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ABSTRACT

This thesis has three aims. The first aim of the thesis is to study
the well-posedness and to develop numerical methods for scalar con-
servation laws with nonlocal flux function modeling the phenomenon
of aggregation in mathematical biology. The existence of weak solu-
tions to a nonlocal strongly degenerate parabolic aggregation equation
is proved using a finite difference method and compactness arguments.
For uniqueness, we employ an entropy concept and prove the equiva-
lence between weak and entropy solutions. The finite difference method
is utilized to generate numerical examples that illustrate the aggregation
process.

The second goal of the thesis is to study the well-posedness of a non-
local conservation but now modeling sedimentation in process industry.
We prove existence and uniqueness of entropy solutions for a nonlo-
cal sedimentation equation, again using a finite difference method and
standard compactness results. Depending on parameter values, a Lip-
schitz regularity result or a maximum principle independent by the time
variable is found. By the finite difference scheme we obtain numerical
examples and compare it with local model results. The layered sedimen-
tation phenomenon is observed.

Finally, the Generalized Lagrange Multiplier Finite Volume Method,
which was originally developed for the Maxwell equations, is extended
to any hyperbolic Friedrichs system of conservation laws with involu-
tions. We prove the convergence of the method. Moreover, the fulfill-
ment of the involution in the weak sense when the mesh parameter goes
to zero is shown. Numerical examples illustrate the properties of the
method in the Maxwell equations and in the induction equation in the
MHD system.

ix





RESUMEN

La presente tesis tiene tres objetivos. El primero de ellos es el estu-
dio de buen planteamiento y el desarrollo de métodos numéricos para
una ley de conservación escalar con flujos no-locales, que modela el
fenómeno de agregación en biologı́a matemática. Se demuestra la exis-
tencia de solución débil de la ecuación no-local de agregación usando
el método de las aproximaciones sucesivas y argumentos de compaci-
dad. Para la unicidad se utiliza el concepcto de entropı́a y se prueba un
resultado de equivalencia entre soluciones débiles y de entropı́a. Con el
método de aproximación se desarrollan ejemplos numéricos que ilustran
el fenómeno de agregación.

El segundo objetivo de la tesis es el estudio de buen planteamiento
de una ley de consevación no-local, esta vez modelando el proceso de
sedimentación. Para esta ecuación, se prueba la existencia de soluciones
débiles de entropı́a por un método de diferencias finitas y argumentos
de compacidad. La unicidad se obtiene por la técnica de doblamiento
de variables. Dependiendo de ciertos valores de parámetros, se ob-
tiene una regularidad Lipschitz o un Principio del Máximo indepen-
diente del tiempo. Con el método de aproximación se generan resultados
numéricos que se comparan con los modelos clásicos locales. Se aprecia
el fenómeno de sedimentación por capas.

Finalmente, se extiende el método de volúmenes finitos con multi-
plicadores de Lagrange generalizados, que originalmente fue desarro-
llado para las ecuaciones de Maxwell, a cualquier sistema hiperbólico
de Friedrichs con restricciones de tipo involuciones. Se demuestra la
convergencia del método a la solución deseada. Además se prueba el
cumplimiento de la involución en el sentido débil. Ejemplos numéricos
ilustran las propiedades del método en las ecuaciones de Maxwell y en
la ecuación de inducción en magneto-hidrodinámica.

xi





Contents

Introduction i

Introducción (en español) ix
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Introduction

The well-posedness study and the development of numerical methods for conser-
vation laws with nonlocal flux functions have gained importance over the last years in
mathematical modeling. Several authors have contributed in developing these equations
in mathematical biology [28, 86, 105]. In particular, the aggregation phenomenon has
been studied since 1980’s by Nagai [90] and Nagai and Mimura [91, 92, 93]. More re-
cent contributions on this topic have been made by Bertozzi et al. [15, 16, 17, 18, 19].
The study of numerical methods to deal with these equations has not received the same
attention. In practice, one utilizes classical methods for conservation laws [77]. In the
first chapter of this thesis, we show the well-posedness of a strongly degenerate parabolic
equation modeling aggregation using a finite difference method. This tool, also provides
a reliable numerical method that converges to the exact solution. Numerical examples
illustrate the aggregation phenomenon.

The solid-liquid suspensions is a classical area of application of nonlinear conserva-
tion laws. The main single contribution was the kinematic sedimentation theory by Kynch
[70], which describes the sedimentation of an ideal suspension of small rigid spheres dis-
persed in a viscous fluid. It is based on the postulate that the settling velocity of a particle
is a function of the local solids concentration (or volume fraction). In the second chap-
ter of the thesis, we develop a complementary theory to Kynch’s, by assuming that the
settling velocity of a particle does not depend only on the local concentration but on the
concentration in a contiguous region of finite width. To incorporate this nonlocal beha-
vior, we introduce a convolution with a kernel in the flux function. Again, using a finite
difference method, we prove the well-posedness of the nonlocal equation. The main mo-
tivation for this nonlocal model is the layered sedimentation phenomenon, reported by
Siano [109]. Several numerical examples compare the local and nonlocal model and illus-
trate the layered sedimentation.

In a wider context, conservation laws are related in several cases to hyperbolic partial
differential equations. In the hyperbolic equations, the symmetric linear systems, also
called Friedrichs systems, appear in several physical models like the Maxwell equations
in electrodynamics. In the Maxwell equations, in addition to the system of PDEs, the

i



ii Introduction

solution must satisfy a differential constraint in the magnetic and electrical fields, called
an involution (cf. [39]). Involutions also appear in other physical problems like magneto-
hydrodynamic (MHD) and in thermo-elastic problems [39]. The well-posedness of this
problem is established in [39]. On the other hand, the development of stable and reliable
numerical methods to deal with the involution is still a work in progress. Munz et al.
[88, 89, 41] introduced the so-called Generalized Lagrangian Multiplier Finite Volume
Method (GLMFVM) to compute approximate solutions for the Maxwell’s system [88]
and for the MHD equations [41]. This method works well and preserves the involution
at the discrete level. In the third chapter of this thesis, we propose a general method that
considers the ideas of Munz [88, 89] to deal with involutions and the finite volume method
for Friedrichs systems developed by Vila and Villedieu [112], to face the problem of
Friedrichs systems with involutions. The convergence of the method and the satisfaction
of the involution in the weak sense in the limit when the mesh parameter goes to zero is
proved. Numerical examples show the characteristics of the proposed method.

A nonlocal aggregation equation

In the first chapter we study the strongly degenerate parabolic equation

ut +
(

Φ
′
(∫ x

−∞

u(y, t)dy
)

u(x, t)
)

x
= A(u)xx, x ∈ R, 0 < t ≤ T,

u(x,0) = u0(x)≥ 0, x ∈ R, u0 ∈ (L1∩L∞)(R)

for the density u = u(x, t)≥ 0, where A(u) is a diffusion function given by

A(u) :=
∫ u

0
a(s)ds,

where a(u)≥ 0 for u ∈ R. This equation has been studied as a model of aggregation by a
series of authors including Alt [3], Diaz, Nagai, and Shmarev [42], Nagai [90] and Nagai
and Mimura [91, 92, 93], all of which assumed that a(u) = 0 at most at isolated values
of u. We assume that a(u) = 0 on u-intervals of positive measure. For instance, if we
consider

A(u) =

{
0 si u≤ uc,

a0(u−uc) si u > uc,

the nonlocal equation model an aggregation-dispersion “threshold” process, i.e, the dis-
persion stars when u exceeds the critical value uc > 0. We note that for u < uc the equation
degenerates into a hyperbolic scalar conservation law. As an structural assumption, it is
supposed that A(s)→+∞ as s→+∞.
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The aggregation phenomenon is given by the nonlocal flux. For example, if we take

ut +
(
−k
[∫ x

−∞

u(y, t)dy−
∫

∞

x
u(y, t)dy

]
u
)

x
= A(u)xx, k > 0,

here the convective term provides a mechanism that moves u(x, t) to the right (respec-
tively, to the left) if∫ x

−∞

u(y, t)dy <
∫

∞

x
u(y, t)dy (respectively, . . . > . . .).

In other words, an individual will move to the right (respectively, left) if the total popula-
tion to its right is larger (respectively, smaller) than to its left. Now assume that the initial
population is finite and define

C0 :=
∫

R
u0(x)dx,

then we have

Φ(v) =−kv(v−C0)+ const. (1)

We need that Φ ∈C2(R), and that Φ has exactly one maximum. This assumption is intro-
duced to facilitate some of the steps of the analysis; it is, however, not essential. Employ-
ing a function Φ with several separate extrema, the results remain valid.

The key observation made in previous work [3, 90, 91, 92, 93] is that if all coefficients
are sufficiently smooth, and u(x, t) is an L1 solution of the problem, then its primitive is a
solution of the local initial value problem

vt +Φ(v)x = A(vx)x, x ∈ R, t ∈ (0,T ],

v(x,0) = v0(x), x ∈ R, v0(x) :=
∫ x

−∞

u0(ξ )dξ .

In Chapter 1, we use this idea to define a finite difference scheme for u based on a
monotonic scheme for the primitive v. This scheme is an explicit version of the scheme
developed by Evje and Karlsen [47]. The scheme for u can be obtained taking the discrete
derivative of the values of the scheme for v. Using Lax-Wendroff arguments, we prove
that the numerical solution generated by the scheme converges to a weak solution of
the problem. For uniqueness, following the ideas of Carrillo [30] and Kobayasi [66], it
is proved that any weak solution is also an entropy solution. Slight modifications of a
result in [62], gives us the uniqueness of entropy solutions. To end the chapter, numerical
experiments show the properties of the scheme and the aggregation phenomenon. This
study has given rise the following paper:

• F. Betancourt, R. Bürger and K.H. Karlsen. “A strongly degenerate parabolic aggre-
gation equation”, accepted for publication in Communications in Mathematical
Sciences.
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A nonlocal sedimentation equation

In Chapter 2 we study a family of nonlocal conservation laws

ut +
(
u(1−u)αV (Ka ∗u)

)
x = 0, x ∈ R, t ∈ (0,T ],

u(0,x) = u0(x), 0≤ u0(x)≤ 1, x ∈ R.

Here the solid fraction u(x, t), depends only on the deep x and the time t. The parameter
α satisfies either α = 0 or α ≥ 1. The function V is a hindered settling factor that can be
chosen, for example, as

V (w) = (1−w)n, n≥ 1,

according to Richardson and Zaki [100], and which is herein supposed to depend on

(Ka ∗u)(x, t) =
∫ 2a

−2a
Ka(y)u(x− y, t)dy,

where Ka is a symmetric, non-negative piecewise smooth kernel function with support on
[−2a,2a] with a > 0 and ∫

R
Ka(x)dx = 1.

Usually, one defines K = K(x) with support on [−2,2] and sets Ka(x) := a−1K(a−1x).
This model can be motivated as follows. When diffusion is negligible, the kinematic
Kynch theory [70] models the sedimentation process through

ut(x, t)+
(
u(x, t)vs(x, t)

)
x = 0,

where vs(x, t) is the solids phase velocity, or settling velocity, at position x at time t.
Considering the Richarson and Zaki formula for the settling velocity we have

vs(x, t) = vSt(1−u(x, t))n,

where vSt is the Stokes velocity. Under the assumption that V depends on Ka ∗ u instead
of u (a justified explanation is detailed in 2.2.1 ), the Kynch equation turns now

ut(x, t)+ vSt

(
u(x, t)

(
1− (Ka ∗u)(x, t)

)n
)

x
= 0.

A different approach consists in considering also the fluid mass conservation −ut +
((1−u)vf)x = 0, where vf is the fluid phase velocity. For batch settling we have the relation
vs = (1−u)vr, where vr := vs− vf is the solid-fluid relative velocity or slip velocity. This
leads to the governing equation

ut +
(
u(1−u)vr

)
x = 0.
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Assuming now that vr (instead of vs) has a nonlocal behavior and requiring that the
local versions based on constitutive assumptions for either vs or vr should coincide, we
state the constitutive assumption for vr as vr = V (Ka ∗ u)/(1− u). For instance, if we
employ the Richardson-Zaki equation, then the exponent n should be reduced by one, so
using the properly adapted Richardson-Zaki equation leads us to

vs(x0, t)/vSt =
(
1−u(x0, t)

)(
1− (Ka ∗u)(x0, t)

)n−1
,

from which the following conservation law is obtained

ut + vSt
(
u(1−u)(1−K ∗u)n−1)

x = 0.

We study the more general form of the last equation replacing (1− u) by (1− u)α . On
the other hand, the qualitative properties of these nonlocal equations are also interesting.
The “effective” equations are dispersive. Dispersive equations usually present oscillations.
These oscillations are interpreted as layers of different concentration.

Similarly to the work developed in Chapter 1, we get uniqueness for entropy so-
lutions using a slight modification of a result in Karlsen and Risebro [62]. Existence
is obtained using a difference-quadrature method, which is based on the classical Lax-
Friedrichs scheme. We remark that for α = 0 the solution is Lipschitz if the initial data
do so. The Lipschitz regularity make possible to get uniqueness without the entropy con-
cept. However, even though the solution is bounded for T < +∞, it does not remain in the
interval [0,1] although u0 ∈ [0,1]. On the other side for α ≥ 1, the solution is in general
discontinuous but it remains in the interval [0,1] provided the initial data do so. Nume-
rical examples illustrate the behavior of the solution and the layered sedimentation. This
chapter gave rise to the article:

• F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory. “On nonlocal conservation
laws modeling sedimentation”, accepted for publication in Nonlinearity.

Finite Volume Schemes for Friedrichs systems with involutions

In Chapter 3, we study linear systems of conservation laws of Friedrichs type. In addi-
tion, we impose differential side conditions in the form of involutions [39]. We consider
the spatially d-dimensional case with d ≥ 2, x = (x1, . . . ,xd)T and time t ≥ 0. For t ≤ T ,
we define the functions G1, . . . ,Gd, D : Rd × [0,T ]→ Rm×m with m ∈ N, and f : Rd ×
[0,T ]→Rm. Since the system is of Friedrichs type, we have that G1(x, t), . . . ,Gd(x, t) are
symmetric matrices for all (x, t) ∈ Rd× [0,T ].
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The initial value problem is given by:

∂

∂ t
u(x, t)+

d

∑
i=1

∂

∂xi

(
Gi(x, t)u(x, t)

)
+D(x, t)u(x, t) = f (x, t),

u(x,0) = u0(x).

Moreover, we require the solution u to satisfy the linear differential side condition

d

∑
i=1

Mi
∂

∂xi
(u(x, t)) = 0,

(
(x, t) ∈ Rd× [0,T )

)
,

where Mi, i = 1, . . . ,d, are constant matrices. According to Dafermos [39], the differential
constraint is called an involution for the system if and only if any solution of the system
satisfies the involution, whenever the initial data do so.
Involutions appear frequently in applications. We mention the classical Maxwell system to
describe electrodynamical processes (cf.[75]). The divergence of the electrical and mag-
netical field is constrained in this case. The induction equations in the (in)compressible
electro- and magnetohydrodynamical equations provide similar examples but with (x, t)-
dependence in the flux. Solutions of the equations of linear elasticity have to satisfy com-
patibility conditions on the deformation gradient, which result in an involutionary con-
dition (cf. Chapter 5 of [39]). Yet, another example is the linear piezoelectrical system
(see [84]). Let us mention that involutions of course appear also in the more challenging
case of nonlinear conservation laws. Again, magnetohydrodynamics [38], electrohydro-
dynamics, nonlinear elasticity systems, but also Einstein’s equations of general relativity
are prominent examples.
On the analytical level an involutionary side condition is not problematic. The well-
posedness is well known from [39]. By definition the involution is satisfied. Also stan-
dard numerical schemes are known to converge. However, without consideration of the
involution in the numerical scheme the residuum in the side condition usually grows with
increasing time [88]. In coupled processes this is a typical source of instabilities (cf.[88]
and cites therein). Therefore, a wide range of stabilization methods has been suggested
(e.g. [4, 20, 35, 58, 89]).
The motivation for this contribution is the work of Munz et al. [89]. They introduced
in particular the so-called hyperbolic Generalized Lagrangian Multiplier Finite Volume
Method (GLMFVM) to compute approximate solutions for Maxwell’s system of linear
electrodynamics. We formulate this approach for a general Friedrichs systems with in-
volutions. The method is based on solving an extended system of relaxation-type. Let
a, ε > 0 and u0, ψε

0 : Rd → Rm be given. Consider the following initial value problem
for the unknown function: wε : Rd× [0,T ]→ R2m, with wε := (uε

1, . . . ,u
ε
m,ψε

1 , . . . ,ψε
m)T ,
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given by

∂

∂ t
uε +

d

∑
i=1

∂

∂xi

(
Gi(x, t)uε

)
+MT

i
∂

∂xi
ψ

ε +D(x, t)uε = f (x, t),

∂

∂ t
ψ

ε +
d

∑
i=1

Mi

ε

∂

∂xi
uε +aψ

ε = 0,

uε(x,0) = uε
0(x), ψ

ε(x,0) = ψ
ε
0 (x) = 0.

Since the last formulation is not symmetric we introduce the variable ϕε := ψε
√

ε

and the system turns

∂

∂ t
Uε +

d

∑
i=1

∂

∂xi
(Aε,iUε)+BUε = F, Uε(x,0) = Uε

0 (x) :=
(

uε
0(x)
0

)
,

where

Uε :=
(

uε

ϕε

)
; Aε,i :=

(
Gi MT

i√
ε

Mi√
ε

0

)
; B :=

(
D 0
0 aI

)
; F :=

(
f
0

)
.

We prove that the symmetric system is well posed. It is also proved, under mild assump-
tions, that the solution of the extended systems equals the solution of the original system
a.e. The main result is the convergence of the GLMFVM. This is done in Section 3.4.
Following the theory developed by Vila and Villedieu [112] and Jovanovic and Rohde
[59] we get

‖uε
h−uε‖L2(Rd×[0,T ];Rm) = O

(
ε
−1/4 h1/2

)
where h is the mesh parameter, uε

h : Rd × [0,T ]→ Rm is the solution generated by the
GLMFVM and uε is the solution of the extended system. A crucial fact is that coupling
ε and h the estimate does not depend critically on ε . As a Corollary, it is found that the
involution is satisfied in the weak sense when the mesh parameter goes to zero . Numerical
examples realize the characteristics of the GLMFVM. As a result of this research we have:

• F. Betancourt and C. Rohde. “Finite-Volume Schemes for Friedrichs Systems with
Involutions” (in preparation).
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El estudio de buen planteamiento y el desarrollo de métodos numéricos para leyes
de conservación escalares con flujos no-locales ha tomado gran importancia en el último
tiempo dentro del área de la modelación matemática. Diversos autores han hecho nu-
merosos avances en el desarrollo de estas ecuaciones dentro de la modelación de proce-
sos biológicos [28, 86, 105]. En particular, el fenómeno de agregación ha sido estudiado
desde la década de los 80’s por Nagai [90] y, Nagai y Mimura [91, 92, 93]. Contribu-
ciones más recientes han sido hechas por Bertozzi y colaboradores [15, 16, 17, 18, 19].
El estudio de métodos numéricos sencillos para estos problemas no ha sido objeto de un
mayor estudio. En la práctica se recurre a los métodos clásicos conocidos en leyes de
conservación [77]. En el primer capı́tulo de esta tesis, usando el método de las aproxima-
ciones sucesivas, se presenta el análisis de buen planteamiento de una ley de conservación
escalar parabólica fuertemente degenerada que modela el fenómeno de agregación tipo
“enjambre”. Con dicha técnica, además de probarse el buen planteamiento del problema,
se obtiene un método numérico confiable que aproxima y converge a la solución exacta
deseada. Ejemplos numéricos ilustran el fenómeno de agregación.

Las suspensiones sólido-lı́quido son un área clásica de aplicación en leyes de conser-
vación no-lineales. La más importante contribución en el estudio de este proceso fue hecha
por Kynch [70], quien desarrolló una teorı́a de tipo cinemática. El supuesto clave de la
teorı́a de Kynch es que la velocidad de sedimentación de una partı́cula depende sólo de la
concentración en el mismo punto donde se encuentra la partı́cula. En el segundo capı́tulo
de la tesis se desarrolla una teorı́a complementaria a la desarrollada por Kynch donde se
supone que la velocidad de sedimentación de una partı́cula depende no sólo de la concen-
tración en el lugar donde está la partı́cula, sino que de la concentración en una vecindad de
ésta. Dicha dependencia se produce a través de la incorporación de una convolución con
un kernel en la función flujo. Nuevamente, a través del método de aproximaciones sucesi-
vas, se demuestra el buen planteamiento de la ecuación no-local. La motivación principal
del modelo no-local es tratar de interpretar y reproducir el fenómeno de sedimentación
por capas reportado por Siano [109]. Variados ejemplos numéricos muestran los efectos
en el proceso de sedimentación de la incorporación del término no-local.

ix
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En un contexo más amplio, las leyes de conservación están relacionadas en muchos ca-
sos con las ecuaciones en derivadas parciales de tipo hiperbólico. Dentro de las ecuaciones
hiperbólicas, los sistemas hiperbólicos de leyes de conservación lineales simétricos, lla-
mados también de Friedrichs, aparecen en algunos modelos fı́sicos como por ejemplo
las ecuaciones del electromagnetismo. Adicionalmente, en este ejemplo, se requiere que
la solución del sistema satisfaga una restricción de tipo diferencial llamada involución
[39], que corresponde a las restricciones sobre el campo eléctrico y magnético. Involu-
ciones aparecen en otros problemas fı́sicos como lo son la magnetohidrodinámica y los
procesos termoelásticos. El buen planteamiento de este problema ya ha sido abordado
[39]. Sin embargo, el desarrollo de métodos numéricos estables que consideren la in-
volución es aún un problema en estudio. Munz y colaboradores [88, 89, 41] desarrollaron
el llamado GLMFVM (Generalized Lagrange Multiplier Finite Volume Method) por sus
siglas en inglés, para incluir las involuciones en el caso del electromagnetismo (lineal) y
magnetohidrodinámica (no-lineal). Dicho método funciona de buena manera y preserva
la involución a nivel discreto. En el tercer capı́tulo de la tesis se propone un método de
volúmenes finitos, el cual mezcla las ideas de Munz para incorporar las involuciones en
el sistema hiperbólico, con el método de volúmenes finitos diseñado por Vila y Villedieu
[112] para sistemas de Friedrichs. Se demuestra la convergencia a la solución deseada y
la satisfacción de la involución en el sentido débil. Ejemplos numéricos dan cuenta de las
caracterı́sticas de la solución numérica generada ası́ como de las propiedades del método.

Una ecuación de agregación no-local

En el capı́tulo 1 se estudia el problema de valores iniciales para la ecuación parabólica
fuertemente degenerada

ut +
(

Φ
′
(∫ x

−∞

u(y, t)dy
)

u(x, t)
)

x
= A(u)xx, x ∈ R, 0 < t ≤ T,

u(x,0) = u0(x)≥ 0, x ∈ R, u0 ∈ (L1∩L∞)(R)

donde u = u(x, t) ≥ 0 es un tipo de densidad o concentración, A(u) es el coeficiente de
difusión dado por

A(u) :=
∫ u

0
a(s)ds,

donde 0≤ a(u) < +∞. Esta ecuación ha sido estudiada por varios autores, entre ellos Alt
[3], Diaz, Nagai, y Shmarev [42], Nagai [90] y Nagai y Mimura [91, 92, 93]. Todos los
autores nombrados han asumido que a(u) = 0 sólo en valores aislados de u. En el caso
tratado se supone que a(u) = 0 en u-intervalos de medida finita pero positiva. Por ejemplo
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si se define

A(u) =

{
0 si u≤ uc,

a0(u−uc) si u > uc,

la ecuación representa un fenómeno de agregación-dispersión con umbral, es decir, la
dispersión dada por el término parabólico, se activa cuando u excede el valor crı́tico uc >

0. Este hecho le da sentido a la denominación de ecuación parabólica fuertemente degene-
rada dado que si u ≤ uc la ecuación es hiperbólica, en cambio, si u > uc la ecuación es
del tipo parabólico. Como supuesto estructural en el término parabólico se asume que
A(s)→ ∞ cuando s→ ∞.

El fenómeno de agregación está dado por la parte no-local en la función de flujo
convectiva. Si se considera la ecuación

ut +
(
−k
[∫ x

−∞

u(y, t)dy−
∫

∞

x
u(y, t)dy

]
u
)

x
= A(u)xx, k > 0.

El término convectivo entrega un mecanismo que mueve u(x, t) a la derecha (respectiva-
mente a la izquierda) si∫ x

−∞

u(y, t)dy <
∫

∞

x
u(y, t)dy (respectivamente, . . . > . . .),

dicho de otro modo, un individuo se mueve a la derecha (respectivamente a la izquierda)
si la cantidad de individuos es mayor a su derecha (respectivamente a su izquierda). Si se
define

C0 :=
∫

R
u0(x)dx,

entonces

Φ(v) =−kv(v−C0)+ const.

Sobre la parte convectiva, se asume que la función Φ tiene un sólo máximo. Esta hipótesis
es introducida sólo para facilitar algunas pasos dentro del análisis, sin embargo, no es
esencial. Si se considera una función Φ con extremos separados, los resultados siguen
siendo válidos.

La observación clave hecha en trabajos previos [3, 90, 91, 92, 93] , es que si todos los
coeficientes son suaves y u(x, t) es una solución en L1 del problema, su primitiva v es una
solución de

vt +Φ(v)x = A(vx)x, x ∈ R, t ∈ (0,T ],

v(x,0) = v0(x), x ∈ R, v0(x) :=
∫ x

−∞

u0(ξ )dξ .
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En el capı́tulo 1, se utiliza esta idea, presentada aquı́ formalmente, para definir un es-
quema de diferencias finitas para la ecuación de agregación basándose en un esquema
(monótono) para su primitiva v. El esquema usado es la versión explı́cita del esquema
desarrollado por Evje y Karlsen [47]. El esquema para u se obtiene tomando la derivada
discreta de los valores del esquema para v. A través de modificaciones standard de ar-
gumentos de tipo Lax-Wendroff, se prueba que la solución numérica generada por el
esquema para u converge a una solución débil del problema.
Para probar unicidad de la solución se utiliza el marco de soluciones de entropı́a. Si-
guiendo la lı́nea de los trabajos de Carillo [30] y Kobayasi [66] se prueba que toda
solución débil de la ecuación de agregación es también solución de entropı́a. Con pequeñas
modificaciones respecto de un resultado de unicidad en [62], se demuestra que las solu-
ciones de entropı́a son únicas. Para finalizar, ejemplos numéricos ilustran el fenómeno de
agregación y las propiedades de convergencia del esquema.
El estudio de esta ecuación dio origen al artı́culo:

• F. Betancourt, R. Bürger y K.H. Karlsen. “A strongly degenerate parabolic aggre-
gation equation”, aceptado para publicación en Communications in Mathematical
Sciences.

Ecuaciones no-locales en sedimentación

En el capı́tulo 2 de esta tesis se estudia una familia de leyes de conservación con flujo
no-local definidas por

ut +
(
u(1−u)αV (Ka ∗u)

)
x = 0, x ∈ R, t ∈ (0,T ],

u(0,x) = u0(x), 0≤ u0(x)≤ 1, x ∈ R.

Donde la fracción de sólidos u(x, t), se considera una función sólo de la profundidad x y
del tiempo t. El parámetro α satisface α = 0 o bien α ≥ 1. La función V , conocida como
factor de obstaculización, está dada por

V (w) = (1−w)n, n≥ 1,

de acuerdo a lo propuesto por Richardson y Zaki [100], y que se supone depende de

(Ka ∗u)(x, t) =
∫ 2a

−2a
Ka(y)u(x− y, t)dy,

donde Ka es un kernel simétrico, no negativo y suave a trozos con soporte en el intervalo
[−2a,2a] con a > 0 y ∫

R
Ka(x)dx = 1.
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Es común definir K = K(x) con soporte en [−2,2] y considerar Ka(x) := a−1K(a−1x).
El modelo puede ser motivado como sigue. Si la difusión es despreciable, la teorı́a cinemá-
tica de Kynch [70] modela el proceso de sedimentación a través de la ecuación

ut(x, t)+
(
u(x, t)vs(x, t)

)
x = 0,

donde vs(x, t) es la velocidad de fase sólida, también llamada velocidad de sedimentación,
en la posición x en el instante t. Considerando la fórmula de Richardson y Zaki para la
velocidad de sedimentación, se tiene que

vs(x, t) = vSt(1−u(x, t))n,

donde vSt es la velocidad de Stokes. Bajo el supuesto que V depende de Ka ∗u en vez de u
(una justificación detallada se encuentra en la subsección 2.2.1 ), la ecuación del modelo
de Kynch toma la forma

ut(x, t)+ vSt

(
u(x, t)

(
1− (Ka ∗u)(x, t)

)n
)

x
= 0

Una ecuación diferente se obtiene considerando también la ecuación de conservación
del fluido −ut +

(
vf(1− u)

)
x = 0, donde vf es la velocidad de la fase lı́quida. Para sedi-

mentación batch se tiene que vs = (1− u)vr, donde vr := vs− vf es la velocidad relativa
entre fases. Esto lleva a la ecuación para la concentración de sólidos

ut +
(
u(1−u)vr

)
x = 0.

Si se supone ahora que vr (en vez de vs) tiene un comportamiento no-local y que las
ecuaciones constitutivas para vr y vs coinciden, se obtiene que vr = V (Ka ∗u)/(1−u). Por
ejemplo, si se emplea la ecuación de Richardson y Zaki esto lleva a

vs(x, t)/vSt =
(
1−u(x, t)

)(
1− (Ka ∗u)(x, t)

)n−1
,

con la cual se llega a la ley de conservación

ut + vSt
(
u(1−u)(1−Ka ∗u)n−1)

x = 0.

Se estudia la forma más general de la última ecuación reemplazando el término (1− u)
por (1− u)α . Dentro de las propiedades cualitativas de la ecuación no-local, se destaca
que su ecuación “efectiva” [114], es de carácter dispersivo. Las ecuaciones dispersivas se
caracterizan por presentar oscilaciones. Se interpretan dichas oscilaciones como “capas”
de sedimento de distinta concentración.
De forma análoga a lo desarrollado en el capı́tulo 1, se establece la unicidad de soluciones



xiv Introducción

utilizando el concepto de entropı́a de Kruzkov y usando una variación respecto de un re-
sultado en [62]. La existencia de solución de entropı́a para la ecuación de sedimentación
no-local se logra a través de un esquema de diferencias finitas y cuadratura basado en el
clásico esquema de Lax-Friedrichs. Se destaca el hecho de que para α = 0 la solución es
Lipschitz continua si el dato inicial lo es. Esta regularidad hace posible prescindir del con-
cepto de entropı́a para obtener la unicidad. Sin embargo, aunque la solución permanece
acotada para todo tiempo T < +∞, ésta escapa del intervalo [0,1] aún cuando u0 ∈ [0,1].
Por otro lado, para α ≥ 1, la solución es en general discontinua aunque el dato inicial sea
suave, pero ésta se mantiene en el intervalo [0,1]. Ejemplos numéricos ilustran el com-
portamiento de la solución de entropı́a de la ecuación no-local. Los resultados anteriores
constituyen el artı́culo:

• F. Betancourt, R. Bürger, K. H. Karlsen y E. M. Tory. “On nonlocal conservation
laws modeling sedimentation”, aceptado para publicación en Nonlinearity.

Esquemas de Volúmenes Finitos para Sistemas de Friedrichs con In-
voluciones

En el capı́tulo 3 de esta tesis se estudian sistemas lineales de leyes de conservación
del tipo Friedrichs, que además deben satisfacer restricciones de tipo diferencial deno-
minadas involuciones [39]. Se considera el caso con d dimensiones espaciales, d ≥ 2,
x = (x1, . . . ,xd)T , y tiempo t ≥ 0. Para t ≤ T , se definen las funciones G1, . . . ,Gd, D :
Rd× [0,T ]→ Rm×m con m ∈ N, y f : Rd× [0,T ]→ Rm. Puesto que el sistema es de tipo
Friedrichs, se tiene que las funciones matriciales G1(x, t), . . . ,Gd(x, t) son simétricas para
todo (x, t) ∈ Rd× [0,T ]. El problema de valores iniciales a resolver está dado por:

∂

∂ t
u(x, t)+

d

∑
i=1

∂

∂xi

(
Gi(x, t)u(x, t)

)
+D(x, t)u(x, t) = f (x, t),

u(x,0) = u0(x).

La solución del sistema anterior debe además satisfacer la restricción diferencial

d

∑
i=1

Mi
∂

∂xi
(u(x, t)) = 0,

(
(x, t) ∈ Rd× [0,T )

)
,

donde Mi, i = 1, . . . ,d, son matrices constantes. De acuerdo a la definición dada por Dafer-
mos [39], la restricción diferencial es una involución si y sólo si toda solución del sistema
satisface la restricción siempre que el dato inicial lo haga.
Las restricciones de tipo involución aparecen con frecuencia en modelos fı́sicos. Dentro
de ellos, destaca el sistema de Maxwell que describe los procesos electrodinámicos. La
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divergencia del campo eléctrico y magnético son restricciones en ese caso. La ecuación
de inducción en electro y magneto hidrodinámica son ejemplos similares pero con una
dependencia de (x, t) en la función de flujo. Las soluciones de las ecuaciones de la elasti-
cidad lineal tienen que satisfacer condiciones de compatibilidad en el gradiente de la de-
formación, lo que se traduce en una condición de involución (ver [39] Cap. 5). Otro ejem-
plo son los sistemas piezo-eléctricos. Obviamente, las involuciones aparecen en leyes de
conservación no-lineales, nuevamente, electro y magneto hidrodinámica, elasticidad no-
lineal ası́ como también las ecuaciones de Einstein de relatividad general son ejemplos
importantes.
Desde el punto de vista analı́tico las involuciones no son problematicas. El buen plantea-
miento es conocido [39]. Por definición, la involución se satisface. Para métodos numéricos
standard se conoce la convergencia. Sin embargo, sino se considera la involución en
el esquema numérico, el residuo en la involución puede crecer con el tiempo [88]. En
métodos numéricos acoplados, ésta es una tı́pica fuente de inestabilidades (ver [88] y
las referencias ahı́ citadas). Varios métodos de estabilización han sido reportados [4,
20, 35, 58, 89]. La motivación de este estudio es el trabajo de Munz y colaboradores
[88, 89]. Ellos introducen el llamado Método de Volúmenes Finitos con Multiplicador de
Lagrange Generalizado, GLMFVM por sus siglas en inglés, para el cálculo del sistema
de Maxwell en electrodinámica. En el último capı́tulo de esta tesis, se reformula este
método para cualquier sistema de Friedrichs con involuciones. Este método se basa en la
resolución de un sistema extendido de tipo relajación. Sean a, ε > 0 y u0, ψε

0 : Rd → Rm

dados. Se considera el problema de Cauchy para la incógnita wε : Rd× [0,T ]→ R2m, con
wε := (uε

1, . . . ,u
ε
m,ψε

1 , . . . ,ψε
m)T , dado por

∂

∂ t
uε +

d

∑
i=1

∂

∂xi

(
Gi(x, t)uε

)
+MT

i
∂

∂xi
ψ

ε +D(x, t)uε = f (x, t),

∂

∂ t
ψ

ε +
d

∑
i=1

Mi

ε

∂

∂xi
uε +aψ

ε = 0,

uε(x,0) = uε
0(x), ψ

ε(x,0) = ψ
ε
0 (x) = 0.

Como la formulación anterior no es simétrica se introduce la variable ϕε := ψε
√

ε con lo
que el sistema a resolver se reduce a

∂

∂ t
Uε +

d

∑
i=1

∂

∂xi
(Aε,iUε)+BUε = F, Uε(x,0) = Uε

0 (x) :=
(

uε
0(x)
0

)
,

con

Uε :=
(

uε

ϕε

)
; Aε,i :=

(
Gi MT

i√
ε

Mi√
ε

0

)
; B :=

(
D 0
0 aI

)
; F :=

(
f
0

)
.



xvi Introducción

Se prueba que el problema simétrico extendido está bien planteado. También se de-
muestra, bajo supuestos no restrictivos, que la solución del sistema extendido es igual
a la solución del sistema original en casi todo punto. Luego se introduce el método
de volúmenes finitos GLMFVM. El resultado principal es la convergencia del método
GLMFVM. Esta se realiza en la sección 3.4. Siguiendo la teorı́a desarrollada por Vila y
Villedieu [112] y Jovanovic y Rohde [59] se obtiene que

‖uε
h−uε‖L2(Rd×[0,T ];Rm) = O

(
ε
−1/4 h1/2

)
donde h es el parámetro de malla, uε

h : Rd × [0,T ]→ Rm es la solución generada por
el método GLMFVM y uε la solución del sistema extendido. Un hecho importante es
que acoplando ε con h la estimación no depende crı́ticamente del parámetro ε . Como
Corolario se demuestra que la involución se satisface en el lı́mite cuando h y ε van a 0.
Ejemplos numéricos ilustran la importancia de considerar la involución en el método de
aproximación. Como resultado de esta investigación se tiene en preparación el artı́culo:

• F. Betancourt y C. Rohde. “Finite-Volume Schemes for Friedrichs Systems with
Involutions”.



Chapter 1

Strongly degenerate parabolic
aggregation equation

This chapter is concerned with a strongly degenerate convection-diffusion equation in
one space dimension whose convective flux involves a nonlinear function of the total mass
to one side of the given position. This equation can be understood as a model of aggrega-
tion of the individuals of a population with the solution representing their local density.
The aggregation mechanism is balanced by a degenerate diffusion term describing the
effect of dispersal. In the strongly degenerate case, solutions of the nonlocal problem are
usually discontinuous and need to be defined as weak solutions. A finite difference scheme
for the nonlocal problem is formulated and its convergence to the unique weak solution
is proved. This scheme emerges from taking divided differences of a monotone scheme
for the local PDE for the primitive. Some numerical examples illustrate the behaviour of
solutions of the nonlocal problem, in particular the aggregation phenomenon.

1.1 Introduction

1.1.1 Scope

This chapter is related to the initial value problem for a strongly degenerate convection-
diffusion equation of the form

ut +
(

Φ
′
(∫ x

−∞

u(y, t)dy
)

u(x, t)
)

x
= A(u)xx, x ∈ R, 0 < t ≤ T, (1.1)

u(x,0) = u0(x)≥ 0, x ∈ R, u0 ∈ (L1∩L∞)(R) (1.2)

for the density u = u(x, t)≥ 0, where A(u) is a diffusion function given by A(u) :=
∫ u

0 a(s)ds,
where a(u) ≥ 0 for u ∈ R. The model (1.1), (1.2) was studied as a model of aggregation

1
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by a series of authors including Alt [3], Diaz, Nagai, and Shmarev [42], Nagai [90] and
Nagai and Mimura [91, 92, 93], all of which assumed that a(u) = 0 at most at isolated
values of u. It is the purpose of this work to study (1.1), (1.2) under the more general
assumption that a(u) = 0 on bounded u-intervals on which (1.1) reduces to a first-order
conservation law with nonlocal flux. We assume that A(s)→ ∞ as s→ ∞.

The key observation made in previous work [3, 90, 91, 92, 93] is that if all coefficients
are sufficiently smooth, and u(x, t) is an L1 solution of the problem (1.1), (1.2), then the
primitive defined by

v(x, t) :=
∫ x

−∞

u(ξ , t)dξ , t ∈ (0,T ], (1.3)

is a solution of the local initial value problem

vt +Φ(v)x = A(vx)x, x ∈ R, t ∈ (0,T ], (1.4)

v(x,0) = v0(x), x ∈ R, v0(x) :=
∫ x

−∞

u0(ξ )dξ . (1.5)

As a nonlinear but local PDE, (1.4) is more amenable to well-posedness and numerical
analysis. In this work we use that the transformation to the local equation (1.4) is also
possible in the strongly degenerate case, in which solutions of (1.1) are usually disconti-
nuous and need to be defined as weak solutions. We prove that any weak solution is also
an entropy solution. This property allows us to use available L1 stability and uniqueness
results in the framework of entropy solutions.

The core, and essential novelty, of this contribution is the formulation and convergence
proof of a finite difference scheme for (1.1), (1.2) (in short, “u-scheme”). The scheme is
based on a monotone difference scheme for the initial value problem (1.4), (1.5) (in short,
“v-scheme”) in the strongly degenerate case, which in turn is a special case of the schemes
formulated and analyzed by Evje and Karlsen [47] for the more general doubly degenerate
equation vt +Φ(v)x = B(A(vx))x. The u-scheme is obtained by taking finite differences of
the numerical solution values generated by the v-scheme. The v-scheme is, in particular,
monotonicity preserving, so the discrete approximations for v are always monotonically
increasing when the initial datum v0 is, and therefore the u-scheme produces nonnegative
solutions. Moreover, by modifications of standard compactness and Lax-Wendroff-type
arguments it is proved that the numerical approximations generated by the u-scheme con-
verge to the unique weak solution of (1.1), (1.2). An appealing feature is that the primitive
(1.3) never needs to be calculated explicitly (except for the computation of v0). Numerical
examples illustrate the behaviour of solutions of (1.1), (1.2), and recorded error histories
demonstrate the convergence of the v- and u-schemes.



1.1 Introduction 3

1.1.2 Assumptions

We assume that u0 has compact support, and that there exists a constant M such that

TV(u0) < M . (1.6)

We also need that Φ ∈C2(R), and that Φ has exactly one maximum:

∃v∗ > 0 : Φ
′(v∗) = 0, Φ

′(v) > 0 for v < v∗, Φ
′(v) < 0 for v > v∗. (1.7)

This assumption is introduced to facilitate some of the steps of our analysis; it is, however,
not essential. In fact, in our convergence analysis of Section 1.4 we need to discuss the
local behaviour of the numerical solution for v close to where it includes the value v∗ since
that value is critical in the definition of the numerical flux. If we employ a function Φ that
has several separate extrema, then the locations of solution values including extrema are
spatially well separated since the discrete analogue of vx is bounded, and the techniques
of Section 1.4 can be extended to that case in a straightforward manner. We recall that the
function A is defined via

A(u) :=
∫ u

0
a(s)ds, where a(u)≥ 0 for u ∈ R.

The assumptions on A are the following:

A(s)→ ∞ as s→ ∞; ∃Ma > 0 : a(s) < Ma for all s ∈ R. (1.8)

Our analysis is restricted to a finite final time T , since some of the constants appearing
in the convergence analysis, which serves here as an existence proof, actually depend
on T . The L∞ bound on u is, however, independent of T .

1.1.3 Motivation

Equation (1.1), or some specific cases of it, were studied in a series of papers [3, 42,
90, 91, 92, 93], in all of which it is assumed that a(u) = 0 at most at isolated values of u,
so that it is always ensured that A′(u) > 0 for u≥ 0. The interpretation of (1.1) as a model
of the aggregation of populations (e.g., of animals) can be illustrated as follows. Assume
that u(x, t) is the density of the population under study, and consider the equation

ut +
(
−k
[∫ x

−∞

u(y, t)dy−
∫

∞

x
u(y, t)dy

]
u
)

x
= A(u)xx, k > 0. (1.9)

Here, the convective term provides a mechanism that moves u(x, t) to the right (respec-
tively, to the left) if∫ x

−∞

u(y, t)dy <
∫

∞

x
u(y, t)dy (respectively, . . . > . . .).
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In other words, an animal will move to the right (respectively, left) if the total population
to its right is larger (respectively, smaller) than to its left. Now assume that the initial
population is finite and define

C0 :=
∫

R
u0(x)dx. (1.10)

It is then clear that (1.9) is an example of (1.1) if Φ′(v) =−k(2v−C0), i.e.,

Φ(v) =−kv(v−C0)+ const. (1.11)

The aggregation mechanism is balanced by nonlinear diffusion described by the term
A(u)xx, termed density-dependent dispersal in mathematical ecology. A novel feature
addressed by the present analysis is a “threshold effect”, i.e. dispersal only sets on when
the density u exceeds a critical value uc > 0. The underlying idea is that the individuals,
animals or humans, would react to variations of the local density only if that density ex-
ceeds a critical value. A similar “behavioristic” motivation of degenerate diffusion was
advanced in the context of a traffic model, see [27, 101]. This effect is considered in the
present model since A may degenerate on intervals. For example, for a constant a0 > 0 we
may consider

a(u) =

{
0 for u≤ uc,

a0 for u > uc,
i.e., A(u) =

{
0 for u≤ uc,

a0(u−uc) for u > uc.
(1.12)

To illustrate some of the consequences of the presence of a strongly degenerating
diffusion term, and to compare our findings with the most recent results obtained for
multi-dimensional aggregation equations, let us consider a strongly degenerating inte-
grated diffusion coefficient A(u) and the local degenerate parabolic PDE

ut + f (x, t,u)x = A(u)xx, (x, t) ∈ΠT ; u(x,0) = u0(x), x ∈ R, (1.13)

where f should depend smoothly on x and u. It is well known that even in the absence of
a convective term ( f ≡ 0), i.e., for the problem

ut = A(u)xx, (x, t) ∈ΠT ; u(x,0) = u0(x), x ∈ R, (1.14)

solutions of (1.13) may form discontinuities from smooth initial data in finite time due
to the strong degeneracy of A(u). The appearance of discontinuities motivates why so-
lutions of strongly degenerate parabolic PDEs are studied as weak solutions. However,
the appearance of discontinuities solely due to degenerate diffusion does not necessarily
require the introduction of an entropy solution concept to ensure uniqueness. In fact, the
uniqueness in L1 of weak solutions of (1.14) is a classical result [23]. This result carries
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over to such cases of (1.13) that can be transformed to (1.14), for example the linear case
f (x,u) = αu, where α ∈ R is a constant, or may possibly depend on x and t (in the latter
case, restrictions on the choice of α(x) may apply).

This discussion motivates why we expect solutions of the present problem (1.1), (1.2)
to form discontinuities even from smooth initial data, so this problem should be studied
in a suitably defined space of weak solutions. We may write (1.1) as

ut +
(
Φ
′(v(x, t))u)x = A(u)xx. (1.15)

In this work we demonstrate that for the present equation (1.15) weak solutions are
entropy solutions. The main importance of identifying weak solutions as entropy solu-
tions lies in the easy access to stability and uniqueness results for entropy solutions (see
[32, 62]) which can be applied to (1.1), (1.2), as will be done in Section 1.3.2.

1.1.4 Related work

More recently, aggregation equations of the form

ut +∇ · (u∇K ∗u) = ∆A(u) (1.16)

have seen an enormous amount of interest, where the typical case is A ≡ 0. Here, K
denotes an interaction potential, and K ∗ u denotes spatial convolution. The nonlocal
and diffusive terms account for long-range and short-range interactions, respectively,
as is emphasized in [28]. The derivation of (1.16) from microscopic interacting parti-
cle systems and related models, and for particular choices of K and A, is presented in
[16, 22, 28, 85, 86]. Related models also include equations with fractional dissipation that
cannot be cast in the form (1.16), see e.g. [78, 79].

The essential research problem associated with (1.16) (or variants of this equation) is
the well-posedness of this equation together with bounded initial data u(x,0) = u0(x) for
x ∈Rd , where d denotes the number of space dimensions. While the short-time existence
of a unique smooth solution for smooth initial data is known in most situations, one wishes
to determine criteria in terms of the functions K and A (or related diffusion terms), and
possibly of u0, that either ensure that smooth solutions exist globally in time, or that
compel that solutions of (1.16) will blow up in finite time. This problem is analyzed in
[8, 15, 16, 17, 18, 19, 22, 28, 31, 76, 78, 79, 82] (this list is far from being complete).

Here and it what follows, “blow-up” of a solution refers to L∞ norm blow-up (as
opposed to the finite time loss of classical regularity generic to problems with degenerate
diffusion). The occurrence of blow-up was analyzed in terms of the properties of K for A≡
0 in [16, 17]; if K is radial, i.e., K = K(|x|), then blow-up occurs if the Osgood condition
for the characteristic ODEs is violated, as occurs e.g. for K(x) = exp(−|x|), while for a
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C2 kernel this does not occur [16]. Li and Rodrigo [78, 79] consider this particular kernel
and describe the circumstances under which blow-up occurs if the aggregation equation
is equipped with fractional diffusion. Special cases of (1.16) have also been studied in the
context of Patlak-Keller-Segel models, where K is the fundamental solution to an elliptic
PDE (see e.g. [8, 21]).

We can write (1.1) as a one-dimensional version of (1.16) only in very special cases.
However, and as was already pointed out in [91], (1.9) can be written as

ut +(uK̃ ∗u)x = A(u)xx (1.17)

with the odd kernel K̃(x) =−k sgn(x). Equation (1.17), or equivalently, (1.1) with Φ given
by (1.11), becomes a one-dimensional example of (1.16) if we observe that K̃ ∗u = K′ ∗u,
where K′ denotes the derivative of K, if we choose the even kernel

K(x) =−k|x|+C, (1.18)

where C is a constant. We can write this as K(x) =−κ(|x|) for κ(r) = r−C. Suppose that
one uses this kernel in the multi-dimensional equation (1.16). It is then straightforward to
verify that in absence of dispersal (A≡ 0), the kernel (1.18) satisfies the integral condition
for blow-up in finite time, see [16]. One result of our analysis is then that the condition
(1.8) is sufficient to ensure that L∞ blow-up of solutions of (1.1) does not occur.

In fact, in the context of aggregation models that are based either on (1.1) or on the
more recently studied equation (1.16), the present work is the first that incorporates a
strongly degenerate diffusion term, i.e., involves a function A(u) that is flat on a u-interval
of positive length. So far, diffusion terms that have been considered in (1.1) degenerate
at most at isolated u-values. Nagai and Mimura [91] studied the Cauchy problem for
equation (1.1) under the assumptions A(0) = 0, A′(u) > 0 being an odd function. The
initial function for the Cauchy problem in [91] is assumed to be bounded, nonnegative
and integrable. Nagai and Mimura [91] prove existence and uniqueness of a bounded
and continuous solution to the initial value problem. In [92] the asymptotic behaviour of
solutions to the same problem was studied for the specific choice

A(u) = um, m > 1. (1.19)

It seems that the analysis of (1.16) with degenerate diffusion has just started. Li and Zhang
[82] study this equation in one space dimension for the diffusion function A(u) = u3/3,
which degenerates at u = 0 only. On the other hand, the numerical simulations presented
herein show that under strongly degenerate diffusion, typical features of the aggregation
phenomenon such as “clumped” solutions with very sharp edges [105] appear.

Let us briefly mention some of the recent results concerning (1.16). If diffusion is ab-
sent (A≡ 0), (1.16) becomes an inviscid nonlocal transport law, which are well known to
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be have better regularity properties than general quasi-linear conservation laws. In particu-
lar, Laurent [76] and Bertozzi and Laurent [17] show that if the initial condition is smooth,
then solutions of (1.16) remain smooth for as long as the Lp norms remains bounded. In
particular, discontinuities can only occur if they were present in the initial data. More-
over, according to [82], the addition of nonlinear diffusion will cause higher regularity
of weak solutions to be lost in finite time, i.e., the spatial gradient of the solution will
experience L∞ blow-up in finite time. This contrasts with the expected solution behaviour
of (1.1), (1.2) described in Section 1.1.3, namely that strong discontinuities form from
smooth data.

Regarding uniqueness of weak solutions, it has been shown that in dimensions two
and higher, entropy conditions are not required to ensure that weak solutions to (1.16) are
unique. For the inviscid case, see Bertozzi and Brandman [15] or Bertozzi et al. [18]. For
the case with diffusion, uniqueness is shown by Bertozzi and Slepčev in [19] and in more
generality by Bedrossian et al. [8]. These results are consistent with ours.

1.1.5 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 1.2 we state the defi-
nition of weak and entropy solutions of (1.1), (1.2). While it is standard to verify that
any entropy solution is a weak solution, we able to prove that for the present equation,
any weak solution is an entropy solution. In Section 1.3.1 we state jump conditions that
can be derived from the definition of weak solutions, and in Section 1.3.2 we prove the
uniqueness of a weak solution, using that any weak solution is, in fact, an entropy so-
lution. Section 1.4 presents a convergence analysis for the u-scheme. In Section 1.4.1,
the schemes are described. Section 1.4.2 contains a series of lemmas stating uniform es-
timates on the numerical approximations generated by the v- and the u-schemes, which
allow to employ standard compactness arguments to deduce that both schemes converge
to the unique weak solution. The final convergence result (Theorem 1.4.1) and its proof
are presented in Section 1.4.3. This proof follows a standard Lax-Wendroff argument.
A finite speed of propagation property is proven in 1.4.4. Some numerical examples are
presented in Section 1.5.

1.2 Definition of a weak solution

Definition 1.2.1 A measurable function u is said to be a weak solution of the initial value
problem (1.1), (1.2) if it satisfies the following conditions:

1. We have u∈ L∞(ΠT )∩L∞(0,T ;BV (R)), and A(u)∈ L2(0,T ;H1(R)), where ΠT :=
R× (0,T ).
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2. The initial condition (1.2) is satisfied in the following sense:

lim
t↓0

∫
R

∣∣u(x, t)−u0(x)
∣∣dx = 0. (1.20)

3. If v(x, t) is defined by (1.3), then the following equality is satisfied for all test func-
tions φ ∈C∞

0 (ΠT ):∫∫
ΠT

{
u
(
φt +Φ

′(v)φx
)
+A(u)φxx

}
dxdt = 0. (1.21)

Definition 1.2.2 A measurable, nonnegative function u is an entropy solution of (1.1),
(1.2) if it satisfies items (1) and (2) of Definition 1.2.1 and if for all nonnegative test
functions ϕ ∈C∞

0 (ΠT ), the following entropy inequality is satisfied:

∀k ∈ R :
∫∫

ΠT

{
|u− k|

(
ϕt +Φ

′(v)ϕx
)
− sgn(u− k)ukΦ

′′(v)ϕ

+
∣∣A(u)−A(k)

∣∣ϕxx

}
dxdt ≥ 0.

(1.22)

It is straightforward to check that an entropy solution of the initial value problem (1.1),
(1.2) is a weak solution.

Lemma 1.2.1 Assume that u is an entropy solution of the initial value problem (1.1), (1.2)
(cf. Definition 2.4.1). Then u is a weak solution (cf. Definition 1.2.1).

Proof. Choosing k ≥ ‖u‖L∞(ΠT ) in (1.22) we obtain∫∫
ΠT

{
−(u− k)

(
φt +Φ

′(v)φx
)
−A(u)φxx

}
dxdt ≥−k

∫∫
ΠT

uΦ
′′(v)φ dxdt

or equivalently, ∫∫
ΠT

{
u
(
φt +Φ

′(v)φx
)
+A(u)φxx

}
dxdt

≤ k
∫∫

ΠT

{
φt +

(
Φ
′(v)φ

)
x

}
dxdt = 0.

(1.23)

On the other hand, since we look for nonnegative solutions, it suffices to set k = 0 in
(1.22) to deduce that we always have∫∫

ΠT

{
u
(
φt +Φ

′(v)φx
)
+A(u)φxx

}
dxdt ≥ 0.

Combining this with (1.23) we see that u satisfies (1.21). 2

The following lemma states that conversely, any weak solution of the initial value
problem (1.1), (1.2) is an entropy solution. Lemma 1.2.2 is inspired by Carrillo [30] and
Kobayasi [66, Lemmas 3.1 and 3.3].
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Lemma 1.2.2 Let u be a weak solution of problem (1.1), (1.2), then u is also an entropy
solution.

Proof. Let us define α(x, t) := Φ′(v(x, t)). Then we recall that u is a weak solution of (1.1)
if for all test functions φ ∈C∞

0 (ΠT ),∫∫
ΠT

{
u
(
φt +α(x, t)φx

)
+A(u)φxx

}
dxdt = 0

or equivalently, ∫∫
ΠT

{
u
(
φt +α(x, t)φx

)
−A(u)xφx

}
dxdt = 0. (1.24)

In what follows we will utilize the functions defined by

H0(x) :=

{
1 if x > 0,

0 if x≤ 0,
H1(x) :=

{
1 if x≥ 0,

0 if x < 0,
Hε(x) :=


1 if x > ε ,

x/ε if x ∈ [0,ε],

0 if x < 0.

and the multi-valued function (see [30, 66])

H(x) :=


1 if x > 0,

[0,1] if x = 0,

0 if x < 0.

To simplify the argument, let us concentrate on the case of a single u-interval [m,M]
of degeneracy, assuming that A′(s) = 0 for s ∈ [m,M] and A′(s) > 0 for s /∈ [m,M], where
0 ≤ m,M < ∞. Now let us use as a test function φ(x, t) = Hε(A(u)−A(k))ϕ(x, t) with
k /∈ [m,M], where ϕ is an admissible test function. Following the proof of Lemma 2.4 in
[62] we find∫∫

ΠT

{
|u− k|+ϕt +H0(u− k)

(
α(x, t)(u− k)−A(u)x

)
ϕx

−H0(u− k)αx(x, t)kϕ

}
dxdt ≥ 0 for k /∈ [m,M],

(1.25)

where |z|+ := H0(z)z. Since M < ∞ we can construct a sequence {sn}n∈N such that sn > M,
sn → M and H0(u− sn)→ H0(u−M) as n→ ∞. Setting k = sn in (1.25) and sending
n→ ∞, we get∫∫

ΠT

{
|u−M|+ϕt +α(x, t)|u−M|+ϕx−H0(u−M)A(u)xϕx

−H0(u−M)αx(x, t)Mϕ

}
dxdt ≥ 0.

(1.26)
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Similarly, we may construct a sequence {sn}n∈N such that sn < m, sn→ m and
H0(u− sn)→ H1(u−m) as n→ ∞. Setting k = sn in (1.25) and sending n→ ∞ yields∫∫

ΠT

{
|u−m|+ϕt +α(x, t)|u−m|+ϕx−H1(u−m)A(u)xϕx

−H1(u−m)αx(x, t)mϕ

}
dxdt ≥ 0.

(1.27)

Now, we take in the entropy inequality (1.27) a test function ϕ(x, t) = ξ (x, t)ζ (x, t),
where ζ is a smooth function such that 0 ≤ ζ ≤ 1 and ξ is an admissible test function,
and in (1.26) we use ϕ(x, t) = ξ (x, t)(1−ζ (x, t)). Adding both resulting expressions we
obtain the inequality I1 + I2 + I3 + I4 ≥ 0 with the following terms, where we drop the
argument (x, t) wherever convenient:

I1 :=
∫∫

ΠT

{(
|u−m|+−|u−M|+

)
(ξ ζ )t + |u−M|+ξt

}
dxdt,

I2 :=
∫∫

ΠT

{
α
(
|u−m|+−|u−M|+

)
(ξ ζ )x +α|u−M|+ξx

}
dxdt,

I3 :=
∫∫

ΠT

{
αx
(
H0(u−M)M−H1(u−m)m

)
ξ ζ −αxH0(u−M)Mξ

}
dxdt,

I4 :=−
∫∫

ΠT

(
H1(u−m)−H0(u−M)

)
A(u)x(ξ ζ )x dxdt

−
∫∫

ΠT

H0(u−M)A(u)xξx dxdt. (1.28)

Assume now that ρn = ρn(x) is a standard sequence of mollifier functions in R, and let us
define |u−m|+n := |u−m|+ ∗ρn and |u−M|+n := |u−M|+ ∗ρn for n ∈ N. Now we select
the function ζ = ζ (x, t) defined by

ζ = ζn,ε := Hε

(
|u−m|+n +m− s−|u−M|+n

)
, s ∈ [m,M].

Let us denote the versions of Ip obtained by replacing | · |+ by | · |+n and ζ = ζn,ε by
Ip(n,ε), p = 1, . . . ,4. Since m and s are constant and ξ ζn,ε has compact support, we get
after an integration by parts

I1(n,ε) =
∫∫

ΠT

{(
|u−m|+n +m− s−|u−M|+n

)
(ξ ζn,ε)t + |u−M|+n ξt

}
dxdt

=
∫∫

ΠT

{
−Hε

(
|u−m|+n +m− s−|u−M|+n

)
×
(
|u−m|+n +m− s−|u−M|+n

)
tξ + |u−M|+n ξt

}
dxdt.

Taking ε ↓ 0 and again integrating by parts yields

I1(n,0) =
∫∫

ΠT

{
−
(∣∣|u−m|+n +m− s−|u−M|+n

∣∣+)
t
ξ + |u−M|+n ξt

}
dxdt

=
∫∫

ΠT

{∣∣|u−m|+n +m− s−|u−M|+n
∣∣+ξt + |u−M|+n ξt

}
dxdt,
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and letting n→ ∞ we find that |u−m|+n +m− s−|u−M|+n converges to |u−m|+ +m−
s− |u−M|+ in L1(R) and ζn,0 = H0(|u−m|+n +m− s−|u−M|+n ), or at least a subse-
quence, converges weak-∗ to some H̃ in L∞(ΠT ). Since H is maximal monotone, it fol-
lows that H̃ ∈ H(|u−m|+ +m− s−|u−M|+). Noting that H(w)w = H0(w)w for any
function w, we arrive at

I1 =
∫∫

ΠT

{∣∣|u−m|+ +m− s−|u−M|+
∣∣+ + |u−M|+

}
ξt dxdt

=
∫∫

ΠT

|u− s|+ξt dxdt. (1.29)

Next, we deal with I4. Since A′(u) = 0 for u ∈ [m,M], we have

H0(u−M)A(u)x = H0(u− s)A(u)x = H1(u−m)A(u)x

for all s ∈ [m,M], which gives

I4 = lim
n→∞

lim
ε↓0

I4(n,ε) =−
∫

ΠT

H0(u− s)A(u)xξx dxdt. (1.30)

To deal with I2, we proceed in a similar way as for I1. We get

I2(n,ε) =
∫∫

ΠT

{
α
(
|u−m|+n +m− s−|u−M|+n

)
(ξ ζn,ε)x

+(s−m)α(ξ ζn,ε)x +α|u−M|+n ξx

}
dxdt

=−
∫∫

ΠT

αxHε

(
|u−m|+n +m− s−|u−M|+n

)
×
(
|u−m|+n +m− s−|u−M|+n

)
ξ dxdt

−
∫∫

ΠT

α
(
|u−m|+n +m− s−|u−M|+n

)
x

×Hε

(
|u−m|+n +m− s−|u−M|+n

)
ξ dxdt

+
∫∫

ΠT

α|u−M|+n ξx dxdt +
∫∫

ΠT

α(s−m)(ξ ζn,ε)x dxdt.
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Taking ε ↓ 0 we get, after integration by parts,

I2(n,0) =−
∫∫

ΠT

αx
∣∣|u−m|+n +m− s−|u−M|+n

∣∣+ξ dxdt

−
∫∫

ΠT

α

(∣∣|u−m|+n +m− s−|u−M|+n
∣∣+)

x
ξ dxdt

+
∫∫

ΠT

α|u−M|+n ξx dxdt + lim
ε↓0

∫∫
ΠT

α(s−m)(ξ ζn,ε)x dxdt

=−
∫∫

ΠT

αx
∣∣|u−m|+n +m− s−|u−M|+n

∣∣+ξ dxdt

+
∫∫

ΠT

αx
∣∣|u−m|+n +m− s−|u−M|+n

∣∣+ξ dxdt

+
∫∫

ΠT

α
∣∣|u−m|+n +m− s−|u−M|+n

∣∣+ξx dxdt

+
∫∫

ΠT

α|u−M|+n ξx dxdt + lim
ε↓0

∫∫
ΠT

α(s−m)(ξ ζn,ε)x dxdt,

where the two first terms obviously cancel. Sending n→ ∞ and proceeding like in the
term I1 we arrive at

I2 =
∫∫

ΠT

α

(
|u−M|+ +

∣∣|u−m|+ +m− s−|u−M|+
∣∣+)ξx dxdt

+ lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt

=
∫∫

ΠT

α|u− s|+ξx dxdt + lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt. (1.31)

The last term of the last expression will be incorporated into the analysis of I3. In fact,
taking into account that

I3(n,ε) =
∫∫

ΠT

αx

{(
H0(u−M)M−H1(u−m)m

)
×Hε

(
|u−m|+n +m− s−|u−M|+n

)
−H0(u−M)M

}
ξ dxdt

and that

lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt =− lim
ε↓0

n→∞

∫∫
ΠT

(s−m)αxξ ζn,ε dxdt,
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we obtain

I3 + lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt

= lim
ε↓0

n→∞

(
I3(n,ε)−

∫∫
ΠT

(s−m)αxξ ζn,ε dxdt
)

= lim
ε↓0

n→∞

∫∫
ΠT

{
αx
(
H0(u−M)M− s+m−H1(u−m)m

)
ξ ζn,ε −αxH0(u−M)Mξ

}
dxdt.

Proceeding as in the cases I1 and I2 we find

I3 + lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt

=
∫∫

ΠT

αx

{(
H0(u−M)M +m− s−H1(u−m)m

)
× H̃

(
|u−m|+ +m− s−|u−M|+

)
−H0(u−M)M

}
ξ dxdt.

If u > M, then the expression in curled brackets in the last integrand equals

{. . .}= (M− s)H̃(M− s)−M =−s =−H̃(u− s)s.

Likewise, for each of the cases M ≥ u > s > m, M > s ≥ u > m, and M > s > u ≥ m we
verify that {. . .}=−H̃(u− s)s, and also for m > u we obtain

{. . .}= (m− s)H̃(m− s) = 0 =−H̃(u− s)s,

and finally, the result is also valid if s = m or s = M. We therefore conclude that

I3 + lim
ε↓0

n→∞

∫∫
ΠT

(s−m)α(ξ ζn,ε)x dxdt =−
∫

ΠT

αxH̃(u− s)sξ dxdt. (1.32)

Now, combining (1.29)–(1.32), we obtain the inequality∫∫
ΠT

{
|u− s|+

(
ξt +α(x, t)ξx

)
−αx(x, t)H̃(u− s)sξ

−H0(u− s)A(u)xξx

}
dxdt ≥ 0 for all s ∈ [m,M].

Now, for any s ∈ [m,M) there exists a sequence {sn}n∈N such that sn < s < M and sn→ s.
Then H̃(u− sn)→ H0(u− s) and H0(u− sn)→ H0(u− s) almost everywhere. Hence we
get ∫∫

ΠT

{
|u− s|+

(
ξt +α(x, t)ξx

)
−αx(x, t)H0(u− s)sξ

−H0(u− s)A(u)xξx

}
dxdt ≥ 0 for all s ∈ [m,M].

(1.33)
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This proof uses only that αx is bounded, which is indeed the case for our choice α(x, t) =
Φ′(v(x, t)), since Φ is assumed to be smooth and vx(x, t) = u(x, t) is bounded. On the other
hand, considering in the weak formulation a test function φ(x, t) = Hε(A(k)−A(u))ϕ(x, t)
with k /∈ [m,M] and following essentially the same steps as before we find∫∫

ΠT

{
|s−u|+

(
ξt +α(x, t)ξx

)
+αx(x, t)H0(s−u)sξ

+H0(s−u)A(u)xξx

}
dxdt ≥ 0 for all s ∈ [m,M].

(1.34)

Adding (1.33) and (1.34) we get∫∫
ΠT

{
|u− s|

(
ξt +α(x, t)ξx

)
−αx(x, t)sgn(u− s)sξ

− sgn(u− s)A(u)xξx

}
dxdt ≥ 0 for all s ∈ [m,M].

(1.35)

Moreover (1.35) is valid for all s 6∈ [m,M] (cf. [62]). This implies that any weak solution
is an entropy solution. 2

1.3 Jump conditions and uniqueness

1.3.1 Rankine-Hugoniot condition

Assume that u is a weak solution having a discontinuity at a point (x0, t0) ∈ ΠT be-
tween the approximate limits u+ and u− of u taken with respect to x > x0 and x < x0,
respectively. Standard results from the theory of strongly degenerate parabolic equations
imply that such a discontinuity is possible only if A(u) is flat for u ∈ I (u−,u+) :=
[min{u−,u+},max{u−,u+}]. In that case, the propagation velocity of the jump is given
by the Rankine-Hugoniot condition, which is derived by standard arguments from the
weak formulation (1.21):

s =
1

u+−u−

(
Φ
′(v+)u+−Φ

′(v−)u−−
(
A(u)x

)+ +
(
A(u)x

)−)
. (1.36)

Here, (A(u)x)+ and (A(u)x)− denote the approximate limits of A(u)x taken with respect
to x > x0 and x < x0, respectively, and v+ and v− denote the corresponding limits of v.
Since v is continuous, we actually have v+ = v−, and (2.29) reduces to

s = Φ
′(v(x0, t0)

)
− (A(u)x)+− (A(u)x)−

u+−u−
.
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1.3.2 Uniqueness of weak solutions

The uniqueness of weak solutions is an immediate consequence of Lemma 1.2.2 and a
result proved in [62] (cf. also [32]) regarding continuous dependence of entropy solutions
with respect to the flux function. More precisely, we have the following theorem.

Theorem 1.3.1 Let u and ū be two weak solutions of (1.1), (1.2) (in the sense of Defi-
nition 1.2.1) with initial data u0 and ū0, respectively. Then there exists a constant C =
C (max |Φ′|) such that∥∥u(·, t)− ū(·, t)

∥∥
L1(R) ≤C‖u0− ū0‖L1(R), ∀t ∈ (0,T ].

In particular, weak solutions of (1.1), (1.2) are unique.

Proof. According to Lemma 1.2.2, u and ū are entropy solutions (in the sense of Defini-
tion 2.4.1) with initial data u0 and ū0, respectively. To be able to apply the L1 stability and
uniqueness results from [32, 62], we rewrite the equations satisfied by u and ū as

ut +
(
V (x, t)u

)
x = A(u)xx, V (x, t) := Φ

′
(∫ x

−∞

u(y, t)dy
)

,

with initial data u(0,x) = u0(x) and

ūt +(V̄ (x, t)ū)x = A(ū)xx, V̄ (x, t) := Φ
′
(∫ x

−∞

ū(y, t)dy
)

.

with initial data ū(0,x) = ū0(x), respectively. Keeping in mind that u and ū are of bounded
variation, i.e., u, ū∈ L∞(0,T ;BV (R)), we now may apply Theorem 1.3 in [62] to conclude
that there exists a constant C such that∥∥u(·, t)− ū(·, t)

∥∥
L1(R) ≤ ‖u0− ū0‖L1(R) +

∫ t

0

∣∣Vx(x,s)−V̄x(x,s)
∣∣ds

+
∫ t

0

∣∣V (x,s)−V̄ (x,s)
∣∣TV(u(·,s))ds

≤ ‖u0− ū0‖L1(R) +C
∫ t

0

∣∣Vx(x,s)−V̄x(x,s)
∣∣ds.

Observe that ∫ t

0

∣∣Vx(x,s)−V̄x(x,s)
∣∣ds≤max |Φ′|

∫ t

0

∣∣u(x,s)− ū(x,s)
∣∣ds,

so that by the Gronwall inequality we arrive at∥∥u(·, t)− ū(·, t)
∥∥

L1(R) ≤ exp
(
max |Φ′| t

)
‖u0− ū0‖L1(R).

2
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1.4 Convergence analysis of numerical schemes

1.4.1 Preliminaries

We define the vectors Un := {un
j+1/2} j∈Z and V n := {vn

j} j∈Z, and discretize R by
x j := j∆x, j ∈ Z, and the time interval [0,T ] by tn = n∆t, n = 0, . . . ,N, ∆t := T/N,
N ∈ N. We denote by un

j+1/2 the cell average over I j := [x j,x j+1] at time tn and j ∈ Z.
We also define λ := ∆t/∆x and µ := ∆t/∆x2 = λ/∆x and wherever convenient use the
spatial difference operators ∆+φ j := φ j+1−φ j, ∆−φ j := φ j−φ j−1, and

∆
2
φ j := ∆+∆−φ j = φ j+1−2φ j +φ j−1.

We assume that the initial datum u0 is discretized via

u0
j+1/2 :=

1
∆x

∫
I j

u0(ξ )dξ , j ∈ Z.

Moreover, we define the operator S∆x and its inverse S −1
∆x via

S∆x(Un; j) := ∆x
j−1

∑
l=−∞

un
l+1/2, S −1

∆x (V n; j) :=
vn

j+1− vn
j

∆x
. (1.37)

Clearly, S∆x and S −1
∆x are the discrete analogues of the integral and differential operators

that convert u(·, tn) into v(·, tn) and vice versa, respectively. Since we assume that u0 is
compactly supported, the sum in (1.37) is actually finite.

The numerical scheme for the initial value problem (1.1), (1.2) can be compactly
written as follows:

Un+1 =
[
S −1

∆x ◦H ◦S∆x
]
Un, n = 0, . . . ,N−1, (1.38)

where the basic idea is to utilize a standard scheme of the form

V n+1 = H (V n), n = 0, . . . ,N−1 (1.39)

for approximate solutions of the local PDE (1.4), starting from the initial data

v0
j := ∆x

j−1

∑
l=−∞

u0
l+1/2 =

∫ x j

−∞

u0(ξ )dξ , j ∈ Z.

Clearly, if C0 is the total mass defined in (1.10), then we have that

0≤ v0
j ≤C0, v0

j ≤ v0
j+1 for all j ∈ Z. (1.40)
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Let us emphasize here that (1.38) implies that

Un =
[
S −1

∆x ◦H ◦S∆x
]nU0 =

[
S −1

∆x ◦H
n ◦S∆x

]
U0.

This means that for the actual computation of Un from U0, the operators S∆x and S −1
∆x

need to be applied only once, and not for every time step.
To derive properties of the scheme (1.38), we first analyze the scheme (1.39), which

is here given by the marching formula

vn+1
j = vn

j −λ∆+
[
h
(
vn

j−1,v
n
j
)
−A
(
∆−vn

j/∆x
)]

, j ∈ Z, n = 0,1,2, . . . , (1.41)

where λ is subject to the CFL condition stated below, and

h(w,z) := Φ(0)+Φ+(w)+Φ−(z) (1.42)

is the Engquist-Osher flux [44], where we define the functions

Φ+(v) :=
∫ v

0
max

{
0,Φ′(s)

}
ds, Φ−(v) :=

∫ v

0
min
{

0,Φ′(s)
}

ds. (1.43)

We assume that ∆t and ∆x satisfy the CFL stability condition

2λ max
v∈[0,C0]

∣∣Φ′(v)∣∣+2µ max
u∈R

∣∣a(u)
∣∣≤ 1. (1.44)

The scheme for u can be written as

un+1
j+1/2 = un

j+1/2−λ∆+Gn
j + µ∆

2A
(
un

j+1/2
)
, j ∈ Z, n = 0,1,2, . . . , (1.45)

where we define

Gn
j :=

1
∆x

∆+h
(
vn

j−1,v
n
j
)

=
1

∆x

(∫ vn
j

vn
j−1

Φ
′
+(s)ds+

∫ vn
j+1

vn
j

Φ
′
−(s)ds

)
. (1.46)

For the ease of reference, we will refer to (1.41)–(1.43) and (1.42), (1.43), (1.45),
(1.46) as “v-scheme” and “u-scheme”, respectively. Both schemes are, in particular, con-
servative, so the total mass C0 is preserved.

The v-scheme (1.41)–(1.43) is a special case of the scheme studied by Evje and
Karlsen [47] for the more general doubly degenerate parabolic equation vt + Φ(v)x =
B(A(vx))x. While Evje and Karlsen prove that their scheme converges to an entropy so-
lution of that equation, we are here only interested in the property that the scheme is
monotone, therefore TVD and monotonicity preserving, and produces solutions for which
the discrete analogue of vx is uniformly bounded. This makes it possible here to take fi-
nite differences of that scheme to generate the u-scheme for the nonlocal equation (1.1)
satisfied by u = vx. The convergence of the u-scheme will be analyzed separately.
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1.4.2 Uniform estimates on {vn
j} and {un

j+1/2}
We establish the compactness and regularity estimates on the discrete solutions {vn

j}
and {un

j+1/2} in a series of lemmas. In Lemma 1.4.1 we prove that the v-scheme is mono-
tone, and derive from this that the numerical solution {vn

j} satisfies an L1 Lipschitz conti-
nuity in time property (Lemma 1.4.2). This result, in combination with the unboundedness
of A(u) for u→∞, allows us to prove (in Lemma 1.4.3) a uniform L∞ bound for {un

j+1/2}.
Then, in Lemma 1.4.4, we prove that the spatial total variation of A(Un) is uniformly
bounded. With the help of Lemma 1.4.5, which states that the cell that includes v∗ can
move at most one position to the left or the right in one time step, we are then able to
show (Lemma 1.4.6) that the spatial total variation of Un is bounded uniformly with res-
pect to the discretization parameters; the bound depends, however, on the final time T .
Then, in Lemma 1.4.7, we prove that the solution {un

j+1/2} is L1 Hölder continuous in
time. Finally, we establish in Lemmas 1.4.8 and 1.4.9 L2 inequalities related to spatial
and temporal translates of {A(un

j+1/2)}. The series of lemmas then permits us to prove
the main convergence result, Theorem 1.4.1, which states that the numerical solutions
{un

j+1/2} produced by the u-scheme indeed converge to the unique weak solution (under
conditions, and in a sense made precise in the theorem).

While Lemmas 1.4.1 to 1.4.7 are based on the original CFL condition (1.44), we
need to employ a strengthened condition ((1.58), stated in Lemma 1.4.8) to prove Lem-
mas 1.4.8 and 1.4.9, and eventually Theorem 1.4.1. Finally, we mention that the proofs of
Lemmas 1.4.1 to 1.4.3 follow the treatment in [47].

Lemma 1.4.1 Under the CFL condition (1.44), the v-scheme defined by (1.41)–(1.43) is
monotone.

Proof. We rewrite the scheme (1.41) as

vn+1
j = H

(
vn

j−1,v
n
j ,v

n
j+1
)

=: H n
j , j ∈ Z, n = 0,1, . . . ,N−1.

Since a≥ 0, we then have

∂H n
j

∂vn
j±1

=∓λ min
{

0,Φ′
(
vn

j±1
)}

+ µa
(
∆±vn

j/∆x
)
≥ 0,

while the CFL condition (1.44) implies that

∂H n
j

∂vn
j

= 1−λ
(
max

{
0,Φ′

(
vn

j
)
}−min

{
0,Φ′

(
vn

j
)
}
)
−µ∆+a

(
∆−vn

j/∆x
)

= 1−λ
∣∣Φ′(vn

j
)∣∣−µ∆+a

(
∆−vn

j/∆x
)
≥ 0.
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2

As a monotone scheme, the scheme (1.41) is total variation diminishing (TVD) and
monotonicity preserving. Since (1.41) represents an explicit three-point scheme, for a
fixed discretization (∆x,∆t) we will always have

vn
j = 0 for j <−K , vn

j = C0 for j > K (1.47)

for a sufficiently large constant K > 0. Thus, we can state the following corollary.

Corollary 1.4.1 If (1.40) and the CFL condition (1.44) hold, then the numerical solution
{vn

j} produced by the v-scheme (1.41)–(1.43) satisfies

0≤ vn
j ≤C0, vn

j ≤ vn
j+1 for all j ∈ Z, n = 1, . . . ,N. (1.48)

As a direct consequence, the numerical solution values V n = {vn
j} j∈Z satisfy the (trivial)

uniform total variation bound

TV(V n) = ∑
j∈Z

∣∣vn
j+1− vn

j
∣∣= C0.

Lemma 1.4.2 The numerical solution {vn
j} produced by the v-scheme (1.41)–(1.43) sa-

tisfies the L1 Lipschitz continuity in time property, i.e., there exists a constant C1, which is
independent of ∆ := (∆x,∆t), such that

∑
j∈Z

∣∣∣vn+1
j − vn

j

∣∣∣≤C1λ . (1.49)

Proof. For j ∈ Z, the quantity wn+1/2
j := vn+1

j − vn
j satisfies

wn+3/2
j −wn+1/2

j =−λ∆+
[
h
(
vn+1

j−1,v
n+1
j
)
−h
(
vn

j−1,v
n
j
)]

+λ∆+
[
A
(
∆−vn+1

j /∆x
)
−A
(
∆−vn

j/∆x
)]

.
(1.50)

We define

θ(s) :=

{
1/s if s 6= 0,

0 otherwise,

and the quantities

Bn+1/2
j :=

[
h
(
vn

j−1,v
n+1
j
)
−h
(
vn

j−1,v
n
j
)]

θ
(
vn+1

j − vn
j
)
,

Cn+1/2
j :=

[
h
(
vn+1

j ,vn+1
j+1
)
−h
(
vn

j ,v
n+1
j+1
)]

θ
(
vn+1

j − vn
j
)
,

Dn+1/2
j :=

[
A
(
∆+vn+1

j /∆x
)
−A
(
∆+vn

j/∆x
)]

θ
(
∆+vn+1

j −∆+vn
j
)
.

(1.51)
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Since h is a monotonically non-decreasing function of its first argument and a mono-
tonically non-increasing function of its second argument, and A is a monotonically non-
decreasing function, we have

Cn+1/2
j ≥ 0, Dn+1/2

j ≥ 0, Bn+1/2
j ≤ 0. (1.52)

After some manipulations and using (1.48) we obtain from (1.50)

wn+3/2
j = wn+1/2

j
[
1−λCn+1/2

j +λBn+1/2
j −λ

(
Dn+1/2

j−1 +Dn+1/2
j

)]
+wn+1/2

j−1 λ
(
Cn+1/2

j−1 +Dn+1/2
j−1

)
+wn+1/2

j+1 λ
(
−Bn+1/2

j+1 +Dn+1/2
j

)
.

Using the CFL condition we find∣∣wn+3/2
j

∣∣≤ ∣∣wn+1/2
j

∣∣[1−λ
(
Cn+1/2

j −Bn+1/2
j +Dn+1/2

j−1 +Dn+1/2
j

)]
+
∣∣wn+1/2

j−1

∣∣λ(Cn+1/2
j−1 +Dn+1/2

j−1
)
+
∣∣wn+1/2

j+1

∣∣λ(−Bn+1/2
j+1 +Dn+1/2

j
)
.

Summing this over j ∈ Z, using (1.52) and (1.48) we obtain

∑
j∈Z

∣∣wn+3/2
j

∣∣≤ ∑
j∈Z

∣∣wn+1/2
j

∣∣,
which implies that

∑
j∈Z

∣∣wn+3/2
j

∣∣≤ ∑
j∈Z

∣∣w1/2
j

∣∣.
From (1.41) with n = 0 we get

∑
j∈Z

∣∣w1/2
j

∣∣= ∑
j∈Z

∣∣v1
j − v0

j
∣∣= ∑

j∈Z
λ
∣∣∆+
(
h
(
v0

j−1,v
0
j
)
−A
(
∆−v0

j/∆x
))∣∣.

Using (1.6) we arrive at (1.49). 2

Lemma 1.4.3 The numerical solution {vn
j} produced by the v-scheme (1.41)–(1.43) satis-

fies the inequality |∆+vn
j/∆x| ≤C3 with a constant C3, which is independent of ∆. Equiva-

lently, the solution {un
j+1/2} generated by the u-scheme (1.42), (1.43), (1.45), (1.46) sa-

tisfies the uniform L∞ bound∣∣un
j+1/2

∣∣≤C3 for all j ∈ Z, n = 0, . . . ,N. (1.53)
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Proof. It is sufficient to show that A(∆+vn
j/∆x)≤C2 for a constant C2 that is independent

of ∆. Taking into account (1.47) we get∣∣A(∆+vn
j/∆x

)∣∣− ∣∣h(vn
j ,v

n
j+1
)∣∣

≤
∣∣A(∆+vn

j/∆x
)
−h
(
vn

j ,v
n
j+1
)∣∣

=

∣∣∣∣∣Φ(0)+
j

∑
k=−∞

∆−
(
A
(
∆+vn

k/∆x
)
−h
(
vn

k ,v
n
k+1
))∣∣∣∣∣

=

∣∣∣∣∣ j

∑
k=−∞

vn+1
k − vn

k
λ

+Φ(0)

∣∣∣∣∣≤ 1
λ

∑
k∈Z

∣∣vn+1
k − vn

k

∣∣+ ∣∣Φ(0)
∣∣.

Due to Lemma 1.4.2, we see that |A(∆+vn
j/∆x)| ≤C2 if we choose C2 = C1 + |Φ(0)|.

Considering (1.8), it concludes the proof. 2

Lemma 1.4.4 The solution {un
j+1/2} generated by the u-scheme (1.42), (1.43), (1.45),

(1.46) satisfies the following inequality, where the constant C4 is independent of ∆:

TV
(
A(Un)

)
= ∑

j∈Z

∣∣∆+A
(
un

j−1/2
)∣∣≤C4.

Proof. Using the marching formula (1.41) we can write∣∣∆+A
(
un

j−1/2
)∣∣≤ 1

λ

∣∣vn+1
j − vn

j
∣∣+ ∣∣∆+h

(
vn

j−1,v
n
j
)∣∣

≤ 1
λ

∣∣vn+1
j − vn

j
∣∣+ ∣∣[h(vn

j ,v
n
j+1
)
−h
(
vn

j ,v
n
j
)]

θ
(
vn

j+1− vn
j
)∣∣∣∣∆+vn

j
∣∣

+
∣∣[h(vn

j ,v
n
j
)
−h
(
vn

j−1,v
n
j
)]

θ
(
vn

j − vn
j−1
)∣∣∣∣∆−vn

j
∣∣.

Summing over j ∈ Z yields

∑
j∈Z

∣∣∆+A
(
un

j−1/2
)∣∣≤ 1

λ
∑
j∈Z

∣∣vn+1
j − vn

j
∣∣+2‖Φ′‖∞ ∑

j∈Z

∣∣∆+vn
j
∣∣.

The right-hand side is uniformly bounded due to Lemma 1.4.2 and Corollary 1.4.1. 2

Lemma 1.4.4 does, in general, not permit to establish a uniform bound on the spatial
total variation TV(Un) of the solution values {un

j+1/2} generated by the u-scheme.
We now prove that TV(Un) is nevertheless uniformly bounded, but by a bound that

depends on the final time T . Our analysis will appeal to assumption (1.7). From (1.47)
and (1.48) we deduce that if v∗<C0, where we recall that C0 is defined in (1.10), and {vn

j}
is the numerical solution produced by the v-scheme (1.41)–(1.43), then at each time level
there exists a unique index k such that vn

k < v∗ ≤ vn
k+1. The following lemma informs

about the behavior of this index with each time iteration. (In light of the discussion of
Section 1.1.3, the case v∗ < C0 is the most relevant for the phenomenon of aggregation.)
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Lemma 1.4.5 Assume that v∗ < C0, and that the data {vn
j} j∈Z and {vn+1

j } j∈Z have been
produced by the v-scheme (1.41)–(1.43) starting from the monotone data {v0

j} j∈Z un-
der the CFL condition (1.44). Let k, k̄ ∈ Z be the uniquely defined indices that satisfy
vn

k < v∗ ≤ vn
k+1 and vn+1

k̄ < v∗ ≤ vn+1
k̄+1, respectively. Then k̄ ∈ {k−1,k,k +1}.

Proof. Since vn
k < v∗ ≤ vn

k+1 we analyze two cases: vn
k < v∗ < vn

k+1 and vn
k < v∗ = vn

k+1. In
the first, the monotonicity of the v-scheme and (1.48) imply that

vn+1
k−1 ≤ vn

k < v∗ < vn
k+1 ≤ vn+1

k+2,

such that either vn+1
k−1 < v∗ ≤ vn+1

k , or vn+1
k < v∗ ≤ vn+1

k+1, or vn+1
k+1 < v∗ < vn+1

k+2, which means
that k̄ = {k−1,k,k +1}. In the second, we find that

vn+1
k−1 ≤ vn

k < v∗ = vn
k+1 ≤ vn+1

k+2,

so either vn+1
k−1 < v∗ = vn+1

k , or vn+1
k < v∗ ≤ vn+1

k+1, or vn+1
k+1 < v∗ ≤ vn+1

k+2. We conclude the
proof by noting that vn+1

k+2 < v∗ is impossible due to the monotonicity of the v-scheme and
(1.48). 2

The next lemma states the announced bound on TV(Un).

Lemma 1.4.6 Assume that the CFL condition (1.44) is satisfied. Then there exist con-
stants C5 and C6, which are independent of ∆, such that the solution values Un = {un

j+1/2} j∈Z
satisfy the uniform total variation bound

TV(Un) = ∑
j∈Z

∣∣un
j+1/2−un

j−1/2

∣∣≤ (C5 +TV(U0)
)

exp(C6T ), n = 1, . . . ,N. (1.54)

Proof. From (1.45) we obtain

∆+un+1
j−1/2 = ∆+un

j−1/2−µ∆+∆
2h
(
vn

j−1,v
n
j
)
+ µ∆+∆

2A
(
un

j−1/2
)
.

Let us assume that v∗ < C0, so that there exists an index k such that vn
k < v∗ ≤ vn

k+1 (cf.
Lemma 1.4.5), and let us split Z into the subsets

A := A n := { j ∈ Z | j ≤ k−2},
B := Bn := { j ∈ Z |k−2 < j ≤ k +2},
C := C n := { j ∈ Z |k +2 < j}.

(1.55)

(In case that v∗ ≥C0, the following arguments for j ∈A apply to all j ∈ Z, i.e. we may
choose A = Z, and formally B = C = ∅.)

Let wn
j := ∆+un

j−1/2 and an
j := ∆+A(un

j−1/2)θ(∆+un
j−1/2). For j ∈A , we obtain

wn+1
j = wn

j −µ∆−∆
2
Φ
(
vn

j)+ µ∆
2(an

jw
n
j
)
. (1.56)
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Using a Taylor expansion about vn
j we find that there exist numbers αn

j ∈ [vn
j ,v

n
j+1] and

β n
j ∈ [vn

j−1,v
n
j ] such that

∆
2
Φ
(
vn

j
)

= Φ
′(vn

j)w
n
j∆x+

1
2

Φ
′′(

α
n
j
)(

∆+vn
j
)2 +

1
2

Φ
′′(

β
n
j
)(

∆−vn
j
)2

.

Substituting this into (1.56) we obtain

wn+1
j = wn

j −λ∆−
(
Φ
′(vn

j
)
wn

j
)
+ µ∆

2(an
jw

n
j
)
− µ

2
∆−
(
Φ
′′(

α
n
j
)(

∆+vn
j
)2)

− µ

2
∆−
(
Φ
′′(

β
n
j
)(

∆−vn
j
)2)

= wn
j −λ∆−

(
Φ
′(vn

j
)
wn

j
)
+ µ∆

2(an
jw

n
j
)

− µ

2

(
∆−Φ

′′(
α

n
j
)(

∆+vn
j
)2 +Φ

′′(
α

n
j−1
)(

vn
j+1− vn

j−1
)
wn

j∆x

+∆−Φ
′′(

β
n
j
)(

∆−vn
j
)2 +Φ

′′(
β

n
j−1
)(

vn
j − vn

j−2
)
wn

j−1∆x
)

= wn
j
[
1−λΦ

′(vn
j
)
−2µan

j
]
+wn

j−1
[
µan

j−1 +λΦ
′(vn

j−1
)]

+ µwn
j+1an

j+1

+O(∆t)
(
wn

j−1 +wn
j +∆+vn

j +∆−vn
j
)
.

In an analogous way, we find for j ∈ C

wn+1
j = wn

j
[
1+λΦ

′(vn
j
)
−2µan

j
]
+wn

j+1
[
µan

j+1−λΦ
′(vn

j+1
)]

+ µwn
j−1an

j−1

+O(∆t)
(
wn

j +wn
j+1 +∆+vn

j +∆−vn
j
)
.

Now we deal with j ∈B. For j = k−1, using that v∗ is a maximum of Φ and following
analogous steps as before, we get

wn+1
k−1 = wn

k−1−µ
(
Φ(vn

k+1)−Φ(v∗)+∆−∆
2
Φ
(
vn

k−1
))

+ µ∆
2(an

k−1wn
k−1
)

= wn
k−1−µ

(
Φ
′(ξ )

(
vn

k+1− v∗
)
+∆−∆

2
Φ
(
vn

k−1
))

+ µ∆
2(an

k−1wn
k−1
)

= wn
k−1−µ

((
Φ
′(ξ )−Φ

′(v∗)
)(

vn
k+1− v∗

)
+∆−∆

2
Φ
(
vn

k−1
))

+ µ∆
2(an

k−1wn
k−1
)

= wn
k−1
[
1−λΦ

′(vn
k−1
)
−2µan

k−1
]
+wn

k−2
[
µan

k−2 +λΦ
′(vn

k−2
)]

+ µwn
kan

k

+O(∆t)
(
1+wn

k−2 +wn
k−1 +∆+vn

k−1 +∆−vn
k−1
)
.
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For j = k, using that Φ′(v∗) = 0 we compute

wn+1
k = wn

k−µ
[
Φ
(
vn

k+2
)
−2Φ(vn

k+1)+Φ(vn
k)−

{
Φ(vn

k)−2Φ(vn
k−1)+Φ

(
vn

k−2
)}]

−µ
[
Φ(vn

k−1)−Φ(vn
k)+2

(
Φ(v∗)−Φ(vn

k)
)
+Φ(v∗)−Φ(vn

k+1)
]

+ µ∆
2(an

kwn
k
)

= wn
k−µ

[
∆+∆

2
Φ(vn

k)+∆−∆
2
Φ(vn

k)
]
+ µ∆

2(an
kwn

k
)

−µ
[
Φ
(
vn

k−1
)
−Φ(vn

k)+2
(
Φ(v∗)−Φ(vn

k)
)
+Φ(v∗)−Φ

(
vn

k+1
)]

= wn
k
(
1−2µan

k
)
+wn

k−1
[
µan

k−1 +λΦ
′(vn

k−1
)]

+wn
k+1
[
µan

k+1−λΦ
′(vn

k+1
)]

+O(∆t)
(
1+wn

k−1 +wn
k +wn

k+1 +∆+vn
k +∆−vn

k
)
.

For j = k+1 and j = k+2, the following steps are analogous to the previous cases. Using
that Φ′(v∗) = 0 we obtain

wn+1
k+1 = wn

k+1−µ
[
∆+∆

2
Φ(vn

k+1)+3(Φ(vn
k)−Φ(v∗))+Φ(vn

k)−Φ(vn
k−1)

]
+ µ∆

2(an
k+1wn

k+1
)

= wn
k+1
[
1+λΦ

′(vn
k+1
)
−2µan

k+1
]
+wn

kµan
k +wn

k+2
[
µan

k+2−λΦ
′(vn

k+2
)]

+O(∆t)
(
1+wn

k+1 +wn
k+2 +∆+vn

k+1 +∆−vn
k+1
)
,

wn+1
k+2 = wn

k+2−µ
[
∆+∆

2
Φ(vn

k+2)+Φ(vn
k)−Φ(v∗)

]
+ µ∆

2(an
k+2wn

k+2
)

= wn
k+2
[
1+λΦ

′(vn
k+2
)
−2µan

k+2
]
+wn

k+3
[
µan

k+3−λΦ
′(vn

k+3
)]

+ µwn
k+1an

k+1

+O(∆t)
(
1+wn

k+2 +wn
k+3 +∆+vn

k+2 +∆−vn
k+2
)
.

Finally, summing over j we find that there exist constants C6 and C7 such that

∑
j∈Z

∣∣wn+1
j

∣∣≤∑
j∈Z

∣∣wn
j
∣∣(1+C6∆t)+C7∆t,

which implies that

∑
j∈Z

∣∣∣wn+1
j

∣∣∣≤∑
j∈Z

∣∣w0
j
∣∣exp(C6T )+

C7

C6
exp(C6T ),

which proves (1.54). 2

The next lemma states L1 Hölder continuity with respect to the variable t of the solu-
tion generated by (1.45).

Lemma 1.4.7 The solution {un
j+1/2} generated by the u-scheme (1.42), (1.43), (1.45),

(1.46) satisfies the following inequality, where the constant C8 is independent of ∆:

∑
j∈Z

∣∣um
j+1/2−un

j+1/2

∣∣∆x≤C8
√

∆t(m−n) for m > n, m,n ∈ N0. (1.57)
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Proof. We first establish weak Lipschitz continuity in the time variable. To this end, let
φ(x) be a test function and φ j := φ( j∆x). Multiplying equation (1.45) by φ j∆x, summing
over n and j and applying a summation by parts, we get∣∣∣∣∣∆x ∑

j∈Z
φ j
(
un+1

j+1/2−un
j+1/2

)∣∣∣∣∣≤
∣∣∣∣∣∆t ∑

j∈Z
Gn

j
(
φ j−φ j−1

)∣∣∣∣∣
+

∣∣∣∣∣λ ∑
j∈Z

(
φ j−φ j−1

)(
A
(
un

j+1/2
)
−A
(
un

j−1/2
))∣∣∣∣∣.

Using Lemma 1.4.4 and the fact that φ is smooth we obtain∣∣∣∣∣∆x ∑
j∈Z

φ j
(
un+1

j+1/2−un
j+1/2

)∣∣∣∣∣≤C‖φ ′‖∆t,

where C is independent of ∆ and φ . Consequently, for m > n the following weak continuity
result holds: ∣∣∣∣∣∆x ∑

j∈Z
φ j
(
um

j+1/2−un
j+1/2

)∣∣∣∣∣≤C‖φ ′‖∆t(m−n).

Since E j := um
j+1/2−un

j+1/2 has bounded variation on R, we arrive at the inequality (1.57)
by proceeding as in [46, Lemma 3.6]. 2

Now, following the treatment in [61] we prove an L2 estimate for the discrete version
of A(u)x.

Lemma 1.4.8 Assume that the following strengthened CFL condition is satisfied for a
constant ε > 0:

CFLε := 2λ max
u∈R

∣∣Φ′(u)
∣∣+4µ max

u∈R
a(u)≤ 1− ε. (1.58)

Then the solution {un
j+1/2} generated by the u-scheme (1.45), (1.46) satisfies the following

inequality, where the constant C9 depends on ε , but is independent of ∆:

N

∑
n=1

∑
j∈Z

(
∆−A(un

j+1/2)

∆x

)2

∆t∆x≤C9. (1.59)

Proof. Multiplying (1.45), by un
j+1/2∆x, summing the result over n = 0, . . . ,N−1 and j ∈
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Z, and using summations by parts we get

λ

N−1

∑
n=0

∑
j∈Z

(
∆−A

(
un

j+1/2
))(

∆−un
j+1/2

)
= ∆t

N−1

∑
n=0

∑
j∈Z

Gn
j
(
∆−un

j+1/2
)
− ∆x

2

N−1

∑
n=0

∑
j∈Z

((
un+1

j+1/2

)2−
(
un

j+1/2
)2)

+
∆x
2

N−1

∑
n=0

∑
j∈Z

(
un+1

j+1/2−un
j+1/2

)2
,

where we used that(
un+1

j+1/2−un
j+1/2

)
un

j+1/2 =
1
2

[(
un+1

j+1/2

)2−
(
un

j+1/2
)2−

(
un+1

j+1/2−un
j+1/2

)2
]
.

In light of Lemma 1.4.3, we can also write(
∆−A

(
un

j+1/2
))(

∆−un
j+1/2

)
≥ 1

a∗
(
∆−A

(
un

j+1/2
))2

, a∗ := max
u

a(u),

since a(u)≥ 0. Using this observation, we find that

λ

a∗
N−1

∑
n=0

∑
j∈Z

(
∆−A

(
un

j+1/2
))2 ≤ ∆t

N−1

∑
n=0

∑
j∈Z

Gn
j
(
∆−un

j+1/2
)
+

∆x
2 ∑

j∈Z

(
u0

j+1/2
)2

+
∆x
2

N−1

∑
n=0

∑
j∈Z

(
un+1

j+1/2−un
j+1/2

)2
.

(1.60)

On the other hand, from (1.45) and the inequality (a+b)2 ≤ 2a2 +2b2 we obtain

1
2
(
un+1

j+1/2−un
j+1/2

)2 ≤ λ
2(

∆+Gn
j
)2 +2µ

2
((

∆+A
(
un

j+1/2
))2 +

(
∆−A

(
un

j+1/2
))2
)
.

Multiplying the last inequality by ∆x and summing the result over n and j yields

∆x
2

N−1

∑
n=0

∑
j∈Z

(
un+1

j+1/2−un
j+1/2

)2 ≤ ∆t2

∆x

N−1

∑
n=0

∑
j∈Z

(
∆+Gn

j
)2

+4µ
2
∆x

N−1

∑
n=0

∑
j∈Z

(
∆−A

(
un

j+1/2
))2

.

The new CFL condition (1.58) now implies that

4µ
2
∆x = 4µ

∆t
∆x
≤ ∆t(1− ε)

∆xa∗
,
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and therefore

∆x
2

N−1

∑
n=0

∑
j∈Z

(
un+1

j+1/2−un
j+1/2

)2

≤ ∆t2

∆x

N−1

∑
n=0

∑
j∈Z

(
∆+Gn

j
)2 +

∆t(1− ε)
∆xa∗

N−1

∑
n=0

∑
j∈Z

(
∆−A

(
un

j+1/2
))2

.

(1.61)

Summing (1.60) and (1.61) yields

ελ

a∗
N−1

∑
n=0

∑
j∈Z

(
∆−A

(
un

j+1/2
))2

≤ ∆t
N−1

∑
n=0

∑
j∈Z

Gn
j
(
∆−un

j+1/2
)
+

∆x
2 ∑

j∈Z

(
u0

j+1/2
)2 +

∆t2

∆x

N−1

∑
n=0

∑
j∈Z

(
∆−Gn

j+1
)2 ≤C,

where we used Lemma 1.4.6, the bound on Gn
j and the fact that ∆t = O(∆x2). 2

With the help of Lemma 1.4.8 we can prove

Lemma 1.4.9 Under the assumptions of Lemma 1.4.8 there exists a constant C10 which
is independent of ∆ such that

∑
j∈Z

∣∣A(um
j+1/2

)
−A
(
un

j+1/2
)∣∣2∆x≤C10(m−n)∆t for m > n. (1.62)

Proof. Using Lemma 1.4.3, the fact that A′(u)≥ 0 and (1.45) we get

∑
j∈Z

(
A
(
um

j+1/2
)
−A
(
un

j+1/2
))2

∆x

≤ a∗ ∑
j∈Z

(
A
(
um

j+1/2
)
−A
(
un

j+1/2
))(

um
j+1/2−un

j+1/2
)
∆x =: A +B,

(1.63)

where we define

A :=−∆t a∗ ∑
j∈Z

(
A
(
um

j+1/2
)
−A
(
un

j+1/2
))m−1

∑
l=n

∆+Gl
j,

B := λ a∗ ∑
j∈Z

(
A
(
um

j+1/2
)
−A
(
un

j+1/2
))m−1

∑
l=n

∆
2A
(
ul

j+1/2
)
.

Summing by parts we get

A = ∆t a∗ ∑
j∈Z

m−1

∑
l=n

Gl
j
(
∆−A

(
um

j+1/2
)
−∆−A

(
un

j+1/2
))

.
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We can write

A = ∆t∆xa∗ ∑
j∈Z

m−1

∑
l=n

Gl
j

(
∆−A

(
um

j+1/2

)
∆x

−
∆−A

(
un

j+1/2

)
∆x

)
.

Using that ab≤ a2 +b2, we find

A ≤ ∆t
2

a∗ ∑
j∈Z

m−1

∑
l=n

∣∣∣Gl
j

∣∣∣
(∆−A(um

j+1/2)

∆x

)2

+

(
∆−A(un

j+1/2)

∆x

)2
∆x

+∆ta∗ ∑
j∈Z

m−1

∑
l=n

∣∣∣Gl
j

∣∣∣∆x = O
(
(m−n)∆t

)
,

where we have used Lemma 1.4.8 and the bound on Gn
j .

Proceeding in the same way for B yields

B =−λa∗ ∑
j∈Z

{[
A
(
um

j+1/2
)
−A
(
un

j+1/2
)
−
(
A
(
um

j−1/2
)
−A
(
un

j−1/2
))]

×
m−1

∑
l=n

∆−A
(
ul

j+1/2
)}

=−λa∗ ∑
j∈Z

{(
∆−A

(
um

j+1/2
)
−∆−A

(
un

j+1/2
))m−1

∑
l=n

∆−A
(
ul

j+1/2
)}

=−λa∗ ∑
j∈Z

m−1

∑
l=n

(
∆−A

(
um

j+1/2
)
·∆−A

(
ul

j+1/2
)
−∆−A

(
un

j+1/2
)
·∆−A

(
ul

j+1/2
))

≤ 2(m−n)∆t a∗ ∑
j∈Z

(
∆−A(un

j+1/2)

∆x

)2

∆x = O
(
(m−n)∆t

)
.

Inserting into (1.63) that A ,B = O((m−n)∆t) concludes the proof. 2

Let us now denote by u∆ the piecewise constant function

u∆(x, t) :=
N−1

∑
n=0

∑
j∈Z

χ jn(x, t)un
j+1/2,

where χ jn denotes the characteristic function of I j× [tn, tn+1), and let us denote by v∆ its
primitive. From the L∞ bound (Lemma 1.4.3), the uniform bound on the total variation in
space (Lemma 1.4.6) and the L1 Hölder continuity in time result (Lemma 1.4.7) we infer
that there is a constant C such that

‖u∆‖L∞(ΠT ) +‖u∆‖L1(ΠT ) ≤C;
∣∣u∆(·, t)

∣∣
BV (R) ≤C for all t ∈ (0,T ] (1.64)



1.4 Convergence analysis of numerical schemes 29

uniformly as ∆x,∆t ↓ 0, while Lemmas 1.4.8 and 1.4.9 imply (cf. [48, 55]) that there are
constants C11 and C12 independent of ∆ such that∥∥∥A(u∆(·+ y, ·))−A(u∆(·, ·))

∥∥∥
L2(ΠT )

≤C11
√
|y|(|y|+∆x),∥∥∥A(u∆(·, ·+ τ))−A(u∆(·, ·))

∥∥∥
L2(ΠT−τ )

≤C12
√

τ.
(1.65)

1.4.3 Convergence to the weak solution

Theorem 1.4.1 Assume that ∆x and ∆t satisfy the CFLε condition (1.58), and that u0

is compactly supported and satisfies (1.6). Then the piecewise constant solutions u∆ ge-
nerated by the u-scheme (1.42), (1.43), (1.45), (1.46) converge in the strong topology of
L1(ΠT ) to the unique weak solution of (1.1), (1.2) (in the sense of Definition 1.2.1).

Proof. Since u∆ ∈ L∞(ΠT )∩L∞(0,T ;BV (R))∩C1/2(0,T ;L1(R)), we deduce from (1.64)
that there exists a sequence {∆i}i∈N with ∆i ↓ 0 for i→ ∞ and a function u ∈ L∞(ΠT )∩
L1(ΠT )∩ L∞(0,T ;BV (R)) such that u∆→ u a.e. on ΠT . Moreover, in light of (1.65)
we have A(u∆)→ A(u) strongly on L2

loc(ΠT ), and we have that A(u) ∈ L2(0,T ;H1(R)).
Lemma 1.4.7 ensures that u satisfies the initial condition (2.26). It remains to prove
that u satisfies the weak formulation (1.2.1). To this end, we apply a standard Lax-
Wendroff-type argument. Now, multiplying (1.46) by

∫
I j

ϕ(x, tn)dx, where I j := [x j,x j+1]
and ϕ is a suitable smooth test function, and summing the results over j ∈ Z, we obtain
W1 +W2 +W3 = 0, where we define

W1 :=
N−1

∑
n=0

∑
j∈Z

(
un+1

j+1/2−un
j+1/2

)∫
I j

ϕ(x, tn)dx,

W2 :=λ

N−1

∑
n=0

∑
j∈Z

∆+Gn
j

∫
I j

ϕ(x, tn)dx,

W3 :=−µ

N−1

∑
n=0

∑
j∈Z

∆
2A(un

j+1/2)
∫

I j

ϕ(x, tn)dx.

By standard summation by parts and using that ϕ has compact support, we get

W1 =−∆t
N−1

∑
n=0

∑
j∈Z

un+1
j+1/2

∫
I j

ϕ(x, tn+1)−ϕ(x, tn)
∆t

dx,

W2 :=−∆t
N−1

∑
n=0

∑
j∈Z

Gn
j+1

∫
I j

ϕ(x+∆x, tn)−ϕ(x, tn)
∆x

dx,

W3 :=−∆t
N−1

∑
n=0

∑
j∈Z

A(un
j+1/2)

∫
I j

ϕ(x+∆x, tn)−2ϕ(x, tn)+ϕ(x−∆x, tn)
∆x2 dx.
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A direct application of the convergence of u∆ gives us the desired result for W1 and W3.
It remains to analyze W2. Since for each fixed n ∈ {0, . . . ,N− 1}, the data {vn

j} j∈Z are
monotone, there exists an index k such that vn

k < v∗ ≤ vn
k+1. Thus, if A , B and C are

the sets defined in (1.55), we may write W2 = W2,A +W2,B +W2,C , where the subindex
denotes the summation over j from the sets A , B and C , respectively. For j ∈ A we
have

Gn
j+1 =

∆+Φ(vn
j)

∆x
=

∆+Φ(vn
j)

∆+vn
j

un
j+1/2 if un

j+1/2 6= 0 and Gn
j+1 = 0 otherwise,

since Φ′ > 0 for the values of vn
j with j ∈A . For j ∈ C we have

Gn
j+1 =

∆+Φ(vn
j)

∆+vn
j

un
j+1/2 +

∆2Φ(vn
j+1)

∆x
if un

j+1/2 6= 0 and Gn
j+1 = 0 otherwise.

We can write

∆
2
Φ
(
vn

j+1
)

= Φ
′(vn

j+1
)
∆+un

j+1/2∆x

+
1
2

(
Φ
′′(

ξ
n
j+3/2

)(
∆+vn

j+1
)2 +Φ

′′(
ξ j+1/2

)(
∆+vn

j
))

,

where ξ n
j+1/2 ∈ [vn

j ,v
n
j+1]. Using Lemmas 1.4.3 and 1.4.6 we get

W2,C =−∆t
N−1

∑
n=0

∑
j∈C

∆+Φ(vn
j)

∆+vn
j

un
j+1/2

∫
I j

ϕ(x+∆x, tn)−ϕ(x, tn)
∆x

dx+O(∆x).

The case j ∈B can be treated in the same way as j ∈ C using that Φ′(v∗) = 0 and that B

is a finite index set. Taking the limit ∆ ↓ 0 we finally get the result. 2

1.4.4 Finite Speed of Propagation

In this subsection we prove that the solution u of (1.1)-(1.2) presents finite speed of
propagation. To get this result we need the additional assumptions

Φ
′′ < 0; a(u) = 0 for u≤ uc, uc ≥ 0; a(u) > 0 for u > uc. (1.66)

From an intuitive point of view, for an initial “mass distribution”, the left portion (for
which v < v∗) of the total “population” (mass) moves to the right and the right portion
moves to the left. One then expects that one “herd” of bounded spatial extension forms
which moves to the left, right, or is stationary depending on whether the initially left-
moving or right-moving individuals outnumber, or are equal to, those moving initially in
opposite direction. This is indeed the case, as will be shown in the following characteri-
zation of the process of aggregation-dispersion by a travelling wave analysis.
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Lemma 1.4.10 Assume that (1.66) holds, and let u(x, t) be a solution of (1.1), (1.2). Then
there exist constants α and β such that for t ≤ T , u(x, t) = 0 outside of α ≤ x− st ≤ β ,
where

s = σ(0,C0) :=
Φ(C0)−Φ(0)

C0
.

Proof. We consider the following regularized equation

∂tvε +∂xΦ(vε) = ∂xAε(∂xvε), x ∈ R, t ∈ (0,T ], (1.67)

vε(−∞) = 0 and vε(+∞) = C0 (1.68)

(see (1.10)), where Aε(u) = A(u) + εu. We seek a travelling wave solution vε(x, t) =
wε(x− st) of (1.67), (1.68). Hence, wε(ξ ) (with ξ := x− st) is a solution of the following
problem, where ′ = d/dξ :

−sw′ε +Φ(wε)′ =
(
Aε(w′ε)

)′
, (1.69)

wε(−∞) = 0 and wε(+∞) = C0. (1.70)

Integrating (1.69) we find

−swε +Φ(wε)−Aε(w′ε)≡ w(= const.).

Applying (1.70) we get w = Φ(0) and s = σ(0,C0). By using Φ′′ < 0 we observe that

Aε(w′ε) = Φ(wε)− [Φ(0)+σ(0,C0)wε ]≥ 0 for 0≤ wε ≤C0.

Since Aε(·) is strictly increasing we can write

w′ε = A−1
ε

(
Φ(wε)−

[
Φ(0)+σ(0,C0)wε

])
≥ 0.

Hence, wε is determined by the relation

ξ2−ξ1 =
∫ wε (ξ2)

wε (ξ1)

dw̃ε

A−1
ε (γ(w̃ε))

, for ξ1,ξ2 ∈ R,

where
γ(w̃ε) := Φ(w̃ε)− [Φ(0)+σ(0,C0)w̃ε ].

Thus we have constructed a solution wε for the problem (1.69), (1.70). The above integral
gives a well-defined function wε since A−1

ε (γ(wε)) > 0 for wε ∈ (0,C0) and w′ε > 0.
Now, we study the limit ε ↓ 0. We note that

Aε : [0,uc)→ [0,εuc)⇒ A−1
ε : [0,εuc)→ [0,uc) for wε < uc,

Aε : [uc,∞)→ [εuc,∞)⇒ A−1
ε : [εuc,∞)→ [uc,∞) for uc ≤ wε .
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Let ξ1,ξ2 be fixed. We may assume that εuc < wε(ξ1) < wε(ξ2) (otherwise we could
choose a smaller ε using that w′ε > 0 in (0,C0)). Thus∫ wε (ξ2)

wε (ξ1)

dw̃ε

A−1
ε (γ(w̃ε))

≤ C0

uc
. (1.71)

Moreover, A−1
ε

ε→0−→A−1
0 pointwise, where A−1

0 : [0,+∞)→ [uc,+∞) is the inverse function
of A restricted to [uc,+∞). Using the Lebesgue theorem we obtain passing to the limit
ε ↓ 0

ξ2−ξ1 =
∫ w(ξ2)

w(ξ1)

dw̃
A−1

0 (γ(w̃))
, forξ1,ξ2 ∈ R. (1.72)

Since the right-hand side of (1.72) is bounded, there exist two constants α y β such
that w(ξ ) = 0 for ξ ≤ α and w(ξ ) = C0 for ξ ≥ β and w′(ξ ) > 0 for α < ξ < β . Let
W (ξ ) := w′(ξ ), which is the desired function and satisfies W (ξ ) = 0 outside (α,β ) and
W (ξ ) > 0 on (α,β ).

Let u be the solution of (1.1), (1.2), and let v(x, t) and v0(x) be defined by (1.3) and
(1.5), respectively. Since u0 is assumed to have compact support, there exist constants
α1 and β1 such that v0(x) = 0 for x ≤ α1 and v0(x) = C0 for x ≥ β1. On the other hand,
we have that v is a solution of (1.4), (1.5). From the above discussion we can construct
two travelling wave solutions w1(x− st) and w2(x− st) of (1.4), (1.5) with the same
speed s = σ(0,C0) which satisfy w1(x)≤ v0(x)≤ w2(x), w2(x− st) = 0 for x− st ≤ α,

and w1(x− st) = C0 for x− st ≥ β , where we used that (1.1) and (1.4) are invariant under
translation of x. We also know that the solution v of (1.4), (1.5) is monotone (as a function
of x, for each fixed t), and we find

w1(x− st)≤ v(x, t)≤ w2(x− st) on ΠT .

Therefore v(x, t) = 0 if x− st ≤ α and v(x, t) = C0 if x− st ≥ β , which implies u(x, t) = 0
outside α ≤ x− st ≤ β for t ≤ T . 2

1.5 Numerical examples

The examples presented here illustrate the qualitative behavior of weak solutions of
the initial value problem (1.1), (1.2) and the convergence properties of the numerical
scheme. For the first purpose, we select a relatively fine discretization and present the
corresponding numerical solutions as three-dimensional sequences of profiles at selected
times or contour plots that should almost be free of numerical artefacts, while the conver-
gence properties of the scheme are demonstrated by error histories in some examples. For
all numerical examples we specify ∆x and use µ = ∆t/∆x2 = 0.1, i.e., ∆t = 0.1∆x2.
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1.5.1 Example 1

In Example 1 we calculate the numerical solution of (1.1), (1.2) for Φ(v) =−(1−v)2

and the degenerating integrated diffusion coefficient (1.12) with uc = 10 and a0 = 0.1.
The initial datum is given by

u0(x) =

{
5 for 0.1≤ x≤ 0.2, 7 for 0.8≤ x≤ 0.9,

8 for 0.6≤ x≤ 0.7, 0 otherwise.

Note that C0 = 2 in Example 1, where C0 is defined in (1.10), and v∗ = C0/2 = 1, so
that the function Φ corresponds to (1.11), where the constant of integration is −1, and
that u0 is chosen such that (1.6) is satisfied. Moreover, in our case Φ′′(v) = −2 < 0, and
Φ(0) = Φ(C0) = −1. Lemma 1.4.10 shows that under these conditions, and for the inte-
grated diffusion coefficient given by (1.19), the solution converges in time to a compactly
supported, stationary travelling-wave solution, which represents the aggregated group of
individuals and is defined by the time-independent version of (1.1).

In Figure 1.1 we show the numerical approximations for v and u for 0 ≤ t ≤ 0.5
and for ∆x = 0.001. As predicted, for each fixed time the data {vn

j} are monotonically
increasing, and the numerical solution for u indeed displays the aggregation phenomenon,
and terminates in a stationary profile.

In Table 1.1 we show the error at t1 = 0.1 and t2 = 0.25 in the L1 norm for u (denoted as
eti

u, i = 1,2) and in the L∞ norm for v (denoted as eti
v , i = 1,2), where we take as a reference

the solution calculated with ∆x = 0.0002. We find an experimental rate of convergence in
both cases greater than one. For small ∆x this behavior is possibly related to the proximity
of the reference solution. One should expect a real order of convergence at most one since
the v-scheme is monotone. Similar convergence rates have been observed for the other
examples.

In Figure 1.2 we compare the numerical approximations for v and a for different mesh
sizes at the simulated time t = 0.25.

1.5.2 Example 2

This example represents a slight modification of Example 1, namely we choose Φ

and A as in Example 1, but we consider a smooth initial datum u0 given by u0(x) =
2−2cos(4πx) for x∈ [0,1] and u0(x) = 0 otherwise. In Figure 1.3 we show the numerical
approximation of u for 0≤ t ≤ 0.5 and ∆x = 0.001. We observe that strong discontinuities
form after finite time from the smooth initial datum. This behavior contrasts with the
regularity of other related problems [17, 76], where discontinuities can occur only if they
are present in the initial data.
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∆x et1
v

conv.
rate et2

v
conv.
rate et1

u
conv.
rate et2

u
conv.
rate

0.020 0.239 - 0.317 - 0.915 - 0.695 -
0.010 0.133 0.845 0.146 1.122 0.513 0.834 0.442 0.655
0.005 0.061 1.135 0.069 1.070 0.246 1.062 0.200 1.144
0.004 0.048 1.018 0.054 1.090 0.181 1.369 0.164 0.891
0.002 0.021 1.168 0.024 1.161 0.082 1.150 0.073 1.163
0.001 0.008 1.360 0.009 1.399 0.036 1.167 0.032 1.200

Table 1.1: Example 1: Numerical error at t1 = 0.1 and t2 = 0.25.

1.5.3 Example 3

We now choose Φ and u0 as in Example 1, but define A by

A(u) =


0.05u for 0≤ u≤ 5,

0.25 for 5 < u≤ 10,

0.05u−0.25 for u > 10.

Figure 1.4 shows the results for ∆x = 0.001 and t ∈ [0,0.5]. Again, a stationary single-
peak solution is forming, including a jump between u = 5 and u = 10, in agreement with
the flatness of A(u) for u ∈ [5,10].

1.5.4 Example 4

We now utilize the function Φ(v) =−0.5(cos(vπ)+1) combined with the degenera-
ting integrated diffusion coefficient (1.12) with uc = 10 and a0 = 0.1 from Examples 1
and 2 and the initial datum

u0(x) =


10 for x ∈ [0.05,0.15], 9 for x ∈ [0.6,0.7],

14 for x ∈ [0.3,0.5], 8 for x ∈ [0.9,1],

0 otherwise.

The result is shown in Figure 1.5 for ∆x = 0.001. We observe the formation of three
groups, but the third moves to the right “looking for more” mass since it is not a full state,
in the sense of Lemma 1.4.10 for the formation of stationary travelling waves. In addition
to Figure 1.5 we show in Figure 1.6 a contour plot of the numerical approximation of v
for this example. The contour lines of v correspond to trajectories of “individuals”. This
example has been included to illustrate the solution behaviour when Φ has several extrema
and inflection points.
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1.5.5 Example 5

Here we calculate the numerical approximation of u for A as in Examples 1, 2 and 4,
but with Φ and u0 given by the respective equations

Φ(v) =

{
−0.5(cos(vπ)+1) for 0≤ v≤ 2,

(v−2)2−1 for v > 2,

u0(x) =

{
14 for x ∈ [0.15,0.3], 18 for x ∈ [0.8,0.95],

17 for x ∈ [0.6,0.7], 0 otherwise.

In Figure 1.7 we show the result for ∆x = 0.001. We see that the spare mass (i.e.
the mass that can not get in the first group) “dilutes” to the right. This dissipation of
the right-moving mass is driven by the choice of Φ, and not by that of A. Clearly, as in
the previous example, Φ does not satisfy the assumption stated in (1.7). This example
illustrates that solutions of (1.1), (1.2) will not always evolve into a finite number of
stationary or moving, aggregated “herds”.
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Figure 1.1: Example 1: Numerical approximation of v (top) and corresponding approxi-
mation of u (bottom), obtained via (1.38) with ∆x = 0.001.
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Figure 1.2: Example 1: Numerical approximation of v (top) and u (bottom) for several
mesh sizes at t = 0.25.
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Figure 1.3: Example 2: Numerical approximation of u, obtained via (1.38) with ∆x =
0.001.
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Figure 1.4: Example 3: Numerical approximation of u, obtained via (1.38) for ∆x = 0.001.



1.5 Numerical examples 39

0
0.2

0.4
0.6

0.8
1

1.2 0

0.1

0.2

0.3

0.4

0.5

0

5

10

15

20

t

x

u

Figure 1.5: Example 4: Numerical approximation of u, obtained via (1.38) for ∆x = 0.001.
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Figure 1.6: Example 4: Contour lines of the numerical approximation of v for ∆x = 0.001.
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Figure 1.7: Example 5: Numerical approximation of u, obtained via (1.38) for ∆x = 0.001.



Chapter 2

On nonlocal conservation laws
modeling sedimentation

The well-known kinematic sedimentation model by Kynch states that the settling ve-
locity of small equal-sized particles in a viscous fluid is a function of the local solids vo-
lume fraction. This assumption converts the one-dimensional solids continuity equation
into a scalar, nonlinear conservation law with a non-convex and local flux. The present
work deals with a modification of this model, and is based on the assumption that either
the solids phase velocity or the solid-fluid relative velocity at a given position and time
depends on the concentration in a neighborhood via convolution with a symmetric kernel
function with finite support. This assumption is justified by theoretical arguments arising
from stochastic sedimentation models, and leads to a conservation law with a nonlocal
flux. The alternatives of velocities for which the nonlocality assumption can be stated
lead to different algebraic expressions for the factor that multiplies the nonlocal flux term.
In all cases, solutions are in general discontinuous and need to be defined as entropy
solutions. An entropy solution concept is introduced, jump conditions are derived and
uniqueness of entropy solutions in shown. Existence of entropy solutions is established
by proving convergence of a difference-quadrature scheme. It turns out that only for the
assumption of nonlocality for the relative velocity it is ensured that solutions of the nonlo-
cal equation assume physically relevant solution values between zero and one. Numerical
examples illustrate the behaviour of entropy solutions of the nonlocal equation.

41
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2.1 Introduction

2.1.1 Scope

We study a family of conservation laws with nonlocal flux defined by

ut +
(
u(1−u)αV (Ka ∗u)

)
x = 0, x ∈ R, t ∈ (0,T ], (2.1)

together with the initial datum

u(0,x) = u0(x), 0≤ u0(x)≤ 1, x ∈ R. (2.2)

Under idealizing assumptions, (2.1) represents a one-dimensional model for the sedimen-
tation of small equal-sized spherical solid particles dispersed in a viscous fluid, where the
local solids volume fraction u = u(x, t) as a function of depth x and time t is sought. The
parameter α satisfies either α = 0 or α ≥ 1; for both choices there is justification from
literature, and we study both in parallel. The function V is a hindered settling factor that
can be chosen, for example, as

V (w) = (1−w)n, n≥ 1, (2.3)

according to Richardson and Zaki [100], and which is herein supposed to depend on

(Ka ∗u)(x, t) =
∫ 2a

−2a
Ka(y)u(x+ y, t)dy,

where Ka is a symmetric, non-negative piecewise smooth kernel function with support
on [−2a,2a] for a parameter a > 0 and

∫
R Ka(x)dx = 1. Usually, one defines a kernel

K = K(x) with support on [−2,2] and sets Ka(x) := a−1K(a−1x). Clearly, (2.1) can be
considered as a nonlocal version of the kinematic sedimentation model due to Kynch
[70], which gives rise to the local scalar conservation law

ut +
(
uV (u)

)
x = 0, x ∈ R, t ∈ (0,T ]. (2.4)

In this chapter we study the well-posedness of (2.1), (2.2). We establish uniqueness
of solutions by an entropy solution concept, and existence by proving convergence of a
difference-quadrature scheme based on the standard Lax-Friedrichs scheme. It turns out
that for α = 0, solutions are bounded by a constant that depends on the final time T , and
are Lipschitz continuous if u0 is Lipschitz continuous. In contrast, for α ≥ 1 solutions are
in general discontinuous even if u0 is smooth, but assume values within the interval [0,1]
for all times. Some numerical examples illustrate the solution behaviour, in particular the
so-called effect of layering in sedimenting suspensions and the differences between the
cases α = 0 and α ≥ 1.
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2.1.2 Motivation of the nonlocal flux

Kynch [70] carried out an analysis of sedimentation in which the suspension was
approximated by a continuum. When diffusion is negligible, the one-dimensional conti-
nuity equation is [29]

ut(x, t)+
(
u(x, t)vs(x, t)

)
x = 0, (2.5)

where vs(x, t) is the solids phase velocity, or settling velocity, at position x at time t, and
(2.4) corresponds to the assumption that vs is an explicit function of u, vs = vStV (u), where
vSt is the Stokes velocity, i.e., the settling velocity of a single sphere in an unbounded fluid.
If V is given by (2.3), that is, we employ

vs(x0, t) = vSt
(
1−u(x0, t)

)n
, (2.6)

and assume that V depends on Ka ∗u instead of u (detailed justification of this assumption
will be provided in Section 2.2), then (2.5) takes the form

ut + vSt
(
u(1−Ka ∗u)n)

x = 0. (2.7)

A different approach consists in considering the solid and fluid mass conservation
equations (2.5) and −ut +((1−u)vf)x = 0, where vf is the fluid phase velocity. For batch
settling we have the relation vs = (1− u)vr, where vr := vs− vf is the solid-fluid relative
velocity or slip velocity. This leads to the governing equation

ut +
(
u(1−u)vr

)
x = 0. (2.8)

Assuming now that vr (instead of vs) has a nonlocal behaviour and requiring that the local
versions based on constitutive assumptions for either vs or vr should coincide, we state the
constitutive assumption for vr as vr = V (Ka ∗u)/(1−u). For instance, if we employ (2.3),
then the exponent n should be reduced by one, so using the properly adapted Richardson-
Zaki equation leads us to

vs(x0, t)/vSt =
(
1−u(x0, t)

)(
1− (Ka ∗u)(x0, t)

)n−1
,

from which we obtain the conservation law

ut + vSt
(
u(1−u)(1−K ∗u)n−1)

x = 0. (2.9)

Equations (2.7) and (2.9) represent the respective cases α = 0 and α = 1. It is relevant
to write the exponent in (2.9) as “n− 1” only if predictions made by the two versions
are to be compared; since n can be chosen arbitrarily, for the mathematical analysis it is
sufficient to consider the generic model (2.1)–(2.3). As we prove in this work, the basic
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difference in solution behaviour between (2.8) and (2.9) is that solutions of (2.8) may
assume values larger than one, while those of (2.9) are strictly limited to [0,1]. It seems to
us that only (2.9) is suitable for the simulation of the complete sedimentation process from
the dilute limit to the densely packed bed. Moreover, formulating a constitutive assump-
tion for vr rather than for vs is consistent with one consequence of the principle of material
objectivity (see e.g. [81]) stating that a constitutive relation should only be formulated for
an objective quantity: not a single velocity (such as vs), but only the difference between
two velocities (such as vr) is objective. In fact, already Richardson and Zaki [100] recog-
nized that the functional relationship was between vr and 1−u (Vs and ε in their notation).
Equation (2.9) is the nonlocal approach that is analogous to theirs.

2.1.3 Approximate dispersive local PDE and invariant region

Insight into qualitative properties of the nonlocal PDE (2.1) can be gained by ana-
lyzing an approximate local PDE (the “effective” local PDE [114]) obtained by Tay-
lor expansion of Ka ∗ u. In a formal calculation, since Ka is even, we have Ka ∗ u =
u+M2a2uxx +O(a4), where 2M2 is the second moment of Ka, i.e.

2M2 =
1
a2

∫ 2a

−2a
Ka(x)x2 dx.

Thus, we can write

V (Ka ∗u) = V
(
u+M2a2uxx +O(a4)

)
≈V (u)+a2V ′(u)

(
M2uxx +O(a2)

)
≈V (u)+a2M2V ′(u)uxx.

Assuming that the length scale of the solution is much larger than a, we replace V (Ka ∗u)
in (2.1) by V (u) + a2M2V ′(u)uxx and obtain the approximate diffusive-dispersive local
PDE

ut +
(
u(1−u)αV (u)

)
x =−a2M2

(
V ′(u)u(1−u)αuxx

)
x. (2.10)

Note that (2.10) depends on the choices of α and V independently; one cannot simply “ab-
sorb” (1−u)α into the choice of V . Thus, for example, we expect qualitatively different
solutions in the respective cases α = 0 and α = 1 with V given by (2.3) with exponents n
and n− 1, although both assumptions lead to the same PDE if V depends locally on u.
Specifically, (2.10) reveals why we should expect bounded solutions for α ≥ 1. In fact,
dispersive equations do, in general, not have invariant regions, i.e., one cannot guarantee
that the solution takes values in a bounded u-interval for all times. However, for α ≥ 1 the
term sitting inside the derivative on the right-hand side of (2.10) is multiplied by u(1−u),
regardless of the algebraic form of V , so for u = 0 and u = 1 (2.10) degenerates to the
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first-order conservation law ut +(u(1− u)αV (u))x = 0. The factor u(1− u) has a “satu-
rating” effect; it prevents solution values from leaving the interval [0,1]. Thus, we should
expect that also the nonlocal PDE (2.1) satisfies an invariant region principle for α ≥ 1.
This is indeed the case, as will be proved in Lemma 2.5.2 of Section 2.5.

2.1.4 Related work

Zumbrun [114] studied an equation equivalent to (2.1) in the case α = 0 and V (w) =
vSt(1−βw). This model for the sedimentation of a dilute particle in a viscous fluid was
advanced by Rubinstein [102], and arises as the limiting case for d → 0 from the more
general equation

ut + vst
(
u(1−βKa ∗u)

)
x = duxx, vSt,β ,d > 0, (2.11)

derived from a kinetic theory by Rubinstein and Keller [103, 104] (see also our Sec-
tion 2.2). For β = 6.55 [7], this model had been proposed earlier by Caflisch and Papa-
nicolaou [33]. In coordinates x′ = x− vStt and for β = 1 (equivalent to rescaling u) and
d = 0, (2.11) reduces to the equation actually studied in [114], namely

ut +
(
uKa ∗u

)
x = 0, (2.12)

where Ka(x) := a−1K(a−1x) and K is the truncated parabola given by

K(x) =
3
8

(
1− x2

4

)
for |x|< 2; K(x) = 0 otherwise. (2.13)

Zumbrun [114] showed global existence of weak solutions for the initial value problem
(2.2), (2.12) in L∞ and uniqueness in the class BV . Furthermore, he derived the effective
local, dispersive, KdV-like PDE

ut +(u2)x =−M2a2(uuxx)x, (2.14)

and showed by analyzing (2.14) that (2.12) supports travelling waves, but not viscous
shocks. This result is based on the symmetry of K, which makes (2.12) completely dis-
persive. Moreover, an L2 stability argument is invoked to conclude that smooth solutions
of the Burgers-like first-order conservation law ut + (u2)x = 0 arise from smooth solu-
tions of (2.12) as a→ 0. Zumbrun [114] (see also [65]) also studied the effect of artificial
diffusion added to (2.12), corresponding to d > 0, and showed that for the corresponding
effective local PDE, i.e. (2.14) with duxx added to the right-hand side, solutions of shock
initial data converge to a stable, oscillatory travelling wave. He then discussed whether
the resulting model is possibly sufficient to explain the phenomenon of layering in sedi-
mentation. Much of his analysis is for a more general, but symmetric kernel K. Whatever
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the exact form of K(x), it is clear that the interval over which it applies scales with the
sphere radius a. We will compare our findings with those of Zumbrun in Section 2.5.4,
see also Section 2.7.

Another spatially one-dimensional, nonlocal sedimentation model was studied by Sjö-
green et al. [110]. Starting from a more involved model, they consider a hyperbolic-elliptic
model problem given by (2.5) coupled with−η(vs)xx +vs = u, where η > 0 is a viscosity
parameter. Clearly, at any fixed position x0, vs(x0, t) will depend on u(·, t) as a whole;
the nonlocal dependence is not limited to a neighborhood, as in [114] and herein. They
prove that their model has a smooth solution, and present numerical solutions obtained by
a high-order difference scheme.

The (local) kinematic model of sedimentation (2.4) is similar to the well-known Light-
hill-Whitham-Richards (LWR) model of vehicular traffic. Sopasakis and Katsoulakis [111]
extended the LWR model to a nonlocal version by a “look-ahead” rule, i.e. drivers choose
their velocity taking account the density on a stretch of road ahead of them. Kurganov
and Polizzi [67] showed that an extension of the well-known Nesshayu-Tadmor (NT)
central nonoscillatory scheme [94] is suitable for the nonlocal model of [111], which can
be written as (2.1) for α = 1 and V (w) = exp(−w), and if we replace Ka by K(y) =
H (y)γ−1ϕ(y/γ), where H is the Heaviside function, γ > 0 is a constant proportional
to the look-ahead distance, and either ϕ = 1 (according to [111]) or ϕ(z) = 2− 2z (as
proposed in [67]) for 0 ≤ z ≤ 1, and ϕ = 0 elsewhere. As pointed out in [67], the basic
methods for conservation laws with local flux that should be adapted for (2.1) are cen-
tral rather than upwind schemes for conservation laws, since the latter usually involve
the (approximate) solution of Riemann problems, and no Riemann solver is available for
(2.1). Though the second-order NT scheme produces better resolution, we herein rely on
the Lax-Friedrichs scheme to be consistent with the entropy analysis.

Related models with a nonlocal convective flux that have been analyzed within an
entropy solution framework include the continuum model for the flow of pedestrians by
Hughes [56], which gives rise to a multi-dimensional conservation law with a nonlocal
flux; see also [36, 37]. However, in contrast to (2.1) the nonlocality in that model is not
introduced by explicit convolution but via the solution of an eikonal equation. An entropy
solution framework is employed in [43] to establish well-posedness for a hyperbolic-
elliptic approximation of the original model of [56].

Another equation that can formally be expressed in the form (2.1), namely for α = 0,
V (w) = w and with Ka replaced by the Cauchy kernel so that Ka ∗u becomes the Hilbert
transform Hu, is studied in [34]. This equation arises from several applications, inclu-
ding a one-dimensional model of the two-dimensional vortex sheet problem [5], and is
analyzed in [34] with respect to existence of smooth solutions for smooth initial data.
Equations that can formally be written as a first-order conservation law with nonlocal flux
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also arise from models of opinion formation [2].

2.1.5 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 2.2 we motivate the
assumption of nonlocal dependence of settling velocities and argue that it may descri-
be the layering phenomenon in sedimentation. In Section 2.3 we describe the numerical
scheme, which involves the approximate computation of Ka ∗u by a quadrature formula.
We state some assumptions on the functions u0 and V and on the mesh for the numerical
scheme, and derive some estimates on differences of the discrete convolution. In Sec-
tion 2.4 we state the definition of entropy solutions of (2.1), (2.2), the jump conditions,
and prove that entropy solutions are L1 contractive with respect to initial data, and in
particular unique. Section 2.5 is devoted to the proof of convergence of approximate so-
lutions generated by the numerical scheme to entropy solutions, which is achieved by
standard compactness bounds (Sect. 2.5.1), a cell entropy inequality, and Lax-Wendroff-
type arguments (Sect. 2.5.2). In Section 2.5.3 we prove that for the case α = 0, solutions
are actually Lipschitz continuous provided that u0 is Lipschitz continuous. In Section 2.6
we present numerical examples, paying particular attention to the layering phenomenon.
Conclusions, limitations and possible extensions are addressed in Section 2.7.

2.2 Motivation of the nonlocal sedimentation model

2.2.1 Nonlocal dependence of settling velocities

The solution of the one-dimensional continuity equation (2.5) requires an initial con-
dition, possibly boundary conditions, and an equation relating vs to u = u(x, t). Theoretical
studies of this relationship in dilute, uniformly mixed suspensions of identical spheres are
numerous. Those by Kermack et al. [64] and Batchelor [7] are especially notable. When
u(x, t) is not constant, the relationship between vs and u is no longer obvious. The key
assumption of Kynch’s theory [70] is that vs is determined by the “local solids concentra-
tion”, which is the concentration u(x, t) at a specified height and time. This relationship
is expressed as vs = vStV (u). This treatment is analyzed in detail by Bustos et al. [29]. In
the three-dimensional reality approximated by the one-dimensional theory, u(x, t) is the
solids concentration at a horizontal plane [25, 97]. Though this is an excellent approxima-
tion (for the dependence of vs on u), we may still improve it by a nonlocal dependence, as
will be argued in this section.

The locality of the dependence in Kynch’s theory contrasts sharply with the theoretical
result that the velocity of each particle is determined by the size, position and orientation
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of all particles and the nature of the boundaries, if any [52]. (Of course, the orientation
is irrelevant for spheres.) As a compromise between this result and the assumption by
Kynch, Pickard and Tory [96] postulated that the settling velocity, vs(x0, t), of a test par-
ticle at x0 is governed by a parameter

c(x0, t) =
∫

I
w(x)u(x0 + x, t)dx, I ⊆ R, (2.15)

that is the convolution of local solids concentration with a weighting function. This pa-
rameter was introduced in the context of a stochastic model for which the smoothing
effect was important [98] and later generalized to polydisperse suspensions [107]. The
function w(x) was specified to be positive in a neighborhood of zero, unimodal, and uni-
formly bounded with uniformly bounded mean, mode, and variance. When u is constant,
we require that c(x0, t) = u(x0, t). This implies that

∫
I w(x)dx = 1, see [53]. This means

that the velocity of a sphere at x0 is governed by the concentration in a contiguous region
of finite width. In the limiting case, w(x) is replaced by δ (x) and the sifting property of
the Dirac delta function equates the parametric and local solids concentrations [97].

Beenakker and Mazur [12, 13] calculated the mean velocity of a test sphere in a dilute
suspension of identical spheres settling toward an infinite horizontal flat plate. Assuming
that all the spheres were placed according to a uniform distribution subject only to the con-
dition that they do not overlap the test sphere or the solid boundary [108], they obtained an
explicit expression for the mean velocity of a sphere at a given height. Neglecting terms
of O(a/h), where a is the radius of the test sphere and h is its distance from the boundary,
this can be written as [102]

vs(x0, t) = vSt

(
1+

∫ 2a

−2a
Ha(x)u(x0 + x, t)dx

)
, (2.16)

where

Ha(x) =
15
8a

(
1
4

(x
a

)2
−1
)

. (2.17)

Note that only spheres in the interval [x0−2a,x0 +2a] affect the mean velocity of the test
sphere [12, 108]. This results from an exact cancellation, before taking the limit, of large
terms in the regions above and below this interval [108]. Taking the limits first yields a di-
vergent sedimentation velocity upon integration [12]. Equation (2.16) does not contradict
the result that the velocity of the test sphere is affected by all the spheres in a suspen-
sion [11, 52, 83] because the variance of velocity is determined by the positions of all the
spheres [108]. Velocity fluctuations in sedimentation, which account for hydrodynamic
diffusion, are still being studied intensively [87].
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When u is constant, insertion of (2.17) into (2.16) yields

vs(x0, t) = vSt
(
1−5u(x0, t)

)
, i.e., V (u) = 1−5u. (2.18)

This result also holds in a linear concentration gradient because the additional term in the
integrand is an odd function (since Ha(x) is even), and the integral is between symmetric
limits. Apart from discontinuities, concentration normally varies smoothly over distances
much greater than 4a. Hence, this equation is a good approximation in nonlinear gradients,
but only in very dilute suspensions. Higher-order two-sphere interactions can be added
[12] to yield Batchelor’s result for identical spheres [7], which is

vs(x0, t) = vSt
(
1−6.55u(x0, t)

)
, i.e., V (u) = 1−6.55u. (2.19)

This equation works well for colloidal dispersions in which Brownian motion maintains
an essentially uniform distribution of sphere centers. However, experiments with non-
Brownian spheres suggest that (2.18) is more accurate. Though the velocity of the spheres
relative to the fluid is independent of the shape of the container [13], equation (2.17)
applies only to dilute suspensions settling towards an infinite flat plate. Nevertheless, it
seems likely, given the success of Kynch’s theory, that a generalization of (2.17) should
be a reasonable approximation at higher concentrations and for suspensions in finite con-
tainers.

Three-sphere and higher interactions are important at higher concentrations [9, 10,
60]. Special treatments involving intensive computation are necessary for concentrated
suspensions [54, 71, 72, 73, 74, 95]. At higher concentrations, the dependence of vs on
u is nonlinear. The Richardson-Zaki [100] equation (2.6), corresponding to V (u) given
by (2.3), is widely used to predict the position of the interface and the propagation of
concentration changes.

In the Pickard-Tory model, the dependence of the settling velocity, vs(x0, t), on c(x0, t)
rather than u(x0, t) is similar to the dependence in [11], but not as specific. If we combine
their model with the Richardson-Zaki equation, we obtain

vs(x0, t)
vSt

=
(
1− c(x0, t)

)n

= 1−n
∫

I
w(x)u(x0 + x, t)dx+

n(n−1)
2

[∫
I
w(x)u(x0 + x, t)dx

]2

− . . . .

(2.20)

We can choose w to be an even function. Then (2.20) implies that c(x0, t) = u(x0, t) in
a linear concentration gradient. When u is small and constant or linear, we obtain the
approximation vs(x0, t)≈ vSt(1−nu(x0, t)), which agrees with (2.18) and (2.19).

Again, we choose w to be an even function and require that
∫

I w(x)dx = 1. Then (2.20)
can be written as vs(x0, t) = vSt(1−K ∗u)n, which yields (2.7), where K ∗u is the convo-
lution of K with u and

∫
I K(x)dx = 1.



50 Chapter 2. On nonlocal conservation laws modeling sedimentation

2.2.2 Layered sedimentation in suspensions

Initially homogeneous suspensions of hydrophobic colloidal particles do not always
sediment in smooth continuous fashion. Instead, layers of different concentrations are
often observed after settling has proceeded for a time [109]. This phenomenon is accen-
tuated when a very dilute suspension has an initial concentration gradient [109]. The
upward propagation of a concentration gradient from the bottom of the container will
eventually obliterate the layered form if we study this phenomenon in a closed vessel
rather than just focussing on the zone slightly below the suspension-supernate interface.

The weighting functions Ha(x),K(x),w(x), and W (x) have an important influence
near discontinuities in concentration. When the interval I overlaps the packed bed, these
weighting functions introduce a concentration gradient [6]. Where Kynch’s theory pre-
dicts a jump in u from u0 to umax, which correponds to a so-called mode of sedimentation
MS-1 [26, 29], weighting functions produce the same increase over a finite distance [6].
However, this gradient does not expand.

Our assumption of nonlocal dependence of the settling velocity provides an expla-
nation of the layering phenomenon. In fact, when I overlaps the suspension-supernatant
interface, the spheres near that interface settle faster than those below. For example, accor-
ding to (2.16), a particle at the interface of a uniform suspension has an initial velocity of
v(x0, t) = vSt(1−2.5u(x0, t)) compared to that given by (2.18) for a sphere that is 2a or
more below the interface. This causes an increase in concentration from u0 to u0 +∆u in
a small region just below the interface. However, spheres near the bottom of this region
settle faster than those in its middle because I includes a sub-region with u = u0 as well as
one with u = u0 +∆u. This concentration disturbance should propagate down the settling
column. If equation (2.5) applies, the result would seem to be a gradual increase in con-
centration and perhaps some instability if the concentration near the top remains higher
than that near the bottom. Since concentrated suspensions settle much more slowly than
dilute ones, it would seem that layering would occur only in very dilute suspensions where
slight increases in concentration cause only slight changes in settling velocity.

2.3 Preliminaries

2.3.1 Assumptions and numerical scheme

We discretize (2.1) on a fixed grid given by x j = j∆x for j ∈ Z and tn = n∆t for
n≤N := T/∆t, where T is the finite final time. As usual, un

j approximates the cell average

un
j ≈

1
∆x

∫ x j+1/2

x j−1/2

u(y, tn)dy, (2.21)
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and we define Un := (. . . ,un
j−1,u

n
j ,u

n
j+1, . . .)

T. The initial datum u0 is discretized accor-
dingly. We use the standard spatial difference operators ∆+un

j := un
j+1−un

j , ∆−un
j := un

j−
un

j−1, and ∆2un
j := ∆+∆−un

j = un
j+1−2un

j +un
j−1. The obvious difficulty in defining a nu-

merical scheme for (2.1) arises from the discretization of the integral. We approximate it
by a quadrature formula given by

(Ka ∗u)n
j ≈ ũn

a, j :=
l

∑
i=−l

γiun
j−i, where γi =

∫ xi+1/2

xi−1/2

Ka(y)dy and l =
⌈

2a
∆x

⌉
+1,

i.e., l is the smallest integer larger or equal to (2a/∆x)+1.
Due to the properties of K (Eq. (2.13)), γ−l + · · ·+ γl = 1. The computations and

the numerical analysis are based on the Lax-Friedrichs scheme for a standard non-linear
scalar conservation law. We summarize all assumptions on the initial datum u0, the velo-
city function V and the mesh.

Assumption 2.3.1 We assume that u0 has compact support, u0(x) ≥ 0 for x ∈ R and
u0 ∈ BV (R). The function u 7→ V (u) and its derivatives are locally Lipschitz continuous
for u ≥ 0 (which occurs, for example, if V (·) is a polynomial). When we send ∆x,∆t ↓ 0
then it is understood that λ := ∆t/∆x is kept constant.

In addition to Assumption 2.3.1 for the case α ≥ 1 we suppose the following.

Assumption 2.3.2 The inital datum satisfies u0(x)≤ 1 for all x ∈ R.

Remark 2.3.1 The same analysis remains valid for any smooth, positive and not necessa-
rily compactly supported kernel with ‖K‖1 = 1 and ‖∂xKa‖1 < ∞.

From now on we let the function u∆ be defined by

u∆(x, t) = Un
j for (x, t) ∈ [ j∆x,( j +1)∆x)× [n∆t,(n+1)∆t).

We now prove two lemmas that will be used for the convergence analysis.
Although Ka (Eq. (2.13)) is just Lipschitz continuous on R, on its support it is a smooth

function. Having this in mind we can prove the following lemma.

Lemma 2.3.1 Suppose that u∆(·, tn) ∈ L1
loc(R). Then∣∣∆+ũn

a, j
∣∣≤ ‖∂xKa‖∞

∥∥u∆(·, tn)
∥∥

1∆x for j ∈ Z. (2.22)

Proof. We compute

∆−ũn
a, j =

l

∑
i=−l

γi∆+un
j−i =

l−1

∑
i=−l

un
j−i(γi+1− γi)+ γl

(
un

j+1+l−un
j−l
)
. (2.23)
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Since Ka(2a) = 0, we have

γl =
∫ 2a

2a−∆x/2
Ka(x)dx =

∫ 2a

2a−∆x/2

∣∣Ka(x)−Ka(2a)
∣∣dx≤ ‖∂xKa‖∞

∆x2

4
.

For −l ≤ i≤ l−1 we find

γi+1− γi =
∫ xi+3/2

xi+1/2

(
Ka(x)−Ka(x−∆x)

)
dx =

∫ xi+3/2

xi+1/2

∂xKa(ξi+1)∆xdx

≤ ‖∂xKa‖∞∆x2,

where ξi+1 ∈ [xi−1/2,xi+3/2]. Applying the last two inequalities to the right-hand side of
(2.23) and using that u∆(·, tn) ∈ L1

loc(R), we obtain

∣∣∆+ũn
a, j
∣∣≤ ‖∂xKa‖∞

(
l−1

∑
i=−l
|un

j−i|+
|un

j+1+l|+ |u
n
j−l|

4

)
∆x2,

which implies (2.22). 2

In what follows, Ca always denotes a constant that is independent of ∆ := (∆x,∆t),
but depends on a, and that may change from one line to the next.

Lemma 2.3.2 Suppose that u∆(·, tn) ∈ L1
loc(R)∩L∞(R). Then∣∣∆2ũn

a, j
∣∣≤ Ca∆x2 for j ∈ Z. (2.24)

Proof. We calculate

∆
2ũn

a, j =
l

∑
i=−l

(
γiun

j+1−i−2γiun
j−i + γiun

j−1−i
)

=
l−1

∑
i=−l+1

un
j−i∆

2
γi +un

j+l∆+γ−l−un
j−l∆−γl + γl

(
∆+un

j+l−∆−un
j−l
)
. (2.25)

Lemma 2.3.1 implies that there exists a constant Ca such that γl ≤ Ca∆x2, and there-
fore ∆+γ−l ≤ Ca∆x2 and ∆−γl ≤ Ca∆x2. Using the Taylor Theorem we get for i ∈ {−l +
1, . . . , l−1}

∣∣∆2
γi
∣∣= ∣∣∣∣∣

∫ xi+1/2

xi−1/2

(
Ka(x+∆x)−2Ka(x)+Ka(x−∆x)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ xi+1/2

xi−1/2

(
∂

2
x Ka(ξ +

i )
∆x2

2
+∂

2
x Ka(ξ−i )

∆x2

2

)
dx

∣∣∣∣∣≤ ‖∂ 2
x Ka‖∞∆x3,

where ξ
+
i ∈ [xi−1/2,xi+3/2] and ξ

−
i ∈ [xi−3/2,xi+1/2]. Consequently, using that u∆(·, tn) ∈

L1
loc(R)∩L∞(R), we obtain from (2.25) the desired estimate (2.24). 2
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2.4 Definition and uniquenss of entropy solutions

2.4.1 Definition of an entropy solution and jump conditions

It is well known that solutions to a standard nonlinear conservation law like (2.4) are
in general discontinuous even if the initial datum u0 is smooth. The same will occur with
the nonlocal equation (2.1), so we need to define solutions as weak solutions. Since weak
solutions of conservation laws are, in general, not unique, a selection criterion must be
imposed in order to single out the physically relevant solution. We select the solution
through an entropy criterion, and the sought solutions are entropy solutions defined as
follows. To facilitate notation we define f (u) := u(1−u)α .

Definition 2.4.1 A measurable, non-negative function u is an entropy solution of the ini-
tial value problem (2.1), (2.2) if it satisfies the following conditions:

1. We have u ∈ L∞(ΠT )∩L1(ΠT )∩BV (ΠT ).

2. The initial condition (2.2) is satisfied in the following sense:

lim
t↓0

∫
R

∣∣u(x, t)−u0(x)
∣∣dx = 0. (2.26)

3. For all non-negative test functions ϕ ∈C∞
0 (ΠT ), the following entropy inequality is

satisfied:

∀k ∈ R :
∫∫

ΠT

{
|u− k|ϕt + sgn(u− k)

(
f (u)− f (k)

)
V (Ka ∗u)ϕx

− sgn(u− k) f (k)V ′(Ka ∗u)(∂xKa ∗u)ϕ
}

dxdt ≥ 0.
(2.27)

The Kružkov-type [69] entropy inequality (2.27) follows from a standard vanishing
viscosity argument. It is also standard to deduce that an entropy solution is, in particular,
a weak solution of (2.1), (2.2), which is defined by (1) and (2) of Definition 2.4.1, and the
following equality, which must hold for all ϕ ∈C∞

0 (ΠT ):∫∫
ΠT

{
uϕt + f (u)V (Ka ∗u)ϕx− f (u)V ′(Ka ∗u)(∂xKa ∗u)ϕ

}
dxdt = 0. (2.28)

Assume that u is an entropy solution having a discontinuity at a point (x0, t0) ∈ ΠT be-
tween the approximate limits u+ and u− of u taken with respect to x > x0 and x < x0,
respectively. The propagation velocity s of the jump is given by the Rankine-Hugoniot
condition, which is derived in a standard way from (2.28):

s = σ(u+,u−)V (Ka ∗u), σ(u,v) :=
f (u)− f (v)

u− v
, (2.29)
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where we utilize that (Ka ∗ u)(·, t) is a Lipschitz continuous function of x. In addition,
a discontinuity between two solution values needs to satisfy the following jump entropy
condition, which is a consequence of (2.27):

∀k ∈
(
min{u−,u+},max{u−,u+}

)
: σ(u+,k)V (Ka ∗u)≤ s≤ σ(u−,k)V (Ka ∗u).

2.4.2 Uniqueness of entropy solutions

The uniqueness of entropy solutions is a consequence of a result proved in [62] re-
garding continuous dependence of entropy solutions with respect to the flux function.
Precisely, we have the following theorem.

Theorem 2.4.1 Assume that u and v are entropy solutions of (2.1), (2.2) with initial data
u0 and v0, respectively. Then there exists a constant C1 such that∥∥u(·, t)− v(·, t)

∥∥
L1(R) ≤C1 ‖u0− v0‖L1(R) ∀t ∈ (0,T ].

In particular, an entropy solution of (2.1), (2.2) is unique.

Proof. Let u and v be entropy solutions of the respective initial value problems

ut +
(
V (x, t) f (u)

)
x = 0, V (x, t) := V

(
(Ka ∗u)(x, t)

)
; u(x,0) = u0(x),

vt +
(
Ṽ (x, t) f (v)

)
x = 0, Ṽ (x, t) := V

(
(Ka ∗ v)(x, t)

)
; v(x,0) = v0(x).

Following the proof of Theorem 1.3 of [62] and keeping in mind that u and v are of
bounded variation, we obtain the following inequality, where J := [0,‖u‖∞]:∥∥u(·, t)− v(·, t)

∥∥
L1(R) ≤ ‖u0− v0‖L1(R)

+‖ f‖L∞(J)

∫ t

0

∫
R

∣∣Vx(x,s)−Ṽx(x,s)
∣∣dxds

+‖ f‖Lip(J)

∫ t

0

∫
R

∣∣V (x,s)−Ṽ (x,s)
∣∣∣∣vx(x, t)

∣∣dxds,

(2.30)

where vx must be understood in the sense of measures. Now we observe that∣∣V (x,s)−Ṽ (x,s)
∣∣= ∣∣V((Ka ∗u)(x,s)

)
−V

(
(Ka ∗ v)(x,s)

)∣∣
≤
∥∥V ′∥∥

∞

∣∣(Ka ∗ (u− v)
)
(x,s)

∣∣
≤
∥∥V ′∥∥

∞
‖Ka‖∞

∥∥u(·,s)− v(·,s)
∥∥

L1(R),∣∣Vx(x,s)−Ṽx(x,s)
∣∣= ∣∣V ′(Ka ∗u(x,s)

)
(∂xKa ∗u)(x,s)

−V ′
(
Ka ∗ v(x,s)

)
(∂xKa ∗ v)(x,s)

∣∣
≤ ‖V ′‖∞

∣∣(∂xKa ∗ (u− v)
)
(x,s)

∣∣
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+‖∂xKa ∗ v‖∞‖V ′′‖∞

∣∣(Ka ∗ (u− v)
)
(x,s)

∣∣.
Inserting the last expressions into the integrands in (2.30), using the properties of the
kernel Ka and the fact that v has bounded variation we arrive at∥∥u(·, t)− v(·, t)

∥∥
L1(R) ≤ ‖u0− v0‖L1(R) +C2

∫ t

0

∥∥u(·,s)− v(·,s)
∥∥

L1(R) ds.

Applying the integral form of the Gronwall inequality we finally obtain∥∥u(·, t)− v(·, t)
∥∥

L1(R) ≤ ‖u0− v0‖L1(R)
(
1+C2t exp(C2t)

)
.

The second statement of the theorem follows by taking u0 = v0. 2

2.5 Convergence analysis and existence of entropy solu-
tions

2.5.1 Compactness estimates

We define V n
j := V (ũn

a, j). Then the marching formula for the approximation of solu-
tions of (2.1), (2.2) reads

un+1
j =

un
j−1 +un

j+1

2
− λ

2
un

j+1
(
1−un

j+1
)αV n

j+1 +
λ

2
un

j−1
(
1−un

j−1
)αV n

j−1. (2.31)

We assume that λ = ∆t/∆x satisfies the following CFL condition:

λ max
u≤u∗

∣∣V (u)
∣∣< 1 for α = 0, u∗ := ‖Ka‖∞‖u0‖1; (2.32)

λ max
0≤u≤1

∣∣V (u)
∣∣< 1 for α ≥ 1. (2.33)

By the conservativity of the scheme (2.31) and the CFL condition, we immediately
obtain the following lemma.

Lemma 2.5.1 Under Assumption 2.3.1, the numerical approximation generated by (2.31)
in the case α = 0 satisfies

‖Un‖1 ≤ ‖U0‖1 for 0≤ n≤ N.

The next step in the numerical analysis is to prove the L∞ stability. Appealing to
Lemma 2.3.1, we are in a position to prove the following lemma.
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Lemma 2.5.2 The numerical approximation generated by (2.31) satisfies

0≤ un
j ≤

{
C3 if α = 0,

1 if α ≥ 1,
for j ∈ Z and 0≤ n≤ N, (2.34)

where the constant C3 is independent of ∆ but depends on T .

Proof. We can rewrite (2.31) as

un+1
j =

un
j−1

2

(
1+λ

(
1−un

j−1
)αV n

j−1

)
+

un
j+1

2

(
1−λ

(
1−un

j+1
)αV n

j+1

)
. (2.35)

We consider first the case α = 0. Using Assumption 2.3.1 we have

ũn
a, j =

l

∑
i=−l

(∫ xi+1/2

xi−1/2

Ka(y)dy

)
un

j−i ≤ ‖Ka‖∞

l

∑
i=−l

un
j−i∆x≤ ‖Ka‖∞‖u0‖1,

and thanks to the local Lipschitz continuity of V we can bound |V (ũn
a, j)| as a function

of ‖Ka‖∞ and ‖u0‖1. Moreover, |V ′(ũn
a, j)| and |V ′′(ũn

a, j)| can be bounded thanks to the
assumptions on V and its derivatives. We can write

un+1
j = un

j+1

(
1
2
− λ

2
V n

j+1

)
+un

j−1

(
1
2

+
λ

2
V n

j+1

)
− λ

2
un

j−1
(
∆+V n

j +∆−V n
j
)
.

With Lemma 2.3.1 and the CFL condition we get∣∣un+1
j

∣∣≤ ∣∣un
j+1
∣∣(1

2
− λ

2
V n

j+1

)
+
∣∣un

j−1
∣∣(1

2
+

λ

2
V n

j+1

)
+λ

∣∣un
j−1
∣∣‖V ′‖∞‖∂xKa‖∞‖u0‖1∆x

≤ ‖Un‖∞(1+C4∆t),

which means that∣∣un+1
j

∣∣≤ ‖U0‖∞(1+C4∆t)n = ‖U0‖∞

(
1+C4

T
n

)n

≤ ‖u0‖∞ exp(C4T ). (2.36)

To handle the case α ≥ 1, we assume that un
j ≤ 1 for all j ∈ Z (Assumption 2.3.2) and

rewrite (2.31) as

un+1
j =

un
j+1

2
(
1+λun

j+1
(
1−un

j+1
)α−1V n

j+1
)
− λ

2
un

j+1
(
1−un

j+1
)α−1V n

j+1

+
un

j−1

2
(
1−λun

j−1(1−un
j−1)

α−1V n
j−1
)
+

λ

2
un

j−1(1−un
j−1)

α−1V n
j−1

≤
un

j+1

2
(
1+λun

j+1
(
1−un

j+1
)α−1V n

j+1
)
− λ

2
(
un

j+1
)2(1−un

j+1
)α−1V n

j+1
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+
un

j−1

2
(
1−λun

j−1(1−un
j−1)

α−1V n
j−1
)
+

λ

2
un

j−1(1−un
j−1)

α−1V n
j−1

=
un

j+1

2
+un

j−1

(
1
2
− λ

2
un

j−1(1−un
j−1)

α−1V n
j−1

)
+

λ

2
un

j−1(1−un
j−1)

α−1V n
j−1.

Because of the CFL condition, the last right-hand side is a convex combination of un
j+1,

un
j−1 and one. We therefore conclude that un+1

j ≤ 1. The other inequality, un+1
j ≥ 0 pro-

vided that un
j ≥ 0 for all j ∈ Z, follows in both cases α = 0 and α ≥ 1 from the CFL

condition. 2

Remark 2.5.1 Lemma 2.5.2 represents the most important estimate of this work. Based
on the discussion of the (local) effective PDE (2.10) we argued in Section 2.1.3 that one
should expect an “invariant region” principle, namely that solutions assume values in
[0,1], to hold for (2.1), (2.2) with α ≥ 1. The estimate (2.34) shows that this property
indeed holds. This is an exceptional feature, since an invariant region principle does not
hold for dispersive equations in general, and is not valid for (2.1) with α = 0. In fact,
from (2.36) we deduce that for α = 0, one can guarantee that the model (2.1), (2.2)
produces physically relevant results only if ‖u0‖∞ and the final time T are sufficiently
small. The requirement of smallness for ‖u0‖∞ is consistent with the observation that the
model development in Section 2.2.1 for α = 0 is rigorously valid for dilute suspensions
only.

Since u j ≥ 0, we readily obtain the following corollary.

Corollary 2.5.1 Under Assumption 2.3.1, the numerical solution generated by (2.31) in
the case α ≥ 1 satisfies

‖Un‖1 ≤ ‖U0‖1 for 0≤ n≤ N.

With the help of Lemma 2.3.2 we may prove the following uniform bound of total
variation of the numerical approximation generated by (2.31).

Lemma 2.5.3 The numerical approximation generated by (2.31) satisfies the following
total variation bound, where C5 does not depend on ∆:

∑
j∈Z

∣∣un
j −un

j−1
∣∣≤C5 for 0≤ n≤ N.

Proof. Defining wn
j−1/2 := un

j −un
j−1 we get from the marching formula (2.31)

wn+1
j−1/2 = wn

j+1/2

(
1
2
− λ

2
f ′
(
ξ

n
j+1/2

)
V n

j+1

)
+wn

j−3/2

(
1
2

+
λ

2
f ′
(
ξ

n
j−3/2

)
V n

j−1

)



58 Chapter 2. On nonlocal conservation laws modeling sedimentation

− λ

2
(
∆+V n

j
)(

f ′
(
ξ

n
j−1/2

)
wn

j−1/2 + f ′
(
ξ

n
j−3/2

)
wn

j−3/2
)

+
λ

2
f
(
un

j−2
)(
−∆

2V n
j −∆

2V n
j−1
)
,

where ξ n
j−1/2 ∈ [un

j ,u
n
j−1]. Using the Taylor theorem we obtain

∆
2V n

j = V ′
(
ũn

a, j
)
∆

2ũn
a, j +

1
2

V ′′
(
α

n
j+1/2

)(
∆+ũn

a, j
)2 +

1
2

V ′′
(
α

n
j−1/2

)(
∆−ũn

a, j
)2

,

where

α
n
j+1/2 ∈ [ũn

a, j∧ ũn
a, j+1, ũ

n
a, j∨ ũn

a, j+1]

(where we define, as usual, a∧b = min{a,b} and a∨b = max{a,b}). Thus, Lemmas 2.3.1
and 2.3.2 imply that

∆
2V n

j = O(∆x2).

Due to the CFL condition and using that f (0) = 0, we obtain that there exists a constant
Ca such that∣∣wn+1

j−1/2

∣∣≤ ∣∣wn
j+1/2

∣∣(1
2
− λ

2
f ′
(
ξ

n
j+1/2

)
V n

j+1

)
+
∣∣wn

j−3/2

∣∣(1
2

+
λ

2
f ′(ξ n

j−3/2)V
n
j−1

)
+Ca∆t

(∣∣wn
j−1/2

∣∣+ ∣∣wn
j−3/2

∣∣+ ∣∣un
j−2
∣∣∆x
)
.

Summing over j and using Lemma 2.5.1 we find that there exist constants C6 and C7,
which depend on a but not on ∆, such that

TV(Un+1)≤ TV(Un)(1+C6∆t)+C7∆t.

Finally, summing over n we obtain

TV(Un+1)≤ TV(U0)(1+C6∆t)n+1 +C7∆t
n

∑
p=0

(1+C6∆t)p

≤ TV(u0)exp(C6T )
(

1+
C7

C6

)
.

2

We also need that u∆ satisfies the uniform L1-Lipschitz continuity property with res-
pect to time. This follows directly from the previous results.

Lemma 2.5.4 The numerical approximation generated by (2.31) satisfies the following
inequality, where C8 depends on a, but not on ∆:

∑
j∈Z

∣∣∣un+1
j −un

j

∣∣∣≤C8λ for 0≤ n < N.
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Proof. Using the marching formula (2.31) we write

un+1
j −un

j =
1
2

∆+un
j −

1
2

∆−un
j −

λ

2
(

f
(
un

j+1
)
− f
(
un

j−1
))

V n
j+1

− λ

2
f
(
un

j−1
)(

V n
j+1−V n

j−1
)

=
1
2

∆+un
j −

1
2

∆−un
j −

λ

2
(

f ′
(
ξ

n
j+1/2

)
(un

j+1−un
j)

+ f ′
(
ξ

n
j−1/2

)(
un

j −un
j−1
)
V n

j+1
)
− f ′(ξ )un

j−1∆+V n
j .

In the last expression we used that f (0) = 0. We conclude the proof by appealing to
Lemma 2.5.3 and the fact that ∆t = O(∆x). 2

2.5.2 Satisfaction of the entropy condition and existence result

From Helly’s theorem we have that u∆ converges to a function u∈ L∞(ΠT )∩L1(ΠT )∩
BV (ΠT ) as ∆→ 0. It remains to prove that u satisfies the entropy inequality (2.27).

Theorem 2.5.1 Assume that Assumptions 2.3.1 and 2.3.2 hold. Then the numerical solu-
tion generated by (2.31) converges to the unique entropy solution of (2.1), (2.2).

Proof. We define the function

Gn
j(u,v,Un) :=

1
2
(
u−λ f (u)V n

j+1 + v+λ f (v)V n
j−1
)
.

We can rewrite the scheme (2.31) as un+1
j = Gn

j(u
n
j+1,u

n
j−1,U

n). Under the CFL condition,
Gn

j is monotone its first two arguments for all j ∈ Z, 0 ≤ n < N. Using this property and
omitting the third argument, which is always Un, we obtain∣∣un+1

j −Gn
j(k,k)

∣∣= ∣∣Gn
j
(
un

j+1,u
n
j−1
)
−Gn

j(k,k)
∣∣

≤
∣∣Gn

j
(
un

j+1∨ k,un
j−1∨ k

)
−Gn

j
(
un

j+1∧ k,un
j−1∧ k

)∣∣
=
∣∣un

j − k
∣∣− (G n

j+−G n
j−
)
,

(2.37)

where we define

G n
j± :=

λ

2

[(
f
(
un

j±1∨ k
)
− f
(
un

j±1∧ k
))

V n
j±1−

1
λ

∆±
(∣∣un

j − k
∣∣)] .

On the other hand, ∣∣∣∣un+1
j − k +

λ

2
f (k)

(
V n

j+1−V n
j−1
)∣∣∣∣

≥
∣∣un+1

j − k
∣∣+ sgn

(
un+1

j − k
)λ

2
f (k)

(
V n

j+1−V n
j−1
)
.

(2.38)
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Combining (2.37) and (2.38) we arrive at the “cell entropy inequality”

∣∣un+1
j − k

∣∣− ∣∣un
j − k

∣∣+G n
j+−G n

j−+ sgn
(
un+1

j − k
)λ

2
f (k)

(
V n

j+1−V n
j−1
)
≤ 0. (2.39)

We now establish convergence to a solution that satisfies (2.27) by a Lax-Wendroff-type
argument. Multiplying the j-th inequality in (2.39) by

∫
I j

ϕ(x, tn)dx, where ϕ is a non-
negative test function, and summing the results over j ∈ Z and 0 ≤ n ≤ N−1 we obtain
the inequality E1 +E2 +E3 ≤ 0, where we define

E1 :=
N−1

∑
n=0

∑
j∈Z

(∣∣∣un+1
j − k

∣∣∣− ∣∣un
j − k

∣∣)∫
I j

ϕ(x, tn)dx,

E2 :=
λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

sgn(un+1
j − k)

(
V n

j+1−V n
j−1
)∫

I j

ϕ(x, tn)dx,

E3 :=
N−1

∑
n=0

∑
j∈Z

(
G n

j+−G n
j−
)∫

I j

ϕ(x, tn)dx.

By a standard summation by parts and using that ϕ has compact support, we get

E1 =−∆t
N−1

∑
n=0

∑
j∈Z

∣∣∣un+1
j − k

∣∣∣∫
I j

ϕ(x, tn+1)−ϕ(x, tn)
∆t

dx.

For E2, we write E2 = Ea
2 +Eb

2 where

Ea
2 :=

λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

(
sgn
(
un+1

j − k
)
− sgn

(
un

j − k
))(

V n
j+1−V n

j−1
)∫

I j

ϕ(x, tn)dx,

Eb
2 :=

λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

sgn
(
un

j − k
)(

V n
j+1−V n

j−1
)∫

I j

ϕ(x, tn)dx.

Again summing by parts yields

Ea
2 =−λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

sgn
(
un+1

j − k
)∫

I j

ϕ(x, tn)dx

×
[
V n+1

j+1 −V n+1
j−1 −

{
V n

j+1−V n
j−1
}]

− λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

sgn
(
un+1

j − k
)(

V n
j+1−V n

j−1
)

×
∫

I j

(
ϕ(x, tn+1)−ϕ(x, tn)

)
dx.
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Lemmas 2.5.4 and 2.3.1 and the fact that γi+1− γi = O(∆x2), γl = O(∆x2) yield

V n
j+1−V n

j−1 = V ′
(
Ũn

a, j
)(

ũn
a, j+1− ũn

a, j−1
)
+O(∆x2) = O(∆x),

and

ũn+1
a, j+1− ũn+1

a, j−1−
{

ũn
a, j+1− ũn

a, j−1
}

=
l−1

∑
i=−l

(
un+1

j−i +un+1
j−i−1

)
(γi+1− γi)+ γl

(
un+1

j+1+l +un+1
j+l −un+1

j−l −un+1
j−l−1

)
−

{
l−1

∑
i=−l

(
un

j−i +un
j−i−1

)
(γi+1− γi)+ γl

(
un

j+1+l +un
j+l−un

j−l−un
j−l−1

)}

=
l−1

∑
i=−l

(
un+1

j−i −un
j−i +un+1

j−i−1−un
j−i−1

)
(γi+1− γi)

+ γl
(
un+1

j+1+l +un+1
j+l −un+1

j−l −un+1
j−l−1−

[
un

j+1+l +un
j+l−un

j−l−un
j−l−1

])
= O(∆x2).

Then, we can write

Ea
2 =− λ

2
f (k)

N−1

∑
n=0

∑
j∈Z

sgn(un+1
j − k)

∫
I j

ϕ(x, tn)dx×

×
[(

V ′
(
ũn+1

a, j
)
−V ′

(
ũn

a, j
))(

ũn+1
a, j+1− ũn+1

a, j−1
)

+V ′
(
ũn

a, j
)(

ũn+1
a, j+1− ũn+1

a, j−1− ũn
a, j+1 + ũn

a, j−1
)]

+O(∆x).

Noting that γi = O(∆x) we have

ũn+1
a, j − ũn

a, j =
l

∑
i=−l

γi
(
un+1

j−i −un
j−i
)

= O(∆x),

and we conclude that Ea
2 = O(∆x). Analogously, we obtain

Eb
2 = ∆t f (k)

N−1

∑
n=0

∑
j∈Z

sgn
(
un

j − k
)
V ′
(
ũn

a, j
) ũn

a, j+1− ũn
a, j−1

2∆x

∫
I j

ϕ(x, tn)dx+O(∆x).

It remains to analyze E3. Another summation by parts gives us

E3 =−λ

2

N−1

∑
n=0

∑
j∈Z

{(
f
(
un

j ∨ k
)
− f
(
un

j ∧ k
))

V n
j

×
∫

I j

(
ϕ(x+∆x, tn)−ϕ(x−∆x, tn)

)
dx
}
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+
1
2

N−1

∑
n=0

∑
j∈Z

∣∣un
j − k

∣∣∫
I j

(
ϕ(x+∆x, tn)−2ϕ(x, tn)+ϕ(x−∆x, tn)

)
dx

=−∆t
N−1

∑
n=0

∑
j∈Z

{
sgn
(
un

j − k
)(

f
(
un

j
)
− f (k)

)
V n

j

×
∫

I j

ϕ(x+∆x, tn)−ϕ(x−∆x, tn)
2∆x

dx
}

+O(∆x).

To conclude we must show that

A := ∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣ũn
a, j∆x−

∫
I j

Ka ∗u(x, tn)dx
∣∣∣∣→ 0 as ∆→ 0,

B := ∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣ũn
a, j+1− ũn

a, j−
∫

I j

(∂xKa ∗u)(x, tn)dx
∣∣∣∣→ 0 as ∆→ 0.

First, we proceed for A . Using the definitions of ũn
a, j and γ , we find that

A = ∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣∣ l

∑
i=−l

∫
Ii

Ka(y)un
j−i∆xdy−

∫
I j

l

∑
i=−l

∫
Ii

Ka(y)u(x− y, tn)dydx

∣∣∣∣∣
= ∆t

N−1

∑
n=1

∑
j∈Z

∣∣∣∣∣ l

∑
i=−l

∫
Ii

∫
I j

Ka(y)un
j−i dxdy−

l

∑
i=−l

∫
Ii

∫
I j

Ka(y)u(x− y, tn)dxdy

∣∣∣∣∣
= ∆t

N−1

∑
n=1

∑
j∈Z

∣∣∣∣∣ l

∑
i=−l

∫
Ii

∫
I j

Ka(y)
(
un

j−i−u(x− y, tn)
)

dxdy

∣∣∣∣∣
≤ ∆t

N−1

∑
n=1

l

∑
i=−l

∫
Ii

Ka(y) ∑
j∈Z

∫
I j

∣∣un
j−i−u(x− y, tn)

∣∣dxdy.

Using the convergence of u∆ and the bound of Ka we get the result. Now, we continue
with B. Proceeding as above, we find that

B = ∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣∣ l

∑
i=−l

∫
Ii

Ka(y)
(
un

j+1−i−un
j−i
)

dy

−
∫

I j

l

∑
i=−l

∫
Ii

∂yKa(y)u(x− y)dydx

∣∣∣∣∣
≤ ∆t

N−1

∑
n=1

∑
j∈Z

∣∣∣∣∣ l−1

∑
i=−l+1

∫
Ii

(
Ka(y+∆x)−Ka(y)

)
un

j−i dy

−
∫

I j

l−1

∑
i=−l+1

∫
Ii

∂yKa(y)u(x− y)dydx

∣∣∣∣∣
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+∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣∫I−l

Ka(y)un
j+l+1 dy−

∫
I j

∫
I−l

∂yKa(y)u(x− y)dydx
∣∣∣∣

+∆t
N−1

∑
n=1

∑
j∈Z

∣∣∣∣−∫Il

Ka(y)un
j−l dy−

∫
I j

∫
Il

∂yKa(y)u(x− y)dydx
∣∣∣∣ .

The last two terms of the last inequality are O(∆x) since ∂xKa is bounded and Ka(2a) = 0.
Finally, we use a Taylor expansion and the convergence of u∆ to get the result for almost
all k ∈ R. Proceeding as in Lemmas 4.3 and 4.4 of [63] we may extend the analysis to all
k ∈ R. 2

2.5.3 An additional regularity result for α = 0

Lemma 2.5.5 Assume that α = 0. Then the numerical solution generated by (2.31) con-
verges to a Lipschitz continuous function u provided u0 is also Lipschitz continuous.

Proof. Defining wn
j+1/2 := (un

j+1−un
j)/∆x we obtain from (2.31)

wn+1
j−1/2 = wn

j+1/2

(
1
2
− λ

2
V n

j+1

)
+wn

j−3/2

(
1
2

+
λ

2
V n

j+1

)
−wn

j−1/2
λ

2
∆+V n

j

−wn
j−3/2

λ

2
(
V n

j+1−V n
j−2
)
−un

j−1
λ

2∆x

(
∆

2V n
j +∆

2V n
j−1
)
.

Using the CFL condition we have

∣∣wn+1
j−1/2

∣∣≤ ∣∣wn
j+1/2

∣∣(1
2
− λ

2
V n

j+1

)
+
∣∣wn

j−3/2

∣∣(1
2

+
λ

2
V n

j+1

)
+

λ

2

∣∣wn
j−1/2

∣∣ ∣∣∆+V n
j
∣∣

+
λ

2

∣∣wn
j−3/2

∣∣ ∣∣V n
j+1−V n

j−2
∣∣+ ∣∣un

j−1
∣∣ λ

2∆x

∣∣∆2V n
j +∆

2V n
j−1
∣∣ .

Lemmas 2.3.1, 2.3.2 and 2.5.2 imply that there exist constants C9 and C10 such that∣∣wn+1
j−1/2

∣∣≤ ‖W n‖∞(1+C9∆t)+C10∆t.

Following the same steps as in the proof of Lemma 2.5.3 we obtain

∣∣wn+1
j−1/2

∣∣≤ ‖W 0‖∞ exp(C9T )
(

1+
C10

C9

)
.

To conclude we notice that

w0
j+1/2 =

u0
j+1−u0

j

∆x
=

1
∆x2

(∫ x j+3/2

x j+1/2

u0(y)dy−
∫ x j+1/2

x j−1/2

u0(y)dy

)
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=
1

∆x2

(∫ x j+1/2

x j−1/2

(
u0(y+∆x)−u0(y)

)
dy

)
≤ ‖u0‖Lip.

The next step is to prove an analogous estimate for the discrete time derivative. Using
(2.31) we can write

un+1
j −un

j =
un

j+1−un
j

2
−

un
j −un

j−1

2
− λ

2
V n

j+1
(
un

j+1−un
j−1
)

− λ

2
un

j−1
(
V n

j+1−V n
j−1
)
.

Multiplying this by ∆t−1 and using that ∆t = O(∆x) we find that there exists a constant
C11, which is independent of ∆, such that

un+1
j −un

j

∆t
=

un
j+1−un

j

2∆t
−

un
j −un

j−1

2∆t
−

V n
j+1

2∆x

(
un

j+1−un
j−1
)
−

un
j−1

2∆x

(
V n

j+1−V n
j−1
)

≤C11


∣∣∣un

j+1−un
j

∣∣∣
2∆x

+

∣∣∣un
j −un

j−1

∣∣∣
2∆x

− V n
j+1

2∆x

(
un

j+1−un
j−1
)

−
un

j−1

2∆x

(
V n

j+1−V n
j−1
)

Then, using that u∆ is Lipschitz continuous respect to the space variable and Lemma
2.3.1, we get that the solution generated by the numerical method converges to a Lipschitz
continuous function. 2

Remark 2.5.2 Lemma 2.5.5 is not a surprise since in the simplest case, V constant, the
conservation law becomes a linear advection equation, whose solution has a regularity
that is the same as that of the initial data. Moreover, the limit function u will be a Lipschitz
continuous weak solution of (2.1), (2.2) will automatically be an entropy solution, and
stability and uniqueness are immediate from Theorem 2.4.1.

2.5.4 Comparison with the analysis by Zumbrun [114]

The equation studied by Zumbrun, (2.12), is equivalent (up to a coordinate transforma-
tion) to (2.1) with α = 0 and V (w) = w. The local existence of a bounded solution u with
bounded spatial derivative ux (provided that u0 has corresponding properties) is proved
in [114] by a fixed-point argument applied to the transport equation ut +(uKa ∗ v)x = 0
with given v. In general, global solutions inherit their regularity from u0; in particular, if
TV(u0) is bounded, then (2.12) will have a BV solution u, which is unique following an L1

argument with a discussion of entropy production terms at isolated discontinuities. In the
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present work, existence of a solution of (2.1), (2.2) is shown by the convergence of a diffe-
rence scheme, covering a wider range of cases of α and V . Moreover, our Lemma 2.5.5
is a rough equivalent of Zumbrun’s result concerning the regularity of u in terms of that
of u0. Both the analysis of [114] and ours rely on estimates on u or u∆ that blow up when
a→ 0. This holds, in particular, for the L∞-stability estimates of [114, Sect. 2]. However,
as is shown in [114, Sect. 4], an L2-stability argument can be invoked to prove that smooth
solutions of (2.12) converge in L∞ at an O(a2) rate to smooth solutions of ut +(u2)x = 0.
(Of course, this result holds for smooth u0 and a sufficiently small final time T .) The
proof of this result in [114] depends on the linearity of V , and does not carry over to more
general functions V or to α = 1.

A detailed discussion is devoted in [114] to the existence of travelling wave so-
lutions to (2.12) and (2.14), that is, of solutions of the form u(x, t) = ϕ(x− st) with
ϕ(ξ ) → ϕ(±∞) as ξ → ∞ with either ϕ(∞) 6= ϕ(−∞), as for a “viscous shock”, or
ϕ(∞) = ϕ(−∞) corresponding to a solitary wave solution. (The “viscous shock”-type
solution is of particular interest in the context of the sedimentation model, since it corres-
ponds to the evolution of the suspension-supernate interface.) Roughly speaking, the re-
sult of [114] is that neither (2.12) nor (2.14) admit viscous shocks, but that both equations
do admit solitary wave solutions. However, as mentioned in Section 2.1.4, solutions of
(2.14) with an additional diffusion term duxx, d > 0 with Riemann-like initial data do
converge to a stable oscillatory travelling wave of “viscous shock” type. The analysis
of travelling waves for (2.1) is outside the scope of this contribution, but the numerical
results presented in Section 2.6 suggest that (2.1) for all values of α with a nonlinear
function V equally supports oscillatory travelling waves of “viscous shock” type.

2.6 Numerical Examples

The numerical examples illustrate the qualitative behaviour of the solutions of (2.1),
(2.2), with α = 0 and α ≥ 1, and demostrate the convergence properties of the nume-
rical scheme. For the first purpose, we select a relatively fine discretization and present
the corresponding numerical solution as profiles at selected times, while the convergence
properties of the scheme are illustrated by partly including error histories in some exam-
ples.

2.6.1 Example 1

We calculate the numerical solution of (2.1), (2.2) with α = 0 for the hindered settling
factor (2.3) with n = 5, and the kernel K given by (2.13) with a = 0.2. We are especially
interested in phenomena produced at the suspension-supernate interface of a sedimenting
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Figure 2.1: Example 1: Numerical solution of (2.1), (2.2) with α = 0 and a = 0.2 for
the hindered settling factor (2.3) with n = 5, for an initially concentrated suspension at
t = 2.5, 5, 10 and 20.

suspension, and therefore employ the following Riemann initial data corresponding to the
initial state of this interface for a concentrated and a dilute suspension, respectively:

u0(x) =

{
0.0 for x≤ 0.2,

0.6 for x > 0.2,
and u0(x) =

{
0.0 for x≤ 0.2,

0.01 for x > 0.2.
(2.40)

In both cases we use ∆x = 0.0005 and λ = 0.2. The results are shown in Figures 2.1
and 2.2 for the respective cases of an initially concentrated and dilute suspension. As
predicted in Section 2.2.2, we obtain the formation of layers of mass due to the non-
constancy of the initial data. We also plot the corresponding solution for the local equation
(2.4), which we call the “Kynch solution.”

We can conjecture from these simulations, that even though u0 is not smooth, the
presence of the kernel has a regularizating effect since we do not observe the formation
of discontinuities. Moreover, we see that the numerical solution is not in [0,1] for the
concentrated suspension accordingly with Lemma 2.5.2 even though u0 assumes values
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Figure 2.2: Example 1: Numerical solution of (2.1), (2.2) with α = 0 and a = 0.2 for the
hindered settling factor (2.3) with n = 5, for an initially dilute suspension at t = 1, 2, 3
and 7.

from that interval. In Table 2.1 we show the error at t1 = 1 and t2 = 3 in the L1 norm
for u (denoted by eti

c/d, i = 1,2) where we take as a reference the solution calculated
with ∆x = 0.0005. As expected for the Lax-Friedrichs method, we obtain an experimental
order of convergence one. In addition to Table 2.1 we show in Figure 2.3 the “graphical”
approximation.

2.6.2 Example 2

We study now the behaviour of the numerical solution to (2.1), (2.2) with α = 1. We
use V as given by (2.3) with n = 4 and K given by (2.13) with a = 0.2. We again utilize the
initial datum (2.40) with ∆x = 0.0005 and λ = 0.2. The results are plotted in Figures 2.4
and 2.5.

We observe the presence of layers but of smaller amplitude than those observed in
Example 3.5.1. We explain this by the different flux function. We also observe more pro-
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∆x et1
c

conv.
rate et2

c
conv.
rate et1

d
conv.
rate et2

d
conv.
rate

1.00E-2 8.62E-3 - 1.33E-2 - 1.29E-4 - 2.25E-4 -
5.00E-3 6.24E-3 0.47 1.07E-2 0.31 8.34E-5 0.63 1.53E-4 0.56
4.00E-3 5.45E-3 0.60 9.07E-3 0.46 7.10E-5 0.72 1.33E-4 0.61
2.00E-3 3.26E-3 0.74 6.37E-3 0.61 3.91E-5 0.86 7.89E-5 0.75
1.25E-3 1.99E-4 1.05 4.11E-3 0.93 2.27E-5 1.16 4.73E-5 1.09

Table 2.1: Example 1: Numerical error for u at t1 = 1 and t2 = 3.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

u

t=10

 

 

∆ x=0.0005
∆ x=0.002
∆ x=0.01

1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

x 10
−3

x

u

t=3

 

 

∆ x=0.0005
∆ x=0.002
∆ x=0.01

Figure 2.3: Example 1: Numerical solution of (2.1), (2.2) with α = 0 and a = 0.2 for the
hindered settling factor (2.3) with n = 5 for ∆x = 0.01, ∆x = 0.002 and ∆x = 0.0005.

nounced gradients in the solution, which is in agreement with results proved in Section
2.5. In Table 2.2 we show the error at t1 = 1 and t2 = 3 in the L1 norm for u where we take
as a reference the solution calculated with ∆x = 0.0005 as in Example 3.5.1. We again get
an experimental order of convergence one. Figure 2.6 shows the graphical approximation.

2.6.3 Example 3

We now examine how changes in the parameter a affect qualitatively the numerical
solution of (2.1), (2.2) for α = 0 and α = 1. We use (2.3) with n = 5 for α = 0 and
correspondingly, (2.3) with n = 4 for α = 1. In both cases, K is given by (2.13) with the
parameter a = 0.4, 0.2, 0.1 and 0.01. The initial datum is (2.40) for the two cases of a
concentrated and a dilute suspension with ∆x = 0.0005 and λ = 0.2. Figure 2.7 shows the
results at t = 10 and t = 7 in the concentrated and dilute case, respectively.

The case a = 0.01 was calculated with ∆x = 0.0002 since if we consider the parameter
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Figure 2.4: Example 2: Numerical solution of (2.1), (2.2) with α = 1 and a = 0.2 for the
hindered settling factor (2.3) with n = 4 for an initially concentrated suspension at t = 2.5,
5, 10 and 20.

a “close” to ∆x we get the Kynch result because the stencil of the convolution includes
just a few points, and the numerical scheme can be viewed as a mollification scheme [1].
We observe a more strongly oscillatory behaviour with a = 0.2 and a = 0.1, and that the
period of the oscillation is proportional to the value of a for both cases. The peak in the
case α = 0 occurs for a = 0.4 and in the case α = 1 there is no difference between the peak
with a = 0.2 and a = 0.4. We explain this by the dispersive behaviour of the formulation.

2.6.4 Example 4

The idea of the present example is try to reproduce the layered sedimentation observed
by Siano [109] in a batch process. The obvious difficulty appears when we are “close” to
the boundary since in a batch process we have a zero flux condition and for the numerical
computations we have to extrapolate values in order to compute the numerical fluxes. To
solve this problem, we assume that outside the volume control we have initial concentra-
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Figure 2.5: Example 2: Numerical solution of (2.1), (2.2) with α = 1 and a = 0.2 for the
hindered settling factor (2.3) with n = 4 for an initially dilute suspension at t = 1, 2, 3 and
7.

tion values, 0 to the left and 1 to the right. In Figures 2.8 and 2.9 we show the numerical
results for α = 1, with V (u) = (1−u)4, K as in (2.13), a = 0.025, ∆x = 0.00025, λ = 0.5
and the respective initial datum for concentrated and dilute suspensions given by

u0(x) =


0 for x < 0,

0.5 for 0≤ x < 1,

1 for x≥ 1

and u0(x) =


0 for x < 0,

0.05 for 0≤ x < 1,

1 for x≥ 1.

(2.41)

In each figure we also plot the solution obtained by the local model (Kynch solution). We
observe that the layers smooth after a while.

2.6.5 Example 5

In Figures 2.10–2.12 we plot the solution for u∆ for α = 1, with V (u) = (1−u)4, K as
in (2.13), a = 0.025 and a = 0.05 and we consider two different initial data. For the first
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∆x et1
c

conv.
rate et2

c
conv.
rate et1

d
conv.
rate et2

d
conv.
rate

1.00E-2 7.06E-3 - 9.66E-3 - 1.28E-4 - 2.22E-4 -
5.00E-3 4.67E-3 0.59 6.93E-3 0.48 8.18E-5 0.64 1.46E-4 0.60
4.00E-3 3.95E-3 0.76 5.97E-3 0.67 6.96E-5 0.73 1.27E-4 0.63
2.00E-3 2.08E-3 0.92 3.30E-3 0.86 3.83E-5 0.86 7.43E-5 0.77
1.25E-3 1.15E-3 1.26 1.84E-4 1.24 2.22E-5 1.16 4.43E-5 1.10

Table 2.2: Example 2: Numerical error for u at t1 = 1 and t2 = 3.
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Figure 2.6: Example 2: Numerical solution of (2.1), (2.2) with α = 1 and a = 0.2 for
the hindered settling factor (2.3) with n = 4 for an initially concentrated (left) and dilute
(right) suspension for ∆x = 0.01, ∆x = 0.002 and ∆x = 0.0005.

one we take u0 as in Example 4 and u0 given by

u0(x) =


0 for x < 0,

0.4+0.2x for 0≤ x < 1,

1 for x≥ 1

(2.42)

for the concentrated case and

u0(x) =


0 for x < 0,

0.04+0.02x for 0≤ x < 1,

1 for x≥ 1,

(2.43)

for the dilute case. We also use a nonlinear scale in color in order to highlight the layering
phenomenon, which is supposed to appear in the range of concentrations close to the
initial concentration. We observe the presence of layers in the case with u0 given by the
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Figure 2.7: Example 3: Numerical solution of (2.1), (2.2) for the indicated values of α

with a = 0.4, 0.2, 0.1 and 0.01 (top) for an initially concentrated suspension, at t = 10
and (bottom) for an initially dilute suspension, at t = 7.

Riemann data (2.41) in a more pronounced form than for the linear initial data (2.42) and
(2.43). As we explain in Section 2.2.2, the presence of layers occurs only if the initial
concentration exhibits strong variation, e.g. a jump between zero and a positive constant.
We also see, comparing Figures 2.10 and 2.12, that the “width” of the layer is proportional
to the parameter a.

2.7 Conclusions

We study a greater variety of models than the one proposed in [114], which corres-
ponds to α = 0 and a linear function V . The model corresponding to α = 1 is consis-
tent with (2.18) and (2.19) in the dilute limit ϕ → 0, but assumes values in [0,1] only
and therefore can be applied to the whole range of concentrations. The treatment of the
boundary conditions can possibly be improved. Our analysis shows that a reasonably sim-
ple difference-quadrature schemes converges to the entropy solution. However, since it is
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based on the Lax-Friedrichs scheme, high-order versions should be used for practical
computations.

We have conducted numerical experiments aiming at assessing whether (2.1) can pos-
sibly explain the phenomenon of layering in sedimentation. The numerical experiments,
and especially the plots of Figures 2.10–2.12, illustrate that (2.1) indeed produces patterns
that are similar to layering, namely vertical fluctuations of concentration of O(a) with be-
neath the suspension-supernate interface. These oscillatory travelling waves of “viscous
shock” type disappear when they start to interfere with solution information propagating
upwards (in the direction of decreasing x). One should mention, however, that this phe-
nomenon differs from “layering” as observed by Siano [109] in that the solution exhibits
oscillations rather than staircasing. As mentioned in [114] it would be interesting to ex-
plore further whether (2.1) produces solutions more similar to the staircasing phenomenon
if this equation were equipped with additional standard or nonstandard diffusion terms.

Finally, a systematic travelling wave analysis of (2.1), which would extend the results
of [114], is still lacking. Such an analysis could explain whether new phenomena, e.g.
nonclassical shocks, should be expected when one considers the formal limit a→ 0 of en-
tropy solutions of (2.1), especially in the case α ≥ 1. Unfortunately, most of the constants
appearing in the compactness estimates of Section 2.5.1 are not uniform with respect to a,
i.e. they blow up when a→ 0. It is therefore not clear at the moment whether a sequence
of entropy solutions converges to a meaningful limit as a→ 0.
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Figure 2.8: Example 4: Numerical solution of (2.1), (2.2) with α = 1 for the hindered
settling factor (2.3) with n = 4 and a = 0.025 for an initially concentrated suspension.
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Figure 2.9: Example 4: Numerical solution of (2.1), (2.2) with α = 1 for the hindered
settling factor (2.3) with n = 4 and a = 0.025 for an initially dilute suspension.
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Figure 2.10: Example 5: Numerical solution of (2.1), (2.2) with α = 1 for the hindered
settling factor (2.3) with n = 4 and a = 0.025 for an initially concentrated (above) and
dilute (below) suspension with u0 constant.
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Figure 2.11: Example 5: Numerical solution of (2.1), (2.2) with α = 1 for the hindered
settling factor (2.3) with n = 4 and a = 0.05 for an initially concentrated (above) and
dilute (below) suspension with u0 constant.
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Figure 2.12: Example 5: Numerical solution of (2.1), (2.2) with α = 1 for the hindered
settling factor (2.3) with n = 4 and a = 0.025 for an initially concentrated (above) and
dilute (below) suspension with a linear initial concentration u0.



Chapter 3

Finite-Volume Schemes for Friedrichs
Systems with Involutions

In applications solutions of systems of hyperbolic balance laws often have to satisfy
additional side conditions. We consider initial value problems for the general class of
Friedrichs systems where the solutions are constrained by differential conditions given
in the form of involutions. These occur in particular in electrodynamics, electro- and
magnetohydrodynamics as well as in elastodynamics. Neglecting the involution on the
discrete level typically leads to instabilities.
To overcome this problem in electrodynamical applications it has been suggested in Munz
et al. (2000) to solve an extended system. Here we suggest an extended formulation to the
general class of constrained Friedrichs systems. It is proven for Finite-Volume schemes
that the discrete solution of the extended system converges to the weak solution of the
original system for vanishing discretization and extension parameter under appropriate
scalings. Moreover we show that the involution is weakly satisfied in the limit. The proofs
rely on a reformulation of the extension as a relaxation-type approximation and careful
use of the convergence theory for Finite-Volume methods for systems of Friedrichs type.
Numerical experiments illustrate our analytical results.

3.1 Introduction

In this chapter, we study linear systems of balance laws, namely (m×m)-systems
of Friedrichs [50] type with m ∈ N. We consider the spatially d-dimensional case with
d ≥ 2, space coordinates x = (x1, . . . ,xd)T , and time t ≥ 0. For T > 0, let G1, . . . ,Gd,D :
Rd × [0,T ]→ Rm×m and f : Rd × [0,T ]→ Rm be given (matrix-valued) functions. We
suppose that the matrices G1(x, t), . . . ,Gd(x, t) are symmetric for all (x, t) ∈ Rd . Then the
initial value problem for the unknown vector-valued function u : Rd× [0,T ]→ Rm takes

79
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the form

∂

∂ t
u(x, t)+

d

∑
i=1

∂

∂xi

(
Gi(x, t)u(x, t)

)
+D(x, t)u(x, t) = f (x, t), (3.1)

u(x,0) = u0(x). (3.2)

Here u0 : Rd → Rm denotes the initial function. Moreover we require the solution u to
satisfy a linear differential side condition of the form

d

∑
i=1

Mi
∂

∂xi
(u(x, t)) = 0,

(
(x, t) ∈ Rd× [0,T )

)
. (3.3)

Here Mi, i = 1, . . . ,d, are constant (m×m)-matrices. Following the notion of Dafermos
[39, 40] for the side condition (3.3), we restrict ourselves to involutions.

Definition 3.1.1 The differential constraint (3.3) is called an involution for the system
(3.1) if and only if any (weak) solution of (3.1)-(3.2) (weakly) satisfies (3.3), whenever
the initial data do so.

Involutions appear frequently in applications. We mention the classical Maxwell system to
describe electrodynamical processes (cf.[75]). The divergence of the electrical and mag-
netical field is constrained in this case. The induction equations in the (in)compressible
electro- and magnetohydrodynamical equations provide similar examples but with (x, t)-
dependence in the flux (Sect. 3.5 below). Solutions of the equations of linear elasticity
have to satisfy compatibility conditions on the deformation gradient, which result in an
involutionary condition (cf. Chapter 5 of [39]) Yet another example is the linear piezoelec-
trical system (see [84]). In Sect. 3.5 we present some of these examples in more detail.
Let us mention that involutions of course appear also in the more challenging case of
nonlinear conservation laws. Again magnetohydrodynamics [38], electrohydrodynamics,
nonlinear elasticity systems, but also Einstein’s equations of general relativity are promi-
nent examples.
On the analytical level an involutionary side condition is not problematic. The well-
posedness for (3.1)-(3.3) is well known from [39]. By definition the involution (3.3) is
satisfied. Also standard numerical schemes are known to converge. However, without
consideration of (3.3) in the numerical scheme the residuum in the side condition usually
grows with increasing time. In coupled processes this is a typical source of instabilities
(cf.[88] and cites therein). Therefore a wide range of stabilization methods has been sug-
gested (e.g. [4, 20, 35, 58, 89]).
The motivation for this contribution is the work of Munz et al. [89]. They introduced
in particular the so-called hyperbolic Generalized Lagrangian Multiplier Finite Volume
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method (GLM-FV) to compute approximate solutions for Maxwell’s system of linear
electrodynamics. We formulate this approach for the general problem (3.1)-(3.2) with
involution (3.3). While the original approach is motivated by a generalization of a Finite-
Element type method [4] for a constrained wave equation we consider the approach as the
approximation of (3.1)-(3.3) by an extended relaxation-type system. Relaxation approxi-
mations of systems of conservation laws have been intensively studied in the last decade
(see [113] for an overview).
To be precise let a, ε > 0 and u0, ψε

0 : Rd → Rm be given. Consider the following initial
value problem for the unknown function:
wε : Rd× [0,T ]→ R2m, wε := (uε

1, . . . ,u
ε
m,ψε

1 , . . . ,ψε
m)T

satisfying

∂

∂ t
uε +

d

∑
i=1

∂

∂xi

(
Gi(x, t)uε

)
+MT

i
∂

∂xi
ψ

ε +D(x, t)uε = f (x, t), (3.4)

∂

∂ t
ψ

ε +
d

∑
i=1

Mi

ε

∂

∂xi
uε +aψ

ε = 0, (3.5)

and
uε(x,0) = uε

0(x), ψ
ε(x,0) = ψ

ε
0 (x). (3.6)

We will show in Section 3.2 that the initial value problem for the extended system
(3.4)-(3.6) is well-posed. For vanishing parameter ε we prove under mild assumptions on
the coefficients (see Proposition 3.2.1) that uε = u, a.e., where u is the solution of (3.1)-
(3.2). In Section 3.3 we present the Generalized Lagrangian Multiplier Finite Volume
Method (GLM-FV) for the general system (3.1)-(3.3). For mesh parameter h > 0 this gives
us the mesh function uε

h : Rd × [0,T ]→ Rm. The method will be analyzed in Sect. 3.4.
By careful investigation of the convergence theory from Vila and Villedieu [112] and
Jovanovic and Rohde [59] we obtain (see Theorem 3.4.1)

‖uε
h−uε‖L2(Rd×[0,T ];Rm) = O

(
ε
−1/4 h1/2

)
(3.7)

The crucial fact is that the estimate does not depend critically on the parameter ε . This
expresses the dissipative character of the approximation (3.4)-(3.6). Moreover we will
show that the weak constraint error goes to zero if h and ε vanishes (Corollary 3.4.1).

Up to our knowledge convergence statements as Corollary 3.4.1 have not been derived
for any of the existing methods to handle involutionary systems ([4, 20, 35, 58, 89]) .
The assumptions, definitions, general results on Friedrichs systems and some notation
are summarized in Section 3.2, while Section 3.3 is devoted to the numerical scheme.
Section 3.4 contains the analysis of the scheme and in particular the proofs of the main
convergence theorems (Theorem 3.4.1 and Corollary 3.4.1). In the last section we present
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applications and numerical examples.
Finally we comment on related work for nonlinear systems of hyperbolic balance laws.
The approach of Munz et al. [89] has been transferred to the system of compressible mag-
netohydrodynamics in [41]. Discontinuous-Galerkin methods with locally divergent-free
ansatz functions have been introduced in [80] and studied for the MHD equations in [20].
Even much earlier Powell [99] suggested an (non-relaxation) extension of the magnetohy-
drodynamical system, see also [45]. A general approach can be found in Torrilhon [106],
which has been applied to nonlinear systems in [49] and in [57].

3.2 Preliminaries

For d,m ∈ N we denote by L2(Rd;Rm), H1(Rd;Rm) the usual Lebesgue and Sobolev
spaces equipped with the norms ‖·‖L2(Rd ;Rm), ‖·‖H1(Rd ;Rm), respectively. C0,1

b (Rd× [0,T ])
is the set of bounded, Lipschitz continuous functions on Rd × [0,T ]. Furthermore, for
l ∈ N we need the Bochner spaces Cl([0,T ];X) and L2(0,T ;X) where X is an arbitrary
function space. The corresponding norms are denoted by ‖ · ‖Cl([0,T ];X) and ‖ · ‖L2(0,T ;X).
For M : Rd× [0,T ]→ Rm×m we define

‖M‖= sup
(x,t)∈Rd×[0,T ]

‖M(x, t)‖2,

where ‖ · ‖2 denotes the spectral norm. By C > 0 we denote a generic constant (that can
change from a line to the next!) independent on h and ε .

Definition 3.2.1 We say u∈ L2(0,T ;H1(Rd;Rm)) is called a weak solution of (3.1)-(3.3)
if

∫
Rd

∫ T

0

(
u · ∂ρ

∂ t
+

d

∑
i=1

Gi(x, t)u · ∂ρ

∂xi
−D(x, t)u ·ρ + f ·ρ

)
dxdt =

∫
Rd

u0(x) ·ρ(x,0)dx

(3.8)

holds for all ρ ∈C∞
0 (Rd× [0,T );Rm).

Recall that, since (3.3) is an involution (see Definition 3.1.1), it is satisfied automatically
in the weak sense for any weak solution. We specify all assumptions on the coefficients
in Assumption 3.2.1 below. We note that in particular the regularity statement (i) can be
relaxed, however, it does not lead to a better result in terms of the order of convergence.

Assumption 3.2.1 Consider the initial value problem (3.1)-(3.3).
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(i) The mappings D,G1, . . . ,Gd ∈C∞(Rd× [0,T ],Rm×m) satisfy

Gi(x, t)T = Gi(x, t) ∀(x, t) ∈ Rd× [0,T ] (i = 1, . . . ,d),
d

∑
i=1

(
‖∂ j

t ∂
α
x Gi‖+‖∂ j

t ∂
α
x D‖

)
< +∞ ∀α ∈ Nd

0, j ∈ N0.

(ii) The functions u0, f satisfy u0 ∈ H1(Rd;Rm), f ∈ L2(0,T ;H1(Rd;Rm)) and u0 also
satisfies (3.3).

(iii) The (m×m)-matrices Mi are constant for i = 1, . . . ,d.

We proceed with the presentation of the extended GLM formulation (3.4)-(3.6).

Definition 3.2.2 For a, ε > 0 the function (uε ,ψε)T ∈ L2(0,T ;H1(Rd;R2m)) is called a
weak solution of the extended problem (3.4)-(3.6) if

∫
Rd

∫ T

0

(
uε · ∂ρ

∂ t
+

d

∑
i=1

(
Gi(x, t)uε +MT

i ψ
ε
)
· ∂ρ

∂xi
−D(x, t)uε ·ρ + f ·ρ

)
dxdt

=
∫

Rd
u0(x) ·ρ(x,0)dx,∫

Rd

∫ T

0

(
ψ

ε · ∂ω

∂ t
+

d

∑
i=1

Mi

ε
uε · ∂ω

∂xi
−aψ

ε ·ω

)
dxdt =

∫
Rd

ψ
ε
0 (x) ·ω(x,0)dx,

holds for all ρ,ω ∈C∞
0 (Rd× [0,T );Rm).

This approach generalies the idea of Munz et al. [89] to arbitrary Friedrichs systems. The
small parameter ε has to be identified with the ratio Ch/Cp in Dedner et al. [41]. Note
that (at least formally) we recover the original formulation (3.1)-(3.3) by letting ε → 0 in
(3.4)-(3.6).
Regarding to the system (3.4)-(3.6) we use additional assumptions for the Lagrange mul-
tiplier ψε .

Assumption 3.2.2 For ε > 0 consider the initial value problem (3.4)-(3.6).

(i) Assumption 3.2.1 holds.

(ii) ψε
0 ≡ 0.

To analyze (3.1)-(3.3) one can use pseudo-differential calculus. We have the following
well-posedness result ([14], Chapter 2).
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Theorem 3.2.1 Suppose that Assumption 3.2.1 holds. Then there exists a unique weak
solution u of (3.1)-(3.2) and we have u ∈C([0,T ];H1(Rd;Rm)). In addition there exists
a constant C > 0 such that we have for t ∈ [0,T ] the estimate

‖u(·, t)‖H1(Rd ;Rm) +‖ut(·, t)‖L2(Rd ;Rm) ≤ C

(
‖u0‖H1(Rd ;Rm) +

∫ t

0
‖ f (·,s)‖H1(Rd ;Rm)ds

)
.

Moreover, if u0 ∈C∞
0 (Rd;Rm) and f ∈C∞

0 ([0,T ]×Rd;Rm) then u is a classical solution
and belongs to the space C∞

0 ([0,T ]×Rd;Rm).

The extended GLM formulation (3.4)-(3.6) is not symmetric. Therefore, we consider the
change of variables ϕε := ψε

√
ε . In a blockmatrix structure (3.4)-(3.6) read

∂

∂ t
Uε +

d

∑
i=1

∂

∂xi
(Aε,iUε)+BUε = F, Uε(x,0) = Uε

0 (x) :=
(

uε
0(x)
0

)
, (3.9)

with

Uε :=
(

uε

ϕε

)
; Aε,i :=

(
Gi MT

i√
ε

Mi√
ε

0

)
; B :=

(
D 0
0 aI

)
; F :=

(
f
0

)
.

In particular it is clear that we are again in the framework of symmetric systems and the
extended formulation leads to a hyperbolic system.

Remark 3.2.1 We note that from Assumption 3.2.2 we have ‖Aε,i‖ = O(ε−1/2), ‖B‖ =
O(a) and ‖divA‖= O(1) with divA := ∑

d
i=1(A

ε,i)xi .

We want a generic estimate (like in Theorem 3.2.1) for the system (3.9), but it is not clear
how the constant will depend on ε . However, an analogous estimate holds, i.e, we have
the following result.

Lemma 3.2.1 Let Assumption 3.2.2 be satisfied. There exists a constant C > 0, indepen-
dent of ε , such that for t ∈ [0,T ] we have

‖uε(·, t)‖2
H1(Rd ;Rm) +‖ϕ

ε(·, t)‖2
H1(Rd ;Rm) +‖u

ε
t (·, t)‖2

L2(Rd ;Rm) +‖ϕ
ε
t (·, t)‖2

L2(Rd ;Rm)

≤ C

(
‖u0‖2

H1(Rd ;Rm) +
∫ t

0
‖ f (·,s)‖2

H1(Rd ;Rm)ds
)

.

Proof. We compute the following energy estimates

d
dt

(∫
Rd

|uε |2

2
dx
)

+
∫

Rd

(
d

∑
i=1

uε ·Gi ∂uε

∂xi
+uε ·M

T
i√
ε

∂ϕε

∂xi

)
dx
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+
∫

Rd
(uε · (D+divG)uε −uε · f ) dx = 0,

d
dt

(∫
Rd

|ϕε |2

2

)
+
∫

Rd

(
d

∑
i=1

ϕ
ε · Mi√

ε

∂uε

∂xi
+a|ϕε |2

)
dx = 0.

We see that thanks to Assumption 3.2.2 (symmetry of Gi) we have

∂

∂xi

(
(Giuε)T uε

)
= 2(uε)T Gi ∂uε

∂xi
+(uε)T ∂Gi

∂xi
uε .

Adding the above energy estimates and using the last expression we obtain

d
dt

∫
Rd

(
|uε |2

2
+
|ϕε |2

2

)
dx+

∫
Rd

(
uε · (D+

1
2

divG)uε +a|ϕε |2
)

dx =
∫

Rd
f ·uε dx.

Using Assumption 3.2.2 (properties of D,G) and applying Gronwall inequality we get
finally ∫

Rd

(
|uε |2

2
+
|ϕε |2

2

)
dx≤ eC t

(∫
Rd
|u0|2 dx+

∫ t

0

∫
Rd
| f |2dxdt

)
.

Reasoning as above we find analogous estimates for ‖Uε
xi
‖2

L2(Rd ;R2m) with i = 1, . . . ,d.

In order to get estimates for ‖uε
t ‖ and ‖ϕε

t ‖ we use (3.9), the bound for ‖Uε‖2
L2(Rd ;R2m)

and ‖Uε
xi
‖2

L2(Rd ;R2m), Remark 3.2.1 and Assumption 3.2.1(ii). 2

With Lemma 3.2.1 we can conclude as in Theorem 3.2.1 that the following theorem
holds.

Theorem 3.2.2 Suppose that Assumption 3.2.2 holds. Then there exists a unique weak
solution Uε of (3.9) with Uε ∈C([0,T ];H1(Rd;R2m)). In addition there exists a constant
C > 0 independent of ε such that

‖uε(·, t)‖H1(Rd ;Rm) +‖ϕ
ε(·, t)‖H1(Rd ;Rm) +‖u

ε
t (·, t)‖L2(Rd ;Rm) +‖ϕ

ε
t (·, t)‖L2(Rd ;Rm)

≤ C

(
‖uε

0‖H1(Rd ;Rm) +
∫ t

0
‖ f (·,s)‖H1(Rd ;Rm) ds

)
.

Moreover, if Uε
0 ∈C∞

0 (Rd;R2m) and F ∈C∞
0 ([0,T ]×Rd;R2m) then Uε is a classical so-

lution and lies in the space C∞
0 ([0,T ]×Rd;R2m).

Now we are in a position to estimate the error ‖uε − u‖. The corresponding result in the
special case of electrodynamics can be found in [88].

Proposition 3.2.1 Let u be the weak solution of (3.1)-(3.3) and Uε = (uε ,ϕε)T the weak
solution of (3.9). Suposse that uε

0 = u0. Under Assumption 3.2.2, we have for all t ∈ [0,T ]

uε(·, t) = u(·, t), a.e.,

ψ
ε(·, t) = 0, a.e.
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Proof. Defining u := uε −u, a direct computation yields

d
dt

(∫
Rd

|u|2

2
dx
)

+
∫

Rd

(
d

∑
i=1

u ·Gi ∂u
∂xi

+u ·M
T
i√
ε

∂ϕε

∂xi

)
dx+

∫
Rd

(u · (D+divG)u)dx = 0,

d
dt

(∫
Rd

|ϕε |2

2
dx
)

+
∫

Rd

(
d

∑
i=1

ϕ
ε Mi√

ε

∂u
∂xi

+a|ϕε |2
)

dx = 0.

Adding the last two equations and using Assumption 3.2.2 (symmetry of Gi) we get

d
dt

∫
Rd

(
|u|2

2
+
|ϕε |2

2

)
dx+

∫
Rd

(
uT (D+

1
2

divG)u+a|ϕε |2
)

dx = 0,

which implies after applying Gronwall inequality and using that ‖u0‖L2(Rd ;Rm) = 0 the
estimate ∫

Rd

(
|u(·, t)|2 + |ϕε(·, t)|2

)
dx≤ C

∫
Rd
|ϕε

0 |2dx = 0.

2

Proposition 3.2.1 shows the equivalence of solutions of the extended formulation (3.9)
and the solution of the original problem (3.1)-(3.3) for ε > 0. However it is not clear how
ε can be chosen (asymptotically) in computations and whether the constraint (3.3) is
satisfied in the limit.

3.3 Finite-Volume Discretization

We approximate the solution of (3.9) by a Finite-Volume scheme on unstructured
meshes. This construction follows [59]. We begin with some standard generalities on
Finite-Volume schemes.

Definition 3.3.1 For some index set I ⊂N let a family
{

Ki}
i∈I of open non-empty sets be

given. This family is called a triangulation if each element is a convex polyhedron and

∪i∈IKi = Rd, Ki∩K j = /0 ∀i, j ∈ I i 6= j and h := sup
i∈I

{
diam(Ki)

}
< ∞.

We denote the family
{

Ki}
i∈I by Th and introduce the following notations for K ∈Th

|K| : area of K,

e ∈ ∂K : an edge of K with length |e|,
ne,K = (n1

e,K, . . . ,nd
e,K)T : unit outward normal to the edge e of K,

Ke : neighboring cell of K with K∩Ke = e.
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For N ∈ N, let 0 = t1 < t2 . . . < tN = T be a partition of the interval [0,T ]. We denote
∆tn = tn+1− tn for n ∈N ∪{N} ,N = {0, . . . ,N−1}.
For each n ∈ {0, . . . ,N} ,K ∈Th, and e ∈ ∂K we define for S : Rd× [0,T ]→ R2m

Sn
K :=

1
∆tn|K|

∫ tn+1

tn

∫
K

S(x, t)dxdt, Sn
e :=

1
∆tn|e|

∫ tn+1

tn

∫
e
S(ζ , t)dζ dt,

SK(t) :=
1
|K|

∫
K

S(x, t)dx, Se(t) :=
1
|e|

∫
e
S(ζ , t)dζ .

For the sake of clarity we summarize all the assumptions on the mesh.

Assumption 3.3.1 Let Th be a triangulation (Def. 3.3.1) of Rd . There exist constants
η > 0 and ν > 0 such that

|K| ≥ ηhd, |∂K| ≤ νhd−1 (∀K ∈Th,∀e ∈ E (K)).

Moreover we assume that the time step ∆t is constant, i.e., ∆tn = ∆t.

Definition 3.3.2 The GLM-FV approximation Uε
h := (uε

h,ϕ
ε
h )T : Rd × [0,T )→ R2m of

(3.1)-(3.3) with initial data Uε
0 = (uε

0,ϕ
ε
0 )T is given by

Uε
h (x, t) = V ε,n

k for (x, t) ∈ K× [tn, tn+1).

The vectors V ε,n
K ∈ R2m are given for n = 0 and K ∈Th by

V ε,0
K =

1
|K|

∫
K

Uε
0 (x)dx,

and iteratively for n ∈N by

V ε,n+1
K = V ε,n

K − ∆t
|K| ∑

e∈∂K
|e|gn

e,K(V ε,n
K ,V ε,n

Ke
)−∆tBn

KV ε,n
K +∆tFn

K . (3.10)

The numerical flux gn
e,K : R2m×R2m→ R2m is defined for K ∈Th and e ∈ ∂K by

gn
e,K(U,V ) =−Cε,n

e,KV +Dε,n
e,KU, (3.11)

with

Aε,n
e,K :=

d

∑
i=1

ni
e,K(Aε,i)n

e , Cε,n
e,K :=−OT

Λ
−O, Dε,n

e,K := OT
Λ

+O, (3.12)

and
Aε,n

e,K = OT
Λ

+O+OT
Λ
−O, (3.13)

where Λ+(Λ−) is a diagonal matrix which entries are the positive (negative) eigenvalues
of Aε,n

e,K .



88 Chapter 3. Finite-Volume Schemes for Friedrichs Systems with Involutions

As long as a, ε are fixed in Definition 3.3.2 the GLM-FV method gives an approximate
for the weak solution of (3.1)-(3.3). However, we will choose ε = ε(h) with ε(h)→ 0 as
h→ 0, so that the GLM-FV method is supposed to fulfill the constraint (3.3) whenever
the classical FVM do not. This is the problem to solve. The crucial question here is how
to determine ε(h) to get (an optimal order of) convergence and to fulfill the side condition
(3.3).

Remark 3.3.1 (i) Note that thanks to the hyperbolicity of the formulation the decom-
position (3.13) makes sense.

(ii) The Definition 3.3.2 leads to a consistent upwind numerical scheme. Note that we
have the symmetric relation Cε,n

e,K = Dε,n
e,Ke

. This leads to gn
e,K(U,V ) = −gn

e,Ke
(V,U)

for U,V ∈ R2m and ensures that the scheme is conservative.

(iii) Using (ii) the iteration (3.10) can be written as

V ε,n+1
K = V ε,n

K − ∆t
|K| ∑

e∈∂K
|e|Cε,n

e,K(V ε,n
K −V ε,n

Ke
)−∆t

(
Bn

KV ε,n
K +divAn

KV ε,n
K −Fn

K
)
.

(3.14)

(iv) We note that since ‖Cε,n
e,K‖ is a function of Aε,i we have that ‖Cε,n

e,K‖ = O
(

ε−1/2
)

and ‖Bn
K‖= O(a).

3.4 Convergence of the GLM-FV scheme

Our main goal in this section is to determine how the incorporation of ε = ε(h) affects
the rate of convergence of the component uε

h of Uε
h given by Definition 3.3.2 to the solution

u of (3.1)-(3.3) as h→ 0. To do this we carefully track the parameter ε in the constants
that appear in the finite volume error analysis in [112] (see [59]). We assume throughout
this section that Assumptions 3.2.1-3.3.1 hold.

3.4.1 Stability results

We start with a result that can be seen as a local stability lemma.

Lemma 3.4.1 Under the CFL condition

sup
K∈Th,e∈∂K

∆t|∂K|‖Cε,n
e,K‖

|K|
< 1−δ , δ ∈ (0,1) (3.15)
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the solution Uε
h generated by the GLM-FV method satisfies

|V ε,n+1
K |2−|V ε,n

K |
2 +2∆t(V ε,n+1

K )T [Bn
KV ε,n

K +divAn
KV ε,n

K −Fn
K ]

+
∆t
|K| ∑

e∈∂K
|e|
(
(V ε,n

K )TCε,n
e,KV ε,n

K − (V ε,n
Ke

)TCε,n
e,KV ε,n

Ke

)
≤−δ

∆t
|K| ∑

e∈∂K
(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )|e|. (3.16)

Proof. We represent V ε,n+1
K as the convex decomposition V ε,n+1

K =(∑e∈∂K |e|V
ε,n+1
e,K )/|∂K|.

Thereby we used (3.14) and

V ε,n+1
e,K := V ε,n

K − ∆t|∂K|
|K|

Cε,n
e,K(V ε,n

K −V ε,n
Ke

)−∆t((Bn
KV ε,n

K +divAn
KV ε,n

K −Fn
K).

We define also

W ε,n+1
e,K := V ε,n

K − ∆t|∂K|
|K|

Cε,n
e,K(V ε,n

K −V ε,n
Ke

). (3.17)

Scalar multiplication of W ε,n+1
e,K with V ε,n

K and the symmetry of Cε,n
e,K gives

1
2
|W ε,n+1

e,K |2− 1
2
|V ε,n

K |
2 =−∆t|∂K|

2|K|
(
(V ε,n

K )TCε,n
e,KV ε,n

K − (V ε,n
Ke

)TCε,n
e,KV ε,n

Ke

)
+Q, (3.18)

with

Q =
1
2
|W ε,n+1

e,K −V ε,n
K |

2− ∆t|∂K|
2|K|

(
(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )
)
.

A straightforward calculation shows that

Q =−∆t|∂K|
2|K|

(
(V ε,n

Ke
−V ε,n

K )TCε,n
e,K

[
I− ∆t|∂K|

|K|
Cε,n

e,K

]
(V ε,n

Ke
−V ε,n

K )
)

.

Here I is the unit matrix in R2m×2m. Using the CFL condition (3.15) we get

Q≤ ∆t|∂K|
2|K|

(V ε,n
Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

+(1−δ )
∆t|∂K|

2|K|
(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

=−δ
∆t|∂K|

2|K|
(
(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )
)
. (3.19)

From the convex decomposition of V e,n+1
K and (3.17) we also see

V ε,n+1
K = ∑

e∈∂K

|e|
|∂K|

(
W ε,n+1

e,K −∆t(Bn
KV ε,n

K +divAn
KV ε,n

K +∆tFn
K

)
.
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Scalar multiplication of the last expression with V ε,n+1
K yields

1
2
|V ε,n+1

K |2 =−∆t(V ε,n+1
K )T (Bn

KV ε,n
K +divAn

KV ε,n
K
)
+∆t(V ε,n+1

K )T Fn
K

+
1
2 ∑

e∈∂K

|e|
|∂K|

(
|W ε,n+1

e,K |2−|W ε,n+1
e,K −V ε,n+1

K |2
)

≤−∆t(V ε,n+1
K )T (Bn

KV ε,n
K +divAn

KV ε,n
K −Fn

K
)
+

1
2 ∑

e∈∂K

|e|
|∂K|
|W ε,n+1

e,K |2.

Replacing the expression for |W ε,n+1
e,K |2 in (3.18) and using (3.19) we finally obtain

1
2
|V ε,n+1

K |2 ≤ 1
2
|V ε,n

K |
2−∆t(V ε,n+1

K )T (Bn
KV ε,n

K +divAn
KV ε,n

K
)
+∆t(V ε,n+1

K )T Fn
K

− ∆t
2|K| ∑

e∈∂K
|e|
(
(V ε,n

K )TCε,n
e,KV ε,n

K − (V ε,n
Ke

)TCε,n
e,KV ε,n

Ke

)
−δ

∆t
2|K| ∑

e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K ).

2

With Lemma 3.4.1 we can now prove a global L2-stability result as discrete counter-
part to Lemma 3.2.1.

Proposition 3.4.1 Assume that the CFL condition (3.15) is satisfied for a given δ ∈ (0,1).
Then, for h≤ µ/2γ and ε ≤ 1, the GLM-FV approximation Uε

h satisfies for all 0≤ t ≤ T

‖Uε
h (·, t)‖L2(Rd ;R2m) ≤ C

(
‖Uε

0 ‖L2(Rd ;R2m) +‖F‖L2(0,T ;L2(Rd ;R2m))

)
. (3.20)

Here γ := 1+‖B‖+‖divA‖ and µ :=
√

ε supK∈Th,e∈∂K ‖C
ε,n
e,K‖. The constant C depend on

the data but not on ε . Moreover, the discrete space derivatives of Uε
h satisfy the following

weak estimate:

∑
n∈N

∑
K∈Th

∑
e∈∂K

(V ε,n
Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )|e|∆t

≤ C

δ

(
‖Uε

0 ‖L2(Rd ;R2m) +‖F‖L2(0,T ;L2(Rd ;R2m))
)2

. (3.21)

Again, the constant C > 0 depends only on the data of the problem.

Proof. First, by adding the nil quantity

−∆t ∑
e∈∂K

(V ε,n
K )T Aε,n

e,KV ε,n
K |e|+ |K|∆t(V ε,n

K )T divAn
KV ε,n

K
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to the R.H.S of (3.16), we obtain the following form of the local energy estimate:

|K||V ε,n+1
K |2

2
≤
|K||V ε,n

K |2

2
−∆t|K|(V ε,n+1

K )T ((Bn
KV ε,n

K +divAn
KV ε,n

K
)
−Fn

K
)

− ∆t
2 ∑

e∈∂K
|e|
(
(V ε,n

K )T Dn
e,KV ε,n

K − (V ε,n
Ke

)TCε,n
e,KV ε,n

Ke

)
+

∆t|K|
2

(V ε,n
K )T divAn

KV ε,n
K − δ

2
∆t ∑

e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K ).

(3.22)

Summing (3.22) over all volumes, we obtain

∑
K∈Th

|K||V ε,n+1
K |2 +δ∆t ∑

K∈Th

∑
e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

≤ ∑
K∈Th

|K|
(
|V ε,n

K |
2 +∆t(V ε,n

K )T divAn
KV ε,n

K
)

−2∆t ∑
K∈Th

|K|(V ε,n+1
K )T ((Bn

KV ε,n
K +divAn

KV ε,n
K
)
−Fn

K
)

≤ (1+κ∆t)‖Uε
h (tn, ·)‖2

L2(Rd ;R2m) +2∆t‖Uε
h (tn+1, ·)‖L2(Rd ;R2m)

(
∑

K∈Th

|K||Fn
K |2
)1/2

+2∆t(κ +β )‖Uε
h (tn+1, ·)‖L2(Rd ;R2m)‖U

ε
h (tn, ·)‖L2(Rd ;R2m)

Using that 2ab≤ a2 +b2, we get

‖Uε
h (tn+1, ·)‖2

L2(Rd ;R2m)(1−∆tγ)+δ∆t ∑
K∈Th

∑
e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

≤ (1+2γ∆t)‖Uε
h (tn, ·)‖2

L2(Rd ;R2m) +∆t ∑
K∈Th

|K||Fn
K |2. (3.23)

Using the hypothesis over h and ε we find γ∆t ≤ 1/2 (we remark that γ is independent of
ε). Hence we have 1≤ (1−∆tγ)−1 ≤ 1+2γ∆t and we deduce from (3.23) that:

‖Uε
h (tn+1, ·)‖2

L2(Rd ;R2m) +δ∆t ∑
K∈Th

∑
e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

≤ (1+2γ∆t)2‖Uε
h (tn, ·)‖2

L2(Rd ;R2m) +∆t(1+2γ∆t) ∑
K∈Th

|K||Fn
K |2

≤ (1+6γ∆t)‖Uε
h (tn, ·)‖2

L2(Rd ;R2m) +2∆t ∑
K∈Th

|K||Fn
K |2.

Iterating the last inequality, we get for any t ∈ [0,T ):

‖Uε
h (t, ·)‖2

L2(Rd ;R2m) + γ

N

∑
n=0

∑
K∈Th

∆t(1+C ∆t)N−n
∑

e∈∂K
|e|(V ε,n

Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )
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≤
(

1+C
T
N

)N

‖Uε
0 ‖2

L2(Rd ;R2m) +2
N

∑
n=0

∆t(1+C ∆t)N−n
∑

K∈Th

|K||Fn
K |2,

with N being the integer part of T/∆t and C := 6γ . We finally obtain that ∀t ∈ [0,T ):

‖Uε
h (t, ·)‖2

L2(Rd ;R2m) + γ

N

∑
n=0

∑
K∈Th

∑
e∈∂K

∆t|e|(V ε,n
Ke
−V ε,n

K )TCε,n
e,K(V ε,n

Ke
−V ε,n

K )

≤ exp(C T )
(
‖Uε

0 ‖2
L2(Rd ;R2m) +2‖F‖2

L2(0,T ;L2(Rd ;R2m))

)
.

2

3.4.2 A Comparison Result

In the next step we consider the difference between the exact solution Uε of (3.9) and
some function V ∈ L2(Rd× (0,T );R2m) in terms of residual errors. To achieve the main
result we will put V = Uε

h . Following the book of Kröner [68] we introduce two useful
measures.

Definition 3.4.1 Let V ∈ L2(Rd × (0,T );R2m) be given. The consistency measure µV :
C1([0,T ];L2(Rd;R2m))∩C([0,T ];H1(Rd;R2m))→ R and the dissipation measure νV :
C0,1

b (Rd×[0,T ])→R are defined for π ∈C1([0,T ];L2(Rd;R2m))∩C([0,T ];H1(Rd;R2m))
and ω ∈C0,1

b (Rd× [0,T ]) by

< µV ,π > :=−
∫ T

0

∫
Rd

(
V T

∂tπ +
d

∑
i=1

V T Aε,i
∂iπ

)
dxdt

+
∫ T

0

∫
Rd

(V T BT −FT )π dxdt−
∫

Rd
(Uε

0 )T
π(x,0)dx,

< νV ,ω > :=−
∫ T

0

∫
Rd

(
|V |2∂tω +

d

∑
i=1

V T Aε,iV ∂iω

)
dxdt

+
∫ T

0

∫
Rd

(
V T (divA+B+BT )V −2FTV

)
ω dxdt−

∫
Rd
|Uε

0 |2ω(x,0)dx.

We cite Proposition 2.4 of [59]

Proposition 3.4.2 Let Uε
0 ∈ C∞

0 (Rd;R2m), F ∈ C∞
0 ([0,T ]×Rd;R2m), V ∈ L2((0,T )×

Rd;R2m) be and define α := ‖B+BT +divA‖. Then we have∫ T

0

∫
Rd

exp(−αt)|Uε −V |2dxdt ≤< νV ,θ >−2 < µV ,θUε > (3.24)

where Uε is the exact solution of (3.9) and θ : [0,T ]→ R is defined by:
θ(t) = exp(−αt)(T − t) with t ∈ [0,T ].
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3.4.3 The Error Estimate

To prove Theorem 3.4.1 we will apply the estimate of Proposition 3.4.2 to the appro-
ximate solution Uε

h generated by the GLM-FV method.

Theorem 3.4.1 Under the CFL-condition (3.15), the GLM-FV approximation Uε
h con-

verges towards the solution Uε of (3.9) in L2([0,T ]×Rd;R2m). Moreover Uε
h satisfies the

following error estimate

‖Uε −Uε
h ‖L2([0,T ]×Rd ;R2m) ≤ C ε

−1/4h1/2. (3.25)

In (3.25) C is a positive constant that depends only on δ ,U0,F and T but not on ε .

In order to prove Theorem 3.4.1 we use a proposition of [112] and a lemma of [59]. We
recall that Uε

h ∈ L2([0,T ]×Rd;R2m) thanks to Proposition 3.4.1.

Lemma 3.4.2 (Proposition 5.1 in Vila and Villedieu (2003)) If we choose V = Uε
h in

Definition 3.4.1 we get

< µUε
h
,π >=

7

∑
l=1

Rl
h(π), < νUε

h
,ω >≤

7

∑
l=1

E l
h(ω)−δQε

h(ω),

where ω : Rd × [0,T ] → [0,∞) and π : Rd × [0,T ] → R2m are smooth functions with
compact support in x. Here we used

R1
h(π) = ∑

n∈N
∑

K∈Th

|K|(V ε,n+1
K −V ε,n

K )T (πK(tn+1)−π
n
K),

R2
h(π) = ∑

n∈N
∑

K∈Th

∑
e∈∂K

∆t|e|(V ε,n
K −V ε,n

Ke
)TCε,n

e,K(πn
e −π

n
K),

R3
h(π) =

∫
Rd

(Uε
h (x,0)−Uε

0 (x))T
π(x,0)dx,

R4
h(π) = ∑

n∈N
∑

K∈Th

(V ε,n
K )T

[
∑

e∈∂K
∆t|e|An

e,Kπ
n
e −

∫ tn+1

tn

∫
K

d

∑
i=1

∂

∂xi
(Aε,i

π)dxdt

]
,

R5
h(π) = ∑

n∈N
∑

K∈Th

∆t|K|(V ε,n
K )T

[
1

∆t|K|

∫ tn+1

tn

∫
K
(divA)πdtdx− (divA)n

Kπ
n
K

]
,

R6
h(π) =− ∑

n∈N
∑

K∈Th

∆t|K|(V ε,n
K )T

[
1

∆t|K|

∫ tn+1

tn

∫
K

BT
πdtdx− (Bn

K)T
π

n
K

]
,

R7
h(π) =− ∑

n∈N
∑

K∈Th

∆t|K|

[
1

∆t|K|

∫ tn+1

tn

∫
K

FT
πdtdx− (Fn

K)T
π

n
K

]
,
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E 1
h (ω) = ∑

n∈N
∑

K∈Th

|K|(|V ε,n+1
K |2−|V ε,n

K |
2)(ωK(tn+1)−ω

n
K),

E 2
h (ω) = ∑

n∈N
∑

K∈Th

∑
e∈∂K

∆t|e|(V ε,n
K −V ε,n

Ke
)TCε,n

e,K(V ε,n
K +V ε,n

Ke
)(ωn

e −ω
n
K),

E 3
h (ω) =

∫
Rd

(|Uε
h (x,0)|2−|Uε

0 (x)|2)ω(x,0)dx,

E 4
h (ω) = ∑

n∈N
∑

K∈Th

(V ε,n
K )T

[
∑

e∈∂K
∆t|e|An

e,Kω
n
e −

∫ tn+1

tn

∫
K

d

∑
i=1

∂

∂xi
(Aε,i

ω)dxdt

]
V ε,n

K ,

E 5
h (ω) = ∑

n∈N
∑

K∈Th

(V ε,n
K )T

[∫ tn+1

tn

∫
K

(
B+BT +2(divA)

)
ω dxdt

−|K|∆t(Bn
K +(Bn

K)T +2(divA)n
K)ωn

K

]
V ε,n

K ,

E 6
h (ω) = ∑

n∈N
∑

K∈Th

2∆t|K|(V ε,n
K )T

[
1

∆t|K|

∫ tn+1

tn

∫
K

Fω dxdt− (Fn
K)ωn

K

]
,

E 7
h (ω) =− ∑

n∈N
∑

K∈Th

2∆t|K|(V ε,n+1
K −V ε,n

K )T ((Bn
K +(divA)n

K)V ε,n
K −Fn

K
)

ω
n
K,

and
Qε

h(ω) = ∑
n∈N

∑
K∈Th

∑
e∈∂K

∆t|e|(V ε,n
Ke
−V n

K)TCε,n
e,K(V ε,n

Ke
−V ε,n

K )ωn
K.

Lemma 3.4.3 (Lemma 4.3 in Jovanovic and Rohde (2004)) Let z ∈ H1(K;R2m), then
there exists a constant C > 0 such that for K ∈Th∫

K
|z− zk|2dx≤ C h2

∫
K
|Dz|2dx,

∫
e
|z− zk|2dζ ≤ C h

∫
K
|Dz|2dx (e ∈ ∂K).

Here C depends only on d and m.

We conclude with the proof of Theorem 3.4.1.
Proof. We suppose first that Uε

0 ∈C∞
0 (Rd;R2m), F ∈C∞

0 ([0,T ]×Rd;R2m). Accordingly
to Theorem 3.2.2 we have Uε ∈ C∞

0 ([0,T ]×Rd;R2m). Applying Proposition 3.4.2 and
Lemma 3.4.2 with ω = θ and π = θUε we just have to estimate

7

∑
l=1

[
E l

h(θ)−2Rl
h(θUε)

]
−δQε

h(θ).

We first consider two terms that will appear many times in our calculation, namely

∑
n∈N

∑
K∈Th

θ
n|K||V ε,n+1

K −V ε,n
K |

2, ∑
n∈N

∑
K∈Th

|K||V ε,n+1
K −V ε,n

K |
2.
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From (3.14) we obtain

|V ε,n+1
K −V ε,n

K |
2≤C ∆t2|Bn

KV ε,n
K +divAn

KV ε,n
K −Fn

K |2+C
∆t2

|K|2 ∑
e∈∂K
|e|2|Cε,n

e,K(V ε,n
K −V ε,n

Ke
)|2.

(3.26)
Multiplying (3.26) by |K|θ n, summing over all the elements, using the CFL condition
(3.15) and the stability result (Proposition 3.4.1) we get that

∑
n∈N

∑
K∈Th

θ
n|K||V ε,n+1

K −V ε,n
K |

2

≤C ∑
n∈N

∑
K∈Th

θ
n(∆t)2|K|

(
‖Bn

K‖2|V ε,n
K |

2 +‖divAn
K‖2|V ε,n

K |
2 + |Fn

K |2
)

+ C ∑
n∈N

∑
K∈Th

θ
n (∆t)2

|K| ∑
e∈∂K
|e|2‖Cε,n

e,K‖(V
ε,n
K −V ε,n

Ke
)TCε,n

e,K(V ε,n
K −V ε,n

Ke
)

≤C Qε
h + C ∆t

(
‖Uε

0 ‖L2(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.27)

In an analogous way we find that

∑
n∈N

∑
K∈Th

|K||V ε,n+1
K −V ε,n

K |
2 ≤ C

(
‖Uε

0 ‖L2(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.28)

In both cases C is independent of ε .
Term E 1

h −2R1
h : We define

R1,a
h (θUε) := ∑

n∈N
∑

K∈Th

|K|(V ε,n+1
K −V ε,n

K )TUε
K(tn+1)(θ(tn+1)−θ

n),

R1,b
h (θUε) := ∑

n∈N
∑

K∈Th

|K|(V ε,n+1
K −V ε,n

K )T (θ nUε
K(tn+1)− (θUε)n

K).

Since Uε is a C1-function in time (Theorem 3.2.2) and applying the Cauchy-Schwarz
inequality we obtain

|θ nUε
K(tn+1)− (θUε)n

K| ≤
1
|K|∆t

∣∣∣∣∣
∫ tn+1

tn

∫
K
(Uε(x, tn+1)−Uε(x, t))dxθ(t)dt

∣∣∣∣∣
≤ C θ

n
(

∆t
|K|

)1/2
(∫ tn+1

tn

∫
K

∣∣∣∣∂Uε

∂ t

∣∣∣∣2 dxdt

)1/2

,

where C is independent of ε .
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Using the Cauchy-Schwarz inequality we get

|R1,b
h (θUε)|

≤ C ∆t1/2

[
∑

n∈N
∑

K∈Th

∫ tn+1

tn

∫
K

∣∣∣∣∂Uε

∂ t

∣∣∣∣2 dxdt

]1/2[
∑

n∈N
∑

K∈Th

θ
n|K||V ε,n+1

K −V ε,n
K |

2

]1/2

,

which gives using Theorem 3.2.2, (3.27) and the CFL condition (3.15)

|R1,b
h (θUε)| ≤ C (∆tQε

h)
1/2
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)
+C ∆t

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.29)

On the other hand

|E 1
h −2R1,a

h | ≤ ∑
n∈N

∑
K∈Th

|K||θ(tn+1)−θ
n||V ε,n+1

K −V ε,n
K ||V

ε,n+1
K +V ε,n

K −2Uε
K(tn+1)|.

Since |θ(tn+1)−θ n| ≤ C ∆t, we get by the Cauchy-Schwarz inequality

|E 1
h −2R1,a

h | ≤C

[
∑

n∈N
∑

K∈Th

∆t|K||V ε,n+1
K −V ε,n

K |
2

]1/2

×

[
∑

n∈N
∑

K∈Th

∆t|K||V ε,n+1
K +V ε,n

K −2Uε
K(tn+1)|2

]1/2

.

We consider now the following splitting

V ε,n+1
K +V ε,n

K −2Uε
K(tn+1) = V ε,n+1

K −V ε,n
K +2(V ε,n

K − (Uε)n
K)+2((Uε)n

K−Uε
K(tn+1)),

It is easy to check that

|V ε,n
K − (Uε)n

K| ≤
1

(∆t|K|)1/2

(∫ tn+1

tn

∫
K
|Uε −Uε

h |
2dxdt

)1/2

,

|Uε
K(tn+1)− (Uε)n

K| ≤
(

∆t
|K|

)1/2
(∫ tn+1

tn

∫
K

∣∣∣∣∂Uε

∂ t

∣∣∣∣2 dxdt

)1/2

.

With these inequalities, using (3.28), Theorem 3.2.2 and the CFL condition (3.15) we
obtain

∑
n∈N

∑
K∈Th

∆t|K||V ε,n+1
K +V ε,n

K −2Uε
K(tn+1)|2
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≤ C ‖Uε −Uε
h ‖

2
L2([0,T ]×Rd ;R2m) +C ∑

n∈N
∑

K∈Th

∆t|K||V ε,n+1
K −V ε,n

K |
2

+C (∆t)2
∑

n∈N
∑

K∈Th

∫ tn+1

tn

∫
K

∣∣∣∣∂Uε

∂ t

∣∣∣∣2 dxdt

≤ C ‖Uε −Uε
h ‖

2
L2([0,T ]×Rd ;R2m) + C ∆t

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
,

again using (3.28) we get

|E 1
h −2R1,a

h | ≤ C ∆t
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.30)

+C ∆t1/2‖Uε −Uε
h ‖L2([0,T ]×Rd ;R2m)

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)
.

Term E 2
h −2R2

h : First we note that since θ depends only on t we have

E 2
h = 0. (3.31)

Using the Cauchy-Schwarz inequality and the bound of ‖Cε,n
e,K‖ (Remark 3.3.1) we obtain

|R2
h | ≤ ∑

n∈N
∑

K∈Th

∑
e∈∂K

θ
n
∆t|e|

∣∣∣∣(Cε,n
e,K(V ε,n

K −V ε,n
Ke

)
)T

((Uε)n
e− (Uε)n

K)
∣∣∣∣

≤ C

(
1√
ε

∑
n∈N

∑
K∈Th

∑
e∈∂K

θ
n
∆t|e| (V ε,n

K −V ε,n
Ke

)TCε,n
e,K(V ε,n

K −V ε,n
Ke

)

)1/2

×

(
∑

n∈N
∑

K∈Th

∑
e∈∂K

θ
n
∆t|e||(Uε)n

e− (Uε)n
K|2
)1/2

≤ C

(
Qε

h√
ε

)1/2
(

∑
n∈N

∑
K∈Th

∑
e∈∂K

θ
n
∆t|e||(Uε)n

e− (Uε)n
K|2
)1/2

.

Thanks to the Cauchy-Schwarz inequality and Lemma 3.4.3 we find

|(Uε)n
e−(Uε)n

K| ≤
1
|e|1/2

(∫
e
|(Uε)n(x)− (Uε)n

K|2dx
)1/2

≤C
h1/2

|e|1/2

(∫
K
|DUε |2 dx

)1/2

.

Moreover, from Lemma 3.4.3 and since Uε(·, t) ∈ H1(Rd;R2m) (Theorem 3.2.2) we get

∑
n∈N

∑
K∈Th

∑
e∈∂K

θ
n
∆t|e||(Uε)n

e− (Uε)n
K|2 ≤ C h ∑

n∈N
∑

K∈Th

θ
n
∫ tn+1

tn

∫
K
|DUε(x, t)|2 dxdt

≤ C h
(
‖Uε

0 ‖2
H1(Rd ;R2m) +‖F‖

2
L2(0,T ;H1(Rd ;R2m))

)2
,
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and finally

|R2
h | ≤ C (Qε

h)
1/2
(

h√
ε

)1/2(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)
. (3.32)

Term E 3
h −2R3

h : From a direct calculation and Lemma 3.4.3, we obtain

|E 3
h −2R3

h | ≤ T
∫

Rd
|Uε

h (0,x)−Uε
0 (x)|2 dx≤ C h2. (3.33)

Term E 4
h −2R4

h : We first note that

∫ tn+1

tn

∫
K

d

∑
i=1

∂

∂xi

(
Aε,iUε

θ
)
dxdt = (T1)n

K +(T2)n
K +(T3)n

K +(T4)n
K +(T5)n

K +(T6)n
K, (3.34)

where

(T1)n
K =

∫ tn+1

tn

∫
K

θ(t)divA(x, t)(Uε(x, t)−Uε
K(t))dxdt,

(T2)n
K =

∫ tn+1

tn

∫
K

θ(t)(divA(x, t)−divAn(x))Uε
K(t)dxdt,

(T3)n
K =

∫ tn+1

tn

∫
K

θ(t)divAn(x)Uε
K(t)dxdt,

(T4)n
K =

∫ tn+1

tn

∫
K

θ(t)
d

∑
i=1

(Aε,i(x, t)− (Aε,i)K(t))
∂

∂xi
Uε(x, t)dxdt,

(T5)n
K =

∫ tn+1

tn

∫
K

θ(t)
d

∑
i=1

((Aε,i)K(t)− (Aε,i)n
K)

∂

∂xi
Uε(x, t)dxdt,

(T6)n
K =

∫ tn+1

tn

∫
K

θ(t)
d

∑
i=1

(Aε,i)n
K

∂

∂xi
Uε(x, t)dxdt.

We get

|R4
h | ≤ ∑

n∈N
∑

K∈Th

∣∣∣∣∣(V ε,n
K )T

∫ tn+1

tn

(
∑

e∈∂K
Aε,n

e,KUε
e (t)θ(t)|e|

)
dt− (T3)n

K− (T6)n
K

∣∣∣∣∣
+ ∑

n∈N
∑

K∈Th

(
|(V ε,n

K )T (T1)n
K|+ |(V

ε,n
K )T (T2)n

K|+ |(V
ε,n
K )T (T4)n

K|+ |(V
ε,n
K )T (T5)n

K|
)
.

(3.35)

It is easy to check that

∑
n∈N

∑
K∈Th

(
|(V ε,n

K )T (T1)n
K|+ |(V

ε,n
K )T (T2)n

K|+ |(V
ε,n
K )T (T4)n

K|+ |(V
ε,n
K )T (T5)n

K|
)
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≤ C h
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2

holds where C does not depend on ε .
For example using the Cauchy-Schwarz inequality, Lemma 3.4.3, the regularity of Uε

(Uε(·, t) ∈ H1(Rd;R2m) by Theorem 3.2.2) and Proposition 3.4.1 we obtain

∑
n∈N

∑
K∈Th

|(V ε,n
K )T (T1)n

K|

≤ C ∑
n∈N

∑
K∈Th

|V ε,n
K |

(∫ tn+1

tn

∫
K

1 · |Uε(x, t)−Uε
K(t)|dxdt

)

≤ C ∑
n∈N

∑
K∈Th

∆t1/2|K|1/2|V ε,n
K |

(∫ tn+1

tn

∫
K
|Uε(x, t)−Uε

K(t)|2dxdt

)1/2

≤ C h
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
.

Returning to the first term on the R.H.S of (3.35) we note that thanks to Green’s formula
we find ∑e∈∂K ∑

d
i=1 ni

e,K(Aε,i)n
KUε

K(t)θ(t)|e|= 0. Therefore using the last expression and
the Green formula we have that

(T6)n
K =

∫ tn+1

tn

(
∑

e∈∂K

d

∑
i=1

ni
e,K(Aε,i)n

KUε
e (t)θ(t)|e|

)
dt.

This leads to

∑
n∈N

∑
K∈Th

∣∣∣∣∣(V ε,n
K )T

∫ tn+1

tn

(
∑

e∈∂K
Aε,n

e,KUε
e (t)θ(t)|e|

)
dt− (T3)n

K− (T6)n
K

∣∣∣∣∣
= ∑

n∈N
∑

K∈Th

∣∣∣∣∣(V ε,n
K )T

∫ tn+1

tn

[
∑

e∈∂K

(
Aε,n

e,K−
d

∑
i=1

ni
e,K(Aε,i)n

K

)
(Uε

e (t)−Uε
K(t))θ(t)|e|

]
dt

∣∣∣∣∣
≤ ∑

n∈N

∫ tn+1

tn

 ∑
K∈Th

∑
e∈∂K
|V ε,n

K |
2

∣∣∣∣∣Aε,n
e,K−

d

∑
i=1

ni
e,K(Aε,i)n

K

∣∣∣∣∣
2

|e|

1/2

×

(
∑

K∈Th

∑
e∈∂K
|e||Uε

e (t)−Uε
K(t)|2

)1/2

θ(t)dt.

We note that thanks to Lemma 3.4.3 and the regularity of A (Assumption 3.2.2)

|e||Uε
e (t)−Uε

K(t)|2 ≤ C h
∫

K∈Th

|DUε |2dx, |Aε,n
e,K−

d

∑
i=1

ni
e,K(Aε,i)n

K|2
|e|
|K|
≤ C h.
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Finally with the help of the stability result (Proposition 3.4.1) we obtain

|R4
h | ≤ C h

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.36)

E 4
h can be treated in the same way as R4

h .
Terms R5

h ,R6
h , R7

h , E 5
h E 6

h : It is easy to check that

|Rl
h| ≤ C h

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
l = 5,6,7.

|E l
h | ≤ C h

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
l = 5,6. (3.37)

For example, using the Cauchy-Schwarz inequality, Lemma 3.4.3, the regularity of F and
θ , Theorem 3.2.2 and the CFL condition we obtain∣∣R7

h
∣∣≤ ∑

n∈N
∑

K∈Th

∫ tn+1

tn

∫
K
|F(x, t) · (π(x, t)−πK(t)+πK(t)−π

n
K)|dxdt

+ ∑
n∈N

∑
K∈Th

(∫ tn+1

tn

∫
K

F2 dxdt

)1/2(∫ tn+1

tn

∫
K
|πK(t)−π

n
K|

2 dxdt

)1/2

≤ C h ∑
n∈N

∑
K∈Th

(∫ tn+1

tn

∫
K

F2 dxdt

)1/2(∫ tn+1

tn

∫
K
|Dπ|2 dxdt

)1/2

+C ∆t ∑
n∈N

∑
K∈Th

(∫ tn+1

tn

∫
K

F2 dxdt

)1/2(∫ tn+1

tn

∫
K

∣∣∣∣∂π

∂ t

∣∣∣∣2 dxdt

)1/2

≤ C (h+∆t)
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
.

Term E 7
h : Using Cauchy-Schwarz inequality and (3.27) we obtain

|E 7
h | ≤ ∑

n∈N
∑

K∈Th

2∆t|K||(V ε,n+1
K −V ε,n

K )T ((Bn
K +divAn

K)V ε,n
K −Fn

K)θ n|

≤ C

(
∑

n∈N
∑

K∈Th

∆t|K||V ε,n+1
K −V ε,n

K |
2
θ

n

)1/2

×

(
∑

n∈N
∑

K∈Th

∆t|K||(Bn
K +divAn

K)V ε,n
K −Fn

K |2θ
n

)1/2

≤ C

(
∆tQε

h +∆t2
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
)1/2

×

(
∑

n∈N
∑

K∈Th

∆t|K||(Bn
K +divAn

K)V ε,n
K −Fn

K |2θ
n

)1/2

.



3.4 Convergence of the GLM-FV scheme 101

Using the stability result (Proposition 3.4.1), the bound on B (Assumption 3.2.2) and θ ,
and the regularity of F (Assumption 3.2.2) we find

∑
n∈N

∑
K∈Th

∆t|K|(|(Bn
K +divAn

K)V ε,n
K |

2 + |Fn
K |2θ

n

≤ C
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
,

and finally we get

|E 7
h | ≤ C (∆t)1/2(Qε

h)
1/2
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)
+C ∆t

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.38)

Now, applying Proposition 3.4.2 and combining the estimates (3.29), (3.30), (3.31),
(3.32), (3.33), (3.36), (3.37) and (3.38) we get∫ T

0

∫
Rd

exp(−αt)|Uε −Uε
h |

2dxdt +δQε
h

≤ C (h+∆t)
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2

+C

(
∆t1/2‖Uε −Uε

h ‖L2([0,T ]×Rd ;R2m) +
(

h√
ε

Qε
h

)1/2
)

×
(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)
.

Appropriate application of Young’s inequality yields to

exp(−αT )
2

‖Uε −Uε
h ‖

2
L2([0,T ]×Rd ;R2m) +

δ

2
Qε

h (3.39)

≤ C
h√
ε

(
‖Uε

0 ‖H1(Rd ;R2m) +‖F‖L2(0,T ;H1(Rd ;R2m))

)2
. (3.40)

Using the fact that Qε
h ≥ 0 we conclude the theorem for smooth data. To derive the state-

ment for the non-smooth case a standard mollification argument for the coefficients and
the initial data can be used. 2

Remark 3.4.1 From Theorem 3.25 it is not clear how we can get benefit from the new
formulation since choosing ε constant we recover the result of [112]. Numerical results
will show the role of ε in the conservation of the constraint at the numerical level.

For a first order method we can not expect to get a convergence rate directly for the
expression ∑

d
i=1 Mi(uε

h)xi . However it is possible to obtain a weak convergence estimate.
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Corollary 3.4.1 Suppose that the CFL-condition (3.15) holds. Let Uε
h = (uε

h,ϕ
ε
h ) be the

GLM-FV approximation from Definition 3.3.2. Then we have∣∣∣∣∣
∫ T

0

∫
Rd

d

∑
i=1

Miuε
h ·

∂ρ

∂xi
dxdt

∣∣∣∣∣≤ C
(
h
√

ε
)1/2

, ∀ρ ∈C∞
0 ([0,T )×Rd,Rm).

Proof. We consider π = (0,ρ)T and V = Uε
h in Definition 3.4.1 with ρ ∈ C∞

0 ([0,T )×
Rd,Rm). Then∣∣∣∣∣
∫ T

0

∫
Rd

d

∑
i=1

(
Mi
√

ε
uε

h)
T ∂ρ

∂xi
dxdt

∣∣∣∣∣=
∣∣∣∣−< µVh,π >−

∫ T

0

∫
Rd

(ϕε
h )T

∂tρ dxdt +a
∫ T

0

∫
Rd

(ϕε
h )T

ρ dxdt
∣∣∣∣ .

From Lemma 3.4.2 we know < µVh ,π >= ∑
7
l=1 Rl

h(π). Moreover from Theorem 3.4.1 it
is clear that ∣∣∣Rl

h(π)
∣∣∣≤ C h for l = 3,4,5,6,7.

It remains to focus just on R1
h and R2

h . We have

R1
h(π) = ∑

n∈N
∑

K∈Th

|K|
(
(ϕε

h )n+1
K − (ϕε

h )n
K
)T(

ρK(tn+1)−ρ
n
K
)
.

Since ρ is a smooth function we find

|ρK(tn+1)−ρ
n
K| ≤

(
∆t
|K|

)1/2
(∫ tn+1

tn

∫
K

∣∣∣∣∂ρ

∂ t

∣∣∣∣2 dxdt

)1/2

.

Applying now the Cauchy-Schwarz inequality we get

∣∣R1
h(π)

∣∣≤ C ∆t1/2

(
∑

n∈N
∑

K∈Th

|K||(ϕε
h )n+1

K − (ϕε
h )n

K|2
)1/2

.

Using (3.28) we find |R1
h(π)| ≤ C ∆t1/2.

For R2
h using again the Cauchy-Schwarz inequality we have

∣∣R2
h(π)

∣∣≤C ε
−1/4

(
∑

n∈N
∑

K∈Th

∑
e∈∂K

∆t|e|(V ε,n
K −V ε,n

Ke
)TCε,n

e,K(V ε,n
K −V ε,n

Ke
)

)1/2

×

(
∑

n∈N
∑

K∈Th

∑
e∈∂K

∆t|e|(πn
e −π

n
K)2

)1/2

Using Lemma 3.4.3 and Proposition 3.4.1 we find

∣∣R2
h(π)

∣∣≤ C

(
h√
ε

)1/2

.



3.5 Numerical Examples 103

Now we have altogether∣∣∣∣∣
∫ T

0

∫
Rd

d

∑
i=1

(
Mi
√

ε
uε

h

)T
∂ρ

∂xi
dxdt

∣∣∣∣∣≤
∣∣∣∣∫ T

0

∫
Rd

(
(ϕε

h )T
∂tρ−a(ϕε

h )T
ρ
)

dxdt
∣∣∣∣+C

(
h√
ε

)1/2

.

Multiplying by
√

ε , using the Cauchy-Schwarz inequality and Theorem 3.25, we finally
get ∣∣∣∣∣

∫ T

0

∫
Rd

d

∑
i=1

(Miuε
h)

T ∂ρ

∂xi
dxdt

∣∣∣∣∣≤ C
(
‖ϕε

h‖L2([0,T ]×Rd ;Rm)
√

ε +(h
√

ε)1/2
)

≤ C
(
h
√

ε
)1/2

.

2

Corollary 3.4.1 showed the role of ε in the formulation. This parameter may possible
to improve the rate of convergence of the involution, at least in the weak sense. Example
3.5.2 will show this behavior. In Example 3.5.3 we will see that the absence of ε yields to
serious problems in the involution. Example 3.5.4 will give us some light on the function
of a.

3.5 Numerical Examples

The purpose of this section is to illustrate the qualitative and quantitative behavior of
the numerical solution generated by the GLM-FVM. We present the L2-error respect to
the exact solution when it is known and the discrete error of the involution also in the
L2-norm. In all the examples the time step is calculated according to ∆t = h

√
ε/8. The

simulations were performed using an Intel Proccesor Celeron of 2.26 GHz and 1024 MB
of RAM memory.

3.5.1 Example 1

One example of Friedrichs systems with involutions are provided by the Maxwell
equations given in R3× (0,∞) by the system

∂tE−∇×B =−j, ∂tB+∇×E = 0,

∇ ·E = ρ, ∇ ·B = 0.
(3.41)

Here E = E(x, t) ∈ R3, B = B(x, t) ∈ R3, j = j(x, t) ∈ R3 and ρ = ρ(x, t) ∈ R denote the
electric field, the magnetic induction, the current density and the charge density respec-
tively.
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ε = h0 ε = h1/3

h L2[error] EOC CPU L2[error] EOC CPU
0.04 4.98E-1 - 1.04E-1 5.72E-1 - 1.72E-1
0.02 3.11E-1 0.68 8.48E-1 3.87E-1 0.56 1.60E 0
0.01 1.75E-1 0.83 6.84E 0 2.37E-1 0.71 1.46E+1
0.005 9.34E-2 0.91 5.83E+1 1.36E-1 0.80 1.38E+2
0.004 7.57E-2 0.94 1.14E+2 1.13E-1 0.83 2.74E+2
0.0025 4.82E-2 0.96 4.87E+2 7.57E-2 0.85 1.07E+3

Table 3.1: Ex. 1: Numerical results for the GLM-FV(ε = h2/3) and FV method applied to
Maxwell equations for different mesh size.

For the computations we consider the homogeneous Maxwell equations in two space di-
mensions (i.e. j = 0, ρ = 0, B1, B2 and E3 are constants), periodic boundary conditions
on the computational domain (0,1)× (0,1), t ∈ [0,1], and we use a Cartesian mesh with
mesh parameter h > 0. We use ε = ε(h) with ε = hα , α = {0,1/3,2/3}. We set a = 1. In
the case of the finite volume method directly applied to (3.1), (3.2) (referred to as FVM)
we use ∆t = h/8. It is easy to check that an exact solution of (3.41) (which is periodic) is
given by

E1(x1,x2, t) =−k⊥
k‖

sin(k⊥x2)cos(k‖x1−ωt),

E2(x1,x2, t) = cos(k⊥x2)sin(k‖x1−ωt),

B3(x1,x2, t) =
ω

k‖c2 cos(k⊥x2)sin(k‖x1−ωt).

(3.42)

Here c > 0 is the light speed, and the longitudinal and transverse wave numbers k‖ and k⊥,

respectively, are related to the frequency ω according to k2
‖+k2

⊥ = ω2

c2 . For this simulation
we suppose c = 1 and k‖ = k⊥ = 2π . Initial condition for E1, E2 and B3 are chosen
according to (3.42) together with the results for the application of the GLM-FV method.
The idea in this numerical example is to illustrate the rate of convergence predicted by
Theorem 3.25. The results of the GLM-FVM are presented in Tables 3.1-3.2.

The rate of convergence takes a bigger value than we predicted. This is not a surprise
because the rate predicted in the case without including the involution (FVM) is 1/2 [112]
but numerical simulations show an experimental convergence order of 1. Our case follows
the same rule, the rate observed (2/3 and 5/6 ) is two times the rate predicted (1/3 and 5/12
). The case ε = 1 follows the same behavior than the FVM. We do not show the error in
the discrete computation of ∇ ·E because ∇ ·E = 0 is preserved to machine precision.
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ε = h2/3 FVM
h L2[error] EOC CPU L2[error] EOC CPU
0.04 6.50E-1 - 2.96E-1 4.07E-1 - 8.40E-2
0.02 4.85E-1 0.42 2.98E 0 2.43E-1 0.74 6.36E-1
0.01 3.31E-1 0.55 3.12E+1 1.35E-1 0.85 5.31E 0
0.005 2.14E-1 0.63 3.38E+2 7.25E-2 0.90 4.46E+1
0.004 1.85E-1 0.65 6.91E+2 5.93E-2 0.90 9.04E+1
0.0025 1.34E-1 0.69 2.42E+3 3.91E-2 0.89 3.64E+2

Table 3.2: Ex. 1: Numerical results for the GLM-FV(ε = h2/3) and FV method applied to
Maxwell equations for different mesh size.

Example 3.5.1 suggests that the use of the GLM-FV method does not pay off since
the higher computational cost comes with an even worse convergence rate (compared to
the original FV method). The next three examples show the benefits of the approach if the
divergence error becomes more important.

3.5.2 Example 2

Another physical example of, in fact non-linear, conservation laws with involutions
are the MHD equations in R3× (0,∞) given by

∂tρ +∇ · (ρu) = 0,

∂t(ρu)+∇ ·
(
ρu⊗u+(p+

1
2
|B|2)I−B⊗B

)
= 0,

∂tB+∇ · (u⊗B−B⊗u) = 0,

∇ ·B = 0.

Here ρ = ρ(x, t) ∈R is the density, u = u(x, t) ∈R3 is the velocity field, B = B(x, t) ∈R3

the magnetic field, p = p(ρ) ∈R the pressure and I the identity matrix. For simplicity we
write down the isentropic version. We consider the system of the MHD equations in two
space dimensions and we suppose that the velocity field u = (u1,u2)T is given. If we add
the “source” term (which is zero due to ∇ ·B = 0) −u∇ ·B to the induction equation we
get (after some manipulations) the induction system

∂tB+∂x1(A
1B)+∂x2(A

2B)+CB = 0,

where

Ai =
(

ui 0
0 ui

)
, C =−

(
∂x1u1 ∂x2u1

∂x1u2 ∂x2u2

)
(i = 1,2).
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ε = h0 ε = h1/3 ε = h2/3

h div-err. CPU div-err. CPU div-err. CPU
0.04 5.84E-1 1.52E-1 2.89E-1 1.72E-1 1.66E-1 4.40E-1
0.02 4.87E-1 1.21E 0 2.37E-1 1.44E 0 1.18E-1 4.39E 0
0.01 3.55E-1 9.39E 0 1.67E-1 1.29E+1 6.81E-2 4.89E+1
0.005 2.30E-1 7.79E+1 9.72E-2 1.19E+2 3.63E-2 2.91E+2
0.004 1.96E-1 1.52E+2 7.99E-2 3.75E+2 3.02E-2 6.02E+2
0.0025 1.35E-1 6.22E+2 5.17E-2 1.30E+3 1.79E-2 3.95E+3

Table 3.3: Ex. 2: Divergence error for the GLM-FVM applied to a Induction Equation for
defined mesh size and different choice of ε at t = 0.5.

This linear system fits exactly to our setting. We use again periodic boundary conditions
in the domain (0,1)2, t ∈ [0,1) and Cartesian mesh. We also take a = 1. The idea of this
numerical example is to study the behavior of the discrete version of ∇ ·B generated by
the GLM-FV approximation. The velocity and initial condition are taken from [51]. These
values are

B1
0(x1,x2) = ∂x2A(x1,x2),B2

0 =−∂x1A(x1,x2),

where
A(x1,x2) =

1
2π

sin(2πx1)cos(2πx2)+ x2− x1,

and

u(x1,x2) = (1,1)+0.25(cos(2πx1)+2sin(2πx2),sin(2πx1)+2cos(2πx2)).

We present the results of the error ∇ ·B in the L2-norm at t = 0.5 in Tables 3.3 and 3.4.
The L2-norm of the discrete ∇ ·B, denoted by divhBn

h, is calculated as follows:

divhBn
h =

√√√√
∑

K∈Th

(
∑

e∈∂K
Bn

Ke
·ne,K

)2

.

We see that for both methods (FV and GLM-FV), the error in ∇ ·B converges to zero.
However we observe also that the error in the GLM-FV method remains considerably
lower than in the FV method and moreover we get better results for smaller values of
ε = ε(h).

3.5.3 Example 3

Even though the GLM-FV method damps the divergence error in Example 3.5.2 much
better than the FVM, one might conclude that also the FVM leads to stable computations
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ε = h5/6 FVM
h div-err. CPU div-err. CPU
0.04 1.31E-1 3.60E-1 9.99E-1 3.60E-2
0.02 8.08E-2 3.83E 0 8.24E-1 2.88E-1
0.01 4.33E-2 4.08E+1 5.99E-1 2.27E 0
0.005 2.26E-2 4.49E+2 3.86E-1 1.89E+1
0.004 1.69E-2 9.60E+2 3.28E-1 3.70E+1
0.0025 1.05E-2 5.10E+3 2.26E-1 1.54E+2

Table 3.4: Ex. 2: Divergence error for the GLM-FVM applied to a Induction Equation for
defined mesh size and different choice of ε at t = 0.5.

in the homogeneous case. This is not true for the inhomogeneous case with j 6= 0 in the
Maxwell equations as we will demonstrate below. In fact in almost all practical computa-
tions, the Maxwell equations are coupled to other equations via source terms. An uncon-
trollable increase in the divergence error can stop the computation. This problem was the
motivation of Munz et al. [88] to develop the GLM. We use the same two-dimensional
system as in Example 3.5.1 but with j 6= 0. Taking the divergence in the Maxwell system
we get

∂t(∇ ·E) = ∂tρ =−∇ · j. (3.43)

If we consider ρ = 0 we find the compatibility condition ∇ · j = 0. We want to study now
the behavior of the GLM-FV method for the Maxwell equations under a small perturba-
tion on the condition ∇ · j = 0. To do so we consider the following current density (for
which the divergence is not zero)

j1(x,y) =−1.001
k⊥
k‖

sin(k⊥y)cos(k‖x), j2(x,y) = cos(k⊥y)sin(k‖x).

with k‖ and k⊥ as in Example 1. Moreover we consider an initial electrical field E0 such
that ∇ ·E0 = 0. We again set a = 1.
Accordingly to (3.43) we can expect a linear growth for divhEh with respect to time in
the case without correction. In Figure 3.1 we find the expected linear growth of divhEh

(calculated as in Example 3.5.2 for each time t) in the FV method and the bounded error
in the GLM-FVM.

3.5.4 Example 4

In this example we want to study the influence of the relaxation parameter a conside-
ring a = a(h). We again work with the homogeneous Maxwell equations as in Example
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Figure 3.1: Ex. 3: Comparison of the divergence error between FVM and GLM-FV
method for ε = 1 and ε = h2/3 with h = 0.0025

3.5.1, but with the difference that we take an initial data u0 that is not divergence free, i.e.,
div E0 6= 0. For the first part we use ε = h2/3 and a(h) = h−q, with q = 0, 1

3 , 2
3 , 4

3 . We also
simulated the FVM case. The results are showed in Tables 3.5 and 3.6.

a = 1 a = h−1/3 a = h−2/3

h div-err. L2[error] div-err. L2[error] div-err. L2[error]
0.02 1.98E-1 4.74E-1 1.62E-1 4.74E-1 1.18E-1 4.74E-1
0.01 2.35E-1 3.18E-1 1.68E-1 3.18E-1 1.04E-1 3.18E-1
0.005 2.68E-1 1.99E-1 1.65E-1 1.99E-1 8.97E-2 1.99E-1
0.0025 2.94E-1 1.19E-1 1.55E-1 1.19E-1 7.80E-2 1.18E-1
0.00125 3.14E-1 7.10E-2 1.42E-1 6.87E-2 6.91E-2 6.84E-2

Table 3.5: Ex. 4: Errors for the GLM-FVM applied to a homogeneous Maxwell equations
for defined ε = ε(h) and different choice of a = a(h).

First of all we note that the absence of the parameter a = a(h) yields to a poor result
in order to fulfill the divergence constraint. In the classical FVM, divE increase with we
decrease the mesh. The case when a = 1 does not damp the divergence error showing the
importance of coupling a with h. On the other side, in the case a = h−4/3 the schemes also
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a = h−4/3 FV
h div-err. L2[error] div-err. L2[error]
0.02 1.64E-1 4.74E-1 5.20E-1 2.30E-1
0.01 2.04E-1 3.18E-1 5.70E-1 1.24E-1
0.005 2.57E-1 1.99E-1 5.98E-1 6.93E-2
0.0025 3.21E-1 1.20E-1 6.13E-1 4.96E-2
0.00125 3.91E-1 7.17E-2 6.21E-1 4.65E-2

Table 3.6: Ex. 4: Errors for the GLM-FVM applied to a homogeneous Maxwell equations
for defined ε = ε(h) and different choice of a = a(h).

does not damp the divergence constraint.
We now isolate the behavior of a respect to ε . We computed the same simulations but

with ε = 1 fixed and a = h−1/3,h−2/3 (see Table 3.7). When a = h−1/3 we have a correct

a = h−1/3 a = h−2/3

h div-err. L2[error] div-err. L2[error]
0.02 2.18E-1 2.98E-1 2.07E-1 2.97E-1
0.01 2.20E-1 1.60E-1 2.40E-1 1.60E-1
0.005 2.15E-1 7.93E-2 2.90E-1 8.01E-2
0.0025 2.11E-1 4.05E-2 3.54E-1 4.35E-2
0.00125 2.10E-1 3.01E-2 4.21E-1 3.64E-2

Table 3.7: Ex. 4: Errors for the GLM-FVM applied to a homogeneous Maxwell equations
for ε = 1 fixed and a = h−1/3,h−2/3.

damping of the divergence error but with a = h−2/3 we find that the divergence error does
not decrease as long as h→ 0.

Even tough in the framework of explicit schemes we can not get a theoretical result
of convergence with a = a(h), we speculate that an analogous result is possible if we
consider a semi-implicit scheme. In that case, the rate predicted by Theorem 3.4.1 should
include a term of the form O(aq hq).

3.6 Conclusions

In this contribution we suggested a numerical method for Friedrichs systems with
constraints in the form of an involution. It relies on an extended reformulation. This ap-
proach is a generalization of the approach for the equations of electrodynamics due to
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Munz et al. [89] We have proven that the extended method gives convergence to a weak
solution of the original initial value problem if a classical finite-volume discretization is
applied. Moreover we have shown that the extended system allows to control the error in
the primary unknowns and the constraint error. Several numerical examples which under-
line the analytical findings are added. The most important observation is that the GLM-FV
method is stable under small perturbations on the side condition while the original finite
volume method is not.
Future analytical investigations should address initial boundary value problems for Fried-
richs systems. More important is the case of nonlinear conservation laws with (linear) in-
volutions, e.g. Lundquist’s equation of ideal magnetohydrodynamics subject to solenoidal
magnetic fields. For this kind of nonlinear problems disregard of the constraint can lead
to negative pressure and/or density values and thus to the simulation’s abort. However the
GLM-FV scheme still works convincingly (cf.[41]) but any rigorous argument is missing.



Chapter 4

General Conclusions

Here we present a summary with the main contributions and conclusions of the thesis.

• We propose a strongly degenerate parabolic equation modelling aggregation of
“swarm” type. It is proved the existence of weak solutions for the initial value pro-
blem using a finite difference approach based on the Engquist-Osher method for the
primitive of the function and using compactness arguments and Lax-Wendroff tech-
niques. We prove the equivalence between weak and entropy solutions. Uniqueness
is a corollary of a result in [62], which uses the doubling of variables technique.
Numerical computations are performed finding the aggregation phenomenon. So-
lutions are discontinuous even though the initial data are not, in agreement with
classical results of strongly degenerates parabolic equations. We prove the exis-
tence of travelling-wave solutions and their finite speed of propagation. Extension
to higher space dimensions is not clear from the model. The equivalence of entropy
and weak solutions for related equations is an open problem.

• We study a family of scalar conservation laws with nonlocal flux function model-
ling sedimentation. The existence and uniqueness of entropy solutions is proved
using a difference-quadrature scheme and slight modifications of a result in [62].
For α = 0, we find a Lipschitz regularity provided the data do so. In this case, the
solution remains bounded for all time T < +∞, however, the bound grows with the
time. In the other case, α ≥ 1, we speculate discontinuities even though the data is
smooth, as a counterpart, a Maximum Principle is valid for all time. From the phy-
sical point of view, the case α ≥ 1 is the relevant model. Numerical experiments are
computed finding oscillations since the efective equation is dispersive. We interpret
these oscillations as the formation of layer of different concentration. The formation
of traveling waves is observed, being their analysis a future work to do. Other open
problem corresponds to the asymptotic limit when the support of the kernel goes
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to zero. Zumbrun [114] studied this limit but using a linear framework. This is not
possible in the case studied in this thesis. Other alternatives will be considered.

• We study a Finite Volume method for Friedrichs systems with Involutions. The pro-
posed method generalies the method developed by Munz et al. [88]. We prove the
convergence of the numerical approximation to the unique solution of the problem.
Moreover, it is shown that the involution is satisfied in the limit when the mesh pa-
rameter goes to zero. Numerical examples illustrated the performance of the method
in the Maxwell equations and the induction equation in MHD. An open problem is
the study of the initial-boundary value problem. Another open problem, much more
challenging, is to develop a reliable numerical method that includes the involution
in non-linear hyperbolic systems, like the Lundquist equations of MHD.



Chapter 5

Conclusiones Generales (en español)

A continuación, se presenta un resumen con los principales aportes y conclusiones
generadas en esta tesis.

• Se propuso una ecuación parabólica fuertemente degenerada que modela el fenóme-
no de agregación tipo “enjambre”. Se probó la existencia de solución para el pro-
blema de valores iniciales, en el marco de soluciones débiles, usando una aproxi-
mación basada en el esquema de Engquist-Osher para la primitiva de la función
y utilizando argumentos de compacidad y de tipo Lax-Wendroff. Se demostró la
equivalencia entre soluciones débiles y de entropı́a. La unicidad se obtuvo con
técnicas de doblamiento de variables y del hecho de que las soluciones débiles
son también de entropı́a. Se demostró la existencia de soluciones del tipo onda
viajera y además se probó que la solución posee velocidad finita de propagación
bajo supuestos adicionales. Se realizaron experiencias numéricas encontrándose el
fenómeno de agregación. Las soluciones son discontinuas aunque el dato inicial
no lo sea, encontrándose concordancia con los resultados clásicos para este tipo de
ecuaciones. Extensiones a un mayor número de dimensiones espaciales no es clara
del modelo. La equivalencia entre soluciones débiles y de entropı́a para ecuaciones
relacionadas es un problema abierto.

• Se estudió una familia de leyes de conservación escalares con flujo no-local que
modelan el proceso de sedimentación. Se demostró la existencia de solución para
las ecuaciones usando un método de diferencias finitas con cuadratura y argumentos
de compacidad, y para la unicidad, se usaron argumentos del tipo Kružkov. Para el
caso α = 0 se probó que la solución es continua si el dato también lo es. La solución
permanece acotada para todo tiempo T , sin embargo la cota encontrada crece con
el valor de T . Para α ≥ 1, se especula que la función presenta discontinuidades
independiente de la regularidad del dato, pero por otra parte, se halló un Principio
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del Máximo independiente del tiempo. Luego, desde el punto de vista fı́sico, el caso
α ≥ 1 corresponde a un modelo válido. Se realizaron experiencias numéricas, con
el objetivo de reproducir el fenómeno de sedimentación por capas, interpretándose
las oscilaciones que presenta la solución como un proceso de formación de capas
de sedimento de distinta concentración. En los ejemplos numéricos se aprecia la
formación de estructuras tipo ondas viajeras, quedando abierto su estudio. Otro
problema por resolver corresponde al lı́mite cuando el soporte del kernel tiende a
cero. Zumbrun [114] estudió este lı́mite en un caso particular haciendo uso de una
estructura de tipo lineal. Para el caso que se estudió en el capı́tulo 2, esto no es
posible. Otras alternativas serán estudiadas a futuro.

• En el tercer capı́tulo se estudió un método numérico de volúmenes finitos para sis-
temas de Friedrichs con restricciones en la forma de involuciones. El método co-
rresponde a una generalización del método desarrollado por Munz y colaboradores
[88]. Se probó la convergencia del método a la solución débil del problema. Además
se demostró la satisfacción de la involución cuando el parámetro de malla tiende a
cero. Ejemplos numéricos ilustran el desempeño del método en la caso de las ecua-
ciones de Maxwell y de la ecuación de inducción en magneto-hidrodinámica. Un
problemas abierto corresponde al estudio del problema de valores iniciales y de
contorno. Otro problema abierto corresponde al desarrollo de métodos numéricos
convergentes que consideren restricciones tipo involuciones en el caso más general
de sistemas hiperbólicos no-lineales, como lo son las ecuaciones de Lundquist en
magneto-hidrodinámica.
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