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Infine un grazie per le volte che mi hanno accolto a Trento, permettendomi di vivere un’ottima

esperienza.

Agradezco a mi esposo, Ricardo, por el apoyo y la comprensión que me brindó todos estos
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mucho más que compañeros, son mis amigos.

A Lorena, Angelina y Eduardo con los cuales tuve la oportunidad de compartir momenos

muy agradables y me quedan lindos recuerdos de aquello.

Agradezco también a mis amigos, amigos de mi niñez que siempre me han apoyado y querido.
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RESUMEN

El objetivo principal de esta tesis es proponer, analizar y testear modelos matemáticos y

computacionales eficientes a través de los cuales poder localizar actividad cerebral a partir de

mediciones de los campos eléctricos y magnéticos en la superficie de la cabeza. Estas mediciones

se pueden obtener a través de un electroencefalograma y un magnetoencefalograma. En términos

matemáticos, esta tesis se centra en resolver un problema inverso.

En primer lugar se estudia el problema inverso usando como modelo las ecuaciones de co-

rrientes inducidas. Igual que para el sistema completo de ecuaciones de Maxwell, se demuestra

que una fuente de corriente volumétrica no puede ser identificada por el conocimiento de las

componentes tangenciales de los campos electromagnéticos sobre la frontera, y se caracteriza el

espacio de las fuentes no radiantes. Por otro lado, se prueba que el problema inverso tiene una

única solución si la fuente está soportada en la frontera de un subdominio o si es la suma de un

número finito de dipolos. También este trabajo se enfoca en la aplicabilidad de estos resultados

para la localización de la actividad cerebral a partir de las mediciones que se obtienen mediante

la electroencefalograf́ıa y la magnetoencefalograf́ıa.

Posteriormente, se analiza el problema electrostático con fuente de corriente dipolar. Este es

un problema singular, ya que tal modelo considera derivadas de primer orden de una distribución

delta de Dirac. Su solución pertenece a Lp, con 1 ≤ p < 3/2 en el caso tridimensional y con

1 ≤ p < 2 en el caso bidimensional. Se consideran la aproximación numérica del problema

directo a través de elementos finitos lineales a trozos y continuos. Se prueba una estima a priori

del error en norma Lp. Además, se propone un estimador de error a posteriori de tipo residual.

Se demuestra que tal estimador es confiable y eficiente. Por último, se utiliza este estimador

para guiar un procedimiento adaptativo, el cual experimentalmente muestra un orden óptimo

de convergencia.

Luego, se comparan distintos métodos de approximación de la solución del problema directo

considerando un dominio con varias regiones con diferentes conductividades. Para el problema

directo, se analiza el caso en el que el dipolo se encuentra en una interfaz. En este caso espećıfico,

se usa una aproximación de la distribución delta de Dirac ya que los otros métodos considerados

anteriormente no están definidos. Por otro lado, para el problema inverso, se analizan los resul-

tados obtenidos utilizando los distintos métodos ya usados en el problema directo y se añaden

a estos, un último método que consiste en usar un procedimiento adaptativo guiado por el es-

timador de error a posteriori encontrado en el Caṕıtulo 4. Se consideran dos situaciones: una

fuente dipolar situada en una región con conductividad regular y lejana a la interfaz y por otra

parte, el caso en el que la tal fuente es cercana a una interfaz. Se estudia también el caso de una
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fuente distribuida y se compara las matrices de influencia cuando el soporte de dicha fuente se

encuentra dentro de una región homogénea y es lejana a la interfaz y en el caso en que el soporte

es cercano a la interfaz.

Por último, se considera el problema de corrientes inducidas dependiente del tiempo. Se

formula el problema en términos de dos variables, una definida sólo en el dominio conductor y

la otra, en la frontera del dominio. Se combinan el método de elementos finitos (FEM) y los

elementos de frontera (BEM) para obtener una formulación variacional acoplada FEM-BEM.

Se establece la existencia y unicidad de la solución en el caso continuo y en el caso totalmente

discreto. Finalmente, se investiga el orden de convergencia del esquema totalmente discreto.



ABSTRACT

The main goal of this thesis is to propose, test and analyze mathematical and computa-

tional efficient models for the localization of brain activity from measurements of the electric

and magnetic fields on the surface of the head. These measurements can be obtained using

electroencephalography or magnetoencephalography. In mathematical terms, this thesis focus in

the study of an inverse problem.

First, we consider the inverse source problem for the eddy current approximation of Maxwell

equations. We show that as for the full system of Maxwell equations, a volume current source

cannot be uniquely identified by the knowledge of the tangential components of the electromag-

netic fields on the boundary, and we characterize the space of non-radiating sources. On the other

hand, we prove that the inverse source problem has a unique solution if the source is supported

on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address

the applicability of this result for the localization of brain activity from electroencephalography

and magnetoencephalography measurements.

Afterwards, we analyze the electrostatics problem with a current dipole source. This is a

singular problem, since the current dipole model involves first-order derivatives of a Dirac delta

measure. Its solution lies in Lp for 1 ≤ p < 3/2 in three dimensional domains and 1 ≤ p < 2 in

the two dimensional case. We consider the numerical approximation of the forward problem by

means of standard piecewise linear continuous finite elements. We prove a priori error estimates

in Lp norm. Then, we propose a residual-type a posteriori error estimator. We prove that it is

reliable and efficient; namely, it yields global upper and local lower bounds for the corresponding

norms of the error. Finally, we use this estimator to guide an adaptive procedure, which is

experimentally shown to lead to an optimal order of convergence.

Subsequently, we compare different approximation methods for the solution of the direct

problem in the case of a domain with several regions with different conductivities. For the

direct problem, we analyze the case in which the dipole is located at an interface between two

regions with different conductivities. In this specific case we use an approximation of the delta

function since other methods are not defined in this situation. On the other hand, for the inverse

problem, we analyze the results obtained using the previous methods and one last method that

incorporates an adaptive procedure guided by the a posteriori error estimator found in Chapter

4. Two situations are considered: a source located within a homogeneous region and the case

where the source is close to an interface. We study also the case of a distributed source and we

compare the lead field matrices when the support of such source is located within a homogeneous
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region and when its support is close to an interface.

Finally, the three-dimensional eddy current time-dependent problem is considered. We for-

mulate it in terms of two variables, one lying only on the conducting domain and the other on

its boundary. We combine finite elements (FEM) and boundary elements (BEM) to obtain a

FEM-BEM coupled variational formulation. We establish the existence and uniqueness of the

solution in the continuous and the fully discrete case. Finally, we investigate the convergence

order of the fully discrete scheme.
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Chapter 1

Introducción

El lograr reconstruir las fuentes de corrientes del cerebro humano es materia de interés en la

investigación cognitiva y en la rutina cĺınica. Tal reconstrucción es posible a través de medidas

del potencial eléctrico y del flujo magnético generados. El potencial eléctrico se mide mediante

electrodos fijados en el cuero cabelludo (EEG) y el flujo magnético, mediante magnetómetros

particularmente sensibles, situados a poca distancia de la superficie de la cabeza (MEG).

La actividad electromagnética del cerebro se debe al movimiento de iones en las regiones

activadas. Este movimiento genera las llamadas corrientes impresas (o corrientes primarias) que

a su vez generan las corrientes óhmicas en el medio que las rodea llamadas corrientes de retorno.

Las mediciones que se obtienen mediante EEG y MEG corresponden a ambas corrientes, pero

la fuente de interés son las corrientes impresas, dado que ellas representan el área de actividad

neuronal asociada a un est́ımulo sensorial.

El primer EEG en una persona fue efectuado por H. Berger en 1924. El midió diferencias

de potencial eléctrico entre pares de electrodos ubicados en el cuero cabelludo. Hoy en d́ıa estos

electrodos pueden ser pegados directamente a la piel o insertados en una gorra elástica, y es

usual que hayan hasta 256 electrodos.

El primer MEG fue realizado a finales de 1960 por D. Cohen. La señal magnética en relación

con la actividad cerebral es extremadamente débil, aproximadamente 100 veces menor que el

campo geomagnético de la tierra. Su medición sólo llega a ser posible con el magnetómetro

SQUID (Superconducting QUantum Interface Devices) introducido por Zimmerman [70]. Esta

instrumentación mide algunas componentes de la inducción magnética en diferentes ubicaciones,

hoy en d́ıa hasta 100, cercanas pero externas a la cabeza.

La localización de la fuente es un problema inverso: conociendo el valor del campo magnético

o del campo eléctrico sobre la superficie de la cabeza (o, posiblemente, externo a la cabeza, pero

cercano a su superficie), el objetivo es determinar la posición y algunas caracteŕısticas f́ısicas de

1
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la densidad de corriente que ha generado esos valores.

Dado que la distribución dentro de un conductor no se puede recuperar únicamente a partir

del conocimiento del campo electromagnético fuera del conductor, el problema matemático no

tiene una única solución si no se asumen algunas condiciones adicionales sobre la fuente (ver

Sarvas [61]). Han sido utilizados principalmente dos aproximaciones distintas para reconstruir

la fuente de actividad cerebral: el modelo dipolar y de corriente distribuida con espacios de

parámetros discretos. En el modelo dipolar la densidad de corriente primaria es representada

como

Jp = pδx0 ,

donde x0 corresponde a la localización del dipolo y p ̸= 0, recibe el nombre de polarización.

Este enfoque es coherente con la realidad dado que las corrientes impresas son unidireccionales

y se deben a la activación de un gran número de células piramidales concentradas en una región

pequeña. En general, se asume que la densidad de corriente primaria se puede descomponer

como una suma de un número fijo (y no muy alto) de dipolos. Encontrar la posición de estos

dipolos, se transforma en una búsqueda no lineal por mı́nimos cuadrados.

Por otra parte, en el caso de la fuente distribuida con espacio de parámetros discretos, se dis-

cretiza la región del cerebro donde se sabe que se genera la corriente impresa. Después se resuelve

un problema de tipo lineal donde sólo los momentos dipolares tienen que ser reconstruidos, no

la localización ni la orientación.

Dado que el espectro de frecuencias para señales electrofisiológicas en EEG y MEG está bajo

los 1000 Hz, frecuentemente entre 0.1 y 100 Hz, la mayoŕıa de los trabajos teóricos sobre aplica-

ciones biomédicas, tales como [29, 34, 36, 44, 67] usan la aproximación estática de las ecuaciones

de Maxwell en la cual la variación temporal tanto del campo eléctrico como magnético se omiten.

El modelo estático no es la única simplificación posible de las ecuaciones de Maxwell. Otros mo-

delos que se pueden tener en cuenta son el modelo electro-cuasiestático, en el cual la variación

temporal de la inducción magnética no es considerada, y el modelo magneto-cuasiestático o

ecuaciones de corrientes inducidas, las cuales se derivan de las ecuaciones de Maxwell donde

lo que se desprecia es la derivada temporal del campo eléctrico. También es posible estudiar el

problema usando el sistema completo de Maxwell. Algunas referencias respecto a este punto de

vista son [7, 3, 40].

El objetivo de esta tesis es analizar y proponer nuevos modelos en el estudio matemático,

teórico y numérico de la electroencefalograf́ıa y la magnetoencefalograf́ıa. Se ha comenzado

estudiando el modelo de corrientes inducidas y la posibilidad de usarlo en este contexto. En

relación a estas ecuaciones, dentro de esta tesis se ha analizado un nuevo método numérico.

También se ha estudiado el modelo electrostático usado generalmente en estas aplicaciones. En
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concreto, para el modelo estático se ha desarrollado un análisis a priori y a posteriori del error

en la aproximación mediante elementos finitos. El estimador encontrado se ha utilizado para

idear una estrategia computacional mediante la cual es posible resolver el problema inverso en

modo eficiente. Se han investigado también nuevos modelos para la aproximación de la corriente

primaria, robustos desde el punto de vista computacional.

A continuación se introducen en forma detallada cada uno de los conjuntos de ecuaciones

previamente mencionados.

1.1 Modelización del problema

Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones que describen por completo

los fenómenos electromagnéticos. James Clerk Maxwell contribuyó reuniendo en estas ecuaciones

largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampère, Faraday y otros.

El sistema completo de ecuaciones de Maxwell corresponde a

∂D
∂t

+ J = curlH (ley de Maxwell - Ampère)

∂B
∂t

+ curl E = 0 (ley de Faraday)

divD = ρ (ley Eléctrica de Gauss)

divB = 0 (ley Magnética de Gauss)

(1.1)

donde E es el campo eléctrico, D es el desplazamiento eléctrico, H es el campo magnético, B es

la inducción magnética, J es la densidad de corriente y ρ es la densidad de carga libre. Todos los

campos que aparecen en estas ecuaciones son funciones vectoriales que dependen de la variable

espacial x ∈ R3 y del tiempo t.

Los distintos campos E , D, B y H están relacionados por medio de las leyes constitutivas, las

cuales dependen de los materiales que forman el dominio de estudio. Usualmente se asume una

dependencia lineal de la forma D = εE , B = µH, donde ε y µ reciben el nombre de permitividad

eléctrica y permeabilidad magnética, respectivamente. En los problemas más interesantes de la

f́ısica e ingenieŕıa, la región de interés está compuesta de un medio no homogéneo y no isotrópico:

esto es, ε y µ no son constantes, pero son matrices simétricas y uniformemente definidas positi-

vas con coeficientes que son funciones acotadas dependientes de la posición. En general, también

puede considerarse una dependencia no lineal entre D y E , B y H (por ejemplo, para problemas

de histéresis). Sin embargo en esta tesis, se considerará sólo una dependencia de tipo lineal.

El sistema se completa con la ley de Ohm que relaciona la densidad de corriente en el
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conductor con el campo eléctrico de la siguiente manera:

J = σE ,

donde σ recibe el nombre de conductividad eléctrica, la cual, en regiones conductoras se supone

que es una matriz simétrica y definida positiva (con coeficientes que son funciones acotadas

dependientes de la posición), mientras que es nula en regiones no conductoras o dieléctricos.

Cuando el problema está dado por una densidad de corriente aplicada Je, uno necesita con-

siderar la ley de Ohm generalizada J = σE+Je. Como consecuencia de la ecuación de Maxwell-

Ampère y la ecuación eléctrica de Gauss, es necesario asumir que divJe = 0 en cualquier región

no conductora y libre de cargas.

Esta tesis, con excepción del Caṕıtulo 6, se centra en problemas en donde las cantidades

f́ısicas vaŕıan periódicamente en el tiempo, lo cual generalmente sucede cuando la densidad de

corriente aplicada Je es una corriente alterna, a saber,

Je(x, t) = J∗(x) cos(ωt+ φ) ,

donde J∗ es una función vectorial en R3, ω ̸= 0 es la frecuencia angular y ϕ es el ángulo de fase.

Esto es equivalente a la representación

Je(x, t) = Re[J∗(x)e
i(ωt+ϕ)] = Re[Je(x)e

(iωt)]

donde se ha introducido la función de variable compleja Je(x) = J∗(x)e
iωϕ. De acuerdo a esto,

se busca una solución periódica en el tiempo dada por

E(x, t) = Re[E(x)e(iωt)] ,

H(x, t) = Re[H(x)e(iωt)] ,

donde E y H son funciones vectoriales cuyas entradas corresponden a valores complejos (a

menudo llamadas “fasores”). Las ecuaciones de Maxwell armónicas en el tiempo que correspon-

den a las siguientes:  curlH − (iωε+ σ)E = Je en Ω ,

curlE + iωµH = 0 en Ω ,
(1.2)

donde Ω corresponde al dominio f́ısico. Tales ecuaciones se derivan directamente del sistema

completo bajo las suposiciones que se hicieron previamente.

Notar que la ecuación magnética de Gauss div (µH) = 0 es una consecuencia de la ecuación

de Faraday.

Como se ha observado en experimentos y también establece la ley de Faraday, una variación

temporal del campo magnético genera un campo eléctrico. Por tanto, en cada conductor surge
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una densidad de corriente Jeddy = σE; este término expresa la presencia en un medio conductor

de las corrientes inducidas.

Cuando el término de desplazamiento de corriente ∂D
∂t (o en forma equivalente, iωεE) es

despreciado, el sistema de ecuaciones que se obtiene recibe el nombre de aproximación por

corrientes inducidas de las ecuaciones de Maxwell (o aproximación magneto-cuasiestática). En

el caso armónico en el tiempo, el sistema de ecuaciones corresponde a
curlH − σE = Je en Ω ,

curlE + iωµH = 0 en Ω ,

div (εE) = 0 en ΩI ,

(1.3)

donde ΩI corresponde al dieléctrico. Como en el caso del sistema completo de Maxwell, se debe

asumir que

divJe = 0 en ΩI . (1.4)

También se desprende de este conjunto de ecuaciones la restricción div (µH) = 0, la cual se

sigue de la ley de Faraday. Finalmente, notamos que en la aproximación por corrientes inducidas

div (εE) = 0 en ΩI , lo que asegura que la carga eléctrica se anula en el dieléctrico, lo cual no es

una consecuencia de la ecuación de Ampère ni de (1.4).

Cuando se condideran problemas dependientes del tiempo y la variación temporal de los

campos es lenta, uno puede simplificar el modelo de ecuaciones de Maxwell, despreciando las

derivadas temporales ∂D
∂t y ∂B

∂t (o en el caso de las ecuaciones armónicas en el tiempo, esto

equivale a considerar ω = 0). Tal modelo recibe el nombre de modelo electro-magnetostático.

En el caso armónico en el tiempo, las ecuaciones corresponden a

curlH − σE = Je en Ω ,

curlE = 0 en Ω ,

div (µH) = 0 en Ω ,

div (εE) = 0 en ΩI .

(1.5)

De la segunda ecuación de (1.5), se deriva que el campo eléctrico es un gradiente de un

potencial escalar E = −∇V y por tanto, de la primera ecuación en (1.5) se obtiene

div (σ∇V ) = divJe .
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Aśı, se obtiene el siguiente sistema de ecuaciones:

div (σ∇V ) = divJe en ΩC ,

curlH − σ∇V = Je en Ω ,

div (µH) = 0 en Ω ,

div (ε∇V ) = 0 en ΩI .

(1.6)

donde ΩC corresponde al conductor. Ahora se presentan las geometŕıas, propiedades de las

cantidades f́ısicas y ecuaciones junto con condiciones de frontera, que se utilizaron en cada

caṕıtulo de esta tesis.

En el Caṕıtulo 3 se considera un conductor ΩC ⊂ R3, el cual representa una parte del cuerpo

humano. Se asume que ΩC es un dominio acotado con una frontera Lipschitz y conexa Γ. En

el conductor, la conductividad es una matriz simétrica y uniformemente definida positiva con

coeficientes en L∞. También se considera un dominio computacional Ω ⊂ R3, que contiene

completamente a ΩC . El dominio Ω es un dominio acotado y simplemente conexo y con frontera

Lipschitz ∂Ω. El dieléctrico se define como ΩI := Ω \ ΩC . Éste es un conjunto conexo y corres-

ponde al aire que rodea la cabeza. La permeabilidad magnética y la permitividad eléctrica son

matrices simétricas y uniformemente definidas positivas con coeficientes en L∞. Por otra parte,

en la frontera exterior ∂Ω se impone la condición de frontera magnética H × n = 0. Además,

agregamos la condición necesaria para la unicidad div (εE) = 0 en ΩI . Cuando se impone una

condición de frontera magnética sobre la frontera, se debe imponer otra condición de frontera

necesaria: εE · n = 0 sobre ∂Ω. Aśı, el sistema de ecuaciones se convierte en

curlH − σE = Je en Ω ,

curlE + iωµH = 0 en Ω ,

div (εE) = 0 , en ΩI

εE · n = 0 sobre ∂Ω ,

H × n = 0 sobre ∂Ω ,

(1.7)

donde la fuente Je es una fuente distribuida (Je ∈ (L2(ΩC))
2) o una corriente superficial (Je ∈

H−1/2(div τ ; ∂B) con B ⊂ R3 abierto y conexo, con frontera Lipschitz ∂B y satisface B ⊂ ΩC)

o una corriente dipolar (Je =
∑M

k=1 pkδxk
, con xk punto interior de ΩC , k = 1, ...,M). Serán

necesarias condiciones adicionales sobre la conductividad σ, condiciones sobre las cuales se dará

más detalle en este caṕıtulo.

En Caṕıtulos 4 y 5, se considera el modelo electrostático, en el cual sólo es de interés encontrar

el campo eléctrico y deriva del modelo electro-magnetostático. Como conductor, se considera un
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abierto acotado ΩC ⊂ Rd, donde d puede tomar los valores 2 o 3 en Caṕıtulo 4 y toma el valor 2

en Caṕıtulo 5. Se considera como condición de frontera (σ∇V ) ·n = 0 sobre ∂ΩC , la cual viene

del hecho que div (Je −σ∇V ) = div (curlH) = 0 en Ω, de aqúı (Je −σ∇V ) ·n no tiene saltos

sobre ∂ΩC . Además Je se localiza en el interior de la cabeza y la conductividad se anula fuera

de ella. Por tanto, el conjunto de ecuaciones que modelan tal problema es el siguiente: div (σ∇V ) = div (pδx0) en ΩC ,

(σ∇V ) · n = 0 sobre ∂ΩC .
(1.8)

La conductividad σ corresponde a una matriz simétrica y uniformemente definida positiva,

con coeficientes en L∞(ΩC). Para probar existencia y unicidad de solución de tal problema, es

necesario asumir una mayor regularidad de σ en un entorno del soporte de la delta; en concreto

los coeficientes de la matriz σ deben pertenecer a W 1,∞(Br0(x0)), donde Br0(x0) := {x ∈ Rd :

|x− x0| < r0} para un r0 adecuado.

Finalmente, en el Caṕıtulo 6, se considera como dominio conductor ΩC ⊂ R3 el cual es un

poliedro conexo, acotado, con frontera Γ conexa y Lipschitz continua. El dieléctrico, corresponde

a ΩI := R3 \ΩC el cual también es conexo. Se consideran las ecuaciones de corrientes inducidas

dependientes del tiempo que corresponden a

∂t(µH) + curlE = 0 in R3 × (0, T ),

curlH − σE = Je in R3 × [0, T ],

div (εE) = 0 in ΩI × [0, T ],

H(x, t), E(x, t) = O(|x|−1) as |x| → ∞,

H(x, 0) = H0(x) x ∈ R3,

(1.9)

donde T > 0, la densidad de corriente Je ∈ L2(0, T ; (L2(ΩC))
3) y además tiene soporte com-

pacto en el conductor. La cuarta condición de (1.9) se satisface uniformemente en [0, T ]. El

dato inicial H0 ∈ (L2(ΩC))
3 y satisface div (µH0) = 0 en R3. Los coeficientes σ, µ y ε son

matrices simétricas con componentes acotadas. La conductividad es nula en el dieléctrico. La

permeabilidad magnética µ es definida positiva en todo R3 y satisface µ = µ0I en ΩI , donde

I se entiende como la matriz identidad. La permitividad eléctrica ε es necesaria sólo en el

dieléctrico en esta formulación y se asume satisfacer ε = ε0I en ΩI ; µ0 y ε0 son los coeficientes

correspondientes en el vaćıo.

1.2 Organización de la tesis

Este trabajo se organiza de la siguiente manera. En el Caṕıtulo 3, se estudia la unicidad de

la solución del problema inverso para el problema de corrientes inducidas, siguiendo el enfoque
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propuesto por Albanese y Monk [3] para el sistema de ecuaciones de Maxwell. Como fuente de

corriente, se han considerado tres situaciones distintas: una fuente de corriente distribuida, una

corriente superficial y finalmente, una corriente dipolar. En relación a la primera, se demuestra

que cuando la fuente está en L2 el problema inverso no tiene una única solución y se caracteriza

el espacio de fuentes no radiantes. Con respecto a la segunda, se demuestra que conociendo

la componente tangencial del campo eléctrico sobre la frontera del dominio, existe una única

corriente superficial que la genera. En el caso de la fuente dipolar, primero se demuestra existencia

y unicidad del problema directo y posteriormente, se analiza el problema inverso. Como en el

caso de la corriente superficial se demuestra que la componente tangencial del campo eléctrico

en el borde del conductor determina de manera única el número de dipolos, localización y

polarización. Además, se presenta una fórmula mediante el cual es posible encontrar la fuente

dipolar, sabiendo a priori la componente tangencial del campo eléctrico sobre la frontera del

dominio. Finalmente, se estudia como encontrar la componente tangencial del campo eléctrico

a partir de los datos medidos a través de EEG y MEG. Este caṕıtulo está constituido por el

siguiente art́ıculo:

A. Alonso Rodŕıguez, J. Camaño and A. Valli, Inverse source problems for eddy

current equations. Inverse Problems, vol. 28, 1, (2012).

En el Caṕıtulo 4 usando la formulación estudiada por Valli [65], se desarrolla un análisis a

priori y a posteriori para una formulación variacional del problema electrostático, el cual es un

problema con singularidad dado que la fuente de corriente contiene derivadas de primer orden de

la distribución delta de Dirac. En [65] se demostró que la solución de este problema pertenece a

Lp para 1 ≤ p < 3/2 en dominios tridimensionales y siguiendo la misma técnica de demostración,

se prueba que la solución en el caso bidimensional también pertenece a Lp, con 1 ≤ p < 2. En

este caṕıtulo, se da una estima de error a priori en norma Lp, válida para mallas cuasiuniformes,

y se propone un estimador de error a posteriori, el cual se demuestra que resulta confiable y

eficiente bajo las hipótesis de convexidad del dominio y mayor regularidad de la conductividad.

Todo este análisis se presenta inicialmente en un dominio bidimensional y posteriormente en

un dominio tridimensional, pero este último caso bajo suposiciones más restrictivas (geometŕıa

cúbica y conductividad constante). Finalmente, el estimador se usa para guiar un procedimiento

adaptativo, el cual muestra experimentalmente un orden óptimo de convergencia. Este caṕıtulo

está constituido por el siguiente art́ıculo:

A. Alonso Rodŕıguez, J. Camaño, R. Rodŕıguez and A. Valli, A posteriori error

estimates for the problem of electrostatics with a dipole source. (enviado).
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En el Caṕıtulo 5 se compara la solución aproximada del problema directo usando el método

de substracción y el método directo en el caso concreto de un dominio con varias regiones con

distintas conductividades. Para el problema directo, se analiza el caso en el cual el dipolo se

localiza cerca o exactamente en una interfaz entre dos regiones con conductividades diferentes.

Se estudia también un tercer método que aproxima a la distribución delta de Dirac usando la

función caracteŕıstica. Numéricamente se observa que en esta situación el tercer modelo es el

único que da buenos resultados. Para el problema inverso se analizan los resultados obtenidos

usando los tres métodos ya mencionados y se agrega a estos tres, un último método que corres-

ponde a trabajar el método directo en conjunto con un procedimiento adaptativo guiado por el

estimador encontrado en el Caṕıtulo 4. Se consideran dos situaciones: una fuente localizada en el

interior de una región y el caso en que la fuente es cercana a una interfaz. Se estudia también el

caso de una fuente distribuida y se comparan las matrices de influencia en distintas situaciones.

Este caṕıtulo está constituido por el siguiente art́ıculo:

A. Alonso Rodŕıguez, J. Camaño, R. Rodŕıguez and A. Valli, Numerical behavior

of different approximation methods for the direct and inverse problems of electrostatics with

a dipole source. (en preparación).

Finalmente, en paralelo al trabajo que se presenta en el Caṕıtulo 3, en el Caṕıtulo 6 se

estudia un nuevo método numérico para las ecuaciones de corrientes inducidas dependientes del

tiempo en un dominio conductor acotado contenido en R3. El problema se reformula expresando

los campos magnético y eléctrico en términos de nuevas variables que resultan ser más conve-

nientes: la primitiva temporal del campo eléctrico la cual desempeña el papel de un potencial

vectorial para el campo magnético en el conductor y la traza del potencial escalar magnético en

el aislante. Luego, se deriva una formulación FEM-BEM y se demuestra existencia y unicidad

de solución para el problema. Se discretiza el problema usando como espacios de discretización

el de elementos finitos de Nédélec para la variable definida en el conductor y funciones lineales a

trozos y continuas para una variable adicional en la frontera del dominio, la cual surge a partir

de las ecuaciones integrales. Para la discretización temporal se usa un método backward Euler.

Finalmente, se prueba que el esquema discreto converge con un orden óptimo a la solución. Este

caṕıtulo está constituido por el siguiente art́ıculo:

J. Camaño and R. Rodŕıguez, Analysis of a FEM-BEM model posed on the conduc-

ting domain for the time-dependent eddy current problem. Journal of Computational and

Applied Mathematics, vol. 236, issue 13, pp. 3084-3100, (2012).

Es importante resaltar que con respecto al problema inverso, en el primer caṕıtulo son nece-

sarias tanto las mediciones que se obtienen con EEG como con MEG, no aśı en el tercer y cuarto
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caṕıtulo, donde lo que se estudia es el modelo electrostático y por esta misma razón, los únicos

datos necesarios son los que se obtienen mediante EEG.



Chapter 2

Introduction

The reconstruction of electromagnetic sources in the human brain is of great interest in

cognitive research and in clinical routine. Such reconstruction is possible through measurements

of the scalp electric potential and the external magnetic flux. The electric potential is measured

by electrodes attached to the scalp (EEG) and magnetic flux through particularly sensitive

magnetometers, located within short distance from the surface of the head (MEG).

Electromagnetic activity of the brain is due to the motion of ions in activated regions.

This movement generates the so called impressed currents (or primary currents) that in turn

create ohmic currents in the surrounding environment called return currents. The measurements

obtained by EEG and MEG correspond to both currents, but the source of interest are the

impressed currents, since they represent the area of neural activity associated with sensory

stimuli.

The first EEG was performed by H. Berger in 1924. He measured the electric potential diffe-

rences between pairs of electrodes placed on the scalp. Today these electrodes can be attached

directly to the skin or inserted into an elastic cap. Up to 256 electrodes can be used.

The first MEG was realized in late 1960 by D. Cohen. The magnetic signal due to brain

activity is extremely weak, approximately 100 times less than the geomagnetic field of the

earth. Its measurement becomes possible only with the SQUID magnetometer (Superconducting

QUantum Interface Devices) introduced by Zimmerman [70]. This instrumentation measures

some components of the magnetic induction in different locations; today these can reach the

quantity of 100, near but outside the head.

The location of the source is an inverse problem: knowing the value of the magnetic field

or the electric field on the surface of the head (or possibly outside the head, but close to the

surface), the goal is to determine the position and some physical characteristics of the current

density that generated these values.

11
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Since the distribution inside a conductor can not be recovered only from knowledge of the

electromagnetic field outside the conductor, the mathematical problem does not have a unique

solution unless some additional conditions are assumed on the source (see Sarvas [61]). There

have been used mainly two different approaches to reconstruct the source of the brain activity:

the dipole model and the model of a distributed source (with a discrete spaces). The primary

current density in the dipolar model is modeled as

Jp = pδx0 ,

where x0 corresponds to the location of the dipole and p ̸= 0 is called polarization. This is a

good approximation of unidirectional impressed currents, due to activation of a large number of

pyramidal cells concentrated in a small region. It can also be assumed that the primary current

density is decomposed as the sum of a fixed number (not too high) of dipoles. Finding the

position of these dipoles becomes a nonlinear least squares search.

On the other hand, in the case of a distributed source with a discrete parameter space, the

region of the brain where it is known that the impressed current is generated is triangulated

and dipolar sources are placed at fixed points of each element. Then, a linear inverse problem is

solved where only the dipole moments have to be rebuilt, not the locations.

Since the frequency spectrum for electrophysiological signals in EEG and MEG is below 1000

Hz, often between 0.1 and 100 Hz, most theoretical works on biomedical applications, such as

[29, 34, 36, 44, 67], use the static approximation of the Maxwell equations in which the time

variation of both electric and magnetic fields are disregarded. The static model is not the only

possible simplification of the Maxwell equations. Other models that can be taken into account

are the electro-quasistatic model, in which the time variation of the magnetic induction is not

considered and the magneto-quasistatic model or eddy current equations, which are derived from

the Maxwell equations neglecting is the time derivative of the electric field. It is also possible to

study the problem using the full system of Maxwell. Some references on this last approach are

[7, 3, 40].

The aim of this thesis is to analyze and to propose new models in the mathematical theoretical

and numerical study of electroencephalography and magnetoencephalography. We start studying

the eddy currents model and the possibility of using it in this context. We analyze a new

numerical method for this model. We have also studied the electrostatic model, which is more

often used in these applications. Specifically, for the static model a priori and a posteriori analysis

of the error in the finite element approximation have been developed. The estimate found has

been used to devise a computational strategy by which it is possible to solve the inverse problem

in an efficient way. We have also investigated new models for the approximation of the primary

current, that are robust from the computational point of view.
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In the next section each of the aforementioned sets of equations are introduced in detail.

2.1 Modelization the problem

Maxwell equations are a set of four equations completely describing electromagnetic pheno-

mena. James Clerk Maxwell gathered in these equations, after long years of experimental results,

due to Coulomb, Gauss, Ampère, Faraday and others.

The full system of Maxwell equations reads

∂D
∂t

+ J = curlH (Maxwell - Ampère equation)

∂B
∂t

+ curl E = 0 (Faraday equation)

divD = ρ (Gauss electrical equation)

divB = 0 (Gauss magnetic equation)

(2.1)

where E is the electric field, D is the electric displacement, H is the magnetic field, B is the

magnetic induction, J is the current density and ρ is the free charge density. All the fields that

appear in these equations are vector functions that depend on the spatial variable x ∈ R3 and

the time t.

The fields E , D, B and H are related by constitutive laws, which depend on the materials

that constitute the considered physical domain. Usually a linear dependence of the form D = εE ,
B = µH is assumed, where ε and µ are called electric permittivity and magnetic permeability,

respectively. In physiological applications the media are non-homogeneous and anisotropic: that

is, ε and µ are not constant, but are symmetric and uniformly positive definite matrices with

coefficients that are bounded functions of the position.

The system is completed by Ohm law relating the current density in the conductor with the

electric field as follows:

J = σE ,

where σ is called electric conductivity, is a symmetric and positive definite matrix in conduc-

tive regions (with coefficients that are bounded functions of the position), while it is null in

nonconductive regions or dielectrics.

When the problem is driven by an applied current density Je, the generalized Ohm law

J = σE + Je is considered. As a consequence of the Maxwell-Ampère equation and the Gauss

electrical equation, it is necessary to assume that divJe = 0 in any free of charge non-conductive

region.
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This thesis, with the exception of Chapter 6, is centered on problems where the physical

quantities vary periodically in time, which usually happens when the current density Je is an

alternating current, namely

Je(x, t) = J∗(x) cos(ωt+ ϕ) ,

where J∗ is a vector function in R3, ω ̸= 0 is the angular frequency and ϕ is the phase angle.

This is equivalent to the representation

Je(x, t) = Re[J∗(x)e
i(ωt+ϕ)] = Re[Je(x)e

(iωt)]

where the complex variable function Je(x) = J∗(x)e
iωϕ has been introduced. Accordingly, we

look for a periodic in time solution given by

E(x, t) = Re[E(x)e(iωt)] ,

H(x, t) = Re[H(x)e(iωt)] ,

where E and H are vector functions whose entries correspond to complex values (often called

“ phasors ”). The time-harmonic Maxwell equations read: curlH − (iωε+ σ)E = Je in Ω ,

curlE + iωµH = 0 in Ω ,
(2.2)

where Ω corresponds to the physical domain. They are derived directly from the complete system

under the assumptions above.

Note that the Gauss magnetic equation div (µH) = 0 is a consequence of the Faraday

equation.

A time-variation of the magnetic field generates an electric field. Therefore, in each conductor

a current density Jeddy = σE arises; this term expresses the presence in conducting media of

the so-called eddy current.

When the displacement current term ∂D
∂t (or equivalently, iωεE) is neglected, the system of

equations obtained is called eddy current approximation of the Maxwell equations (or magneto-

quasistatic approximation). In the time-harmonic case, the system of equations is
curlH − σE = Je in Ω ,

curlE + iωµH = 0 in Ω ,

div (εE) = 0 in ΩI ,

(2.3)

where ΩI corresponds to the dielectric. As for the full-Maxwell system, it must be assumed that

divJe = 0 in ΩI . (2.4)
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From Faraday law it follows that div (µH) = 0. Equation div (εE) = 0 in ΩI ensures that

the electric charge vanishes in the dielectric, which is not a consequence of the Ampère equation

or (2.4).

When time-dependent problems are considered and time-variation of the fields is slow, one

can simplify the model of the Maxwell equations, neglecting both time derivatives ∂D
∂t and ∂B

∂t

(or in the time-harmonic case, this is equivalent to consider ω = 0). Such a model is called

electro-magnetostatic model. In the time-harmonic case, the equations are

curlH − σE = Je in Ω ,

curlE = 0 in Ω ,

div (µH) = 0 in Ω ,

div (εE) = 0 in ΩI .

(2.5)

From the second equation in (2.5), for a simply-connecetd domain Ω it follows that the

electric field is a gradient of a scalar potential E = −∇V and therefore from the first equation

in (2.5) we obtain

div (σ∇V ) = divJe .

Thus, we have the following system of equations:

div (σ∇V ) = divJe in ΩC ,

curlH − σ∇V = Je in Ω ,

div (µH) = 0 in Ω ,

div (ε∇V ) = 0 in ΩI ,

(2.6)

where ΩC corresponds to the conductor. In the chapters of this thesis we consider different

electromagnetic models.

In Chapter 3 we focus on the time-harmonic eddy-current model. We consider a conductor

ΩC ⊂ R3, which represents a part of the human body. We assume that ΩC is a bounded

domain with a Lipschitz and connected boundary Γ. In the conductor, the conductivity is a

symmetric and uniformly positive definite matrix with coefficients in L∞. Also we consider a

computational domain Ω ⊂ R3, which completely contains ΩC . The domain Ω is a bounded and

simply-connected domain with Lipschitz boundary ∂Ω. The dielectric is defined as ΩI := Ω\ΩC .
It is assumed to be connected and corresponds to the air surrounding the head. The magnetic

permeability and the electric permittivity are symmetric and uniformly positive definite matrices

with coefficients in L∞. Moreover, at the external border ∂Ω we impose a magnetic boundary

condition H × n = 0. Also, we add the condition div (εE) = 0 in ΩI that is necessary for
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uniqueness. When we impose a magnetic boundary condition on the boundary, we must impose

the other necessary boundary condition εE ·n = 0 on ∂Ω. Thus, the system of equations becomes

curlH − σE = Je in Ω ,

curlE + iωµH = 0 in Ω ,

div (εE) = 0 , in ΩI ,

εE · n = 0 on ∂Ω ,

H × n = 0 on ∂Ω ,

(2.7)

where the source Je is a distributed source (Je ∈ (L2(ΩC))
2) or a surface current (Je ∈

H−1/2(div τ ; ∂B) with B ⊂ R3 open and connected, with Lipschitz boundary ∂B and satisfying

B ⊂ ΩC) or a current dipole (Je =
∑M

k=1 pkδxk
, with xk an internal point of ΩC , k = 1, ...,M).

Additional necessary conditions on the conductivity σ, have to be added, and about them we

give more details in this chapter.

In Chapters 4 and 5 we consider the electrostatic model, a reduced form of the electro-

magnetostatic model. We work in an open bounded conductor domain ΩC ⊂ Rd, where d can

take the values 2 or 3 in Chapter 4 and take the value 2 in Chapter 5. The boundary condition

is (σ∇V ) ·n = 0 on ∂ΩC . This comes from the fact that div (Je −σ∇V ) = div (curlH) = 0 in

Ω, hence (Je − σ∇V ) · n does not jump on ∂ΩC ; moreover, Je is located inside the head and

conductivity vanishes outside it. Therefore, the boundary value problem that we study is: div (σ∇V ) = div (pδx0) in ΩC ,

(σ∇V ) · n = 0 sobre ∂ΩC .
(2.8)

The conductivity σ corresponds to a symmetric and uniformly positive definite matrix, with

coefficients in L∞(ΩC). To prove existence and uniqueness of solution of this problem, it is

necessary to assume higher regularity of σ in a vicinity of the support of the delta distribution,

in particular the coefficients of σ must belong to W 1,∞(Br0(x0)), where Br0(x0) := {x ∈ Rd :

|x− x0| < r0} for a suitable r0.

Finally, in Chapter 6 we focus on the time-dependent eddy current model in the whole space.

The conductor ΩC ⊂ R3 is a bounded connected polyhedron with boundary Γ connected and

Lipschitz continuous. The dielectric, ΩI := R3 \ ΩC is assumed to be connected. The boundary

value problem reads:
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

∂t(µH) + curlE = 0 in R3 × (0, T ),

curlH − σE = Je in R3 × [0, T ],

div (εE) = 0 in ΩI × [0, T ],

H(x, t), E(x, t) = O(|x|−1) as |x| → ∞,

H(x, 0) = H0(x) x ∈ R3,

(2.9)

where T > 0, the current density Je ∈ L2(0, T ; (L2(ΩC))
3) and has compact support in the

conductor. The fourth condition of (2.9) is satisfied uniformly in [0, T ]. The initial datum satisfies

H0 ∈ (L2(ΩC))
3 and div (µH0) = 0 in R3. The coefficients σ, µ and ε are symmetric matrices

with bounded elements. The conductivity vanishes in the dielectric. The magnetic permeability

µ is positive definite at all R3 and satisfies µ = µ0I in ΩI , where I is the identity matrix. In

this formulation the electric permittivity ε appears only in the dielectric in this formulation and

therefore we assume that ε = ε0I in ΩI ; µ0 and ε0 are the corresponding coefficients in the

vacuum.

2.2 Organization of the thesis

This thesis is organized as follows. In Chapter 3, we study the uniqueness of the solution of

the inverse problem for the eddy current problem, following the approach proposed by Albanese

and Monk [3] for the complete system of Maxwell equations. We considere three different kinds

of current sources: a distributed source, a surface current source and a dipole source. Concerning

to the first one, we show that the inverse problem has not a unique solution when the source is

in L2 and we characterize the space of non-radiating sources. On the other hand, we prove that

the inverse problem has a unique solution if we assume that the source is supported on a surface

internal to Ω. In the case of the dipole source, we first prove existence and uniqueness of the

direct problem and then we analyze the inverse problem. As in the case of the surface current

we show that the tangential component of the electric field at the boundary of the conductor

uniquely determines the number of dipoles, location and polarization. In addition, we present a

formula by which it is possible to determine the source dipole, knowing a priori the tangential

component of the electric field on the boundary of the domain. Finally, we study how to find

the tangential component of the electric field from the measured data through EEG and MEG.

This chapter has been published in:

A. Alonso Rodŕıguez, J. Camaño and A. Valli, Inverse source problems for eddy

current equations. Inverse Problems, vol. 28, 1, (2012).
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In Chapter 4 we use the formulation studied by Valli [65], and we develop an a priori and

a posteriori analysis for a variational formulation of the electrostatic problem. This is a singular

problem since the current source contains first-order derivatives of the Dirac delta distribution.

In [65] it is proved that the solution belongs to Lp for 1 ≤ p < 3/2 in three-dimensional domains

and following the same demonstration technique, we prove that the solution in the bidimensional

case belongs to Lp, with 1 ≤ p < 2. In this chapter, we give an a priori error estimate in Lp-

norm, which is valid for quasiuniform meshes, and we propose an a posteriori error estimator.

We show that it is reliable and efficient under the hypothesis of convexity of domain and higher

regularity of the conductivity. All this analysis is presented initially in a two-dimensional domain

and then in a three-dimensional domain, but in the last case under more restrictive assumptions

(cubic geometry and constant conductivity). Finally, the estimator is used to guide an adaptive

procedure, which shows experimentally optimal convergence rate. This chapter corresponds to

the following article:

A. Alonso Rodŕıguez, J. Camaño, R. Rodŕıguez and A. Valli, A posteriori error

estimates for the problem of electrostatics with a dipole source. (submitted).

In Chapter 5 we compare the approximate solution of the direct problem using different

methods, including the subtraction method and the direct method, in the case of a domain with

several regions with different conductivities. We analyze the cases in which the dipole is close to

or exactly located at an interface between two regions with different conductivities. Numerically

we see that, when the source is on the interface, the only method that gives good results is

a third one, in which the delta distribution is approximated by a characteristic function. For

the inverse problem we analyze the results obtained using the three methods mentioned above

and a last one that corresponds to the direct method with an adaptive procedure guided by

the estimates found in Chapter 4. Two situations are considered: the case of a source located

well inside a homogeneous region and the case of a source close to an interface between two

homogeneous regions. We study also the case of a distributed source (the sum of several dipoles)

and we compare the lead field matrices in different situations. This chapter corresponds to the

following article:

A. Alonso Rodŕıguez, J. Camaño, R. Rodŕıguez and A. Valli, Numerical behavior

of different approximation methods for the direct and inverse problems of electrostatics with

a dipole source. (in preparation).

Finally, in parallel to the work presented in Chapter 3, in Chapter 6 we study a new

numerical method for the time-dependent eddy currents equations in a conductor bounded
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domain contained in R3. The problem is reformulated by expressing the electric and magnetic

fields in terms of new variables that turn out to be more convenient: the temporal primitive

electric field which plays the role of a vector potential for the magnetic field in the conductor, and

the magnetic scalar potential trace on the interface. Then, we derive a FEM-BEM formulation

and prove existence and uniqueness of the solution to the problem. It is discretized using Nédélec

finite elements for the variable defined in the conductor and piecewise linear and continuous

finite elements for an additional variable on the boundary of the domain. For the temporal

discretization we use the backward Euler method. Finally, we prove that the discrete scheme

converges with optimal order to the solution. This chapter has been published in:

J. Camaño and R. Rodŕıguez, Analysis of a FEM-BEM model posed on the conduc-

ting domain for the time-dependent eddy current problem. Journal of Computational and

Applied Mathematics, vol. 236, issue 13, pp. 3084-3100, (2012).





Chapter 3

Inverse source problems for eddy

current equations

3.1 Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) are two non-invasive

techniques used to localize electric activity in the brain from measurements of external electro-

magnetic signals. EEG measures the scalp electric potential, while MEG measures the external

magnetic flux. From the mathematical point of view the goal is to solve an inverse problem for

determining the source current distribution in a heterogeneous media from boundary measure-

ments of the fields.

The frequency spectrum for electrophysiological signals in EEG and MEG is typically below

1000 Hz, most frequently between 0.1 and 100 Hz. For this reason most theoretical works on

biomedical applications focus on the static approximation of the Maxwell equations, in which

the time variation of both electric and magnetic fields is disregarded.

Recently He and Romanov [40], Ammari et al. [7] and Albanese and Monk [3] investigated

the localization of brain activity through the inverse source problem for the full Maxwell system

of equations. In this chapter we analyze the inverse source problem for an alternative model:

the eddy current (or low frequency approximation) of Maxwell equations. In the eddy current

model the time variation of the electric field is disregarded, while time variation of the magnetic

field is kept.

Let us consider electromagnetic phenomena at frequency ω ̸= 0. The time-harmonic full

Maxwell system of equations read

curlH − iωϵE = σE + Je (Maxwell–Ampère equation)

curlE + iωµH = 0 (Faraday equation).
(3.1)

21
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HereE,H denote the electric and magnetic fields, respectively; Je is the applied current density;

ϵ is the electric permittivity, µ the magnetic permeability and σ the electric conductivity.

The eddy current model is formally obtained by neglecting the displacement current term:

curlH = σE + Je

curlE + iωµH = 0 .
(3.2)

Let us consider a conductor ΩC ⊂ R3, say, the human head. We assume that ΩC is a bounded

domain with a Lipschitz and connected boundary Γ. In ΩC the conductivity σ is a symmetric

and uniformly positive definite matrix with entries in L∞(ΩC). We consider also a computational

domain Ω ⊂ R3, say, the room where the problem is studied. We assume that Ω is a bounded

simply-connected domain, completely containing ΩC and with Lipschitz boundary ∂Ω. Moreover

we assume that ΩI := Ω \ ΩC is connected. ΩI is an insulator, the air surrounding the head,

hence σ is vanishing in ΩI . We also assume that the electric permeability µ and the electric

permittivity ϵ are symmetric and uniformly positive definite matrices with entries in L∞(Ω).

On the boundary ∂Ω, we can impose either the magnetic boundary condition H ×n = 0 or

the electric boundary condition E ×n = 0 (Here n denotes the unit outward normal vector on

∂Ω).

Since σ is equal zero in insulators, equations (3.2) do not completely determine the electric

field in ΩI . In that region, one has to add div (ϵE) = 0 because there are no charges in an

insulator. This is a “gauge” condition necessary for having uniqueness. When imposing the

magnetic boundary condition, the additional “gauge” condition ϵE·n = 0 on ∂Ω is also necessary.

From Faraday law, µ−1 curlE = −iωH and inserting this result in Ampère law one has

curl(µ−1 curlE) = −iω(σE + Je). So the E-based formulation of the eddy current model reads
curl(µ−1 curlE) + iωσE = −iωJe in Ω

div (ϵE) = 0 in ΩI

(µ−1 curlE)× n = 0 on ∂Ω

ϵE · n = 0 on ∂Ω

(3.3)

for the magnetic boundary condition, and
curl(µ−1 curlE) + iωσE = −iωJe in Ω

div (ϵE) = 0 in ΩI

E × n = 0 on ∂Ω

(3.4)

for the electric boundary condition. In this chapter, we will focus on problem (3.3); the same

results can be proved for problem (3.4).
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In the static approximation also the time variation of the magnetic field is disregarded; thus,

one has:
curlH = σE + Je

curlE = 0
(3.5)

(where Je can still depend on time, which has to be regarded as a parameter). From the second

equation in (3.5), the electric field is the gradient of a scalar potential E = − gradV and then

from the first equation in (3.5), we obtain div (σ gradV ) = divJe in ΩC . On the other hand,

σE+Je is divergence free in Ω; hence, we have (σ gradV −Je|ΩC
) ·nΓ = −Je|ΩI

·nΓ on Γ, with

nΓ being the unit normal vector on Γ pointing outwards ΩC . Since we are interested in electric

sources located in the conductor, namely suppJe ⊂ ΩC , the boundary condition for the static

approximation is the homogeneous Neumann boundary condition σ gradV · nΓ = 0 on Γ. The

static problem thus reads {
div (σ gradV ) = divJe in ΩC

σ gradV · nΓ = 0 on Γ ,
(3.6)

and the related magnetic field is computed in terms of the primary current Je and the return

current σE = −σ gradV using the Biot–Savart law in R3:

H(x) =
1

4π

∫
ΩC

[Je(y)− σ gradV (y)]× x− y

|x− y|3
dy . (3.7)

The inverse source problem consists in the determination of the current source Je from

boundary measurements of the electromagnetic fields. Helmholtz had already observed that this

problem does not have a unique solution. For instance, if the source is a radial dipole, the

magnetic field given by (3.7) vanishes outside a spherical conductor ΩC (see, e.g., Sarvas [61]),

hence, when using the static model, knowledge of the magnetic field on Γ does not contribute

to the localization of radial dipoles.

The characterization of the source currents that can be reconstructed from suitable measure-

ments on the boundary is not an easy task and depends on the model considered. For the static

model in Kress et al. [44], the authors prove that the Biot–Savart operator has a non-trivial

null space. Fokas et al. [36] characterized which part of a volume current source in a spheri-

cal conductor can be reconstructed from knowledge of the magnetic field on the boundary. In

the same framework, Dassios and Hadjiloizi [29] determined which part of the source can be

reconstructed from the electric potential. Instead, concerning dipole sources, He and Romanov

[40] showed that the measurement of the electric potential on the boundary of the conductor

is enough to identify their location and polarization, and proposed an identification procedure.

In the case of a layered spherical model, Dassios and Fokas [27] derived an algorithm for the

identification of a source consisting of a finite number of dipoles from measurements of the elec-

tric potential or the magnetic potential. For a general layered domain, El Badia and Nara [34]
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proposed an algebraic algorithm for the identification of the number, locations and moments of

the dipoles from knowledge of the tangential components of the electric and magnetic fields.

Considering the full Maxwell system, the existence of non-radiating sources was proved in

Bleistein and Cohen [18]. On the other hand, He and Romanov [40] showed that the location

and the polarization of a current dipole in a conducting object can be uniquely determined by

measuring at a fixed frequency the magnetic field and its normal derivative on the whole surface.

The same result was obtained by Ammari et al. [7] from knowledge of the tangential component

of either the electric or the magnetic field on Γ. Albanese and Monk [3] have characterized which

part of a volume source confined in ΩC can be uniquely identified from measurements of the

tangential component of the electric field on Γ. Moreover, they also proved the uniqueness of

the inverse source problem if the source is supported on the surface of a priori known subdo-

main contained in ΩC or if it is the sum of a finite number of dipole sources. In the last case,

the tangential component of the electric field uniquely determines the number, position and

polarization of the dipoles.

The reconstruction of a current source from boundary measurements of the electromagnetic

fields is interesting also for other types of applications. For instance, the imaging of small electro-

magnetic inclusions can be reduced to inverse source problems for the full Maxwell system where

the current is a sum of a finite number of dipoles. Localization techniques for these problems

have been developed by Ammari et al. [12], [11], [10].

The aim of this chapter is to study the uniqueness of the solution of the inverse source pro-

blem for the eddy current approximation of Maxwell equations, mainly following the approach

proposed by Albanese and Monk [3] for the full Maxwell system of equations. The outline

of the chapter is as follows. Section 3.2 is devoted to volume source currents. We prove that

when looking for Je ∈ (L2(ΩC))
3, the inverse problem does not have a unique solution and we

characterize the space of non-radiating sources. In Section 3.3, we obtain the uniqueness result

for a source current supported on the boundary of a subdomain of ΩC ; it is worth noting that

the support of the surface source is not assumed to be known, but it is uniquely determined

from the boundary data. In Section 3.4, we consider the case of dipole sources. First, we study

the well-posedness of the direct problem, that is, the existence and uniqueness of the solution

for the eddy current model assuming that the source is a finite sum of dipoles. Then we prove

uniqueness of the inverse source problem, determining the number, location and polarization

of the dipole source. We also present an algebraic algorithm for the determination of a dipole

source assuming that the tangential component of the electric field on Γ is known. In the last

section, we study how to recover the tangential component of the electric field on Γ, the data

that we use in the inverse problem, from the data that are measured in MEG and EEG.
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To conclude this section, let us introduce some notation that will be used in the following. The

space H(curl; Ω) indicates the set of real or complex vector valued functions v ∈ (L2(Ω))3 such

that curlv ∈ (L2(Ω))3. We also use the spacesH−1/2(curlτ ; Γ) :=
{
(nΓ × v × nΓ)|Γ |v ∈ H(curl; ΩC)

}
and H−1/2(divτ ; Γ) :=

{
(v × nΓ)|Γ |v ∈ H(curl; ΩC)

}
. These two spaces are in duality and the

following formula of integration by parts holds true:∫
ΩC

(w · curlv − curlw · v) =
∫
Γ
(w × nΓ) · v ∀w, v ∈ H(curl; ΩC) .

The last integral is indeed the duality paring betweenw×nΓ ∈ H−1/2(divτ ; Γ) and nΓ×v×nΓ ∈
H−1/2(curlτ ; Γ).

3.2 Non-uniqueness of volume currents

In this section, we investigate the uniqueness of the inverse source problem assuming that

the unknown source Je is a function in (L2(ΩC))
3. First we will prove that without additional

information, the source cannot be reconstructed from the knowledge of the tangential component

of the electric field on Γ. We then characterize the space of non-radiating sources (those sources

in (L2(ΩC))
3 that generate an electric field normal to the surface Γ) and prove that sources Je ∈

(L2(ΩC))
3 that are orthogonal to the space of non-radiating sources are uniquely determined by

the tangential component on Γ of the electric field. The result is analogous to the one obtained

by Albanese and Monk [3] for the full Maxwell system.

If Je ∈ (L2(ΩC))
3, it is known that problems (3.3) has a unique solution E and the magnetic

field can be computed from Faraday law: H = −(iωµ)−1 curlE in Ω.

Multiplying the first equation in (3.3) by a regular enough test function z, integration by

parts in ΩC easily yields

−iω
∫
ΩC

Je · z =

∫
ΩC

E · [curl(µ−1 curl z) + iωσz]−
∫
Γ
[E × nΓ · (µ−1 curl z)− iωH × nΓ · z] .

Therefore, if z ∈ H(curl; ΩC) is such that

curl(µ−1 curl z)− iωσz = 0 in ΩC ,

the current density Je satisfies the representation formula∫
ΩC

Je · z = (iω)−1

∫
Γ
E × nΓ · (µ−1 curl z)−

∫
Γ
H × nΓ · z . (3.8)

The right hand term in (3.8) has been called reciprocity functional, taking the name from the

Lorentz reciprocity principle in electromagnetism, or else the Maxwell–Betti reciprocity principle

in elastostatics (see, e.g., Andrieux and Ben Abda [14], El Badia and Ha-Duong [33]). It is often
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used in the analysis of inverse source problems (see, e.g., Novikov [55], Isakov [41], Ammari and

Kang [9]).

Let us define

W = {z ∈ H(curl; ΩC) | curl(µ−1 curl z)− iωσz = 0 inΩC} .

It is clear that W is not a trivial subspace of (L2(ΩC))
3, since both µ and σ are bounded and

uniformly positive definite in Ω; for each ξ ∈ H
−1/2
div,τ (Γ), there exists a unique u(ξ) ∈ H(curl; ΩC)

such that u(ξ) ∈ W and u(ξ)× nΓ = ξ on Γ.

Denoting by W the closure of W in (L2(ΩC))
3 we have the orthogonal splitting

(L2(ΩC))
3 =W ⊕W⊥ .

Lemma 3.2.1 Consider η ∈ (C∞
0 (ΩC))

3 and set ϕ = curl(µ−1 curlη) + iωση. Then ϕ ∈ W⊥

(and W⊥ is not a trivial subspace).

Proof. Take z ∈ W . Then∫
ΩC

ϕ · z =

∫
ΩC

[curl(µ−1 curlη) + iωση] · z

=

∫
ΩC

η · [curl(µ−1 curl z) + iωσz] = 0 ,

and a density argument shows that ϕ ∈W⊥.

Note that, if η is a non-vanishing real vector field, one obtains Imϕ ̸= 0, hence W⊥ is not a

trivial subspace. 2

Let us split the current density Je as

Je = J ♯e + J⊥
e , J ♯e ∈W , J⊥

e ∈W⊥ .

Theorem 3.2.1 (i) Let us assume that Je = J ♯e ∈W and that E♯ is the corresponding solution

of the eddy current problem. Then knowledge of E♯ × nΓ on Γ uniquely determines J ♯e.

(ii) Let us assume that Je = J⊥
e ∈W⊥ and that E⊥ is the corresponding solution of the eddy

current problem. Then E⊥ × nΓ = 0 and H⊥ × nΓ = 0 on Γ, namely, J⊥
e is a non-radiating

source.

Proof. (i) The electric field in the insulator satisfies

curl(µ−1 curlE♯) = 0 in ΩI

div (ϵE♯) = 0 in ΩI

(µ−1 curlE♯)× n = 0 on ∂Ω

ϵE♯ · n = 0 on ∂Ω .
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If E♯ × nΓ = 0 on Γ, multiplying the first equation by E♯ and integrating by parts, one easily

finds curlE♯ = 0, then E♯ = 0 in ΩI . Consequently, H
♯ = −(iωµ)−1 curlE♯ = 0 in ΩI and

in particular H♯ × nΓ = 0 on Γ. Therefore, from (3.8), we know that
∫
ΩC

J ♯e · z = 0 for each

z ∈ W, hence, by a density argument, for each z ∈W . Taking z = J ♯e ∈W , the thesis follows.

(ii) Since J⊥
e ∈W⊥, from (3.8), we have that for all z ∈W∫

Γ
E⊥ × nΓ · (µ−1 curl z)− iω

∫
Γ
H⊥ × nΓ · z = 0 . (3.9)

For each η ∈ H
−1/2
div,τ (Γ), we denote by Z ∈ H(curl; Ω) the solution to

curl(µ−1 curlZ)− iωσZ = 0 in ΩC ∪ ΩI

div (ϵZ) = 0 in ΩI

(µ−1 curlZ)× n = 0 on ∂Ω

ϵZ · n = 0 on ∂Ω

(µ−1 curlZ)|ΩC
× nΓ = (µ−1 curlZ)|ΩI

× nΓ + η on Γ ,

(3.10)

which in weak form reads

find Z ∈ V :

∫
Ω
(µ−1 curlZ · curlv − iωσZ · v) =

∫
Γ
η · v ∀ v ∈ V ,

where V := {v ∈ H(curl; Ω) : div (ϵv) = 0 in ΩI and ϵv · n = 0 on ∂Ω}. It is well known that

the sesquilinear form on the left-hand side is coercive in V (see Alonso Rodŕıguez and Valli [5],

theorem 2.3); therefore, the problem is uniquely solvable.

As a test function in (3.9) we can thus select Z |ΩC
∈W , obtaining∫

Γ
E⊥ × nΓ · µ−1 curlZ |ΩC

= −
∫
Γ
E⊥ · η −

∫
Γ
E⊥ · (µ−1 curlZ |ΩI

× nΓ)

= −
∫
Γ
E⊥ · η +

∫
ΩI

µ−1 curlE⊥ · curlZ |ΩI

−iω
∫
Γ
H⊥ × nΓ ·Z |ΩC

= −
∫
Γ
µ−1 curlE⊥ ·Z |ΩI

× nΓ

= −
∫
ΩI

µ−1 curlE⊥ · curlZ |ΩI
.

In conclusion, we have found ∫
Γ
E⊥ · η = 0

for each η ∈ H
−1/2
div,τ (Γ), hence nΓ ×E⊥ × nΓ = 0 on Γ.

Proceeding as in the proof of (i), we show that E⊥ ×nΓ = 0 on Γ, implies H⊥ ×nΓ = 0 on

Γ, and the proof is complete. 2
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3.3 Uniqueness of surface currents

In this section, we prove that if the source current is known to be supported on the surface

of a subdomain contained in ΩC , then both the surface and the value of the surface current are

uniquely determined by the tangential component of the electric field on Γ. A similar result, but

assuming that the surface is a priori known, has been previously obtained for the full Maxwell

systems (see Albanese and Monk [3]).

First, we start by considering a surface current J∗ ∈ H−1/2(divτ ; ∂B), where B is an open

connected set with Lipschitz and connected boundary ∂B and satisfying B ⊂ ΩC .

The direct problem reads

curlE∗ + iωµH∗ = 0 in Ω

curlH∗ = σE∗ in B ∪ (Ω \B)

div (ϵE∗) = 0 in ΩI

H∗ × n = 0 on ∂Ω

ϵE∗ · n = 0 on ∂Ω

H∗|B × nB −H∗|Ω\B × nB = J∗ on ∂B ,

(3.11)

where nB is the unit normal vector on ∂B, pointing outward B. It is easy to see that its weak

formulation in terms of the electric field is

find E∗ ∈ V :

∫
Ω
(µ−1 curlE∗ · curlv + iωσE∗ · v) = −iω

∫
∂B

J∗ · v ∀ v ∈ V ,

with V being the space introduced for the weak formulation of (3.10). Since the sesquilinear

form at the left hand side is coercive, for each given J∗ ∈ H−1/2(divτ ; ∂B) the direct problem

has a unique solution.

Our first result in this section is the following.

Theorem 3.3.1 Assume that the coefficients µ and σ are Lipschitz continuous and piecewise

C1 scalar functions in ΩC , and that the discontinuity surfaces of their gradients are Lipschitz

surfaces. Let (E∗,H∗) be the solution of the eddy current problem driven by the surface current

J∗ ∈ H−1/2(divτ ; ∂B). The knowledge of E∗ × nΓ on Γ uniquely determines J∗.

Proof. It is enough to show that if E∗ × nΓ = 0 on Γ, then J∗ = 0 on ∂B. As in the

preceding case, by solving the problem in ΩI , we easily show that E∗ × nΓ = 0 on Γ also gives

E∗ = 0 in ΩI , H∗ = 0 in ΩI and in particular H∗×nΓ = 0 on Γ. By virtue of the assumptions

on the coefficients µ and σ, we can apply the unique continuation principle in ΩC \B (see Ōkaji

[56]) and deduce that E∗ = 0 and H∗ = 0 in Ω \B.



3.4 Uniqueness for dipole sources 29

Multiplying the second equation in (3.11) by a function z ∈ H(curl;B) with curl(µ−1 curl z) ∈
(L2(B))3 and integrating by parts, we have∫

B
σE∗ · z =

∫
B
curlH∗ · z = −

∫
∂B

H∗|B × nB · z +

∫
B
H∗ · curl z .

Since H∗ = −(iωµ)−1 curlE, taking into account that E∗×nB = 0 on ∂B, another integration

by parts gives∫
B
σE∗ · z = −

∫
∂B

H∗|B × nB · z − (iω)−1

∫
B
E∗ · curl(µ−1 curl z) .

Hence for each z ∈ H(curl;B) such that curl(µ−1 curl z)− iωσz = 0 in B, one finds
∫
∂BH∗|B×

nB · z = 0. Therefore,∫
∂B

J∗ · z =

∫
∂B

[
H∗|B × nB −H∗|Ω\B × nB

]
· z = 0

for each z ∈ H(curl;B) such that curl(µ−1 curl z)− iωσz = 0 in B.

Given ρ ∈ H−1/2(curlτ ; Γ), we can choose z ∈ H(curl;B), the solution to{
curl(µ−1 curl z)− iωσz = 0 in B

z × nB = ρ× nB on ∂B .

Hence
∫
∂B J∗·ρ = 0 for each ρ ∈ H−1/2(curlτ ; Γ), and this space is the dual space ofH−1/2(divτ ; Γ).

This ends the proof. 2

Remark 3.3.1 Proceeding as in Section 3.2, we can obtain a representation formula similar to

(3.8), namely ∫
∂B

J∗ · z = (iω)−1

∫
Γ
E∗ × nΓ · (µ−1 curl z)−

∫
Γ
H∗ × nΓ · z (3.12)

for each z ∈ H(curl; ΩC) satisfying

curl(µ−1 curl z)− iωσz = 0 in ΩC .

3.4 Uniqueness for dipole sources

Let us consider now the eddy current problem with a dipole source
curl(µ−1 curlE) + iωσE = −iωp0δx0 in Ω

div(ϵE) = 0 in ΩI

(µ−1 curlE)× n = 0 on ∂Ω

ϵE · n = 0 on ∂Ω ,

(3.13)



3.4 Uniqueness for dipole sources 30

where p0 ̸= 0, x0 ∈ ΩC and δx0 denotes the Dirac delta distribution centered at x0.

First, we study the well posedness of this problem. We will assume that the magnetic per-

meability µ and the conductivity σ satisfy the homogeneity condition: there exist r0 > 0, µ0 > 0

and σ0 > 0 such that

µ(x) = µ0I and σ(x) = σ0I for each x ∈ Br0(x0) , (3.14)

where I is the identity matrix and Br0(x0) := {x ∈ Ω : |x− x0| < r0}.
We set κ2 = −iωµ0σ0 and q0 = −iωµ0p0. The following result is quite classical (and also

appears in the theory of linear elasticity, see, e.g., [45]). It can be found in Ammari et al. [7],

and we report the proof for the sake of completeness.

Theorem 3.4.1 The fundamental solution K of the operator curl curl−κ2I, that is, the solution
to

curl curlK − κ2K = q0δ0 ,

is given by

K(x) = q0
eiκ|x|

4π|x|
+

1

κ2
(q0 · grad) grad

eiκ|x|

4π|x|
. (3.15)

Proof. We start from the fundamental solution Φ of the Helmholtz operator

−∆Φ− κ2Φ = δ0 ,

which, as it is well known, is given by

Φ(x) =
eiκ|x|

4π|x|
.

From this, we obtain at once

−∆(q0Φ)− κ2(q0Φ) = q0δ0 .

Then we look for K in the form

K = q0Φ+ q ,

and we have

curl curlK − κ2K

= −∆(q0Φ) + grad div (q0Φ)− κ2(q0Φ) + curl curl q − κ2q

= q0δ0 + grad div (q0Φ) + curl curl q − κ2q .

Hence, q has to satisfy

curl curl q − κ2q = − grad div (q0Φ) ,
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and we easily find

q =
1

κ2
grad div (q0Φ) .

In conclusion, we have obtained

K(x) = q0Φ(x) +
1
κ2

grad div (q0Φ(x))

= q0
eiκ|x|

4π|x|
+

1

κ2
(q0 · grad) grad

eiκ|x|

4π|x|
,

namely, the representation formula (3.15). 2

Note that the fundamental solution K is much more singular than the fundamental solution

of the Laplace or the Helmholtz operator; while the first term belongs to L2
loc, the second one

has a singularity like |x|−3. It can also be remarked that setting K̂(x) := K(x− x0), we have

K̂ ∈ H−2(Ω), the dual space of H2
0 (Ω); however, K̂ is a regular function far from x = x0; in

particular, it is regular in ΩI .

Theorem 3.4.2 Assuming that condition (3.14) is satisfied, there exists a solution E ∈ H−2(Ω)

to (3.13), satisfying (E − K̂) ∈ H(curl; Ω). It is unique among all the solutions E∗ such that

(E∗ − K̂) ∈ H(curl; Ω).

Proof. We split the solution to (3.13) in the following way: E(x) = K̂(x) +Q(x). It is easily

seen that we have to look for the solution Q ∈ H(curl; Ω) to
curl(µ−1 curlQ) + iωσQ = J in Ω

div(ϵQ) = −div(ϵK̂) in ΩI

(µ−1 curlQ)× n = −(µ−1 curl K̂)× n on ∂Ω

ϵQ · n = −ϵK̂ · n on ∂Ω ,

(3.16)

where

J(x) :=

{
0 if x ∈ Br0(x0)

− curl(µ−1 curl K̂)(x)− iωσK̂(x) if x ∈ Ω \Br0(x0) .

We introduce now the solution ηI ∈ H1(ΩI) of the mixed problem
div(ϵ grad ηI) = −div(ϵK̂) in ΩI

ϵ grad ηI · n = −ϵK̂ · n on ∂Ω

ηI = 0 on Γ ,

which exists and is unique since K̂ |ΩI
∈ (L2(ΩI))

3; we also define

η(x) :=

{
0 if x ∈ ΩC

ηI(x) if x ∈ ΩI ,
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and we see at once that η ∈ H1(Ω).

We are now in a position to finish the construction of the solution to (3.13). The solution Q

to (3.16) will be found in the form Q = Q∗ + grad η, where Q∗ ∈ H(curl; Ω) is the solution to
curl(µ−1 curlQ∗) + iωσQ∗ = J in Ω

div(ϵQ∗) = 0 in ΩI

(µ−1 curlQ∗)× n = −(µ−1 curl K̂)× n on ∂Ω

ϵQ∗ · n = 0 on ∂Ω .

The existence and uniqueness of such a solution follows from the fact that the compatibility

conditions
divJ |ΩI

= −div [curl(µ−1 curl K̂ |ΩI
)] = 0 in ΩI

J · n = − curl(µ−1 curl K̂) · n = −divτ (µ
−1 curl K̂ × n) on ∂Ω

are satisfied (see Alonso Rodŕıguez and Valli [5], chapter 3).

We have thus found a solution E = K̂ + grad η + Q∗ of (3.13). Concerning uniqueness,

suppose that we have another solution E∗ such that (E∗ − K̂) ∈ H(curl; Ω). We can write it as

E∗ = K̂ + (E∗ − K̂), and it is readily verified that E∗ − K̂ is a solution to (3.16), a problem

for which uniqueness holds in H(curl; Ω). Therefore E∗ − K̂ = Q = E − K̂, and uniqueness is

proved. 2

Concerning the uniqueness of the inverse problem, suppose that the source is a finite sum of

dipoles, in different positions and with non-vanishing polarizations, namely,

J† =
M∑
k=1

pkδxk
, (3.17)

where xk ∈ ΩC , xk ̸= xj for k ̸= j, pk ̸= 0.

Theorem 3.4.3 Assume that µ and σ are Lipschitz continuous and piecewise C1 scalar func-

tions in ΩC and that the discontinuity surfaces of their gradients are Lipschitz surfaces. Assume

also that there exists the solution E† of the eddy current problem (3.3) driven by the surface

current J† introduced in (3.17), with the same properties reported in Theorem 3.4.2. Knowledge

of E† × nΓ on Γ uniquely determines J†, namely the number, the position and the polarization

of the dipoles.

Proof. We start proving that the number and the position of the dipoles are uniquely

determined.

By contradiction, let us denote by Q1 and Q2 two different sets of points where the dipoles

are located, and by E†,1, H†,1 and E†,2, H†,2 the corresponding solutions, with the same value
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E† ×nΓ on Γ. As in the preceding cases, by solving the problem in ΩI with datum E† ×nΓ on

Γ, we obtain that E†,1 = E†,2 and H†,1 = H†,2 in ΩI .

From the unique continuation principle, it follows that E†,1 = E†,2 in Ω \ (Q1 ∪Q2). Let x∗

be a point belonging, say, to Q1 but not to Q2. We have that E†,2 is bounded in a neighborhood

of x∗, while E†,1 is unbounded there, a contradiction since E†,1 and E†,2 coincide around x∗.

Therefore Q1 = Q2.

Let us now prove that the polarizations are uniquely determined. It is not restrictive to

assume thatM = 1 and that x1 = 0. We can writeE†,1 = K1+Ê†,1 andE†,2 = K2+Ê†,2, where

K1 and K2 are defined as in (3.15), with two different polarizations q0,1 and q0,2; in particular,

we know that Ê†,1 and Ê†,2 belong to H(curl; Ω). Proceeding as before, the unique continuation

principle yields E†,1 = E†,2 in Ω \ Br(0) for each r > 0; therefore, K1 − K2 = Ê†,2 − Ê†,1

in Ω \ Br(0). Since (Ê†,2 − Ê†,1) ∈ (L2(Ω))3, it follows that K1 − K2 ∈ (L2(Ω))3, and this

is not possible, due to the singularity of the fundamental solution, unless K1 = K2, namely

q0,1 = q0,2. 2

Remark 3.4.1 In Theorem 3.4.2, we have proved the existence and uniqueness of the solu-

tion E† under the homogeneity assumption (3.14). We do not have similar result under the

assumption of Theorem 3.4.3.

3.4.1 Explicit determination of the dipole source

For the sake of simplicity, consider a source given by only one dipole: Je = p∗δx∗ . Proceeding

as in the proof of (3.8), one obtains the representation formula

p∗ · z(x∗) = (iω)−1

∫
Γ
E∗ × nΓ · (µ−1 curl z)−

∫
Γ
H∗ × nΓ · z , (3.18)

for each z ∈ H(curl; ΩC), continuous around x∗ and satisfying

curl(µ−1 curl z)− iωσz = 0 in ΩC . (3.19)

To determine the source, we have to find the polarization p∗ and the position x∗: therefore, the

components of these two vectors, on the whole six unknowns. The natural idea is to choose in a

suitable way six functions z in (3.18), and solve the corresponding nonlinear system.

Let us assume that µ and σ are constants. The usual choice is to take z(x) = beiκd·x, with

κ ∈ C, b ∈ R3, d ∈ R3. In order that z is a solution to (3.19) we need

κ2 = iωµσ , b · d = 0 .

Hence, κ =
√

ωµσ
2 (1 + i) if ω > 0 and κ =

√
|ωµσ|

2 (1 − i) if ω < 0. It is not restrictive to

assume |d| = |b| = 1.
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The values of p∗ and x∗ are uniquely determined by solving the nonlinear system (3.18)

obtained by suitable selections of b and d. For instance, taking b = e1, d = e2, or b = e2,

d = e3, or b = e3, d = e2, where ei represents the standard euclidean basis, one has

−iωp∗1e−iκx
∗
2 = A1,2 , −iωp∗2e−iκx

∗
3 = A2,3 , −iωp∗3e−iκx

∗
2 = A3,2 . (3.20)

Here, Ai,j denotes the right hand side in equation (3.18), hence a computable complex number,

corresponding to the choice z(x) = beiκd·x, with b = ei, d = ej . Since p∗ ̸= 0, at least one of

its components is different from 0; hence at least one of the values A1,2, A2,3 or A3,2 is different

from 0. Let us assume for instance that p∗1 ̸= 0, A1,2 ̸= 0. Taking b = e1, d = e3 and b = e1,

d = 1√
2
(e2 + e3) one has

−iωp∗1e−iκx
∗
3 = A1,3 , −iωp∗1e

−iκ 1√
2
(x∗2+x

∗
3) = A1,23 ,

where A1,23 is obtained as before from the latter choice of b and d. Hence

e−iκ(x
∗
3−x∗2) =

A1,3

A1,2
, e

−iκ
[

1√
2
(x∗2+x

∗
3)−x∗2

]
=
A1,23

A1,2
,

For the sake of simplicity let us assume ω > 0, so that −iκ = −
√

ωµσ
2 (1 + i) and

|e−iκ(x∗3−x∗2)| = e−
√

ωµσ
2

(x∗3−x∗2) =
∣∣∣A1,3

A1,2

∣∣∣
|e−iκ

[
1√
2
(x∗2+x

∗
3)−x∗2

]
| = e

−
√

ωµσ
2

[
1√
2
(x∗2+x

∗
3)−x∗2

]
=
∣∣∣A1,23

A1,2

∣∣∣ .
Therefore one has the following linear system for x∗2 and x∗1

x∗3 − x∗2 = −
√

2
ωµσ log

∣∣∣A1,3

A1,2

∣∣∣ ,
1√
2
(x∗2 + x∗3)− x∗2 = −

√
2

ωµσ log
∣∣∣A1,23

A1,2

∣∣∣ ,
obtaining

x∗2 =
√
2+1√
ωµσ

[
log
∣∣∣A1,3

A1,2

∣∣∣−√
2
∣∣∣A1,23

A1,2

∣∣∣]
x∗3 =

1√
ωµσ

[
log
∣∣∣A1,3

A1,2

∣∣∣− (2 +
√
2)
∣∣∣A1,23

A1,2

∣∣∣] .
Replacing in (3.20) we can compute the three components of p∗.

It remains to compute x∗1. If p
∗ has two components different from zero, say, p∗1 ̸= 0 and

p∗2 ̸= 0, taking b = e2 and d = e1 we have the equation

−iωp∗2e−iκx
∗
1 = A2,1 ,

from which we determine x∗1. Otherwise, taking b = 1√
2
(e1+e2) and d = 1√

2
(e1−e2) we obtain

−iω 1√
2
p∗1e

−iκ 1√
2
(x∗1−x∗2) = A12,12 ,

with the usual notation for A12,12.
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3.5 Application to EEG/MEG

MEG measures the magnetic induction along a certain direction depending on the mag-

netometer. Typically, it measures the normal component of the magnetic induction, namely

µH · nΓ. On the other hand, EEG measures the electric potential on the surface of the head.

We have obtained some explicit relations between the source and the tangential component of

the electric field and the magnetic field on Γ (equations (3.8), (3.12) and (3.18)). We will show

that, when using the eddy current model, both (E × nΓ)|Γ and (H × nΓ)|Γ can be computed

from the normal component of the magnetic induction (µH · nΓ)|Γ and the electric potential

V|Γ.

We have already seen that knowledge of (E ×nΓ)|Γ furnishes HI in ΩI , hence in particular

(H×nΓ)|Γ (see for instance the arguments in the proof of Theorem 3.2.1, (i)). Thus it is enough

to show that (E × nΓ)|Γ can be determined from (µH · n)|Γ and V|Γ.

Now we need some preliminaries concerning tangential differential operators. The standard

definition of the tangential gradient and the tangential curl on the flat surface {x3 = 0} with

unit normal vector n = (0, 0, 1) is

gradτϕ = (∂1ϕ, ∂2ϕ, 0) Curlτϕ = gradτϕ× n = (∂2ϕ,−∂1ϕ, 0) .

Using local coordinates, it is possible to define the operators gradτ and Curlτ for function belon-

ging to H1(Γ). By a duality argument, the adjoin operators divτ and curlτ are also introduced,

as well as the Laplace–Beltrami operator ∆τ := divτgradτ = −curlτCurlτ .

On Γ one has the following Hodge decomposition of the electric field (see Buffa et al. [22]):

nΓ ×E × nΓ = gradτ v +Curlτ q , (3.21)

with q ∈ H1(Γ)/C such that

∆τq = −curlτ Curlτ q = −curlτ (nΓ ×E × nΓ)

= −divτ (E × nΓ) = − curlE · nΓ = iωµH · nΓ ,

and v ∈ H1/2(Γ), v = V|Γ with V ∈ H1(ΩC) and gradτ v = nΓ×gradV ×nΓ. Hence, nΓ×E×nΓ

can be obtained from knowledge of µH · nΓ and V on Γ.

Remark 3.5.1 Though it could sound strange, it is not completely clear what we say when

we speak about the measure of the scalar electric potential (see, e.g., [53], [19], and references

therein). In fact, with the exception of the static case, the electric field is not irrotational; there-

fore it has not a scalar potential.

As it is well known, the electric field E can be split into the sum of a gradient and a solenoidal

field, but this can be done in several different way (see, e.g., Alonso Rodŕıguez and Valli [5],
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Sect. A.3). Hence, here we are saying that, if the measure obtained by a voltmeter is the scalar

v appearing in (3.21) (up to an additive constant) and the measure obtained by a magnetometer

is µH · nΓ, then we can reconstruct the value of nΓ ×E × nΓ on Γ.

In real-life applications, the measurements are only made on a subset of the boundary Γm ⊂
Γ. Also in this case it is possible to obtain a representation formula for the source in terms of the

tangential components of the electric and the magnetic fields on Γm. Following Albanese and

Monk [3], it is easy to show formally that for any z ∈ H(curl; Ω\Γm) such that curl(µ−1 curl z)−
iωσz = 0 in Ω \ Γm and (µ−1 curl z)× n = 0 on ∂Ω, we have

⟨Je, z⟩ = (iω)−1

∫
Γm

E × nΓ · [[µ−1 curl z]]T −
∫
Γm

H × nΓ · [[z]]T , (3.22)

where [[v]]T denotes the jump of the tangential trace of v ∈ H(curl; Ω \ Γm) across Γm and

⟨Je, z⟩ =
∫
ΩC

Je · z for volume currents Je ∈ (L2(ΩC))
3, ⟨Je, z⟩ =

∫
∂B Je · z for surface

currents Je ∈ H−1/2(divτ ; ∂B) and ⟨Je, z⟩ = p∗ · z(x∗) for a dipole source Je = p∗δx∗ .

Also, in this case the tangential component of the electric field on Γm can be obtained from

the electric potential and the normal component of the magnetic induction, provided that the

measured electric potential V is such that

grad V · t = E · t on ∂Γm ,

where t is the unit tangent vector on ∂Γm. In this way q ∈ H1(Γm)/C is the solution of{
∆τq = iωµH · nΓ in Γm

Curlτ q · t = 0 on ∂Γm .

However, if we know E ×nΓ only on Γm and not in the whole boundary Γ, it is not possible to

obtain (H×nΓ)|Γm
. So in order to use the representation formula (3.22) in an inversion scheme,

it would be necessary to measure also the tangential component of the magnetic field on Γm.



Chapter 4

A posteriori error estimates for the

problem of electrostatics with a

dipole source

4.1 Introduction

Electroencephalography (EEG) is a widely used technique for reconstruction of brain activity.

The task is to estimate the cerebral current sources underlying a measured distribution of the

scalp electric potential. The inverse problem requires a model for the forward problem, i.e., the

computation of the scalp potential given a neural current source. Since the frequency spectrum

for electrophysiological signal is frequently between 0.1 and 100 Hz, most works on biomedical

applications focus on the static approximation of Maxwell equations. Concerning the source, the

activity measured in EEG is the result of movement of ions that, creating an electrical potential

difference, generates the so-called primary current. Since the source is localized, it is generally

modeled as a current dipole centered at a point x0 with moment p.

For computing the solution of the forward problem, the finite element method has become

popular because it allows a realistic representation of the geometry and conductivity of the

different tissues. In particular it allows to deal with anisotropic conductivities. In this case the

forward problem is non-standard and it is usually solved by the subtraction approach (see [16],

[67], [46]). Recently the well-posedness of the problem was studied in [65] using the duality

method. There it is proved that, in the three dimensional (3D) case, the solution belongs to

Lp for 1 ≤ p < 3/2. The same arguments allow proving that in the two dimensional case (2D)

the solution belongs to Lp for 1 ≤ p < 2. Finite elements have been used in practice for both

approaches: the subtraction method and the direct one. For the former, a sound mathematical

37
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and numerical analysis can be found in [67] under the assumption that there is a neighborhood

of the source position x0 with constant conductivity. On the other hand, the direct approach

is widely used in source reconstruction (see e.g. [68], [21], [66], [62]) and can be used even for

a variable conductivity (smooth in a neighborhood of x0). However it has not been rigorously

analyzed yet. The aim of this chapter is to take advantage of the method in [65] to provide such

analysis.

In spite of the fact that the solution is only in Lp, it can be approximated by standard finite

elements. Specifically we use piecewise linear continuous elements on polyhedral or polygonal

domains. Even though the original problem is three dimensional we present the results in more

detail in the 2D framework. Under the assumption that the computational domain Ω is bounded,

convex and polygonal, we develop a priori and a posteriori error analyses in Lp norm for this

problem. In particular, we prove an a priori error estimate under the assumption that the meshes

are quasiuniform. Since the solution is highly singular at x0, quasiunformity is an excessively

restrictive assumption in practice. This is the reason why we also derive an a posteriori error

analysis which does not need the quasiuniformity assumption. We introduce a posteriori error

indicators and prove their reliability and efficiency. Subsequently, we briefly discuss the 3D case

and present similar results under more stringent assumptions on the geometry of the domain

and the electric conductivity. We use these error indicators to guide an adaptive scheme, which

experimentally exhibits optimal order of convergence.

The chapter is organized as follows. In Section 4.2 we state the model problem, a finite

element discretization (in 2D and 3D), and give an a priori estimate of the error in Lp norm

for the 2D case. In Section 4.3, we introduce some generalized bubble functions and prove some

technical lemmas, which will be used in the sequel. The main result is presented in Section

4.4, where we perform the a posteriori error analysis for the 2D case. In Section 4.5, we briefly

analyze the a priori and a posteriori estimates in 3D. Finally, in Section 4.6, we report some

numerical results illustrating the performance of the adaptive scheme.

4.2 Model problem

In this section we introduce the model problem, propose a variational formulation and recall

the existence and uniqueness of solution. Then, we consider a finite element discretization and

give an a priori error estimate.
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4.2.1 Continuous problem

We start introducing the Maxwell equations:
curlH − ϵ

∂E

∂t
= σE + Jp ,

curlE + µ
∂H

∂t
= 0 ,

whereE andH are the electric and magnetic fields, respectively, Jp is the source current density,

ϵ the electric permittivity, µ the magnetic permeability and σ the electric conductivity.

By disregarding the time variation one obtains the static model:{
curlH = σE + Jp ,

curlE = 0 .

If we consider a simply connected domain D ⊂ R3, then there exists a scalar potential u

such that E = −∇u in D. As a consequence, calculating the divergence of the first equation, we

obtain

div (σ∇u) = div Jp in D .

If Ω is a conductive domain completely included in D and D\Ω is not conductive, then, due

to the properties of the div operator, the equation above is equivalent to div (σ∇u−Jp)|Ω = 0

in Ω, div (σ∇u−Jp)|D\Ω = 0 and (σ∇u−Jp)|Ω ·n = (σ∇u−Jp)|D\Ω ·n on the interface ∂Ω,

being n the outer unit normal vector to ∂Ω. Since σ vanishes outside Ω and Jp is assumed to

be supported in Ω, the electrostatics problem reads{
div (σ∇u) = div Jp in Ω ,

(σ∇u) · n = 0 on ∂Ω .

This is the model more frequently used for the electrical brain activity (see e.g. [61], [39], [51]).

Let us assume that a small activated region is centered at a point x0 and that the observation

point is far from it. In this case the primary current Jp is typically modeled as a dipole. So, in the

following, we consider the electrostatic problem with a dipole as source term and homogeneous

Neumann boundary condition:{
div (σ∇u) = div (p δx0) in Ω ,

(σ∇u) · n = 0 on ∂Ω .
(4.1)

Here x0 is an inner point of Ω, and p ̸= 0 is the polarization vector. The conductivity σ is a

matrix with entries in L∞(Ω) and uniformly positive definite, namely, there exists a positive

constant σ0 such that

3∑
i,j=1

ξiσi,j(x)ξj ≥ σ0

3∑
i=1

ξ2i ∀ ξ ∈ R3 , a.e. x ∈ Ω. (4.2)
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Moreover we assume that there exists r0 > 0 such that σi,j ∈ W 1,∞(Br0(x0)) for i, j = 1, 2, 3,

where Br0(x0) := {x ∈ R3 : |x− x0| < r0}. This is a technical assumption used in [65] for the

proof of the well-posedness of the problem by means of a duality argument.

Let us consider the following weak formulation of (4.1) given in [65]: find u ∈ Lp(Ω) such

that 
∫
Ω
udiv (σ∇φ) = −p · ∇φ(x0) ∀φ ∈ Xq ,∫

Ω
u = 0 ,

(4.3)

where

Xq := {φ ∈W 1,q(Ω) : φ ∈ C1(Br∗(x0)), div (σ∇φ) ∈ Lq(Ω), (σ∇φ) · n = 0 on ∂Ω},

being r∗ a fixed number such that 0 < r∗ < r0. Moreover, here and thereafter 1
p +

1
q = 1 .

The second condition of (4.3) filters out additive constants and therefore is suitable for

assuring uniqueness of the solution u.

The following theorem, which is proved in [65, Remark 3.3], ensures the existence and unique-

ness of solution to (4.3):

Theorem 4.2.1 For all p with 1 ≤ p < 3/2, there exists a unique solution u ∈ Lp(Ω) to (4.3),

which is the same for all p in this range.

Remark 4.2.1 The same arguments used for the previous theorem allow us to prove the well-

posedness of the problem in the 2D case; in such a case, we have existence and uniqueness of a

solution u ∈ Lp(Ω) for each p with 1 ≤ p < 2.

4.2.2 Discrete problem

We assume that Ω is either a Lipschitz polyhedron (3D) or a Lipschitz polygon (2D).

We consider a regular family of tetrahedral (or triangular) meshes Th of Ω (see, for instance,

[23]). As usual, h denotes the mesh size: h := maxT∈Th hT , hT being the diameter of T . We

consider the space of Lagrange finite elements of degree one:

Hh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} .

(Pk denotes the set of polynomials with degree not larger than k ∈ N.) Notice that Hh ⊂ Lp(Ω)

for all p ≥ 1.

Let T0 ∈ Th be such that x0 ∈ T0. Usually x0 will be an inner point of an element of Th,
however if x0 belongs to more than one T ∈ Th, any element T0 containing x0 can be chosen.
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The finite element approximation of (4.3) reads: find uh ∈ Hh such that
∫
Ω
σ∇uh · ∇vh = p · ∇(vh|T0)(x0) ∀ vh ∈ Hh ,∫

Ω
uh = 0 .

(4.4)

Although some average of the gradients of different elements containing x0 could also be

used, our analysis shows that the simplest minded approach of choosing a particular arbitrary

element works fine.

To find an a priori error estimate in Lp(Ω), with 1 ≤ p < 2 in the 2D case and 1 ≤ p < 3/2 in

the 3D case, we will use a duality argument. With this end, we consider the following auxiliary

problem: given ψ ∈ Lq(Ω), find φ ∈ H1(Ω) such that
div (σ∇φ) = ψ − 1

|Ω|

∫
Ω
ψ in Ω ,

(σ∇φ) · n = 0 on ∂Ω ,∫
Ω
φ = 0 .

(4.5)

This problem is well-posed if q > 1 (2D case) or q > 6/5 (3D case). Since q will be the dual

exponent of p, we will consider this problem for q > 2 (2D case) or q > 3 (3D case).

We will need the solution of this problem to be in W 2,q(Ω). This is true under suitable

assumptions. First of all, we require that σ ∈ [C1(Ω)]2×2 (note that this not a realistic assump-

tion when modeling the brain conductivity, which presents discontinuities across the different

tissues). Moreover, we assume that Ω is convex. Then the arguments used to prove [31, Coro-

llary 3.12] allow us to show that φ ∈ W 2,q(Ω) for each q such that 2 < q < q0, for a suitable q0

(for the Laplace operator in the 2D case, it is known that q0 =
2

2−π/θ , θ being the largest inner

angle of Ω). Moreover

∥φ∥2,q,Ω ≤ C∥ψ∥0,q,Ω . (4.6)

We do not know if, for a general convex polyhedron, one has q0 > 3. Therefore, despite

the original problem is set in the 3D case, from now on we will present our results in the

2D framework. In Section 4.5, we will extend them to the 3D case, although under additional

stringent assumptions. So, in the following we will consider a convex Lipschitz polygon Ω ⊂ R2.

In what follows we will denote vI ∈ Hh the Lagrange interpolant of v. Notice that, in

particular, φI is well defined because φ ∈ W 2,q(Ω). Let us recall the following 2D interpolation

error estimates. For their proof see, e.g., [20, Theorem 4.4.4 and Corollary 4.4.7].

Proposition 4.2.1 Suppose 1 < q ≤ ∞ and m > 2
q . Then, for 0 ≤ i ≤ m and v ∈ Wm,q(T ),

T ∈ Th, we have

|v − vI |i,q,T ≤ Chm−i
T |v|m,q,T , (4.7)
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|v − vI |i,∞,T ≤ Ch
m−i−2/q
T |v|m,q,T . (4.8)

Here and thereafter C, as well as C ′, denote strictly positive constants, not necessarily the

same at each occurrence, but always independent of the mesh size.

Moreover we have the following error estimate for the elliptic projection:

Lemma 4.2.1 Let Ω be a convex Lipschitz polygon. Let {Th} be a quasiuniform family of subdi-

visions of Ω (namely, there exists a positive constant τ , independent of h, such that τh ≤ hT ≤ h

for all T ∈ Th and for all Th). Assume that σ ∈ [C1(Ω)]2×2. Consider a function ξ ∈ W 2,q(Ω)

for q > 2 and let ξP ∈ Hh be the unique solution of
∫
Ω
σ∇vh · ∇ξP =

∫
Ω
σ∇vh · ∇ξ ∀ vh ∈ Hh ,∫

Ω
ξP = 0 .

(4.9)

Then there exists h0 > 0 such that

|ξ − ξP |1,∞,T ≤ Ch1−2/q∥ξ∥2,q,Ω ∀T ∈ Th (4.10)

for 0 < h < h0.

Proof. This is a standard estimate for the elliptic projection; we include a brief proof for

completeness. We consider an arbitrary T ∈ Th. Using (4.8) and an inverse estimate (see [20,

Lemma 4.5.3]) we have

|ξ − ξP |1,∞,T ≤ |ξ − ξI |1,∞,T + |(ξ − ξP )I |1,∞,T

≤ C
(
h
1−2/q
T |ξ|2,q,T + h

−2/q
T ∥(ξ − ξP )I∥1,q,T

)
.

On the other hand,

∥(ξ − ξP )I∥1,q,Ω ≤ ∥ξ − ξI∥1,q,Ω + ∥ξ − ξP ∥1,q,Ω ≤ Ch|ξ|2,q,Ω

(see, for instance, [20, Theorem 4.4.4 and equation (8.5.4)]), and the desired result follows by

using the quasiuniformity of the meshes.

Now we are in a position to prove an a priori error estimate for the proposed finite element

scheme.

Theorem 4.2.2 Let Th be a quasiuniform family of subdivisions of the convex Lipschitz polygon

Ω and assume that σi,j ∈ C1(Ω) for each i, j = 1, 2. Let u and uh be the respective solutions to

problems (4.3) and (4.4). Then there exists h0 > 0 such that

∥u− uh∥0,p,Ω ≤ Ch2/p−1

for all 0 < h < h0 and for all p such that q0
q0−1 < p < 2, where q0 is the maximal regularity

exponent in (4.6).
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Proof. Given ψ ∈ Lq(Ω) with 1
p + 1

q = 1, we know that the solution φ of (4.5) satisfies φ ∈
W 2,q(Ω) for 2 < q < q0. By using (4.3) and integration by parts, we obtain∫

Ω
(u− uh)ψ =

∫
Ω
(u− uh)

(
div (σ∇φ) + 1

|Ω|

∫
Ω
ψ

)
(4.11)

=

∫
Ω
udiv (σ∇φ)−

∫
Ω
uhdiv (σ∇φ)

= −p · ∇φ(x0) +

∫
Ω
σ∇uh · ∇φ

= −p · ∇φ(x0) +

∫
Ω
σ∇uh · ∇φP

= −p · ∇φ(x0) + p · ∇(φP |T0)(x0) ,

where φP is the unique solution to problem (4.9) (with φ at the right hand side instead of ξ).

From Lemma 4.2.1 we have

|∇φ(x0)−∇φP (x0)| ≤ Ch1−2/q∥φ∥2,q,Ω ≤ Ch1−2/q∥ψ∥0,q,Ω ,

where the last inequality follows from (4.6). Therefore we have

∥u− uh∥0,p,Ω = sup
ψ∈Lq(Ω)

∫
Ω
(u− uh)ψ

∥ψ∥0,q,Ω
≤ Ch1−2/q = Ch2/p−1 .

The quasiuniformity assumption on the meshes seems unfitting for this problem, because

the strong singularity of the solution at x0 suggests using meshes highly refined in the vicinity

of this point. In what follows we will introduce a posteriori estimators of the Lp norm of the

error which will be proved to be efficient and reliable without the need of the quasiuniformity

assumption. Later on these estimates will be used to devise an adaptive scheme which will lead

to an optimal order of convergence in terms of the number of degrees of freedom.

4.3 Preliminary results

For the a posteriori analysis, we will have to deal with three kinds of bubble functions, one

associated with triangles, another associated with edges and the last one associated with the

point x0. In this section we introduce these bubble functions and prove some properties that

will be used in the sequel. From now on n will denote a generic unit vector normal to a curve

which will be clear from the context.
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Let bT be the bubble function with support in T defined in Ω by

bT (x) :=


(
λT1 λ

T
2 λ

T
3

)2 |x− x0|2

h2T
if x0 ∈ T(

λT1 λ
T
2 λ

T
3

)2
otherwise .

(4.12)

where λTi is the barycentric coordinate of x associated with the triangle T and its vertex Pi,

i = 1, 2, 3. The function bT have the following properties:

Lemma 4.3.1 Given T ∈ Th, let bT be defined as above. Then

0 ≤ bT ≤ 1 , (4.13)

bT = 0 on ∂T , (4.14)

∇bT = 0 on ∂T , (4.15)∫
T
bT ≥ C|T | , (4.16)

∥bT ∥2,q,T ≤ C|T |−1/p . (4.17)

Proof. Equations (4.13), (4.14), and (4.15) are immediate consequences of the definition of bT .

Estimate (4.16) follows from straightforward computations and (4.17) from standard scaling

arguments (see [24, Theorem 15.1]):

∥bT ∥2,q,T ≤ Ch
−4/p
T ∥bT ∥0,p,T ≤ Ch

−2/p
T ≤ C|T |−1/p .

Let Eh,i be the set of all the inner edges and Eh,e the set of boundary edges of the triangulation

Th. Given ℓ ∈ Eh := Eh,i ∪ Eh,e we will define a bubble function with support ωℓ := {T ∈ Th :

ℓ ⊂ ∂T} (see Figure 4.1).

P4

T1

T2ℓ

n

P2

P3

P1

ℓ

n
P1

∂Ω
Tℓ

P2

P3

Figure 4.1: The support ωℓ of bℓ with ℓ ∈ Eh,i and ℓ ∈ Eh,e.
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In the case ℓ ∈ Eh,i we define bℓ for x ∈ ωℓ by

bℓ(x) :=


(
λT12 λ

T1
3 λ

T2
2 λ

T2
3

)2 |x− x0|2

|ℓ|2
if x0 ∈ ωℓ(

λT12 λ
T1
3 λ

T2
2 λ

T2
3

)2
if x0 ̸∈ ωℓ ,

(4.18)

where |ℓ| denotes the length of ℓ. Since λ
Tj
i is a linear function in the whole plane, bℓ is a

polynomial in ωℓ.

It remains to define bubble functions bℓ for ℓ ∈ Eh,e, which, in particular, must satisfy

(σ∇bℓ) · n = ∇bℓ · (σn) = 0 on ℓ for all ℓ ∈ Eh,e .

Let Tℓ be the triangle in Th that contains ℓ. For simplicity we assume that x0 /∈ Tℓ. Let (xi, yi)

be the coordinates of the vertices Pi, i = 1, 2, 3, of the triangle Tℓ, as shown in Figure 4.2. Let

Fℓ : R2 → R2 be defined by

Fℓ

(
x̂

ŷ

)
=

(
x2

y2

)
+Q

(
x̂

ŷ

)

where Q =

(
x3 − x2 −(y3 − y2)

y3 − y2 x3 − x2

)
. Notice that Q = |ℓ|

(
t −n

)
(see Figure 4.2) and that

QtQ = |ℓ|2I. Hence, denoting T̂ℓ := F−1
ℓ (Tℓ), the triangles T̂ℓ and Tℓ are similar (in particular,

both have the same aspect ratio). Let us set σ̂ := Qt(σ ◦ Fℓ)Q; this matrix is symmetric

and positive definite for all (x̂, ŷ) ∈ T̂ℓ. It is easy to show that there exists δ > 0 such that

[1/2− δ, 1/2+ δ]× (0, 2δ] is contained in the interior of T̂ℓ (see Figure 4.3). Since δ only depends

on the aspect ratio of the triangle T̂ℓ, hence of that of Tℓ, it can be bounded from above and from

below by two positive constants, uniformly with respect to h. Now let g1 ∈ D((1/2− δ, 1/2+ δ))
be such that g1 ≥ 0 and

∫
R g1 = 1, and let g2 ∈ C∞(R) be such that 0 ≤ g2 ≤ 1, g2|(−∞,δ) = 1,

g2|(2δ,+∞) = 0 and |g′2| ≤ Cδ−1. We first define

b̂(x̂, ŷ) := g1(x̂)− g1(x̂)
σ̂12(x̂, 0)

σ̂22(x̂, 0)
g2(ŷ) ŷ ,

then

bℓ := b̂ ◦ F−1
ℓ |Tℓ . (4.19)

Notice that σ̂22(x̂, 0) cannot vanish because σ̂ is positive definite. Since ∂b̂
∂x̂(x̂, 0) = g′1(x̂) and

∂b̂
∂ŷ (x̂, 0) = −g1(x̂) σ̂12(x̂,0)σ̂22(x̂,0)

, straightforward computations allow us to show that (σn)t∇bℓ =

|ℓ|−2(σ̂n̂)t∇̂b̂ = 0.

Now it is easy to prove the following result for bℓ:
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ŷ

n

Tℓ

(0,0)
x̂
(1,0)

t̂ℓ̂

Fℓ

ℓ

n̂ P2

P1

t P3

T̂ℓ

Figure 4.2: The definition of Fℓ.

(1,0)(0,0)
x̂ℓ̂

n̂
t̂

ŷ T̂ℓ

2δ

2δ

Figure 4.3: The support of bℓ.

Lemma 4.3.2 Given ℓ ∈ Eh, let bℓ and ωℓ be defined as above. Then

bℓ|ℓ∗ = 0 ∀ℓ∗ ∈ Eh, ℓ∗ ̸= ℓ , (4.20)

(σ∇bℓ) · n = 0 on ∂ωℓ , (4.21)

C|ℓ| ≤
∫
ℓ
bℓ ≤ C ′|ℓ| , (4.22)

|bℓ|m,q,ωℓ
≤ C|ℓ|2−m−2/p , m = 0, 1, 2 . (4.23)

Proof. For the case ℓ ∈ Eh,i, the proof runs essentially identical to that of [15, Lemma 3.1]. For

ℓ ∈ Eh,e the first three properties have already been checked. The last one follows from standard

scaling arguments.

The third kind of bubble function concerns the point x0 and the triangle T0 that we have

chosen such that x0 ∈ T0. We will denote by h0 the diameter of T0. Let us set

ωT0 := {T ′ ∈ Th : T ′ ∩ T0 ̸= ∅} (4.24)

and d:=dist(x0,∂ωT0) (since x0 is an inner point of Ω then d > 0). Notice that, because of the

regularity of the mesh, there exist two positive constants such that Ch0 ≤ d ≤ C ′h0. Let χ(x)
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be the convolution of the characteristic function of the set {x ∈ Ω : |x − x0| < d/2} with an

appropriate mollifier, so that χ(x) = 1 if |x − x0| ≤ d/4, χ(x) = 0 if |x − x0| ≥ 3d/4 and

|∇χ(x)| ≤ Cd−1.

We define the bubble function

b0(x) := p · (x− x0)χ(x) . (4.25)

x0

d

T

d

T

x0

Figure 4.4: Two examples of ωT0 .

The support of b0 is contained in ωT0 . Moreover the following results hold true:

Lemma 4.3.3 Let b0 be defined as above. Then

∇b0(x0) = p , (4.26)

∇b0 = 0 on ∂ωT0 , (4.27)

b0(x) = p · (x− x0) ∀x ∈ Ω : |x− x0| ≤
d

4
, (4.28)

b0(x) = 0 ∀x ∈ Ω : |x− x0| ≥
3d

4
, (4.29)

|b0|m,∞,ωT0
≤ Cd1−m , m = 0, 1, 2 . (4.30)

Proof. It follows from straightforward calculations. In particular, (4.30) follows by combining

that |χ|m,∞,ωT0
≤ Cd−m (see [15, equation (3.8)]) with the fact that p · (x − x0) is linear and

continuous.

Corollary 4.3.1 Let b0 and ωT0 be defined as above. Then,

|b0|m,q,ωT0
≤ Ch

3−m−2/p
0 , m = 0, 1, 2 ,

and, for all edge ℓ,

∥b0∥0,q,ℓ ≤ C|ℓ|2−1/p .
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Proof. Using (4.30) and the fact that h0 ≤ Cd ≤ Ch0, we have

|b0|m,q,ωT0
≤ |b0|m,∞,ωT0

|ωT0 |1/q ≤ Cd1−mh
2/q
0 ≤ Ch

3−m−2/p
0 .

Moreover, using that

∥v∥0,q,∂T ≤ C∥v∥1−1/q
0,q,T ∥v∥1/q1,q,T ∀v ∈W 1,q(T )

(see [20, Theorem 1.6.6]), we have

∥b0∥0,q,ℓ ≤ C∥b0∥1−1/q
0,q,ωT0

∥b0∥1/q1,q,ωT0
≤ C|ℓ|(3−2/p)(1−1/q)|ℓ|(2−2/p)(1/q) = C|ℓ|2−1/p .

To end this section, we recall an error estimate for the Lagrange interpolant vI ∈ Hh of a

function v ∈ C(Ω).

Lemma 4.3.4 Given ℓ ∈ Eh, let ωℓ be defined as above. There holds

∥v − vI∥0,q,ℓ ≤ C|ℓ|1+1/p|v|2,q,ωℓ
∀ v ∈W 2,q(ωℓ) , 1 < q <∞ .

Proof. See, for instance, [15, Lemma 3.4].

4.4 An a posteriori error estimator

According to Remark 4.2.1 the solution of problem (4.3) belongs to Lp(Ω) with 1 ≤ p < 2.

In this section we will define an a posteriori error estimator in the Lp(Ω)-norm for the finite

element approximation error u−uh. We will prove the reliability and efficiency of the estimator

for a particular range of p. Let us emphasize that this proof holds for a regular family of meshes

and does not need the quasiuniformity assumption, so that the error estimator can be used to

drive an adaptive scheme.

For all T ∈ Th we define

εT,p :=

h2pT ∥div (σ∇uh)∥p0,p,T +
1

2

∑
ℓ∈E(T )∩Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

,

where E(T ) is the set of the edges of T and [[ g ]] denotes the jump of g across an edge. We define

the local a posteriori error indicator ηT,p for all T ∈ Th as follows:

ηT,p :=


(
h2−p0 + εpT0,p

)1/p
if T = T0 ,

εT,p otherwise .
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Next, we define the global error estimator from these indicators as follows:

ηp :=

∑
T∈Th

ηpT,p

1/p

.

4.4.1 Reliability

To show that this estimator is reliable, we prove the following theorem which is based on a

duality argument as that used for Theorem 4.2.2.

Theorem 4.4.1 Let Ω be a convex Lipschitz polygon and let σi,j ∈ C1(Ω) for each i, j = 1, 2.

Let ηp be defined as above with p ∈ ( q0
q0−1 , 2), where q0 > 2 is the maximal regularity exponent in

(4.6). Then, the following estimate holds true:

∥u− uh∥0,p,Ω ≤ Cηp .

Proof. Given ψ ∈ Lq(Ω), let φ ∈W 2,q(Ω) be the solution of (4.5). Proceeding as in (5.13), using

(4.4) tested with vh = φI (the Lagrange interpolant of φ), and integrating by parts, we obtain∫
Ω
(u− uh)ψ = −p · ∇φ(x0) +

∫
Ω
σ∇uh · ∇φ (4.31)

= p · (∇φI(x0)−∇φ(x0)) +

∫
Ω
σ∇uh · ∇(φ− φI)

= p · (∇φI(x0)−∇φ(x0))−
∑
T∈Th

∫
T
div (σ∇uh)(φ− φI)

+
∑
ℓ∈Eh,i

∫
ℓ
[[σ∇uh · n ]](φ− φI) +

∑
ℓ∈Eh,e

∫
ℓ
σ∇uh · n(φ− φI) .

Using Hölder inequality, Proposition 4.2.1, and Lemma 4.3.4 we estimate each term on the

right hand side as follows:

|p · ∇(φ− φI)(x0)| ≤ |p||φ− φI |1,∞,T0 ≤ Ch
1−2/q
0 |φ|2,q,T0 ,

∑
T∈Th

∫
T
div (σ∇uh)(φ− φI) ≤

∑
T∈Th

∥div (σ∇uh)∥0,p,T ∥φ− φI∥0,q,T

≤ C
∑
T∈Th

h2T ∥div (σ∇uh)∥0,p,T |φ|2,q,T

≤ C

∑
T∈Th

h2pT ∥div (σ∇uh)∥p0,p,T

1/p

|φ|2,q,Ω ,
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∑
ℓ∈Eh,i

∫
ℓ
[[σ∇uh · n ]](φ− φI) ≤

∑
ℓ∈Eh,i

∥[[σ∇uh · n ]]∥0,p,ℓ∥φ− φI∥0,q,ℓ

≤ C
∑
ℓ∈Eh,i

|ℓ|1+1/p∥[[σ∇uh · n ]]∥0,p,ℓ|φ|2,q,ωℓ

≤ C

∑
ℓ∈Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

1/p

|φ|2,q,Ω ,

∑
ℓ∈Eh,e

∫
ℓ
σ∇uh · n(φ− φI) ≤

∑
ℓ∈Eh,e

∥σ∇uh · n∥0,p,ℓ∥φ− φI∥0,q,ℓ

≤ C
∑
ℓ∈Eh,e

|ℓ|1+1/p∥σ∇uh · n∥0,p,ℓ|φ|2,q,ωℓ

≤ C

 ∑
ℓ∈Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

|φ|2,q,Ω .

Substituting all these estimates in (4.31) and using (4.6), we obtain

∫
Ω
(u− uh)ψ ≤ C

h2−p0 +
∑
T∈Th

h2pT ∥div (σ∇uh)∥p0,p,T

+
∑
ℓ∈Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ +
∑
ℓ∈Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

∥ψ∥0,q,Ω .

Therefore,

∥u− uh∥0,p,Ω = sup
ψ∈Lq(Ω)

∫
Ω
(u− uh)ψ

∥ψ∥0,q,Ω

≤ C
(
h2−p0 +

∑
T∈Th h

2p
T ∥div (σ∇uh)∥p0,p,T +

∑
ℓ∈Eh,i |ℓ|

p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

+
∑

ℓ∈Eh,e |ℓ|
p+1∥σ∇uh · n∥p0,p,ℓ

)1/p
and from this we conclude the theorem.

4.4.2 Efficiency

In this subsection we always assume that σi,j ∈ C1(Ω) for each i, j = 1, 2.

To prove the efficiency estimate, we will use some techniques that appears in [54]. For that,

we introduce the matrix σI , whose entries are the Lagrange interpolants of σi,j :

σI := (σIi,j)1≤i,j≤2.
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The following four lemmas provide upper bounds for each term defining ηpT,p. Here and

thereafter div (·) must be understood in the following row-wise sense: (div (σ))j =
∑

i
∂σi,j
∂xi

.

Lemma 4.4.1 The following estimate holds true:

h2pT ∥div (σ∇uh)∥p0,p,T ≤ C
(
∥σ∥p1,∞,T ∥u− uh∥p0,p,T + h2pT ∥[div (σ − σI)] · ∇uh∥p0,p,T

)
for all T ∈ Th.

Proof. Let us consider an arbitrary T ∈ Th, the bubble function bT defined in (4.12) and the

function ψT defined in Ω as

ψT := div (σI∇uh) bT in T .

Like bT , this function is supported in T .

The fact that div (σI∇uh)|T ∈ P0, (4.16), (4.14), (4.15), and integration by parts yield

∥div (σI∇uh)∥20,p,T = |T |2/p−1∥div (σI∇uh)∥20,2,T
≤ C|T |2/p−1∥b1/2T div (σI∇uh)∥20,2,T

= C|T |2/p−1

(∫
T
div (σ∇uh)ψT +

∫
T
div ((σI − σ)∇uh)ψT

)
= C|T |2/p−1

(∫
T
uhdiv (σ∇ψT ) +

∫
T
[div (σI − σ)] · ∇uh ψT

)
.

Next we notice that, since u is solution of (4.3) and ∇bT (x0) = 0, one has∫
T
udiv (σ∇ψT ) = −p · ∇ψT (x0) = 0 .

Therefore, we can write

∥div (σI∇uh)∥20,p,T

≤ C|T |2/p−1

(∫
T
(uh − u)div (σ∇ψT ) +

∫
T
[div (σI − σ)] · ∇uh ψT

)
.

For the first term we have∣∣∣∣∫
T
(uh − u)div (σ∇ψT )

∣∣∣∣ ≤ 2∥u− uh∥0,p,T ∥σ∥1,∞,T ∥ψT ∥2,q,T

and, using (4.17),

∥ψT ∥2,q,T = |div (σI∇uh)|∥bT ∥2,q,T

≤ C|div (σI∇uh)||T |−1/p ≤ C∥div (σI∇uh)∥0,p,T |T |−2/p .
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For the second one,∣∣∣∣∫
T
[div (σI − σ)] · ∇uhψT

∣∣∣∣ ≤ ∥[div (σI − σ)] · ∇uh∥0,p,T ∥ψT ∥0,q,T

and, now using (4.13),

∥ψT ∥0,q,T ≤ C|div (σI∇uh)||T |1/q ≤ C∥div (σI∇uh)∥0,p,T |T |1/q−1/p .

Hence

∥div (σI∇uh)∥0,p,T ≤ C
(
h−2
T ∥σ∥1,∞,T ∥u− uh∥0,p,T + ∥[div (σI − σ)] · ∇uh∥0,p,T

)
from which we easily obtain the desired result.

Lemma 4.4.2 The following estimate holds true

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

≤ C

∥σ∥p1,∞,ωℓ
∥u− uh∥p0,p,ωℓ

+
∑
T ′⊂ωℓ

h2pT ′∥[div (σI − σ)] · ∇uh∥p0,p,T ′

 ,

for all ℓ ∈ Eh,i.

Proof.

We consider an arbitrary ℓ ∈ Eh,i, the bubble function bℓ defined in (4.18) and

ψℓ := [[∇uh · n ]] bℓ in Ω .

Like bℓ, this function is supported in ωℓ.

We know that the entries of σ belong to L∞(Ω) and, therefore, we have

∥[[σ∇uh · n ]]∥0,p,ℓ ≤ C∥[[∇uh · n ]]∥0,p,ℓ = C∥[[∇uh ]]∥0,p,ℓ , (4.32)

because the jump of the tangential component of ∇uh is zero.

On the other hand, from (4.22) and the uniform positivity of σ we obtain

∥[[∇uh ]]ℓ∥20,p,ℓ = |ℓ|2/p−1∥[[∇uh ]]ℓ∥20,2,ℓ

≤ C|ℓ|2/p−1∥b1/2ℓ [[∇uh ]]ℓ∥20,2,ℓ

≤ C|ℓ|2/p−1

∫
ℓ
bℓ [[∇uh ]]tℓσ[[∇uh ]]ℓ

= C|ℓ|2/p−1

∫
ℓ
[[σ∇uh · n ]]ψℓ .

(4.33)
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Taking ψℓ as a test function in (4.3), using that ∇bℓ(x0) = 0, integrating by parts, and

recalling (4.20) and (4.21), we have∫
ωℓ

(u− uh)div (σ∇ψℓ) = −
∑
T ′⊂ωℓ

∫
T ′
uhdiv (σ∇ψℓ)

= −
∑
T ′⊂ωℓ

∫
T ′

div (σ∇uh)ψℓ +
∫
ℓ
[[σ∇uh · n ]]ψℓ .

Hence ∫
ℓ
[[σ∇uh · n ]]ψℓ =

∑
T ′⊂ωℓ

∫
T ′

div (σ∇uh)ψℓ +
∫
ωℓ

(u− uh)div (σ∇ψℓ)

≤ C (∥div (σ∇ψℓ)∥0,q,ωℓ
∥u− uh∥0,p,ωℓ

+
∑

T ′⊂ωℓ
∥div (σ∇uh)∥0,p,T ′∥ψℓ∥0,q,T ′

)
≤ C (∥σ∥1,∞,ωℓ

∥u− uh∥0,p,ωℓ
∥ψℓ∥2,q,ωℓ

+
∑

T ′⊂ωℓ
∥div (σ∇uh)∥0,p,T ′∥ψℓ∥0,q,T ′

)
(4.34)

From standard scaling arguments and (4.23), we have

∥ψℓ∥0,q,ωℓ
≤ |[[∇uh ]]ℓ|∥bℓ∥0,q,ωℓ

≤ C∥[[∇uh ]]ℓ∥0,p,ℓ|ℓ|2−3/p (4.35)

and

∥ψℓ∥2,q,ωℓ
≤ C|ℓ|−2∥ψℓ∥0,q,ωℓ

≤ C∥[[∇uh ]]ℓ∥0,p,ℓ|ℓ|−3/p . (4.36)

Hence, from (4.33) and (4.34), we write

∥[[∇uh ]]ℓ∥0,p,ℓ ≤ C|ℓ|2/p−1
(
|ℓ|−3/p∥σ∥1,∞,ωℓ

∥u− uh∥0,p,ωℓ

+
∑

T ′⊂ωℓ
|ℓ|2−3/p∥div (σ∇uh)∥0,p,T ′

)
and, from (4.32),

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,ωℓ

∥u− uh∥p0,p,ωℓ

+
∑

T ′⊂ωℓ
h2pT ′∥div (σ∇uh)∥p0,p,T ′

)
.

We conclude the proof by using Lemma 4.4.1 to bound the last term.

Lemma 4.4.3 The following estimate holds true

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ + h2pTℓ∥[div (σI − σ)] · ∇uh∥p0,p,Tℓ

+|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ
)
,

for all ℓ ∈ Eh,e, where σℓ is any constant matrix.
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Proof.

We consider an arbitrary ℓ ∈ Eh,e, the bubble function bℓ defined in (4.19) and

ψℓ := σℓ∇uh · n bℓ in Ω.

Like bℓ, this function is supported in Tℓ.

Since σℓ is constant and bℓ satisfies (4.22), it is easy to prove that

∥σℓ∇uh · n∥20,p,ℓ = |ℓ|2/p−1∥σℓ∇uh · n∥20,2,ℓ

≤ C|ℓ|2/p−1∥b1/2ℓ σℓ∇uh · n∥20,2,ℓ

= |ℓ|2/p−1

(∫
ℓ
(σℓ − σ)∇uh · nψℓ +

∫
ℓ
σ∇uh · nψℓ

)
.

(4.37)

On the other hand, using that ∥ψℓ∥0,q,ℓ ≤ C|ℓ|−1/q∥ψℓ∥0,q,Tℓ and the arguments used for

proving the previous result, we obtain∫
ℓ
(σℓ − σ)∇uh · nψℓ ≤ C∥(σℓ − σ)∇uh · n∥0,p,ℓ|ℓ|−1/q∥ψℓ∥0,q,Tℓ

≤ C∥(σℓ − σ)∇uh · n∥0,p,ℓ|ℓ|1−2/p∥σℓ∇uh · n∥0,p,ℓ
and ∫

ℓ
σ∇uh · nψℓ =

∫
Tℓ

(u− uh) div (σ∇ψℓ) +
∫
Tℓ

div (σ∇uh)ψℓ

≤ C(∥σ∥1,∞,Tℓ∥u− uh∥0,p,Tℓ |ℓ|
−3/p

+ ∥div (σ∇uh)∥0,p,Tℓ |ℓ|
2−3/p)∥σℓ∇uh · n∥0,p,ℓ.

Substituting these expressions in (4.37), we have

∥σℓ∇uh · n∥0,p,ℓ ≤ C|ℓ|2/p−1(|ℓ|−3/p∥σ∥1,∞,Tℓ∥u− uh∥0,p,Tℓ
+ |ℓ|2−3/p∥div (σ∇uh)∥0,p,Tℓ

+ |ℓ|1−2/p∥(σℓ − σ)∇uh · n∥0,p,ℓ)

and, therefore,

|ℓ|p+1∥σℓ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ + h2pTℓ∥div (σ∇uh)∥
p
0,p,Tℓ

+ |ℓ|p+1∥(σℓ − σ)∇uh · n∥p0,p,ℓ
)
.

Thus, using this result, Lemma 4.4.1, and the fact that

∥σ∇uh · n∥0,p,ℓ ≤ ∥(σℓ − σ)∇uh · n∥0,p,ℓ + ∥σℓ∇uh · n∥0,p,ℓ ,

we conclude the proof.
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Lemma 4.4.4 The following estimate holds true:

h2−p0 ≤ C

∥σ∥p1,∞,ωT0
∥u− uh∥p0,p,ωT0

+
∑

T ′⊂ωT0

h2pT ′∥[div (σ − σI)] · ∇uh∥p0,p,T ′

 .

Proof. Let E0
h be the set of edges ℓ of triangles T ⊂ ωT0 , such that ℓ ̸⊂ ∂ωT0 . Testing equation

(4.3) with the bubble function b0 defined in (4.25), we obtain

|p|2 = p · ∇b0(x0) = −
∫
Ω
(u− uh) div (σ∇b0)−

∫
Ω
uh div (σ∇b0)

≤ ∥u− uh∥0,p,ωT0
∥div (σ∇b0)∥0,q,ωT0

−
∑

T ′⊂ωT0

∫
T ′

div (σ∇uh) b0+
∑
ℓ∈E0

h

∫
ℓ
[[σ∇uh ]]ℓ b0

≤ C
(
∥u− uh∥0,p,ωT0

∥σ∥1,∞,ωT0
∥b0∥2,q,ωT0

+∥b0∥0,q,ωT0

∑
T ′⊂ωT0

∥div (σ∇uh)∥0,p,T ′ +
∑

ℓ∈E0
h
∥[[σ∇uh · n ]]∥0,p,ℓ∥b0∥0,q,ℓ

)
,

where we have used (4.26), integration by parts, and Hölder inequality.

We estimate ∥b0∥2,q,ωT0
, ∥b0∥0,q,ωT0

, and ∥b0∥0,q,ℓ by Corollary 4.3.1. Thus, we have

|p|2 ≤ Ch
1−2/p
0

∥σ∥1,∞,ωT0
∥u− uh∥0,p,ωT0

+ h20
∑

T ′⊂ωT0

∥div (σ∇uh)∥0,p,T ′

+
∑
ℓ∈E0

h

|ℓ|1+1/p∥[[σ∇uh · n ]]∥0,p,ℓ

 .

Since h0 ≤ ChT ′ for each T ′ ⊂ ωT0 , this estimate together with Lemmas 4.4.1 and 4.4.2 lead to

the desired result.

Now we are in a position to conclude an efficiency estimate by collecting the previous four

lemmas. Notice that these lemmas hold true for any p ∈ (1, 2) (and not only for p ∈ ( q0
q0−1 , 2) as

Theorem 4.31).

Theorem 4.4.2 Let σi,j ∈ C1(Ω) for each i, j = 1, 2. Let u and uh be the solutions of (4.3)

and (4.4), respectively. Then, for all p ∈ (1, 2) and for all T ∈ Th

ηT,p ≤ C

∥σ∥p1,∞,ωT
∥u− uh∥p0,p,ωT

+
∑
T ′⊂ωT

h2pT ′∥[div (σI − σ)] · ∇uh∥p0,p,T ′

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ

1/p

,

where ωT := {T ′ ∈ Th : T ∩ T ′ ̸= ∅}, and for each ℓ ∈ E(T ) ∩ Eh,e, σℓ is any constant matrix.
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Notice that the last term in the estimate above vanishes for all triangles which do not intersect

∂Ω.

The above inequalities are actual efficiency estimates if we show that the terms∑
T ′⊂ωT

h2pT ′∥[div (σI − σ)] · ∇uh∥p0,p,T ′ ,
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥(σ − σℓ)∇uh · n∥p0,p,ℓ

are negligible. In what follows we will show that this holds true under some additional assump-

tions; we also note that our final result is true on the whole domain Ω (and not locally, as it

would be preferable).

Regarding the term
∑

ℓ∈E(T )∩Eh,e |ℓ|
p+1∥(σ−σℓ)∇uh ·n∥p0,p,ℓ, since σℓ is any arbitrary cons-

tant matrix, it clearly vanishes when σ|ℓ is already constant: namely, when the tissue on the

scalp is piecewise homogeneous, which is a realistic assumption in practice. On the other hand,

an alternative proof for Lemma 4.4.3 also holds true when the conductivity on ∂Ω is of the form

σ = σI, with σ a scalar function; namely, when the tissue of the scalp is isotropic. In fact, in

that case we have the following result.

Lemma 4.4.5 We have

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ ≤ C
(
∥σ∥p1,∞,Tℓ

∥u− uh∥p0,p,Tℓ + h2pTℓ∥[div (σI − σ)] · ∇uh∥p0,p,Tℓ
)

for all ℓ ∈ Eh,e, provided σ|ℓ = σI, with σ : ℓ −→ R a scalar function, belonging to C1(Tℓ).

Proof. We consider an arbitrary ℓ ∈ Eh,e, the bubble function bℓ defined in (4.19) and

ψℓ := σ0∇uh · n bℓ in Ω ,

with σ0 as in (4.2). Like bℓ, this function is supported in Tℓ.

From (4.22) and (4.2), we have that
∫
ℓ bℓσ ≥ Cσ0|ℓ|. Using this result, we obtain

∥σ∇uh · n∥20,p,ℓ ≤ ∥σ∥20,∞,ℓ∥∇uh · n∥20,p,ℓ

= ∥σ∥20,∞,ℓ|ℓ|2/p−1|ℓ||∇uh · n|2

≤ C
∥σ∥20,∞,ℓ

σ2
0

|ℓ|2/p−1

∫
ℓ
σ∇uh · nψℓ .

The rest of the proof runs almost identically as that of Lemma 4.4.2, by using that

∥ψℓ∥0,q,Tℓ ≤ ∥bℓ∥0,q,Tℓ |ℓ|
−1/p∥σ∇uh · n∥0,p,ℓ ≤ C|ℓ|2−3/p∥σ∇uh · n∥0,p,ℓ

and

∥ψℓ∥2,q,Tℓ ≤ C|ℓ|−2∥ψℓ∥0,q,Tℓ ≤ C|ℓ|−3/p∥σ∇uh · n∥0,p,ℓ
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instead of (4.35) and (4.36), respectively.

In order to prove that the term
∑

T ′⊂ωT
h2pT ′∥[div (σI − σ)] · ∇uh∥p0,p,T ′ in Theorem 4.4.2

is globally negligible, we proceed as in [54] and make the following additional non-degeneracy

assumption: there exists C > 0 such that

∥u− uh∥0,p,Ω ≥ Ch2. (4.38)

As explained in [54], this assumption looks quite reasonable.

In such a case we conclude with the following result.

Theorem 4.4.3 Let us assume that for each ℓ ∈ Eh,e, either σ|ℓ is a constant matrix, or

σ|ℓ = σI with σ : ℓ −→ R a scalar function. Moreover, we assume that σ ∈ [C1(Ω)]2×2 and

σ ∈ [W 2,∞(T )]2×2 for all T ∈ Th. Let u and uh be the solutions of (4.3) and (4.4), respectively.

If (4.38) holds true, then

ηp ≤ C∥u− uh∥0,p,Ω

for all p ∈ (1, 2).

Proof. It is enough to estimate the last term in the inequality of Theorem 4.4.2:∑
T∈Th

∑
T ′⊂ωT

h2pT ′∥[div (σI − σ)] · ∇uh∥p0,p,T ′

≤
∑
T∈Th

∑
T ′⊂ωT

h2pT ′∥div (σI − σ)∥p0,∞,T ′∥∇uh∥p0,p,T ′

≤ C
∑
T∈Th

∑
T ′⊂ωT

h2pT ′h
p
T ′∥σ∥p2,∞,T ′h

−p
T ′ ∥uh∥p0,p,T ′

≤ Ch2p(maxT∈Th ∥σ∥
p
2,∞,ωT

)
∑
T∈Th

∥uh∥p0,p,ωT

≤ Ch2p(∥u− uh∥p0,p,Ω + ∥u∥p0,p,Ω)

≤ C∥u− uh∥p0,p,Ω + C∥u− uh∥p0,p,Ω∥u∥
p
0,p,Ω ,

where we have used (4.38) for the last inequality.

4.5 Three-dimensional case

In what follows we briefly discuss the results that are preserved in 3D. First, let us recall

that the existence and uniqueness of solution of the model problem (4.3) was proved in [65] in

the 3D case for all p ∈ [1, 3/2).

To obtain a priori and a posteriori error estimates for the numerical solution, we resort to

the auxiliary problem (4.5). The critical point is the regularity of the solution of this problem.
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We need that the solution belongs to W 2,q(Ω) for q > 3 (namely, q such that 1
p + 1

q = 1 with

1 ≤ p < 3/2). In [30, Theorem 2] it is proved that if Ω is a cube and the conductivity σ is a

positive constant, (i.e. isotropic homogeneous material), then the solution of (4.5) belongs to

W 2,q(Ω) for all q > 1. Therefore, within this section we assume that Ω is a cube in R3 and

that σ = σI with σ a positive constant. In such a case we have the following result, that is the

analogue in the 3D case of Theorem 4.2.2.

Theorem 4.5.1 Let {Th} be a quasiuniform family of subdivisions of the cube Ω. Let u and uh

be the solutions to problems (4.3) and (4.4) respectively. Then the following estimate holds true

∥u− uh∥0,p,Ω ≤ Ch3/p−2 ,

for all p ∈ (1, 3/2).

Proof. The proof runs as that of Theorem 4.2.2.

The a posteriori error analysis also extends to the 3D framework. Let Fh,i be the set of all

the inner faces and Fh,e that of external faces of the mesh Th. Let Fh := Fh,i ∪ Fh,e. For all

T ∈ Th we define

ε̂T,p :=
(
1
2

∑
F∈F(T )∩Fh,i

|F |(p+3)/2|[[∇uh · nF ]]|p

+
∑

F∈F(T )∩Fh,e
|F |(p+3)/2|∇uh · nF |p

)1/p
,

where F(T ) is the set of faces of T and |F | is the area of F .

We define the local a posteriori error indicator η̂T,p for all T ∈ Th by

η̂T,p :=


(
h3−2p
0 + ε̂pT0,p

)1/p
if T = T0 ,

ε̂T,p otherwise ,

where h0 := hT0 , and the global error estimator from these indicators as follows:

η̂p :=

∑
T∈Th

η̂pT,p

1/p

.

Note that, as we are assuming that σ is constant, the second and third terms that appear

in Theorem 4.4.2 vanish in the estimate of η̂T,p. The following results are obtained by adapting

to the 3D framework the proofs of Theorem 4.4.1, and Lemmas 4.4.2 and 4.4.4. We have the

following result regarding the reliability of the estimator:

Theorem 4.5.2 Let u and uh be the solutions of (4.3) and (4.4), respectively. Then, the follo-

wing estimate holds true:

∥u− uh∥0,p,Ω ≤ Cη̂p .
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The efficiency follows from these two lemmas:

Lemma 4.5.1 Let us set ωF := {T ∈ Th : F ⊂ ∂T}. The following estimates hold true:

|F |(p+3)/2|[[∇uh · nF ]]|p ≤ C∥u− uh∥p0,p,ωF
, for all F ∈ Fh,i

and

|F |(p+3)/2|∇uh · nF |p ≤ C∥u− uh∥p0,p,ωF
, for all F ∈ Fh,e.

Lemma 4.5.2 Let ωT0 be defined as in (4.24). Then,

h3−2p
0 ≤ C∥u− uh∥p0,p,ωT0

.

Notice that no negligible higher order term appears in this case in the efficiency estimate.

Therefore, we have the following version of Theorem 4.4.3: under the more stringent assumptions

we have required, the result now holds locally on each triangle T .

Theorem 4.5.3 Let u and uh be the solutions of (4.3) and (4.4), respectively. Then

η̂T,p ≤ C∥u− uh∥0,p,ωT ,

for all T ∈ Th and p ∈ (1, 3/2).

4.6 Numerical experiments

In this section we report some numerical experiments in 2D. The adaptive procedure consists

in solving problem (4.4) on a sequence of meshes up to finally attain a solution with an estimated

error within a prescribed tolerance. Each mesh is a local refinement of the previous one. We

compute the local error indicators ηT,p for all T in the ‘old’ mesh Th, and then we refine those

elements T with ηT,p ≥ θmax{ηT,p : T ∈ Th}, where θ ∈ (0, 1) is a prescribed parameter. In

particular we take θ = 1/2 in all our experiments.

The algorithm is implemented in a Matlab code using the mesh generator Triangle. This

generator allows creating successively refined meshes based on a hybrid Delaunay refinement

algorithm (see [64]).

4.6.1 Test 1. Isotropic constant conductivity

The first test consists of solving problem (4.4) in a regular polygon of 16 edges inscribed in a

circumference centered at (0, 0) with radius 1. The dipole is located at x0 = (0.2605,−0.3054),

the polarization is p = (−0.2425, 0.9701) and the conductivity is assumed to be the identity.
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Since σ = 1, we can obtain an accurate solution by means of the subtraction technique. This

technique uses a particular function u0 satisfying div (σ∇u0) = div (pδx0), which is analytically

known. Subtracting u0 to the solution of problem (4.4) leads to a non-homogeneous Neumann

problem, whose solution is not singular at x0. Therefore, this problem can be accurately solved

by using standard finite elements (see [67] for more details). The solution computed by this

subtraction technique in the finest mesh of the adaptive procedure will be taken as the reference

solution, uref(x).

Figure 4.5 shows some of the successively refined meshes created in the process driven by

ηT,p with p = 1.25. Parameters “iter” and “d.o.f.” refer to the iteration number and the total

number of vertices of the corresponding mesh.

iter=1, d.o.f.= 54 iter=17, d.o.f.= 569 iter=30, d.o.f.=3.905

Figure 4.5: Test 1. Meshes obtained with ηT,p; p = 1.25.

iter=30, d.o.f.=3.905

Figure 4.6: Test 1. Zooms of the mesh for iter=30.

Figure 4.6 shows two successive zooms around the singularity of the finer mesh in Figure

4.5. Each figure is a 200% zoom of the previous one. It can be appreciated that the mesh is

extremely refined in the neighborhood of the singular point. Such a behavior can be expected

from the singularity of the solution at x0, which can be seen from Figure 4.7, which shows the

computed solution on some of the coarser meshes. (Notice that the vertical scales are different

on each subfigure.)
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Figure 4.7: Test 1. Approximate solutions on some coarser meshes.

This extremely singular behavior is the reason why the adaptively created meshes are so

localized. This can be appreciated in Figure 4.8, which contains two graphs. The one on the

left shows the plot of the discrete solution corresponding to the different meshes on the segment

x = x0 + tp, t ∈ [−0.002, 0.002]. The right subfigure is a zoom of previous the plot.

The behavior of the (absolute) error along the adaptive process can be seen from Figure 4.9.

We report log-log plots of the estimated error and the “reference error” versus the number of

degrees of freedom. The “reference error” is computed by comparing the solution of problem

(4.4) with the reference solution. The figure also shows a line of slope −1 which corresponds to

the optimal order of convergence for the finite elements used. It can be seen that the estimated

and the reference errors both attain this optimal order.

In Table 4.1 we compare the reference (relative) error for the solution of problem (4.4)

computed using adapted meshes and a quasiuniform mesh with approximately the same number

of nodes (5780). It can be seen that, to obtain a solution with an error around 5 %, the number

of d.o.f. in the uniform mesh is 40 times the number of d.o.f. in the adapted mesh. Moreover,

with almost the same number of d.o.f., the adaptive algorithm yields a computed solution with

an error 50 times smaller than the one obtained with a uniform mesh.
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Figure 4.8: Test 1. Approximate solution and exact solution on the segment x = x0 + tp,

t ∈ [−0.002, 0.002].
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Figure 4.9: Test 1. Estimator ηp and reference (absolute) Lp error curves; p = 1.25.

We notice also that, though the error indicator is designed to estimate the Lp-norm in Ω,

when using this adaptive procedure the error on the boundary decreases at the optimal rate,

too. Thus, this error indicator can be used in the forward solver when facing the inverse problem

of electroencephalography (namely, the problem aiming at determining the source localization

from suitable boundary measurements). In Figure 4.10 we present a log-log plot of the averaged

relative error
√∑12

n=1 |(uh − uref)(xn)|2/
∑12

n=1 |uref(xn)|2 in twelve different points of ∂Ω (twelve

consecutive vertexes of the polygon Ω), which can be thought as the localization of the electrodes.

Although this error is more noisy, a fated optimal order (slope −1) can be appreciated.
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Degrees of freedom Lp relative error

Adapted mesh 9 141 0.4368 10−1

Adapted mesh 32 5794 0.1152 10−2

Quasiuniform mesh 5780 0.5508 10−1

Table 4.1: Test 1. The Lp relative error for p = 1.25 in three different meshes
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Figure 4.10: Test 1. Averaged relative error at boundary points.

4.6.2 Test 2. Anisotropic non-constant conductivity

In the second test, Ω is a square centered at (0, 0) with side-length 2. The dipole is located

at x0 = (−0.25000,−0.08333), and the polarization is p = (0.9015, 0.4327). We consider a

non-constant anisotropic conductivity

σ =

(
4x2 + 1 0

0 2y2 + 1

)
.

The results are very similar to those of the previous example. Figure 4.11 contains the meshes

corresponding to three different iterations of the adaptive scheme and Figure 4.12 shows two

successive zooms around the singularity.

We report in Figure 4.13 a log-log plot of the estimated error versus the number of degrees

of freedom. The slope is close to −1 which confirms the success of the approach. In this case

we have not a reference solution because the subtracting approach can not be used in this case,

since the conductivity is not constant around the point where the source is located.
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iter=1, d.o.f.= 41 iter=18, d.o.f.= 785 iter=28, d.o.f.=3786

Figure 4.11: Test 2. Meshes obtained with ηT,p; p = 1.25.

iter=28, d.o.f.=3786

Figure 4.12: Test 2. Zooms of the mesh for iter=28.

4.6.3 Test 3. Anisotropic constant conductivity

Finally, we consider a strongly anisotropic conductivity: σ =

(
10 0

0 0.1

)
. The domain Ω

is a square centered at (0, 0), with side-length 2. The dipole is located at x0 = (0, 0) and the

polarization is p = (1, 1). Since the conductivity is constant, as in the first test we can compute

the reference solution using the subtraction approach.

We show in Figure 4.14 the meshes corresponding to three different iterations of the adap-

tive scheme. Figure 4.15 shows two successive zooms around the singularity of the finest mesh

considered (iter=45, d.o.f.=4168).

It can be clearly seen that in this case the meshes are not only refined around the singular

point. The reason for this is that, because of the anisotropy of the conductivity, the solution

has an inner layer at x2 = 0. In fact, the fundamental solution (which is the only source of

singularity) reads in this case

u0(x) =
1

2π

x1 + 100x2
x21 + 100x22

.

Therefore, it is easy to check that the slope of the graph in the x2-direction is approximately 100
x21

at x2 = 0. This can be seen from Figure 4.16, which shows the plot of the fundamental solution
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Figure 4.13: Test 2. Estimator ηp curve; p = 1.25.

iter=1, d.o.f.= 41 iter=15, d.o.f.= 257 iter=30, d.o.f.= 1124

Figure 4.14: Test 3. Meshes obtained with ηT,p; p = 1.25.

in a uniform mesh with 8321 vertices.

We notice from Figure 4.17 that the computed order of convergence is not optimal in this

example. In fact, the fitted slope is close to −0.57. Very likely, the reason for this suboptimal

order is that our adaptive scheme only uses regular meshes, while appropriate anisotropic meshes

seem to be necessary around the inner layer. Nevertheless, the use of our adaptive procedure

turns out to be convenient, as can be seen by comparison with the results obtained with uniform

refinement (see Table 4.2).
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iter=45, d.o.f.= 4168

Figure 4.15: Test 3. Zooms of the mesh around the singular point for iter=45.
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Figure 4.16: Test 3. Fundamental solution.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

er
ro

r

d.o.f.

 

 
Estimated error
Reference error
Slope−0.56786

Figure 4.17: Test 3. Lp (absolute) error

curves for p = 1.25: estimated and refer-

ence error on adapted meshes.

Degrees of freedom Lp relative error

Adapted mesh 15 257 0.7217 10−1

Adapted mesh 38 2118 0.3007 10−1

Quasiuniform mesh 2113 0.7417 10−1

Table 4.2: Test 3. The Lp relative error for p = 1.25 in three different meshes.



Chapter 5

Numerical behavior of different

approximation methods for the

direct and inverse problems of

electrostatics with a dipole source

5.1 Introduction

It is common practice in cognitive research to reconstruct current sources in the human

brain by means of their electric potentials, measured with electrodes which are fixed on the

scalp (EEG).

Electromagnetic activity of the brain is due to the motion of ions in the active regions of

the brain. This movement generates the so called impressed current (or primary currents) that

in turn create ohmic currents in the surrounding environment calls return currents. We are

interested in determining the impressed current.

The reconstruction of the position and of some physical characteristics of the current density

that has given rise to the EEG measurements is called the inverse problem. For an accurate

reconstruction of the primary current it is important to be able to realistically model tissue

conductivity inhomogeneities.

In this chapter we present a series of numerical computations in order to compare different

methods used for the approximation of the direct and inverse problem when the conductivity is

not continuous across the interface of the different tissues (we recall that this is the case in the

real physiological situation). We study in particular the case of a dipolar source located close to

67
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the interface between two regions with different conductivities.

The obtained results have to be seen as a first step towards a better understanding of which

is the most accurate procedure to use in this context.

We start introducing the equations.

5.1.1 Continuous problem

In almost all the studies concerning the neural generation of electromagnetic fields the static

approximation of Maxwell equations is considered

divD = ρ ,

curlE = 0 ,

curlH = J ,

divB = 0 ,

(5.1)

where E and D are the electric field and electric displacement, respectively, ρ the electric field

charge density and J is the electric current density. By H and B we denote the magnetic field

and the magnetic induction, respectively.

For biological tissues, the linear constitutive equationsD = εE andB = µH can be assumed

(see Plonsey and Heppner [57]), where ε and µ correspond to the electric permittivity and the

magnetic permeability, respectively. It can be assumed that µ is constant over the whole space

and equal to the permeability of vacuum [61].

From second equation of (5.1), we conclude that there exists a scalar potential u such that

E = −∇u. From Ohm law the total current density J is the sum of the impressed currents plus

the return currents

J = Jp + σE = Jp − σ∇u ,

where σ is the conductivity, which is a uniformly positive definite matrix with entries in L∞.

From the third equation in (5.1) it follows that

0 = divJ = div (Jp − σ∇u) .

Hence u is solution of the equation

div (σ∇u) = divJp ,

Let Ω be an open connected bounded set with Lipschitz continuous boundary ∂Ω included

in Rd, where d = 2 or d = 3 (Ω represents the human head). We assume that Jp is supported
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in Ω. Since J · n|Ω = J · n|Rd\Ω = 0 and Jp · n = 0 on the interface ∂Ω, then (σ∇u) · n = 0 on

∂Ω. We define n to be the outer unit normal vector on ∂Ω. Then, we obtain this problem:{
div (σ∇u) = div (Jp) in Ω ,

(σ∇u) · n = 0 on ∂Ω .
(5.2)

Let us assume that a small activated region is centered at a point x0 and that the observation

point is far from it. In this case the primary current Jp is typically modeled as a dipole. So, in the

following, we consider the electrostatic problem with a dipole as source term and homogeneous

Neumann boundary condition:{
div (σ∇u) = div (pδx0) in Ω ,

(σ∇u) · n = 0 on ∂Ω .
(5.3)

where x0 is an inner point of Ω, and p ̸= 0 is the polarization vector. In [65] the existence and

uniqueness of solution u ∈ Lp(Ω), 1 ≤ p < 3/2 of this problem has been studied under of the

assumption of more regularity of σ in a vecinity of x0 and d = 3. We give more details later on.

The singularity of the dipole source can also be trated using the so-called subtraction ap-

proach. We explain in more detail this technique below. We need to assume that there exists a

nonempty open subdomain Ω0 ⊂ Ω around the source position x0 with constant conductivity

σ0 (in general, a matrix). The conductivity σ is then split into two parts,

σ = σ0 + σs , (5.4)

so that σ0 is constant over the whole domain Ω and σs is zero in the subdomain Ω0, i.e.,

σs(x) = 0 for all x ∈ Ω0. The total potential u can be split into two parts,

u = u0 + us, (5.5)

where u0 denotes the solution in a infinity homogeneous conductor. The potential u0 satisfies

div (σ0∇u0) = div (pδx0) in Rd . (5.6)

An analytic formula for u0 in the case of a homogeneous and isotropic conductivity σ0 = σ0I,

σ0 ∈ R is

u0(x) =


⟨p, (x− x0)⟩
2πσ0|x− x0|2

if d = 2 ,

⟨p, (x− x0)⟩
4πσ0|x− x0|3

if d = 3 .

When the conductivity σ0 is homogeneous and anisotropic (namely, σ0 is a constant matrix),

we find
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u0(x) =


⟨
p, (σ0)

−1(x− x0)
⟩

2π
√
detσ0 ⟨(σ0)−1(x− x0), (x− x0)⟩

if d = 2 ,⟨
p, (σ0)

−1(x− x0)
⟩

4π
√
detσ0 ⟨(σ0)−1(x− x0), (x− x0)⟩3/2

if d = 3 .

Replacing (5.4), (5.5) in (5.3) and using that u0 satisfies (5.6) , we obtain

div [(σ0 + σs)∇(u0 + us)] = div (pδx0) = div (σ0∇u0) ,

and hence,

div (σ∇us) = div [(σ0 + σs)∇us] = −div (σs∇u0) .

On the other hand, since

0 = (σ∇u) · n = (σ∇(u0 + us)) · n on ∂Ω ,

then we obtain the Neumann boundary condition:

(σ∇us) · n = −(σ∇u0) · n on ∂Ω .

In conclusion u0 is known and us solves the boundary value problem
div (σ∇us) = −div (σs∇u0) in Ω ,

(σ∇us) · n = −(σ∇u0) · n on ∂Ω ,∫
Ω
us = 0 .

(5.7)

The last condition of (5.7) filters out additive constants and therefore is suitable for assuring

uniqueness of the solution us.

The goal of the reformulation using the explicit representation of u0 is to obtain a problem

with a more regular source, eliminating the singularity at x0: notice that the potential u0 has

a singularity at x = x0 but it is smooth for x ̸= x0. Therefore, the Neumann datum in (5.7) is

smooth and moreover, σs vanishes in Ω0 which implies that σs∇u0 ∈ L∞(Ω).

An alternative approach is the direct method studied by Valli in [65] (d = 3) and also in the

previous chapter of this thesis (d = 2). Notice that to prove that the following weak formulation

has a unique solution, it is necessary to assume that there exists r0 > 0 such that the entries

of σ belong to W 1,∞(Br0(x0)), where Br0(x0) := {x ∈ Rd : |x− x0| < r0}. We recall the weak

formulation: find u ∈ Lp(Ω) such that
∫
Ω
udiv (σ∇φ) = −p · ∇φ(x0) ∀φ ∈ Xq ,∫

Ω
u = 0 ,

(5.8)
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where

Xq := {φ ∈W 1,q(Ω) : φ ∈ C1(Br∗(x0)), div (σ∇φ) ∈ Lq(Ω), (σ∇φ) · n = 0 on ∂Ω},

being r∗ a fixed number such that 0 < r∗ < r0. Moreover, here and thereafter 1
p +

1
q = 1.

The following theorem, which is derivated from [65, Remark 3.3], ensures the existence and

uniqueness of solution to (5.8) in the three-dimensional case (d = 3) and in two-dimensional

case (d = 2):

Theorem 5.1.1 For all p with 1 ≤ p < 3/2 if d = 3 (1 ≤ p < 2 if d = 2), there exists a unique

solution u ∈ Lp(Ω) to (5.8), which is the same for all p in this range.

Another alternative approach, is to use an approximation of the delta function

δϵ,x0 := χϵ/|Bϵ(x0)| ∈ L2(Ω) , (5.9)

when solving the discrete problem, where χϵ is the characteristic function (equal to one in the ball

Bϵ(x0) and zero, otherwise). For simplicity of notation, in this section we define Bϵ := Bϵ(x0).

In this case, the weak problem corresponds to

find uϵ ∈ H1(Ω) such that
∫
Ω
σ∇uϵ · ∇v =

1

|Bϵ|

∫
Bϵ

p · ∇v ∀φ ∈ H1(Ω) ,∫
Ω
uϵ = 0 ,

(5.10)

for each ϵ > 0. In the following theorem, we prove the convergence of uϵ to u when ϵ tends to

zero. We prove the convergence only in the bidimensional case (but a similar result is true also

for d = 3).

Theorem 5.1.2 Let σi,j ∈ W 1,∞(Br0) for each i, j = 1, 2 and d = 2. Let u and uϵ be the

respective solutions to problems (5.8) and (5.10) and r∗ > 0 a fixed number such that r∗ < r0.

Then if ϵ < r∗ there exist a positive constant C, independent of ϵ such that for all p with

1 ≤ p < 2

∥u− uϵ∥0,p,Ω ≤ Cϵ2/p−1 . (5.11)

Proof. To find this estimate in Lp(Ω), with 1 ≤ p < 2, we will use the same duality argument

that in Chapter 4. We recall the well-posed auxiliary problem: given ψ ∈ Lq(Ω), find φ ∈ H1(Ω)

such that 
div (σ∇φ) = ψ − 1

|Ω|

∫
Ω
ψ in Ω ,

(σ∇φ) · n = 0 on ∂Ω ,∫
Ω
φ = 0 .

(5.12)
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where 1
p +

1
q = 1.

Since ψ − 1
|Ω|
∫
Ω ψ ∈ Lq(Ω), then the internal regularity results for elliptic problems [37,

Section 9.5] yield φ ∈W 2,q(Br∗). The Sobolev embedding theorem (see, e.g. [35, Section 5.6.3])

also gives φ ∈ C1,α(Br∗), with α = 2/p− 1. Moreover, ∥φ∥C1,α(B
∗
r)

≤ C∥φ∥2,q,Br∗ ≤ C∥ψ∥0,q,Ω,
where C depends on σ, r∗, but not on ψ. By using this fact, (5.8), (5.10) and integration by

parts, we obtain ∫
Ω
(u− uϵ)ψ =

∫
Ω
(u− uϵ)

(
div (σ∇φ) + 1

|Ω|

∫
Ω
ψ

)
,

=

∫
Ω
udiv (σ∇φ)−

∫
Ω
uϵdiv (σ∇φ)

= −p · ∇φ(x0) +

∫
Ω
σ∇uϵ · ∇φ

= −p · ∇φ(x0) +
1

|Bϵ|

∫
Bϵ

p · ∇φ

= p ·
(

1

|Bϵ|

∫
Bϵ

∇φ−∇φ(x0)

)
,

≤ |p| 1

|Bϵ|

∫
Bϵ

|∇φ−∇φ(x0)|

≤ |p| 1

|Bϵ|

∫
Bϵ

|x− x0|α∥∇φ∥Cα(Bϵ)

≤ C|p|∥∇φ∥C1,α(Bϵ)
ϵα

≤ C|p|∥∇φ∥2,q,Br∗ ϵ
α

≤ C|p|∥ψ∥0,q,Ωϵα . (5.13)

Therefore we have

∥u− uϵ∥0,p,Ω = sup
ψ∈Lq(Ω)

∫
Ω
(u− uϵ)ψ

∥ψ∥0,q,Ω
≤ Cϵ2/p−1 .

5.1.2 Discrete problem

In all this work, we will use 2D geometries in order to simplify the calculations, since 3D

geometries require longer computation times.

We assume that Ω is a Lipschitz polygon. We consider a regular family of triangular meshes

Th of Ω (see, for instance, [23]). As usual, h denotes the mesh size: h := maxT∈Th hT , with hT

being the diameter of T . We consider the space of Lagrange finite elements of degree one:

Hh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} . (5.14)
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The finite element approximation of the solution of (5.7) reads: find us,h ∈ Hh such that
∫
Ω
σ∇us,h · ∇vh = −

∫
Ω
σs∇u0 · ∇vh −

∫
∂Ω

σ0∇u0 · n vh ∀ vh ∈ Hh ,∫
Ω
us,h = 0 ,

(5.15)

In [67] the convergence of us,h to us has been studied.

The finite element approximation of the direct method reads: find uh ∈ Hh such that
∫
Ω
σ∇uh · ∇vh = p · ∇(vh|T0)(x0) ∀ vh ∈ Hh ,∫

Ω
uh = 0 ,

(5.16)

where T0 is any triangle that contains x0. In this case, we have proved an a priori error estimate

in Chapter 4, under certain assumptions:

Theorem 5.1.3 Let Th be a quasiuniform family of subdivisions of the convex Lipschitz polygon

Ω and assume that σi,j ∈ C1(Ω) for each i, j = 1, 2. Let u and uh be the respective solutions to

problems (5.8) and (5.16). Then there exists h0 > 0 such that

∥u− uh∥0,p,Ω ≤ Ch2/p−1

for all 0 < h < h0 and for all p such that q0
q0−1 < p < 2, where q0 is the maximal regularity

exponent such that the solution φ of problem (5.12) belongs to W 2,q(Ω), and moreover satisfies

∥φ∥2,q,Ω ≤ C∥ψ∥0,q,Ω, with 2 < q < q0.

In the case of the approximation of the delta (5.9), we have the following discrete problem:

find uϵh ∈ Hh such that
∫
Ω
σ∇uϵh · ∇vh =

1

|Bϵ|

∫
Bϵ

p · ∇vh ∀ vh ∈ Hh ,∫
Ω
uϵh = 0 ,

(5.17)

for each ϵ > 0. To give an a priori error estimate of this problem, we need to assume that Ω

is a convex Lipschitz polygon, σi,j ∈ C1(Ω), i, j = 1, 2, and more regularity of the source used.

Let δ̂ϵ,x0 be a smoothing of δϵ,x0 |Bϵ to Ω with support in Bϵ. Then, δ̂ϵ,x0 is globally smooth and

therefore, div (pδ̂ϵ,x0) ∈ L∞(Ω). The solutions of the problems (5.10) and (5.17) with source

div (pδ̂ϵ,x0) will be called ûϵ and ûϵh respectively. It is known that in this case, ûϵ ∈ H2(Ω), for

each ϵ > 0 and therefore, ∥ûϵ − ûϵh∥0,Ω ≤ Ch2∥ûϵ∥2,Ω, for each ϵ > 0. We are interested in to

show that ûϵh is converging to u. The following theorem give us an a priori error estime in this

case.
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Theorem 5.1.4 Let Ω be a convex Lipschitz polygon and σi,j ∈ C1(Ω) for each i, j = 1, 2. Let

u and ûϵh be the respective solutions to problems (5.8) and the problem (5.17), respectively. The

last one, computed with sourse div (pδ̂ϵ,x0). Then for each η > 0 there exist ϵ0(η) and h0(η) such

that

∥u− ûϵ0h ∥0,p,Ω ≤ η , ∀h < h0(η) .

Proof. From Theorem 5.1.2 and the results above, we know that ∥u − ûϵ∥0,p,Ω ≤ Cϵ2/p−1

and ∥ûϵ − ûϵh∥0,Ω ≤ Ch2∥ûϵ∥2,Ω, for each ϵ > 0. Given η > 0 we can choose ϵ0 = ϵ0(η) such

that ∥u − ûϵ0∥0,p,Ω ≤ Cϵ
2/p−1
0 < η/2 and ∥ûϵ0 − ûϵ0h ∥0,Ω ≤ Ch2∥ûϵ0∥2,Ω. Also, we can choose

h0 = h0(η) such that ∥ûϵ0 − ûϵ0h0∥0,Ω ≤ Ch20∥ûϵ0∥2,Ω ≤ η/2. Then, using that ∥u − ûϵ0h ∥0,p,Ω ≤
∥u− ûϵ0∥0,p,Ω + ∥ûϵ0 − ûϵ0h ∥0,p,Ω and the fact that L2(Ω) ⊂ Lp(Ω), 1 ≤ p < 2, we conclude that

for each h < h0(η) we have that ∥u− ûϵ0h ∥0,p,Ω ≤ η

Notice that to have uniqueness of the problem we can change the second condition in problems

(5.15), (5.16) and (5.17). It is enough to set equal to zero the value of the potential u in a point.

This new assumption simplifies the computations at computational level. We will consider a

reference electrode with given potential, i.e.,

u(xref ) = 0 .

Moreover, this is a realistic condition since EEG measures electric potential differences respect

to a fix electrode.

Notice that, in order to prove existence and uniqueness of solution, in all the preciding

sections we have required some regularity of σ in a vicinity of x0. If σ is piecewise regular and

x0 is on the interface between two regions with different conductivities, we do not know how to

formulate the problem in a suitable variational way.

In this chapter we study experimentally the behavior of the methods when x0 tends to the

interface. The direct approach and the characteristic function approach are well defined if σ

is piecewise constant; however, we have not a proof of the convergence of the corresponding

finite element solutions. The characteristic function approach is well defined also for x0 on the

interface. Let us also recall that the error bound in the subtraction approach deteriorates when

x0 tends to the interface (see [67]).

In Section 5.2 we show that the solution computed with the direct method is more stable

than the one computed with the subtraction approach. We also consider the case when x0 is

on the interface. We use the characteristic function approach (the only one that is well defined

in this situation) and we study the behavior when ϵ tends to zero. In Section 5.3 we study the

inverse source problem. Also in this case σ is piecewise regular. We analyze the results obtained

using the three methods and also the adaptive procedure studied in Chapter 4. We consider
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two different situations: a source internal to a regular region and a source close to the interface

between two regions. In Section 5.4 we study the case of a distributed source and we compare

the lead field matrices in different situations. Also here we are interested in the case when σ is

piecewise regular. We analyze the results obtained using the methods already presented and two

other methods that will be introduced in the same section. We consider the same two situations

that in the previous section: a source completely contained in a regular region and a source close

to the interface between two regions with different conductivities. Finally, in Section 5.5 we give

some conclusions.

5.2 General considerations for x0 on the interface between two

regions with different conductivities

The aim of this section is to investigate the behavior of the different approximation methods,

when the source is located very close to the interface between two different regions.

The subtraction method requires to assume that around the source position x0 we can find a

nonempty open subdomain Ω0 ⊂ Ω with homogeneous constant conductivity σ0. This technique

has showed to give good results when one solves the inverse problem in a point internal to a

regular region [67]. However, if x0 is a point on the interface between two regions with differents

conductivities, the fundamental solution cannot be used, and therefore the subtraction technique

is not well defined.

Also the solution obtained by means of the direct method has a good behavior when x0 is an

internal point. However, when the point belongs to an interface, it does not seem to be reliable,

as it has a different behavior if we take a sequence of locations x0,k converging to x0 from one

side or from the other. An alternative in such case is to consider an approximation of the delta

function. In particular, we consider (5.9). This approximation is independent of the mesh, and

is well-defined even when x0 lies on the interface.

The first experiment is performed in order to obtain information on what is happening to

the solution obtained by using the subtraction method or the direct method for x0,k tending

to x0 on an interface. In a second test, we analyze the behavior of the characteristic function

approach when x0 is exactly on the interface, considering differents choices of the side-length of

the square where this function is supported.

5.2.1 Test 1.

This experiment consists in taking two sequences of seven points both of them converging at

the same point on the interface, one sequence coming from one region and the other one, coming
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from other region. After that, we fix the source on these points and we solve the problem (5.3)

with a fixed polarization, by using subtraction method and direct method. We compare the

values of both solutions in twelve nodes on the external boundary, that correspond to the nodes

in Table 5.1.

Nodes 1 2 3 4 5 6 7 8 9 10 11 12

x -1 -0.5 0 0.25 0.5 1 1 1 1 1 1 1

y -1 -1 -1 -1 -1 -1 -0.5 0 0.25 0.5 0.75 1

Table 5.1: Twelve nodes on the external boundary.

The domain Ω is a multi-layer square centered at (0, 0) with side-length 2. It has three differ-

ent layers: Ω1 = Ω\ (−0.92, 0.92)2, Ω2 = [−0.92, 0.92]2 \ (−0.87, 0.87)2 and Ω3 = [−0.87, 0.87]2.

The conducting σ is assumed isotropic on each layer and equal to σ|Ω1 = σ|Ω3 = 0.33 and

σ|Ω2 = 0.0042. Notice that the values of the conductivities have not been chosen random. These

correspond to real values in the brain.

We focus on the interface between the region 1 and region 2. We consider the points in

Table 5.2 that are converging to the point (0.0012634, 0.92). The computations were done in the

meshes in Table 5.3.

Figure 5.1: Domain Ω.

Notice that each row in Table 5.2 contains a point in region 1 and a point in region 2 which

are at the same distance of the point on the interface (0.0012634, 0.92). The points on the first

row were chosen at a distance 0.025 to (0.0012634, 0.92), the points on the second row at half

of the above distance and so on.

In Table 5.4 we find twelve values for each one of the seven solutions corresponding to dipoles

placed at the seven points in region 1 in Table 5.2. The polarization p = (−0.2425, 0.9701) is

the same in all the cases. Moreover, the last row contains the values of the Lp norm of the
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Points Sequence in region 1 Sequence in region 2

1 (0.0012634, 0.945) (0.0012634, 0.8950)

2 (0.0012634, 0.9325) (0.0012634, 0.9075)

3 (0.0012634, 0.9263) (0.0012634, 0.9075)

4 (0.0012634, 0.9232) (0.0012634, 0.9169)

5 (0.0012634, 0.9216) (0.0012634, 0.9169)

6 (0.0012634, 0.9208) (0.0012634, 0.9192)

7 (0.0012634, 0.9204) (0.0012634, 0.9196)

Table 5.2: The two sequences of points converging to (0.0012634, 0.92).

Mesh Degrees of freedom Elements Elem. region 1 Elem. region 2 Elem. region 3

1 86718 172751 27146 31581 114024

2 544135 1086493 171571 199069 715853

Table 5.3: Meshes used in Tests 1 and 2.

solutions computed in all the domain Ω, with p = 5/4. Table 5.5 contains the same information,

but the solutions were computed by using direct method. In Tables 5.6 and 5.7 we report the

same computations, but now the seven points correspond to the points in region 2. In Tables

5.8, 5.9, 5.10 and 5.11, we repeat the same procedure, but with a finer mesh, mesh 2 in Table

5.3.

Notice that in the direct method, in Tables 5.5, 5.7, 5.9 and 5.11 there are columns that

are the same although we are computing the solution using differents points as support of the

delta. The reason is that some points of the Table 5.2 are contained in a same triangle of the

mesh, and the direct method is not reading the exact position of the point, as only considers

the triangle that contains it. This method is a little imprecise respect to the position because

all the points inside a triangle produce the same solution.

We obtain several conclusions from this experiment: first, the subtraction method has an

oscillating behavior when x0 gets closer and closer to the interface. This is illustrating in Tables

5.4, 5.6, 5.8 and 5.10. In the coarser mesh the oscillatory behavior is more evident, while in the

finer mesh it can be seen only in the last columns, that correspond to the nearest points to the

interface. With this experiment, we see the non-robustness of the subtraction approach when x0

can be very close to the interface. A theoretical analysis about this statement can be found in

[67, Lemma 3.10].



5.2 General considerations for x0 on the interface between two regions with different
conductivities 78

Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 0.3481 0.3338 0.3279 0.3531 0.5448 0.6506 0.0752

2 0.2915 0.2753 0.2685 0.2965 0.5269 0.7037 0.1247

3 0.2398 0.2229 0.2157 0.2445 0.4923 0.7111 0.1538

4 0.2165 0.1997 0.1926 0.2209 0.4684 0.6957 0.1597

5 0.1945 0.1782 0.1713 0.1986 0.4395 0.6672 0.1599

6 0.1555 0.1413 0.1353 0.159 0.3712 0.578 0.1451

7 0.1052 0.0949 0.0904 0.1077 0.2633 0.4183 0.1087

8 0 0 0 0 0 0 0

9 -0.0852 -0.0754 -0.0712 -0.0873 -0.235 -0.3879 -0.1071

10 -0.2029 -0.1782 -0.1676 -0.2082 -0.5822 -0.9743 -0.2744

11 -0.3665 -0.3194 -0.2991 -0.3764 -1.0925 -1.8518 -0.5312

12 -0.5316 -0.4607 -0.4301 -0.5461 -1.6243 -2.7753 -0.8051

∥u∥0,p,Ω 1.4196 1.3727 1.3501 1.3745 2.2112 4.2001 1.5887

Table 5.4: Subtraction method in region 1, using mesh 1.

Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 0.3452 0.3388 0.3216 0.3216 0.3243 0.3243 0.3243

2 0.2882 0.281 0.2613 0.2613 0.2646 0.2646 0.2646

3 0.2363 0.2288 0.2083 0.2083 0.2117 0.2117 0.2117

4 0.213 0.2056 0.1853 0.1853 0.1887 0.1887 0.1887

5 0.1911 0.1839 0.1643 0.1643 0.1676 0.1676 0.1676

6 0.1526 0.1463 0.1291 0.1291 0.132 0.132 0.132

7 0.1031 0.0985 0.086 0.086 0.088 0.088 0.088

8 0 0 0 0 0 0 0

9 -0.0831 -0.0788 -0.067 -0.067 -0.0689 -0.0689 -0.0689

10 -0.1978 -0.1868 -0.1571 -0.1571 -0.1619 -0.1619 -0.1619

11 -0.3567 -0.3358 -0.279 -0.279 -0.288 -0.288 -0.288

12 -0.5168 -0.4852 -0.3999 -0.3999 -0.4133 -0.4133 -0.4133

∥u∥0,p,Ω 1.4222 1.3941 1.3457 1.3457 1.3476 1.3476 1.3476

Table 5.5: Direct method in region 1, using mesh 1.
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Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 -6.7323 -6.6863 -6.6744 -7.0787 -10.6393 -19.4138 -28.3595

2 -7.7854 -7.7411 -7.7283 -8.0862 -11.232 -18.9606 -26.8082

3 -8.1971 -8.1531 -8.1389 -8.4487 -11.1721 -17.8444 -24.5941

4 -8.1307 -8.0872 -8.0725 -8.3582 -10.8717 -17.0226 -23.2353

5 -7.8782 -7.8358 -7.8209 -8.0822 -10.3829 -16.0076 -21.6812

6 -6.9044 -6.8668 -6.853 -7.0668 -8.9518 -13.5547 -18.1898

7 -5.0424 -5.0144 -5.0038 -5.1514 -6.4544 -9.633 -12.8291

8 0 0 0 0 0 0 0

9 4.7534 4.7254 4.7141 4.8386 5.9426 8.6302 11.3244

10 12.0118 11.9392 11.9091 12.2105 14.8913 21.4121 27.9406

11 22.9467 22.8044 22.7441 23.2973 28.2308 40.2215 52.212

12 34.501 34.2835 34.19 35.0007 42.2446 59.8415 77.424

∥u∥0,p,Ω 52.5596 78.6864 52.8219 55.3922 61.7053 80.2363 108.0021

Table 5.6: Subtraction method in region 2, using mesh 1.

Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 -6.7504 -6.6292 -6.6869 -6.6327 -6.6327 -6.6613 -6.6613

2 -7.8019 -7.689 -7.7389 -7.6895 -7.6895 -7.7155 -7.7155

3 -8.2128 -8.1022 -8.1497 -8.1018 -8.1018 -8.1269 -8.1269

4 -8.1463 -8.0367 -8.0838 -8.0363 -8.0363 -8.0613 -8.0613

5 -7.8935 -7.7864 -7.8327 -7.7862 -7.7862 -7.8106 -7.8106

6 -6.918 -6.8224 -6.8642 -6.8225 -6.8225 -6.8444 -6.8444

7 -5.0527 -4.9812 -5.0128 -4.9815 -4.9815 -4.998 -4.998

8 0 0 0 0 0 0 0

9 4.7647 4.6914 4.7253 4.6927 4.6927 4.7099 4.7099

10 12.0399 11.8474 11.9384 11.8521 11.8521 11.8976 11.8976

11 23.0075 22.6253 22.8098 22.6369 22.6369 22.7282 22.7282

12 34.5989 34.0097 34.298 34.0299 34.0299 34.1715 34.1715

∥u∥0,p,Ω 51.9 52.3894 54.1701 54.6374 54.6374 55.7171 55.7171

Table 5.7: Direct method in region 2, using mesh 1.
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Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 0.3482 0.3339 0.3268 0.3228 0.3144 0.3475 0.6223

2 0.2916 0.2753 0.2673 0.2628 0.2526 0.2835 0.5687

3 0.24 0.2229 0.2145 0.2098 0.1988 0.227 0.5073

4 0.2166 0.1998 0.1915 0.1868 0.1758 0.2023 0.474

5 0.1946 0.1783 0.1703 0.1657 0.1551 0.1797 0.4384

6 0.1556 0.1414 0.1343 0.1304 0.121 0.1416 0.3638

7 0.1053 0.0949 0.0898 0.0869 0.08 0.0944 0.2542

8 0 0 0 0 0 0 0

9 -0.0852 -0.0754 -0.0706 -0.0679 -0.0613 -0.074 -0.2203

10 -0.203 -0.1783 -0.1661 -0.1593 -0.1427 -0.1739 -0.5398

11 -0.3667 -0.3195 -0.2962 -0.2831 -0.2512 -0.3096 -1.0019

12 -0.532 -0.4611 -0.426 -0.4063 -0.3583 -0.4447 -1.4803

∥u∥0,p,Ω 1.4378 1.4333 1.3683 1.3538 1.3472 1.4339 2.2846

Table 5.8: Subtraction method in region 1, using mesh 2.

Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 0.349 0.3323 0.3277 0.3244 0.3219 0.3219 0.3219

2 0.2926 0.2736 0.2684 0.2645 0.2618 0.2618 0.2618

3 0.2409 0.2211 0.2157 0.2116 0.2088 0.2088 0.2088

4 0.2176 0.198 0.1926 0.1886 0.1858 0.1858 0.1858

5 0.1955 0.1766 0.1713 0.1675 0.1648 0.1648 0.1648

6 0.1565 0.1399 0.1353 0.1319 0.1296 0.1296 0.1296

7 0.1059 0.0938 0.0904 0.088 0.0863 0.0863 0.0863

8 0 0 0 0 0 0 0

9 -0.0858 -0.0744 -0.0712 -0.0689 -0.0673 -0.0673 -0.0673

10 -0.2045 -0.1757 -0.1678 -0.162 -0.1578 -0.1578 -0.1578

11 -0.3694 -0.3145 -0.2993 -0.2882 -0.2803 -0.2803 -0.2803

12 -0.5361 -0.4535 -0.4306 -0.414 -0.402 -0.402 -0.402

∥u∥0,p,Ω 1.4355 1.3893 1.3682 1.357 1.3432 1.3432 1.3432

Table 5.9: Direct method in region 1, using mesh 2.
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Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 -6.7298 -6.6822 -6.657 -6.6215 -6.1482 -1.8834 11.0224

2 -7.7837 -7.7376 -7.713 -7.6803 -7.262 -3.5241 7.7403

3 -8.1949 -8.1492 -8.1247 -8.0946 -7.732 -4.5192 5.1254

4 -8.1285 -8.0832 -8.0589 -8.0304 -7.6954 -4.7389 4.1212

5 -7.8761 -7.832 -7.8083 -7.7814 -7.4745 -4.7751 3.3033

6 -6.9022 -6.8629 -6.8419 -6.8191 -6.5673 -4.3626 2.2236

7 -5.0399 -5.0107 -4.9951 -4.9788 -4.8046 -3.285 1.2473

8 0 0 0 0 0 0 0

9 4.7519 4.7228 4.7072 4.6921 4.5439 3.2633 -0.5432

10 12.0083 11.9328 11.8922 11.854 11.4937 8.3904 -0.8209

11 22.9412 22.7931 22.7133 22.6405 21.9762 16.2778 -0.6133

12 34.5175 34.291 34.1687 34.059 33.082 24.7214 -0.0381

∥u∥0,p,Ω 52.2292 57.1387 53.8755 55.4943 55.6164 51.5907 64.26

Table 5.10: Subtraction method in region 2, using mesh 2.

Nodes Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

1 -6.7258 -6.6673 -6.6755 -6.644 -6.6505 -6.6316 -6.6316

2 -7.7801 -7.7239 -7.7301 -7.7003 -7.706 -7.6888 -7.6888

3 -8.1915 -8.1358 -8.1414 -8.1121 -8.1175 -8.1008 -8.1008

4 -8.1251 -8.07 -8.0756 -8.0465 -8.0518 -8.0353 -8.0353

5 -7.8728 -7.819 -7.8245 -7.7961 -7.8014 -7.7852 -7.7852

6 -6.8991 -6.8513 -6.8564 -6.8311 -6.8358 -6.8213 -6.8213

7 -5.0376 -5.002 -5.006 -4.9871 -4.9907 -4.9798 -4.9798

8 0 0 0 0 0 0 0

9 4.7496 4.7138 4.7184 4.6991 4.703 4.6916 4.6916

10 12.0019 11.909 11.9217 11.871 11.8813 11.8512 11.8512

11 22.9287 22.7461 22.7726 22.6719 22.6928 22.6325 22.6325

12 34.4987 34.219 34.2613 34.1058 34.1385 34.045 34.045

∥u∥0,p,Ω 52.1918 53.0541 54.1383 55.3545 55.8542 56.0896 56.0896

Table 5.11: Direct method in region 2, using mesh 2.
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Nodes ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001

1 -3.1643 -3.1657 -3.1685 -3.1685

2 -3.7218 -3.7229 -3.7254 -3.7254

3 -3.9542 -3.9551 -3.9576 -3.9576

4 -3.9329 -3.9338 -3.9363 -3.9363

5 -3.8182 -3.8191 -3.8215 -3.8215

6 -3.3532 -3.3541 -3.3562 -3.3562

7 -2.4527 -2.4534 -2.4550 -2.4550

8 0 0 0 0

9 2.3180 2.3188 2.3205 2.3205

10 5.8613 5.8634 5.8679 5.8679

11 11.2066 11.2111 11.2201 11.2201

12 16.8581 16.8651 16.8791 16.8791

∥u∥0,p,Ω 26.5281 27.7785 27.9054 27.9054

Table 5.12: Dipole position on the interface, mesh 1.

On the contrary, the direct method is stable when the dipole position is in region 1 or 2, near

or far from the interface. We also clearly see that the solution converges to different functions

when x0 tends to the interface from one side or from the other. This confirms that the variational

formulation for x0 lying exactly on the interface must have a different structure from the case in

which x0 is internal to the middle layer. Nevertheless, for that case we can show some numerical

results obtained by approximating the delta distribution in a suitable way.

5.2.2 Test 2.

In this test we want to analyze what happens if x0 is on the interface. To this end, we consider

the approximation of the delta distribution in (5.9). It is supported on a square centered at x0

and with side-length 2ϵ, with the same polarization that in the previous test. We solve the

problem four times, with four different values of ϵ. As in the previous test, we consider twelve

values of the solution corresponding to the same twelve external nodes in Table 5.1 and also we

compute the Lp norm in all Ω, with p = 5/4. This procedure was done with the two meshes in

Table 5.3. In Table 5.12, we find the results corresponding to the mesh 1 and in Table 5.13, to

the mesh 2. We can obtain as a conclusion that this approximation performs in a satisfactory

way.

Notice that if we take the last column of Tables 5.5 and 5.7 and we do an average, we obtain
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Nodes ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001 ϵ = 0.00001

1 -3.1638 -3.1581 -3.1563 -3.1563

2 -3.7218 -3.7164 -3.7148 -3.7148

3 -3.9541 -3.9488 -3.9473 -3.9473

4 -3.9328 -3.9275 -3.9260 -3.9260

5 -3.8180 -3.8130 -3.8114 -3.8115

6 -3.3529 -3.3483 -3.3470 -3.3470

7 -2.4520 -2.4486 -2.4476 -2.4476

8 0 0 0 0

9 2.3176 2.3141 2.3130 2.3130

10 5.8610 5.8518 5.8490 5.8490

11 11.2048 11.1864 11.1808 11.1808

12 16.8658 16.8374 16.8287 16.8288

∥u∥0,p,Ω 26.6009 28.0923 28.6901 28.6971

Table 5.13: Dipole position on the interface, mesh 2.

a result quite similar to the last column in Table 5.12. The same happens for mesh 2 in Table

5.3.

However from a physiological point of view, people are interested in considering impulses

coming from the middle region. Specifically, people study the neuronal impulses which are

generated in that region, but close to the interface between regions 1 and 2. Then, from the

computational results we can conclude that the subtraction approach in this real situation is

not the best one and it is better to choose an alternative approach.

5.3 Inverse problem

In this section we study the inverse problem and specifically, we are interested in finding the

localization and the polarization of a dipole source, knowing a priori some measurements on the

boundary of the domain. We analyze the case of a single dipole, but in different positions, and

present some numerical results.

Since we are interested in a single dipole, we need to find only four parameters that minimize

the least-square function

ϕ(x, qx) = ∥m−mref∥22 (5.18)

where x is the coordinates of the dipole location and qx is the polarization. We assume that
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we can obtain the measurements at some boundary nodes of the domain. In this equation, m is

a n-dimensional vector (with n the number of measurements) which contains the values of the

potential computed using FEM, and mref is a vector which contains the values of the measured

potential (indeed, the measured potential is simulated by using the values computed with one

of the aforementioned techniques using FEM in a very fine mesh). It is clear that this problem

is non-linear.

For any given dipole location x we can find the optimal polarization px = p1e1 + p2e2 (e1

and e2 are the cartesian orientations) as follows: we define as m1,i the value of an approximated

solution at the same points Pi, 1 ≤ i ≤ n on ∂Ω where the solution that produces mref is

evaluated, obtained by using as localization x and as polarization e1. Similarly, m2,i corresponds

to the value of an approximated solution at the same points Pi, 1 ≤ i ≤ n on the boundary

obtained by using the same localization and as polarization e2. Then, we define the n×2 matrix

M := (m1 m2). By linearity, the values of the approximated solution corresponding to px are

given by

m = Mpx .

Thus, finding px which minimize ϕ(x, qx) = ∥m − mref∥22 in the least squares sense, is

equivalent to solve

M tMpx = M tmref . (5.19)

After having computed the optimal polarization for each possible dipole position x, the

function ϕ reduces to a least-squares function ψ which is only a function of x, that is

ψ(x) = ∥Mpx −mref∥22 . (5.20)

We use the pattern-search optimization method to find the optimum dipole position x by

minimizing the function ψ(x). This minimization algorithm is already implemented in MATLAB

and corresponds to the command patternsearch.

We are interested in solving the inverse problem by using the aforementioned methods. From

Chapter 4 we know that there exists an a posteriori error estimator for the direct method which

enables to improve the obtained results. We must recall that this estimator was defined in the

case in which the matrix σ has entries in C1(Ω). We use the estimator to devise a strategy to

solve the inverse problem.

According to Theorem 5.1.1 the solution of problem (5.8) belongs to Lp(Ω) with 1 ≤ p < 2

when σ is regular enough. We will recall the a posteriori error estimator in the Lp(Ω)-norm for

the finite element approximation error u − uh defined in Chapter 4. We proved the reliability

and efficiency of the estimator for a particular range of p.
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For all T ∈ Th we define

εT,p :=

h2pT ∥div (σ∇uh)∥p0,p,T +
1

2

∑
ℓ∈E(T )∩Eh,i

|ℓ|p+1∥[[σ∇uh · n ]]∥p0,p,ℓ

+
∑

ℓ∈E(T )∩Eh,e

|ℓ|p+1∥σ∇uh · n∥p0,p,ℓ

1/p

,

where Eh,i is the set of all the inner edges of the triangulation Th, Eh,e is the set of boundary

edges of the triangulation Th, E(T ) is the set of the edges of T and [[ g ]] denotes the jump of g

across an edge. We define the local a posteriori error indicator ηT,p for all T ∈ Th as follows:

ηT,p :=


(
h2−p0 + εpT,p

)1/p
if T = T0 ,

εT,p otherwise ,

where we denote by T0 the triangle that contains the point x0 and by h0, its diameter.

Next, we define the global error estimator from these indicators as follows:

ηp :=

∑
T∈Th

ηpT,p

1/p

. (5.21)

In Tests 3 and 4 we are interested in finding the localization and polarization of the dipole

from certain measurements that have been generated by using the subtraction approach or the

direct method (depending if the localization is inside a region or near the interface). The exact

solution is computed in the finest mesh in Table 5.14.

5.3.1 Test 3.

This experiment consists in reconstructing the position and the polarization of the dipole

source from boundary measurements, by using four different techniques: subtraction approach,

direct method, direct method accompanied by an adaptive procedure and the characteristic

function approach. We use the same domain Ω in Test 1. We recall that Ω is a multi-layered

square as in Figure 5.1, with three regions, the external and internal layers (which correspond

to regions 1 and 3, respectively) with conductivities 0.33 and the layer in between (region 2)

with conductivity 0.0042. As in the other test, it is important to recall that these values of the

conductivity correspond to a real values.

Notice that when we solve the inverse problem by using the direct method (or direct method

with adaptivity), the minimization algorithm find a triangle, not a position. Then, we will

consider as x0 the barycenter of this triangle.
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Mesh Degrees of freedom Elements Elem. region 1 Elem. region 2 Elem. region 3

1 362 682 104 120 458

2 2186 4279 653 776 2850

3 544135 1086493 171571 199069 715853

Table 5.14: Meshes used in Tests 3 and 4.

Speaking about the direct method with the adaptive procedure, the strategy that we propose

combines the minimization algorithm and the adaptive procedure guided by the a posteriori

error estimator defined in (5.21). It consists in the following: the algorithm start minimizing

the function ψ using mesh 1 and in this first iteration, it finds a first approximation of the

position and the polarization of the source. With these data, the algorithm realize an adaptive

procedure guided by the error estimator above; the procedure is applied four times. Then, with

this new mesh generated in the previous process, the algorithm restarts the minimization of ψ

for another time. The algorithm shows a more precise localization and polarization and with

these new data, it realizes the adaptive procedure four times more, and so on. This process is

done six times. Therefore, it refines the mesh twenty four times. Thus, the algorithm does seven

steps of minimization and the last one is performed in the mesh number twenty five.

In this test, the real location is an internal point in region 2 and the measurements are

generated by using the subtraction technique in a fine mesh. We generate the data with mesh 3

in Table 5.14. We consider thirty measurements which correspond to thirty values of the solution

in the thirty corresponding nodes on the boundary in Table 5.15. As dipole position we consider

x0 = (0.0126, 0.8901) which corresponds to a point internal to region 2, and as polarization,

p = (−0.2425, 0.9701).

In Table 5.16 we can find the exact localization and polarization and the results obtained

by solving the inverse problem. This problem was solved using four differents methods: the

subtraction approach (S.A.), the direct method (D.M.), the direct method with an adaptive

procedure (D.M.A.) and finally, the characteristic function approach (C.F.A). This last method

was realized by using as support a square of length-side 2ϵ, with ϵ = 0.01. Notice that we find two

rows with results obtained by D.M.A. in Table 5.16: D.M.A. (1) contains the results obtained

in the step number six of minimization and D.M.A. (2) contains the results obtained in the last

step of minimization, that is, step number seven of minimization.

We define the relative error er as follows:

er :=

√
|x0 − x|2
|x0|2

+
|p− q|2
|p|2

,
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Nodes x y Nodes x y Nodes x y

1 0.5 -1 11 -1 -0.25 21 1 0.5

2 -0.5 -1 12 -1 0.75 22 1 -0.5

3 0.25 -1 13 -1 -0.75 23 1 0.25

4 -0.25 -1 14 0 1 24 1 -0.25

5 0.75 -1 15 0.5 1 25 1 0.75

6 -0.75 -1 16 -0.5 1 26 1 -0.75

7 -1 0 17 0.25 1 27 0.75 1

8 -1 0.5 18 -0.25 1 28 0.125 -1

9 -1 -0.5 19 -0.75 1 29 -0.125 -1

10 -1 0.25 20 1 0 30 -1 0.125

Table 5.15: Thirty nodes on the external boundary.

where x and q correspond to the approximations of x0 and p obtained by solving the inverse

problem using the different approaches.

Solution x0 p er Degrees of freedom

Exact (0.0126, 0.8901) (-0.2425, 0.9701) - 544135

S.A. (-0.0383, 0.8941) (1.6646, 0.9545) 1.9081 2186

D.M. (0.0260, 0.9123) (-0.2734, 0.9761) 0.0429 2186

D.M.A. (1) (0.0062, 0.8877) (-0.0691, 0.9741) 0.1736 1193

D.M.A. (2) (0.0152, 0.8896) (-0.2502, 0.9715) 0.0085 3030

C.F.A. (0.0104, 0.8838) (-0.3137, 0.9799) 0.0723 2186

Table 5.16: Results obtained by solving the inverse problem.

Notice that the strategy that combines the direct method with the adaptive procedure start

from mesh 1 in Table 5.14. In Table 5.17 we see the results given by the minimization algorithm

the seven times that the process was done. The last mesh in this iterative process contained 3030

nodes. We see that this strategy is giving a better approximation of the data in the last iteration

that in the case of the direct method without an adaptive procedure. However, we want also

to underline that the results obtained by means of the direct method with adaptive procedure

are somehow oscillating from a refinement step to another. This phenomenon is seen also in the

numerical results in Section 5.4. On the other hand, the direc method and the characteristic

function approach, are giving good results.
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Iteration x0 p

1 (0.0400, 0.9033) (0.0796, 0.9896)

2 (0.0288, 0.9143) (-0.3975, 0.9786)

3 (-0.0211, 0.9114) (0.1494, 0.9757)

4 (0.0169, 0.8852) (-0.3318, 0.9766)

5 (0.0169, 0.8852) (-0.3228, 0.9756)

6 (0.0062, 0.8877) (-0.0691, 0.97411)

7 (0.0152, 0.8896) (-0.2503, 0.9716)

Table 5.17: Data found using the direct method with adaptive procedure.

5.3.2 Test 4.

This experiment is similar to Test 3. The difference is the position of the dipole source we

want to find. We are interested in the behavior of the four aforementioned methods in Test 3

when we solve the inverse problem with a dipole located very close to the interface. In this test

we use the same geometry of Test 3. Since we need to generate the measurements and we know

that the subtraction method cannot be used in this situation, we use the direct approach to

compute the data in the finest mesh in Table 5.14 (this corresponds to mesh 3). Note that if ϵ

is so small that the square centered at x0 of side size 2ϵ is inside one triangle, the characteristic

function approach is giving the same result. For a larger ϵ, the characteristic function approach

has to be used being carefull that the square centered in x0 and with side-length 2ϵ, is not

intersecting the interface, as in Section 5.2. We have seen that the location of the delta function

on the interface is giving rise to a problem that is not the one obtained by taking the limit from

one or the other side.

The dipole position is x0 = (0.0126 , 0.917), which belongs to region 2 and it is close to the

interface between regions 1 and 2. We consider thirty measurements that correspond to the thirty

nodes on the boundary in Table 5.15. The polarization is the same that in the experiment above,

i.e., p = (−0.2425, 0.9701). To compute the inverse problem in the case of the characteristic

function approach, we use as support a square of length-side 2ϵ with ϵ = 0.003.

As in the previous experiment, we can find the results in Table 5.18.

From these two experiments, we can conclude that the direct method combined with the

adaptive procedure is giving good results in both cases respect to the other methods (despite this

estimator is not well suited when the entries of σ are piecewise constant). However, this method

is giving data that are converging in a oscillatory way, then we have to be carefull when we

use this technique. On the other hand, the other alternatives that are giving reasonable results
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Solution x0 p er Degrees of freedom

Exact (0.0126 , 0.917) (-0.2425, 0.9701) - 544135

S.A. (0.1283, 0.9343) (-2.1445, -35.6436) 36.6651 2186

D.M. (-0.0019 , 0.9007) (0.0096 , 0.9807) 0.2535 2186

D.M.A. (1) (0.0183, 0.9141) (-0.3718, 0.9741) 0.1296 1014

D.M.A. (2) (0.0108, 0.9159) (-0.2305, 0.9729) 0.0125 1802

C.F.A. (0.0127, 0.9039) (-0.1513, 0.9821) 0.0931 2186

Table 5.18: Results obtained by solving the inverse problem.

Iteration x0 p

1 (-0.0367, 0.9033) (-0.1486, 0.9957)

2 (0.0037, 0.9098) (-0.0294, 0.9837)

3 (0.0158, 0.9098) (-0.3244, 0.9770)

4 (0.0068, 0.9181) (-0.1264, 0.9759)

5 (0.0128, 0.9147) (-0.2422, 0.9758)

6 (0.0183, 0.9141) (-0.3718, 0.9741)

7 (0.0108, 0.9159) (-0.2305, 0.9729)

Table 5.19: Data found using the direct method with adaptive procedure.

are the characteristic function approach and the direct method. Notice that the subtraction

approach in this last test is giving the worst results.

5.4 Lead field matrix

In the previous section the inverse problem in the case of only one dipole was analyzed (but

this analysis can be extended to a small quantity of dipoles). In the standard dipolar method the

parameters of the dipoles (location and polarization) are found using a nonlinear leastsquares

search. However, there exists another way to study the inverse problem: it is to assume that the

current density is a distributed source and, in such case, the measurements are assumed to be

generated by many dipoles placed in a certain region of the mesh. We will focus in this point of

view.

In the EEG forward model a given primary current density Jp in the head Ω generates a

measurement data vector m (the electric potential values). In the numerical simulation of the
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inverse problem, the unknown is a finite dimensional vector z, which is linked to the measurement

data m through the system of linear equations m = Lz, the so-called lead field matrix L.

The goal of this section is to construct the lead field matrix with each one of the methods

in Section 5.1 (and with one new method that we add in this section). First, we discuss how to

construct this lead field matrix in each case. After that, we want to compare each one of these

lead field matrices with a reference lead field matrix.

For a mesh consisting of N nodes, the approximate value of the potential can be expressed

as an element of the set Hh defined in (5.14) as follows

uh =
N∑
i=1

αiλi

where λi is a basis function in Hh associated with node i, for all i = 1, ..., N . In the most of the

subsections, we are interested in analyzing problem (5.2) with

Jp =
M∑
k=1

pkδxk
, (5.22)

where pk is a non null vector and xk in an inner point of Ω, for all k = 1, ...,M . We will specify

when we need to use a different definition for the current density Jp.

Subtraction method

The vector pk in (5.22) can be written in the following way pk = yk1e1 + yk2e2, where e1

and e2 are the cartesian orientations, for all k = 1, ...,M . Then, the current density also can be

written as Jp =
∑M

k=1

∑2
j=1 y

k
j ejδxk

or in a more structured way,

Jp =
2M∑
k=1

zkdk , (5.23)

where

zk :=

{
yk1 if 1 ≤ k ≤M ,

yk−M2 if M + 1 ≤ k ≤ 2M ,
and dk :=

{
e1δxk

if 1 ≤ k ≤M ,

e2δxk−M
if M + 1 ≤ k ≤ 2M .

(5.24)

Assuming that we can find nonempty subdomains Ωk0 of Ω around each one of the source

positions xk with homogeneous constant conductivity σ0,k, we can solve these 2M subproblems

by using (5.15) and then we use (5.5) with the corresponding data in each case.

The coefficients αi, i = 1, ..., N and zk, k = 1, ..., 2M define unknown coordinate vectors α

and z, which satisfy the linear system Sα = Gsz, where the entries of the matrices S and Gs

are given by
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sij :=

∫
Ω
σ∇λi · ∇λj ,

and

gsik :=


−
∫
Ω
σs,k∇u10,k · ∇λi −

∫
∂Ω

(σ0,k∇u10,k · n)λi 1 ≤ k ≤M ,

−
∫
Ω
σs,k−M∇u20,k−M · ∇λi −

∫
∂Ω

(σ0,k−M∇u20,k−M · n)λi M + 1 ≤ k ≤ 2M ,

where σs,k = σ − σ0,k, k = 1, ...,M and we have denoted by uj0,k, j = 1, 2 the fundamental

solution of this problem:

div (σ0,k∇uj0,k) = div (ejδxk
) in Ω , for j = 1, 2 and k = 1, ...,M .

Since we know from (5.5) that the solution can be written as a singular part plus a part

obtained by means of FEM, then, we define theN times 2M matrixU0 whose entries corresponds

to

u0ik :=


u10,k(xi) 1 ≤ k ≤M ,

u20,k−M (xi) M + 1 ≤ k ≤ 2M ,

for i = 1, ..., N . We assume that the dipole positions are not nodes, so that the fundamental

solutions can be evaluated in all the nodes of the mesh. Associating the EEG sensor locations

with basis functions λi1 , ..., λiL and the zero potential reference with the mean value of the

electrode voltages, the EEG lead field matrix is given by L = R(S−1Gs +U0), in which R is a

L×N restriction matrix with entries

rsl :=


1 if l = is ,

0 if l ̸= is ,

l = 1, ..., N and s = 1, ..., L.

Direct method

As in the subtraction method, Jp can be written as above:

Jp =

2M∑
k=1

zkdk ,

where zk and dk are defined as in (5.24).

From (5.16), we see that we construct the matrix S as in the previous case. The entries of

Gd are given by

gdik :=

{
e1 · ∇(λi|Txk )(xk) 1 ≤ k ≤M ,

e2 · ∇(λi|Txk−M
)(xk−M ) M + 1 ≤ k ≤ 2M .

(5.25)
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where Txk is the triangle that contains the point xk, k = 1, ...,M .

The lead field matrix in this case corresponds to L = RS−1Gd , whereR is a L×N restriction

matrix.

Characteristic function approach

We define the current density similarly to the previous case, that is, Jp :=
∑M

k=1 pkδϵ,xk

with δϵ,xk
as in (5.9) for all k = 1, ...,M .

We can write Jp as follows

Jp :=

2M∑
k=1

zkf
ϵ
k

where if we assume that we can decompose pk as above, we define zk and f ϵk in a similar way

that in the two previous cases

zk :=

{
yk1 1 ≤ k ≤M ,

yk−M2 M + 1 ≤ k ≤ 2M ,
and f ϵk :=

{
e1δϵ,xk

1 ≤ k ≤M ,

e2δϵ,xk−M
M + 1 ≤ k ≤ 2M .

Notice that, when one changes the source, one has only to change the matrix Gϵ. In this case

the entries of this matrix are the following

gϵik :=


1

|Bϵ,k|

∫
Si∩Bϵ,k

e1 · ∇λi 1 ≤ k ≤M

1

|Bϵ,k−M |

∫
Si∩Bϵ,k−M

e2 · ∇λi M + 1 ≤ k ≤ 2M .

where Bϵ,k := Bϵ(xk), k = 1, ...,M and Si := supp(λi), with i = 1, ..., N .

Besides these three we propose two other methods. In the first one, the procedure to find

the lead field matrix is a little different because the current density is defined in a unusual way.

The second one is a variant of the direct method. We will discuss about this two methods in the

next two subsections.

Raviart-Thomas source approximation

This approximation was analyzed in [58] and [59]. The current density is approximated as

follows:

Jp :=

M∑
k=1

xkwk ,

where wk is a vector valued finite element basis function defined on a triangular mesh Th,
specifically, wk corresponds to the kth Raviart-Thomas basis function which is supported on

two adjacent triangular elements that share the kth edge of the finite element mesh. Here the

entries of the matrix Gr are the following
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gri,k =

∫
Ω
wk · ∇λi .

As in the direct method or the characteristic function approach, L = RS−1Gr. Notice that,

this lead field matrix cannot be comparable with the other ones, because it was constructed in

a different way.

In [58], Pursiainen associates each cartesian source element with a single triangle; for each

triangle, a dipole position is fixed.

We explain the strategy used in [58]. In a first stage, each basis function wk is given a dipole

moment by qk =
∫
Ωwk and the dipole position rk is defined as the midpoint of the line segment

between the two nodes that belong to the support of wk but do not belong to the common

edge (see point (D) Figure 3 in [59]). The position of the dipole source for a given triangle T is

obtained as the mean

r = (r1 + r2 + r3)/3 (5.26)

of the dipole positions r1, r2 and r3 corresponding to the basis functions w1, w2 and w3

supported on T , respectively. Notice that in a uniform mesh r coincides with the barycenter of

the triangle T .

We denote by ṽ1, ṽ2 and ṽ3 the simulated data vectors obtained by solving (5.3) with Jp

corresponding to w1, w2 and w3, respectively. The simulated dipole data associated with T are

given by

[v1 v2] = [ṽ1 ṽ2 ṽ3][q1 q2 q3]
⊥ (5.27)

in which ⊥ denotes the Moore-Penrose pseudo-inverse and v1 and v2 form the final data for

the perpendicular directions e1 and e2, respectively. In simple words, in (5.27) was used a “base

change”. Thus, it is possible to obtain a lead field matrix comparable with the others trough

the lead field matrix computed by means of the Raviart-Thomas sources.

Direct method with adaptive procedure

To find the lead field matrix, we use Jp as in the subsection Direct method and to improve

the way of solving the 2M problems, we use an adaptive procedure guided by the a posteriori

error estimator in (5.21). We explain later on the strategy used in this method.

Now, we are in a position to give some numerical results. Before starting with the ex-

periments, we give some definitions. With each method, one lead field matrix of the form

L = (I1, I2, ..., I2M ) is produced. For 1 ≤ k ≤ M , the column Ik of L corresponds to a
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single source location xk and the cartesian orientation e1. If M + 1 ≤ k ≤ 2M , the column Ik

corresponds also to a single source location, xk−M and the cartesian orientation, e2.

The relative error (RE) is defined as follows:

RE :=

√√√√√√√√√√
2M∑
k=1

∥∥∥Ik − Irefk

∥∥∥2
2

2M∑
k=1

∥∥∥Irefk ∥∥∥2
2

,

where Lref = (Iref1 , Iref2 , ..., Iref2M ) is a reference lead field matrix computed by some of the above

methods (which will be indicated case by case) in the finest mesh in Table 5.21.

We define by RE1, RE2, RE3, RE4 and RE5 the relative errors computed between a reference

lead field matrix and the lead field matrices obtained using the subtraction approach, the direct

method, the characteristic function approach, the Raviart-Thomas source approximation and

the direct method with adaptive procedure, respectively.

5.4.1 Test 5.

In this test we are interested in analyzing the lead field matrix constructed by using the

direct method with an adaptive procedure respect to the lead field constructed by means of the

subtraction approach in two different situations: constant conductivity and piecewise constant

conductivity in the domain Ω.

The domain Ω is a square centered at (0.5 , 0.5) with side-length 1. As in the previous

tests, this domain consists of layers formed by squares completely contained in Ω. It has three

different layers: Ω1 = Ω \ (0.2, 0.8)2, Ω2 = [0.2, 0.8]2 \ (0.4, 0.6)2 and Ω3 = [0.4, 0.6]2. Unlike

the other tests, the meshes in Table 5.21 are uniform meshes. A property of these meshes is that

the barycenter of each one of the triangles in mesh 1 are barycenters of some triangles in the

following meshes. It is the same for mesh 2, and so on. Henceforth, we consider the locations of

the dipoles only in region 2.

For this test, we consider only one point and the cartesian orientations e1 and e2 as the

polarizations. The point considered x0 = (0.2417 , 0.4333) corresponds to an internal point in

region 2 which is a barycenter of a triangle in mesh 1. In this first experiment, we consider a

constant conductivity equal to one in the three regions.

In Table 5.22, we found the relative errors RE1 and RE5, computed using the lead field

matrices calculated by means of the subtraction approach and the direct method with adaptive

procedure in meshes 1, 2 and 3 in Table 5.21. In the first column we compute RE1 defined

above, considering as the reference lead field matrix the one computed by means of the direct
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method with adaptive procedure. Notice that the strategy consists in starting with a coarse

initial mesh (mesh 1 in Table 5.21) and by means of an adaptive procedure to refine the mesh

using as stopping criterion the quantity of d.o.f. In this case, the adaptive procedure stops when

the d.o.f. overtake the d.o.f. of mesh 3 in Table 5.21. On the other hand, in the second column

we compute RE5 using as reference lead field matrix the one computed by using the subtraction

method in the finest mesh, that is, mesh 5 in Table 5.21. In this case the adaptive procedure

stops when the d.o.f. overtake the d.o.f. of the mesh we use to compare the relative errors. Notice

that, since the adaptive procedure starts refining mesh 1, the first relative error in the second

column in Table 5.22 was computed without refinement.

We consider twelve “measurements” on the boundary of Ω computed in the twelve nodes in

Table 5.20. So in each case, the lead field matrix is a 12× 2 matrix.

Nodes 1 2 3 4 5 6 7 8 9 10 11 12

x 0 0.2 0.4 0.6 0.8 0.8 1 1 1 1 1 1

y 0 0 0 0 0 1 0 0.2 0.4 0.6 0.8 1

Table 5.20: Twelve nodes on the external boundary.

Mesh Degrees of freedom Elements Elem. region 1 Elem. region 2 Elem. region 3

1 1681 3200 2048 1024 128

2 6561 12800 8192 4096 512

3 25921 51200 32768 16384 2048

4 103041 204800 131072 65536 8192

5 410881 819200 524288 262144 32768

Table 5.21: Meshes used in Tests 5, 6 and 7.

Mesh RE1 RE5

1 0.0010 0.0273

2 0.0004 0.0004

3 0.0002 0.0002

Table 5.22: Subtraction approach versus direct method with adaptive procedure.

In Table 5.23 we find the references lead field matrices. L1 corresponds to the lead field
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L1 L5

-0.7755 -0.6768 -0.7754 -0.6768

-0.5840 -0.6507 -0.5839 -0.6509

-0.2403 -0.4596 -0.2403 -0.4597

-0.0596 -0.2042 -0.0594 -0.2041

-0.0088 -0.0480 -0.0087 -0.0479

-0.0752 0.4747 -0.0751 0.4747

0 0 0 0

0.0055 0.0453 0.0055 0.0453

0.0077 0.1632 0.0077 0.1632

-0.0124 0.3016 -0.0124 0.3017

-0.0436 0.4030 -0.0436 0.4030

-0.0583 0.4387 -0.0583 0.4387

Table 5.23: Reference lead field matrices.

matrix computed by means of subtraction approach and L5 to the lead field matrix computed

using the direct method with the adaptive procedure. Notice that both solutions are similar.

Now, we focus on the case of a piecewise constant conductivity. Henceforth, the conducting

σ is assumed isotropic on each layer and equal to σ|Ω1 = σ|Ω3 = 0.33 and σ|Ω2 = 0.0042.

This experiment is similar to the previous one. We consider an internal point in region 2,

x0 = (0.3667 , 0.3833) which is a barycenter of a triangle of mesh 1 in Table 5.21. As in the

previous case, we compute a reference lead field matrix by means of the subtraction approach in

the finest mesh and by means of the direct method with adaptive procedure starting with mesh

1 but now using as stopping criterion 30.000 d.o.f. We can see these reference matrices in Table

5.25.

In Table 5.24 we find in the first two columns the relative errors RE1 and RE5 computed

by using as reference lead field matrix the one obtained by the subtraction approach that corre-

sponds to L1 in Table 5.25. The other columns correspond to compute the same relative errors

RE1 and RE5, but now considering as the reference lead field matrix the one obtained by means

of the direct method with adaptive procedure. This matrix corresponds to L5 in Table 5.25. All

these computations were done in the first three meshes in Table 5.21.

We can see from Table 5.24 that the relative error in the case of the direct method with

adaptive procedure is increasing in the last mesh. We see a non-monotone behavior of this

method. It is important to recall that here we are using this estimator even if it is not proved
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S.A. D.M.A.

RE1 RE5 RE1 RE5

0.0349 0.1001 0.0358 0.1014

0.0125 0.0011 0.0136 0.0027

0.0046 0.0231 0.0061 0.0259

Table 5.24: Subtraction approach versus direct method with adaptive procedure.

L1 L5

-13.7644 -6.0037 -13.7540 -6.0048

-12.3147 -6.9000 -12.3073 -6.8986

-8.2128 -7.2754 -8.2065 -7.2705

-3.8710 -4.5372 -3.8669 -4.5305

-1.0194 -1.3208 -1.0175 -1.3173

2.4304 7.8903 2.4278 7.8388

0 0 0 0

0.9520 1.2863 0.9512 1.2829

2.7839 4.0433 2.7812 4.0326

3.5683 6.1806 3.5643 6.1584

3.1712 7.2751 3.1676 7.2379

2.8320 7.6067 2.8286 7.5617

Table 5.25: Reference lead field matrices.

to be suitable when the conductivity is piecewise constant.

5.4.2 Test 6.

In this test we are interested in analyzing the behavior of the first four methods in this

section, when the conductivity is a piecewise constant and the localizations of the dipoles are

inside region 2 and far enough from the interface. Since the points are inside region 2 and we

have seen that in this situation the subtraction approach has shown to be quite efficient, we

consider as reference lead field matrix the one computed by using the subtraction approach in

the finest mesh in Table 5.21, that corresponds to mesh 5.

First, we consider only one point x0 = (0.3667 , 0.3833) which corresponds to a barycenter

of a triangle of mesh 1. In Table 5.26 we can see the relative errors RE1, RE2, RE3 and RE4
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Mesh RE1 RE2 RE3 RE4

1 0.0349 0.1001 0.1001 0.1673

2 0.0125 0.0595 0.0595 0.0332

3 0.0046 0.0205 0.0134 0.0243

4 0.0014 0.0127 0.0016 0.0083

Table 5.26: Relatives errors using one

dipole.

Mesh RE1 RE2 RE3 RE4

1 0.2468 0.0671 0.0671 0.0532

2 0.0643 0.0312 0.0312 0.0362

3 0.0143 0.0150 0.0109 0.0121

4 0.0027 0.0072 0.0023 0.0060

Table 5.27: Relative errors using fifty

dipoles.

in the first four meshes in Table 5.21. It is important to note that it is possible to work with

the Raviart-Thomas source approximation because we are in a uniform mesh, and therefore the

localization r defined in (5.26) for each triangle corresponds to the barycenter; thus we are sure

that the lead field matrices are constructed with the same localization points. When the mesh

is not uniform, we cannot compare this method with the other ones in this way.

Notice that the support of the characteristic function used to compute RE3 in Table 5.26 is

a square of side-length 2ϵ. We consider ϵ = 0.002 in the four cases. Notice that ϵ can be chosen

in different ways. We seen a dependence on that choice. The options of choice is something we

have not considered.

We follow the same procedure, but now we consider fifty points that corresponds to fifty

barycenters of fifty triangles inside the region 2 in mesh 1. The relative errors in this case are

reported in Table 5.27. To compute RE3 we use the same choice that in Table 5.26.

In Tables 5.26 and 5.27 we can see that the characteristic function approach gives good

results, similar to those of the subtraction approach. The other two methods are performing

reasonably well, though not at the same level of precision of the first two methods.

5.4.3 Test 7.

This experiment is similar to the previous one. The difference here is that now we are

considering points inside region 2, but close to the interface between region 1 and region 2.

Since the points are near the boundary, we consider as the reference lead field matrix the one

computed by means of the direct method. We compute this matrix in the finest mesh in Table

5.21, that is, mesh 5.

As in the previous experiment, first we consider only one position x0 = (0.2083 , 0.2042)

which corresponds to a barycenter of a triangle in mesh 2 of Table 5.21, with an edge belonging

to the interface. We can see the relatives errors RE1, RE2, RE3 and RE4 computed in Table

5.28. RE3 was computed by using ϵ as in the previous experiment. We use this choice to be
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Mesh RE1 RE2 RE3 RE4

1 7.3765 0.3050 0.3050 -

2 3.8599 0.1712 0.1712 0.2295

3 1.2979 0.0293 0.0351 0.0936

4 0.3232 0.0547 0.0182 0.0107

Table 5.28: Relative errors with one dipole.

Mesh RE1 RE2 RE3 RE4

1 3.5643 0.0993 0.0993 -

2 1.2753 0.0454 0.0454 0.2191

3 0.2471 0.0144 0.0104 0.0233

4 0.0596 0.0149 0.0036 0.0037

Table 5.29: Relative errors with fifty

dipoles.

sure that the support of the characteristic function is contained in region 2. Notice that x0 is a

barycenter of a triangle in mesh 2 and therefore, it is not a barycenter of a triangle in mesh 1.

Then, we have not computed RE4 in mesh 1.

We repeat this experiment considering fifty barycenters of fifty triangles in mesh 2, close to

the interface between regions 1 and 2. We compute RE3 with the same ϵ than before since we

are sure that in the fifty problems, the supports of the characteristic function are inside region

2. We can see the results in Table 5.29.

From Tables 5.28 and 5.29 we can conclude that as in the case before, the best results are

achieved by the characteristic function approach and the Raviart-Thomas source approximation.

As conclusion, we see that the subtraction approach is always giving the worst performance, and

sometimes its relative error is one order of magnitude larger than the other relative errors. This

leads to say that, when the locations of x0 are close to the interface, it is better to resort to a

different approach, for instance to the characteristic function approach or the other methods.

5.5 Conclusions

It is important to recall that all the methods here introduced require more regularity of σ

in a vicinity of the dipole position. We are testing what happens if we do not consider this

restriction and, despite this fact, which method can still give good results.

From Section 5.2, we can conclude that when the dipole source is located close to the interface,

the solution obtained by means of subtraction approach is not robust. These computational

results are backed by the theory in [67]. On the other hand, the direct method is stable when

the locations are closer and closer to the interface; however, the results obtained in that section,

clearly show that a discontinuity occurs there, namely, approaching the interface from differents

sides gives quite different results. When the source is exactly on the interface, there is only one

method that is well defined: the characteristic function approach. We have seen that this method

gives reasonable results in that specific case.
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In Section 5.3 we have seen that it is possible to reconstruct the localization and the po-

larization using the direct method; however, we can obtain better results when we use the

direct method with the adaptive procedure. However, we want also to underline that the results

obtained by means of this method are somehow oscillating from a refinement step to another.

Another competitive method is the characteristic function approach, which has given accurate

results. The subtraction approach is not performing well, especially when the location x0 is close

to the interface between two regions with different conductivities.

In Section 5.4, we see that, when the conductivity is constant, the lead field matrix compu-

ted by using the direct method with an adaptive procedure is similar to the lead field matrix

constructed by means of the subtraction approach; in particular, the relatives error are falling

down in the same way when we use a finer mesh. When the conductivity is piecewise constant,

we conclude that, when the dipole positions are inside a region, the best results are given by

the characteristic function approach and the subtraction approach; the others techniques are

also giving good results. When the points are close to the interface we can conclude that the

relatives errors have a difference behavior, and the subtraction approach does not seem to be

very reliable. Instead, the characteristic function approach is always furnishing good results, as

well as the Raviart-Thomas source approximation.



Chapter 6

Analysis of a FEM-BEM model

posed on the conducting domain for

the time-dependent eddy current

problem

6.1 Introduction

The eddy current model is commonly used in many problems in sciences and industry, for

example, in induction heating, electromagnetic braking, electric generation, etc. An overview of

the mathematical analysis of the eddy current model and its numerical solution in harmonic

regime can be found in the recent book [5], which provides a large list of references on this

subject.

In this chapter, we deal with the numerical solution of the time-dependent eddy current

problem, which is naturally formulated in the whole space, with adequate decay conditions at

infinity. The literature on the numerical analysis of time-dependent problems of this kind is more

scarce. Among the few papers devoted to this subject, both in bounded and unbounded domains,

by using finite element (FEM), boundary element (BEM) or coupled FEM-BEMmethods, we can

mention [1, 2, 42, 43, 47, 49, 69]. These articles differ from each other by the physical quantities

chosen for the formulation (magnetic field, electric field or different kind of potentials) and by

the way of treating the decay condition to reduce the problem to a bounded domain.

We consider a FEM-BEM method to compute the eddy currents generated in a three-

dimensional conductor ΩC by a time-dependent source current. The problem is reformulated

101
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by expressing the magnetic and the electric fields in terms of convenient new variables. We use

FEM only on the conducting domain ΩC , the integral conditions being imposed on its boundary

∂ΩC . Therefore, the domain where FEM is used results as small as possible, leading to a more

efficient method as compared, for instance, with [1, 2], where similar formulations but involving

FEM in part of the dielectric domain are considered. Another important feature of this ap-

proach is that it preserves the coercivity of the original problem. The purpose of this chapter

is to analyze the convergence of a fully discrete FEM-BEM scheme for this formulation and to

investigate the convergence order.

The chapter is organized as follows. In Section 6.2 we give some basic definitions. In Sec-

tion 6.3 we introduce the model problem and the assumptions over the data. Then, we introduce

a new variable, the time-primitive of the electric field, which plays the role of a vector potential

for the magnetic field. In Section 6.4 we introduce the integral operators and recall their prop-

erties. Then, we derive the FEM-BEM formulation and show the existence and uniqueness of

the solution to the problem. In Section 6.5, we introduce a space-discretization of the problem

based on Nédélec edge elements in ΩC and piecewise linear continuous elements for the variable

on ∂ΩC arising from the integral equations. Then, a backward Euler method is employed for the

time discretization. Finally, the results presented in Section 6.6 prove that the proposed fully

discrete scheme is convergent with optimal order.

6.2 Preliminaries

In the sequel we deal with real valued functions. Boldface letters will denote vectors (in Rn)
or vector-valued functions, as well as matrices. The symbol | · | will represent the Euclidean norm

for n-dimensional vectors:

|v|2 = v · v :=

n∑
i=1

v2i .

In all the chapter the conductor ΩC ⊂ R3 is a bounded connected polyhedron, with a

Lipschitz-continuous connected boundary Γ := ∂ΩC , so that the insulator ΩI := R3 \ΩC is also

connected.

We remark that, under the above conditions, ΩC and ΩI have the same number of non-

bounding cycles L; namely, there exist L disjoint connected open “cutting” surfaces Σint
j ⊂ ΩC

(respectively Σext
j ⊂ ΩI), j = 1, . . . , L, such that Ω̃C := ΩC \

∪L
j=1Σ

int
j (respectively Ω̃I :=

ΩI \
∪L
j=1Σ

ext
j ) is simply connected. The boundary curves ∂Σint

j and ∂Σext
j lie on Γ.

We denote by

(f, g)0,Ω∗
:=

∫
Ω∗

fg dx
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the inner product in L2(Ω∗) and ∥ · ∥0,Ω∗ the corresponding norm with ∗ ∈ {C, I}. As usual,

∥ · ∥s,ΩC
stands for the norm of the Hilbertian Sobolev spaces Hs(ΩC) for all s ∈ R. We recall

that, for s ∈ (0, 1), the space Hs(Γ) has an intrinsic definition (by localization) on the Lipschitz

surface Γ due to their invariance under Lipschitz coordinate transformations. We denote by

∥ · ∥s,Γ the norm in Hs(Γ). Moreover, H−s(Γ) denotes the corresponding dual space.

In this chapter, the spaces that are product of function spaces are endowed with the natural

product norms and duality pairings without changing the notations; it will be clear from the

context when scalar or vector functions are used.

Finally, we introduce the functional spaces

H(curl; ΩC) :=
{
v ∈ (L2(ΩC))

3 : curlv ∈ (L2(ΩC))
3
}
,

H(div ; ΩC) :=
{
v ∈ (L2(ΩC))

3 : div v ∈ L2(ΩC)
}
,

endowed with their natural norms ∥v∥2
H(curl;ΩC)

:= ∥v∥20,ΩC
+ ∥ curlv∥20,ΩC

and ∥v∥2H(div ;ΩC) :=

∥v∥20,ΩC
+ ∥div v∥20,ΩC

, respectively.

6.2.1 Basic spaces for time dependent problems

Since we will deal with a time-dependent problem, we will use spaces of functions defined

on a bounded interval [0, T ] and with values in a separable Hilbert space V whose norm is

denoted here by ∥ · ∥V . We use the notation C0([0, T ];V ) for the Banach space consisting of all

continuous functions f : [0, T ] → V . More generally, for any k ∈ N, Ck([0, T ];V ) denotes the

subspace of C0([0, T ];V ) of all functions f with (strong) derivatives djf/dtj in C0([0, T ];V ) for

all j = 1, . . . , k. In the sequel, we will use indistinctly the notations ∂tf = df/dt to express the

derivative with respect to t.

We also consider the space L2(0, T ;V ) of classes of functions f : (0, T ) → V that are

Böchner-measurable and such that

∥f∥2L2(0,T ;V ) :=

∫ T

0
∥f(t)∥2V dt < +∞.

Furthermore, we will use

H1(0, T ;V ) :=
{
f ∈ L2(0, T ;V ) : ∂tf ∈ L2(0, T ;V )

}
.

Analogously, we define Hk(0, T ;V ) for all k ∈ N.

6.3 The model problem

The unit normal vector on Γ that points from ΩC to ΩI (respectively from ΩI to ΩC) is

denoted by nC (respectively nI = −nC).
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Let E(x, t) be the electric field and H(x, t) the magnetic field. Given a time-dependent

compactly supported current density J , our aim is to furnish an approximate solution to the

problem below:

∂t(µH) + curlE = 0 in R3 × (0, T ),

curlH − σE = J in R3 × [0, T ],

div (εE) = 0 in ΩI × [0, T ],

H(x, t), E(x, t) = O(|x|−1) as |x| → ∞,

H(x, 0) = H0(x) x ∈ R3,

(6.1)

where the asymptotic behavior (6.1)4 holds uniformly in [0, T ].

The initial data H0 ∈ (L2(R3))3 has to satisfy div (µH0) = 0 in R3. Coefficients σ, µ and

ε are assumed to be symmetric matrices with bounded entries. The electric conductivity σ is

positive definite in ΩC and vanishes in ΩI . The magnetic permeability µ is positive definite in

all R3 and satisfies µ = µ0I in ΩI (I being the identity matrix). The electric permittivity ε is

only needed in the dielectric domain in this formulation and we assume it satisfies ε = ε0I in ΩI ;

µ0 and ε0 being the corresponding coefficients in vacuum. Finally, we assume that the source

current is supported in ΩC . Moreover, we consider J ∈ L2(0, T ; (L2(ΩC))
3).

We define HC := H|ΩC
and HI := H|ΩI

; analogously, HC,0 := H0|ΩC
, HI,0 := H0|ΩI

,

EC := E|ΩC
, EI := E|ΩI

, etc.

We consider the space H(ΩC), defined as

H(ΩC) :=
{
v ∈ (L2(ΩC))

3 : curlv = 0, div (σv) = 0, σv · nC = 0 on Γ
}
.

We recall that each cutting surface Σint
j , j = 1, . . . , L, “cuts” an independent non-bounding cycle

in ΩC . They are connected orientable Lipschitz surfaces with ∂Σint
j ⊂ Γ, such that every curl-

free vector field in ΩC has a global potential in Ω̃C . A basis of H(ΩC) is given by the functions

ωj which are the (L2(ΩC))
3-extension of ∇pj , where pj ∈ H1(ΩC \ Σint

j ) is the solution of the

problem

div (σ∇pj) = 0 in ΩC \ Σint
j ,

σ∇pj · nC = 0 on Γ \ ∂Σint
j ,

[[σ∇pj · nint
j ]]

Σint
j

= 0, j = 1, . . . , L,

[[ pj ]]Σint
j

= 1, j = 1, . . . , L,

having denoted by [[ · ]]Σint
j

the jump across the surface Σint
j and by nint

j a unit normal vector on

Σint
j .

In order to obtain a suitable formulation for problem (6.1), we introduce the variable

AC(x, t) := −
∫ t

0
EC(x, s) +AC,0(x) (6.2)
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where AC,0 is a vector potential of µCHC,0; namely, a vector field such that

curlAC,0 = µCHC,0 in ΩC , (6.3)

which is well known to exist because div (µCHC,0) = 0 in ΩC ( see, for instance, [13, Lemma 3.5]).

In practice, AC,0 can be found, for instance, by solving the following problem:

curlAC,0 = µCHC,0 in ΩC ,

div (σAC,0) = 0 in ΩC ,

σAC,0 · nC = 0 on Γ,∫
ΩC

σAC,0 · ωj dx = 0, j = 1, . . . , L.

We obtain directly from (6.2) that EC = −∂tAC in ΩC × (0, T ). Moreover, if we apply curl

to (6.2) and use (6.1)1 and (6.3), we also deduce that µCHC = curlAC in ΩC × [0, T ] and,

replacing the new equalities in (6.1)2, we have

σ∂tAC + curl(µ−1
C curlAC) = J in ΩC × (0, T ).

We introduce the Beppo Levi space

W 1(ΩI) :=

{
φ ∈ L2

loc(ΩI) :
φ√

1 + |x|2
∈ L2(ΩI), ∇φ ∈ (L2(ΩI))

3

}
and recall that the seminorm ∥∇(·)∥0,ΩI

is a norm in W 1(ΩI) equivalent to the natural norm;

i.e., there exists a constant C > 0 such that (see, e.g., [52]):∥∥∥∥∥ φ√
1 + |x|2

∥∥∥∥∥
2

0,ΩI

≤ C ∥∇φ∥20,ΩI
∀φ ∈W 1(ΩI).

Moreover we define the harmonic Neumann vector-fields in ΩI by

H(ΩI) :=
{
v ∈ (L2(ΩI))

3 : curlv = 0, div v = 0, v · nI = 0 on Γ
}
.

We will also need a basis of the finite dimensional space H(ΩI). To this end, let Σ
ext
j , j = 1, . . . , L,

be the orientable cutting surfaces in ΩI introduced above. We fix a unit normal next
j on each Σext

j .

Then, for each j = 1, . . . , L, consider the following problem, which admits a unique solution:

Find zj ∈W 1(ΩI \ Σext
j ) such that

△zj = 0 in ΩI \ Σext
j ,

∇zj · nI = 0 on Γ \ ∂Σext
j ,

[[∇zj · next
j ]]

Σext
j

= 0,

[[ zj ]]Σext
j

= 1.

(6.4)
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The set {∇̃zj : j = 1, . . . , L}, where ∇̃zj are the (L2(ΩI))
3-extension of ∇zj , is a basis of H(ΩI)

(see, for instance, [49]).

We have the following representation of curl-free vector-fields in ΩI (see, e.g., [32, Remark 7]).

Lemma 6.3.1 There holds{
u ∈ (L2(ΩI))

3 : curlu = 0 in ΩI
}
= ∇(W 1(ΩI))⊕H(ΩI).

Moreover, this is an L2(ΩI)-orthogonal decomposition.

We know from (6.1)2 that curlHI = 0 in ΩI at all time t ∈ [0, T ]. Then, the previous lemma

ensures the existence, at each time t ∈ [0, T ], of a function ψI(t) in W
1(ΩI) and real constants

{αj(t)}Lj=1 such that

HI(x, t) = ∇ψI(x, t) +
L∑
j=1

αj(t)∇̃zj(x) in ΩI × [0, T ]. (6.5)

Moreover, taking divergence in the equation (6.1)1 and using that µ = µ0I in ΩI , we obtain

that ∂t(divHI) = 0 in ΩI × (0, T ). Hence, since we know that divHI(x, 0) = divHI,0 = 0 in

ΩI , we conclude that divHI = 0 in ΩI × [0, T ]. Then, using (6.5) and (6.4)1, we obtain that

△ψI = 0 in ΩI × [0, T ].

On the other hand, multiplying (6.1)1 by ∇̃zi, using a Green’s formula and the fact that EI ×
nI = −EC × nC , we obtain∫

ΩI

∂t(µ0HI) · ∇̃zi dx = −
∫
Γ
EC × nC · ∇̃zi dζ, i = 1, . . . , L.

Replacing HI by ∇ψI +
∑L

j=1 αj∇̃zj and EC by −∂tAC , using the orthogonality between

∇W 1(ΩI) and H(ΩI) and integrating by parts in ΩI , we obtain

µ0

L∑
j=1

α′
j(t)

∫
ΩI

∇̃zj · ∇̃zi dx =

∫
Γ
∂tAC(t)× nC · ∇̃zi dζ, i = 1, . . . , L.

Next, integrating in time between 0 and s (0 < s < T ) and recalling that AC(x, 0) = AC,0(x),

we obtain

µ0

L∑
j=1

αj(s)

∫
ΩI

∇̃zj · ∇̃zi dx−
∫
Γ
AC(s)× nC · ∇̃zi dζ

= µ0

L∑
j=1

αj(0)

∫
ΩI

∇̃zj · ∇̃zi dx−
∫
Γ
AC,0 × nC · ∇̃zi dζ, (6.6)
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with i = 1, . . . , L. From (6.4), Green’s formula yields∫
ΩI

∇̃zj · ∇̃zi dx =

∫
Σext

j

∂zi
∂nj

dζ,

for all i, j = 1, . . . , L. Then, we introduce the matrix

N :=

(∫
Σext

j

∂zi
∂nj

dζ

)
1≤i,j≤L

. (6.7)

It is clear that N is symmetric and positive definite. We also define the matrix Z and the vector

α by

Z :=
[
∇̃z1 · · · ∇̃zL

]t
and α :=

[
α1 · · · αL

]t
. (6.8)

Thus, we can write equation (6.6) as follows:

µ0Nα−
∫
Γ
Z (AC × nC) dζ = µ0Nα0 −

∫
Γ
Z (AC,0 × nC) dζ,

where α0 := α(0) is known.

In conclusion, we are led to the following problem:

Find AC ∈ L2(0, T ;H(curl; ΩC)) ∩ H1(0, T ; (L2(ΩC))
3), ψI ∈ L2(0, T ;W 1(ΩI)) and α ∈

L2(0, T ;RL) such that

σ∂tAC + curl(µ−1
C curlAC) = J in ΩC × (0, T ),

µ0Nα−
∫
Γ
Z (AC × nC) dζ = µ0Nα0 −

∫
Γ
Z (AC,0 × nC) dζ,

△ψI = 0 in ΩI × [0, T ],(
µ−1
C curlAC

)
× nC +

(
∇ψI +Ztα

)
× nI = 0 on Γ× [0, T ],

curlAC · nC + µ0∇ψI · nI = 0 on Γ× [0, T ],

AC(x, 0) = AC,0 in ΩC .

(6.9)

Equations (6.9)4 and (6.9)5 come from the fact that H ∈ H(curl;R3) and µH ∈ H(div ;R3)

and, hence, HC × nC = −HI × nI and µCHC · nC = −µ0HI · nI on Γ, respectively.

6.4 A FEM-BEM coupling variational formulation

In what follows we reduce problem (6.9) to the bounded domain ΩC . To do this we will use

Costabel’s symmetric FEM-BEM coupling technique (cf. [25, 26]). We introduce on Γ the single

and double layer potentials, which are formally defined by

S : H−1/2(Γ) → H1/2(Γ), S(ξ)(x) :=
∫
Γ

1

4π |x− y|
ξ(y) dζy,

D : H1/2(Γ) → H1/2(Γ), D(η)(x) :=

∫
Γ

x− y

4π |x− y|3
· η(y)nC(y) dζy,



6.4 A FEM-BEM coupling variational formulation 108

respectively, and the hypersingular operator H : H1/2(Γ) → H−1/2(Γ), which is formally defined

as the following normal derivative:

H(η)(x) := −∇x

(∫
Γ

x− y

4π |x− y|3
· η(y)nC(y) dζy

)
· nC(x).

Let us remark that the restrictions to the boundary as well as the normal derivative above have

to be understood in a weak sense; for rigorous definitions see, for instance, McLean [48]. The

three operators are linear and bounded. Let D′ : H−1/2(Γ) → H−1/2(Γ) denote the adjoint

operator of D.

In what follows, we recall some basics properties of these operators (see, e.g., McLean [48]

and Nédélec [52] for the corresponding proofs).

Theorem 6.4.1 Let φ ∈ W 1(ΩI) be a harmonic function. Then, the following identities hold

on Γ: (
1

2
I − D

)
(φ|Γ)− S

(
∂φ

∂nI

)
= 0,

−
(
1

2
I +D′

)(
∂φ

∂nI

)
+H (φ|Γ) = 0.

Lemma 6.4.1 (i) There exists k1 > 0 such that∫
Γ
S(η)η dζ ≥ k1 ∥η∥2−1/2,Γ ∀η ∈ H−1/2(Γ).

(ii) There exists k2 > 0 such that∫
Γ
H(φ)φ dζ ≥ k2 ∥φ∥21/2,Γ ∀φ ∈ H

1/2
0 (Γ),

where

H
1/2
0 (Γ) :=

{
φ ∈ H1/2(Γ) :

∫
Γ
φ dζ = 0

}
.

Lemma 6.4.2 H(1) = 0, D(1) = −1/2 and
∫
ΓH(η) dζ = 0 ∀η ∈ H1/2(Γ).

Here and thereafter, for the ease of notation, we use the integration symbol on Γ instead of the

duality pairing between H−1/2(Γ) and H1/2(Γ); namely,
∫
ΓH(η) dζ = ⟨H(η), 1⟩H−1/2(Γ)×H1/2(Γ).

Theorem 6.4.2 The linear operator H : H1/2(Γ)/R → H
−1/2
0 (Γ), where

H
−1/2
0 (Γ) :=

{
η ∈ H−1/2(Γ) :

∫
Γ
η dζ = 0

}
,

defines an isomorphism.
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Let (AC , ψI ,α) satisfying (6.9). Let ψ(t) := ψI |Γ(t)− c(t), where c : [0, T ] → R is such that

ψ(t) ∈ H
1/2
0 (Γ). By using (6.9)3 and (6.9)5, according to Theorem 6.4.1 and Lemma 6.4.2, for

all t ∈ [0, T ] we have

− 1

2
ψ −D(ψ) +

1

µ0
S(curlAC · nC) = −ψI on Γ, (6.10)

1

2µ0
curlAC · nC +

1

µ0
D′(curlAC · nC) +H(ψ) = 0 on Γ. (6.11)

The following is a variational formulation of problem (6.9), where

V := H(curl; ΩC).

Find AC ∈ L2(0, T ;V) ∩ H1(0, T ; (L2(ΩC))
3), ψ ∈ L2(0, T ;H

1/2
0 (Γ)) and α ∈ L2(0, T ;RL)

such that

d

dt

∫
ΩC

σAC ·wC dx+

∫
ΩC

µ−1
C curlAC · curlwC dx

+

∫
Γ

[
−1

2
ψ −D(ψ) +

1

µ0
S(curlAC · nC)

]
curlwC · nC dζ

+αt

∫
Γ
Z (wC × nC) dζ =

∫
ΩC

J ·wC dx,∫
Γ

[
1

2
curlAC · nC +D′(curlAC · nC) + µ0H(ψ)

]
η dζ = 0,

µ0β
tNα− βt

∫
Γ
Z (AC × nC) dζ = µ0β

tNα0 − βt

∫
Γ
Z (AC,0 × nC) dζ,

(6.12)

for all wC ∈ V , η ∈ H
1/2
0 (Γ) and β ∈ RL, with

AC(0) = AC,0 in ΩC .

In fact, to derive (6.12)1, we have multiplied (6.9)1 by wC , integrated by parts in ΩC and

used (6.9)4, the identity ∫
Γ
nI ×∇ψI ·wC dζ =

∫
Γ
ψI curlwC · nC dζ, (6.13)

(which in its turn follows by integration by parts, too) and (6.10). On the other hand, Eqs.

(6.12)2 and (6.12)3 follow directly from (6.11) and (6.9)2.

For the theoretical analysis it is convenient to eliminate α and ψ from the previous formu-

lation. With this aim, we introduce the linear operator T : V → RL defined by

T(wC) :=

∫
Γ
Z (wC × nC) dζ.
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We eliminate α from (6.12)3 and replace it in (6.12)1. Then, the fourth term of this equation

reads

αt

∫
Γ
Z (wC × nC) dζ =

(
T(wC)

)t
α

= µ−1
0

(
T(wC)

)t
N−1T(AC) +

(
T(wC)

)t
α0

− µ−1
0

(
T(wC)

)t
N−1T(AC,0).

Moreover, we introduce the operator R : H
−1/2
0 (Γ) → H

1/2
0 (Γ) given by∫

Γ
H(R(ξ))η dζ =

∫
Γ
ξη dζ ∀η ∈ H

1/2
0 (Γ), ∀ξ ∈ H

−1/2
0 (Γ). (6.14)

It is straightforward to show, from Lemma 6.4.1(ii) and the Lax-Milgram lemma, that R is well

defined and bounded. Therefore, the second equation of (6.12) may be equivalently written

ψ = −µ−1
0 R

(
1

2
curlAC · nC +D′(curlAC · nC)

)
.

Consequently, (6.12) admits the following equivalent reduced form:

Find AC ∈ L2(0, T ;V) ∩H1(0, T ; (L2(ΩC))
3) such that

d

dt
(AC(t),wC)σ +A(AC(t),wC) + B(AC(t),wC) = (J(t),wC)0,ΩC

+ g(wC) (6.15)

for all wC ∈ V , with

AC(0) = AC,0 in ΩC ,

where

(H,G)σ :=

∫
ΩC

σH ·Gdx ∀H,G ∈ (L2(ΩC))
3,

A : V × V → R, A(H,G) :=

∫
ΩC

µ−1
C curlH · curlGdx

+ µ−1
0

∫
Γ
S(curlH · nC) curlG · nC dζ,

B : V × V → R, B(H,G) := µ−1
0

∫
Γ
K(G)R(K(H)) dζ

+ µ−1
0

(
T(G)

)t
N−1T(H),

K : V → H
−1/2
0 (Γ), K(H) :=

1

2
curlH · nC +D′(curlH · nC),

g : V → R, g(H) := µ−1
0

(
T(H)

)t
N−1T(AC,0)−

(
T(H)

)t
α0.

Notice that A and B are bounded, symmetric and non-negative definite bilinear forms.

Remark 6.4.1 The norm ∥ · ∥0,ΩC
is equivalent to ∥ · ∥σ and, therefore, ∥ · ∥V is equivalent to

∥ · ∥σ + ∥ curl(·)∥0,ΩC
.
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6.4.1 Existence and Uniqueness.

As shown in the following lemma, problem (6.15) is well posed.

Lemma 6.4.3 There exists a unique solution to (6.15) and

∥AC∥2L∞(0,T ;V) + ∥∂tAC∥2L2(0,T ;(L2(ΩC))3)

≤ C
{
∥J∥2L2(0,T ;(L2(ΩC))3) + ∥AC,0∥2V + |α0|2

}
(6.16)

for some constant C > 0, independent of the problem data J , AC,0 and α0.

Proof. The classical theory for parabolic problems (see, for instance, [32]) allows us to show

that Problem (6.15) has a unique solution AC ∈ L2(0, T ;V) ∩ H1(0, T ;V ′). Moreover, since

AC,0 ∈ V and the right hand side of (6.15) is the sum of two terms, (J(t),wC)0,ΩC
with

J ∈ L2(0, T ; (L2(ΩC))
3) and g(wC) with g ∈ V ′ independent of t, it is straightforward to show

that actually ∂tAC ∈ L2(0, T ; (L2(ΩC))
3) and the estimate (6.16) holds true (In fact, we may

proceed as in the proof of Theorem 7.1.5 from [35] for the first term, and use Theorem A.1 from

[17] for the second one).

Remark 6.4.2 Problems (6.12) and (6.15) are actually equivalent. In fact, for AC being a

solution of (6.15), if we define ψ := −µ−1
0 R(K(AC)) and α := α0+µ

−1
0 N−1(T(AC)−T(AC,0)),

then (AC , ψ,α) is a solution of (6.12). Moreover this problem has a unique solution, because

AC has to be the unique solution of (6.15) and ψ and α are determined via (6.12)2 and (6.12)3,

respectively.

Problems (6.9) and (6.12) are also equivalent. In fact, we derived (6.12) from (6.9). In what

follows, we show the converse implication:

Theorem 6.4.3 Let (AC , ψ,α) be the solution to problem (6.12). Then, there exists ψI ∈
L2(0, T ;W 1(ΩI)) and a function c : [0, T ] → R such that ψ = ψI |Γ − c and (AC , ψI ,α) satisfies

(6.9).

Proof. Testing (6.12)1 with wC ∈ (C∞
0 (ΩC))

3 we obtain

σ∂tAC + curl
(
µ−1
C curlAC

)
= J in ΩC (6.17)

a.e. in [0, T ]. Then, testing (6.12)2 with η ∈ H1/2(Γ) and using Lemma 6.4.2 we have

1

2
curlAC · nC +D′(curlAC · nC) + µ0H(ψ) = 0 on Γ. (6.18)
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Now, let ψI ∈W 1(ΩI) be the solution of the following problem:

△ψI = 0 in ΩI ,

µ0∇ψI · nI = − curlAC · nC on Γ.
(6.19)

Since ψI ∈W 1(ΩI) is a harmonic function, Theorem 6.4.1 ensures that

1

2
ψI |Γ −D(ψI |Γ) +

1

µ0
S(curlAC · nC) = 0,

1

2
curlAC · nC +D′(curlAC · nC) + µ0H(ψI |Γ) = 0.

(6.20)

Subtracting (6.18) from (6.20)2, we obtain H(ψ − ψI) = 0 on Γ. Therefore, we conclude from

Theorem 6.4.2 that ψI(t) = ψ(t) + c(t) on Γ, where, for each t ∈ [0, T ], c(t) is a constant. As a

consequence, from (6.20)1 we have

− 1

2
ψ|Γ −D(ψ|Γ) +

1

µ0
S(curlAC · nC)

= −1

2
(ψI |Γ − c)−D(ψI |Γ − c) +

1

µ0
S(curlAC · nC) = −ψI |Γ.

Now, replacing this equality in (6.12)1, using (6.13) and testing with wC ∈ H(curl; ΩC), we

obtain (
µ−1
C curlAC

)
× nC +

(
∇ψI +Ztα

)
× nI = 0 on Γ.

Let us emphasize that the first term on the left hand side is well defined in H−1/2(Γ), since

µ−1
C curlAC ∈ H(curl; ΩC), which in turn follows because of (6.17) and the facts that J ∈

L2(0, T ; (L2(ΩC))
3) and the solution to Problem (6.12) satisfies ∂tAC ∈ L2(0, T ; (L2(ΩC))

3).

Finally (6.9)2 and (6.9)3 follows from (6.12)3 and the initial condition of problem (6.12), respec-

tively.

6.5 Fully-discrete scheme

Let {Th(ΩC)}h be a regular family of tetrahedral meshes of ΩC . As usual, h stands for the

largest diameter of the tetrahedra K in Th(ΩC). Furthermore, we consider the corresponding

family of triangulations induced on Γ, {Th(Γ)}h. Let N ∈ N, ∆t := T/N and tn = n∆t,

n = 0, . . . , N .

We define a fully-discrete version of (6.12) by means of Nédélec finite elements. The local

representation on K of the lowest-order Nédélec finite element is given by

N (K) :=
{
a× x+ b : a, b ∈ R3, x ∈ K

}
.
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The corresponding global space Vh is the space of vector fields that are locally in N (K) for all

K in ΩC and globally in V = H(curl; ΩC). Moreover, we define

Lh(Γ) :=
{
η ∈ H

1/2
0 (Γ) : η|F ∈ P1(F ) ∀F ∈ Th(Γ)

}
,

which approximates the space H
1/2
0 (Γ), where Pk(F ) is the set of polynomial functions defined

in F of degree not greater than k.

When ΩC is not simply connected, problem (6.12) involves the matrices N and Z defined by

(6.7) and (6.8), respectively. To compute these matrices we also need to approximate numerically

the basis {∇̃zk}Lk=1 of the harmonic Neumann vector-fields space H(ΩI). A similar need arose

in [49], where the authors proposed a coupled FEM-BEM method to compute the entries of a

matrix Nh approximating N. For the sake of completeness, in what follows, we briefly describe

the method introduced in [49] to approximate N and the corresponding error estimate proved

in this reference.

Consider a convex polyhedron Ω such that ΩC ∪
(∪L

k=1Σ
ext
k

)
⊂ Ω. Set

Q0 := Ω \
{
ΩC ∪

( L∪
k=1

Σ
ext
k

)}
, Q := Ω \ ΩC and Λ := ∂Ω.

From (6.4), pk := ∇̃zk|Q, k = 1, . . . , L, belong to the closed subspace of H(div ;Q)

Y :=
{
q ∈ (L2(Q))3 : div q = 0 in Q and q · nI = 0 on Γ

}
and satisfies the variational equation∫

Q
pk · q dx−

∫
Σext

k

q · nk dζ +
∫
Λ
q · nzk dζ ∀q ∈ Y,

where n correspond to the unit normal vector on Λ outer to Q. Furthermore, as zk is harmonic

in R3 \ Ω, the last equation may be coupled with boundary integral equations relating zk and

its normal derivative pk ·n on Λ. This leads to the following weak formulation (see [50] for more

details)

Find pk ∈ Y and ϕk ∈ H1/2(Λ)/R such that∫
Q
pk · q dx+

∫
Λ
S(pk · n)q · n dζ −

∫
Λ

[
1

2
ϕk +D(ϕk)

]
q · n dζ

=

∫
Σext

k

q · nk dζ,∫
Λ

[
1

2
χ+D(χ)

]
pk · n dζ +

∫
Λ
H(ϕk)χdζ = 0,

(6.21)

for all functions q ∈ Y and χ ∈ H1/2(Λ)/R. The variable ϕk represents (up to and additive

constant) the trace of zk on Λ. Now, consider a regular family of triangulations {Th(Q)}h of Q by



6.5 Fully-discrete scheme 114

tetrahedra K of diameter no greater than h > 0. Assume that, for any h, the set Th(ΩC)∪Th(Q)

is a triangulation of Ω. This implies that the triangulation induced by Th(Q) on Γ is identical

to Th(Γ). It can be assumed, without loss of generality, that, for each mesh, the cutting surfaces

Σext
k are union of faces of tetrahedra in Th(Q). Finally, denote by Th(Λ) the triangulation induced

by Th(Q) on Λ.

Consider a conforming discretization of H(div ;Q):

RT h(Q) := {q ∈ H(div ;Q) : q|K ∈ RT (K) ∀K ∈ Th(Q)} ,

RT (K) :=
{
ax+ b : a ∈ R, b ∈ R3, x ∈ K

}
being the lowest-order Raviart-Thomas element.

The following is a convenient way of discretizing problem (6.21) (for more details, see [49]):

Find pkh ∈ RT 0
h(Q), ϕkh ∈ Φh/R and βkh ∈Mh such that∫

Q
pkh · q dx+

∫
Λ
S(pkh · n)q · n dζ −

∫
Λ

[
1

2
ϕkh +D(ϕkh)

]
q · n dζ

+

∫
Q
βkhdiv q dx =

∫
Σext

k

q · nk dζ,∫
Λ

[
1

2
χ+D(χ)

]
pkh · n dζ +

∫
Λ
S(curl

τ
ϕkh) curl

τ
χ dζ = 0,∫

Q
div pkhv dx = 0,

(6.22)

for all functions q ∈ RT 0
h(Q), χ ∈ Φh/R and v ∈Mh, where

RT 0
h(Q) := {q ∈ RT h(Q) : q|Γ · nI = 0},

Φh := {η ∈ C0(Λ) : η|F ∈ P1(F ) ∀F ∈ Th(Λ)},

Mh := {v ∈ L2(Q) : v|K ∈ P0(K) ∀K ∈ Th(Q)}.

Moreover, curlτ denotes the surface curl on Λ (see, for instance, [5, Section A.1]).

We know from [50] that (6.22) is a well posed problem. Once the functions pkh, 1 ≤ k ≤ L,

are computed, the matrix N can be approximated by

Nh :=

(∫
Σext

j

pkh · nj dζ

)
1≤k,j≤L

. (6.23)

Note that this matrix is symmetric and positive definite. Error estimates for the approximation

Nh of N has been obtained in [49]. With this end, an additional regularity result has been also

proved therein. In the sequel, we denote by sQ ∈ (1/2, 1) the exponent of maximal regularity inQ
of the solution of the Laplace operator with L2(Q) right-hand side and homogeneous Neumann

boundary data.
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Theorem 6.5.1 If (pk, ϕk) is the solution to problem (6.21), k = 1, . . . , L, then pk ∈ (Hs(Q))3

for all s ∈ (1/2, sQ).

Proof. See [49, Theorem 7.1].

Finally we recall the error estimates obtained in [49]. Here and thereafter C denotes a generic

positive constant not necessarily the same at each occurrence, but always independent of the

mesh size h and the time step ∆t.

Theorem 6.5.2 Problems (6.21) and (6.22) are well posed and

∥pk − pkh∥0,Q + ∥ϕk − ϕkh∥H1/2(Λ)/R ≤ Chs
{
∥pk∥s,Q + ∥ϕk∥s+1/2,Λ

}
holds, with s as in Theorem 6.5.1.

Proof. See [49, Theorem 7.2].

Theorem 6.5.3 There exists h0 > 0 such that Nh is invertible for all h ∈ (0, h0). Moreover,

the error estimate

∥N−Nh∥+
∥∥N−1 −N−1

h

∥∥ ≤ Chs max
1≤k≤L

{
∥pk∥s,Q + ∥ϕk∥s+1/2,Λ

}
holds, with s as in Theorem 6.5.1.

Proof. See [49, Corollary 7.3].

Notice that ∥ϕk∥s+1/2,Λ is clearly bounded, since ϕk is the trace on Λ of the solution zk to

problem 6.4.

To compute an approximation of the entries of Z, we need to resort to a different strategy.

In fact, the previous methods yields good approximation of pk|Γ · nI = ∇̃zk|Γ · nI , but not of

∇̃zk|Γ×nI (which are the terms defining the entries of Z). A similar situation happened in [49],

too. However, in this case, we follow an alternative approach that we think is simpler.

It is easy to show that the solution of (6.4) satisfies the following variational formulation:

Find zk ∈ H1(Q \ Σext
k )/R such that [[ zk ]]Σext

k
= 1 and∫

Q\Σext
k

∇zk · ∇φdx =

∫
Λ
pk · nφ dζ ∀φ ∈ H1(Q)/R. (6.24)

We introduce

Lh(Q) :=
{
θ ∈ H1(Q) : θ|K ∈ P1(K) ∀K ∈ Th(Q)

}
,

Lh(Q \ Σext
k ) :=

{
θ ∈ H1(Q \ Σext

k ) : θ|K ∈ P1(K) ∀K ∈ Th(Q)
}
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and consider the following discrete version of problem (6.24):

Find zkh ∈ Lh(Q \ Σext
k )/R such that [[ zkh ]]Σext

k
= 1 and∫

Q\Σext
k

∇zkh · ∇φdx =

∫
Λ
pkh · nφdζ ∀φ ∈ Lh(Q)/R. (6.25)

Lemma 6.5.1 Let zk and zkh be the solutions to problems (6.24) and (6.25), respectively. Then∥∥∇̃zk − ∇̃zkh
∥∥
0,Q ≤ Chs,

with s as in Theorem 6.5.1.

Proof. Let ẑk ∈ C∞(Q \ Σext
k ) be such that [[ ẑk ]]Σext

k
= 1. Let ẑIk be the Lagrange intepolant of

ẑk in Q \ Σext
k . Notice that [[ ẑIk ]]Σext

k
= 1, too. We write

zk = ẑk + zk and zkh = ẑIk + zkh,

with zk ∈ H1(Q)/R and zkh ∈ Lh(Q)/R. Substituting these expressions in problems (6.24) and

(6.25), respectively, and using the first Strang lemma (see, for instance, [23, Theorem 4.4.1]), we

obtain

∥∇zk −∇zkh∥0,Q ≤ C inf
φ∈Lh(Q)/R

∥∇zk −∇φ∥0,Q

+ C sup
φ∈Lh(Q)/R

∣∣∣− ∫Q\Σext
k

∇(ẑk − ẑIk) · ∇φ dx+
∫
Λ(pk − pkh) · nφ dζ

∣∣∣
∥∇φ∥0,Q

.

The second term on the right-hand side above is bounded as follows:∣∣∣∣∣−
∫
Q\Σext

k

∇(ẑk − ẑIk) · ∇φdx+

∫
Λ
(pk − pkh) · nφdζ

∣∣∣∣∣
≤
∥∥∇ẑk −∇ẑIk

∥∥
0,Q\Σext

j
∥∇φ∥0,Q + C ∥pk − pkh∥0,Q ∥∇φ∥0,Q ,

where we have used that div pk = div pkh = 0 in Q and the fact that ∥∇(·)∥0,Q is equivalent to

∥ · ∥1,Q on H1(Q)/R.
On the other hand, from Theorem 6.5.1 we know that ∇zk|Q ∈ (Hs(Q))3. Hence,

inf
φ∈Lh(Q)/R

∥∇zk −∇φ∥0,Q ≤
∥∥∇zk −∇zIk

∥∥
0,Q ≤ Chs ∥∇zk∥s,Q .

Thus, using the last two estimates and Theorem 6.5.2, we obtain

∥∇zk −∇zkh∥0,Q ≤ Chs
{
∥∇ẑk∥s,Q\Σext

k
+ ∥pk∥s,Q + ∥ϕk∥s+1/2,Λ + ∥∇zk∥s,Q

}
.
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Therefore, as a consequence of Theorem 6.5.1,∥∥∇̃zk − ∇̃zkh
∥∥
0,Q ≤ Chs

and we conclude the proof.

Now, we are in a position to introduce the following full discretization of problem (6.12):

For n = 1, . . . , N , find (An
Ch, ψ

n
h ,α

n
h) ∈ Vh × Lh(Γ)× RL such that∫

ΩC

σ∂An
Ch ·wC dx+

∫
ΩC

µ−1
C curlAn

Ch · curlwC dx

+

∫
Γ

[
−1

2
ψnh −D(ψnh) +

1

µ0
S(curlAn

Ch · nC)
]
curlwC · nC dζ

+ (αn
h)

tTh(wC) =

∫
ΩC

J(tn) ·wC dx,∫
Γ

[
1

2
curlAn

Ch · nC +D′(curlAn
Ch · nC) + µ0H(ψnh)

]
η dζ = 0,

µ0β
tNhα

n
h − βtTh(An

Ch) = µ0β
tNhα0 − βtTh(AC,0),

(6.26)

for all (wC , η,β) ∈ Vh × Lh(Γ)× RL, with

A0
Ch = ACh,0 in ΩC ,

where ACh,0 ∈ Vh is an approximation of AC,0, ∂A
n
Ch := (An

Ch −An−1
Ch )/∆t and the linear and

continuous operator Th : V → RL is defined by

Th(w) :=

∫
Γ
Zh (w × nC) dζ, with Zh :=

[
∇̃z1h · · · ∇̃zLh

]t
.

To prove the existence and uniqueness of solution to (6.26), first we proceed as in the con-

tinuous case and obtain a discrete form of Problem (6.15). Let Rh : H
−1/2
0 (Γ) → Lh(Γ) be the

operator defined by∫
Γ
H(Rh(ξ))η dζ =

∫
Γ
ξη dζ ∀η ∈ Lh(Γ), ∀ξ ∈ H

−1/2
0 (Γ).

Note that this is a Galerkin discretization of the elliptic problem (6.14). Consequently, using the

Galerkin orthogonality and the continuity and ellipticity of H (cf. Lemma 6.4.1(ii)), we have the

following Cea estimate:

∥Rξ −Rhξ∥1/2,Γ ≤ C inf
η∈Lh(Γ)

∥Rξ − η∥1/2,Γ ∀ξ ∈ H
−1/2
0 (Γ). (6.27)

Now, using again that ψnh := −µ−1
0 Rh (K(An

Ch)) (cf. (6.26)2) we obtain the following equi-

valent formulation of (6.26):
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For n = 1, . . . , N , find An
Ch ∈ Vh such that(

∂An
Ch,wC

)
σ
+A(An

Ch,wC) + Bh(An
Ch,wC) = (J(tn),wC)0,ΩC

+ gh(wC) (6.28)

for all wC ∈ Vh, with

A0
Ch = ACh,0 in ΩC ,

where

Bh : Vh × Vh → R, Bh(H,G) := µ−1
0

∫
Γ
K(G)Rh(K(H)) dζ

+ µ0
(
Th(G)

)t
N−1
h Th(H),

gh : Vh → R, gh(H) := µ−1
0

(
Th(H)

)t
N−1
h Th(AC,0)−

(
Th(H)

)t
α0.

Hence, at each iteration, we have to find An
Ch ∈ Vh such that

(An
Ch,wC)σ +∆t [A(An

Ch,wC) + Bh(An
Ch,wC)]

= ∆t
[
(J(tn),wC)0,ΩC

+ gh(wC)
]
+
(
An−1
Ch ,wC

)
σ
. (6.29)

Since Bh and A are non-negative definite, the existence and uniqueness of An
Ch, n = 1, . . . , N ,

is immediate.

Remark 6.5.1 It is easy to prove that if ψnh := −µ−1
0 Rh(K(An

Ch)) as defined above and αn
h :=

α0 + µ−1
0 N−1

h (Th(An
Ch) − Th(AC,0)), then (An

Ch, ψ
n
h ,α

n
h) is a solution of (6.26). This solution

is unique, because H is elliptic in Lh(Γ) ⊂ H
1/2
0 (Γ) and Nh is a symmetric and positive definite

matrix.

6.5.1 Matrix form

To have it clear the kind of problem we have to solve in practice, we will write the fully discrete

scheme (6.26) in matrix form. Let {ϕ1, . . . ,ϕJ} and {λ1, . . . , λM} be bases of Vh and Lh(Γ),
respectively, and {e1, . . . , eL} the canonical basis of RL. We write the solution (An

Ch, ψ
n
h ,α

n
h),

n = 1, . . . , N , to problem (6.26), in these bases:

An
Ch =

J∑
j=1

anjϕj , ψnh =
M∑
j=1

bnj λj , αn
h =

L∑
j=1

cnj ej , n = 1, . . . , N.

Analogously, we write

ACh,0 =
J∑
j=1

a0jϕj and α0 =
L∑
j=1

c0jej .
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We set an := (ani )1≤i≤J , c
n := (cni )1≤i≤L , with n = 0, . . . , N , and bn := (bni )1≤i≤M , with

n = 1, . . . , N . We also set Fn := (Fni )1≤i≤J , where

Fni :=

∫
ΩC

J(tn) · ϕi dx.

We introduce the matrices W := (Wij)1≤i,j≤J , D := (Dij)1≤i≤J,1≤j≤M , H := (Hij)1≤i,j≤M ,

R := (Rij)1≤i,j≤J , Q := (Qij)1≤i≤J,1≤j≤L and S := (Sij)1≤i,j≤J , where

Wij :=

∫
ΩC

σϕi · ϕj dx, Dij :=

∫
Γ

[
−1

2
λj −D(λj)

]
curlϕi · nC dζ,

Hij :=

∫
Γ
H(λi)λj dζ, Rij :=

∫
ΩC

µ−1
C curlϕi · curlϕj dx,

Qij := etj

∫
Γ
Zh (ϕi × nC) dζ, Sij :=

∫
Γ
S(curlϕi · nC) curlϕj · nC dζ.

Hence, we write problem (6.26) in block matrix form as follows:
W +∆t (R+ S) ∆tD ∆tQ

∆tDt −∆tH O

∆tQt O −∆tNh



an

bn

cn

 =


∆tFn +Wan−1

O

∆t
(
Qta0 −Nhc

0
)
 .

As already mentioned in Remark 6.5.1, problem (6.26) has a unique solution, so that the matrix

on the left hand side is non singular.

Matrices Zh and Nh are both readily obtained once the solution pkh to problem (6.22) is

computed. In what follows we write down the matrix form of this problem. Let {u1, . . . ,uA},
{v1, . . . , vB} and {w1, . . . , wC} be bases of RT 0

h(Q), Φh/R and Mh, respectively. Then, we write

the solution of problem (6.22) in these bases as follows:

pkh =

A∑
j=1

φkjuj , ϕkh =

B∑
j=1

γkjvj and βkh =

C∑
j=1

ηkjwj .

Next, we define φk := (φki)1≤i≤A, γk := (γki)1≤i≤B, ηk := (ηki)1≤i≤C and G := (Gi)1≤i≤A,

where

Gi :=

∫
Σext

k

ui · nk dζ.

Moreover, we introduce the matricesU := (Uij)1≤i,j≤A,V := (Vij)1≤i,j≤A,K := (Kij)1≤i≤A,1≤j≤B,

E := (Eij)1≤i≤A,1≤j≤C and T := (Tij)1≤i,j≤A, where

Uij :=

∫
Q
ui · uj dx, Vij :=

∫
Λ
S (ui · n)uj · n dζ,

Kij := −
∫
Λ

[
1

2
vj +D(vj)

]
ui · ndζ, Eij :=

∫
Q
wjdivui dx,

Tij :=

∫
Λ
S
(
curl
τ
vj

)
curl
τ
vi dζ.
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Then, Problem (6.22) reads 
U+V K E

Kt −T O

Et O O



φk

γk

ηk

 =


G

O

O

 .
It is proved in [50] that the matrix of the left hand side above is invertible. Finally, for a discussion

on the efficient computation of all the singular integrals appearing above, we refer to [63].

As a conclusion, we have that problem (6.26) is actually solvable. Although it involves the

solution of the auxiliary problem (6.22), this can be made off-line since it does not depend

on time. Once it is solved, the time domain problem (6.26) involves only a vector field on

the conducting domain and a scalar field on its boundary. Therefore, this approach allows to

minimizing the number of degrees of freedom needed in the discretization.

6.6 Error estimates

For any s ≥ 0, we consider the space

Hs(curl; ΩC) :=
{
v ∈ (Hs(ΩC))

3 : curlv ∈ (Hs(ΩC))
3
}

endowed with the norm ∥v∥2
Hs(curl;ΩC)

:= ∥v∥2s,ΩC
+ ∥ curlv∥2s,ΩC

. It is well known that the

Nédélec interpolation operator IN
h v ∈ Vh is well defined for any v ∈ Hs(curl; ΩC), with s > 1/2

(see, for instance, Lemma 4.7 of [13]). Moreover, for 1/2 < s ≤ 1, the following interpolation

error estimate holds true (see Proposition 5.6 of [6]):∥∥v − IN
h v
∥∥
V ≤ Chs ∥v∥Hs(curl;ΩC) ∀v ∈ Hs(curl; ΩC). (6.30)

To simplify the notation, we introduce for any w ∈ V

Gh(w) := ∥(R−Rh)K(w)∥1/2,Γ .

Lemma 6.6.1 Let (AC , ψ,α) and (An
Ch, ψ

n
h ,α

n
h) be the solutions to problems (6.12) and (6.26),

respectively, the latter with initial data A0
Ch := IN

h (AC,0). Assume that AC ∈ C1([0, T ];V) ∩
C0([0, T ];Hs(curl; ΩC)), with s > 1/2. Moreover, let ρn := AC(tn)−IN

h AC(tn), δ
n := IN

h AC(tn)−
An
Ch and τn := ∂AC(tn)− ∂tAC(tn). Then, there exists C > 0, independent of h and ∆t, such
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that

max
1≤k≤n

∥∥∥δk∥∥∥2
V
+∆t

n∑
k=1

∥∥∥∂δk∥∥∥2
σ

≤ C

{
∆t

n∑
k=1

[ ∥∥∥∂ρk∥∥∥2
V
+
∥∥∥τ k∥∥∥2

V
+ Gh(∂tAC(tk))

2

+
(
∥AC(tk)∥2V + ∥∂tAC(tk)∥2V

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )]
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )
+ max

0≤k≤n

∥∥∥ρk∥∥∥2
V
+ max

0≤k≤n
Gh(AC(tk))

2

}
.

Proof. It is straightforward to show that(
∂δk,v

)
σ
+A(δk,v) + Bh(δk,v)

= −
(
∂ρk,v

)
σ
+
(
τ k,v

)
σ
−A(ρk,v)− Bh(ρk,v)

+ Bh(AC(tk),v)− B(AC(tk),v) + g(v)− gh(v) ∀v ∈ Vh,

(6.31)

as well as the following inequalities:(
∂δk, δk

)
σ
≥ 1

2∆t

(∥∥∥δk∥∥∥2
σ
−
∥∥∥δk−1

∥∥∥2
σ

)
,

A(δk, δk) ≥ µ−1
1

∥∥∥curl δk∥∥∥2
0,ΩC

,

B(AC(tk), δ
k)− Bh(AC(tk), δ

k)

≤ C ∥AC(tk)∥V
∥∥∥δk∥∥∥

V

(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥
0,Q +

∥∥N−1 −N−1
h

∥∥)
+ C

∥∥∥curl δk∥∥∥
0,ΩC

Gh(AC(tk)),

g(δk)− gh(δ
k)

≤ C
(
∥AC,0∥V + |α0|

) ∥∥∥δk∥∥∥
V

(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥
0,Q +

∥∥N−1 −N−1
h

∥∥).
Constant µ1 on the second inequality is an upper bound in ΩC of the largest eigenvalue of µC .

Hence, choosing v = δk in (6.31) and using that Bh is non-negative, Cauchy-Schwarz inequality,

Remark 6.4.1 and Young’s inequality lead us to the following estimate:∥∥∥δk∥∥∥2
σ
−
∥∥∥δk−1

∥∥∥2
σ
+∆tµ−1

1

∥∥∥curl δk∥∥∥2
0,ΩC

≤ ∆t

2T

∥∥∥δk∥∥∥2
σ
+ C∆t

[ ∥∥∥∂ρk∥∥∥2
σ
+
∥∥∥τ k∥∥∥2

σ
+
∥∥∥ρk∥∥∥2

V
+ Gh(AC(tk))

2

+ ∥AC(tk)∥2V
(

max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )].
(6.32)
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Then, summing over k, using the discrete Gronwall’s lemma (see, for instance, [60, Lemma 1.4.2])

and taking into account that δ0 = 0, we obtain

∥δn∥2σ ≤ C

{
∆t

n∑
k=1

[ ∥∥∥∂ρk∥∥∥2
σ
+
∥∥∥τ k∥∥∥2

σ
+
∥∥∥ρk∥∥∥2

V
+ Gh(AC(tk))

2

+ ∥AC(tk)∥2V
(

max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )]
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )}

for n = 1, . . . , N . Inserting the last inequality in (6.32) and summing over k we have the estimate

∥δn∥2σ +∆t

n∑
k=1

∥∥∥curl δk∥∥∥2
0,ΩC

≤ C

{
∆t

n∑
k=1

[ ∥∥∥∂ρk∥∥∥2
σ
+
∥∥∥τ k∥∥∥2

σ
+
∥∥∥ρk∥∥∥2

V
+ Gh(AC(tk))

2

+ ∥AC(tk)∥2V
(

max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )]
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )} .
(6.33)

Let us now take v = ∂δk in (6.31). We have∥∥∥∂δk∥∥∥2
σ
+A(δk, ∂δk) + Bh(δk, ∂δk)

= −
(
∂ρk, ∂δk

)
σ
+
(
τ k, ∂δk

)
σ
+A(∂ρk, δk−1) + Bh(∂ρk, δk−1)

+ B(τ k, δk−1)− Bh(τ k, δk−1) + B(∂tAC(tk), δ
k−1)

− Bh(∂tAC(tk), δ
k−1) + g(∂δk)− gh(∂δ

k)− 1

∆t
(γk − γk−1) ,

(6.34)

where γk := A(ρk, δk) + Bh(ρk, δk)− Bh(AC(tk), δ
k) + B(AC(tk), δ

k).

On the other hand, since A is non-negative definite and symmetric, it is easy to check that

A(δk, ∂δk) ≥ 1

2∆t

[
A(δk, δk)−A(δk−1, δk−1)

]
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and similarly for Bh. Using these inequalities in (6.34) together with Cauchy-Schwarz inequality,

and, then, summing over k and recalling that Bh is non-negative, we deduce that

1

2

n∑
k=1

∥∥∥∂δk∥∥∥2
σ
+

1

2∆t
µ−1
1 ∥curl δn∥20,ΩC

≤
n∑
k=1

[∥∥∥∂ρk∥∥∥2
σ
+
∥∥∥τ k∥∥∥2

σ

]

+
n∑
k=1

[ ∣∣∣A(∂ρk, δk−1)
∣∣∣+ ∣∣∣Bh(∂ρk, δk−1)

∣∣∣+ ∣∣∣B(τ k, δk−1)− Bh(τ k, δk−1)
∣∣∣

+
∣∣∣B(∂tAC(tk), δ

k−1)− Bh(∂tAC(tk), δ
k−1)

∣∣∣ ]
+

1

∆t
|g(δn)− gh(δ

n)|+ 1

∆t
|γn| .

(6.35)

The following bounds are easy to obtain from Young’s inequality and Remark 6.4.1:

n∑
k=1

∣∣∣A(∂ρk, δk−1)
∣∣∣ ≤ n∑

k=1

∥∥∥curl δk−1
∥∥∥2
0,ΩC

+ C

n∑
k=1

∥∥∥curl ∂ρk∥∥∥2
0,ΩC

,

n∑
k=1

∣∣∣Bh(∂ρk, δk−1)
∣∣∣ ≤ n∑

k=1

∥∥∥curl δk−1
∥∥∥2
0,ΩC

+

n∑
k=1

∥∥∥δk−1
∥∥∥2
σ
+ C

n∑
k=1

∥∥∥∂ρk∥∥∥2
V
,

n∑
k=1

∣∣∣B(τ k, δk−1)− Bh(τ k, δk−1)
∣∣∣

≤
n∑
k=1

∥∥∥curl δk−1
∥∥∥2
0,ΩC

+
n∑
k=1

∥∥∥δk−1
∥∥∥2
σ
+ C

n∑
k=1

∥∥∥τ k∥∥∥2
V
,

n∑
k=1

∣∣∣B(∂tAC(tk), δ
k−1)− Bh(∂tAC(tk), δ

k−1)
∣∣∣

≤
n∑
k=1

∥∥∥curl δk−1
∥∥∥2
0,ΩC

+
n∑
k=1

∥∥∥δk−1
∥∥∥2
σ
+ C

n∑
k=1

Gh(∂tAC(tk))
2

+ C
n∑
k=1

∥∂tAC(tk)∥2V
(

max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 ),
and

|g(δn)− gh(δ
n)|

≤ C
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )
+

1

8
µ−1
1 ∥curl δn∥20,ΩC

+ ∥δn∥2σ ,

|γn| ≤
1

8
µ−1
1 ∥curl δn∥20,ΩC

+ ∥δn∥2σ

+ C
[
∥ρn∥2V + ∥AC(tn)∥2V

(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )].
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Substituting all these inequalities in (6.35), using (6.33) and Remark 6.4.1, we obtain

∆t

n∑
k=1

∥∥∥∂δkC∥∥∥2
σ
+ ∥curl δnC∥

2
0,ΩC

≤ C

{
∆t

n∑
k=1

[ ∥∥∥∂ρk∥∥∥2
V
+
∥∥∥τ k∥∥∥2

V
+ Gh(∂t(AC(tk)))

2 +
∥∥∥ρk∥∥∥2

V

+ ∥AC(tk)∥2V
(

max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )
+ ∥∂tAC(tk)∥2V

(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )]
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤i≤L

∥∥∇̃zi − ∇̃zih
∥∥2
0,Q +

∥∥N−1 −N−1
h

∥∥2 )
+ ∥ρn∥2V + Gh(AC(tn))

2

}

Combining this inequality with (6.33) and Remark 6.4.1, we end the proof.

Lemma 6.6.2 Let (AC , ψ,α) be the solution of (6.12). If we assume that AC ∈ H1(0, T ;Hs(curl; ΩC)),

1/2 < s < sQ, then ψ ∈ H1(0, T ;Hs+1/2(Γ)) and the following estimates hold true:

inf
η∈Lh(Γ)

∥ψ(t)− η∥1/2,Γ ≤ Chs ∥curlAC(t)∥s,ΩC
, (6.36)

inf
η∈Lh(Γ)

∥∂tψ(t)− η∥1/2,Γ ≤ Chs ∥∂t(curlAC(t))∥s,ΩC
. (6.37)

Proof. Let (AC , ψ,α) be the unique solution of (6.12). Let ψI be as in Theorem 6.4.3. As shown

in that theorem, ψI(t) = ψ(t) + c(t) with c(t) ∈ R and t ∈ [0, T ]. Moreover, a.e. in [0, T ], ψI |Q
is the solution to

−△ψI = 0 in Q,

µ0
∂ψI
∂nI

= − curlAC · nC on Γ,

ψI |Λ ∈ C∞(Λ).

(6.38)

Since AC ∈ C0([0, T ];Hs(curl; ΩC)) with 1/2 < s < sQ and Λ is the boundary of a convex

polyhedron, by applying classical results for the Laplace equation (see [38]) we have that ψI ∈
Hs+1(Q) and

∥ψI∥s+1,Q ≤ C ∥curlAC · nC∥s−1/2,Γ ≤ C ∥curlAC∥s,ΩC
. (6.39)

Since s > 1/2, the Lagrange interpolant ψII of ψI is well defined. Moreover, since ψI and ψ

only differ in a constant, (
ψI − ψII

)∣∣
Γ
= ψ − ψIΓ ,
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where ψIΓ ∈ Lh(Γ) denotes the 2D Lagrange surface interpolant on Γ. Therefore, because of the

trace theorem, standard estimates for the 3D Lagrange interpolant and (6.39), we have∥∥ψ − ψIΓ
∥∥
1/2,Γ

≤ C
∥∥ψI − ψII

∥∥
1,Q ≤ Chs ∥ψI∥s+1,Q ≤ Chs ∥curlAC∥s,ΩC

.

Thus, we conclude (6.36).

To prove (6.37), we recall that ψI is the solution to problem (6.19) (cf. the proof of Theo-

rem 6.4.3). Then, since AC ∈ H1(0, T ;Hs(curl; ΩC)), differentiating in time each equation in

(6.19), we obtain an estimate analogous to (6.39) for ∂tψI . On the other hand, since ψI(t) =

ψ(t) + c(t) with

c(t) =
1

|Γ|

∫
Γ
ψI(t) dζ,

we have that ∂tψ(t) = ∂tψI(t)− c′(t). Hence, the rest of the proof follows identically as above.

Now we are in a position to conclude the following asymptotic error estimate for the fully

discrete scheme.

Theorem 6.6.1 Let (AC , ψ,α) and (An
Ch, ψ

n
h ,α

n
h), n = 1, . . . , N , be the solutions to problem

(6.12) and (6.26), respectively. Let us assume that AC ∈ H1(0, T ;Hs(curl; ΩC))∩H2(0, T ;H(curl; ΩC))

with s ∈ (1/2, sQ). Then, there exists h0 > 0 such that, for all h ∈ (0, h0), the following estimate

holds:

max
1≤n≤N

∥AC(tn)−An
Ch∥

2
V +∆t

N∑
n=1

∥∥∂(AC(tn)−An
Ch)
∥∥2
σ

≤ Ch2s
{∫ T

0
∥∂tAC(t)∥2Hs(curl;ΩC)

dt+ max
1≤n≤N

∥∂t(curlAC(tn))∥2s,ΩC

+ max
1≤n≤N

(
∥AC(tn)∥2V + ∥∂tAC(tn)∥2V

)(
max
1≤k≤L

∥∥∇̃zk∥∥2s,Q + ∥zk∥2s+1/2,Λ

)
+
(
∥AC,0∥2V + |α0|2

)(
max
1≤k≤L

∥∥∇̃zk∥∥2s,Q + ∥zk∥2s+1/2,Λ

)
+ max

1≤n≤N
∥AC(tn)∥2Hs(curl;ΩC)

}
+ (∆t)2

∫ T

0
∥∂ttAC(t)∥2V dt

≤ C
[
(∆t)2 + h2s

] (
∥AC∥2H2(0,T ;Hs(curl ΩC))

+ |α0|2
)
,

where zk is the solution of problem (6.4), k = 1, . . . , L.

Proof. A Taylor expansion shows that

∂AC(tk) = ∂tAC(tk) +
1

∆t

∫ tk

tk−1

(tk−1 − t) ∂ttAC(t) dt.

Consequently,
n∑
k=1

∥∥∥τ k∥∥∥2
V
≤ ∆t

∫ T

0
∥∂ttAC(t)∥2V dt.
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Moreover, we have from (6.30),

n∑
k=1

∥∥∥∂ρk∥∥∥2
V
≤ 1

∆t

n∑
k=1

∫ tk

tk−1

∥∥∂t(I − IN
h )AC(t)

∥∥2
V dt

≤ Ch2s

∆t

∫ T

0
∥∂tAC(t)∥2Hs(curl;ΩC)

dt.

We recall that ψ(t) = −µ−1
0 R(K(AC(t))) (cf. Remark 6.4.2). It follows from (6.27) that

Gh(AC(tn)) ≤ inf
η∈Lh(Γ)

∥ψ(tn)− η∥21/2,Γ ,

Gh(∂tAC(tn)) ≤ inf
η∈Lh(Γ)

∥∂tψ(tn)− η∥21/2,Γ .

Thus, using Lemma 6.6.2, we obtain

Gh(AC(tn)) ≤ Chs ∥curlAC(tn)∥s,ΩC
,

Gh(∂tAC(tn)) ≤ Chs ∥∂t(curlAC(tn))∥s,ΩC
.

(6.40)

Hence, the results follows by writing AC(tn) − An
Ch = δn + ρn and using Lemma 6.6.1,

Lemma 6.5.1, Theorem 6.5.3 and (6.30).

Remark 6.6.1 Let us recall that ψ(tn) = −µ−1
0 R(K(AC(tn))) and ψnh = −µ−1

0 Rh(K(An
Ch)).

Therefore, using (6.40) and the uniform boundedness of Rh with respect to h, we obtain

∥ψ(tn)− ψnh∥1/2,Γ ≤ Gh(AC(tn)) + ∥Rh(K(AC(tn)−An
Ch))∥1/2,Γ

≤ C
{
hs ∥curlAC(tn)∥s,ΩC

+ ∥AC(tn)−An
Ch∥V

}
.

Then, using Lemma 6.6.2 and Theorem 6.6.1, under the assumptions of the latter, we conclude

that

∆t

N∑
n=1

∥ψ(tn)− ψnh∥
2
1/2,Γ ≤ C

[
h2s + (∆t)2

]
.

Moreover under the same assumptions, since α(tn) = α0 − µ−1
0 N−1(T(AC(tn) − AC,0)) and

αn
h = α0 − µ−1

0 N−1
h (Th(An

Ch − AC,0)), from Theorem 6.5.3, Lemma 6.5.1 and Theorem 6.6.1,

we also conclude that

max
1≤n≤N

|α(tn)−αn
h|

2 ≤ C
[
h2s + (∆t)2

]
.



Chapter 7

Conclusiones y trabajo futuro

7.1 Conclusiones

El objetivo principal de la tesis presentada ha sido analizar y proponer nuevos modelos en

el estudio matemático de la electroencefalograf́ıa y la magnetoencefalograf́ıa. Se estudia inicial-

mente el modelo de corrientes inducidas como alternativa a los modelos usados clásicamente

para estudiar este tema. Para el modelo electrostático, se ha desarrollado un análisis a priori y a

posteriori del error en la aproximación mediante elementos finitos. Se ha utilizado tal estimador

para idear una estrategia computacional eficiente en la resolución del problema inverso. También

se han hecho comparaciones a nivel computacional en cuanto a la eficiencia de los diversos

métodos presentes en la literatura y los nuevos métodos propuestos respecto del problema directo

e inverso.

Las conclusiones principales de esta tesis, en orden de desarrollo, son:

1. Se propone una alternativa a los modelos ya existentes que abordan el estudio de la e-

lectroencefalograf́ıa y la magnetoencelograf́ıa: el modelo de corrientes inducidas. Se ha

estudiado desde un punto de vista teórico el problema inverso con este modelo. Como

fuente de corriente, se estudiaron tres casos: fuente distribuida, fuente superficial y fuente

dipolar. Se probó que en el caso de una fuente distribuida, no hay una única solución y

se caracterizó el espacio de fuentes no radiantes. En los otros dos casos se demostró que

la componente tangencial del campo eléctrico en toda la frontera del dominio determina

de forma única la fuente. En el caso de una fuente dipolar, se ha encontrado una fórmula

mediante la cual es posible recobrar la posición dipolar y la polarización. También se

estudia cómo recobrar la componente tangencial del campo eléctrico a partir de mediciones

que se pueden obtener mediante un electroencefalograma y un magnetoencefalograma.
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2. Se estudia el modelo electrostático en dominios bidimensionales y tridimensionales. En

ambos casos se demuestra una estima a priori y a posteriori bajo ciertas restricciones de

las geometŕıas y conductividades. Se demuestra que tal estimador es confiable y eficiente

y finalmente, el estimador se usa para guiar un procedimiento adaptativo en un dominio

bidimensional y se prueba experimentalmente, un orden óptimo de convergencia.

3. Se comparan la solución aproximada que se obtiene mediante el problema directo usando

el método de substracción y el método directo en el caso de un dominio con varias regiones

con distintas conductividades. El método de substracción destaca por ser un método que

tiene un buen comportamiento cuando la posición del dipolo está totalmente contenida en

una región. Sin embargo, de esta comparación se concluye que cuando el dipolo se ubica

cerca de una interfaz, el método de substracción no es robusto y el método directo, śı.

También se estudia el problema directo cuando la fuente dipolar se localiza en la interfaz.

En este caso particular, ninguno de los métodos ya mencionados está bien definido y por

tanto, se utiliza un aproximante de la delta que da mejores resultados. También se estudia

el problema inverso. Se comparan los tres métodos mencionados y un último método

que combina el método directo con un procedimiento adaptativo guiado por el estimador

encontrado en el Caṕıtulo 4 de esta tesis, en dos situaciones diferentes: cuando la posición

del dipolo esta completamente contenida en una región homogénea y cuando es cercana

a una interfaz. Se concluye que el método directo combinado con adaptatividad supera

al método directo sin adaptatividad en ambas situaciones. Sin embargo hay que destacar

que los resultados que se obtuvieron utilizando este método oscilan de un refinamiento

a otro. Por otra parte, se observa que el método del aproximante de la delta también es

competitivo en ambas situaciones. Por último se analiza el caso de una fuente distribuida y

se estudian las matrices de influencia en dos situaciones: cuando la fuente distribuida está

totalmente incluida en una región homogénea o cuando tal fuente es cercana a una interfaz.

En ambas situaciones se comparan errores relativos respecto de una matriz de influencia de

referencia. Primero se hace una comparación entre el método de substracción y el método

directo con adaptatividad y se observa que la convergencia en el caso de este último, no

tiene un comportamiento monótono. Por otra parte, se observa que el aproximante de la

delta va convergiendo más rápidamente que los demás métodos estudiados en este caṕıtulo

a medida que la malla es más fina.

4. Se introduce un nuevo método numérico para las ecuaciones de corrientes inducidas depen-

dientes del tiempo en un dominio conductor acotado, contenido en R3. Se reformula el pro-

blema en término de nuevas variables y finalmente se deriva una formulación FEM-BEM.
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Se demuestra existencia y unicidad de solución del problema. Se discretiza el problema

usando en la discretización temporal un método backward Euler. También se demuestra

un orden óptimo de convergencia a la solución.

7.2 Trabajo futuro

1. En el Caṕıtulo 3, se ha encontrado una fórmula de representación mediante la cual, bajo

ciertas suposiciones de las cantidades f́ısicas y asumiendo que la densidad de corriente es

una fuente dipolar y que se conocen las mediciones, es posible encontrar la localización y

polarización. Se implementará dicha fórmula, lo cual implica implementar el operador de

Laplace Beltrami en superficies.

Por otra parte, dentro de este mismo caṕıtulo se probó existencia y unicidad del problema

directo usando las ecuaciones de corrientes inducidas con fuente dipolar bajo la hipótesis de

homogeneidad de la permeabilidad magnética y de la conductividad. También se estudiará

la posibilidad de probar existencia y unicidad de tal problema, sin la necesidad de usar

esa hipótesis.

2. Se estudiará la posibilidad de encontrar un estimador a posteriori que sea confiable y

eficiente en relación a algunos de los métodos numéricos ya mencionados en Caṕıtulo

5 para resolver el problema electrostático con fuente de corriente dipolar tales como el

método de substracción [67] o el usar un aproximante de la delta que sea suave.

3. La ley de Biot-Savart permite encontrar el campo magnético a partir del conocimiento

previo de la fuente de corriente y el potencial eléctrico. Se verá cómo aplicar los resultados

obtenidos en esta tesis para el estudio del problema inverso de la MEG desde el punto de

vista teórico y computacional.
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[6] A. Alonso Rodŕıguez and A. Valli, An optimal domain decomposition preconditioner

for low-frequency time-harmonic Maxwell equations. Mathematics of Computation, vol. 68,

226, pp.607-631, (1999).

[7] H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell’s equa-

tions in magnetoencephalography. SIAM Journal on Applied Mathematics, vol. 62, 4, pp.

1369-1382, (2002).
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dans des espaces de Sobolev Lp, C. R. Acad. Sci. Paris Sér. I Math., vol. 307, pp. 2732,

(1988).

[31] M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations

Operator Theory, vol. 15, pp. 227261, (1992).

[32] R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les
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