UNIVERSIDAD DE CONCEPCION DIRECCION DE POSTGRADO CONCEPCION-CHILE

METODOS NUMERICOS PARA ESPESADORES CLARIFICADORES EN UNA Y DOS DIMENSIONES

Tesis para optar al grado de Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática

Héctor Andrés Torres Apablaza

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

2011

Resumen

El objetivo principal de esta tesis es el desarrollo y análisis de métodos numéricos para la aproximación de procesos de sedimentación en espesadores-clarificadores en una y dos dimenciones. Específicamente, se estudia la aproximación por Volumenes Finitos de problemas de sedimentación en espesadores-clarificadores. Principalmente la tesis consiste de tres trabajos.

Por un lado, en el primer trabajo, para procesos de sedimentación modelados en 1D se proponen métodos de segundo orden para espesadores-clarificadores. La idea principal es controlar el término de corrección para el segundo orden, obteniendo un nuevo algoritmo llamado esquema FTVD (flux-TVD). Este nuevo esquema FTVD tiene propiedad TVD para el flujo numérico.

Por otro lado, dentro de la modelación bidimensional primero consideramos el problema de sedimentación batch un canal inclinado. El modelo esta dado por una ecuación hiperbolica para la concentración y las ecuaciones de Stokes para la velocidad y presión. Para la concentración se utilizó un método adaptativo debido a las características de la solución para la concentración. Por otro lado un método estabilizado con la teoría de Brezii-Pitkaranta es usado para Stokes.

Finalmente, dentro del modelamiento bidimensional, se considera un problema axisimétrico. Acá estamos interesados en modelar el comportamiento del sedimento en un espesador-clarificador. El modelo consiste ahora en un sistema acoplado de una ecuación parabólica y ecuaciones de Stokes. Simplificando las ecuaciones tridimensionales, usando coordenadas cilindricas obtenemos un problema bidimensional. Un método de volumeneselementos finitos es usado para la discretización espacial, construido en las bases de una formulación de Galerkin discontinuo estabilizado para la concentración y un par estabilizado multiescala de elementos $\mathbb{P}_1\text{-}\mathbb{P}_1$

Contents

Resumen

Introducción 1 1 1.1 1.1.1 two-dimensional models 1.1.21.22 Second-order schemes for conservation laws with discontinuous flux mod-9 elling clarifier-thickener units 2.12.2142.2.1142.2.2Derivation of the mathematical model 152.3192.3.1192.3.2192.3.3A simple minmod TVD (STVD) scheme 232.3.4A flux-TVD (FTVD) scheme 23A refinement of the FTVD scheme 2.3.5262.427Description of the nonlocal limiter algorithm 2.4.127

vii

1

1

4

6

9

X_____

		2.4.2	Properties of the nonlocal limiter	30	
	2.5	Conver	gence of the second-order scheme	34	
	2.6	Numer	ical results	41	
		2.6.1	Examples 1 and 2: ideal suspension in a cylindrical unit	41	
		2.6.2	Example 3: ideal suspension in a unit with varying cross-sectional		
			area	42	
		2.6.3	Observations and conclusions	42	
	2.7	A note	on second-order degenerate parabolic equations	44	
		2.7.1	Operator splitting and Crank-Nicolson scheme	44	
		2.7.2	Examples 4 and 5: flocculated suspension	46	
3	3 A multiresolution method for the numerical simulation of sedime				
	in i	nclined	channels	57	
	3.1	Introdu	uction	57	
		3.1.1	Scope	57	
		3.1.2	Related work	59	
		3.1.3	Outline of the paper \ldots	60	
	3.2	Model of sedimentation			
		3.2.1	Boundary and initial conditions	62	
		3.2.2	Preliminaries and the pressure stabilization for the Stokes system .	62	
	3.3	Discret	tization of the concentration equation	63	
	3.4	Adapti	ve multiresolution scheme	65	
		3.4.1	Data structure	66	
		3.4.2	Transfer operators and multiresolution transform	67	
		3.4.3	Conservative flux evaluation and boundary conditions	69	
		3.4.4	Error analysis and thresholding for the conservation law	70	
	3.5	Numer	ical approximation of the Stokes system	70	
	3.6	Coupli	ng strategy and algorithm description	74	
		3.6.1	Some general remarks	74	
		3.6.2	Description of the algorithm	75	

	3.7	Numerical Examples					
		3.7.1	Example 1 and 2: hyperbolic problem	78			
		3.7.2	Examples 3–7: coupled system	80			
4	A finite volume element method for a coupled transport–flow system						
	mo	modeling sedimentation					
	4.1	Introduction					
		4.1.1	Scope	95			
		4.1.2	Related work	96			
		4.1.3	Outline of the paper	98			
	4.2	Prelin	ninaries and statement of the problem	98			
		4.2.1	Notation	98			
		4.2.2	Axisymmetric formulation	99			
		4.2.3	Flux vector, diffusion term, viscosity and body force	100			
		4.2.4	Initial and boundary conditions	102			
		4.2.5	Weak solutions	103			
	4.3	Appro	oximation by finite volume elements	106			
		4.3.1	Axisymmetric finite elements setting	106			
		4.3.2	The finite volume element method	109			
		4.3.3	Space-time discrete scheme	113			
	4.4	Nume	rical results	115			
		4.4.1	A model problem	115			
		4.4.2	A steady state problem	116			
		4.4.3	A clarifier-thickener simulation	117			
5	Conclusiones v trabajo futuro						
_	5.1	5.1 Conclusiones					
	5.2	Traba	jo futuro	128			