J in Q
div(eQ) = —div(eK) in Qr (3.16)
(uteurlQ) xn=—(u tewrl K) xn on 90 '
Q- n=—-K-n on 0F2,
where
J(m) — 0 A ) ifx € Bro (:L'Q)
—curl(p~teurl K)(z) — iwo K (x) if x € Q\ By, (x0) -

We introduce now the solution 1; € H'(2;) of the mixed problem

div(egradn;) = —div(eK) in €
cgradn-mn=—cK -n on 0f)
nr =20 onI,

which exists and is unique since K 0, € (L*(21))?; we also define

0 if x € Q¢
n(x) = .
77[(:12) ifx e Qyp,



3.4 Uniqueness for dipole sources 32

and we see at once that n € H'(1).
We are now in a position to finish the construction of the solution to (3.13). The solution Q

to (3.16) will be found in the form Q = Q* + grad n, where Q* € H(curl; ) is the solution to

curl(pteurl Q%) + iweQ* = J in Q
div(eQ*) =0 in Q
(pteurlQ*) xn=—(p tewl K) xn on 90
Q" -n=0 on 0f).

The existence and uniqueness of such a solution follows from the fact that the compatibility
conditions R

div J), = —div [curl(p~! curl K|, )] = 0 in O

J-n=—cul(p ' curl K) - n = —div, (4! curl K x n) on 09
are satisfied (see Alonso Rodriguez and Valli [5], chapter 3).

We have thus found a solution E = K + gradn + Q* of (3.13). Concerning uniqueness,
suppose that we have another solution E* such that (E* — K) € H(curl; ). We can write it as
E* = K + (E* — K), and it is readily verified that E* — K is a solution to (3.16), a problem
for which uniqueness holds in H(curl; Q). Therefore E* — K = Q = E — K, and uniqueness is
proved. O

Concerning the uniqueness of the inverse problem, suppose that the source is a finite sum of

dipoles, in different positions and with non-vanishing polarizations, namely,

M
']T = Zpkdmk ) (3'17)
k=1
where x, € Qc¢, T, # xj for k # j, p,, # 0.

Theorem 3.4.3 Assume that p and o are Lipschitz continuous and piecewise C' scalar func-
tions in Q¢ and that the discontinuity surfaces of their gradients are Lipschitz surfaces. Assume
also that there exists the solution E; of the eddy current problem (8.8) driven by the surface
current Jy introduced in (3.17), with the same properties reported in Theorem 3.4.2. Knowledge
of E+ x nr on I' uniquely determines J, namely the number, the position and the polarization
of the dipoles.

Proof. We start proving that the number and the position of the dipoles are uniquely
determined.
By contradiction, let us denote by @1 and Q2 two different sets of points where the dipoles

are located, and by Ey 1, Hi 1 and E; 2, H; 2 the corresponding solutions, with the same value
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E; x nr on I'. As in the preceding cases, by solving the problem in €2; with datum E; x nr on
I', we obtain that E;, = Et5 and Hy; = Hy o in (.

From the unique continuation principle, it follows that Ei; = E; 5 in Q\ (Q1 U Q2). Let x,
be a point belonging, say, to ()1 but not to Q2. We have that E; > is bounded in a neighborhood
of ., while E; 1 is unbounded there, a contradiction since E;; and E; 5 coincide around ..
Therefore Q1 = Q.

Let us now prove that the polarizations are uniquely determined. It is not restrictive to
assume that M = 1 and that 1 = 0. We can write E;; = K1+ET71 and B9 = K2+ET’2, where
K and K are defined as in (3.15), with two different polarizations qp1 and g o; in particular,
we know that ET,I and ETJ belong to H (curl; 2). Proceeding as before, the unique continuation
principle yields E;; = E;2 in Q\ B,(0) for each r > 0; therefore, K1 — Ko = E-‘—72 — ET,l
in Q\ B,(0). Since (Eis — Et1) € (L2(Q))?, it follows that K1 — Ko € (L2(€))?, and this
is not possible, due to the singularity of the fundamental solution, unless K1 = K5, namely

do,1 = do,2- O

Remark 3.4.1 In Theorem 3.4.2, we have proved the existence and uniqueness of the solu-
tion E; under the homogeneity assumption (3.14). We do not have similar result under the

assumption of Theorem 3.4.3.

3.4.1 Explicit determination of the dipole source

For the sake of simplicity, consider a source given by only one dipole: J, = p*§+. Proceeding

as in the proof of (3.8), one obtains the representation formula
p*-Z(x*) = (iw)_l/FE* xnp - (pteurl 2) — /FH* Xnr-z, (3.18)

for each z € H(curl; Q¢), continuous around x* and satisfying
curl(p~tcurl 2) —iwoz =0 in Q¢ . (3.19)

To determine the source, we have to find the polarization p* and the position x*: therefore, the
components of these two vectors, on the whole six unknowns. The natural idea is to choose in a
suitable way six functions z in (3.18), and solve the corresponding nonlinear system.

Let us assume that p and o are constants. The usual choice is to take z(x) = be™9®, with

k€ C, b€ R3 dcR> In order that z is a solution to (3.19) we need

k2 =iwpo , b-d=0.

Hence, k = /#5%2(1 4+ i) if w > 0 and k = %(1 — i) if w < 0. It is not restrictive to

assume |d| = |b| = 1.
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The values of p* and x* are uniquely determined by solving the nonlinear system (3.18)
obtained by suitable selections of b and d. For instance, taking b = e;, d = e2, or b = e,

d = e3, or b = e3, d = e9, where e; represents the standard euclidean basis, one has
—iwple” "2 = A1 9, —iwpye T3 = Agz, —iwpze "2 = Az,. (3.20)

Here, A; ; denotes the right hand side in equation (3.18), hence a computable complex number,
corresponding to the choice z(x) = be™ 4% with b =e;, d = e;. Since p* # 0, at least one of
its components is different from 0; hence at least one of the values A; 2, As3 or Az is different
from 0. Let us assume for instance that pj # 0, A;2 # 0. Taking b = e;, d = e3 and b = ey,
d= %(eg + e3) one has

— 1 * *
. —iRx* . —ik—= (x5 +x3
—iwpie” s = A13, —iwpie va(rates) Aq 23,

where Aj 23 is obtained as before from the latter choice of b and d. Hence

o—ir@i—ay) _ A3 [ Jsepray)—ay] _ ALz
- ) - )
A172 A172
For the sake of simplicity let us assume w > 0, so that —ik = —,/*6%(1 4 4) and
‘efiﬁ(ng:pg)’ _ e—\/wzﬂ(mg—zg) _ | A3
Ai2
‘e—iﬁ{%(xs—kx;)—x;] | = o “Lz [%(wé-‘mé)—w;] . ‘Al’gg
- T A2

Therefore one has the following linear system for 3 and x]

1 * * * _ 2 A1,23
72('%'2—1_%‘3)_%.2__ wio g‘Alz )
obtaining
x _ /241 A1z Aiq,23
Ty = o [log’Alz _\/5‘141,2 :|

Replacing in (3.20) we can compute the three components of p*.
It remains to compute zj. If p* has two components different from zero, say, pj # 0 and

p5 # 0, taking b = e and d = e; we have the equation
—iwpse*mﬂ =451,
from which we determine x]. Otherwise, taking b = %(el +ez)and d = %(el — e3) we obtain

— 1 * *
_iwi pTE_’mﬁul —x3)

V2

= A212,

with the usual notation for Aqs 12.



3.5 Application to EEG/MEG 35

3.5 Application to EEG/MEG

MEG measures the magnetic induction along a certain direction depending on the mag-
netometer. Typically, it measures the normal component of the magnetic induction, namely
wH - nr. On the other hand, EEG measures the electric potential on the surface of the head.
We have obtained some explicit relations between the source and the tangential component of
the electric field and the magnetic field on I' (equations (3.8), (3.12) and (3.18)). We will show
that, when using the eddy current model, both (E x nr);r and (H X nr);r can be computed
from the normal component of the magnetic induction (uH - nr);r and the electric potential
Vir

We have already seen that knowledge of (E X nr)|p furnishes Hy in €y, hence in particular
(H xmnr)r (see for instance the arguments in the proof of Theorem 3.2.1, (i)). Thus it is enough
to show that (E x nr)p can be determined from (uH - n)r and Vip.

Now we need some preliminaries concerning tangential differential operators. The standard
definition of the tangential gradient and the tangential curl on the flat surface {z3 = 0} with

unit normal vector n = (0,0,1) is

grad_ ¢ = (016, 020,0) Curl,; ¢ = grad, ¢ x n = (920, —019,0).

Using local coordinates, it is possible to define the operators grad._ and Curl; for function belon-
ging to H(I'). By a duality argument, the adjoin operators div, and curl, are also introduced,
as well as the Laplace-Beltrami operator A, := div,grad,. = —curl.Curl;.

On I' one has the following Hodge decomposition of the electric field (see Buffa et al. [22]):

nr X E x npr = grad_v + Curl; ¢, (3.21)
with ¢ € H(I")/C such that
A.q = —curl; Curl, ¢ = —curl; (np x E X nr)
= —div;(E xnr) = —cwl E-nr =iwpH -nr,

andv € H'/2(T), v = Vir with V- € H'(Q¢) and grad, v = np x grad V x np. Hence, np x Exnp
can be obtained from knowledge of uH - nr and V on I

Remark 3.5.1 Though it could sound strange, it is mot completely clear what we say when
we speak about the measure of the scalar electric potential (see, e.g., [53], [19], and references
therein). In fact, with the exception of the static case, the electric field is not irrotational; there-
fore it has not a scalar potential.

As it is well known, the electric field E can be split into the sum of a gradient and a solenoidal

field, but this can be done in several different way (see, e.g., Alonso Rodriguez and Valli [5],
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Sect. A.3). Hence, here we are saying that, if the measure obtained by a voltmeter is the scalar
v appearing in (3.21) (up to an additive constant) and the measure obtained by a magnetometer

is pH - np, then we can reconstruct the value of np x E x np on .

In real-life applications, the measurements are only made on a subset of the boundary I';,, C
I'. Also in this case it is possible to obtain a representation formula for the source in terms of the
tangential components of the electric and the magnetic fields on I'y,. Following Albanese and
Monk [3], it is easy to show formally that for any z € H(curl; Q\T',,) such that curl(p~! curl z) —
iwoz =01in Q\ Ty, and (u~!curl z) x n = 0 on 99, we have

(Je,2) = (iw) ™t g E xnp - [[pteurl 2] — g H x nr - [[Z]|r, (3.22)

where [[v]]7 denotes the jump of the tangential trace of v € H(curl; 2\ I';,) across I'y, and
(Jes2) = [o, Je - Z for volume currents J. € (L*(Q0))?, (Je,2) = [ypJe - Z for surface
currents J. € H='/?(div,;dB) and (J.,z) = p* - Z(x*) for a dipole source J. = p* o

Also, in this case the tangential component of the electric field on I';,, can be obtained from
the electric potential and the normal component of the magnetic induction, provided that the

measured electric potential V' is such that
grad V-t=FE-t ondl,,,
where t is the unit tangent vector on dI'y,. In this way ¢ € H'(I',,,)/C is the solution of

Arq=iwuH -nr in I,
Curl,g-t=0 on 0T, .

However, if we know E X nr only on I';,, and not in the whole boundary I, it is not possible to
obtain (H x nr)|r,,. So in order to use the representation formula (3.22) in an inversion scheme,

it would be necessary to measure also the tangential component of the magnetic field on I';,.



Chapter 4

A posteriori error estimates for the
problem of electrostatics with a

dipole source

4.1 Introduction

Electroencephalography (EEG) is a widely used technique for reconstruction of brain activity.
The task is to estimate the cerebral current sources underlying a measured distribution of the
scalp electric potential. The inverse problem requires a model for the forward problem, i.e., the
computation of the scalp potential given a neural current source. Since the frequency spectrum
for electrophysiological signal is frequently between 0.1 and 100 Hz, most works on biomedical
applications focus on the static approximation of Maxwell equations. Concerning the source, the
activity measured in EEG is the result of movement of ions that, creating an electrical potential
difference, generates the so-called primary current. Since the source is localized, it is generally
modeled as a current dipole centered at a point xy with moment p.

For computing the solution of the forward problem, the finite element method has become
popular because it allows a realistic representation of the geometry and conductivity of the
different tissues. In particular it allows to deal with anisotropic conductivities. In this case the
forward problem is non-standard and it is usually solved by the subtraction approach (see [16],
[67], [46]). Recently the well-posedness of the problem was studied in [65] using the duality
method. There it is proved that, in the three dimensional (3D) case, the solution belongs to
L? for 1 < p < 3/2. The same arguments allow proving that in the two dimensional case (2D)
the solution belongs to LP for 1 < p < 2. Finite elements have been used in practice for both

approaches: the subtraction method and the direct one. For the former, a sound mathematical

37
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and numerical analysis can be found in [67] under the assumption that there is a neighborhood
of the source position @y with constant conductivity. On the other hand, the direct approach
is widely used in source reconstruction (see e.g. [68], [21], [66], [62]) and can be used even for
a variable conductivity (smooth in a neighborhood of x(). However it has not been rigorously
analyzed yet. The aim of this chapter is to take advantage of the method in [65] to provide such
analysis.

In spite of the fact that the solution is only in L?, it can be approximated by standard finite
elements. Specifically we use piecewise linear continuous elements on polyhedral or polygonal
domains. Even though the original problem is three dimensional we present the results in more
detail in the 2D framework. Under the assumption that the computational domain 2 is bounded,
convex and polygonal, we develop a priori and a posteriori error analyses in LP norm for this
problem. In particular, we prove an a priori error estimate under the assumption that the meshes
are quasiuniform. Since the solution is highly singular at g, quasiunformity is an excessively
restrictive assumption in practice. This is the reason why we also derive an a posteriori error
analysis which does not need the quasiuniformity assumption. We introduce a posteriori error
indicators and prove their reliability and efficiency. Subsequently, we briefly discuss the 3D case
and present similar results under more stringent assumptions on the geometry of the domain
and the electric conductivity. We use these error indicators to guide an adaptive scheme, which
experimentally exhibits optimal order of convergence.

The chapter is organized as follows. In Section 4.2 we state the model problem, a finite
element discretization (in 2D and 3D), and give an a priori estimate of the error in LP norm
for the 2D case. In Section 4.3, we introduce some generalized bubble functions and prove some
technical lemmas, which will be used in the sequel. The main result is presented in Section
4.4, where we perform the a posteriori error analysis for the 2D case. In Section 4.5, we briefly
analyze the a priori and a posteriori estimates in 3D. Finally, in Section 4.6, we report some

numerical results illustrating the performance of the adaptive scheme.

4.2 Model problem

In this section we introduce the model problem, propose a variational formulation and recall
the existence and uniqueness of solution. Then, we consider a finite element discretization and

give an a priori error estimate.
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4.2.1 Continuous problem
We start introducing the Maxwell equations:

curlH—eaff =oE+J,,

oH
curlE—i—uﬁ =0,

where E and H are the electric and magnetic fields, respectively, J, is the source current density,
€ the electric permittivity, p the magnetic permeability and o the electric conductivity.

By disregarding the time variation one obtains the static model:

cwrlH =oFE + J),
curl E = 0.

If we consider a simply connected domain D C R3, then there exists a scalar potential u
such that F = —Vu in D. As a consequence, calculating the divergence of the first equation, we
obtain

div(eVu) =div J, inD.

If 2 is a conductive domain completely included in D and D\ is not conductive, then, due
to the properties of the div operator, the equation above is equivalent to div (eVu — J,)|q =0
in Q, div(eVu — Jp)|D\§ =0and (cVu—J,)|g-n = (oVu— Jp)|D\§ -n on the interface 02,
being n the outer unit normal vector to 9€). Since o vanishes outside €2 and J, is assumed to

be supported in €2, the electrostatics problem reads

div (o Vu) = div J, in Q,
(oVu) -m=0 on 0f).

This is the model more frequently used for the electrical brain activity (see e.g. [61], [39], [51]).

Let us assume that a small activated region is centered at a point x¢ and that the observation
point is far from it. In this case the primary current J, is typically modeled as a dipole. So, in the
following, we consider the electrostatic problem with a dipole as source term and homogeneous

Neumann boundary condition:

{ div (o Vu) =div (pdz,)  in Q, (4.1)

(oVu) - n=0 on 0N).
Here xg is an inner point of €2, and p # 0 is the polarization vector. The conductivity o is a
matrix with entries in L*°(2) and uniformly positive definite, namely, there exists a positive

constant oq such that

3 3
Y Gioij(@)E =00) & VEER?, ae meQ. (4.2)
=1

1,j=1
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Moreover we assume that there exists 7o > 0 such that o; ; € W(B,,(xo)) for 4,7 = 1,2,3,
where B, (xg) := {x € R? : |z — x| < 70}. This is a technical assumption used in [65] for the
proof of the well-posedness of the problem by means of a duality argument.
Let us consider the following weak formulation of (4.1) given in [65]: find u € LP() such
that
/Qudiv (V) =—p- - Vo(xy) Ve Xy,

/UZO,
Q

X, = {pe WH(Q) : v € C(B()),div (6 V) € L1Q), (6Vy) -n =0 on 9N},

(4.3)

where

being r* a fixed number such that 0 < r+ < rg. Moreover, here and thereafter % =+ % =1.

The second condition of (4.3) filters out additive constants and therefore is suitable for
assuring uniqueness of the solution wu.

The following theorem, which is proved in [65, Remark 3.3], ensures the existence and unique-

ness of solution to (4.3):

Theorem 4.2.1 For all p with 1 < p < 3/2, there exists a unique solution u € LP(Q) to (4.3),

which is the same for all p in this range.

Remark 4.2.1 The same arguments used for the previous theorem allow us to prove the well-
posedness of the problem in the 2D case; in such a case, we have existence and uniqueness of a

solution u € LP(Q) for each p with 1 < p < 2.

4.2.2 Discrete problem

We assume that 2 is either a Lipschitz polyhedron (3D) or a Lipschitz polygon (2D).
We consider a regular family of tetrahedral (or triangular) meshes 7, of £ (see, for instance,
[23]). As usual, h denotes the mesh size: h := maxreT, hr, hr being the diameter of 7. We

consider the space of Lagrange finite elements of degree one:
Hy, = {Uh S C(Q) : Uh‘T ePLVT € 771}

(Pr denotes the set of polynomials with degree not larger than k € N.) Notice that H, C LP()
for all p > 1.
Let Ty € Tj, be such that xy € Tp. Usually g will be an inner point of an element of 7y,

however if xg belongs to more than one T' € Ty, any element Ty containing g can be chosen.
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The finite element approximation of (4.3) reads: find uj, € Hp, such that

/ oVuy, - Vo, = p - V(vp|1,)(T0) Yo, € Hy,,
Q

/uh:O.
Q

Although some average of the gradients of different elements containing xy could also be

(4.4)

used, our analysis shows that the simplest minded approach of choosing a particular arbitrary
element works fine.

To find an a priori error estimate in LP(2), with 1 < p < 2 in the 2D case and 1 < p < 3/2 in
the 3D case, we will use a duality argument. With this end, we consider the following auxiliary
problem: given ¢ € LI(2), find ¢ € H'(2) such that

div(Uch):w—gz/Qw in Q,
(oVp) - n=0 on 01, (4.5)

/cp:O.
Q

This problem is well-posed if ¢ > 1 (2D case) or ¢ > 6/5 (3D case). Since ¢ will be the dual
exponent of p, we will consider this problem for ¢ > 2 (2D case) or ¢ > 3 (3D case).

We will need the solution of this problem to be in W24(2). This is true under suitable
assumptions. First of all, we require that o € [C*(Q)]?*? (note that this not a realistic assump-
tion when modeling the brain conductivity, which presents discontinuities across the different
tissues). Moreover, we assume that €2 is convex. Then the arguments used to prove [31, Coro-
llary 3.12] allow us to show that ¢ € W24(Q) for each ¢ such that 2 < ¢ < qo, for a suitable g
(for the Laplace operator in the 2D case, it is known that ¢y = 2771/97 0 being the largest inner

angle of ). Moreover
lell2.q.0 < Cllvlloge- (4.6)

We do not know if, for a general convex polyhedron, one has gy > 3. Therefore, despite
the original problem is set in the 3D case, from now on we will present our results in the
2D framework. In Section 4.5, we will extend them to the 3D case, although under additional
stringent assumptions. So, in the following we will consider a convex Lipschitz polygon Q C R2.

I ¢ H) the Lagrange interpolant of v. Notice that, in

In what follows we will denote v
particular, ! is well defined because ¢ € W24(Q). Let us recall the following 2D interpolation

error estimates. For their proof see, e.g., [20, Theorem 4.4.4 and Corollary 4.4.7].

Proposition 4.2.1 Suppose 1 < ¢ < co and m > %. Then, for 0 < i <m and v € W™(T),
T € Ty, we have

v =0 |iqr < ChE " 0lmgr (4.7)
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[0 — 0" |s00r < CRY " 0.1 (4.8)

Here and thereafter C, as well as C’, denote strictly positive constants, not necessarily the
same at each occurrence, but always independent of the mesh size.

Moreover we have the following error estimate for the elliptic projection:

Lemma 4.2.1 Let Q be a convex Lipschitz polygon. Let {T,} be a quasiuniform family of subdi-
visions of Q0 (namely, there exists a positive constant T, independent of h, such that Th < hp < h
for all T € Ty, and for all Tp,). Assume that o € [C1(Q)]**2. Consider a function & € W29(Q)
for ¢ > 2 and let £¥ € Hy, be the unique solution of

/aVvh-pr = / oVuy, - VE Yo, € Hy,,
“ @ (4.9)
ef=o0.
Q
Then there exists hg > 0 such that
1€ = loer SCRHE|2g0 VT ET, (4.10)

for 0 < h < hg.

Proof. This is a standard estimate for the elliptic projection; we include a brief proof for
completeness. We consider an arbitrary T' € Ty,. Using (4.8) and an inverse estimate (see [20,

Lemma 4.5.3]) we have

‘g - £P|1,00,T S |£ - £I|1,00,T + ’(g - £P)I|1,oo,T
1-2 -2
< O (hy *""elaar + (€ =€) nar) -
On the other hand,

16— 7Y go < N1E—Ehga+ 1€ &

1,0 < Ch|§|2,q,9

(see, for instance, [20, Theorem 4.4.4 and equation (8.5.4)]), and the desired result follows by
using the quasiuniformity of the meshes. 00
Now we are in a position to prove an a priori error estimate for the proposed finite element

scheme.

Theorem 4.2.2 Let Ty, be a quasiuniform family of subdivisions of the convex Lipschitz polygon
Q and assume that o;j € CH(Q) for each i,j = 1,2. Let u and uy, be the respective solutions to
problems (4.3) and (4.4). Then there exists hg > 0 such that

lu — unllopa < CRP!

for all 0 < h < hg and for all p such that qoqﬂl < p < 2, where qy is the mazximal regularity

exponent in (4.6).
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Proof. Given ¢ € L(Q2) with }D + % = 1, we know that the solution ¢ of (4.5) satisfies ¢ €
W24(Q) for 2 < q < qo. By using (4.3) and integration by parts, we obtain

L= = [ =) (divww)ﬂ;“ Qw) (4.11)
:/Qudiv (aV@)—/uhdiv (oVy)

Q
=—p-Vo(x) + / oVuy -V
Q
:_p.v¢@@+:/avw,va
Q

= —p- V(o) +p- V(" |1, (w0),

where ! is the unique solution to problem (4.9) (with ¢ at the right hand side instead of £).

From Lemma 4.2.1 we have
V(o) — Vo' (0)] < ChY/|p]l2 00 < ChY2/|3p[|o g0,

where the last inequality follows from (4.6). Therefore we have

(u — up)
0pQ = Sup

Q < Op'=2%/1 = op2/r—1,
YEL(Q) kuﬂ,q,ﬂ

[l = unl

The quasiuniformity assumption on the meshes seems unfitting for this problem, because
the strong singularity of the solution at xy suggests using meshes highly refined in the vicinity
of this point. In what follows we will introduce a posteriori estimators of the L” norm of the
error which will be proved to be efficient and reliable without the need of the quasiuniformity
assumption. Later on these estimates will be used to devise an adaptive scheme which will lead

to an optimal order of convergence in terms of the number of degrees of freedom.

4.3 Preliminary results

For the a posteriori analysis, we will have to deal with three kinds of bubble functions, one
associated with triangles, another associated with edges and the last one associated with the
point xg. In this section we introduce these bubble functions and prove some properties that
will be used in the sequel. From now on n will denote a generic unit vector normal to a curve

which will be clear from the context.
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Let b7 be the bubble function with support in T' defined in €2 by

2
AOATAT 2 Bl
br(z) = (A2 ) nZ, ‘ (4.12)

(ATATAT) 2 otherwise .

where )\iT is the barycentric coordinate of & associated with the triangle 7" and its vertex P;,

i =1,2,3. The function by have the following properties:

Lemma 4.3.1 Given T € Ty, let by be defined as above. Then

0<br<1, (4.13)

br=0 on 0T, (4.14)

Vbor =0 on 0T, (4.15)

/ br > C|T], (4.16)
T

|b7]2.q0 < C|T|7VP. (4.17)

Proof. Equations (4.13), (4.14), and (4.15) are immediate consequences of the definition of br.
Estimate (4.16) follows from straightforward computations and (4.17) from standard scaling

arguments (see [24, Theorem 15.1]):

lbrll2.qr < Chy P lbrllopr < ChYP < CIT|~VP.

Let &, ; be the set of all the inner edges and &, . the set of boundary edges of the triangulation
Th. Given £ € &, := &, ; U &y we will define a bubble function with support wy := {T" € T}, :
¢ C OT} (see Figure 4.1).

0Q

Pr

Figure 4.1: The support wy of by with £ € &,; and £ € & ..
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In the case £ € &, ; we define by for © € wy by

2 o 2
(A5 AT AT == 20l” it oy € oy
by(z) := , 1 (4.18)
(A5 AT AT if 2o & we |

where |¢| denotes the length of ¢. Since )\;ij is a linear function in the whole plane, b, is a
polynomial in wy.

It remains to define bubble functions by for £ € &, ., which, in particular, must satisfy
(oVby) -m=Vby-(on)=0 ont forallle&,,.

Let Ty be the triangle in 7T; that contains ¢. For simplicity we assume that xg ¢ Ty. Let (x;, ;)
be the coordinates of the vertices P;, ¢ = 1,2, 3, of the triangle T, as shown in Figure 4.2. Let

F, : R? — R? be defined by
x x z
(Y Y2 (Y

=@y —(ys - y2)> Notice that @ = |/ <t —n) (see Figure 4.2) and that

Y3 — Y2 T3 — T2
Q'Q = |¢|*I. Hence, denoting T, = F[l(Tg), the triangles T, and T, are similar (in particular,

where Q = <

both have the same aspect ratio). Let us set & := Q'(o o F;)Q; this matrix is symmetric
and positive definite for all (z,y) € Ty. It is easy to show that there exists § > 0 such that
[1/2—6,1/2+ 6] x (0,26] is contained in the interior of T} (see Figure 4.3). Since § only depends
on the aspect ratio of the triangle fg, hence of that of Ty, it can be bounded from above and from
below by two positive constants, uniformly with respect to h. Now let g1 € D((1/2—6,1/2+6))
be such that g; > 0 and fR g1 =1, and let g2 € C*°(R) be such that 0 < g5 <1, gg\(_oo75) =1,
92(26,+00) = 0 and |gg| < C6~L. We first define

b = — - ,
(7,9) == 91(Z) — 91(2) F2(3.0) 92(9)
then
be:=bo F, Yz, . (4.19)
Notice that d22(Z,0) cannot vanish because & is positive definite. Since g—g(f, 0) = ¢}(Z) and
%(5, 0) = —g1(2) g;zg’gg, straightforward computations allow us to show that (on)'Vb, =

A~

10-2(67)!Vb = 0.

Now it is easy to prove the following result for by:



4.3 Preliminary results 46

Py
y\ /FZ\«
T
7 t R P
(0,0) Lﬁ (1,0) o n
Figure 4.2: The definition of Fj.
y T,
25
(0,0)
Figure 4.3: The support of by.
Lemma 4.3.2 Given £ € &, let by and wy be defined as above. Then
bele= =0 Vet e &y, 0 #£ L, (4.20)
(oVby) - m=0 on Owy , (4.21)
Cl < /bz <, (4.22)
¢
belmgw, < ClZ™72P 0 m=0,1,2. (4.23)

Proof. For the case £ € & ;, the proof runs essentially identical to that of [15, Lemma 3.1]. For
l € & the first three properties have already been checked. The last one follows from standard
scaling arguments. 0

The third kind of bubble function concerns the point &g and the triangle Ty that we have
chosen such that g € Ty. We will denote by hg the diameter of Tj. Let us set

wr, ={T" €Ty : T'NTy # 0} (4.24)

and d:=dist(xo,0wr,) (since xp is an inner point of € then d > 0). Notice that, because of the

regularity of the mesh, there exist two positive constants such that Chy < d < C'hy. Let x(x)
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be the convolution of the characteristic function of the set {x € Q : | — xo| < d/2} with an

appropriate mollifier, so that y(x) = 1 if | — x¢| < d/4, x(x) = 0 if | — x| > 3d/4 and

Vx(z)| < Cd™.
We define the bubble function

Figure 4.4: Two examples of wr,.

The support of by is contained in wz,. Moreover the following results hold true:

Lemma 4.3.3 Let by be defined as above. Then

Vbo(zo) = p,
Vby=0 on dwr,,
d
bo(x) =p- (& —x0) Vo €Q:|r—mo| <,
d
bo(x) =0 VacEQ:]:c—a:o\Z?)Z,

‘bO‘m,oo,wTO <od™, m=0,1,2.

(4.25)

(4.29)

(4.30)

Proof. It follows from straightforward calculations. In particular, (4.30) follows by combining

that |X|m,cowr, < Cd™™ (see [15, equation (3.8)]) with the fact that p - (z — @) is linear and

continuous. O

Corollary 4.3.1 Let by and wr, be defined as above. Then,

|bO,m7Q7WTO S Chg_m_g/p ) m = 07 17 2 )

and, for all edge ¢,
Boll0,q,c < ClE[*~1/7.
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Proof. Using (4.30) and the fact that hg < Cd < Chg, we have
[b0lm.q0m, < [b0lm,00wr, lwr |7 < Cdlfmhg/q < Chg—mﬂ/p'

Moreover, using that

1-1 1
ollogor < Cllvlg 4 vl iy Yo e Wh(T)

(see [20, Theorem 1.6.6]), we have

1=a it < o)g3=2p)(=1/0) || 2=2/p)(1/9) = g2 1/p .

O,QWTO 17‘1,WT0

llbo

0,g,6 = C”b0|

To end this section, we recall an error estimate for the Lagrange interpolant v! € Hj of a

function v € C(Q).
Lemma 4.3.4 Given £ € &, let wy be defined as above. There holds
v = 0" floge < CUTPlolagw, Vo€ W(w), 1<g<oo.

Proof. See, for instance, [15, Lemma 3.4]. O

4.4 An a posteriori error estimator

According to Remark 4.2.1 the solution of problem (4.3) belongs to LP(Q) with 1 < p < 2.
In this section we will define an a posteriori error estimator in the LP(2)-norm for the finite
element approximation error u — uy. We will prove the reliability and efficiency of the estimator
for a particular range of p. Let us emphasize that this proof holds for a regular family of meshes
and does not need the quasiuniformity assumption, so that the error estimator can be used to
drive an adaptive scheme.

For all T' € T, we define

21l 1 1
ETp 1= thHdIV(UVUh)Hg,p,TJr§ S 1P leVun -]l ,,

LeE(T)NER i
1/p

+ > PV, - nlf :
LeE(T)NER, e

where £(T') is the set of the edges of T" and [g] denotes the jump of g across an edge. We define

the local a posteriori error indicator 17, for all T' € T}, as follows:

_ 1/p
(hg Py 51;04)) T =T,

ETp otherwise .

Nrp =
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Next, we define the global error estimator from these indicators as follows:

1/p

mo=| >,

TeTh

4.4.1 Reliability

To show that this estimator is reliable, we prove the following theorem which is based on a

duality argument as that used for Theorem 4.2.2.

Theorem 4.4.1 Let  be a convex L@pschztz polygon and let o, j € C1(Q) for each i,j = 1,2.
Let n, be defined as above with p € (
(4.6). Then, the following estimate holds true:

7,2), where qo > 2 is the mazimal regularity exponent in

lu = unllopo < Cnp.-

Proof. Given ¢ € L1(Q), let ¢ € W24(Q) be the solution of (4.5). Proceeding as in (5.13), using
(4.4) tested with v, = ¢! (the Lagrange interpolant of ¢), and integrating by parts, we obtain

/(u —up)y = —p - Vo(xg) —|—/ oVuy -V (4.31)
Q Q
=P+ (V¢ (a0) = Vilao) + | oVun- V=)

=p- (Vo' (x0) — V(o)) — Y /le oVup)(p — ')

TET,
+Z/[[0Vuh nl(e — ¢’) Z/Uvuh n(e—¢").

LeE ; ety

Using Holder inequality, Proposition 4.2.1, and Lemma 4.3.4 we estimate each term on the

right hand side as follows:

1-2
P V(e — o) (@o)| < Iplle — &'l coms < Chy ' Iplagts

3 / div (oY) — 1) < 3 [div (@Vun)oprle — ¢ llogr

TETh TeTh
<C Y hlldiv (e Vun)|lopreloqr
TeTh
1/p

2 .
<C Z e ||div (Uvuh)Hg,p,T |pl2,0.0
TET),
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> /[[UVUh-n]](so —¢) < Y MoV - nlllopele — @lloge
CEE,i ¢ LEER,i
<C Y 0P loVun - nllop el
LEE ;
1/p
<C Z [P ([ Vun - nlf , , [Pl2.0.0
465}7"1‘
3 /UVUh-n(so—sol) < D NoVun-nllopelle — ¢ lloge
tegy, 7t tegp..
<C > [P oV, - nlop.elel2,gm
Keeh,e
1/p
<C Z [P loVun - nlf,, ]2, -
el e

Substituting all these estimates in (4.31) and using (4.6), we obtain

/ (w—up) <C | hg P+ Y b |div (eVuy)|bh 7
Q TET;,
1/p

= S eVl + S 0 oV nll,, | el
@ES}LJ‘ eegh,e

/ (u — up)
lu—upllopo = sup

HELI(Q) ”W‘O,qﬂ

2— 2 .
< C (B + Sreq, WA (@Fun) [, 7 + Siee,, 107 oVl

Therefore,

1/p
+ e, NP oV, - nlf )

and from this we conclude the theorem. O

4.4.2 Efficiency

In this subsection we always assume that o; ; € C*(Q) for each 4,7 = 1, 2.
To prove the efficiency estimate, we will use some techniques that appears in [54]. For that,

we introduce the matrix o/, whose entries are the Lagrange interpolants of o

ol = (0] 1<ij<o.
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The following four lemmas provide upper bounds for each term defining ngvp. Here and

thereafter div (-) must be understood in the following row-wise sense: (div (o)); = >, 853 .
Lemma 4.4.1 The following estimate holds true:
2 1: 21114 I
thHle (Uvuh)Hg,p,T <C (HUHIf,oo,T lu — UhHg,p,T + thH[dIV (o —0a')] Vu, 8,p,T>

for allT € Ty.

Proof. Let us consider an arbitrary T € Ty, the bubble function by defined in (4.12) and the

function ¥ defined in 2 as
Yp :=div(e!Vup)by  inT.

Like by, this function is supported in 7.
The fact that div (! Vuy)|r € Py, (4.16), (4.14), (4.15), and integration by parts yield

Idiv (&/Vun) |13, = TP~ |div (o V) |3 .7

< C|T12P~ b} 2div (0T Vuy,)||2
T 0,2, T

= C|T/P1 (/T div (eVup) ¥r + /TdiV (o' - U)VUhWT)

= C|T)¥/r~1 </ updiv (e V) + / [div (6! — )] - Vauy wT) .
T T
Next we notice that, since u is solution of (4.3) and Vbr(x¢) = 0, one has

/ udiv (vaT) = —p- V¢T(’£0) =0.
T
Therefore, we can write

[div (' Vup)lf 7

< Pt ([ = v @) + [ divie! o) Vo)

T

For the first term we have

/ (up, — w)div (eViir)
T

< 20w — unlloprllolierllvrzer
and, using (4.17),

lWorllogr = |div(e"Vuy)l|lbr

< C|div (a!Vup)||T|=Y? < C||div (! Vup) |lo.pr|T]2/P .
7p7

2,q,T
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For the second one,

/T (div (07 — )] - Vaptr| < |[div (0! — )] - Vunlloprlérlogr

and, now using (4.13),
[erllo.gr < Cldiv (o Vup)|| TV < Clldiv (o Vup)loper| TV
Hence

op1 + |[div (0! — )] - Vup|lopr)

ldiv (o' Vur) oz < C (hz?llol1o.r |l — wn
from which we easily obtain the desired result. O
Lemma 4.4.2 The following estimate holds true

P [ Vun - nllg .,

1
<C ||0-||ll),oo,wg|| uth,p wp + Z h’ H le U - U)] ’ VUhHg,p,T/ ’
T Cwy

forall € € &y ;.

Proof.
We consider an arbitrary ¢ € & ;, the bubble function b, defined in (4.18) and

’(ﬁg = [[Vuh . ’n]]bg in Q.

Like by, this function is supported in wy.
We know that the entries of o belong to L>°(€2) and, therefore, we have

“nllope = ClIVunllop.e s (4.32)

because the jump of the tangential component of Vuy, is zero.

On the other hand, from (4.22) and the uniform positivity of o we obtain

IV unlely e =

IN

Cle2/P= by * [Vunlel3 5.0
/v / be[VunLo]Vunl
l

= Cle¥rt /e[[UVUh “n]y.

(4.33)

IN
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Taking 1y as a test function in (4.3), using that Vby(xp) = 0, integrating by parts, and
recalling (4.20) and (4.21), we have

/ (u — up)div (Vi) =

Z / updiv (V)

T'Cwyp

— Z / div (6Vuy,) W+/[[0'Vuh nfy.

T’ Cwy

Hence

/é[[UVuh'n]]W = > /ldlv Uvuh)¢z+/ (u = up)div (V)

T'Cwy
< C (v (0T gl — un
+ S, 108V (V) o [ello.g ) (4.34)
< Cf

+ S, 148V (V) o [ello.g )

From standard scaling arguments and (4.23), we have

[Yello,gur < [Vunelllbe 02737 (4.35)

and
[Vell2ge < CUN1ellogr < CINIVunlellopeld =7 (4.36)
Hence, from (4.33) and (4.34), we write
IVunkllope < CLEPP (1672 llo 100w, 1t = unllope
+ v WP/ i (0 Vun) o1 )
and, from (4.32),

p
0,p,we

+zm Wi (o)l ) -

4P lo V- nllf,, < C (ol

[l — up,

We conclude the proof by using Lemma 4.4.1 to bound the last term. O

Lemma 4.4.3 The following estimate holds true

I
P o Vuy - nll < C (o1 sl — il , + W2 div (o7 — )] - Vunly, o,

o = o) Vun - nlf )

for all £ € &, ., where oy is any constant matriz.
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Proof.
We consider an arbitrary ¢ € &, ., the bubble function b, defined in (4.19) and

e = oyVup -nby in Q.

Like by, this function is supported in T}.

Since oy is constant and b, satisfies (4.22), it is easy to prove that

loeVup - nl§ 0 = 1027 oo Vuy - 0§ o
_ 1/2
< Ol o uy - nl3 5, (4.37)

= |€|2/”—1 </(0’g —o)Vup -ny + /aVuh . nW) .
¢ ¢

On the other hand, using that |[v¢loge < C€|7Y9||t¢ll0,q1, and the arguments used for

proving the previous result, we obtain

lo.p.el€1 ™17l

/g(ag —o0)Vup -niy < Cl|(e¢—o)Vup-n 0,q,7;

< Cll(oe — o) Vup  nllopell! " >PlloVuy - nllope

and
/o'Vuh My = / (u —up) div (Vi) + / div (eVuy) ¥y
¢ T, T
< C(llell,00,m 1w = unllopm €77

+ [|div (o Vup) lop.1, |12 2/P) |0 Vup - nlo .

Substituting these expressions in (4.37), we have

ooV, - nllope < CLPP 3P 0|1 00,m [0 — unlop1

+ [0P7Pdiv (o V)|

0,p,7¢

+ 1027 (o — o)V - nf

O,M)

and, therefore,

2 .
mpHHJeVuh : n”g,p,e <C (HU, If,oo,Te Ju— uhHg,p,Te + hTf”dW (Uvuh)“g,p,Te

107 (e~ o) Vun - nlf )
Thus, using this result, Lemma 4.4.1, and the fact that
leVun - nllope < |l(or = a)Vup - nllope+ o Vun - nllope,

we conclude the proof. O
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Lemma 4.4.4 The following estimate holds true:
P ol
W7 < C (N0 f s 1t =l + S 02N [div (0 — &) - Vun ], 1
T'CLUTO

Proof. Let & be the set of edges ¢ of triangles T' C wr,, such that ¢ ¢ dwy,. Testing equation
(4.3) with the bubble function by defined in (4.25), we obtain

Ip|? = p - Vbo(xo) = /Q(u —up) div (eVby) — / up, div (e Vby)

< = wnllo o, 141V (V00) [l0.guwm, — D //dw oVuy) bo—i—Z/[[aVuh]]gbo

T'Cwry, L€y

1B0ll2,g.m,

< C(Hu—uh

0,p,wr,

21 gy 141V (@Vun)llop 17 + X peeo o Vun - n

0.p.¢/100 Ho,q,z) :

where we have used (4.26), integration by parts, and Holder inequality.
We estimate ||bo|2

wrs |100]|0.g.07. > and ||bg|o.q.¢ by Corollary 4.3.1. Thus, we have
4,y To 4,y To »4dy

1-2
2 < Chy ™ [ |71 o0 a0m, 11t — |

0pwr, T3 D 1div (aVun) o

T'CUJTO
+ ) 1P|V - nllop.e
Legy

Since hg < Chyr for each TV C wry,, this estimate together with Lemmas 4.4.1 and 4.4.2 lead to
the desired result. O

Now we are in a position to conclude an efficiency estimate by collecting the previous four

lemmas. Notice that these lemmas hold true for any p € (1,2) (and not only for p € ( 0-,2) as
Theorem 4.31).

Theorem 4.4.2 Let 0;; € CY(Q) for each i,j = 1,2. Let u and uy, be the solutions of (4.3)
and (4.4), respectively. Then, for all p € (1,2) and for all T € Ty,

e < C o] o wplle = wnllfpor + > LIV (6! = 0)] - Vun]h, 7
T Cwr

1/p

+ > P(e = o) Vus - nlf ;
(eE(T)NER e

where wp :={T" € T, : TNT' # 0}, and for each £ € E(T) N Epe, 04 is any constant matriz.
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Notice that the last term in the estimate above vanishes for all triangles which do not intersect
o9.

The above inequalities are actual efficiency estimates if we show that the terms

2 . I
> WiV (e’ = o) Vunllh g Do Pl = o)V - nlf,,
T'Cwp Zeé‘(T)ﬁSh,e

are negligible. In what follows we will show that this holds true under some additional assump-
tions; we also note that our final result is true on the whole domain Q (and not locally, as it
would be preferable).

Regarding the term ZEGS(T)HSh,e |€|PTY| (o — o) Vuy, - an’p’e, since o is any arbitrary cons-
tant matrix, it clearly vanishes when o|, is already constant: namely, when the tissue on the
scalp is piecewise homogeneous, which is a realistic assumption in practice. On the other hand,
an alternative proof for Lemma 4.4.3 also holds true when the conductivity on 952 is of the form
o = ol, with ¢ a scalar function; namely, when the tissue of the scalp is isotropic. In fact, in

that case we have the following result.
Lemma 4.4.5 We have
7 oV -l < C (018 ez, e = unllf .z, + B2 Ndiv (0 = )] - Vanlf )
for all ¢ € &y e, provided ol = oI, with o : £ — R a scalar function, belonging to CHT).
Proof. We consider an arbitrary ¢ € &, ¢, the bubble function b, defined in (4.19) and
Pp = o9 Vup - nby in Q,

with o¢ as in (4.2). Like by, this function is supported in 7j.
From (4.22) and (4.2), we have that [, byo > Coo|¢|. Using this result, we obtain

loVun - nl5,0 < 1olf ol Vun - nll5 .,
= 011§ o e 1770V iy, - |
o113 0.t | p12/p—1
< 072‘£| p UVU}L‘?’L@W.
O'O ’
The rest of the proof runs almost identically as that of Lemma 4.4.2, by using that
1ello.g,r, < lbello.gm €1~ PlloVun - nllope < CLPP0Vup - nllope

and

Iello.gr < ClIIvelogr, < ClI~>PloVuy - n|

0,p,¢
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instead of (4.35) and (4.36), respectively. O
In order to prove that the term Y, h2||[div (¢! — o)] - Vup g v in Theorem 4.4.2

is globally negligible, we proceed as in [54] and make the following additional non-degeneracy

Cwr

assumption: there exists C' > 0 such that
Ju —upllopa > Ch2. (4.38)

As explained in [54], this assumption looks quite reasonable.

In such a case we conclude with the following result.

Theorem 4.4.3 Let us assume that for each { € &, either oy is a constant matriz, or

2x2

olg = ol with o : £ — R a scalar function. Moreover, we assume that o € [C*(Q)] and

o € [W22(T))**2 for all T € Ty,. Let u and uy, be the solutions of (4.3) and (4.4), respectively.
If (4.38) holds true, then

Np < Cllu —upllopn

for allp € (1,2).

Proof. It is enough to estimate the last term in the inequality of Theorem 4.4.2:

Z Z h Pl[div (o —U)]'VUhHg,p,T/

TEET/CWT
Z Z h Yldiv (o _O')HOOQT/HVWLHSP,T/
TeT, T Cwr
2
<CY . > hphploll eyl lunlt, .
TeT, T'Cwr
< Ch* (maxrer; 10115 o np) D Inll pop

TET),
< Ch([lu = unh 0 + lully,0)

o

< Cllu = unllg 0 + Cllu = unll§, ollull po

where we have used (4.38) for the last inequality. O

4.5 Three-dimensional case

In what follows we briefly discuss the results that are preserved in 3D. First, let us recall
that the existence and uniqueness of solution of the model problem (4.3) was proved in [65] in
the 3D case for all p € [1,3/2).

To obtain a priori and a posteriori error estimates for the numerical solution, we resort to

the auxiliary problem (4.5). The critical point is the regularity of the solution of this problem.
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We need that the solution belongs to W24(Q) for ¢ > 3 (namely, ¢ such that }D + é = 1 with
1 < p < 3/2). In [30, Theorem 2] it is proved that if 2 is a cube and the conductivity o is a
positive constant, (i.e. isotropic homogeneous material), then the solution of (4.5) belongs to
W24(Q) for all ¢ > 1. Therefore, within this section we assume that Q is a cube in R® and
that o = ol with o a positive constant. In such a case we have the following result, that is the

analogue in the 3D case of Theorem 4.2.2.

Theorem 4.5.1 Let {7y} be a quasiuniform family of subdivisions of the cube Q. Let u and up,
be the solutions to problems (4.3) and (4.4) respectively. Then the following estimate holds true

lu — upllope < CH¥P72,
forallp € (1,3/2).

Proof. The proof runs as that of Theorem 4.2.2. 00

The a posteriori error analysis also extends to the 3D framework. Let Fj,; be the set of all
the inner faces and Fj, . that of external faces of the mesh 7. Let Fp, := F,; U Fp . For all
T € T, we define

ETp = (% S rermyng, [FIP [V - np]?
1/p
+ e RN Fn. \F!(p+3)/2|vuh'nF\p) ,

where F(T') is the set of faces of T' and |F| is the area of F.
We define the local a posteriori error indicator 77, for all T' € T}, by
1/
(h3‘2p+@” ) T A

o — To,
nrp = 0P

ETp otherwise ,

where hg := hg,, and the global error estimator from these indicators as follows:

1/p

p 7= Z 77/\%]0

TeTh

Note that, as we are assuming that o is constant, the second and third terms that appear
in Theorem 4.4.2 vanish in the estimate of 7j7,,. The following results are obtained by adapting
to the 3D framework the proofs of Theorem 4.4.1, and Lemmas 4.4.2 and 4.4.4. We have the

following result regarding the reliability of the estimator:

Theorem 4.5.2 Let u and uy, be the solutions of (4.3) and (4.4), respectively. Then, the follo-

wing estimate holds true:

Ju = unllopo < Chp -
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The efficiency follows from these two lemmas:

Lemma 4.5.1 Let us set wp :={T € T, : F C T}. The following estimates hold true:

|F\(p+3)/2\[[Vuh np]P < Cllu—up for all F € Fp,;

p
0,p,wp ?

and

’F’(p+3)/2‘vuh nplP < Ollu—up| for all F' € Fpe.

p
07p,(/JF ’
Lemma 4.5.2 Let wr, be defined as in (4.24). Then,

3—2
hO D < CHU — uhHg,P,wTo .

Notice that no negligible higher order term appears in this case in the efficiency estimate.
Therefore, we have the following version of Theorem 4.4.3: under the more stringent assumptions

we have required, the result now holds locally on each triangle T'.
Theorem 4.5.3 Let u and uy, be the solutions of (4.3) and (4.4), respectively. Then

nrp < Cllu = uplloper

for allT € T, and p € (1,3/2).

4.6 Numerical experiments

In this section we report some numerical experiments in 2D. The adaptive procedure consists
in solving problem (4.4) on a sequence of meshes up to finally attain a solution with an estimated
error within a prescribed tolerance. Each mesh is a local refinement of the previous one. We
compute the local error indicators 17, for all T" in the ‘old” mesh 7}, and then we refine those
elements T' with nr, > Omax{nr, : T € Ty}, where 6 € (0,1) is a prescribed parameter. In
particular we take § = 1/2 in all our experiments.

The algorithm is implemented in a Matlab code using the mesh generator Triangle. This
generator allows creating successively refined meshes based on a hybrid Delaunay refinement

algorithm (see [64]).

4.6.1 Test 1. Isotropic constant conductivity

The first test consists of solving problem (4.4) in a regular polygon of 16 edges inscribed in a
circumference centered at (0,0) with radius 1. The dipole is located at &y = (0.2605, —0.3054),
the polarization is p = (—0.2425,0.9701) and the conductivity is assumed to be the identity.
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Since ¢ = 1, we can obtain an accurate solution by means of the subtraction technique. This
technique uses a particular function wg satisfying div (6 Vug) = div (pdq, ), which is analytically
known. Subtracting ug to the solution of problem (4.4) leads to a non-homogeneous Neumann
problem, whose solution is not singular at xg. Therefore, this problem can be accurately solved
by using standard finite elements (see [67] for more details). The solution computed by this

subtraction technique in the finest mesh of the adaptive procedure will be taken as the reference

solution, upef(X).
Figure 4.5 shows some of the successively refined meshes created in the process driven by

nrp with p = 1.25. Parameters “iter” and “d.o.f.” refer to the iteration number and the total

number of vertices of the corresponding mesh.

iter=1, d.o.f.= 54 iter=17, d.o.f.= 569  iter=30, d.o.f.=3.905
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Figure 4.5: Test 1. Meshes obtained with 17 ,; p = 1.25.
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Figure 4.6: Test 1. Zooms of the mesh for iter=30.

Figure 4.6 shows two successive zooms around the singularity of the finer mesh in Figure
4.5. Each figure is a 200% zoom of the previous one. It can be appreciated that the mesh is
extremely refined in the neighborhood of the singular point. Such a behavior can be expected
from the singularity of the solution at xp, which can be seen from Figure 4.7, which shows the

computed solution on some of the coarser meshes. (Notice that the vertical scales are different

on each subfigure.)
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iter=1 iter=3

iter=7 iter=19

Figure 4.7: Test 1. Approximate solutions on some coarser meshes.

This extremely singular behavior is the reason why the adaptively created meshes are so
localized. This can be appreciated in Figure 4.8, which contains two graphs. The one on the
left shows the plot of the discrete solution corresponding to the different meshes on the segment
x = xo + tp, t € [—0.002,0.002]. The right subfigure is a zoom of previous the plot.

The behavior of the (absolute) error along the adaptive process can be seen from Figure 4.9.
We report log-log plots of the estimated error and the “reference error” versus the number of
degrees of freedom. The “reference error” is computed by comparing the solution of problem
(4.4) with the reference solution. The figure also shows a line of slope —1 which corresponds to
the optimal order of convergence for the finite elements used. It can be seen that the estimated
and the reference errors both attain this optimal order.

In Table 4.1 we compare the reference (relative) error for the solution of problem (4.4)
computed using adapted meshes and a quasiuniform mesh with approximately the same number
of nodes (5780). It can be seen that, to obtain a solution with an error around 5 %, the number
of d.o.f. in the uniform mesh is 40 times the number of d.o.f. in the adapted mesh. Moreover,
with almost the same number of d.o.f., the adaptive algorithm yields a computed solution with

an error 50 times smaller than the one obtained with a uniform mesh.
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x 10

Approx. sol (mesh 17)
Approx. sol (mesh 23)
15 —— Approx. sol. (mesh 30)
—— Rel. sol. (mesh 30)

solution
o

x 10

6 ——— Approx. sol. (mesh 17)
——— Approx. sol. (mesh 23)
—— Approx. sol. (mesh 30)
4 —— Ref. sol. (mesh 30)

solution

Figure 4.8: Test 1. Approximate solution and exact solution on the segment x = xg + tp,

t € [~0.002,0.002).

error

—&— Estimated errol
—o6— Reference error
Slope -1

d.o.f.

Figure 4.9: Test 1. Estimator 7, and reference (absolute) LP error curves; p = 1.25.

We notice also that, though the error indicator is designed to estimate the LP-norm in §2,

when using this adaptive procedure the error on the boundary decreases at the optimal rate,

too. Thus, this error indicator can be used in the forward solver when facing the inverse problem

of electroencephalography (namely, the problem aiming at determining the source localization

from suitable boundary measurements). In Figure 4.10 we present a log-log plot of the averaged

relative error \/ 27112:1 |(up — tpes) (Xn) 2/ 27112:1 |tref (X1)]? in twelve different points of 99 (twelve

consecutive vertexes of the polygon ), which can be thought as the localization of the electrodes.

Although this error is more noisy, a fated optimal order (slope —1) can be appreciated.
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Degrees of freedom | LP relative error
Adapted mesh 9 141 0.4368 101
Adapted mesh 32 5794 0.11521072
Quasiuniform mesh 5780 0.5508 101

Table 4.1: Test 1. The LP relative error for p = 1.25 in three different meshes

10 : : -
—— Point wise errol
107
1072
S
E -3
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-5
10 : :
10" 10> 10° 10*
d.o.f.

Figure 4.10: Test 1. Averaged relative error at boundary points.

4.6.2 Test 2. Anisotropic non-constant conductivity

In the second test, € is a square centered at (0,0) with side-length 2. The dipole is located
at £y = (—0.25000,—0.08333), and the polarization is p = (0.9015,0.4327). We consider a

non-constant anisotropic conductivity

422 +1 0
g = .
0 2y? + 1

The results are very similar to those of the previous example. Figure 4.11 contains the meshes
corresponding to three different iterations of the adaptive scheme and Figure 4.12 shows two
successive zooms around the singularity.

We report in Figure 4.13 a log-log plot of the estimated error versus the number of degrees
of freedom. The slope is close to —1 which confirms the success of the approach. In this case
we have not a reference solution because the subtracting approach can not be used in this case,

since the conductivity is not constant around the point where the source is located.
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iter=1, d.o.f.= 41 iter=18, d.o.f.= 785  iter=28, d.0.f.=3786

Figure 4.11: Test 2. Meshes obtained with nr,; p = 1.25.

iter=28, d.0.f.=3786
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Figure 4.12: Test 2. Zooms of the mesh for iter=28.

4.6.3 Test 3. Anisotropic constant conductivity

10 0
Finally, we consider a strongly anisotropic conductivity: o = 0 o1 ) The domain €2

is a square centered at (0,0), with side-length 2. The dipole is located at &y = (0,0) and the
polarization is p = (1, 1). Since the conductivity is constant, as in the first test we can compute
the reference solution using the subtraction approach.

We show in Figure 4.14 the meshes corresponding to three different iterations of the adap-
tive scheme. Figure 4.15 shows two successive zooms around the singularity of the finest mesh
considered (iter=45, d.o.f.=4168).

It can be clearly seen that in this case the meshes are not only refined around the singular
point. The reason for this is that, because of the anisotropy of the conductivity, the solution
has an inner layer at o = 0. In fact, the fundamental solution (which is the only source of

singularity) reads in this case

o (x) = L x1 + 100z,
O T o 22 10022
Therefore, it is easy to check that the slope of the graph in the xo-direction is approximately %

at xo = 0. This can be seen from Figure 4.16, which shows the plot of the fundamental solution
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Figure 4.13: Test 2. Estimator 7, curve; p = 1.25.

iter=1, d.o.f.= 41 iter=15, d.o.f.= 257  iter=30, d.o.f.= 1124

Figure 4.14: Test 3. Meshes obtained with 77 ,; p = 1.25.

in a uniform mesh with 8321 vertices.

We notice from Figure 4.17 that the computed order of convergence is not optimal in this
example. In fact, the fitted slope is close to —0.57. Very likely, the reason for this suboptimal
order is that our adaptive scheme only uses regular meshes, while appropriate anisotropic meshes
seem to be necessary around the inner layer. Nevertheless, the use of our adaptive procedure
turns out to be convenient, as can be seen by comparison with the results obtained with uniform

refinement (see Table 4.2).
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iter=45, d.o.f.= 4168
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Figure 4.15: Test 3. Zooms of the mesh around the singular point for iter=45.
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Figure 4.16: Test 3. Fundamental solution. Figure 4.17: Test 3. LP (absolute) error
curves for p = 1.25: estimated and refer-

ence error on adapted meshes.

Degrees of freedom | LP relative error
Adapted mesh 15 257 0.7217107!
Adapted mesh 38 2118 0.3007 10!
Quasiuniform mesh 2113 0.74171071

Table 4.2: Test 3. The LP relative error for p = 1.25 in three different meshes.



Chapter 5

Numerical behavior of different
approximation methods for the
direct and inverse problems of

electrostatics with a dipole source

5.1 Introduction

It is common practice in cognitive research to reconstruct current sources in the human
brain by means of their electric potentials, measured with electrodes which are fixed on the
scalp (EEG).

Electromagnetic activity of the brain is due to the motion of ions in the active regions of
the brain. This movement generates the so called impressed current (or primary currents) that
in turn create ohmic currents in the surrounding environment calls return currents. We are
interested in determining the impressed current.

The reconstruction of the position and of some physical characteristics of the current density
that has given rise to the EEG measurements is called the inverse problem. For an accurate
reconstruction of the primary current it is important to be able to realistically model tissue
conductivity inhomogeneities.

In this chapter we present a series of numerical computations in order to compare different
methods used for the approximation of the direct and inverse problem when the conductivity is
not continuous across the interface of the different tissues (we recall that this is the case in the

real physiological situation). We study in particular the case of a dipolar source located close to

67



5.1 Introduction 68

the interface between two regions with different conductivities.
The obtained results have to be seen as a first step towards a better understanding of which
is the most accurate procedure to use in this context.

We start introducing the equations.

5.1.1 Continuous problem

In almost all the studies concerning the neural generation of electromagnetic fields the static

approximation of Maxwell equations is considered

[ divD =p,
curlE =0,
(5.1)
curl H = J,
divB =0,

where E and D are the electric field and electric displacement, respectively, p the electric field
charge density and J is the electric current density. By H and B we denote the magnetic field
and the magnetic induction, respectively.

For biological tissues, the linear constitutive equations D = e £ and B = puH can be assumed
(see Plonsey and Heppner [57]), where € and p correspond to the electric permittivity and the
magnetic permeability, respectively. It can be assumed that p is constant over the whole space
and equal to the permeability of vacuum [61].

From second equation of (5.1), we conclude that there exists a scalar potential u such that
E = —Vu. From Ohm law the total current density J is the sum of the impressed currents plus
the return currents

J=J,+o0oE=J,—0oVu,

where o is the conductivity, which is a uniformly positive definite matrix with entries in L°°.

From the third equation in (5.1) it follows that
0 =divJ =div (Jp, —oVu).
Hence u is solution of the equation
div (eVu) = div J,,

Let Q be an open connected bounded set with Lipschitz continuous boundary 9f2 included

in RY, where d = 2 or d = 3 ( represents the human head). We assume that J,, is supported
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in . Since J - nlg = J - nlgag = 0 and J, - n = 0 on the interface 09, then (oVu) - n =0 on

0f). We define n to be the outer unit normal vector on 9€2. Then, we obtain this problem:

(5.2)

div (o Vu) = div (J) in Q,
(oVu) -n=0 on 09 .

Let us assume that a small activated region is centered at a point &g and that the observation
point is far from it. In this case the primary current J, is typically modeled as a dipole. So, in the
following, we consider the electrostatic problem with a dipole as source term and homogeneous

Neumann boundary condition:

(5.3)

div (o Vu) = div (pdg,)  in Q,
(oVu) - n=0 on 0€).

where g is an inner point of Q, and p # 0 is the polarization vector. In [65] the existence and
uniqueness of solution u € LP(2), 1 < p < 3/2 of this problem has been studied under of the
assumption of more regularity of o in a vecinity of &y and d = 3. We give more details later on.

The singularity of the dipole source can also be trated using the so-called subtraction ap-
proach. We explain in more detail this technique below. We need to assume that there exists a
nonempty open subdomain )y C € around the source position xy with constant conductivity

oo (in general, a matrix). The conductivity o is then split into two parts,
o=00+05, (5.4)

so that og is constant over the whole domain Q and o is zero in the subdomain €y, i.e.,

os(x) =0 for all € Qp. The total potential u can be split into two parts,
u = ug + Us, (5.5)
where ug denotes the solution in a infinity homogeneous conductor. The potential ug satisfies
div (ogVug) = div (pdg,) in RY. (5.6)

An analytic formula for ug in the case of a homogeneous and isotropic conductivity og = ogl,

o9 € R is
27r00|m — i130|2
=N (@ —a0)
d ifd=3.

4o 0|m — i130|3
When the conductivity o is homogeneous and anisotropic (namely, o is a constant matrix),
we find
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. (00)" (@ — 20))
2my/detag ((00) 7 (z — z0), (x — 0))
(p,(00) ' (x — =0))
4my/detag ((o0) L (x — x0), (x — 20))*”
Replacing (5.4), (5.5) in (5.3) and using that g satisfies (5.6) , we obtain

ifd=2,

UO(Q,‘) =

ifd=3.

div [(og + 05)V(up + us)] = div (pdg,) = div (goVug) ,

and hence,
div (6Vus) = div [(og + 05)Vus] = —div (asVuyg) .

On the other hand, since
0=(oVu) -n=(eV(ug+us)) -n ondQ,
then we obtain the Neumann boundary condition:
(oVus) -n=—(oVug)-n on 0f).

In conclusion ug is known and wus solves the boundary value problem

div (o Vus) = —div (o5 Vug) in Q,
(oVus) -n=—(oVug) - n on 01, (5.7)

/qu:O.
Q

The last condition of (5.7) filters out additive constants and therefore is suitable for assuring
uniqueness of the solution wug.

The goal of the reformulation using the explicit representation of ug is to obtain a problem
with a more regular source, eliminating the singularity at xg: notice that the potential ug has
a singularity at @ = @ but it is smooth for & # xy. Therefore, the Neumann datum in (5.7) is
smooth and moreover, o vanishes in ¢ which implies that osVug € L*(Q).

An alternative approach is the direct method studied by Valli in [65] (d = 3) and also in the
previous chapter of this thesis (d = 2). Notice that to prove that the following weak formulation
has a unique solution, it is necessary to assume that there exists ry > 0 such that the entries
of o belong to WH>°(B,,(x)), where By, (xq) := {x € R?: |z — xo| < ro}. We recall the weak
formulation: find u € LP(2) such that

/ udiv (o V) = —p - Vo(xg) Ve Xy,
Q

/u—O,
Q
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where
X, = {p e WH(Q) : p € CY(Bi(z0)),div (6 V) € L), (6Vp) - n = 0 on 90},

being r* a fixed number such that 0 < r* < ryo. Moreover, here and thereafter % =+ % =1
The following theorem, which is derivated from [65, Remark 3.3], ensures the existence and
uniqueness of solution to (5.8) in the three-dimensional case (d = 3) and in two-dimensional

case (d = 2):

Theorem 5.1.1 For all p with 1 <p<3/2ifd=3 (1 <p<2ifd=2), there exists a unique
solution uw € LP(Q) to (5.8), which is the same for all p in this range.

Another alternative approach, is to use an approximation of the delta function
Sewo := Xe/|Be(o)| € L*(Q), (5.9)

when solving the discrete problem, where x. is the characteristic function (equal to one in the ball
B(xp) and zero, otherwise). For simplicity of notation, in this section we define B, := B.(xg).
In this case, the weak problem corresponds to
find u¢ € H'(Q) such that

1
/aVug-Vv: /p-VU Ve HYQ),
Q Bl J .

/uE:O,
Q

for each € > 0. In the following theorem, we prove the convergence of u to u when € tends to

(5.10)

zero. We prove the convergence only in the bidimensional case (but a similar result is true also
for d = 3).

Theorem 5.1.2 Let 0;; € Wh°(B,,) for each i,j = 1,2 and d = 2. Let u and u® be the
respective solutions to problems (5.8) and (5.10) and r* > 0 a fized number such that r* < rg.
Then if € < r* there exist a positive constant C, independent of € such that for all p with
1<p<?2

= ujopo < CE¥PL. (5.11)

Proof. To find this estimate in LP(£2), with 1 < p < 2, we will use the same duality argument
that in Chapter 4. We recall the well-posed auxiliary problem: given 1 € LI(Q), find ¢ € H*(Q)
such that 1
div(a'Vgo):w—/w in Q,
2 Jo

(eVp) - n=0 on 982, (5.12)

/(p—O.
Q
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where % + % =1.

Since 1) — ﬁ fﬂw € L1(Q), then the internal regularity results for elliptic problems [37,
Section 9.5] yield ¢ € W24(B,«). The Sobolev embedding theorem (see, e.g. [35, Section 5.6.3])
also gives p € C1%(B,«), with a = 2/p — 1. Moreover, lellgra@y < Cllellzgs. < Cllvlloge

where C' depends on o, r*, but not on 1. By using this fact, (5.8), (5.10) and integration by

parts, we obtain
1
Jw=ww= [ (avievor+ g [ o).
= / udiv (eVp) — / u¢div (o Vo)
Q Q

= —p-Vo(xg) + / oVu® -V

Q

1
=—p-Vs0(wo)+/ p-Vo

1 Be| /b,

=p- (\J;EI/BEV@_V(’D@O)) ,

1

< |p|

1
< L i S\ -
< |p|‘B€|/BE [ — x| Vollgas,)
< CplIVelorag e
< ClplIVellag,n,.€

< Clplllvllo.q.oe” - (5.13)

Therefore we have

JCRRr
lu —ufopo = sup L <P
vera@)  [lloge

5.1.2 Discrete problem

In all this work, we will use 2D geometries in order to simplify the calculations, since 3D
geometries require longer computation times.

We assume that € is a Lipschitz polygon. We consider a regular family of triangular meshes
Th of Q (see, for instance, [23]). As usual, h denotes the mesh size: h := maxpeT, hr, with hp

being the diameter of 7. We consider the space of Lagrange finite elements of degree one:

Hy :={v, e C(Q) : vplp e L VT € Tp}. (5.14)
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The finite element approximation of the solution of (5.7) reads: find us ) € Hj such that
/ oVugy, - Vo, = —/ osVug -V, —/ ooVug-nv, Vu, € Hy,
“ @ 0% (5.15)
/ Us h = 07
Q

In [67] the convergence of usj, to us has been studied.

The finite element approximation of the direct method reads: find u; € Hj, such that

/QO’VU;L‘VUh :p‘V(Uh‘TO)(:Bo) Y, € Hy,,

/tho,
Q

where Ty is any triangle that contains xq. In this case, we have proved an a priori error estimate

(5.16)

in Chapter 4, under certain assumptions:

Theorem 5.1.3 Let Ty, be a quasiuniform family of subdivisions of the convex Lipschitz polygon
Q and assume that o;j € CY(Q) for each i,j = 1,2. Let u and uy, be the respective solutions to
problems (5.8) and (5.16). Then there exists hg > 0 such that

lu — upllopa < CRHP7!

for all 0 < h < hg and for all p such that q0q31 < p < 2, where qg is the mazximal regularity

exponent such that the solution ¢ of problem (5.12) belongs to W29(Q), and moreover satisfies
]

2,002 < Cl[Yllog0, with2 < g < qo.

In the case of the approximation of the delta (5.9), we have the following discrete problem:

find uj, € Hy such that

1
/UVUZ-VUh:/ p-Vuy, Yo, € Hy,,
Q |Be| JB,

/UZ:O,
9]

for each ¢ > 0. To give an a priori error estimate of this problem, we need to assume that Q

(5.17)

is a convex Lipschitz polygon, o; ; € CY(Q), i,j = 1,2, and more regularity of the source used.
Let gﬁ’wo be a smoothing of d¢ z,|p. to  with support in B.. Then, 36@0 is globally smooth and
therefore, div (pge,mo) € L*>®(€). The solutions of the problems (5.10) and (5.17) with source
div (pgejmg) will be called ¢ and @, respectively. It is known that in this case, u° € H?(f2), for

each € > 0 and therefore, [|[u¢ — U |oo < Ch?|u

2,0, for each € > 0. We are interested in to
show that uj, is converging to w. The following theorem give us an a priori error estime in this

case.
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Theorem 5.1.4 Let € be a convex Lipschitz polygon and o;; € CL(Q) for each i,j = 1,2. Let
u and uj, be the respective solutions to problems (5.8) and the problem (5.17), respectively. The
last one, computed with sourse div (pge,wo). Then for each n > 0 there exist eg(n) and ho(n) such
that

lu =@ lopa <n, VYh<ho(n).

o < Coé/rl

Proof. From Theorem 5.1.2 and the results above, we know that |u — u®

0,p,
and ||a€ — U Jlo.o < Ch%[|if||2,0, for each € > 0. Given n > 0 we can choose €y = €o(n) such

that ||lu — u®|lgp0 < 06(2)/;;—1 < n/2 and ||z — @00 < Ch?||[u%||s,n. Also, we can choose
ho = ho(n) such that [[u®® —u;? [lo.o < Chi|[a*°||2,0 < n/2. Then, using that [lu — T} [|op0 <
|u —a®jgp0 + [3® — @ |o,p0 and the fact that L3(€2) C LP(2), 1 < p < 2, we conclude that
for each h < ho(n) we have that |ju — u;°|lopo <n O

Notice that to have uniqueness of the problem we can change the second condition in problems
(5.15), (5.16) and (5.17). It is enough to set equal to zero the value of the potential u in a point.
This new assumption simplifies the computations at computational level. We will consider a

reference electrode with given potential, i.e.,

u(a:mf) =0.

Moreover, this is a realistic condition since EEG measures electric potential differences respect
to a fix electrode.

Notice that, in order to prove existence and uniqueness of solution, in all the preciding
sections we have required some regularity of o in a vicinity of xq. If o is piecewise regular and
x( is on the interface between two regions with different conductivities, we do not know how to
formulate the problem in a suitable variational way.

In this chapter we study experimentally the behavior of the methods when x( tends to the
interface. The direct approach and the characteristic function approach are well defined if o
is piecewise constant; however, we have not a proof of the convergence of the corresponding
finite element solutions. The characteristic function approach is well defined also for @y on the
interface. Let us also recall that the error bound in the subtraction approach deteriorates when
xo tends to the interface (see [67]).

In Section 5.2 we show that the solution computed with the direct method is more stable
than the one computed with the subtraction approach. We also consider the case when x is
on the interface. We use the characteristic function approach (the only one that is well defined
in this situation) and we study the behavior when € tends to zero. In Section 5.3 we study the
inverse source problem. Also in this case o is piecewise regular. We analyze the results obtained

using the three methods and also the adaptive procedure studied in Chapter 4. We consider
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two different situations: a source internal to a regular region and a source close to the interface
between two regions. In Section 5.4 we study the case of a distributed source and we compare
the lead field matrices in different situations. Also here we are interested in the case when o is
piecewise regular. We analyze the results obtained using the methods already presented and two
other methods that will be introduced in the same section. We consider the same two situations
that in the previous section: a source completely contained in a regular region and a source close
to the interface between two regions with different conductivities. Finally, in Section 5.5 we give

some conclusions.

5.2 (eneral considerations for x; on the interface between two

regions with different conductivities

The aim of this section is to investigate the behavior of the different approximation methods,
when the source is located very close to the interface between two different regions.

The subtraction method requires to assume that around the source position gy we can find a
nonempty open subdomain Qg C € with homogeneous constant conductivity . This technique
has showed to give good results when one solves the inverse problem in a point internal to a
regular region [67]. However, if & is a point on the interface between two regions with differents
conductivities, the fundamental solution cannot be used, and therefore the subtraction technique
is not well defined.

Also the solution obtained by means of the direct method has a good behavior when x( is an
internal point. However, when the point belongs to an interface, it does not seem to be reliable,
as it has a different behavior if we take a sequence of locations xgj converging to xo from one
side or from the other. An alternative in such case is to consider an approximation of the delta
function. In particular, we consider (5.9). This approximation is independent of the mesh, and
is well-defined even when xq lies on the interface.

The first experiment is performed in order to obtain information on what is happening to
the solution obtained by using the subtraction method or the direct method for xj tending
to gy on an interface. In a second test, we analyze the behavior of the characteristic function
approach when xg is exactly on the interface, considering differents choices of the side-length of

the square where this function is supported.

5.2.1 Test 1.

This experiment consists in taking two sequences of seven points both of them converging at

the same point on the interface, one sequence coming from one region and the other one, coming
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from other region. After that, we fix the source on these points and we solve the problem (5.3)
with a fixed polarization, by using subtraction method and direct method. We compare the

values of both solutions in twelve nodes on the external boundary, that correspond to the nodes

in Table 5.1.

Nodes | 1 2 3 4 5 | 6 7T |8 9 10 | 11 | 12

T -11-05101]025|05 11 1 1 1 1 1 1
Y -1 -1 (-1 -1 -1 |-1(-05]01025|05]07] 1

Table 5.1: Twelve nodes on the external boundary.

The domain (2 is a multi-layer square centered at (0,0) with side-length 2. It has three differ-
ent layers: Q1 = Q\ (=0.92, 0.92)2, Qy = [-0.92, 0.92]?\ (—0.87, 0.87)? and Q3 = [—0.87, 0.87]2.
The conducting o is assumed isotropic on each layer and equal to olg, = o|q, = 0.33 and
o|q, = 0.0042. Notice that the values of the conductivities have not been chosen random. These
correspond to real values in the brain.

We focus on the interface between the region 1 and region 2. We consider the points in

Table 5.2 that are converging to the point (0.0012634,0.92). The computations were done in the
meshes in Table 5.3.

N N
N Vt §>“

g
AN
X
XIS
v\ R
NS

”
EX
3
SROBIE
SRR
RIRNKS

S
R
R
iy
N
=

B
5

A,

A
K
F

Y
K
KIX

2
K
RERS

TR

S
PR
PR
KK

Y

5
A

20
Ava¥)

IR
X
RS

5,
RO
KRS

Figure 5.1: Domain €.

Notice that each row in Table 5.2 contains a point in region 1 and a point in region 2 which
are at the same distance of the point on the interface (0.0012634,0.92). The points on the first
row were chosen at a distance 0.025 to (0.0012634,0.92), the points on the second row at half
of the above distance and so on.

In Table 5.4 we find twelve values for each one of the seven solutions corresponding to dipoles
placed at the seven points in region 1 in Table 5.2. The polarization p = (—0.2425, 0.9701) is

the same in all the cases. Moreover, the last row contains the values of the LP? norm of the
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Points | Sequence in region 1 | Sequence in region 2
1 (0.0012634, 0.945) (0.0012634, 0.8950)
2 (0.0012634, 0.9325) | (0.0012634, 0.9075)
3 (0.0012634, 0.9263) | (0.0012634, 0.9075)
4 (0.0012634, 0.9232) | (0.0012634, 0.9169)
5 (0.0012634, 0.9216) | (0.0012634, 0.9169)
6 (0.0012634, 0.9208) | (0.0012634, 0.9192)
7 (0.0012634, 0.9204) | (0.0012634, 0.9196)

Table 5.2: The two sequences of points converging to (0.0012634,0.92).

Mesh | Degrees of freedom | Elements | Elem. region 1 | Elem. region 2 | Elem. region 3
1 86718 172751 27146 31581 114024
2 544135 1086493 171571 199069 715853

Table 5.3: Meshes used in Tests 1 and 2.

solutions computed in all the domain 2, with p = 5/4. Table 5.5 contains the same information,
but the solutions were computed by using direct method. In Tables 5.6 and 5.7 we report the
same computations, but now the seven points correspond to the points in region 2. In Tables
5.8, 5.9, 5.10 and 5.11, we repeat the same procedure, but with a finer mesh, mesh 2 in Table
5.3.

Notice that in the direct method, in Tables 5.5, 5.7, 5.9 and 5.11 there are columns that
are the same although we are computing the solution using differents points as support of the
delta. The reason is that some points of the Table 5.2 are contained in a same triangle of the
mesh, and the direct method is not reading the exact position of the point, as only considers
the triangle that contains it. This method is a little imprecise respect to the position because
all the points inside a triangle produce the same solution.

We obtain several conclusions from this experiment: first, the subtraction method has an
oscillating behavior when x( gets closer and closer to the interface. This is illustrating in Tables
5.4, 5.6, 5.8 and 5.10. In the coarser mesh the oscillatory behavior is more evident, while in the
finer mesh it can be seen only in the last columns, that correspond to the nearest points to the
interface. With this experiment, we see the non-robustness of the subtraction approach when x
can be very close to the interface. A theoretical analysis about this statement can be found in
[67, Lemma 3.10].
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Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 0.3481 | 0.3338 | 0.3279 | 0.3531 | 0.5448 | 0.6506 | 0.0752
2 0.2915 | 0.2753 | 0.2685 | 0.2965 | 0.5269 | 0.7037 | 0.1247
3 0.2398 | 0.2229 | 0.2157 | 0.2445 | 0.4923 | 0.7111 | 0.1538
4 0.2165 | 0.1997 | 0.1926 | 0.2209 | 0.4684 | 0.6957 | 0.1597
5 0.1945 | 0.1782 | 0.1713 | 0.1986 | 0.4395 | 0.6672 | 0.1599
6 0.1555 | 0.1413 | 0.1353 | 0.159 | 0.3712 | 0.578 | 0.1451
7 0.1052 | 0.0949 | 0.0904 | 0.1077 | 0.2633 | 0.4183 | 0.1087
8 0 0 0 0 0 0 0
9 -0.0852 | -0.0754 | -0.0712 | -0.0873 | -0.235 | -0.3879 | -0.1071
10 -0.2029 | -0.1782 | -0.1676 | -0.2082 | -0.5822 | -0.9743 | -0.2744
11 -0.3665 | -0.3194 | -0.2991 | -0.3764 | -1.0925 | -1.8518 | -0.5312
12 -0.5316 | -0.4607 | -0.4301 | -0.5461 | -1.6243 | -2.7753 | -0.8051

lullopeo | 1.4196 | 1.3727 | 1.3501 | 1.3745 | 2.2112 | 4.2001 | 1.5887

Table 5.4: Subtraction method in region 1, using mesh 1.

Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 0.3452 | 0.3388 | 0.3216 | 0.3216 | 0.3243 | 0.3243 | 0.3243
2 0.2882 | 0.281 | 0.2613 | 0.2613 | 0.2646 | 0.2646 | 0.2646
3 0.2363 | 0.2288 | 0.2083 | 0.2083 | 0.2117 | 0.2117 | 0.2117
4 0.213 | 0.2056 | 0.1853 | 0.1853 | 0.1887 | 0.1887 | 0.1887
5 0.1911 | 0.1839 | 0.1643 | 0.1643 | 0.1676 | 0.1676 | 0.1676
6 0.1526 | 0.1463 | 0.1291 | 0.1291 | 0.132 0.132 0.132
7 0.1031 | 0.0985 | 0.086 0.086 0.088 0.088 0.088
8 0 0 0 0 0 0 0
9 -0.0831 | -0.0788 | -0.067 | -0.067 | -0.0689 | -0.0689 | -0.0689
10 -0.1978 | -0.1868 | -0.1571 | -0.1571 | -0.1619 | -0.1619 | -0.1619
11 -0.3567 | -0.3358 | -0.279 | -0.279 | -0.288 | -0.288 | -0.288
12 -0.5168 | -0.4852 | -0.3999 | -0.3999 | -0.4133 | -0.4133 | -0.4133

lullopo | 1.4222 | 1.3941 | 1.3457 | 1.3457 | 1.3476 | 1.3476 | 1.3476

Table 5.5: Direct method in region 1, using mesh 1.
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Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 -6.7323 | -6.6863 | -6.6744 | -7.0787 | -10.6393 | -19.4138 | -28.3595
2 -7.7854 | -7.7411 | -7.7283 | -8.0862 | -11.232 | -18.9606 | -26.8082
3 -8.1971 | -8.1531 | -8.1389 | -8.4487 | -11.1721 | -17.8444 | -24.5941
4 -8.1307 | -8.0872 | -8.0725 | -8.3582 | -10.8717 | -17.0226 | -23.2353
5 -7.8782 | -7.8358 | -7.8209 | -8.0822 | -10.3829 | -16.0076 | -21.6812
6 -6.9044 | -6.8668 | -6.853 | -7.0668 | -8.9518 | -13.5547 | -18.1898
7 -5.0424 | -5.0144 | -5.0038 | -5.1514 | -6.4544 -9.633 | -12.8291
8 0 0 0 0 0 0 0
9 4.7534 | 4.7254 | 4.7141 | 4.8386 | 5.9426 8.6302 11.3244
10 12.0118 | 11.9392 | 11.9091 | 12.2105 | 14.8913 | 21.4121 | 27.9406
11 22.9467 | 22.8044 | 22.7441 | 23.2973 | 28.2308 | 40.2215 | 52.212
12 34.501 | 34.2835 | 34.19 | 35.0007 | 42.2446 | 59.8415 | 77.424
|ullopo | 52.5596 | 78.6864 | 52.8219 | 55.3922 | 61.7053 | 80.2363 | 108.0021
Table 5.6: Subtraction method in region 2, using mesh 1.
Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 -6.7504 | -6.6292 | -6.6869 | -6.6327 | -6.6327 | -6.6613 | -6.6613
2 -7.8019 | -7.689 | -7.7389 | -7.6895 | -7.6895 | -7.7155 | -7.7155
3 -8.2128 | -8.1022 | -8.1497 | -8.1018 | -8.1018 | -8.1269 | -8.1269
4 -8.1463 | -8.0367 | -8.0838 | -8.0363 | -8.0363 | -8.0613 | -8.0613
5 -7.8935 | -7.7864 | -7.8327 | -7.7862 | -7.7862 | -7.8106 | -7.8106
6 -6.918 | -6.8224 | -6.8642 | -6.8225 | -6.8225 | -6.8444 | -6.8444
7 -5.0527 | -4.9812 | -5.0128 | -4.9815 | -4.9815 | -4.998 | -4.998
8 0 0 0 0 0 0 0
9 4.7647 | 4.6914 | 4.7253 | 4.6927 | 4.6927 | 4.7099 | 4.7099
10 12.0399 | 11.8474 | 11.9384 | 11.8521 | 11.8521 | 11.8976 | 11.8976
11 23.0075 | 22.6253 | 22.8098 | 22.6369 | 22.6369 | 22.7282 | 22.7282
12 34.5989 | 34.0097 | 34.298 | 34.0299 | 34.0299 | 34.1715 | 34.1715
llullop.0 51.9 52.3894 | 54.1701 | 54.6374 | 54.6374 | 55.7171 | 55.7171

Table 5.7: Direct method in region 2, using mesh 1.
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Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 0.3482 | 0.3339 | 0.3268 | 0.3228 | 0.3144 | 0.3475 | 0.6223
2 0.2916 | 0.2753 | 0.2673 | 0.2628 | 0.2526 | 0.2835 | 0.5687
3 0.24 0.2229 | 0.2145 | 0.2098 | 0.1988 | 0.227 | 0.5073
4 0.2166 | 0.1998 | 0.1915 | 0.1868 | 0.1758 | 0.2023 | 0.474
5 0.1946 | 0.1783 | 0.1703 | 0.1657 | 0.1551 | 0.1797 | 0.4384
6 0.1556 | 0.1414 | 0.1343 | 0.1304 | 0.121 | 0.1416 | 0.3638
7 0.1053 | 0.0949 | 0.0898 | 0.0869 0.08 0.0944 | 0.2542
8 0 0 0 0 0 0 0
9 -0.0852 | -0.0754 | -0.0706 | -0.0679 | -0.0613 | -0.074 | -0.2203
10 -0.203 | -0.1783 | -0.1661 | -0.1593 | -0.1427 | -0.1739 | -0.5398
11 -0.3667 | -0.3195 | -0.2962 | -0.2831 | -0.2512 | -0.3096 | -1.0019
12 -0.532 | -0.4611 | -0.426 | -0.4063 | -0.3583 | -0.4447 | -1.4803

lullopo | 1.4378 | 1.4333 | 1.3683 | 1.3538 | 1.3472 | 1.4339 | 2.2846

Table 5.8: Subtraction method in region 1, using mesh 2.

Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 0.349 | 0.3323 | 0.3277 | 0.3244 | 0.3219 | 0.3219 | 0.3219
2 0.2926 | 0.2736 | 0.2684 | 0.2645 | 0.2618 | 0.2618 | 0.2618
3 0.2409 | 0.2211 | 0.2157 | 0.2116 | 0.2088 | 0.2088 | 0.2088
4 0.2176 | 0.198 | 0.1926 | 0.1886 | 0.1858 | 0.1858 | 0.1858
5 0.1955 | 0.1766 | 0.1713 | 0.1675 | 0.1648 | 0.1648 | 0.1648
6 0.1565 | 0.1399 | 0.1353 | 0.1319 | 0.1296 | 0.1296 | 0.1296
7 0.1059 | 0.0938 | 0.0904 | 0.088 | 0.0863 | 0.0863 | 0.0863
8 0 0 0 0 0 0 0
9 -0.0858 | -0.0744 | -0.0712 | -0.0689 | -0.0673 | -0.0673 | -0.0673
10 -0.2045 | -0.1757 | -0.1678 | -0.162 | -0.1578 | -0.1578 | -0.1578
11 -0.3694 | -0.3145 | -0.2993 | -0.2882 | -0.2803 | -0.2803 | -0.2803
12 -0.5361 | -0.4535 | -0.4306 | -0.414 | -0.402 | -0.402 | -0.402

|lullopo | 1.4355 | 1.3893 | 1.3682 | 1.357 | 1.3432 | 1.3432 | 1.3432

Table 5.9: Direct method in region 1, using mesh 2.
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Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 -6.7298 | -6.6822 | -6.657 | -6.6215 | -6.1482 | -1.8834 | 11.0224
2 -7.7837 | -7.7376 | -7.713 | -7.6803 | -7.262 | -3.5241 | 7.7403
3 -8.1949 | -8.1492 | -8.1247 | -8.0946 | -7.732 | -4.5192 | 5.1254
4 -8.1285 | -8.0832 | -8.0589 | -8.0304 | -7.6954 | -4.7389 | 4.1212
5 -7.8761 | -7.832 | -7.8083 | -7.7814 | -7.4745 | -4.7751 | 3.3033
6 -6.9022 | -6.8629 | -6.8419 | -6.8191 | -6.5673 | -4.3626 | 2.2236
7 -5.0399 | -5.0107 | -4.9951 | -4.9788 | -4.8046 | -3.285 | 1.2473
8 0 0 0 0 0 0 0
9 4.7519 | 4.7228 | 4.7072 | 4.6921 | 4.5439 | 3.2633 | -0.5432
10 12.0083 | 11.9328 | 11.8922 | 11.854 | 11.4937 | 8.3904 | -0.8209
11 22.9412 | 22.7931 | 22.7133 | 22.6405 | 21.9762 | 16.2778 | -0.6133
12 34.5175 | 34.291 | 34.1687 | 34.059 | 33.082 | 24.7214 | -0.0381

llullopo | 52.2292 | 57.1387 | 53.8755 | 55.4943 | 55.6164 | 51.5907 | 64.26

Table 5.10: Subtraction method in region 2, using mesh 2.

Nodes | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7
1 -6.7258 | -6.6673 | -6.6755 | -6.644 | -6.6505 | -6.6316 | -6.6316
2 -7.7801 | -7.7239 | -7.7301 | -7.7003 | -7.706 | -7.6888 | -7.6888
3 -8.1915 | -8.1358 | -8.1414 | -8.1121 | -8.1175 | -8.1008 | -8.1008
4 -8.1251 | -8.07 | -8.0756 | -8.0465 | -8.0518 | -8.0353 | -8.0353
5 -7.8728 | -7.819 | -7.8245 | -7.7961 | -7.8014 | -7.7852 | -7.7852
6 -6.8991 | -6.8513 | -6.8564 | -6.8311 | -6.8358 | -6.8213 | -6.8213
7 -5.0376 | -5.002 | -5.006 | -4.9871 | -4.9907 | -4.9798 | -4.9798
8 0 0 0 0 0 0 0
9 4.7496 | 4.7138 | 4.7184 | 4.6991 4.703 4.6916 | 4.6916
10 12.0019 | 11.909 | 11.9217 | 11.871 | 11.8813 | 11.8512 | 11.8512
11 22.9287 | 22.7461 | 22.7726 | 22.6719 | 22.6928 | 22.6325 | 22.6325
12 34.4987 | 34.219 | 34.2613 | 34.1058 | 34.1385 | 34.045 | 34.045

lullopo | 52.1918 | 53.0541 | 54.1383 | 55.3545 | 55.8542 | 56.0896 | 56.0896

Table 5.11: Direct method in region 2, using mesh 2.
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Nodes | €e=0.01 | € =0.001 | € =0.0001 | e =0.00001
1 -3.1643 | -3.1657 -3.1685 -3.1685
2 -3.7218 | -3.7229 -3.7254 -3.7254
3 -3.9542 | -3.9551 -3.9576 -3.9576
4 -3.9329 | -3.9338 -3.9363 -3.9363
) -3.8182 | -3.8191 -3.8215 -3.8215
6 -3.3532 | -3.3541 -3.3562 -3.3562
7 -2.4527 | -2.4534 -2.4550 -2.4550
8 0 0 0 0
9 2.3180 2.3188 2.3205 2.3205
10 5.8613 5.8634 5.8679 5.8679
11 11.2066 | 11.2111 11.2201 11.2201
12 16.8581 | 16.8651 16.8791 16.8791

|ullopo | 26.5281 | 27.7785 27.9054 27.9054

Table 5.12: Dipole position on the interface, mesh 1.

On the contrary, the direct method is stable when the dipole position is in region 1 or 2, near
or far from the interface. We also clearly see that the solution converges to different functions
when x( tends to the interface from one side or from the other. This confirms that the variational
formulation for @y lying exactly on the interface must have a different structure from the case in
which xg is internal to the middle layer. Nevertheless, for that case we can show some numerical

results obtained by approximating the delta distribution in a suitable way.

5.2.2 Test 2.

In this test we want to analyze what happens if g is on the interface. To this end, we consider
the approximation of the delta distribution in (5.9). It is supported on a square centered at x
and with side-length 2¢, with the same polarization that in the previous test. We solve the
problem four times, with four different values of €. As in the previous test, we consider twelve
values of the solution corresponding to the same twelve external nodes in Table 5.1 and also we
compute the LP norm in all Q, with p = 5/4. This procedure was done with the two meshes in
Table 5.3. In Table 5.12, we find the results corresponding to the mesh 1 and in Table 5.13, to
the mesh 2. We can obtain as a conclusion that this approximation performs in a satisfactory
way.

Notice that if we take the last column of Tables 5.5 and 5.7 and we do an average, we obtain
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Nodes | €e=0.01 | € =0.001 | € =0.0001 | e =0.00001
1 -3.1638 | -3.1581 -3.1563 -3.1563
2 -3.7218 | -3.7164 -3.7148 -3.7148
3 -3.9541 | -3.9488 -3.9473 -3.9473
4 -3.9328 | -3.9275 -3.9260 -3.9260
) -3.8180 | -3.8130 -3.8114 -3.8115
6 -3.3529 | -3.3483 -3.3470 -3.3470
7 -2.4520 | -2.4486 -2.4476 -2.4476
8 0 0 0 0
9 2.3176 2.3141 2.3130 2.3130
10 5.8610 5.8518 5.8490 5.8490
11 11.2048 | 11.1864 11.1808 11.1808
12 16.8658 | 16.8374 16.8287 16.8288

|ullop,o | 26.6009 | 28.0923 28.6901 28.6971

Table 5.13: Dipole position on the interface, mesh 2.

a result quite similar to the last column in Table 5.12. The same happens for mesh 2 in Table
5.3.

However from a physiological point of view, people are interested in considering impulses
coming from the middle region. Specifically, people study the neuronal impulses which are
generated in that region, but close to the interface between regions 1 and 2. Then, from the
computational results we can conclude that the subtraction approach in this real situation is

not the best one and it is better to choose an alternative approach.

5.3 Inverse problem

In this section we study the inverse problem and specifically, we are interested in finding the
localization and the polarization of a dipole source, knowing a priori some measurements on the
boundary of the domain. We analyze the case of a single dipole, but in different positions, and
present some numerical results.

Since we are interested in a single dipole, we need to find only four parameters that minimize
the least-square function

0. 44) = llm — myeg 3 (5.18)

where x is the coordinates of the dipole location and g, is the polarization. We assume that
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we can obtain the measurements at some boundary nodes of the domain. In this equation, m is
a n-dimensional vector (with n the number of measurements) which contains the values of the
potential computed using FEM, and m,..; is a vector which contains the values of the measured
potential (indeed, the measured potential is simulated by using the values computed with one
of the aforementioned techniques using FEM in a very fine mesh). It is clear that this problem
is non-linear.

For any given dipole location  we can find the optimal polarization p, = pie; + paea (e;
and ey are the cartesian orientations) as follows: we define as m ; the value of an approximated
solution at the same points P;, 1 < i < n on 02 where the solution that produces m,..s is
evaluated, obtained by using as localization x and as polarization e;. Similarly, ms ; corresponds
to the value of an approximated solution at the same points P;, 1 < ¢ < n on the boundary
obtained by using the same localization and as polarization es. Then, we define the n x 2 matrix

M := (m; my). By linearity, the values of the approximated solution corresponding to p,, are

given by
m = Mp, .
Thus, finding p, which minimize ¢(x,q,) = |[m — m,cf||3 in the least squares sense, is
equivalent to solve
M'Mp, = M'm,.;. (5.19)

After having computed the optimal polarization for each possible dipole position @, the

function ¢ reduces to a least-squares function 1 which is only a function of x, that is

P(x) = | Mpy — mes3- (5.20)

We use the pattern-search optimization method to find the optimum dipole position x by
minimizing the function v (). This minimization algorithm is already implemented in MATLAB
and corresponds to the command patternsearch.

We are interested in solving the inverse problem by using the aforementioned methods. From
Chapter 4 we know that there exists an a posteriori error estimator for the direct method which
enables to improve the obtained results. We must recall that this estimator was defined in the
case in which the matrix o has entries in C'*(Q). We use the estimator to devise a strategy to
solve the inverse problem.

According to Theorem 5.1.1 the solution of problem (5.8) belongs to LP(€2) with 1 < p < 2
when o is regular enough. We will recall the a posteriori error estimator in the LP(Q2)-norm for
the finite element approximation error u — uy defined in Chapter 4. We proved the reliability

and efficiency of the estimator for a particular range of p.
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For all T' € 7}, we define

21| 1: 1
erp = | b |div (e Vun)g 7 + 5 > WP leVun - nlllf .,

LeE(T)NER 4
1/p

+ Y P eV nllf,, ,
CE(T)NEN o
where &, ; is the set of all the inner edges of the triangulation 73, &, is the set of boundary
edges of the triangulation T, £(T) is the set of the edges of T and [¢] denotes the jump of g

across an edge. We define the local a posteriori error indicator 1z, for all T' € T}, as follows:

1/p
(hﬁ*p n sggp) T =T,

ETp otherwise,

Nrp ==

where we denote by Tj the triangle that contains the point gy and by hg, its diameter.

Next, we define the global error estimator from these indicators as follows:
1/p
A (521)
TeTh
In Tests 3 and 4 we are interested in finding the localization and polarization of the dipole
from certain measurements that have been generated by using the subtraction approach or the
direct method (depending if the localization is inside a region or near the interface). The exact

solution is computed in the finest mesh in Table 5.14.

5.3.1 Test 3.

This experiment consists in reconstructing the position and the polarization of the dipole
source from boundary measurements, by using four different techniques: subtraction approach,
direct method, direct method accompanied by an adaptive procedure and the characteristic
function approach. We use the same domain €2 in Test 1. We recall that €2 is a multi-layered
square as in Figure 5.1, with three regions, the external and internal layers (which correspond
to regions 1 and 3, respectively) with conductivities 0.33 and the layer in between (region 2)
with conductivity 0.0042. As in the other test, it is important to recall that these values of the
conductivity correspond to a real values.

Notice that when we solve the inverse problem by using the direct method (or direct method
with adaptivity), the minimization algorithm find a triangle, not a position. Then, we will

consider as xg the barycenter of this triangle.
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Mesh | Degrees of freedom | Elements | Elem. region 1 | Elem. region 2 | Elem. region 3
1 362 682 104 120 458
2 2186 4279 653 776 2850
3 544135 1086493 171571 199069 715853

Table 5.14: Meshes used in Tests 3 and 4.

Speaking about the direct method with the adaptive procedure, the strategy that we propose
combines the minimization algorithm and the adaptive procedure guided by the a posteriori
error estimator defined in (5.21). It consists in the following: the algorithm start minimizing
the function % using mesh 1 and in this first iteration, it finds a first approximation of the
position and the polarization of the source. With these data, the algorithm realize an adaptive
procedure guided by the error estimator above; the procedure is applied four times. Then, with
this new mesh generated in the previous process, the algorithm restarts the minimization of ¢
for another time. The algorithm shows a more precise localization and polarization and with
these new data, it realizes the adaptive procedure four times more, and so on. This process is
done six times. Therefore, it refines the mesh twenty four times. Thus, the algorithm does seven
steps of minimization and the last one is performed in the mesh number twenty five.

In this test, the real location is an internal point in region 2 and the measurements are
generated by using the subtraction technique in a fine mesh. We generate the data with mesh 3
in Table 5.14. We consider thirty measurements which correspond to thirty values of the solution
in the thirty corresponding nodes on the boundary in Table 5.15. As dipole position we consider
xo = (0.0126, 0.8901) which corresponds to a point internal to region 2, and as polarization,
p = (—0.2425, 0.9701).

In Table 5.16 we can find the exact localization and polarization and the results obtained
by solving the inverse problem. This problem was solved using four differents methods: the
subtraction approach (S.A.), the direct method (D.M.), the direct method with an adaptive
procedure (D.M.A.) and finally, the characteristic function approach (C.F.A). This last method
was realized by using as support a square of length-side 2¢, with e = 0.01. Notice that we find two
rows with results obtained by D.M.A. in Table 5.16: D.M.A. (1) contains the results obtained
in the step number six of minimization and D.M.A. (2) contains the results obtained in the last
step of minimization, that is, step number seven of minimization.

We define the relative error e, as follows:

Ty — x|?
e, 1= ‘ 0 2| +
|0

lp — gq?
Ip|?

)
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Nodes T Y Nodes T Y Nodes T Y
1 0.5 -1 11 -1 |-0.25 21 1 0.5
2 -0.5 -1 12 -1 0.75 22 1 -0.5
3 0.25 | -1 13 -1 | -0.75 23 1 0.25
4 -0.25 | -1 14 0 1 24 1 -0.25
5 0.75 | -1 15 0.5 1 25 1 0.75
6 -0.75 | -1 16 -0.5 1 26 1 -0.75
7 -1 0 17 0.25 1 27 0.75 1
8 -1 0.5 18 -0.25 1 28 0.125 -1
9 -1 -0.5 19 -0.75 1 29 -0.125 | -1
10 -1 ]0.25 20 1 0 30 -1 0.125

Table 5.15: Thirty nodes on the external boundary.

where  and q correspond to the approximations of xy and p obtained by solving the inverse

problem using the different approaches.

Solution xg P e, Degrees of freedom
Exact (0.0126, 0.8901) | (-0.2425, 0.9701) - 544135
S.A. (-0.0383, 0.8941) | (1.6646, 0.9545) | 1.9081 2186
D.M. (0.0260, 0.9123) | (-0.2734,0.9761) | 0.0429 2186
D.M.A. (1) | (0.0062, 0.8877) | (-0.0691, 0.9741) | 0.1736 1193
D.M.A. (2) | (0.0152, 0.8896) | (-0.2502, 0.9715) | 0.0085 3030
C.F.A. (0.0104, 0.8838) | (-0.3137,0.9799) | 0.0723 2186

Table 5.16: Results obtained by solving the inverse problem.

Notice that the strategy that combines the direct method with the adaptive procedure start

from mesh 1 in Table 5.14. In Table 5.17 we see the results given by the minimization algorithm

the seven times that the process was done. The last mesh in this iterative process contained 3030

nodes. We see that this strategy is giving a better approximation of the data in the last iteration

that in the case of the direct method without an adaptive procedure. However, we want also

to underline that the results obtained by means of the direct method with adaptive procedure

are somehow oscillating from a refinement step to another. This phenomenon is seen also in the

numerical results in Section 5.4. On the other hand, the direc method and the characteristic

function approach, are giving good results.
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Iteration xq P
1 (0.0400, 0.9033) (0.0796, 0.9896)
2 (0.0288, 0.9143) | (-0.3975, 0.9786)
3 (-0.0211, 0.9114) | (0.1494, 0.9757)
4 (0.0169, 0.8852) | (-0.3318, 0.9766)
5 (0.0169, 0.8852) | (-0.3228, 0.9756)
6 (0.0062, 0.8877) | (-0.0691, 0.97411)
7 (0.0152, 0.8896) | (-0.2503, 0.9716)

Table 5.17: Data found using the direct method with adaptive procedure.

5.3.2 Test 4.

This experiment is similar to Test 3. The difference is the position of the dipole source we
want to find. We are interested in the behavior of the four aforementioned methods in Test 3
when we solve the inverse problem with a dipole located very close to the interface. In this test
we use the same geometry of Test 3. Since we need to generate the measurements and we know
that the subtraction method cannot be used in this situation, we use the direct approach to
compute the data in the finest mesh in Table 5.14 (this corresponds to mesh 3). Note that if €
is so small that the square centered at xq of side size 2¢ is inside one triangle, the characteristic
function approach is giving the same result. For a larger €, the characteristic function approach
has to be used being carefull that the square centered in xy and with side-length 2e, is not
intersecting the interface, as in Section 5.2. We have seen that the location of the delta function
on the interface is giving rise to a problem that is not the one obtained by taking the limit from
one or the other side.

The dipole position is &y = (0.0126,0.917), which belongs to region 2 and it is close to the
interface between regions 1 and 2. We consider thirty measurements that correspond to the thirty
nodes on the boundary in Table 5.15. The polarization is the same that in the experiment above,
ie, p = (—0.2425, 0.9701). To compute the inverse problem in the case of the characteristic
function approach, we use as support a square of length-side 2e¢ with ¢ = 0.003.

As in the previous experiment, we can find the results in Table 5.18.

From these two experiments, we can conclude that the direct method combined with the
adaptive procedure is giving good results in both cases respect to the other methods (despite this
estimator is not well suited when the entries of o are piecewise constant). However, this method
is giving data that are converging in a oscillatory way, then we have to be carefull when we

use this technique. On the other hand, the other alternatives that are giving reasonable results
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Solution o p er Degrees of freedom
Exact (0.0126, 0.917) (-0.2425, 0.9701) - 544135
S.A. (0.1283, 0.9343) | (-2.1445, -35.6436) | 36.6651 2186
D.M. (-0.0019, 0.9007) | (0.0096, 0.9807) 0.2535 2186
D.M.A. (1) | (0.0183, 0.9141) (-0.3718, 0.9741) 0.1296 1014
D.M.A. (2) | (0.0108, 0.9159) (-0.2305, 0.9729) 0.0125 1802
C.F.A. (0.0127, 0.9039) (-0.1513, 0.9821) 0.0931 2186

Table 5.18: Results obtained by solving the inverse problem.

Iteration xg P
1 (-0.0367, 0.9033) | (-0.1486, 0.9957)
0.0037, 0.9098) | (-0.0294, 0.9837)
0.0158, 0.9098) | (-0.3244, 0.9770)
0.0068, 0.9181) | (-0.1264, 0.9759)
) | )
) | )
) | )

0.0128, 0.9147 0.2422, 0.9758
0.0183, 0.9141 0.3718, 0.9741
0.0108, 0.9159 0.2305, 0.9729

N S Ot s W N
~~ Y~ o/~ o~

Table 5.19: Data found using the direct method with adaptive procedure.

are the characteristic function approach and the direct method. Notice that the subtraction

approach in this last test is giving the worst results.

5.4 Lead field matrix

In the previous section the inverse problem in the case of only one dipole was analyzed (but
this analysis can be extended to a small quantity of dipoles). In the standard dipolar method the
parameters of the dipoles (location and polarization) are found using a nonlinear leastsquares
search. However, there exists another way to study the inverse problem: it is to assume that the
current density is a distributed source and, in such case, the measurements are assumed to be
generated by many dipoles placed in a certain region of the mesh. We will focus in this point of
view.

In the EEG forward model a given primary current density J, in the head {2 generates a

measurement data vector m (the electric potential values). In the numerical simulation of the
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inverse problem, the unknown is a finite dimensional vector z, which is linked to the measurement
data m through the system of linear equations m = Lz, the so-called lead field matriz L.
The goal of this section is to construct the lead field matrix with each one of the methods
in Section 5.1 (and with one new method that we add in this section). First, we discuss how to
construct this lead field matrix in each case. After that, we want to compare each one of these
lead field matrices with a reference lead field matrix.
For a mesh consisting of N nodes, the approximate value of the potential can be expressed

as an element of the set Hj, defined in (5.14) as follows

N
up =Y o\
=1

where J\; is a basis function in H}, associated with node ¢, for all ¢ = 1, ..., N. In the most of the

subsections, we are interested in analyzing problem (5.2) with

M
Tp = Pia s (5.22)
k=1

where p;, is a non null vector and xj in an inner point of €, for all £k =1, ..., M. We will specify

when we need to use a different definition for the current density J,.

Subtraction method

The vector p;, in (5.22) can be written in the following way p, = yfei + y5es, where e;
and eo are the cartesian orientations, for all £k = 1,..., M. Then, the current density also can be

written as J, = Z,i\/il 232':1 y}“ejémk or in a more structured way,

2M
Jp=> zdy, (5.23)
k=1

where

yr if1<k< M, ey, ifl<k<M,
2k = T and dj:= ]
Yy ifM+1<k<2M, ez, ,, HfM+1<k<2M.
(5.24)

Assuming that we can find nonempty subdomains Q’g of 2 around each one of the source
positions x; with homogeneous constant conductivity o, we can solve these 2M subproblems
by using (5.15) and then we use (5.5) with the corresponding data in each case.

The coefficients «;, ¢ = 1,..., N and 2, k = 1,...,2M define unknown coordinate vectors a
and z, which satisfy the linear system Sa = Gz, where the entries of the matrices S and G

are given by
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Sij = / O'V)\i . V)\j,
Q
and
—/057kVu(1)k-V)\i—/ (aojkVu(l)k'n))\i 1<k<M,
s . Q ’ o0 ’
ik =
—/ Ok MVUG . pr - VA —/ (G- Vud g pr-m) N M+1<k<2M,
Q o0
where o, = 0 — ook, k = 1,...,M and we have denoted by u{)k, j = 1,2 the fundamental

solution of this problem:
div (a’okaué,k) =div(ejdg,)in , forj=1,2andk=1,..,M.

Since we know from (5.5) that the solution can be written as a singular part plus a part
obtained by means of FEM, then, we define the N times 2M matrix U whose entries corresponds

to

ug (i)  1<k<M,
Wik =

ug’k_M(mi) M+1<k<2M,

for ¢ = 1,...,N. We assume that the dipole positions are not nodes, so that the fundamental

solutions can be evaluated in all the nodes of the mesh. Associating the EEG sensor locations

with basis functions \;;,...,\;; and the zero potential reference with the mean value of the

electrode voltages, the EEG lead field matrix is given by L = R(S™!G, + Uy), in which R is a

L x N restriction matrix with entries
1 ifl =iy,
0 ifl#is,

[=1,....Nand s=1,..., L.

Direct method

As in the subtraction method, J, can be written as above:

2M
Jp = Z dek y
k=1

where z;, and dj, are defined as in (5.24).
From (5.16), we see that we construct the matrix S as in the previous case. The entries of

G are given by

(5.25)
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where T, is the triangle that contains the point xy, k =1,..., M.
The lead field matrix in this case corresponds to L = RS™'Gy , where R is a L x N restriction

matrix.

Characteristic function approach

We define the current density similarly to the previous case, that is, J, := nyz 1 Prlez),
with ¢z, asin (5.9) for all k =1, ..., M.

We can write J, as follows
oM

Jp, = szfi

k=1
where if we assume that we can decompose p;, as above, we define z;, and fj, in a similar way

that in the two previous cases

v o1<k<M,
2k =
yi M M 1<k <2M,

e15€,$k 1 S k S M?

and f}, = {

€Lk —M
Notice that, when one changes the source, one has only to change the matrix G.. In this case

the entries of this matrix are the following

1

|Bekl Jsinm
i = 1 e

e -V 1<k<M
—_— e VAN, M+1<k<2M.
|Bek—m| JsinBey_ni
where B, := Be(x), k=1,..., M and S; := supp(\;), with i =1,..., N.

Besides these three we propose two other methods. In the first one, the procedure to find
the lead field matrix is a little different because the current density is defined in a unusual way.
The second one is a variant of the direct method. We will discuss about this two methods in the

next two subsections.

Raviart-Thomas source approximation

This approximation was analyzed in [58] and [59]. The current density is approximated as

follows:
M
Jp = Z LW ,
k=1

where wy is a vector valued finite element basis function defined on a triangular mesh 7y,
specifically, wy corresponds to the kth Raviart-Thomas basis function which is supported on
two adjacent triangular elements that share the kth edge of the finite element mesh. Here the

entries of the matrix G, are the following
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g{k = /ka)\z
Q

As in the direct method or the characteristic function approach, L = RS™'G,.. Notice that,
this lead field matrix cannot be comparable with the other ones, because it was constructed in
a different way.

In [58], Pursiainen associates each cartesian source element with a single triangle; for each
triangle, a dipole position is fixed.

We explain the strategy used in [58]. In a first stage, each basis function wy, is given a dipole
moment by q; = fQ wy, and the dipole position 7y is defined as the midpoint of the line segment
between the two nodes that belong to the support of wj but do not belong to the common
edge (see point (D) Figure 3 in [59]). The position of the dipole source for a given triangle T is
obtained as the mean

r=(r1+r2+7r3)/3 (5.26)

of the dipole positions 71, o and 73 corresponding to the basis functions w;i, ws and ws;
supported on T, respectively. Notice that in a uniform mesh 7 coincides with the barycenter of
the triangle 7'

We denote by v1, v2 and v3 the simulated data vectors obtained by solving (5.3) with J,
corresponding to w1, ws and ws;, respectively. The simulated dipole data associated with T" are
given by

[v1v2] = [01 D2 03][q1 42 g5]" (5.27)

in which L denotes the Moore-Penrose pseudo-inverse and v, and vy form the final data for
the perpendicular directions e; and ey, respectively. In simple words, in (5.27) was used a “base
change”. Thus, it is possible to obtain a lead field matrix comparable with the others trough

the lead field matrix computed by means of the Raviart-Thomas sources.

Direct method with adaptive procedure

To find the lead field matrix, we use J), as in the subsection Direct method and to improve
the way of solving the 2M problems, we use an adaptive procedure guided by the a posteriori

error estimator in (5.21). We explain later on the strategy used in this method.

Now, we are in a position to give some numerical results. Before starting with the ex-
periments, we give some definitions. With each method, one lead field matrix of the form

L = (I,,Io,...,15y) is produced. For 1 < k < M, the column I} of L corresponds to a
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single source location x; and the cartesian orientation ey. If M + 1 < k < 2M, the column I}
corresponds also to a single source location, x;_j; and the cartesian orientation, es.

The relative error (RE) is defined as follows:

2M ; 9
> o1
2
L k=1
RE = - ,
Z ‘ Iref ‘2
kolla
k=1

where L. = (I 71“ef T gef - g%) is a reference lead field matrix computed by some of the above
methods (which will be indicated case by case) in the finest mesh in Table 5.21.

We define by RE1, REs, RE3, RE4 and RE5 the relative errors computed between a reference
lead field matrix and the lead field matrices obtained using the subtraction approach, the direct
method, the characteristic function approach, the Raviart-Thomas source approximation and

the direct method with adaptive procedure, respectively.

5.4.1 Test 5.

In this test we are interested in analyzing the lead field matrix constructed by using the
direct method with an adaptive procedure respect to the lead field constructed by means of the
subtraction approach in two different situations: constant conductivity and piecewise constant
conductivity in the domain 2.

The domain 2 is a square centered at (0.5,0.5) with side-length 1. As in the previous
tests, this domain consists of layers formed by squares completely contained in 2. It has three
different layers: Q; = Q\ (0.2, 0.8)%, Oy = [0.2, 0.8]? \ (0.4, 0.6)? and Q3 = [0.4, 0.6]%. Unlike
the other tests, the meshes in Table 5.21 are uniform meshes. A property of these meshes is that
the barycenter of each one of the triangles in mesh 1 are barycenters of some triangles in the
following meshes. It is the same for mesh 2, and so on. Henceforth, we consider the locations of
the dipoles only in region 2.

For this test, we consider only one point and the cartesian orientations e; and ey as the
polarizations. The point considered @y = (0.2417,0.4333) corresponds to an internal point in
region 2 which is a barycenter of a triangle in mesh 1. In this first experiment, we consider a
constant conductivity equal to one in the three regions.

In Table 5.22, we found the relative errors RE; and REs, computed using the lead field
matrices calculated by means of the subtraction approach and the direct method with adaptive
procedure in meshes 1, 2 and 3 in Table 5.21. In the first column we compute RE; defined

above, considering as the reference lead field matrix the one computed by means of the direct
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method with adaptive procedure. Notice that the strategy consists in starting with a coarse
initial mesh (mesh 1 in Table 5.21) and by means of an adaptive procedure to refine the mesh
using as stopping criterion the quantity of d.o.f. In this case, the adaptive procedure stops when
the d.o.f. overtake the d.o.f. of mesh 3 in Table 5.21. On the other hand, in the second column
we compute RE5 using as reference lead field matrix the one computed by using the subtraction
method in the finest mesh, that is, mesh 5 in Table 5.21. In this case the adaptive procedure
stops when the d.o.f. overtake the d.o.f. of the mesh we use to compare the relative errors. Notice
that, since the adaptive procedure starts refining mesh 1, the first relative error in the second
column in Table 5.22 was computed without refinement.

We consider twelve “measurements” on the boundary of €2 computed in the twelve nodes in

Table 5.20. So in each case, the lead field matrix is a 12 x 2 matrix.

Nodes | 1 | 2 3 4 5) 6 |7] 8 9 | 10 | 11 | 12
T 0/02|04]06[08]08 1] 1 1 1 1 1
Y 0] 0 0 0 0 1 /0{02|04]06|08] 1

Table 5.20: Twelve nodes on the external boundary.

Mesh | Degrees of freedom | Elements | Elem. region 1 | Elem. region 2 | Elem. region 3
1 1681 3200 2048 1024 128
2 6561 12800 8192 4096 512
3 25921 51200 32768 16384 2048
4 103041 204800 131072 65536 8192
5 410881 819200 524288 262144 32768

Table 5.21: Meshes used in Tests 5, 6 and 7.

Mesh | RE; RE;
1 0.0010 | 0.0273
2 0.0004 | 0.0004
3 0.0002 | 0.0002

Table 5.22: Subtraction approach versus direct method with adaptive procedure.

In Table 5.23 we find the references lead field matrices. L; corresponds to the lead field
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Ly Ls
-0.7755 -0.6768 | -0.7754 -0.6768
-0.5840 -0.6507 | -0.5839 -0.6509
-0.2403 -0.4596 | -0.2403 -0.4597
-0.0596 -0.2042 | -0.0594 -0.2041
-0.0088 -0.0480 | -0.0087 -0.0479
-0.0752 0.4747 | -0.0751 0.4747

00 0 0
0.0055 0.0453 | 0.0055 0.0453
0.0077 0.1632 | 0.0077 0.1632
-0.0124 0.3016 | -0.0124 0.3017
-0.0436 0.4030 | -0.0436 0.4030
-0.0583 0.4387 | -0.0583 0.4387

Table 5.23: Reference lead field matrices.

matrix computed by means of subtraction approach and Ly to the lead field matrix computed
using the direct method with the adaptive procedure. Notice that both solutions are similar.

Now, we focus on the case of a piecewise constant conductivity. Henceforth, the conducting
o is assumed isotropic on each layer and equal to o|q, = oo, = 0.33 and o|q, = 0.0042.
This experiment is similar to the previous one. We consider an internal point in region 2,
xo = (0.3667,0.3833) which is a barycenter of a triangle of mesh 1 in Table 5.21. As in the
previous case, we compute a reference lead field matrix by means of the subtraction approach in
the finest mesh and by means of the direct method with adaptive procedure starting with mesh
1 but now using as stopping criterion 30.000 d.o.f. We can see these reference matrices in Table
5.25.

In Table 5.24 we find in the first two columns the relative errors RE; and RE5; computed
by using as reference lead field matrix the one obtained by the subtraction approach that corre-
sponds to Lj in Table 5.25. The other columns correspond to compute the same relative errors
RE; and REs, but now considering as the reference lead field matrix the one obtained by means
of the direct method with adaptive procedure. This matrix corresponds to Ls in Table 5.25. All
these computations were done in the first three meshes in Table 5.21.

We can see from Table 5.24 that the relative error in the case of the direct method with
adaptive procedure is increasing in the last mesh. We see a non-monotone behavior of this

method. It is important to recall that here we are using this estimator even if it is not proved
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S.A. D.M.A.
RE; RE5 RE; REs
0.0349 | 0.1001 | 0.0358 | 0.1014
0.0125 | 0.0011 | 0.0136 | 0.0027
0.0046 | 0.0231 | 0.0061 | 0.0259

Table 5.24: Subtraction approach versus direct method with adaptive procedure.

L Ls
-13.7644 -6.0037 | -13.7540 -6.0048
-12.3147 -6.9000 | -12.3073 -6.8986
-8.2128 -7.2754 | -8.2065 -7.2705
-3.8710 -4.5372 | -3.8669 -4.5305
-1.0194 -1.3208 | -1.0175-1.3173

2.4304 7.8903 2.4278 7.8388
0 0 0 0
0.9520 1.2863 0.9512 1.2829
2.7839 4.0433 2.7812 4.0326
3.5683 6.1806 3.5643 6.1584
3.1712 7.2751 3.1676 7.2379
2.8320 7.6067 2.8286 7.5617

Table 5.25: Reference lead field matrices.

to be suitable when the conductivity is piecewise constant.

5.4.2 Test 6.

In this test we are interested in analyzing the behavior of the first four methods in this
section, when the conductivity is a piecewise constant and the localizations of the dipoles are
inside region 2 and far enough from the interface. Since the points are inside region 2 and we
have seen that in this situation the subtraction approach has shown to be quite efficient, we
consider as reference lead field matrix the one computed by using the subtraction approach in
the finest mesh in Table 5.21, that corresponds to mesh 5.

First, we consider only one point g = (0.3667,0.3833) which corresponds to a barycenter

of a triangle of mesh 1. In Table 5.26 we can see the relative errors RE{, REs, RE3 and RE4
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Mesh | RE; RE2 RE3 RE4 Mesh | RE; RE2 RE3 RE4
1 0.0349 | 0.1001 | 0.1001 | 0.1673 1 0.2468 | 0.0671 | 0.0671 | 0.0532
2 0.0125 | 0.0595 | 0.0595 | 0.0332 2 0.0643 | 0.0312 | 0.0312 | 0.0362
3 0.0046 | 0.0205 | 0.0134 | 0.0243 3 0.0143 | 0.0150 | 0.0109 | 0.0121
4 0.0014 | 0.0127 | 0.0016 | 0.0083 4 0.0027 | 0.0072 | 0.0023 | 0.0060

Table 5.26: Relatives errors using one Table 5.27: Relative errors using fifty
dipole. dipoles.

in the first four meshes in Table 5.21. It is important to note that it is possible to work with
the Raviart-Thomas source approximation because we are in a uniform mesh, and therefore the
localization r defined in (5.26) for each triangle corresponds to the barycenter; thus we are sure
that the lead field matrices are constructed with the same localization points. When the mesh
is not uniform, we cannot compare this method with the other ones in this way.

Notice that the support of the characteristic function used to compute RE3 in Table 5.26 is
a square of side-length 2¢. We consider € = 0.002 in the four cases. Notice that € can be chosen
in different ways. We seen a dependence on that choice. The options of choice is something we
have not considered.

We follow the same procedure, but now we consider fifty points that corresponds to fifty
barycenters of fifty triangles inside the region 2 in mesh 1. The relative errors in this case are
reported in Table 5.27. To compute RE3 we use the same choice that in Table 5.26.

In Tables 5.26 and 5.27 we can see that the characteristic function approach gives good
results, similar to those of the subtraction approach. The other two methods are performing

reasonably well, though not at the same level of precision of the first two methods.

5.4.3 Test 7.

This experiment is similar to the previous one. The difference here is that now we are
considering points inside region 2, but close to the interface between region 1 and region 2.
Since the points are near the boundary, we consider as the reference lead field matrix the one
computed by means of the direct method. We compute this matrix in the finest mesh in Table
5.21, that is, mesh 5.

As in the previous experiment, first we consider only one position o = (0.2083,0.2042)
which corresponds to a barycenter of a triangle in mesh 2 of Table 5.21, with an edge belonging
to the interface. We can see the relatives errors RE{, REo, RE3 and RE4 computed in Table

5.28. RE3s was computed by using e as in the previous experiment. We use this choice to be
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Mesh | RE; RE2 RE3 RE4 Mesh | RE; RE2 RE3 RE4
1 7.3765 | 0.3050 | 0.3050 - 1 3.5643 | 0.0993 | 0.0993 -
2 3.8599 | 0.1712 | 0.1712 | 0.2295 2 1.2753 | 0.0454 | 0.0454 | 0.2191
3 1.2979 | 0.0293 | 0.0351 | 0.0936 3 0.2471 | 0.0144 | 0.0104 | 0.0233
4 0.3232 | 0.0547 | 0.0182 | 0.0107 4 0.0596 | 0.0149 | 0.0036 | 0.0037

Table 5.28: Relative errors with one dipole. Table 5.29: Relative errors with fifty
dipoles.

sure that the support of the characteristic function is contained in region 2. Notice that xg is a
barycenter of a triangle in mesh 2 and therefore, it is not a barycenter of a triangle in mesh 1.
Then, we have not computed RE4 in mesh 1.

We repeat this experiment considering fifty barycenters of fifty triangles in mesh 2, close to
the interface between regions 1 and 2. We compute RE3 with the same € than before since we
are sure that in the fifty problems, the supports of the characteristic function are inside region
2. We can see the results in Table 5.29.

From Tables 5.28 and 5.29 we can conclude that as in the case before, the best results are
achieved by the characteristic function approach and the Raviart-Thomas source approximation.
As conclusion, we see that the subtraction approach is always giving the worst performance, and
sometimes its relative error is one order of magnitude larger than the other relative errors. This
leads to say that, when the locations of &g are close to the interface, it is better to resort to a

different approach, for instance to the characteristic function approach or the other methods.

5.5 Conclusions

It is important to recall that all the methods here introduced require more regularity of o
in a vicinity of the dipole position. We are testing what happens if we do not consider this
restriction and, despite this fact, which method can still give good results.

From Section 5.2, we can conclude that when the dipole source is located close to the interface,
the solution obtained by means of subtraction approach is not robust. These computational
results are backed by the theory in [67]. On the other hand, the direct method is stable when
the locations are closer and closer to the interface; however, the results obtained in that section,
clearly show that a discontinuity occurs there, namely, approaching the interface from differents
sides gives quite different results. When the source is exactly on the interface, there is only one
method that is well defined: the characteristic function approach. We have seen that this method

gives reasonable results in that specific case.
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In Section 5.3 we have seen that it is possible to reconstruct the localization and the po-
larization using the direct method; however, we can obtain better results when we use the
direct method with the adaptive procedure. However, we want also to underline that the results
obtained by means of this method are somehow oscillating from a refinement step to another.
Another competitive method is the characteristic function approach, which has given accurate
results. The subtraction approach is not performing well, especially when the location xg is close
to the interface between two regions with different conductivities.

In Section 5.4, we see that, when the conductivity is constant, the lead field matrix compu-
ted by using the direct method with an adaptive procedure is similar to the lead field matrix
constructed by means of the subtraction approach; in particular, the relatives error are falling
down in the same way when we use a finer mesh. When the conductivity is piecewise constant,
we conclude that, when the dipole positions are inside a region, the best results are given by
the characteristic function approach and the subtraction approach; the others techniques are
also giving good results. When the points are close to the interface we can conclude that the
relatives errors have a difference behavior, and the subtraction approach does not seem to be
very reliable. Instead, the characteristic function approach is always furnishing good results, as

well as the Raviart-Thomas source approximation.



Chapter 6

Analysis of a FEM-BEM model

posed on the conducting domain for
the time-dependent eddy current

problem

6.1 Introduction

The eddy current model is commonly used in many problems in sciences and industry, for
example, in induction heating, electromagnetic braking, electric generation, etc. An overview of
the mathematical analysis of the eddy current model and its numerical solution in harmonic
regime can be found in the recent book [5], which provides a large list of references on this
subject.

In this chapter, we deal with the numerical solution of the time-dependent eddy current
problem, which is naturally formulated in the whole space, with adequate decay conditions at
infinity. The literature on the numerical analysis of time-dependent problems of this kind is more
scarce. Among the few papers devoted to this subject, both in bounded and unbounded domains,
by using finite element (FEM), boundary element (BEM) or coupled FEM-BEM methods, we can
mention [1, 2, 42, 43, 47, 49, 69]. These articles differ from each other by the physical quantities
chosen for the formulation (magnetic field, electric field or different kind of potentials) and by
the way of treating the decay condition to reduce the problem to a bounded domain.

We consider a FEM-BEM method to compute the eddy currents generated in a three-

dimensional conductor Q¢ by a time-dependent source current. The problem is reformulated

101
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by expressing the magnetic and the electric fields in terms of convenient new variables. We use
FEM only on the conducting domain )¢, the integral conditions being imposed on its boundary
0Q¢. Therefore, the domain where FEM is used results as small as possible, leading to a more
efficient method as compared, for instance, with [1, 2], where similar formulations but involving
FEM in part of the dielectric domain are considered. Another important feature of this ap-
proach is that it preserves the coercivity of the original problem. The purpose of this chapter
is to analyze the convergence of a fully discrete FEM-BEM scheme for this formulation and to
investigate the convergence order.

The chapter is organized as follows. In Section 6.2 we give some basic definitions. In Sec-
tion 6.3 we introduce the model problem and the assumptions over the data. Then, we introduce
a new variable, the time-primitive of the electric field, which plays the role of a vector potential
for the magnetic field. In Section 6.4 we introduce the integral operators and recall their prop-
erties. Then, we derive the FEM-BEM formulation and show the existence and uniqueness of
the solution to the problem. In Section 6.5, we introduce a space-discretization of the problem
based on Nédélec edge elements in ¢ and piecewise linear continuous elements for the variable
on 0Q¢ arising from the integral equations. Then, a backward Euler method is employed for the
time discretization. Finally, the results presented in Section 6.6 prove that the proposed fully

discrete scheme is convergent with optimal order.

6.2 Preliminaries

In the sequel we deal with real valued functions. Boldface letters will denote vectors (in R™)

or vector-valued functions, as well as matrices. The symbol |- | will represent the Euclidean norm

n
2
lv|"=v-v:= va
i=1

In all the chapter the conductor Q¢ C R3? is a bounded connected polyhedron, with a

for n-dimensional vectors:

Lipschitz-continuous connected boundary I' := 9Q¢, so that the insulator Q; := R3\ Q¢ is also
connected.

We remark that, under the above conditions, ¢ and €); have the same number of non-
bounding cycles L; namely, there exist L disjoint connected open “cutting” surfaces Eijnt C Q¢
(respectively E‘;‘-Xt C Qp),j=1,...,L, such that Q¢ := Q¢ \ Ule Eijnt (respectively Q :=
Qr\ UJLZI %) is simply connected. The boundary curves 82}“’3 and 9% lie on T

We denote by

(f,9)0.0. 3:/Q fgdz
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the inner product in L?(€%) and | - [|o.q. the corresponding norm with * € {C,I}. As usual,
| - |ls,0c stands for the norm of the Hilbertian Sobolev spaces H*({)¢) for all s € R. We recall
that, for s € (0,1), the space H*(I") has an intrinsic definition (by localization) on the Lipschitz
surface I' due to their invariance under Lipschitz coordinate transformations. We denote by
|| - |ls,r the norm in H*(I"). Moreover, H*(I") denotes the corresponding dual space.

In this chapter, the spaces that are product of function spaces are endowed with the natural
product norms and duality pairings without changing the notations; it will be clear from the
context when scalar or vector functions are used.

Finally, we introduce the functional spaces

H(cur; Q¢) :={v € (L*(Q0))3 : curlv € (LZ(Q(;))?’},
H(div; Qc) :== {v € (L*(Q0))? : divw € L*(Q0)} ,

endowed with their natural norms ||v\|12q( = [v[§.ap + | carlw||§ . and ”UH%{(diV'Qc) =

curl;Q¢) :
v|2 . + ||divvl2 o ., respectively.
O,QC 0 QC’

6.2.1 Basic spaces for time dependent problems

Since we will deal with a time-dependent problem, we will use spaces of functions defined
on a bounded interval [0,7] and with values in a separable Hilbert space V' whose norm is
denoted here by || - ||1,. We use the notation C°([0,77]; V') for the Banach space consisting of all
continuous functions f : [0,7] — V. More generally, for any & € N, C*([0,T]; V) denotes the
subspace of C°([0,T]; V) of all functions f with (strong) derivatives d f/dt/ in C°([0,T]; V') for
all 7 =1,..., k. In the sequel, we will use indistinctly the notations 9, f = df /dt to express the
derivative with respect to t.

We also consider the space L2(0,T;V) of classes of functions f : (0,7) — V that are

Bo6chner-measurable and such that

T
Aoy i= [ IO at < +oc.

Furthermore, we will use
HY0,T;V) :={f € L*(0,T;V) : 8,f € L*(0,T;V)}.

Analogously, we define H*(0,T;V) for all k € N.

6.3 The model problem

The unit normal vector on I' that points from Q¢ to Q; (respectively from Q to Q¢) is

denoted by n¢ (respectively ny = —ng).
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Let E(x,t) be the electric field and H(x,t) the magnetic field. Given a time-dependent

compactly supported current density J, our aim is to furnish an approximate solution to the

problem below:
O(pH) +curl E=0

curlH —ocE =J

div(eE) =0

H(x,t), E(z,t) = O(|z| ™)
H(z,0) = Ho()

in R® x (0,7,

in R? x [0, 7],

in Q; x [0,7), (6.1)
as |x| — oo,

x € R3,

where the asymptotic behavior (6.1)4 holds uniformly in [0, 7.

The initial data Ho € (L?(R?))? has to satisfy div (uHo) = 0 in R3. Coefficients o, u and
€ are assumed to be symmetric matrices with bounded entries. The electric conductivity o is
positive definite in ¢ and vanishes in €2;. The magnetic permeability p is positive definite in
all R? and satisfies pu = poI in Q7 (I being the identity matrix). The electric permittivity e is
only needed in the dielectric domain in this formulation and we assume it satisfies € = ol in Qp;
po and €g being the corresponding coefficients in vacuum. Finally, we assume that the source
current is supported in Qc. Moreover, we consider J € L?(0,T; (L?(Q¢))?).

We define H¢e := H|q, and H; := H|q,; analogously, Hc := Hyla,, Hro = Holo,,
E¢ := E|q,, E; := E|q,, etc.

We consider the space H(Q¢), defined as

H(Qc) :={v e (L*(Q0))? : curlv = 0, div(ow) =0, 6v-nc =0 on r}.
int
J .
in Q¢. They are connected orientable Lipschitz surfaces with 82;“‘3 C T, such that every curl-

We recall that each cutting surface ¥ j = 1,..., L, “cuts” an independent non-bounding cycle

free vector field in {2¢ has a global potential in QC. A basis of H(€Q¢) is given by the functions

w; which are the (L?(Q¢))3-extension of Vp;, where p; € H'(Q¢ \ Zij“t) is the solution of the
problem

div (eVp;) =0 in Q¢ '\ Eijnt,

on '\ 9X¥",

=0, j=1,...,L,

oVpj-nc =0
[oVp; - nijnt]]

Eijnt
[Pl = 1, j=1,...,L,

having denoted by [[-]]E%_m the jump across the surface Eijnt and by nijnt a unit normal vector on
Eint ’
il

In order to obtain a suitable formulation for problem (6.1), we introduce the variable

Ad%ﬂ&—ﬂEd@Q+Am@) (6.2)
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where Ac is a vector potential of pu-H ¢ o; namely, a vector field such that
curl Aco = pcHcep in Qc, (6.3)

which is well known to exist because div (ucH c0) = 01in Q¢ ( see, for instance, [13, Lemma 3.5]).

In practice, Ac can be found, for instance, by solving the following problem:

curl Aco = pcHep in Q¢,
div(cAcp) =0 in Q¢,
ocAco-nc =0 on I,

/ O'Ac7o-wjdm:0, jzl,,L
Q¢

We obtain directly from (6.2) that Ec = —0;A¢ in Q¢ x (0,T). Moreover, if we apply curl
to (6.2) and use (6.1); and (6.3), we also deduce that uoH¢o = curl A¢ in Q¢ x [0,7] and,

replacing the new equalities in (6.1)2, we have
ocOAc + (:Lurl(p,a1 curl Ag) =J in Q¢ x (0,7).

We introduce the Beppo Levi space

WHQy) = {80 € L3.(Q) 1 ———— € L*(Q), Vi € (LQ(QI))?’}

V14 |x]?

and recall that the seminorm ||V (+)||o.q, is a norm in W'(£;) equivalent to the natural norm;

i.e., there exists a constant C' > 0 such that (see, e.g., [52]):

<CVellso, Ve e W ().

2
0,9

v
V1+|x|?

Moreover we define the harmonic Neumann vector-fields in Q; by
H(Qy) := {v e (L*())*: curlv =0, divo =0, v-ny=0onT}.

We will also need a basis of the finite dimensional space H(€2;). To this end, let E?Xt, j=1,...,L,
be the orientable cutting surfaces in 27 introduced above. We fix a unit normal n;‘?"t on each E‘;‘-Xt.
Then, for each j = 1,..., L, consider the following problem, which admits a unique solution:
Find z; € W'(€Q \ ) such that

Azj =0 in Q7 \ 2§,

Vzj-ny =0 onF\@E?Xt,

[Vz; - ant]] =0,

Ze_xt
J

[[Zj]]Ei’“ == 1
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The set {%zj :j=1,...,L}, where %zj are the (L%(Q))3-extension of Vz;, is a basis of H(Q)
(see, for instance, [49]).

We have the following representation of curl-free vector-fields in 7 (see, e.g., [32, Remark 7).
Lemma 6.3.1 There holds
{ue (L*(Q)*: cwrlu=0in Q;} = VIWH(Q))) & H(Qy).
Moreover, this is an L*(Q5)-orthogonal decomposition.

We know from (6.1)a that curl H; = 0 in Q7 at all time ¢ € [0, T]. Then, the previous lemma
ensures the existence, at each time ¢ € [0, 7], of a function ;(t) in W*(;) and real constants

{oy (t)}jL:1 such that

L
H(z,t) = Vi (z,t) + > a;(t)Vz(x)  inQ x[0,T]. (6.5)
j=1

Moreover, taking divergence in the equation (6.1); and using that p = pol in Q7, we obtain
that 0;(div Hy) = 0 in Q7 x (0,T). Hence, since we know that div H;(z,0) = divH;p =0 in
Qr, we conclude that div H; = 0 in Q7 x [0,T]. Then, using (6.5) and (6.4)1, we obtain that

Aw[:() in Q[X [O,T]

On the other hand, multiplying (6.1); by %zi, using a Green’s formula and the fact that Ej x

ny = —FE¢ X ng, we obtain

at(LLQH[)'%Zid:B:—/ECch'§zidg, 221,,L
Qr r

Replacing H; by Vyr + Zle ozj%zj and Ec by —0;Ac, using the orthogonality between
VW1(Q;) and H(€) and integrating by parts in Q;, we obtain

L
MoZa}(t)/ %zj'%zidw:/ﬁtAc(t) x ne - Vz de, i=1,...,L.
o r

Jj=1

Next, integrating in time between 0 and s (0 < s < T') and recalling that Ac(x,0) = Aco(x),

we obtain

L
140 Z ozj(s)/ %zj V2 dx — / Ac(s) X ng - V2 d¢
o Q; r

L
= 1o Z a;(0) 625 Vzidx — / Aco X nc - V2 d¢, (6.6)
i=1 & :
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with i =1,..., L. From (6.4), Green’s formula yields

%Zj . %zi de = 0z

t O dc,
ex’
Q; ) J

for all 4,5 =1,..., L. Then, we introduce the matrix

N = ( ng dg‘) . (6.7)
st Onj 1<ij<L

It is clear that N is symmetric and positive definite. We also define the matrix Z and the vector

a by
Z = [6;;1 %ZLT and o= [041 ap t. (6.8)

Thus, we can write equation (6.6) as follows:
poNa [ Z(Ac xnc) d¢ = poNao — [ Z (Aco x ne) de,
r r

where o := a(0) is known.

In conclusion, we are led to the following problem:

Find Ac € L*(0,T; H(curl; Qc)) N HY0,T; (L3(Qc))?), ¢r € L*0,T;W(Q)) and a €
L?(0,T; R¥) such that

o Ac + curl(pg! curl Ag) = J in Q¢ x (0,7,

oNa — / Z (Ac xng) d¢ = poNayg — / Z (Acp x n¢) d¢,
r r

Ay = 0 in Qr x [0, 7], (6.9)
(p,alcurle) X ng + (ij—i-Zta) xn;=0 on I' x [0, T,

curl Ao - ne + woVpr -mny =0 on I' x [0, T,

Ac(z,0) = Acp in Qc.

Equations (6.9)4 and (6.9)5 come from the fact that H € H(curl; R?) and pH € H(div;R?)
and, hence, Ho xng = —Hj xny and ucHc -ng = —poH71 - ny on I', respectively.

6.4 A FEM-BEM coupling variational formulation

In what follows we reduce problem (6.9) to the bounded domain Q¢. To do this we will use
Costabel’s symmetric FEM-BEM coupling technique (cf. [25, 26]). We introduce on I' the single
and double layer potentials, which are formally defined by

S+ HYAT) » HY2(D) S©@) = [ o 6w ey,
D HYA(T) - HYA(), D))= | e ) me(w) G
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respectively, and the hypersingular operator # : H'/2(I') — H~1/2(I"), which is formally defined

as the following normal derivative:

Honte) =~ [ 122 ) motw) a6y ) (o).

Let us remark that the restrictions to the boundary as well as the normal derivative above have
to be understood in a weak sense; for rigorous definitions see, for instance, McLean [48]. The
three operators are linear and bounded. Let D' : H=Y/2(T') — H~'Y/2(I') denote the adjoint
operator of D.

In what follows, we recall some basics properties of these operators (see, e.g., McLean [48]

and Nédélec [52] for the corresponding proofs).

Theorem 6.4.1 Let ¢ € W(;) be a harmonic function. Then, the following identities hold

(120 - (22) o
- (;I+ D’> <$> +H (¢lr) = 0.

Lemma 6.4.1 (i) There exists k1 > 0 such that

onl':

/F Snd¢ > kil or  ¥ne HVA(D).

(ii) There exists ko > 0 such that
2 1/2
[ H@ede 2 Ballolr Ve € BT,

where

HY*(T) = {cp e HY2(I) : /<pdg = 0} .
r
Lemma 6.4.2 H(1) =0, D(1) = —1/2 and [ H(n)d( =0 Vne HYA(T).

Here and thereafter, for the ease of notation, we use the integration symbol on I' instead of the

duality pairing between H~'/2(I') and HY/?(I'); namely, Jr H(n) d¢ = (H(n), L) 1720y /2 (ry-
Theorem 6.4.2 The linear operator H : H/?(T') /R — Hgl/Q(I’), where
Hy VA(T) = {n e H V() /ndg = o} ,
r

defines an isomorphism.
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Let (Ac, Y1, o) satisfying (6.9). Let ¢(t) := ¢r|r(¢t) — c(t), where ¢ : [0,7] — R is such that
Y(t) € Hé/z(f‘). By using (6.9)3 and (6.9)5, according to Theorem 6.4.1 and Lemma 6.4.2, for
all t € [0,T] we have

1 1
- 5@[) — D) + M—S(curl Ac-ng)=—¢Y; onl, (6.10)
0
1 curl Ag - n¢ + iD’(curl Ac-nc)+H(@)=0 onT. (6.11)
2p0 1o

The following is a variational formulation of problem (6.9), where
VY = H(curl; Qc¢).

Find Ac € L2(0,T; V) N HY0,T; (L2(Q))3), ¢ € L2(0,T; Hy/*(T)) and a € L*(0,T;RL)
such that
a
dt Jo,,

+ /r [—;w — D) + ,ulOS(Curl Ac - nc)] curlwe - ne d¢

oA - wedx + / u,al curl A¢ - curlwe da
Qc

+at/ Z (we X ng) d¢ = J - wede, (6.12)
r Qc

/ B curl Ac - ng + D' (curl Ag - ne) + ,uOH(w)] nd¢ =0,
r

1B Na — 6 /F Z (Ac x nc) dC = pof'Nay — 6 /F Z(Aco x ne) d¢,

for all we € V, n € Hé/Q(F) and B € RY, with
Ac(0) = Acy  in Qc.

In fact, to derive (6.12);, we have multiplied (6.9); by w¢, integrated by parts in Q¢ and
used (6.9)4, the identity

/n] x Vir - we d¢ = / Yreurlwe - ne dc, (6.13)
r r

(which in its turn follows by integration by parts, too) and (6.10). On the other hand, Egs.
(6.12)2 and (6.12)3 follow directly from (6.11) and (6.9)s.
For the theoretical analysis it is convenient to eliminate o and v from the previous formu-

lation. With this aim, we introduce the linear operator T : V — R” defined by

T(we) = /F Z (we x ne) dC.
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We eliminate o from (6.12)3 and replace it in (6.12);. Then, the fourth term of this equation

reads
at/ Z (we xng) d¢ = (T(wc))ta
r
— Mal(T(wc))tN_lT(Ac) + (T(’wc»tao
— iy (T(we) N~ T(Acy)-
Moreover, we introduce the operator R : H61/2(F) — H3/2(F) given by
[ HEREmdc= [(endc e HW), e e 1), (6.14)

It is straightforward to show, from Lemma 6.4.1(ii) and the Lax-Milgram lemma, that R is well

defined and bounded. Therefore, the second equation of (6.12) may be equivalently written
1
Y= —,uglR <2 curl Ag - ng + D' (curl Ag - nc)) )

Consequently, (6.12) admits the following equivalent reduced form:
Find Ac € L?(0,T;V) N HY(0,T; (L?(Q¢))?) such that

d

dt

for all we € V, with

(Ac(t), wo), + A(Ac(t), we) + B(Ac(t), we) = (J(t), we) o, +9(we) (6.15)

Ac(0)=Acp  inQc,

where

(H,G) ;:/ oH -Gdx VH,G < (L*(Qc))3,
Qc

o

A:VxV SR, AH,G) ;:/Q potcurl H - cwrl G de
+20 /s (curl H - n¢) curl G - me d¢,
B:VxV >R, BH,G) := gy /}C H))d¢
+ by (T(G)) N~'T(H),
K:v - Hy V(D) K(H) = %curlH no + D (curl H - ne),
g:V R, g(H) := ' (T(H))'N~'T(Acy) — (T(H)) .

Notice that A and B are bounded, symmetric and non-negative definite bilinear forms.

Remark 6.4.1 The norm || - |00, is equivalent to || - ||o and, therefore, || - ||y is equivalent to

- llo + [ curl(:) 0,00 -
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6.4.1 Existence and Uniqueness.

As shown in the following lemma, problem (6.15) is well posed.

Lemma 6.4.3 There erists a unique solution to (6.15) and

IAC 0.7 + 10:AC T2 (0 71200 ))3)
< C{IM132 0z + 1ol + e’} (6:16)

for some constant C' > 0, independent of the problem data J, Acy and oy.

Proof. The classical theory for parabolic problems (see, for instance, [32]) allows us to show
that Problem (6.15) has a unique solution Ac € L?(0,T;V) N H'(0,T;V'). Moreover, since
Aco € V and the right hand side of (6.15) is the sum of two terms, (J(t),wc)on, with
J € L?(0,T; (L*(Q¢))?) and g(we) with g € V' independent of ¢, it is straightforward to show
that actually 8;Ac € L%(0,T; (L?(Q¢))?) and the estimate (6.16) holds true (In fact, we may
proceed as in the proof of Theorem 7.1.5 from [35] for the first term, and use Theorem A.1 from

[17] for the second one). O

Remark 6.4.2 Problems (6.12) and (6.15) are actually equivalent. In fact, for Ac being a
solution of (6.15), if we define v := —ug "R(K(A¢)) and o == ag+pg 'N~HT(Ac) —T(Acy)),
then (Ac, ¥, ) is a solution of (6.12). Moreover this problem has a unique solution, because
Ac¢ has to be the unique solution of (6.15) and ¢ and a are determined via (6.12)y and (6.12)3,

respectively.

Problems (6.9) and (6.12) are also equivalent. In fact, we derived (6.12) from (6.9). In what

follows, we show the converse implication:

Theorem 6.4.3 Let (Ac,¢, ) be the solution to problem (6.12). Then, there exists 1y €
L2(0,T; W) and a function c: [0,T] — R such that 1 = 1r|r — ¢ and (Ac, 1, @) satisfies
(6.9).

Proof. Testing (6.12); with we € (C§°(Qc))? we obtain
oc0;Ac + curl (ual curl AC) =J in Q¢ (6.17)
a.e. in [0,T]. Then, testing (6.12)s with n € H/?(I") and using Lemma 6.4.2 we have

1
5 curl A¢ - ne + D'(curl Ag - ne) + poH () =0 on I (6.18)
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Now, let 17 € W1(Q;) be the solution of the following problem:

Aw[ =0 in Q[,
(6.19)
woVyr -ny=—curl Ag - ne on I'.
Since v; € W1(€);) is a harmonic function, Theorem 6.4.1 ensures that
1 1
51/}[|1" —Drlr) + —S(curl A¢ - ne) = 0,
Ho (6.20)

1
3 curl Ag - ng + D' (curl Ag - ne) + poH (¢r|r) = 0.

Subtracting (6.18) from (6.20)2, we obtain H (¢ — ¢;) = 0 on I'. Therefore, we conclude from
Theorem 6.4.2 that ¢7(t) = ¥ (t) + c(t) on I, where, for each ¢ € [0,T], ¢(t) is a constant. As a

consequence, from (6.20); we have

_ %1/1’1“ —D|r) + iS(curl Ac-ne)
Ko
= 5l =) = D(urlr = ) + - S(eurl Ac - nc) = ~ilr.

Now, replacing this equality in (6.12)1, using (6.13) and testing with we € H(curl; Q¢), we
obtain

(;1,61 curl AC) X ne + (V@Zq + Zta) xnyr=0 on I.

Let us emphasize that the first term on the left hand side is well defined in H~'/2(T), since
,ual curl Ac € H(curl;Q¢), which in turn follows because of (6.17) and the facts that J €
L?(0,T; (L*(Q¢))?) and the solution to Problem (6.12) satisfies 9;Ac € L2(0,T; (L?(Qc))?).
Finally (6.9)2 and (6.9)3 follows from (6.12)3 and the initial condition of problem (6.12), respec-
tively. O

6.5 Fully-discrete scheme

Let {7n(Q2c)}n be a regular family of tetrahedral meshes of Q¢. As usual, h stands for the
largest diameter of the tetrahedra K in T,(Q¢). Furthermore, we consider the corresponding
family of triangulations induced on T', {7,(I")},. Let N € N, At := T/N and t, = nAt,
n=20,...,N.

We define a fully-discrete version of (6.12) by means of Nédélec finite elements. The local

representation on K of the lowest-order Nédélec finite element is given by

NEK)={axz+b:a,beR? zcK}.
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The corresponding global space V}, is the space of vector fields that are locally in N (K) for all
K in Q¢ and globally in V = H(curl; Q¢). Moreover, we define

£n(T) = {n € Hy*(0): ylp € Po(F) ¥F € Th(D)},

which approximates the space Hé/ 2 (I"), where P (F) is the set of polynomial functions defined
in F' of degree not greater than k.

When Q¢ is not simply connected, problem (6.12) involves the matrices N and Z defined by
(6.7) and (6.8), respectively. To compute these matrices we also need to approximate numerically
the basis {6zk},%:1 of the harmonic Neumann vector-fields space H(£2;). A similar need arose
in [49], where the authors proposed a coupled FEM-BEM method to compute the entries of a
matrix Ny approximating N. For the sake of completeness, in what follows, we briefly describe
the method introduced in [49] to approximate N and the corresponding error estimate proved
in this reference.

—ext

Consider a convex polyhedron €2 such that Q¢ U (U£:1 X > C €2 Set

QO:_Q\{QCU(OEZXt>}, Q:=0\0c and A := Q.
k=1

From (6.4), p := Vzi|o, k= 1,..., L, belong to the closed subspace of H(div; Q)
Y:i={gqe(L*(Q)*: divg=0in Qand g-n;=0on I}

and satisfies the variational equation

/pk-quc/ q-nkdu/q-nzkdc Vg ey,
) ext A

where n correspond to the unit normal vector on A outer to Q. Furthermore, as z; is harmonic
in R3\ Q, the last equation may be coupled with boundary integral equations relating zj, and
its normal derivative p;, - on A. This leads to the following weak formulation (see [50] for more
details)

Find p;, € Y and ¢, € H'/2(A)/R such that

1
[ pieade [ Swmanac— [ |Gocrpon]a-nac
— npd
/Zixtq ny, dg, (6.21)

/A BX + D(X)] P -ndl + /AH(%)XdC —0,

for all functions ¢ € Y and x € HY?(A)/R. The variable ¢; represents (up to and additive
constant) the trace of z; on A. Now, consider a regular family of triangulations {7;,(Q)}s of Q by
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tetrahedra K of diameter no greater than A > 0. Assume that, for any h, the set 7, (Qc) UTL(Q)
is a triangulation of Q. This implies that the triangulation induced by 73, (Q) on I is identical
to Tn(I'). It can be assumed, without loss of generality, that, for each mesh, the cutting surfaces
3¢* are union of faces of tetrahedra in 7(Q). Finally, denote by 7j,(A) the triangulation induced
by Tn(Q) on A.

Consider a conforming discretization of H(div; Q):
RTH(Q) ={qe H(div;Q): qlx € RT(K) VK € Th(Q)},

RT(K) := {aw +b:acRbERS zc K } being the lowest-order Raviart-Thomas element.
The following is a convenient way of discretizing problem (6.21) (for more details, see [49]):
Find py;, € RTY(Q), ¢rn € ®4/R and By, € My, such that

1
/kah-qdw+/[\5(pkh-n)q-ndC—/A [2¢kh+p(¢kh)]Q'ndC

—I-/ Bkhdiqum:/ q-n;d¢,
Q szt

(6.22)
/ BX + D(x)] Py - ndl + / S(curl ggp,) curl x d¢ = 0,
A A T T

/ divpppvde =0,
Q
for all functions g € RT9(Q), x € ®/R and v € M, where

RTUQ) :={q € RTH(Q): q|r - n; = 0},
Oy = {n € COA): n|lp € Pi(F) VF € Th(A)},
My, = {v € L*(Q) : v|g € Po(K) VK € Tr(Q)}.

Moreover, curl, denotes the surface curl on A (see, for instance, [5, Section A.1]).
We know from [50] that (6.22) is a well posed problem. Once the functions py,, 1 < k < L,

are computed, the matrix N can be approximated by

Nh = </2;6Xt Prh - Ty dC) . (623)

1<k, j<L

Note that this matrix is symmetric and positive definite. Error estimates for the approximation
Ny, of N has been obtained in [49]. With this end, an additional regularity result has been also
proved therein. In the sequel, we denote by sg € (1/2, 1) the exponent of maximal regularity in Q
of the solution of the Laplace operator with L?(Q) right-hand side and homogeneous Neumann

boundary data.
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Theorem 6.5.1 If (p, ¢1) is the solution to problem (6.21), k = 1,..., L, then p, € (H*(Q))?
forall s € (1/2,s9).

Proof. See [49, Theorem 7.1]. O
Finally we recall the error estimates obtained in [49]. Here and thereafter C' denotes a generic
positive constant not necessarily the same at each occurrence, but always independent of the

mesh size h and the time step At.

Theorem 6.5.2 Problems (6.21) and (6.22) are well posed and

Pk = Penllo.o + 16n = Srnllrrszaym < OB {IPkllyo + 10kl sr10

holds, with s as in Theorem 6.5.1.
Proof. See [49, Theorem 7.2]. 0

Theorem 6.5.3 There exists hg > 0 such that Ny, is invertible for all h € (0, hg). Moreover,
the error estimate

—1 -1
IN = Nal|+ N7 =N < Oh° max {Ipello o+ I9ellonr o)

holds, with s as in Theorem 6.5.1.

Proof. See [49, Corollary 7.3]. O

Notice that [|¢k||s41/2,a is clearly bounded, since ¢y is the trace on A of the solution 2, to
problem 6.4.

To compute an approximation of the entries of Z, we need to resort to a different strategy.
In fact, the previous methods yields good approximation of py|r - n; = %Zkh‘ - ny, but not of
Vzi|r x ng (which are the terms defining the entries of Z). A similar situation happened in [49],
too. However, in this case, we follow an alternative approach that we think is simpler.

It is easy to show that the solution of (6.4) satisfies the following variational formulation:
Find z; € H'(Q \ ¢)/R such that [[Zk]]zixt =1 and

/ Vzk-Vgpda::/pk-ngpdC Yo € HY(Q)/R. (6.24)
Q\szt A
We introduce

Ly(Q):={0€ H(Q): |k € P1(K) VK € T,(Q)},
Ln(Q\E5) :={0€ HY(Q\X7) : 0|x € Py(K) VK € Th(Q)}
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and consider the following discrete version of problem (6.24):
Find zp € £5(Q \ ¢**)/R such that [2kn]sexe =1 and

/ Vzgn - Voda = / Drp - e dC Vo € Ly(Q)/R. (6.25)

Q\ZZXt A

Lemma 6.5.1 Let z;, and zgp, be the solutions to problems (6.24) and (6.25), respectively. Then
H%Zk — 6zth0,Q < Ch®,

with s as in Theorem 6.5.1.

Proof. Let z; € C®(Q \ ') be such that [[gkﬂzzxt = 1. Let zI be the Lagrange intepolant of

Zr in Q \ B¢**. Notice that [[E,g]]zixt =1, too. We write
o~ _ AT, =
2k = 2k + Zk and Zkh = 2, + Zkh,

with z, € H'(Q)/R and zy;, € L;(Q)/R. Substituting these expressions in problems (6.24) and
(6.25), respectively, and using the first Strang lemma (see, for instance, [23, Theorem 4.4.1]), we

obtain

HVEk - VzthOQ <cC inf ”V?k - VSDHO,Q

PELL(Q)/R
Lo ‘_fg\zzxt V(Z —2) - Vedz + [y (pp — Pe) - dC
sup )
0ELn(Q)/R IVello.o

The second term on the right-hand side above is bounded as follows:

—/ V(?k—?,ﬁ)-V(pdaH—/(pk—pkh)-n(pdC
o\t A
< ||Vz - V%Ho,g\zixt IVello.o + Cllpk — Prnllog Vel

where we have used that divp, = divpy, =0 in Q and the fact that ||V (-)[/o,0 is equivalent to
I+ ll1.q on HY(Q)/R.
On the other hand, from Theorem 6.5.1 we know that Vzi|g € (H*(Q))3. Hence,
inf ||[Vz, -V <||VzZk = VZi| .0 < CP* IVZk]l, o -
weclﬁQ)/R 1Vz, ¢llo,o < [V, zkHo,Q = IVZlls.0

Thus, using the last two estimates and Theorem 6.5.2, we obtain

IVZy — VZgnllg.o < CR® {”V/Z\kHS,Q\Eixt + Pells,0 + 10kl s1 /04 + ||V5k:||s,g} :
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Therefore, as a consequence of Theorem 6.5.1,
H%Zk — %ZthO,Q < Ch?

and we conclude the proof. O
Now, we are in a position to introduce the following full discretization of problem (6.12):
Forn=1,...,N, find (A%, ¥}, af) € YV, x L(T) x R such that

/ 0cdAY, - wodr + / pot curl Ay, - curlwe dz
Q¢ Q¢
1 n n 1 n
+ / [—21/1h —D(¢Yy) + ;S(curl Aly, - nc)] curlwe - ne d¢
r 0

+ (0T (we) = /Q J(t,) - we dz, (6.26)

1
/r [2 curl A%y, - ne + D' (curl A%y, - ne) + /J,()H(’(/JZ):| nd¢ =0,

0B Npaq — B'Ty(ALy) = poB' Ny — B'Tr(Acy),
for all (we,n,B) € Vi, x L, (T') x RE, with
AL, = Acho in Qc,

where Acp,0 € Vj, is an approximation of Ag, 0AL, = (A%, — Agﬁl) /At and the linear and
continuous operator Tj, : V — R% is defined by
- ~ t
T (w) = / Zn(wxne) dC,  with Zni= Va0 Ve
r

To prove the existence and uniqueness of solution to (6.26), first we proceed as in the con-
tinuous case and obtain a discrete form of Problem (6.15). Let Ry, : Hglﬁ(f‘) — L (I") be the
operator defined by

/ H(R(€)ndC = / endC Ve L), Ve € Hy (D).
r r

Note that this is a Galerkin discretization of the elliptic problem (6.14). Consequently, using the
Galerkin orthogonality and the continuity and ellipticity of H (cf. Lemma 6.4.1(ii)), we have the
following Cea estimate:

IRE ~ Rl <C i

f|RE - ve e H V). 6.27
£h(F)H £ 77“1/2,1“ £ o (I) ( )

Now, using again that ¥} := —ug 'Ry, (K(AZ,)) (cf. (6.26)2) we obtain the following equi-

valent formulation of (6.26):
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Forn=1,...,N, find A#;, € V}, such that
(0ALh, we) ,, + A(ALy, we) + Br(An, we) = (I (ta), we)g o, + gn(we) (6.28)

for all we € Vj,, with

0 .
ACh = Ach’o 1n QC,

where
B : Vi x V), =R, B,(H,G) := uol/FIC(G)Rh(IC(H)) dc¢
+ 10 (Th(G)) N, T (H),
gn: Vi — R, gn(H) := iy (Th(H)) "N, ' Th(Acy) — (Th(H)) oo,

Hence, at each iteration, we have to find A}y, € V), such that

(Alp, we), + At [A(ALy,, we) + Br(Aéy,, we)

= At [(J(ta)s wC)og,, +gn(we)| + (A" we),, . (6.29)

Since By, and A are non-negative definite, the existence and uniqueness of Ay, n =1,..., N,

is immediate.

Remark 6.5.1 It is easy to prove that if v} := —,uath(lC(Agh)) as defined above and o =
ap + pig "Ny HTR(AL,) — Th(Acy)), then (A%, 7, alt) is a solution of (6.26). This solution
is unique, because H is elliptic in Ln(T") C Hé/Q(F) and Ny, is a symmetric and positive definite

matrix.

6.5.1 Matrix form

To have it clear the kind of problem we have to solve in practice, we will write the fully discrete
scheme (6.26) in matrix form. Let {¢,..., ¢} and {A1,..., Ay} be bases of V;, and L (1),
respectively, and {ey,...,er} the canonical basis of RY. We write the solution ( G ag),

n=1,...,N, to problem (6.26), in these bases:

J M L

n n n T n n

on = E a;pj, vy, = E by A, oy = g cjej, n=1,...,N.
Jj=1 Jj=1 Jj=1

Analogously, we write

J L
0 0
Acpo = E a;p; and ap = g c;€j.
j=1 j=1
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We set a”™ = (a?)lsigj, c" = (C?)lﬁiSL s with n = O,...,N, and b" = (b?)lgiSMa with

n=1,...,N. We also set F" := (F")1<;<7, where
Q¢

We introduce the matrices W := (Wij)lgi,jgja D = (Dij)lgiSJ,lngMy H = (Hij)lgi,jSMy

R := (Rij>1§i,j§J7 Q:= (Qij)lgig],lgng and S := (Sij)lgidg], where

1
Wi = / o, ¢;dx, D;j = / [—2/\j - D()\j)] curl ¢; - n¢ d¢,
Q0 r
H;j = / H(Ni)A;d¢, R;; = / ,ual curl ¢; - curl ¢; de,
r Q¢
Qij = e;- / Zy (¢; x ng) d¢, Sij = / S(curl@; - ng) curl @; - ne dg.
r r
Hence, we write problem (6.26) in block matrix form as follows:
W+At(R+S) AtD  AtQ a" AtF" + Wa"1
AtD? —AtH o b"| = o
At Qt (o) —AtNy| | At (Q*a® — Njc?)

As already mentioned in Remark 6.5.1, problem (6.26) has a unique solution, so that the matrix
on the left hand side is non singular.

Matrices Z;, and Ny, are both readily obtained once the solution py;, to problem (6.22) is
computed. In what follows we write down the matrix form of this problem. Let {wui,...,u4},
{v1,...,vp} and {w1,...,wc} be bases of RTY(Q), ®;,/R and M, respectively. Then, we write
the solution of problem (6.22) in these bases as follows:

A

B c
Prh =D Pri%i, G =Y kv and B =Y miw;.
=1

j=1 j=1

Next, we define ¢y := (ri)i<i<a, Vi = (Vri)1<i<B> M = (Mri)1<i<c and G = (G;)1<i<a,

where
Gi ;:/ uznkdc
szt

Moreover, we introduce the matrices U := (Usj)1<i j<a, V := (Vij)i<ij<a, K := (Kij)1<i<a,1<<B,

E = (Ejj)i<i<ai<j<c and T := (Tj;)1<i,j<a, where
Uij ::/ui~ujdm, V;j :/S(u,n)ujnd(:,
Q A
1
Kz'_j = —/ |:2 ' +D(U]):| u; - ’I’Ldg, Eij 2:/ wjdivui dCB,
A Q

Ti; = /AS (cgrlvj) cgrlvi d¢.
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Then, Problem (6.22) reads

EE O Ol |n 0

It is proved in [50] that the matrix of the left hand side above is invertible. Finally, for a discussion
on the efficient computation of all the singular integrals appearing above, we refer to [63].

As a conclusion, we have that problem (6.26) is actually solvable. Although it involves the
solution of the auxiliary problem (6.22), this can be made off-line since it does not depend
on time. Once it is solved, the time domain problem (6.26) involves only a vector field on
the conducting domain and a scalar field on its boundary. Therefore, this approach allows to

minimizing the number of degrees of freedom needed in the discretization.

6.6 Error estimates
For any s > 0, we consider the space
H¥(cwrl; Q¢) = {v € (H¥(Q0))? : cwrlv € (H*(Qc))*}

endowed with the norm |v]|? ) = lvl2q.. + | curlvHEQC. It is well known that the

s(curl;Qe 5,Q¢

Nédélec interpolation operator I}/L\/ v € Vy, is well defined for any v € H*(curl; Q¢), with s > 1/2
(see, for instance, Lemma 4.7 of [13]). Moreover, for 1/2 < s < 1, the following interpolation

error estimate holds true (see Proposition 5.6 of [6]):

[o =T v||, < Ch* [|v]] . Vo € H*(curl; Q¢). (6.30)

curl;e)

To simplify the notation, we introduce for any w € V
Gn(w) == [[(R = Rp) K(w)l|; jo.r -

Lemma 6.6.1 Let (Ac, v, ) and (Agy,, V), af) be the solutions to problems (6.12) and (6.26),

respectively, the latter with initial data AL, = TN (Acyp). Assume that Ac € CH([0,T]; V) N

CO([0, T; H*(curl; Q¢)), with s > 1/2. Moreover, let p* := Ac(ty) TN Ac(tn), 6" == TN Ac(tn)—
Cn, ond T = 0Ac(t,) — 0;Ac(ty). Then, there exists C > 0, independent of h and At, such
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that

mas [ +Atéuaakuj

1<k<n
<cl{aS ([, + [, + et
k=1

+ (Ao + 10 Ac ) ((max (192 - Va5 o + N7 = N1 )]
+ (HAC,OH%) + |a0|2> <1Iilia<XL H%Zl — 6Z¢hH§7Q + HN_l — N}:1H2)

4+ max
0<k<n

2
k 2
m A
P HV—Foglgé(ngh( C(tk))

Proof. Tt is straightforward to show that
(55’@, v)a + A(6%,v) + By(6,v)
=— (5[)"”,1})6 + (Tk,v)a — A(p*,v) — By(p",v) (6.31)
+ Bu(Ac(te), v) — B(Ac(ix),v) + g(v) —gu(v) Vo € Vp,

as well as the following inequalities:

(38, = o (|, - 110

A8, > i et 5’sz9 ,
weC

B(Ac(tr), %) — Br(Ac(ty), 6%)

< CllActlly [0, ( max (V2= Vel o + [N =N

—|—Cchr15k o Gn(Ac(tr)),

9(6") — g, (6")

< C (|Acolly, + la|) HakHv (@%’i 192 = Vzinlly o + N2 = NG ).

)

Constant p; on the second inequality is an upper bound in ¢ of the largest eigenvalue of .
Hence, choosing v = 8* in (6.31) and using that By, is non-negative, Cauchy-Schwarz inequality,

Remark 6.4.1 and Young’s inequality lead us to the following estimate:
2 2 2

o1, =], + At ot ]

o o

At
< —
- 2T

2 s s 2 -1 —1(|2
+lAcl ( max 92— Tzl o + [N - NG1P)

0,Q2¢

o1, + ca ot + [, + ot + et

+ (HAC,OH% + ‘060‘2) (1211%)2 H%zz — 6Z¢hH(Q)’Q + HN_l — N}ZIHQ)}



6.6 Error estimates 122

Then, summing over k, using the discrete Gronwall’s lemma (see, for instance, [60, Lemma 1.4.2])

and taking into account that 6° = 0, we obtain

it <0 [ [ |4 I+ ocnct
k=1
+ ||Ac(tk)||$; (121@%)2 H%Zl — ﬁzihHg,Q + HN_l _ N’:1H2>]

+ (”AC,OH% + |a0|2> (1121ng H%Zl — ﬁzithyg + HI\I_1 — N,:1H2)

forn =1,..., N. Inserting the last inequality in (6.32) and summing over k we have the estimate

LEERENS 9l MTL
k=1 ’
o {arS [ o stacir
k=1 (6.33)
+ ||Ac(tk)|]%, (fglang H%zZ - 621-;1‘}37@ + HN*l _ N’?HZ)}

+ (lcoll} + leol?) (max [[Vas = Vzanllg o + N7 = NG |*) } -

Let us now take v = 08" in (6.31). We have
— 12 _ _
H&skH + A(6%, 36" + By (8", Do)
=~ (96",06") +(".96") +A@p",6"") + By(@p*,65)
4 4 (6.34)
+ B(t%, 6") — By (77, 6" 1) + B0 Ac(ty), 657
— — 1
— Bu(8iAc(tr), 8" 1) + g(06") — g, (96") — g O = Te=1)
where v, := A(p", 6%) + Bu(p", 8") — Bu(Ac(tr), 8%) + B(Ac(tr), 6).
On the other hand, since A is non-negative definite and symmetric, it is easy to check that

k Asky < L kosky  g/sk—1 sk—1
A(6,86)22At[A(5,5) A(§F-1, 51y
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and similarly for Bj. Using these inequalities in (6.34) together with Cauchy-Schwarz inequality,

and, then, summing over k and recalling that B}, is non-negative, we deduce that
LS ] g o,
" T 112 2
<3 {2, + I
- ; |:H P o T o

n (6.35)
+ 3 [|4@pk, 81| + |Bu@p", 65| + [B(r*, 641 = Bu(rt, 85
k=1
+|B@Ac(t),8Y) - Bu@rAc(ty), 81|
+ a7 196" — 948"+ 5 bl

The following bounds are easy to obtain from Young’s inequality and Remark 6.4.1:

Z A@pkﬁk_l)’ < z’"”: chrl oF1
k=1

2 " _ 2
Y Jleuntzp| -
O,Qc+ ; curlop 0.0
_ n 2 n 2 o 12
ol MRS i P R v o ol 2
k=1 00 3 7 k=1 v
B(r*,81) — By(r", 651
" 2 n 2 n 2
=D B) E L D B i IR B L v
k=1 0.8 e 7 k=1 v

n

> [B@Ac(t), 81 - Bu@Ac(t), 81|
k=1

n 2 n 2 n
<3 Jewtat || 300+ 0D da@rAct)?
k=1 R 7 k=1

+CY o Act)y (1@% [V2i = Vil o + [N7H = NEIHQ),
k=1 o

and
9(6") — 916"
< C (lAcolly + lol) (max V2 = Va0 + N7 = NG|
+gpr el 873 o+ 673
il < S el 8713 o, + 167112

n = = _ 1112
Ol + ety a1V = Vzlg o + [N = N2 )|
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Substituting all these inequalities in (6.35), using (6.33) and Remark 6.4.1, we obtain
"=, 2
AtZHaégH + [leurl 822 6,
o b
k=1

<o [+ et o
k=1
+ HAC(tk)H%; <1I£%XL H%zz — %ZihH(Q)’Q + HN_l _ N}_LIH2>

+ locAc(te)ly ( max (V2 = Vzanlls o + IN71 = N3 [*)]

max ‘
1<i<L

= = _ 112
+ (el + leo) (mas [[Vz = Vznlf o + N7 =N

+ [o"[I5 + Gh(Ac(tn))2}

Combining this inequality with (6.33) and Remark 6.4.1, we end the proof. O

Lemma 6.6.2 Let (A, 1), ) be the solution of (6.12). If we assume that Ac € H(0,T; H*(curl; Q¢)),
1/2 < s < sg, then 1 € HY(0,T; H*TY/2(I")) and the following estimates hold true:

inf t) — < Ch® ||curl Ac(t , 6.36
ok [9(8) = nlly o, p < CR° |leurl A (t) |, o, (6.36)
inf [|0y)(t) — < Ch?*||0y(curl Ac(t . 6.37
neﬁ(F) 100() = lly2p < 10 (curl Ac ()]l 00 (6.37)

Proof. Let (A¢, v, &) be the unique solution of (6.12). Let 7 be as in Theorem 6.4.3. As shown
in that theorem, ¢;(t) = ¢ (t) + ¢(t) with ¢(¢t) € R and t € [0,T]. Moreover, a.e. in [0,T], ¥1|o

is the solution to

—AYpr =0 in Q,

MO% = —curl A¢c - n¢ onT, (6.38)
8n1

Pr|a € C(A).

Since Ac € CO([0,T); H*(curl; Q¢)) with 1/2 < s < sg and A is the boundary of a convex
polyhedron, by applying classical results for the Laplace equation (see [38]) we have that iy €
H*TY(Q) and

||1/’IHs+1,Q < Cllearl Ac - nC||s—1/2,r < Clleurl Ac| (6.39)

5,Q¢ -

Since s > 1/2, the Lagrange interpolant 1/)} of ¢y is well defined. Moreover, since ¥; and 1

only differ in a constant,

(¢I - w;)‘p = ¢ - ¢IF)
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where ¥t € £;,(T") denotes the 2D Lagrange surface interpolant on I'. Therefore, because of the

trace theorem, standard estimates for the 3D Lagrange interpolant and (6.39), we have

H¢ - wIFHI/QI < C wa - 1%”179 < Ch? ”wIHerl,Q < Ch? HCUI‘] ACHS,QC :

Thus, we conclude (6.36).

To prove (6.37), we recall that ¢y is the solution to problem (6.19) (cf. the proof of Theo-
rem 6.4.3). Then, since Ac € H'(0,T; H*(curl; ¢)), differentiating in time each equation in
(6.19), we obtain an estimate analogous to (6.39) for dy1);. On the other hand, since ¥;(t) =

P (t) + c(t) with .
ot = 5 / Gr(t) e,

we have that 9y (t) = 91 (t) — ¢ (t). Hence, the rest of the proof follows identically as above. O
Now we are in a position to conclude the following asymptotic error estimate for the fully

discrete scheme.

Theorem 6.6.1 Let (Ac, v, ) and (A¢y,, V), af), n=1,...,N, be the solutions to problem
(6.12) and (6.26), respectively. Let us assume that Ac € H(0,T; H*(curl; Qc))NH?(0,T; H (curl; Q¢))
with s € (1/2,sg). Then, there exists hog > 0 such that, for all h € (0, hg), the following estimate
holds:
N
max [ Ac(ty) — Afy 3 + At Y [[9(Ac(t) — Az,

1<n<N
n=1

T
< 0 { [ 10ACO B qurior @+ s, 10wl Ac(t) P,

+ max ([lAc()} + 0 Ac(t) ) ((max V27 g + 21312 )

+(
2 2 r 2
+ max [Ac(t >||Hs<cur1;gc>}+<m> /0 lonAc(®)lly dt

< C (A2 + 1] (1A 07 mrvccurl oy + 120I)

where zj, is the solution of problem (6.4), k=1,..., L.

3+ || ) (fgn%xL HVZkHSQ + sz||s+1/2,A>

Proof. A Taylor expansion shows that

_ 1 [t
DAc(ty) = 0iAc(t) + 5 [ (s =0 dnAc(d)dt.
tk—1

Consequently,

;HTkﬂi < At /OT 10 Ac(t)]]3, dt.
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Moreover, we have from (6.30),

no n t
S [or [} < X [ s - Aol
k=1 k=1 -1

ChQS T
<

S A7 dt.

2
|0+ Ac(t) ||Hs(cur1;Qc)

We recall that 9(t) = —puy "R(K(Ac(t))) (cf. Remark 6.4.2). Tt follows from (6.27) that
Gn(Ac(ty)) < inf tn) =11 ar
w(Acltn)) < inf 19 (En) = nlliyor
OhAc(ty)) < inf [8b(tn) — 1|3 jor -
GO AC(H)) < it 00(t) = 1l
Thus, using Lemma 6.6.2, we obtain

Gn(Ac(tn)) < Ch® ewrl Ac(tn)l; g »
Gn(0rAc(tn)) < CB* |0 (curl Ac(tn)) |5 0, -

(6.40)

Hence, the results follows by writing Ac(t,) — A¢y, = 6" + p" and using Lemma 6.6.1,
Lemma 6.5.1, Theorem 6.5.3 and (6.30). O

Remark 6.6.1 Let us recall that ¥(t,) = —uy "RIK(Ac(ts))) and ¢ = —pug ' Ru(K(A%))-

Therefore, using (6.40) and the uniform boundedness of R}, with respect to h, we obtain

lta) = Vil jo.r < Gn(Ac(ta)) + IRA(C(Ac(ta) = AZ)) 12,0
< C{h* fewrl Ao(ta)l 0, + | Ac(tn) = A2yl | -

Then, using Lemma 6.6.2 and Theorem 6.6.1, under the assumptions of the latter, we conclude

that N
ALY () = Ul jor < C [0% + (A1) .
n=1

Moreover under the same assumptions, since c(t,) = ag — pg "N"YT(Ac(tn) — Acyp)) and
af = ag — pg "N (Th(A%y, — Acyp)), from Theorem 6.5.3, Lemma 6.5.1 and Theorem 6.6.1,

we also conclude that

2 2s 2
122(]\7\04(%) af|® < C[h* + (At)?].



Chapter 7

Conclusiones y trabajo futuro

7.1 Conclusiones

El objetivo principal de la tesis presentada ha sido analizar y proponer nuevos modelos en
el estudio matemaético de la electroencefalografia y la magnetoencefalografia. Se estudia inicial-
mente el modelo de corrientes inducidas como alternativa a los modelos usados clasicamente
para estudiar este tema. Para el modelo electrostatico, se ha desarrollado un anélisis a priori y a
posteriori del error en la aproximacién mediante elementos finitos. Se ha utilizado tal estimador
para idear una estrategia computacional eficiente en la resolucién del problema inverso. También
se han hecho comparaciones a nivel computacional en cuanto a la eficiencia de los diversos
métodos presentes en la literatura y los nuevos métodos propuestos respecto del problema directo
e inverso.

Las conclusiones principales de esta tesis, en orden de desarrollo, son:

1. Se propone una alternativa a los modelos ya existentes que abordan el estudio de la e-
lectroencefalografia y la magnetoencelografia: el modelo de corrientes inducidas. Se ha
estudiado desde un punto de vista teérico el problema inverso con este modelo. Como
fuente de corriente, se estudiaron tres casos: fuente distribuida, fuente superficial y fuente
dipolar. Se prob6 que en el caso de una fuente distribuida, no hay una tnica solucién y
se caracterizo el espacio de fuentes no radiantes. En los otros dos casos se demostrd que
la componente tangencial del campo eléctrico en toda la frontera del dominio determina
de forma tnica la fuente. En el caso de una fuente dipolar, se ha encontrado una férmula
mediante la cual es posible recobrar la posicién dipolar y la polarizacion. También se
estudia cémo recobrar la componente tangencial del campo eléctrico a partir de mediciones

que se pueden obtener mediante un electroencefalograma y un magnetoencefalograma.

127
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2.

Se estudia el modelo electrostatico en dominios bidimensionales y tridimensionales. En
ambos casos se demuestra una estima a priori y a posteriori bajo ciertas restricciones de
las geometrias y conductividades. Se demuestra que tal estimador es confiable y eficiente
y finalmente, el estimador se usa para guiar un procedimiento adaptativo en un dominio

bidimensional y se prueba experimentalmente, un orden éptimo de convergencia.

Se comparan la solucién aproximada que se obtiene mediante el problema directo usando
el método de substraccion y el método directo en el caso de un dominio con varias regiones
con distintas conductividades. El método de substraccién destaca por ser un método que
tiene un buen comportamiento cuando la posicién del dipolo estd totalmente contenida en
una region. Sin embargo, de esta comparacién se concluye que cuando el dipolo se ubica
cerca de una interfaz, el método de substraccién no es robusto y el método directo, si.
También se estudia el problema directo cuando la fuente dipolar se localiza en la interfaz.
FEn este caso particular, ninguno de los métodos ya mencionados esta bien definido y por
tanto, se utiliza un aproximante de la delta que da mejores resultados. También se estudia
el problema inverso. Se comparan los tres métodos mencionados y un ultimo método
que combina el método directo con un procedimiento adaptativo guiado por el estimador
encontrado en el Capitulo 4 de esta tesis, en dos situaciones diferentes: cuando la posicién
del dipolo esta completamente contenida en una regiéon homogénea y cuando es cercana
a una interfaz. Se concluye que el método directo combinado con adaptatividad supera
al método directo sin adaptatividad en ambas situaciones. Sin embargo hay que destacar
que los resultados que se obtuvieron utilizando este método oscilan de un refinamiento
a otro. Por otra parte, se observa que el método del aproximante de la delta también es
competitivo en ambas situaciones. Por tltimo se analiza el caso de una fuente distribuida y
se estudian las matrices de influencia en dos situaciones: cuando la fuente distribuida esta
totalmente incluida en una region homogénea o cuando tal fuente es cercana a una interfaz.
En ambas situaciones se comparan errores relativos respecto de una matriz de influencia de
referencia. Primero se hace una comparacion entre el método de substraccién y el método
directo con adaptatividad y se observa que la convergencia en el caso de este ultimo, no
tiene un comportamiento mondétono. Por otra parte, se observa que el aproximante de la
delta va convergiendo mas rapidamente que los demas métodos estudiados en este capitulo

a medida que la malla es més fina.

Se introduce un nuevo método numérico para las ecuaciones de corrientes inducidas depen-
dientes del tiempo en un dominio conductor acotado, contenido en R3. Se reformula el pro-

blema en término de nuevas variables y finalmente se deriva una formulacion FEM-BEM.
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7.2

Se demuestra existencia y unicidad de solucién del problema. Se discretiza el problema
usando en la discretizacion temporal un método backward Euler. También se demuestra

un orden 6ptimo de convergencia a la solucién.

Trabajo futuro

. En el Capitulo 3, se ha encontrado una formula de representacién mediante la cual, bajo

ciertas suposiciones de las cantidades fisicas y asumiendo que la densidad de corriente es
una fuente dipolar y que se conocen las mediciones, es posible encontrar la localizacién y
polarizacién. Se implementara dicha férmula, lo cual implica implementar el operador de

Laplace Beltrami en superficies.

Por otra parte, dentro de este mismo capitulo se probd existencia y unicidad del problema
directo usando las ecuaciones de corrientes inducidas con fuente dipolar bajo la hipdtesis de
homogeneidad de la permeabilidad magnética y de la conductividad. También se estudiara
la posibilidad de probar existencia y unicidad de tal problema, sin la necesidad de usar

esa hipotesis.

Se estudiard la posibilidad de encontrar un estimador a posteriori que sea confiable y
eficiente en relacién a algunos de los métodos numéricos ya mencionados en Capitulo
5 para resolver el problema electrostatico con fuente de corriente dipolar tales como el

método de substraccién [67] o el usar un aproximante de la delta que sea suave.

. La ley de Biot-Savart permite encontrar el campo magnético a partir del conocimiento

previo de la fuente de corriente y el potencial eléctrico. Se vera cémo aplicar los resultados
obtenidos en esta tesis para el estudio del problema inverso de la MEG desde el punto de

vista tedrico y computacional.
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