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Resumen

El objetivo principal de esta tesis es analizar métodos numéricos para la aproximacion
de los coeficientes y modos de pandeo de estructuras delgadas. Especificamente, se estudia

la aproximacién por elementos finitos del problema de pandeo de placas y vigas.

En el primer trabajo, se estudia una formulaciéon en términos de los momentos para
los problemas de pandeo y de vibraciones de una placa poligonal elastica no necesaria-
mente convexa modelada por las ecuaciones de Kirchhoff-Love. Para la discretizacién se
consideran elementos finitos lineales a trozos y continuos para todas las variables. Usando
la teoria espectral para operadores compactos, se obtienen resultados de convergencia
6ptimos para las autofunciones (desplazamiento transversal) y un doble orden para los

autovalores (coeficientes de pandeo).

En el segundo trabajo, se estudia el problema de pandeo de una placa elastica mode-
lada por las ecuaciones de Reissner-Mindlin. Este problema conduce al estudio espectral
de un operador no compacto. Se demuestra que el espectro esencial del mismo estd bien
separado de los autovalores relevantes (coeficientes de pandeo) que se quieren calcular.
Para la aproximacién numeérica se usan elementos finitos de bajo orden (DL3). Adaptando
la teoria espectral para operadores no compactos, se demuestra convergencia éptima para
las autofunciones y un doble orden para los autovalores, con estimaciones del error inde-
pendientes del espesor de la placa, lo que demuestra que el método propuesto es libre de
bloqueo (“locking-free”).

En el tercer trabajo, se estudia un método de elementos finitos de bajo orden para
el problema de pandeo de una viga no homogénea modelada por las ecuaciones de Ti-

moshenko. Se da una caracterizacion espectral del problema continuo y usando la teoria

X



espectral para operadores no compactos, se demuestran érdenes éptimos de convergencia
para las autofunciones (desplazamiento transversal, rotaciones y esfuerzos de corte) y
un orden doble para los autovalores (coeficientes de pandeo), también con constantes
independientes del espesor de la viga.

En todos los casos, se presentan ensayos numéricos que confirman los resultados

tedricos obtenidos.
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Chapter 1
Introduccion

Los principales objetivos en disenos de ingenieria son la seguridad y la durabilidad a
lo largo del tiempo, aunque la importancia de los costos y los aspectos ambientales en el
diseno ha crecido significativamente durante la tltima década. Autos, puentes y aviones,
por ejemplo, tienen que cumplir cuidadosamente ciertos requerimientos minimos prescritos
de resistencia mecanica. Hoy en dia, para cumplir este objetivo, existen herramientas

eficientes tales como los métodos computacionales y el modelamiento matematico.

En las aplicaciones, al comenzar un proceso, se fijan el problema fisico y los criterios
de diseno. Luego, el problema se formula mediante un modelo matematico general, el cual
es una idealizacién de la realidad (con posibles imperfecciones). En general, los problemas
descritos por modelos matematicos complejos no pueden ser resueltos de manera exacta y
por lo tanto los métodos computacionales y las soluciones aproximadas son herramientas
necesarias. Dependiendo de la necesidad y costo de los recursos computacionales, el modelo
matematico general puede simplificarse por la experiencia de los ingenieros. Finalmente,
el problema basado en el modelo matematico simplificado se resuelve aproximadamente
por métodos numéricos y la solucién obtenida se usa por los ingenieros en la toma de
decisiones.

En el proceso de la resolucién numérica debemos controlar el error, en particular, el
llamado error de discretizacion, es decir, la diferencia entre la solucion exacta del modelo

matematico simplificado y su aproximacién numérica. En todo el proceso también existen



otro tipo de errores, por ejemplo, el error de modelamiento, el cual surge de la simplicacion
del modelo matematico general, el error de idealizacién que es la diferencia entre el modelo
matematico general y el problema fisico, etc. En lo que sigue, en este trabajo, solo nos

preocuparemos del error de discretizacion.

1.1 Pandeo (Buckling) de estructuras delgadas

Un problema importante que ocurre en el diseno de estructuras delgadas en aplica-
ciones de ingenieria tales como carrocerias de automoviles, pilares de puentes, alas de un
avion, etc., es el llamado pandeo. En estas aplicaciones, se pretende que una estructura
resistente tenga un comportamiento estable, conservando sus caracteristicas geométricas
y de resistencia.

Cuando una estructura delgada se comprime mediante pequenas cargas, ésta se de-
forma sin ningtin cambio perceptible en la geometria y las cargas son soportadas. Cuando
se alcanza el valor critico de carga, inmediatamente la estructura experimenta una gran
deformacion y esta pierde las propiedades de resistencia. En este estado se dice que la
estructura colapsé (panded). Por ejemplo, cuando una barra es sometida a una fuerza
compresiva axial al principio ésta se comprime levemente, pero cuando alcanza la carga
critica la barra pandea. Un caso similar ocurre cuando tomamos un bastén de caminar y
nos apoyamos sobre él dejando caer todo el peso del cuerpo que, si es considerable, hara
que el bastén se curve produciéndose el pandeo. El pandeo también es conocido como
inestabilidades estructurales.

Existen varios de tipos de inestabilidad en estructuras, pero en este trabajo nos cen-
traremos en uno de los més importantes, el pandeo por flexion, el cual ya fue estudiado
por Leonhard Euler (1707-1783). Este tipo de fenémeno inestable se produce al aplicar
una carga axial de compresion, de cierta magnitud, a un elemento estructural.

El pandeo por flexion es la forma mas elemental de pandeo y su estudio es un paso
esencial para entender el comportamiento de pandeo de estructuras complejas, incluyendo
estructuras con comportamiento ineldstico, imperfecciones iniciales, etc. Es muy impor-

tante conocer la carga para la cual ocurre este tipo de pandeo, pues ésta rige el diseno
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de la estructura. Esta carga se denomina carga critica de pandeo (critical buckling load,

critical load o limit of elastic stability).

En la literatura, la carga critica de pandeo para diferentes tipos de estructuras bajo
distintos tipos de carga y condiciones de frontera se expresa usualmente mediante férmulas
simples de aproximacién o tablas. Sin embargo, hoy en dia los ingenieros requieren resulta-
dos mas precisos para problemas en los cuales no existe soluciones analiticas disponibles.
Cabe mencionar que salvo en unos pocos problemas (tal como el pandeo elastico de una
barra ideal apoyada, bajo una fuerza axial), generalmente es muy trabajoso y en muchos
casos imposible obtener soluciones analiticas exactas. Por lo tanto, es necesario utilizar
métodos numéricos y en particular en este trabajo usaremos el método de elementos fini-

tos.

El problema (que gobierna el fenémeno de pandeo) que surge de la modelacién de
este fenémeno es un problema de autovalores en el cual el autovalor representa la carga
de pandeo y el autovector asociado el modo de pandeo (buckling mode). El autovalor méas
pequeno corresponde a la carga critica de pandeo.

Consideremos una placa elastica tridimensional de espesor ¢ > 0 con configuracién de

referencia ) 1= Q) x (—%,%), donde  es un poligono R? que describe la superficie media
t t

de la placa. Asumimos que la placa estda empotrada en su frontera lateral 02 x (—5, 5). En
lo que sigue, resumiremos los argumentos dados en [17], para obtener las correspondientes

ecuaciones del problema de pandeo (ver esta referencia y también [45] para mas detalles).

~0 . .
Suponemos que o = (Ugj)lgi’jgg, es un estado de tensiones pre-existente en la placa.
. ~0 , ., . .
Estas tensiones o~ que estan ya presentes en la configuracion de referencia, satisfacen las
ecuaciones de equilibrio y se asume que son independientes de cualquier desplazamiento

posterior que la configuracién de referencia puede sufrir.

Sea V= {v€ H'(Q)?:v =0 ondQx (L L)} el espacio de desplazamientos
admisibles de la placa tridimensional. Si la configuracion de referencia es perturbada por
un pequeno cambio F € V' (el cual podria ser una pequena fuerza), entonces el trabajo
hecho por &° no puede ser despreciado. El desplazamiento correspondiente u = {u;}1<i<s,

puede expresarse como la solucién del siguiente problema (ver [17]):



Hallar u € V tal que

/;CUMUZ',]"U]@J + /~ &Oumvivmd = <f, V> Vv € ‘/, (111)
Q Q

donde Cjjy es el tensor de constantes elasticas del material, u; ; = 0ju;, y (-, -) denota la
dualidad entre V' y V. El segundo término en el lado izquierdo es el trabajo hecho por &°.

Restringimos nuestro andlisis a multiplos fijos de una pre-tension de pandeo o, es decir,

o’ = —\0, (1.1.2)

donde )\, representa la carga de pandeo. Luego, (1.1.1) queda:
Hallar v € V tal que

[Cijkluid'Uk,l — )\b /~ &um,ivmd- = <F, V> \V/V c V. (113)
Q Q

Siguiendo [17], diremos que este problema es establemente resoluble si tiene una tunica

soluciéon para cada F € V' y existe una constante C, independiente de F, tal que
Jally < ClF v

Como antes mencionamos, nuestro objetivo serd hallar el valor positivo mas pequeno A,
para el cual (1.1.3) no es establemente resoluble. Este A\, es la carga critica de pandeo
que también se denomina el limite de estabilidad eldastico de la estructura. Fisicamente,
representa al multiplo méds pequeno de la pre-tension de pandeo o, para el cual una
pequena perturbacién en las condiciones externas sobre la placa puede causar pandeo.
En [17] se mostré que este problema puede formularse como hallar el minimo autovalor
positivo A, del siguiente problema:
Hallar Ay e R y 0 #u €V tal que
[Cijkluivjvkvl =\ /~ O U, iV, j Vv eV. (1.1.4)
Q Q
La aproximacion por elementos finitos de la solucién de problemas de autovalores
tiene una larga historia. Referimos, por ejemplo, el libro de Babuska y Osborn [6]. La
teoria de aproximacion generalmente se desarrolla en términos del espectro de un opera-

dor T: V — V (donde V es un espacio de Sobolev apropiado) y de un operador discreto
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Ty, : Vi, — V}, (donde V}, es el subespacio de elementos finitos de V). Dependiendo de la es-
tructura delgada que consideremos y de las hipdtesis cinematicas de los desplazamientos,
el operador T" puede ser compacto [6, 35] o no compacto [18, 19]. Cuando T es compacto,
usualmente el operador 7}, converge a T' en norma y se pueden derivar resultados de con-
vergencia para los autovalores y autovectores (el espectro se reduce al {0} y a una sucesién
de autovalores aislados de multiplicidad finita cuyo unico punto de acumulacion es el 0).
Por otra parte, cuando 7" es no compacto surgen varias complicaciones. Primero, el es-
pectro esencial de T" no se reduce al {0} (como ocurre para operadores compactos). Esto
significa que el espectro puede ahora contener, por ejemplo, autovalores de multiplicidad
infinita, puntos de acumulacion, espectro continuo, etc. Ademads, los resultados de con-
vergencia no estan garantizados y pueden existir autovalores espurios en la aproximacion

por elementos finitos.

1.2 Modelos de Placas

Los modelos que consideraremos seran simplificaciones de modelos basados en la teoria
de elasticidad tridimensional. Mediante una reduccién dimensional e hipotesis cinematicas
podemos obtener modelos para diferentes estructuras elasticas delgadas tales como: ba-
rras, vigas (una dimensién), membranas y placas (dos dimensiones).

En este trabajo consideraremos los problemas de pandeo de:

e Una placa modelada por las ecuaciones de Kirchhoff-Love.
e Una placa modelada por las ecuaciones de Reissner-Mindlin.

e Una viga no homogénea modelada por las ecuaciones de Timoshenko.

En el analisis de placas, los modelos méas usados son el de Reissner-Mindlin (para placas
delgadas y moderadamente gruesas) y el modelo de Kirchhoff-Love (placas delgadas)
[10, 20].

En lo que sigue trataremos brevemente la reduccién dimensional de los modelos de
placa de Reissner-Mindlin y Kirchhoff-Love. Ademéas mencionaremos los principios y su-

posiciones mas importantes para estos modelos [10].



Sea como antes () := Q x (—%, %) el dominio de una placa elastica tridimensional de
espesor t > 0.

El campo de desplazamiento de la placa se denota por u = {u;(z,y, 2)}>_, en coorde-
nadas cartesianas globales x,y, z. En la teoria de placas de Reissner-Mindlin se asumen

las siguientes suposiciones:

e Los puntos sobre la superficia media se deforman solamente en la direccién z.

e Todos los puntos contenidos en una normal al plano medio tienen el mismo desplaza-

miento vertical.

e Los puntos que antes de la deformacion estaban sobre una recta normal al plano
medio de la placa, permanecen al deformarse sobre una misma recta, sin que ésta

tenga que ser necesariamente ortogonal a la deformada del plano medio.

e La tensién normal o33 es despreciable.

Bajo estas condiciones, se tiene que el campo de desplazamientos admisibles tiene la

forma:
—zbi(z,y)
upm(z, Y, 2) = | —zfa(z,y) |, (1.2.1)
w(z,y)
donde w es el desplazamiento transversal y 5 = (/31, f2) son los dngulos que definen el
giro de la normal.
En la teoria de Kirchhoff-Love, se mantienen las hipotesis anteriores pero la tercera se

modifica como sigue:

e Los puntos sobre rectas normales al plano medio antes de la deformacién, per-
manecen sobre rectas también ortogonales a la deformada del plano medio después

de la deformacién.

Bajo esta suposicion, ahora el campo de desplazamientos toma la forma:

ow(z,y)
UKL(xayVZ) = _Zawéjy) ) (122)

w(z,y)
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donde w es el desplazamiento transversal.

Finalmente, para obtener los modelos matematicos simplificados que describen el pro-
blema de pandeo de una placa (Reissner-Mindlin o Kirchhoff-Love) se consideran hipétesis
adicionales sobre las relaciones entre deformaciones y tensiones (ley de Hooke), sobre la
pre-tensién de pandeo o, sobre el material (homogéneo, isotrépico), etc. Se sustituyen los
desplazamientos admisibles (1.2.1) o (1.2.2) en (1.1.4) y se integra sobre el espesor t.

Se sabe que los métodos de elementos finitos conformes para placas de Kirchhoff-
Love necesitan elementos C!, pues la formulacién variacional natural para el problema del
bilaplaciano es en H?, lo cual implica usar aproximacién de alto orden [14]. Otro tipo de
técnica para aproximar este problema es usar métodos mixtos de elementos finitos [16, 2].

Por otra parte, éste no es el caso para placas de Reissner-Mindlin donde basta con-
siderar elementos finitos C°. Sin embargo, debido al fenémeno de bloqueo (“locking”) no
se pueden utilizar elementos finitos estandar pues llevan a malos resultados cuando el
espesor de la placa es muy pequeno. Para evitar este fendémeno se han considerado varias
técnicas, entre las cuales podemos mencionar métodos basados en integracién reducida
(MITC) introducidos por Bathe y Dvorkin, o variaciones de éste propuestas por Duran y
Liberman. Otra solucién para este problema es escribir una formulacion equivalente del
problema en términos de dos problemas de Poisson y un problema tipo Stokes rotado, por
medio de una descomposicién de Helmholtz del esfuerzo de corte propuesta por Brezzi y
Fortin y analizada por Arnold y Falk. Otras estrategias propuestas para evitar el bloqueo
son los “Linked Interpolation Methods” analizados entre otros por Auricchio y Lovadina,
y mas recientemente Amara, Capatina-Papaghiuc y Chatti estudiaron una formulacién

en términos de momentos.

1.3 Organizacion de la tesis

En el Capitulo 2 de este trabajo consideramos la aproximacion por elementos finitos
de dos problemas espectrales para: (i) la determinacién de los coeficientes y modos de
pandeo y (i7) la aproximacién de los primeros modos y frecuencias de vibracién, de una

placa empotrada no necesariamente convexa modelada por las ecuaciones de Kirchhoff-



Love. El método se basa en una discretizacién conforme de una formulacién en términos

de momentos [2]. El contenido de este capitulo corresponde al articulo [36]:

e D. MORA AND R. RODRIGUEZ, A piecewise linear finite element method for the

buckling and the vibration problems of thin plates. Mathematics of Computation, 78
(2009), pp. 1891-1917.

Ya se indicé cual es el interés de conocer los coeficientes y modos de pandeo. Cabe
mencionar que el conocimiento de las frecuencias y modos de vibraciéon son necesarios
para evitar efectos de resonancia. Cuando una fuerza externa periddica actia sobre un
sistema dinamico, la intensidad de la respuesta dependera de la frecuencia de la fuerza
externa y serd maxima cuando ésta sea igual a una de las frecuencias naturales del sistema
(es decir, la raiz cuadrada de alguno de los primeros valores propios del sistema). Si la
fuerza periddica externa tiene un periodo cercano a los de resonancia se producird un
efecto importante sobre el sistema, lo cual podria corresponder a tensiones méaximas o
posibles rupturas.

En este articulo se ha probado convergencia y estimaciones de error 6ptimas para la
aproximacion del problema de pandeo y del problema de vibraciones usando la teoria abs-
tracta de convergencia espectral presentada en [6] para operadores compactos. En ambos
casos, todas las ecuaciones fueron discretizadas con elementos finitos lineales a trozos y
continuos. Incluimos también resultados numéricos que muestran el buen comportamiento
del método y comparamos con otros métodos clasicos.

En el Capitulo 3 de este trabajo consideramos la aproximaciéon por elementos fini-
tos de los coeficientes y modos de pandeo de una placa modelada por las ecuaciones de
Reissner-Mindlin. Estos coeficientes son los reciprocos de los autovalores de un operador
no compacto. Damos una caracterizacién espectral para este operador y mostramos que
el espectro esencial del mismo estd confinado a una bola centrada en el origen con radio
proporcional al cuadrado del espesor de la placa. En cambio los coeficientes de pandeo
relevantes corresponden a autovalores aislados de multiplicidad finita separados del espec-
tro esencial, al menos si el espesor de la placa es suficientemente pequeno. El contenido
de este capitulo corresponde al articulo [33], enviado para su publicacion a STAM Journal

on Numerical Analysis y que se encuentra en la etapa de revision:
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e C. LovaDpINA, D. MoORA, AND R. RODRIGUEZ, Approxzimation of the buckling

problem for Reissner-Mindlin plates. Universidad de Concepcién, Departamento de
Ingenieria Matemética, Preprint 2009-01 (2009).

Para la aproximaciéon numérica de los coeficientes y modos de pandeo, consideramos
los elementos propuestos por Durdn y Liberman en [22], los cuales se ha demostrado que
son libres de bloqueo numérico en problemas de cargas y de vibraciénes. Luego se extiende
la teoria clasica para operadores no compactos propuesta por Descloux, Nassif y Rappaz
en [18, 19], para obtener estimaciones del error optimales uniformemente con respecto al
espesor de la placa para las autofunciones y un orden doble para los autovalores, bajo
la hipétesis de que las mallas son cuasi-uniformes. Las constantes de las estimaciones
del error son independientes del espesor y dependen de normas de la solucién que no
degeneran cuando este espesor tiende a cero. Esto nos permite afirmar que en método
propuesto es libre de bloqueo. Finalmente, incluimos resultados numéricos que muestran

el buen comportamiento del método.

En el Capitulo 4 de este trabajo consideramos la aproximacion de los coeficientes y mo-
dos de pandeo de una viga de Timoshenko no homogénea (la geometria y las propiedades
fisicas del material no se asumen constantes a lo largo de la viga). Al igual que en el
capitulo anterior, los coeficientes y modos de pandeo se vinculan con los autovalores y
autofunciones de un operador no compacto. Probamos que cuando el espesor de la viga
es suficientemente pequeno los coeficientes de pandeo relevantes corresponden a auto-
valores aislados de multiplicidad finita. Para la aproximacién por elementos finitos se
considera el método mixto introducido por Arnold en [4] para el problema de flexién de
vigas homogéneas de Timoshenko. Para la convergencia espectral y estimaciones del er-
ror adaptamos la teoria abstracta desarrollada en [18, 19] para operadores no compactos,
pero de una manera alternativa a la del capitulo anterior. Asi, se obtienen estimaciones
del error 6ptimas para las autofunciones y un doble orden para los autovalores simples. In-
cluimos también resultados numéricos que muestran el buen comportamiento del método
propuesto y confirman los resultados tedricos obtenidos. El contenido de este capitulo

corresponde al articulo en preparacion:
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e C. LovaDINA, D. MorA, AND R. RODRIGUEZ, A locking-free finite element

method for the buckling problem of a non-homogeneous Timoshenko beam.

Finalmente, en el Capitulo 5 se presentan las conclusiones y las lineas de investigacion

abiertas de este trabajo.



Chapter 2

A piecewise linear finite element
method for the buckling and the

vibration problems of thin plates

2.1 Introduction

The analysis of finite element methods to solve plate eigenvalue problems has a long
history. Let us mention among the oldest references the papers by Canuto [13], Ishihara
[29, 30], Rannacher [37], and Mercier et al. [35, Section 7(b,d)]. While [37] deals with
nonconforming methods for the biharmonic equation, all the other papers are based on
different mixed formulations of the Kirchhoff model. These formulations turn out to be
equivalent to the biharmonic equation when the solution is smooth enough (typically H?).
Therefore, in order to allow for such regularity to hold (see [27]), the plate is assumed to
be convex in these references.

One of the most well-known mixed methods to deal with the biharmonic equation
is the method introduced by Ciarlet and Raviart [16]. This was thoroughly studied by
many authors (see, for instance, [12], [43], [24, Section 3(a)], [7, Section 4(a)], [26, Sec-
tion I11.3], [25], [3]). The method was applied to the plate vibration problem in [13] and

[35, Section 7(b)], where it was proved to converge for finite elements of degree k > 2.

11
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A formulation of the eigenvalue problem for the Stokes equation, which turns out to be
equivalent to a plate buckling problem, is also analyzed in [35, Section 7(d)]|, where it
is proved to converge for degree k > 2, as well. Although there is numerical evidence of
optimal order convergence for piecewise linear elements applied to the vibration an the
buckling plate problems (see in particular Section 2.5 below), to the best of our knowledge

this has not been proved.

Other classical mixed method to deal with Kirchhoff plates was introduced by Miyoshi
in [34] for load problems. This method is based on piecewise linear elements and was
extended by Ishihara to the vibration problem in [29] and to the buckling problem in
[30]. The method was proved to converge with a suboptimal order O@(h'/?), but only for
meshes uniform in the interior of the domain. This hypothesis cannot be avoided. In fact,
we report in Section 2.5 numerical experiments which show that this method converges

to wrong results when used on particular regular non-uniform meshes.

Another low-order method was introduced much more recently by Amara et al. in [2]
to deal with the load problem for a Kirchhoff-Love plate subject to arbitrary boundary
conditions. This method is based on a standard discretization by low-order conforming
elements of a bending moment formulation. In the present paper we adapt this approach
to the buckling and the vibration problems. We restrict our analysis to simply-connected
polygonal clamped plates, not necessarily convex. In this case, all the equations are dis-
cretized by piecewise linear elements. We prove that the method leads to optimal orders
of convergence for both, the vibration and the buckling problem. Since the analysis of the
former is much straightforward, we describe in whole detail only the latter and summarize

the results for the former.

The outline of the paper is as follows: We introduce in Section 2.2 both eigenvalue
problems. We recall the mixed formulation in terms of bending moments and a third
equivalent formulation considered in [2], which allows using standard finite elements for
its discretization. In Section 2.3 we develop the numerical analysis of the buckling problem.
With this aim, we introduce a linear operator whose spectrum is related with the solution
of the buckling problem. A spectral characterization is given and additional regularity

results are proved. Then, the finite element method is introduced and it is proved that it
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leads to optimal order approximation of the eigenfunctions. We end this section by proving
that an improved order of convergence holds for the approximation of the eigenvalues. The
same steps are briefly presented in Section 2.4 for the vibration problem, emphasizing the
differences between both analyses. In Section 2.5 we report some numerical tests which
confirm the theoretical results. We also include in this section numerical experiments
with lowest-order Ciarlet-Raviart’s and Ishihara’s methods. These experiments show that
Ciarlet-Raviart’s method seems to converge with optimal order. The reported experiments
also show that Ishihara’s method fails when used on regular non-uniform meshes. We
summarize some conclusions in Section 2.6. Finally, we give the matrix form of the discrete
buckling problem in an appendix, which allows us to prove a spectral characterization of

this generalized eigenvalue problem.

2.2 Problem statement

Let Q C R? be a polygonal bounded simply-connected domain occupied by the mean
surface of a plate, clamped on its whole boundary I'. The plate is assumed to be homoge-
neous, isotropic, linearly elastic, and sufficiently thin as to be modeled by Kirchhoff-Love
equations. We denote by u the transverse displacement of the mean surface of the plate.

The plate vibration problem reads as follows:

Find (\,u) € R x H?(Q), u # 0, such that

{ A’u = \u in Q,
(2.2.1)
u=0u=0 on I,
where A = w?, with w > 0 being the vibration frequency, and 9, denotes the normal
derivative. To simplify the notation we have taken the Young modulus and the density of
the plate, both equal to 1.

On the other hand, when the plate is subjected to a plane stress tensor field n : 2 —
R2*2, the corresponding linear buckling problem reads as follows:

Find (A\,u) € R x H*(Q), u # 0, such that

{ A%y = —X(n: D*u) in Q,

(2.2.2)
u=0,u=70 on I,
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where X is in this case the critical load and D*u := (9;;u), <y denotes the Hessian matrix

of u. The applied stress tensor field is assumed to satisfy the equilibrium equations:

n'=n inQ (2.2.3)
divn =0 in Q. (2.2.4)

Moreover, n is assumed to be essentially bounded, namely,
n e L®(Q)**. (2.2.5)

However, we do not need to assume 1 to be positive definite. Let us remark that, in
practice, 1 is the stress distribution on the plate subjected to in-plane loads, which does
not need to be positive definite (see, for instance, Test 3 in Section 2.5.3 below).

Here and thereafter we use the following notation for any 2 x 2 tensor field 7, any 2D

vector field v, and any scalar field v:

—811)
divT := 711+ O , Curlv := i~ .
01791 + OaTao Oavy  —01 02

Moreover, we denote
10 1
I.= , J = 0 .
01 -1 0

To obtain a weak formulation of each of the two spectral problems above, we multiply

O
divv := 01v1 + Ohva, rot v := O1vy — oy, curlv := ( ? ) ,

the corresponding equation by v € HZ(Q) and integrate twice by parts in Q. Thus, for
the vibration problem (2.2.1) we obtain:
Find (\,u) € R x HZ(), u # 0, such that

/ AuAv = )\/ w Vv € HF(N). (2.2.6)
Q Q

For the linear buckling problem we do the same and use the following lemma, which

is easily proved by integrating by parts.
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Lemma 2.2.1 For allu € H*(Q), v € HY(Q), and n satisfying (2.2.3)-(2.2.5),

/Q(n:DQU)v:—/(nVu)-Vv.

Q

Thus, we obtain the following symmetric weak formulation of the buckling prob-
lem (2.2.2):
Find (A\,u) € R x HZ(Q), u # 0, such that

/ AuAv = )\/ (nVu) - Vv Vv € HZ (). (2.2.7)

It is well known that the eigenvalues of problem (2.2.6) are real and positive. Whenever
7 is positive definite, it is immediate to prove that those of problem (2.2.7) are real and

positive, too. In any case these eigenvalues are real (see Lemma 2.3.1 below).

2.2.1 Formulation of the spectral problems in terms of bending

moments

In what follows we adapt to the spectral problems of the previous section, an approach
introduced and analyzed in [2] to deal with the load problem for Kirchhoff plates. Since
the adaptation to the buckling problem presents several additional difficulties which must
be tackled, we will describe this case in more detail and only summarize the analogous
results for the vibration problem.

Let us denote

2X2

Vi=HY(Q) and X = {T e L2 div(divT) € L2(Q)}.

It was proved in [2] that X endowed with the norm

2 . . 2 1/2
712 = [l + idiv(div 7)1 o

is a Hilbert space and that D()?*2 is a dense subspace of X. Moreover,

/ div(div 1)v = / T: D% Vre X, Yve H3Q). (2.2.8)
Q Q
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Problem (2.2.7) can be rewritten as follows:
Find (\,0,u) € R x X x HZ(), u # 0, such that

{ o = C(D%u) in €,

(2.2.9)
div(dive) = —An : D*u in Q.

In the expression above, o = (0;;)1<i <2 is the so called stress tensor and C is the

linear operator arising from Hooke’s law:
Cr)=01-v)T+v(tr7)1, T € R¥?,

with v € (0, 3) being the Poisson coefficient. Let us remark that o is a symmetric tensor
as a consequence of the symmetry of D?u.

The equivalence between problems (2.2.7) and (2.2.9) is a straightforward consequence
of (2.2.8) and the identity

[ cwmy:pto= [ ause e m@),
Q Q

which in its turn follows from the density of D(Q) in HZ(2) and integration by parts.
To obtain a weak formulation of problem (2.2.9) we proceed as in [2]. First note that
the operator C is invertible, its inverse being given by
1 v
1T 1

Next, consider the following closed subspace of X:

cl(m) (tr7m) 1, T € R?*2,
X' :={rcXx: div(divr) =0}.

The first equation of problem (2.2.9) can be equivalently written C™'(o) = D?u. By
testing this equation with 7 € X° and using (2.2.8), we obtain

/ Clo): 7= / D*u:T = / div(divr)u=0  vr e X" (2.2.10)
Q Q 0

On the other hand, taking traces in the first equation of (2.2.9), it follows that wu is the

unique solution of the problem

Au — ! tro =0 in §2,
1+v (2.2.11)

u=>0 onI.
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Moreover, let ¢ be the solution of the problem

Ap=—\n:D? in
{ ¢ =—An: D s (2.2.12)

=0 on [,

and let

o’ :=0o—¢lL

Since div(div ¢I) = A¢, from the second equation in (2.2.9) and the first one in (2.2.12),
we have that div(div o®) = 0 and, hence, o° € X°.

Therefore, by testing problems (2.2.11) and (2.2.12) with functions in V), substituting
o =0"+ ¢l in (2.2.10) and (2.2.11), and using Lemma 2.2.1, we arrive at the following
weak formulation of problem (2.2.9):

Find (A, ¢,0% u) € R xV x X% x V, u # 0, such that

/qu-Vv:—)\/(nVu)-Vv Yo eV,

Q Q

/c—l(ao+¢1):r:0 v e XY, (2.2.13)
Q

/Vu-Vv—l—L/(trao—i-Q(ﬁ)V:O VyeV

9) 1"—1/ Q .

\

The following lemma will be used to prove that this problem is actually equivalent to
problem (2.2.7).

Lemma 2.2.2 Given x € L*(Q)**?, there holds Jox :T=0 for all T € X° if and only
if there exists v € H2(Q) such that x = D*v.

Proof. Let x € L2(2)*** be such that Jox:T=0forall 7 € X% Let v € H}(Q) be

the solution of the following problem:
/DQU:DQw:/X:DQw Yw € HE (D).
Q Q
Hence, x — D*v € X and, consequently,

/sz(x—D%):O.
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On the other hand, testing the problem above with w = v, we have that

/ (x — D*v) : D*v = 0.
Q

Subtracting this equation from the previous one, we obtain
/ (X—D2v) : (X—Dzv) =0
Q

and, hence, x = D?v. Since the converse is a direct consequence of the definition of A°,
we conclude the proof. O

Now we are in a position to prove that problems (2.2.13) and (2.2.7) are equivalent.

Proposition 2.2.3 (A, ¢,0°, u) is a solution of problem (2.2.13) if and only if (\,u) is
a solution of problem (2.2.7) and o = a° + ¢I = C(D?u).

Proof. It has been already shown that problems (2.2.7) and (2.2.9) are equivalent. So, it
is enough to prove the equivalence between problems (2.2.13) and (2.2.9).

Let (X, ¢,0° u) be a solution of problem (2.2.13). The first equation of this problem
and Lemma 2.2.1 imply that ¢ satisfies (2.2.12). Therefore, since 0° € X°, ¢ := 6 + ¢I
satisfies the second equation of (2.2.9).

On the other hand, the second equation of (2.2.13) and Lemma 2.2.2 imply that there
exists v € HZ(Q) such that C™'(a" + ¢I) = D?v or, equivalently, 0" + ¢I = C(D?v). By
taking traces in this expression, we observe that v is the unique solution of the following
problem, X

Av = T (tr o’ + 2¢) in 2,

v=20 on I’

whose weak form coincides with the third equation of problem (2.2.13). Consequently,
v = u. Therefore, u € HZ(Q) and o = o + ¢I = C(D*u), which allows us to conclude
that (A, o, u) is a solution of problem (2.2.9).

The converse has been already proved when deducing (2.2.9), so we conclude the proof.
([
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Remark 2.2.4 Although no symmetry constraint is explicitly imposed in problem (2.2.13)
on o® (and hence on o = a® + ¢1), according to the theorem above o = C(D*u). Conse-
quently, o and a fortiori the term o in the solution of problem (2.2.13) turn out to be

symmetric, anyway.

Analogously, the vibration problem (2.2.1) can be rewritten as follows:
Find (\,o,u) € R x X x HZ(Q2), u # 0, such that

o = C(D%u) in ,
div(dive) = \u in Q.

The same arguments used for the buckling problem lead to the following weak formu-
lation of this problem:
Find (A, ¢,0% u) € R xV x X% x V, u # 0, such that

/ng-Vv:—)\/uv Yv eV,

Q Q
/C_l(ao—i-qbl):T:O v e X, (2.2.14)
Q
/Vu-Vv%—L/(tro-o%—%b)v:O Vy e V.

\ Q 1"‘1/ Q

Finally, the following equivalence result holds true:

Proposition 2.2.5 (A, ¢,0°, u) is a solution of problem (2.2.14) if and only if (\,u) is
a solution of problem (2.2.6) and o := a° + ¢I = C(D?u).

2.2.2 Equivalent variational formulations

Our next step is to introduce new variational formulations of the buckling and the
vibration spectral problems, which allow using standard finite elements for their dis-
cretization. With this purpose, we follow once more the arguments proposed in [2] to
obtain a convenient decomposition of the space X°.

Consider the following space:

H::{ﬁeHl(Q)Z: /95120,/952:0&111d /Qdivg:o},
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endowed with the norm

1/2
€l = (1061120 + $ 106 — a2 + 1016112

It is shown in [2] that || - ||g and || - ||1,o are equivalent norms in H, as a consequence of
Korn’s inequality.
In the same reference, it is also shown that, for each symmetric 7 € X, there exists
a unique & € H such that
7 =Curl& + 1 (dive) J. (2.2.15)
Since by virtue of Remark 2.2.4 the term o in the solution of problem (2.2.13) turns out

to be symmetric, then it can be accordingly written
o’ = Curlyp + 1 (divep)J
for a unique @ € H.

Remark 2.2.6 The simple-connectedness assumption on ) is necessary for the repre-
sentation (2.2.15) to hold true for all symmetric T € X°. This is tacitly assumed in the
proofs of [2, Section 4.1].

We introduce the following continuous bilinear form in H:

A, &) : = /QC_l(Curlzb+ 2 (divep) J) : (Curl € + 5 (divE) J) (2.2.16)

= ! /Q [82¢182§1 + 011020, + % (Oothy — O11h1) (Do — 8151)}

1—v
v

— t t&.
1_1/2/91"0 Prot&

Straightforward calculus leads to

A(E,€) = ||§||H 5 / (0281 + 01&)° + (0n&s — 3151)2} ;

which shows that A(&,&) >

On the other hand, explicit computations lead to

/C (¢I) : (Curl€ + 1 (div€) J) /¢rot§ (2.2.17)

> = [[€]If; and, consequently, A(-,-) is H-elliptic.
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and

tro” = tr (Curlep + 3 (divep) J) = —rot 9. (2.2.18)

Using all this in problem (2.2.13), we obtain the following new formulation of the

buckling problem:
Find (A, ¢, ¢, u) € R x V x H x V, u # 0, such that

(/VQS-Vv:—)\/(nVu)-Vv Yo eV,
A, §) ——/¢r0t£—0 V¢ € H, (2.2.19)
\ /QVu-ijLm/Q (—rotp +2¢)y =0 Vy e V.

In what follows we show that problems (2.2.13) and (2.2.19) are equivalent.

Proposition 2.2.7 (A, ¢,,u) is a solution of problem (2.2.19) if and only if (\, ¢, a°, u)
is a solution of problem (2.2.13), with o® = Curlep + % (divep)J

Proof. Let (), ¢,0% u) be a solution of problem (2.2.13). Let v € H be such that o° =
Curly + % (divep) J. Given € € H, let 7 := Curl € + % (div€) J € X°. Then, the last two
equations in (2.2.19) follow from the corresponding ones in (2.2.13) by using (2.2.16)—
(2.2.18).

Conversely, let (), ¢,1p,u) be a solution of problem (2.2.19) and o° := Curle +
1 (divep) J € X°. The third equation in (2.2.19) and (2.2.18) yield the third equation in
(2.2.13). On the other hand, the second equation in (2.2.19), (2.2.16), and (2.2.17) yield the
second equation in (2.2.13), but only for symmetric test functions 7 = Curl €41 (div€) J €
X" To end the proof we will show that this equation also holds true for skew-symmetric

0 is symmetric, C"}(o”) is symmetric too and so is C™1(¢I)

test functions. In fact, since o
as well. Hence, for any skew-symmetric 7 € X, there holds [, C™'(c” + ¢I) : T = 0 and
we conclude the proof. O

Analogously, the vibration problem (2.2.14) can be written as follows:
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Find (A, 9,9, u) € R x V x Hx V, u # 0, such that

(/Vé Vv——A/ Yv eV,
Ay, §) ——/cbrot&—o Ve € H, (2.2.20)
/Vu V7+1+ (—rot'l,b+2¢) Vv eV.

The following equivalence result also holds true:

Proposition 2.2.8 (), ¢, %, u) is a solution of problem (2.2.20) if and only if (A, ¢, ", u)
is a solution of problem (2.2.14), with ¢ = Curla) + % (divep) J

Remark 2.2.9 In both problems, (2.2.19) and (2.2.20), the eigenvalues cannot vanish.
In fact, in both cases, if A\ = 0, then the first equation yields ¢ = 0, the second one
and the H-ellipticity of A lead to ¢ = 0, and, from the third one, u = 0. Moreover,
Jo MVu) - Vu # 0 in problem (2.2.19), despite the fact that n is not necessarily positive
definite. This is a consequence of the equivalence between problems (2.2.19) and (2.2.7)
(cf. Propositions 2.2.7 and 2.2.3). Indeed, in problem (2.2.7), [, (nVu)- Vu = 0 implies
Au =0 and, hence, u = 0.

Finally, to end this section, we introduce a more compact notation for the spectral
problems (2.2.19) and (2.2.20). Let & : (W xHx V) x (VxHxV) - R, Z: L*(Q) x
L*(Q) — R, and ¢ : H'(Q) x H'(2) — R, be the continuous and symmetric bilinear
forms respectively defined by

A((,3,0), (1,€,0)) == A(ah,€) + / Vo Vot / Vu - Vy

—% [/ngrotﬁ—l—/ﬂvrot@b] +%/ﬂ¢%
PB(u,v) ::/uv,
Q
€ (u,v) :/(nVu)-Vv.
0

Using this notation, problems (2.2.19) and (2.2.20) can be respectively written as follows:
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Find (A, ¢,1,u) € R x V x Hx V, u # 0, such that
(6,9, u), (7,€,v)) = A€ (u,v)  V(7,§,v) €V xHxV. (2:2.21)
Find (A, 9,1, u) € R x V x Hx V, u # 0, such that

A ((p,,u), (7,&€0)) = = AB(u,v)  V(v,&v) €V xHx V. (2.2.22)

2.3 Numerical analysis of the buckling problem

Before introducing the numerical method, we define the linear operator corresponding
to the source problem associated with the buckling spectral problem (2.2.21) and prove
some properties that will be used for the subsequent convergence analysis. Consider the

following source problem:
Given f €V, find (9,9, u) € V x H x V such that

A ((p, 0, u), (v,&€0)) =—=F(f,v) V(v,&v) €V xHx V. (2.3.1)

This problem is well posed. In fact, it can be decomposed into the following sequence

of three well posed problems:

1. Find ¢ € V such that
/Qw-vu = —/Q(an) Vo Woe. (2.3.2)

2. Find 9 € H such that
A, &) = G2(€) = ?1]/ /Q proté V€ € H. (2.3.3)

3. Find v € V such that

1
. R — ¢7¢ - —_ —
/Q Vu-Vy=R"¥(v) = T /Q (rotp — 2¢) Vy e V. (2.3.4)



24

Let T be the bounded linear operator defined by
T: V-V,
f=u,

with (¢,1,u) € V x H x V being the solution of (2.3.1). Clearly \ is an eigenvalue
of problem (2.2.21) if and only if p := % is a non-zero eigenvalue of 7', with the same
multiplicity and corresponding eigenfunctions u (recall A # 0; cf. Remark 2.2.9).

The arguments used in the previous sections applied now to problem (2.3.1) allow us

to show its equivalence with the following one:
Given f €V, find u € HZ(Q) such that

/QAu Av = /Q (mVf)-Vv  VYve H Q). (2.3.5)
More precisely, u coincides in both problems and
o = C(D*u) = Curlep + 1 (divep) J + oL
As a consequence, we can prove the following spectral characterization:

Lemma 2.3.1 The spectrum of T satisfies Sp(T) = {0} U {p, : n € N}, where {u,}

s a sequence of real eigenvalues which converges to 0. The multiplicity of each non-zero

neN

eigenvalue is finite and its ascent is 1.

Proof. By virtue of the equivalence between problems (2.3.1) and (2.3.5), T" is also
a bounded linear operator from V into HZ(2). Hence, because of the compact inclu-
sion H2(Q2) — V and the spectral characterization of compact operators, we have that
Sp(T) = {0} U {n : n € N}, with {pn}, oy @ sequence of finite-multiplicity eigenvalues
which converges to 0.

Moreover, it is simple to prove by using (2.2.3) that T'|pz(q) : H5(Q) — Hg(Q) is self-
adjoint with respect to the inner product (u,v) — [, AuAv. Therefore, since Sp(T) =
{0}USP(T (), we conclude that the non-zero eigenvalues of 1" are real and have ascent
1. Thus we end the proof. O

Another conclusion of the equivalence between problems (2.3.1) and (2.3.5) is the

following additional regularity result.
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Lemma 2.3.2 There exist s € (%,1] and C' > 0 such that, for all f € V, the solution
(6,9, u) of problem (2.3.1) satisfies u € H2(Q), ¢ € H*(Q)?, and

10l + lullypen + 1l 4s0 < Clfllq-

Proof. The estimate for ¢ (which does not involve any additional regularity) follows
directly from (2.3.2) and (2.2.5). The estimate for u follows from the equivalence between
problems (2.3.1) and (2.3.5) and the classical regularity result for the biharmonic problem
with right-hand side in H=1(Q) (cf. [27]).

To prove the estimate for 1, we use the explicit expression (2.2.16) for A to write

A, &) = 1://528(@/3) e(€) - S —Vﬂ /Qdm/}divé, (2.3.6)

with @ = (o, —101), € = (&, &), and € = (€ij)1<; j<o Deing the standard strain
tensor defined by £;;(v) = 1(dv; + d;v;), 1 < i,j < 2. By substituting (2.3.6) into
(2.3.3) and integrating by parts the right-hand side, we find that 1 is the solution of

1-v2)

term —ﬁV(b € LZ(Q)Q, and traction free boundary conditions. Notice that g > 0 and

an elasticity-like problem with Lamé coefficients i := ﬁ and \ 1= ——%; source

A+ = ﬁ > 0, too. Moreover, since the source term is orthogonal to the set of rigid
motions, because of the constraints in the definition of H, the elasticity-like problem is
well posed. Hence, from a classical regularity result for the elasticity equations (see, for

instance, [41, Theorem 5.2]), there exists s € (3,1] such that 1 and a fortiori v satisfy

1%l 400 < CIVEllgo < ClifllL -

Thus we conclude the proof. O

Remark 2.3.3 The constant s in the lemma above is the Sobolev reqularity for the bi-
harmonic equation with right-hand side in H='(Q) and homogeneous Dirichlet boundary
conditions. In fact, for the linear elasticity equations with right-hand side in L2(Q)2 and
purely homogeneous Neumann conditions, the Sobolev reqularity s is the same one. This
constant only depends on the domain Q2. If ) is convex, then s = 1. Otherwise, the lemma
holds for all s < so, where sy € (3,1) depends on the largest reentrant angle of Q (see [27]

for the precise equation determining s ).
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Remark 2.3.4 The lemma above does not fix any further reqularity for ¢. Indeed, no
additional regularity can be expected for arbitrary f € V. For instance, from (2.3.2), if

n=1I thenop=f.

2.3.1 Finite element approximation

For the numerical approximation, we consider a regular family {7,},., of triangular

meshes in Q and the standard piecewise linear continuous finite element space
Ly = {vh €C(Q): vlr € PU(T) VT € ’EL}
Let V,, and Hy, be the finite-dimensional subspaces of V and H, respectively defined by
Vi =LyNV=A{v,€Ly: v,=00nT},

Hh:zﬁiﬂH:{ﬁheﬁii /fhlZO,/fhzz()and/divsh:()}.
0 0 0

The discrete version of problem (2.2.21) reads as follows:
Find ()\h, th,’l,[)h,uh) € R x V), x Hy, X Vp,, uy # 0, such that

A ((on, ®p,,un), (Vns &y vn)) = — A€ (un, vp) YV (v, &y vn) € Vi X Hy x Vo (2.3.7)
Let T}, be the bounded linear operator defined by
Ty V=V,
[ = un,
with (ép, 1, un) € Vi xHy, x V), being the solution of the discrete analog of problem (2.3.1):
A (o, ¥p,,un), (Y, &y vn)) = =€ (f,vp) V(v &pyvn) € Ve x Hy x Vi, (2.3.8)

As in the continuous case, this problem decomposes into a sequence of three well-posed

problems, which are the respective discretizations of (2.3.2)—(2.3.4):

¢h eV /QVgéh -V, = — /(; (an) - Vo Yy, € Vh, (239)

¥, € Hy Ay, &) = G™(&),) V&), € Hy, (2.3.10)

up € Vy - / Vuyp - Vy, = R¢h’¢h(7h) Vv, € Vh. (2.3.11)
Q
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Also as in the continuous case, )\ is an eigenvalue of problem (2.3.7) if and only if
[ = ﬁ is a non-zero eigenvalue of 7T}, with the same multiplicity and corresponding

eigenfunctions uy,.

Remark 2.3.5 The same arguments leading to Remark 2.2.9 allow us to show that any

solution of problem (2.3.7) satisfies N, # 0. Moreover, [, (nVuy) - Vu, # 0 also holds
true, but the proof of this fact is postponed to the Appendiz (cf. Remark 2.6.3, below).

In what follows we will prove that 7;, — T in norm as h — 0. As a consequence, for
all non-zero p € Sp(T') and h small enough, there exists p;, € Sp(7},) such that p, — pu.
In particular, this implies that the discrete spectral problem (2.3.7) has solutions, at least
for h sufficiently small, as long as Sp(7) # {0}. A thorough spectral characterization
is postponed to the Appendix (cf. Proposition 2.6.2, below), where the matrix form of
problem (2.3.7) is introduced.

The following lemma yields the uniform convergence of T, to T" as h — 0.
Lemma 2.3.6 There exist C >0 and r € (%, 1] such that, for all f €V,

(T =T5) fllio < CR ([ fll 0

Proof. Given f € V, let (¢, v, u) and (¢p, 1, un) be the solutions of problems (2.3.1)
and (2.3.8), respectively, so that u = T'f and u, = T} f. From (2.3.4), (2.3.11), and the
first Strang Lemma (cf. [15]), we have

R¢h7¢h I Rd)fﬂb
||u_uhH1Q S C inf ||U—’yh||19—|— sup (vh) ('Vh)
’ YhEVR )

(2.3.12)
YhEVh ||,}/h||17ﬂ

To estimate the first term in the right-hand side above, we use standard approximation

results and the regularity of u proved in Lemma 2.3.2:

inf [lu— 7l < Chllullyg < ChIf g (2.3.13)

YhEVR
For the second term, we use the definition of R (cf. (2.3.4)) and integration by parts to

obtain

Ron¥n — ROV
sup (1) (1)
Yh€Vh ||7h||17ﬂ

< C (I = willog + 16 = dnllon) - (2:314)
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Now, we resort to a duality argument to estimate ||¢ — ¢pl/0.q, since no additional
regularity holds for ¢ (cf. Remark 2.3.4). Let

v e HYQ): /QVX-Wz/Q(as—asm vy € HY(Q). (2.3.15)

By virtue of standard regularity results for the Laplace equation (see [27]), there exists
r € (3,1] such that x € H"(Q) and

X[l < Cllé = nllog -

Let x' € V), be the Lagrange interpolant of x. Taking v = ¢ — ¢, in (2.3.15) and using

(2.3.2), (2.3.9), and standard approximation results, we have

16— dull2q = / V- V(6— bn) = / Vi) V(6 — )

Q
< Ch" Xl IV (0 = on)lo g

< Ch'{|¢ = nlloo V(6 = on)lloo-
Therefore, from (2.3.2) and (2.3.9), again, and (2.2.5),
6= 6ulln < O (IV0loa+ [Vonloa) < CH [ flia-  (23.16)

The next step is to estimate [|9) — 1, ||0.o. With this aim, we consider first ||¢p —p,[|1.0-
From (2.3.3), (2.3.10), the ellipticity of A, and the first Strang Lemma again, we have

Gon —Ge
=l < € ng{h e CE <sh>] |

€n€Hy ||€h||1Q

We use standard approximation results and Lemma 2.3.2 once more, to obtain

inf |t —&ll, o < OP° ||l 0 < ORI fll1 0
EheHh

with s € (3, 1], whereas from the definition of G (cf. (2.3.3)),

sup G (€,) — G*(&,)
€,€H,, 1€0ll10

< Cllé — dnllog < CH |-
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Thus, defining ¢ := min{s, 7} € (1, 1], we obtain that

1% = Pl o < CA NI fll1q-

Next, we use another duality argument to estimate [|9p — b, ||, - Let

peH: A(p,@:/ﬂw—wh)-e VE € H. (23.17)

The same arguments used in the proof of Lemma 2.3.2 allow us to show that

||P||1+s,Q <Cly - T/JhHO,Q-

Hence, using again standard approximation results, we know that there exists p, € Hj
such that

lo = prllio < CP ol a0 < ORI = Ppllgq-
Thus, taking &€ = 1 — ), in (2.3.17) and using (2.3.3) and (2.3.10), we obtain
Iy — ¢h||§,9 = Alp, Y — 1)) = Alp — pp, Y — ¥,) + Alpy, ¥ — )
1
<Cllo=pulhalld = bullin+ | [ 0= oot
Q
< 1Y = ylloq 1flla + CR I flla 19 — Yullog -

Therefore, since s+t > 1,

1% = ¥ulloo < Ch" [ fll1a- (2.3.18)

Thus, the lemma follows from (2.3.12), (2.3.13), (2.3.14), (2.3.16), and (2.3.18). O

Remark 2.3.7 The order of convergence r depends on the maximum Sobolev reqularity
of the domain for the Laplace equations with right-hand side in L?(Q) and homogeneous
Dirichlet boundary conditions. In particular, if € is convex, then r = 1. Otherwise, the

lemma holds for all v < 1o := %, with 0 being the largest reentrant angle of Q (cf. [27]).

The following lemma shows that the error estimate for ||(7'—1}) f||1.q can be improved

when f is smoother.
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Lemma 2.3.8 There exists C' > 0 such that, for all f € V N H?*(Q),

(T =Th) fllo < Chflla0-

Proof. We follow exactly the same steps as in the proof of Lemma 2.3.6. However, now
¢ € H''(Q), with r > 5 as in Remark 2.3.7, and |[¢[|14, < C||f|20- In fact, ¢ is the

solution of (2.3.2), which by virtue of Lemma 2.2.1 is a weak form of

—Ap=mn:D*f e L*Q),
p=0 on [

Hence, the estimate for ||¢ — ¢n|0.o can be improved by using that

V(¢ = dn)llon < Ch 19l 40 < CR" (I fllo0 -

Consequently, we obtain instead of (2.3.16)

l¢ = dnlloo < CR [ fll20- (2.3.19)

This last inequality can be used to improve (2.3.18) as follows:

1% — Pulloq < CHH Il 0+ CR (I £l - (2.3.20)

Therefore, since s + ¢ > 1 and 2r > 1, too, the lemma follows from (2.3.12), (2.3.13),
(2.3.14), (2.3.19), and (2.3.20). O

2.3.2 Spectral convergence and error estimates

As a direct consequence of Lemma 2.3.6, T}, converges in norm to 7' as h goes to
zero. Hence, standard results of spectral approximation (see, for instance, [31]) show that
isolated parts of Sp(7") are approximated by isolated parts of Sp(7},). More precisely, let
i # 0 be an eigenvalue of T with multiplicity m and let £ be its associated eigenspace.
There exist m eigenvalues ,ugll), ey uﬁj”) of Ty, (repeated according to their respective mul-
tiplicities) which converge to p. Let &, be the direct sum of their corresponding associated

eigenspaces.
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We recall the definition of the gap § between two closed subspaces M and N of H(9Q):
H(M,N) = max {5(M, N), (N, M)},

where

(M, N) = sup (;gjvax—yHl,n)-
Il =1

The following theorem implies spectral convergence with an optimal order for the

approximation of the eigenfunctions.

Theorem 2.3.9 There exists a strictly positive constant C' such that

~

5(€>€h) < Cha
‘,u—ug) < Ch, 1=1,...,m.

Proof. As a consequence of Lemma 2.3.6, T}, converges in norm to 1" as h goes to zero.
Then, the proof follows as a direct consequence of Lemma 2.3.8 and Theorems 7.1 and
7.3 from [6] and the fact that, for f € &, ||f|l2a < C| f]l1.a, because of Lemma 2.3.2. O

The error estimates for the eigenvalues p # 0 of T' yield analogous estimates for the
eigenvalues A = % of problem (2.2.21). However, the order of convergence in Theorem 2.3.9
is not optimal for p. Our next goal is to improve this order.

With this purpose, let us denote A, :=1/ uﬁf), with uﬁf) being any particular eigenvalue
of T}, converging to p. Let uy, ¢, and 4, be such that (A, dp, ¥, up) is a solution of
problem (2.3.7) with [lus||, o = 1. According to Theorem 2.3.9, there exists a solution
(A, &, 9, u) of problem (2.2.21) with [[ul], 5 = 1 such that

|u—upll, o < Ch. (2.3.21)

The following lemma, which will be used to prove an improved order of convergence for

the corresponding eigenvalues, shows estimates for ¢ — ¢, and ¥ — 1.

Lemma 2.3.10 There exists C' > 0 such that
¢ = dnllig+ 1 —Pull o <C (h + inf [|¢ —wpll; o+ inf [j¢p— Ehllm)
v EV) &,€Hy,
< Ch,

where t := min{s,r} € (3,1], with s and r as in Lemma 2.3.2 and 2.3.6, respectively.
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Proof. First note that (4,4, ) is the solution of problem (2.3.1) with f = Au. Hence,
from Lemma 2.3.2, u € H*(Q) with |lul|2.o < CA||u/|1 0. Hence, the same arguments used

in the proof of Lemma 2.3.8 allows us to show that
10l 11r0 < Cllullyg < CXlully o

On the other hand, (¢p, ), up) is the solution of problem (2.3.8) with f = Ajup,.
Thus, from the equivalence between this problem and (2.3.9)—(2.3.11), ¢y, is the solution
of (2.3.9) with f = A\juy. Hence, from the first Strang Lemma again,

/Q [ (AVu = A\ Vup)] - Vo,

— <C | inf ||¢p—w + sup
16 =énlio <O | inf o= wnllo+ sup fonll s

To estimate the first term in the right-hand side above, we use standard approximation

results:
inf [[¢ —onl,q < CR" (9]l 1,0 < CR ull, q-
v EV)

For the second term, we use the Cauchy-Schwarz inequality, (2.2.5), (2.3.21), and Theo-
rem 2.3.9:

/Q [ (AVu — Ay Vug)] - Vuy,

sup
vREV) ||UhH1,Q

S C ||)\Vu — )thuhHOﬂ

< O lu = unlly g + [A = Anl [[unll o
< Ch.

On the other hand, to estimate the term ||9 — 4}, |10, we repeat the arguments in the
proof of Lemma 2.3.6 (with f = Au) to obtain

1=l < € (g, 19— €l + 16— énlla)
h h
< CRMully g +Cll¢ — dnlloq -
Next, repeating the arguments in the proof of Lemma 2.3.8, we have from (2.3.19) that

16 = dnlloq < CRAlJull, g
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Thus, we conclude the proof. O

Now we are in a position to prove an improved order of convergence for the eigenvalues.

Theorem 2.3.11 There exists a strictly positive constant C such that
. 2 . 2 2
A=l <0 (B4 it o= wlfa+ inf 14— &lia ) < 0,
with t € (3,1] as in Lemma 2.3.10.

Proof. We adapt to our case a standard argument (cf. [6, Lemma 9.1]). Let U := (¢, ¥, u)
and Uy, := (¢n, ¥y, up) be as in the proof of Lemma 2.3.10. Because of (2.2.21) and (2.3.7),

AU —Un, U —Uy) = (U, U) — 2 (U,Uy) + o (Uy, Uy)
= —\C (u,u) + 20C (u, up) — A€ (up, up),
whereas
A (u— up,u — up) = AE(u,u) — 206 (u, up) + A€ (up, up).
Therefore, since € (uy, up) # 0 (cf. Remark 2.3.5),

(U — Uy, U—Uy) + X6 (u— up, u— up)

A=A = Z () .

Moreover, from (2.3.21), € (up, up) LA % (u,u) # 0 (cf. Remark 2.2.9). Hence,
A= | < C(| (U = Up, U —=Up)| + [N |C (v — up, u— up)l|)
< C (U = Ul erpy + e = w2
<o (w4 i - ulia+ il 1% &lk)
< Ch*,

the last two inequalities because of (2.3.21) and Lemma 2.3.10. Thus, we conclude the

proof. O

Remark 2.3.12 The order of convergence for the eigenvalues do not depend on the reg-
ularity of the eigenfunction u, which always belongs to H?(SY), but on the regularity of the
auziliary quantities ¢ and . In fact, the O(h') error estimate in Lemma 2.5.10 could be

improved, provided ¢ and ¥ were more reqular.
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2.4 Numerical analysis of the vibration problem

In this section we summarize the results for the vibration problem. We do not include
most of the proofs since they are either similar to the corresponding ones for the buck-
ling problem or simpler. We only emphasize those aspects that differ from the buckling
problem.

Consider the well-posed source problem associated with the vibration problem (2.2.22):

Given f € L*(Q), find (¢,1,u) € V x H x V such that

A (¢, u), (v,&,0)) = —B(f,v) V(v,&v) €V xHxV. (2.4.1)

Let T be the bounded linear operator defined by

T: L*(Q) — L*(%),

f=u,

with (4,1, u) € V x H x V being the solution of (2.4.1). Clearly \ is an eigenvalue
of problem (2.2.22) if and only if p := i is a non-zero eigenvalue of 7', with the same
multiplicity and corresponding eigenfunctions u (recall A # 0; cf. Remark 2.2.9).

For the vibration problem, the operator T is self-adjoint with respect to the L*(Q)
inner product. Moreover T' is compact, because of the compact inclusion V < L*(2), and

the following spectral characterization holds:

Lemma 2.4.1 The spectrum of T' satisfies Sp(T) = {0} U {u, : n € N}, where {u,}

is a sequence of real positive eigenvalues which converges to 0. The multiplicity of each

neN
eigenvalue is finite and its ascent is 1.
The following additional regularity result holds true in this case:

Lemma 2.4.2 There exist r,s € (%,1] and C > 0 such that, for all f € L*(Q), the
solution (¢, u) of problem (2.4.1) satisfies ¢ € H'*(Q), u € H>*(Q), ¢ € H™*(Q)?,

and

10M 10 + Nullppso + 1%l 4s0 < Clifllog-
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Constants r and s above are the same as those in the proof of Lemma 2.3.2 and 2.3.6.

By comparing this result with Lemma 2.3.2, we observe that ¢ is smoother in this case

than for the buckling problem. This is the key-point which makes the analysis of the

vibration problem a bit simpler.

2.4.1 Finite element approximation

The discrete version of problem (2.2.22) reads as follows:
Find (An, ¢n, ¥, upn) € R x V), x Hy X Yy, up, # 0, such that

A ((On, s un), (Yn, & vn)) = —AB(un,vn) V(W &nsvn) € Vi X Hy X V.

Let T}, be the bounded linear operator defined by
Ty : L*(Q) — L*(),
.f = Up,

with (én, ¥y, un) € Vi x H, x V), being the solution of

A ((Dn, Y1, un), (Y, €y vn)) = —B(f, vn) Y(Yn, & vn) € Vi X Hyy X V.

(2.4.2)

(2.4.3)

Once more, Ay, is an eigenvalue of problem (2.4.2) if and only if y), = ﬁ is a non-zero

eigenvalue of Tj,, with the same multiplicity and corresponding eigenfunctions uy. Also,

as in the continuous case, A\, # 0.

In this case, T}, is self-adjoint with respect to the L?(Q) inner product. Because of this,

it is easy to prove the following spectral characterization:

Lemma 2.4.3 Problem (2.4.2) has ezactly dimV), eigenvalues, repeated accordingly to

their respective multiplicities. All of them are real and positive.

The following lemma yields the uniform convergence of T}, to 1" as h — 0. Its proof

follows the lines of the proof of Lemma 2.3.8, by taking advantage of the additional

regularity of ¢ (cf. Lemma 2.4.2).

Lemma 2.4.4 There exists C > 0 such that, for all f € L*(2),

(T =Th) fllo < Chlfllog-
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2.4.2 Spectral convergence and error estimates

As a direct consequence of Lemma 2.4.4, T}, converges in H'(Q) norm to T as h goes
to zero (as well as in L?(Q2) norm). Hence, isolated parts of Sp(7T') are approximated by
isolated parts of Sp(7}). Let p # 0 be an eigenvalue of 7" with multiplicity m and let
& be its associated eigenspace. There exist m eigenvalues ,ugll), e ,,uglm) of Tj, (repeated
according to their respective multiplicities) which converge to p. Let &, be the direct
sum of their corresponding associated eigenspaces. The following error estimate is again

a direct consequence of standard spectral approximation results (cf. [6]):

Theorem 2.4.5 There exists a strictly positive constant C' such that

(€, &) < Ch.

Finally an improved order of convergence also holds for the eigenvalues. To prove this,
we do not need to resort to the analog of Lemma 2.3.10. We include in this case the simpler
proof of the following theorem, where, for each f € &, we denote by Uf := (¢/, 47, uf)
the solution of problem (2.4.1). (Notice that u/ =T f = uf.)

Theorem 2.4.6 There exists a strictly positive constant C' such that

(infvhevh ¢/ — ’UhHLQ + infe, cm, |9 — £h||1,9>] ’

<C
£ 1lo.c

h + sup
fee

< Ch*, i=1,...,m,

e

where t = min{s, r}, with r, s € (3,1] as in Lemma 2.4.2.

Proof. By applying Theorem 7.3 from [6] and taking into account that 7" and 7}, are

self-adjoint with respect to the L?(€) inner product, we have

Tf -1, T-T,) flls
B O S VRN (A Vi
f,9€€ HfHo,QHgHo,Q fee ||f||OQ

, 1=1,...,m.

o

The second term in the right-hand side above is directly bounded by means of Lemma 2.4.4,

so there only remains to estimate the first one. With this aim, let f,g € €. Let U/ and
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UY be defined as above. Let U,{ = (<b£, i,ui) and U := (¢7, 47, uj) be the solutions of
problem (2.4.3) with data f and g, respectively. There holds

L/Hf—nﬂgzﬂwﬂw%mz—wﬂﬂ—UﬁU%Z—%@”—wﬂw—Uﬁ
Q
< C HUf - Ui{”\)xHxv HUg - Ui!iHvXHqu

because of the standard Galerkin orthogonality and the continuity of .«7. Now,

107 = Ul sty < 167 = dhlly o+ 197 = 9hll + llud =l
< inf [l¢7 —wpll o+ inf (197 =&l o + Chllflloq
&€l

v EV

< Ch' [ fllog

where we have used results from [2, Section 5] to estimate the terms ||¢/ — ¢/ |0 and
|3 —ab? ||z and Lemma 2.4.4 for ||uf —u! ||, o. Since the same holds for ||U9 — U?||yxmxy,
we conclude the proof. O

The error estimate from the previous lemma yields a similar one for the eigenvalues
A= % of problem (2.2.22). Moreover, the analogous to Remark 2.3.12 also holds in this

case.

2.5 Numerical results

We report in this section some numerical experiments which confirm the theoretical
results proved above. Moreover, we compare in the first two tests the performance of
the proposed method with those of Ciarlet-Raviart’s [16, 13, 35] and Ishihara’s [29, 30|
methods.

Ciarlet-Raviart’s method is based on a mixed form of the biharmonic equation, which
is equivalent to this equation for convex domains. The method was proved to converge
for the vibration and the buckling problems for finite elements of degree k > 2 (see [35,
Section 7(b,d)]). Our experiments will give evidence of optimal order convergence for
piecewise linear finite elements, although, to the best of our knowledge, this has not been

proved.
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Ishihara’s method is based on an alternative mixed formulation, also equivalent to the
biharmonic equation for convex domains. Its piecewise linear discretization was analyzed
in [29] for the vibration problem and in [30] for the buckling problem. It was proved that
it converges in both cases, with a suboptimal order O(hl/ %), only for meshes which are
uniform in the interior of the domain. Our numerical experiments will show that this
constraint is not a technicality, since the method converges to wrong results when is used
on particular regular non-uniform meshes.

Since there is no significant difference in our experiments between the vibration and
the buckling problems, we will only report the numerical results for the latter. We have

taken in all our experiments a Poisson ratio v = 0.25.

2.5.1 Test 1: Uniformly compressed square plate; uniform meshes

We have taken as an example of a convex domain the unit square Q2 := (0,1)x(0,1). We
have used the stress distribution corresponding to a uniformly compressed plate: n = 1.
We have used uniform meshes as those shown in Figure 2.1. The refinement parameter

N used to label each mesh is the number of elements on each edge of the plate.

Figure 2.1: Square plate: uniform meshes.

We report in Table 2.1 the lowest buckling coefficients (i.e., the lowest eigenvalues of
the buckling problem) computed with the method analyzed in this paper, with Ciarlet-
Raviart’s method, and with Ishihara’s method. The table includes computed orders of
convergence and extrapolated more accurate values of each eigenvalue obtained by means

of a least-squares fitting.
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Table 2.1: Lowest buckling coefficients of a uniformly compressed clamped square plate
computed on uniform meshes with the method analyzed in this paper (A), Ciarlet-
Raviart’s method (CR), and Ishihara’s method (I).

Method N =24 N =36 N =48 N =60 Order Extrapolated

A 5.30561  5.3042  5.3039  5.3038  2.61 5.3037

A1 CR 5.3830  5.3395  5.3239  5.3167  1.95 5.3033

I 5.3629 53254 53159  5.3114  2.02 5.3037

A 9.3578  9.3444  9.3398  9.3378  2.09 9.3343

A2 = A3 CR 9.5390  9.4261  9.3861  9.3675  1.97 9.3337
I 9.4650  9.3912  9.3659  9.3544  2.06 9.3347

A 13.0346 13.0091 13.0007 12.9969  2.14 12.9908

A4 CR 13.3977  13.1710 13.0919 13.0553 2.01 12.9909

I 13.2128 13.0827 13.0407 13.0219  2.21 12.9930

It can be seen from Table 2.1 that the three methods converge in this case to the same
values with optimal quadratic order, although this has been proved only for the method
analyzed in this paper (cf. Remark 2.3.7). Notice that, for all the methods, the second
computed eigenvalue is double, because the meshes preserve the symmetry of the domain
leading to an eigenvalue of multiplicity 2 in the continuous problem.

Figure 2.2 shows the transverse displacements of the principal buckling mode (i.e., the
eigenfunction corresponding to the lowest eigenvalue of the buckling problem) computed

with the method analyzed in this paper.

2.5.2 Test 2: Uniformly compressed square plate; non-uniform
meshes
We have tested the same three methods as above on non-uniform meshes, as well. We

have solved the same problem as in the previous example with tiled meshes as those shown

in Figure 2.3. The refinement parameter N used to label each mesh is now the number
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Figure 2.2: Uniformly compressed square plate; principal buckling mode.

of tiles on each edge of the plate. The reason for this choice is to avoid asymptotically

uniform meshes.

Figure 2.3: Square plate: tiled meshes.

We report in Table 2.2 the lowest buckling coefficients computed on these meshes
with each of the three methods again. Notice that in this case, since the meshes do not
preserve the symmetry of the domain, the second eigenvalue, which has multiplicity 2 in
the continuous problem, will be in general approximated by two simple eigenvalues.

It can be seen from Table 2.2 that the method analyzed in this paper and Ciarlet-
Raviart’s method do not deteriorate on these meshes and converge to the same values
with quadratic order again. Instead, this is not the case for Ishihara’s method, which

converges to wrong results.
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Table 2.2: Lowest buckling coefficients of a uniformly compressed clamped square plate
computed on non-uniform meshes with the method analyzed in this paper (A), Ciarlet-
Raviart’s method (CR), and Ishihara’s method (I).

Method N =15 N =25 N =35 N =45 Order Extrapolated

A 5.3030  5.3034 53035 5.3036 1.91 5.3036
A1 CR 5.3134 53075  5.3058  5.3050  1.88 5.3038
I 5.4491 54384 54348  5.4328 1.42 5.4285
A 9.3323 93335  9.3338 9.3339  1.96 9.3342
A2 CR 9.3622  9.3449  9.3399  9.3379  1.92 9.3345
I 9.5788  9.5520  9.5433  9.5388  1.56 9.5302
A 9.3336  9.3340 9.3340  9.3341 1.79 9.3342
A3 CR 9.3641  9.3455  9.3402  9.3380 1.94 9.3345
I 9.6337  9.6106  9.6030  9.5991 1.54 9.5914
A 12.9830 12.9876 12.9890 12.9895 1.96 12.9904
A4 CR 13.0437 13.0103 13.0010 12.9970 1.95 12.9908
I 13.3387 13.2949 13.2811 13.2743 1.64 13.2617

2.5.3 Test 3: Shear loaded square plate

For this test we have computed the buckling coefficients of the same plate as in the

previous example, subjected to a uniform shear load. This corresponds to a plane stress

field
B 01
=\ o)

Note that m is not positive definite in this case.

We report in Table 2.3 the lowest buckling coefficients computed on the same uniform
meshes used in Test 1 (cf. Figure 2.1) with the method analyzed in this paper.

Once more, the method converges with optimal quadratic order. Although we do not
report the results obtained with the other two methods, both converge on uniform meshes

to the same eigenvalues.
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Table 2.3: Lowest buckling coefficients of a shear loaded clamped square plate computed

on uniform meshes with the method analyzed in this paper.

N=24 N=36 N=48 N =60 Order Extrapolated
A1 14.8218 14.7215  14.6867 14.6706  2.01 14.6420
Ay 173111 17.0922 17.0161 16.9810  2.02 16.9195
Az 36.0905 34.5656 34.0304 33.7825  1.99 33.3376

Figure 2.4 shows the transverse displacements of the principal buckling mode for the

shear loaded square plate computed with the method analyzed in this paper.

Figure 2.4: Shear loaded square plate; principal buckling mode.

2.5.4 Test 4: L-shaped plate

Finally, we have computed the buckling coefficients of an L-shaped plate: Q := (0,1) x
(0,1)\ [0.5,1) x [0.5,1). We have used n = I (uniform compression) and uniform meshes
as those shown in Figure 2.5. The meaning of the refinement parameter N is clear from
this figure.

We report in Table 2.4 the lowest buckling coefficients computed with the method
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Figure 2.5: L-shaped plate: uniform meshes.

analyzed in this paper.

Table 2.4: Lowest buckling coefficients of an L-shaped clamped plate computed on uniform

meshes with the method analyzed in this paper.

N=40 N=60 N=80 N =100 Order Extrapolated

A1 12.8379 12,9010 129328 12.9518  0.99 13.0290
A2 149175 14.9586 14.9752  14.9838 1.60 15.0036
Az 17.0083 16.9993 16.9968 16.9960  2.75 16.9949

In this case, for the first buckling coefficient, the method converges with order close
to 1.089, which is the expected one because of the singularity of the solution (see [27]).
Instead, the method converges with larger orders for the second and the third buckling
coefficients.

Notice that, according to Theorem 2.3.11, the order of convergence for the buckling
coeflicients must double the worst among those of ||¢—p 1.0, [[¥ =10, and ||lu—up |10
In the case of A\; and Ay, the worst order should be that of ||tp — ), ||1.o. In fact, according
to (2.3.21), the transverse displacement u satisfies ||u — uy||1.0 = O(h) for any polygonal
domain €). Moreover, since in this case n = I, we have ¢ = Au and ¢, = A\yuy, so that
¢ = dnll1.0 = O(h), too.

We include in Table 2.5 computed orders of convergence ||uy, — tex||1,0, where we have
used as ‘exact’ transverse displacements uq, the ones computed with a highly refined mesh

corresponding to N = 200.
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Table 2.5: Errors of the transverse displacements |[u, — uex| 1.0 for the lowest buckling
coefficients of an L-shaped clamped plate computed on uniform meshes with the method

analyzed in this paper.

N=8 N=16 N=24 N =32 Order
A1 0.4514  0.2297  0.1477  0.1059  1.04
Ay 04424 0.2218  0.1411  0.1005 1.07
Az 0.5028  0.2469  0.1570  0.1121 1.08

It can be seen from this table that the eigenfunctions wu;, actually converge with order
O(h) as Theorem 2.3.9 predicts, in spite of the non-convex angle of the domain.

Finally, Figure 2.6 shows the transverse displacement of the principal buckling mode.

Figure 2.6: Uniformly compressed L-shaped plate; principal buckling mode.

2.6 Conclusions

We have introduced a finite element method for two eigenvalue problems: the com-
putation of buckling and vibration modes of a clamped Kirchhoff polygonal plate. The

method is based on discretizing a bending moment formulation by means of standard
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piecewise linear finite elements. This approach was proposed and analyzed by Amara
et al. [2] to solve the corresponding load problem for a thin plate subject to arbitrary

boundary conditions.

We have proved that the method yields an O(h) approximation to the transverse
displacements of buckling and vibration modes. Moreover, it yields O(h') approximations
to two auxiliary quantities, ¢ and 1), which allow us to compute to the same order of
accuracy the bending moment o = Curl1 + %(div ) J + ¢I. The order t depends on
the Sobolev regularity of the domain for the biharmonic and the Laplace equations. If
Q) is convex, then t = 1; otherwise, t € (%, 1) depends on the largest reentrant angle of
Q. The method yields O(h*) approximation to the buckling coefficients or the vibration

frequencies, too.

Furthermore, Lemma 2.4.4 shows that the method leads to an O(h) approximation to
the transverse displacement in the case of the source problem, too, even for non-convex
polygonal clamped plates. Let us remark that such optimal order agrees with the fact that
the transverse displacement always belongs to H?(§2). This improves in this particular case

the estimate given in [2, Theorem 5.3] for this variable.

The numerical tests confirm the theoretical results, including the O(h) approximation
to the transverse displacements even for plates with reentrant corners. The performance of
the method analyzed in this paper is comparable to that of lowest-order Ciarlet-Raviart’s
method [16] (for which, to the best of the authors’ knowledge, there is no proof of con-
vergence for either of the eigenvalue problems). We have also tested numerically other
well-known method for Kirchhoff plates, which was analyzed by Ishihara [29, 30] for both
eigenvalue problems on meshes uniform in the interior of the domain. The numerical tests
show that the uniformity constraint is not a technicality. In fact, it converges to wrong

results when used on particular regular non-uniform meshes.
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Appendix

The matrix form of the discrete spectral problem (2.3.7) reads as follows:

A B C)\ (@, 00 0) (&,
B"D of||®w,|[=M|00 o]]|w,], (2.6.1)
c o o/ \u, 00 -E/ \U,

where ®,,, ¥, and U; denote the vectors whose entries are the components of ¢, 1,
and uy,, respectively, in particular given bases of the discrete spaces. Let us remark that
1, € Hy, whose definition involves three linear constraints. Actually, these constraints
are imposed by means of three scalar Lagrange multipliers, which leads to an augmented
spectral problem exactly equivalent with (2.6.1).

In this generalized eigenvalue problem, matrices A, C, D, and E are symmetric,

whereas A, C, and D are also positive definite. Let us define

A B C P,
F .= , G = , and V= .
BT D 0 v,

Matrix F is non-singular. In fact, the following result holds true:
Lemma 2.6.1 F is a positive definite matriz.

Proof. Let ¢, € V), and ¥;, = (Yn1, ¥n2) € Hy,. Let @, and W), be the vectors whose entries
are the components of ¢, and v, respectively, and V,, as defined above. Straightforward

computations lead to

2 2
VIFV, = T /Q or + ) (O2thn1 — O1thna) P

1 [ [(@etn)? + (01 + § O — 1))
- /Q (Oan — Dt2)’

-2 [0+ 3 @ns — D))
N ﬁ /Q [(Oathns + Outbna)? + (Buthna — Ouinn)*] > 0.
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Hence F is non-negative definite. Moreover, the expression above vanishes if and only
if ¢, = —3 (Ootp1 — N1Up2), Dot + O1bpe = 0 and Daotpa — A1hp = 0. Now, ¢, € Vy is
piecewise linear and continuous, whereas for v, € Hj, 021051 — 0192 is piecewise constant.
Hence, if the expression above vanishes, then ¢, = —% (Oa1hp1 — O10p2) has to be constant
and, since it vanishes on I', it has to vanish in the whole €.

In such a case, 0yt — 01Ype = 0 and Oetip1 + A1 YYpe = 0, too, which leads to Oy =
O1pa = 0. Since Oathpa — O1p = 0, as well, there holds |4, ||g = 0 and hence 1, = 0.
Thus F is positive definite and we conclude the proof. O

Now we are in a position to prove the following characterization of the discrete spectral
problem (2.3.7):

Proposition 2.6.2 Let Z;, .= {uy, € Vi, : € (up,vp) =0 Yo, € Vi }. Then, problem (2.3.7)
has exactly dim Vy, —dim 2, eigenvalues, repeated accordingly to their respective multiplic-

ities. All of them are real and non-zero.

Proof. Since according to the previous lemma F is positive definite and consequently

non-singular, ®, and ¥, can be eliminated in (2.6.1) as follows:
V,=-F'GU, = EU,=-u (G'F'G)U,

with p, = i (recall Ay, # 0; cf. Remark 2.3.5).

Now, since also C is non-singular, the columns of G are linearly independent. Hence,
GTF~'G is symmetric and positive definite and, E being symmetric too, the generalized
eigenvalue problem EU;, = —u,(GTF~1G)U, is well posed and all its eigenvalues are
real. Therefore the number of eigenvalues of problem (2.6.1) (which is the matrix form
of problem (2.3.7)) equals the number of non-zero eigenvalues of this problem, namely,
dim V, —dim(Ker(E)). Thus, we conclude the lemma by noting that EU;, = 0 if and only
if uy, € Z,. O

As an immediate consequence of the proof of this proposition, note that problem (2.3.7)

always has real non-zero eigenvalues, as long as E # 0.



48

Remark 2.6.3 For all the solutions (A, dn, ¥y, up) of problem (2.3.7), there holds [, (nVuy)-
Vuy, # 0, despite the fact that ) is not necessarily positive definite. In fact, as shown in
the proof of Proposition 2.6.2,

/ (nVuh) : Vuh = %(uh, uh) = UEEU}L = —%UE (GTF_lG) Uh 7'é 0. (2.6.2)
Q h



Chapter 3

Approximation of the Buckling

Problem for Reissner-Mindlin Plates.

3.1 Introduction

This paper deals with the analysis of the elastic stability of plates, in particular the
so-called buckling problem. This problem has attracted much interest since it is frequently
encountered in engineering applications such as bridge, ship, and aircraft design. It can
be formulated as a spectral problem whose solution is related with the limit of elastic
stability of the plate (i.e., eigenvalues-buckling coefficients and eigenfunctions-buckling
modes).

The buckling problem has been studied for years by many researchers, being the
Kirchhoff-Love and the Reissner-Mindlin plate theories the most used. For the Kirchhoff-
Love theory, there exists a thorough mathematical analysis; let us mention, for instance,
[13, 30, 35, 36, 37]. This is not the case for the Reissner-Mindlin theory, for which only
numerical experiments (cf. [32, 44]) or analytical solutions in particular cases (cf. [46])
have been reported so far. Recently, Dauge and Suri introduced in [17] the mathematical
spectral analysis of a problem of this kind based on three-dimensional elasticity. In the
present paper, we will perform a similar analysis for Reissner-Mindlin plates.

The Reissner-Mindlin theory is the most used model to approximate the deformation

49



20

of a thin or moderately thick elastic plate. It is very well understood that standard finite
elements applied to this model lead to wrong results when the thickness is small with re-
spect to the other dimensions of the plate due to the locking phenomenon. Several families
of methods have been rigorously shown to be free of locking and optimally convergent.
We mention the recent monograph by Falk [23] for a thorough description of the state of

the art and further references.

The aim of this paper is to analyze one of these methods applied to compute the
buckling coefficients and buckling modes of a clamped plate. We choose the low-order,
nonconforming finite elements introduced by Durédn and Liberman in [22] (see also [21]
for the analysis of this method applied to the plate vibration problem). However, the

developed framework could be useful to analyze other methods, as well.

One drawback of the Reissner-Mindlin formulation for plate buckling is the fact that
the corresponding solution operator is non-compact. This is the reason why the essential
spectrum no longer reduces to zero (as is the case for compact operators). This means that
the spectrum may now contain nonzero eigenvalues of infinite multiplicity, accumulation
points, continuous spectrum, etc. Thus, our first task is to prove that the eigenvalue
corresponding to the limit of elastic stability (i.e., the smallest buckling coefficient) can

be isolated from the essential spectrum, at least for sufficiently thin plates.

On the other hand, the abstract spectral theory for non-compact operators intro-
duced by Descloux, Nassif, and Rappaz in [18, 19] cannot be directly applied to analyze
the numerical method, because we look for error estimates valid uniformly in the plate
thickness. However, using optimal order convergence results for the Duran-Liberman el-
ements (cf. [21, 22]) and the theoretical framework used to prove additional regularity
for Reissner-Mindlin equations (cf. [5]), under the assumption that the family of meshes
is quasi-uniform, we can adapt the theory from [18, 19] to obtain optimal order error
estimates for the approximation of the buckling modes, including a double order for the
buckling coefficients. Moreover, these estimates are shown to be valid with constants in-
dependent of the plate thickness, which allows us to conclude that the proposed method

is locking-free.

An outline of the paper is as follows. In the next section we derive the buckling problem
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and introduce a non-compact linear operator whose spectrum is related with the solution
of this problem. In Section 3.3 we provide a thorough spectral characterization of this
operator. In Section 3.4 we introduce a finite element discretization of the problem based
on Duran-Liberman elements and prove some auxiliary results. In Section 3.5 we prove
that the proposed numerical scheme is free of spurious modes and that optimal order
error estimates hold true. In Section 3.6 we report some numerical tests which confirm
the theoretical results. We include in this section a benchmark with a known analytical
solution for a simply supported plate, which shows the efficiency of the method under
other kind of boundary conditions, as well. Finally, in an appendix, we show that the
results of Sections 3.3, 3.4, and 3.5 can be refined when considering the particular case of
a uniformly compressed plate.

Throughout the paper we will use standard notations for Sobolev spaces, norms, and
seminorms. Moreover, we will denote with C' a generic constant independent of the mesh
parameter h and the plate thickness ¢, which may take different values in different occur-

rences.

3.2 The buckling problem

The first step will be to derive the equations for the Reissner-Mindlin plate buckling
problem. With this aim, we will begin by considering the plate as a three-dimensional
elastic solid and we will write the corresponding equations for the buckling in this case.
Then, we will perform the dimensional reduction by means of the usual Reissner-Mindlin
assumptions.

Consider a (three-dimensional) elastic plate of thickness ¢ > 0 with reference config-
uration Q = Q x (—%,1), where Q is a convex polygonal domain of R? occupied by the
midsection of the plate. We assume that the plate is clamped on its lateral boundary

0 x (—%, %) In what follows, we summarize the arguments given in [17] to obtain the

equations for the corresponding buckling problem (see this reference and also [45] for fur-
ther details). We will use tildes on the quantities corresponding to the three-dimensional

elastic model (as in @, for instance) to help distinguishing them form the corresponding
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ones in the Reissner-Mindlin model.

Suppose that &° = (5%)19753 is a pre-existing stress state in the plate. This stress &
is already present in the reference configuration. It satisfies the equations of equilibrium
and it is assumed to be independent of any subsequent displacements that the reference

configuration may undergo.
Let V := {5 € Hl(ﬁ)3 : 0=0o0n9Q x (-1 t)} be the space of admissible displace-

202
ments of the three-dimensional plate. If the reference configuration is now perturbed by
a small change f € V' (which could be a change in loading, for instance), then the work
done by & cannot be neglected. The corresponding displacement & = (ﬂi)lgigg may be

expressed as the solution of the following problem (see [17]):
Given fe V', find @ € V such that

3 3
/~ > Cijn 0 0 + [ > G 0l 05, = (f.7) VeV,
4k i=1 @ 4,j,m=1

Above, (Cyjki)1<ijki<s is the tensor of elastic constants of the material and (-, -) denotes

the duality between V' and V. The second term in the left hand side is the work done by
~0
o .

We restrict our attention to multiples of a fixed pre-buckling stress o, namely,
& = )&
Then, the equation above reads
3 N 3 N N
/~ > Cijna 05; 00 — A /~ > Gy Oilliy 050 = (f,7)  VBEV.
Q5 k=1 Q3 jm=1

According to [17], we will say that this problem is stably solvable if it has a unique solution

for every fe V' and there exists a constant C, independent of ]?, such that
[ully < Cllfllp-

Our goal will be to find the smallest value of X for which this problem is not stably solvable.
This value, which we will denote Xb, is called the limit of elastic stability. Physically, it
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represents the smallest multiple of the pre-buckling stress o for which a small perturbation

in external conditions on the plate may cause it to buckle. As shown in [17], this can be

formulated as finding the minimum positive spectral value of the following problem:
Find Xy €R and 0 # @ € V such that

3 3
[ > Cijwt 051 00k = My /~ > Gy 0l 0T VB EV. (3.2.1)
Qi ikl=1 Q; jm=1
The eigenvalues of this problem are called the buckling coefficients and the eigenfunc-
tions the buckling modes.
The above analysis is valid for any three-dimensional solid. In what follows we use
it to derive the equations for the corresponding Reissner-Mindlin plate model. In such a
case, the deformation of the plate is described by means of the rotations 5 = (i, 32) of
the fibers initially normal to the plate midsurface and the transverse displacement w, as

follows:
=21 (7, y)
w(x,y,2) = | —z202(x,y) | - (3.2.2)
w(z,y)

The pre-buckling stress o is assumed to arise from an elastic plane strain problem, so

that
_ o 0
o= )
0O 0

with o(z,y) € R?*? a symmetric tensor. For the remaining arguments of this section, it
is enough to consider o € L>(02)?*?. However, we will assume some additional regularity

which will be used in the forthcoming sections, namely,
o € Whe(Q)*2, (3.2.3)

Notice that we do not assume o to be positive definite. Avoiding such assumption allows
us to apply this approach, for instance, to shear loaded plates (cf. Section 3.6.3). Therefore,
the buckling coefficients can be in principle positive or negative, the limit of elastic stability

being that of smallest absolute value.
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Next, we use Hooke’s law with the plane stress assumption and the kinematically
admissible displacements from Reissner-Mindlin model. Thus, by substituting u and v in
(3.2.1) by means of (3.2.2), using the appropriate elastic constants @jkl, and integrating
over the thickness, we obtain the following variational spectral problem (see [44] for an
alternative derivation):

Find M, € R and 0 # (8, w) € HY(Q)* x HY(Q) such that

t3a(B,n) + Kt (Vw — 3, Vv — Moo = b [t (eVw,Vv),q + 3 (aV i, Vin)eo (3.24)
0 (0V 8, Vin)yg|  V(n,v) € HY(Q) x HY(Q).

Above, k := Ek/(2 (1 + v)) is the shear modulus, with £ being the Young modulus,
v the Poisson ratio, and k a correction factor (usually taken as 5/6 for clamped plates);
al-,-) is the H3(2)? elliptic bilinear form defined by

E

a(B,n) = 201 =07

/Q (1 —v)e(B) :e(n)+vdivpdivyl,

where € = (€;5)1<; j<2 is the standard strain tensor with components ¢;;(3) := % (0:8; + 0; ),
1 <4,j < 2. Finally, (-, -)07Q denotes the usual L? inner product.

Since the terms involving the rotations 3 in the right hand size of (3.2.4) are O(#?),
they are typically negligible (see, for instance, [32, 46]). Thus, neglecting these terms,
scaling the problem, and defining A\ := \y,/t?, we obtain

a(B,n) + g (Vw = B8,V0 —n)go = AoV, Vo)yq  V(n,v) € HY(Q) x HA(Q).

Finally, introducing the shear stress v := g(Vw — [3), we arrive at the following

problem:

Problem 3.2.1 Find A € R and 0 # (3, w) € HY(Q)* x H)(Q) such that

a(B,m) + (7, Vv —n)gq = A@oVw, Vv)yq  ¥(n,v) € HY(Q)® x HY(Q),
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The goal of this paper is to propose and analyze a finite element method to solve
Problem 3.2.1. In particular, our aim is to obtain accurate approximations of the smallest
(in absolute value) eigenvalues A, which correspond to the buckling coefficients A, = 2,
and the associated eigenfunctions or buckling modes. For the analysis of this problem
and its finite element approximation, we will rewrite it in several different forms and will
consider other auxiliary problems. However Problem 3.2.1 is the only one to be discretized
for the numerical computations.

The first step is to obtain a thorough spectral characterization of Problem 3.2.1, which
will be the goal of the following section. With this end we introduce the so called solution

operator whose spectrum is related with that of Problem 3.2.1. Let

T, : Hy(Q) — Hy(9),

(3.2.5)
f—w,
where w is the second component of the solution to the following source problem:
Given f € H\(Q), find (8,w) € HY(Q)? x HY(Q) such that
a(B,m) + (7, Vv —n)gq = (aVf,Vv)yq  ¥(nv)€HH Q) x HY(Q), (326)

7= 5 (Vw=0).

The operator T; is linear and bounded and it is easy to see that (u,w), with u # 0,
is an eigenpair of T; (i.e., Tyw = pw, w # 0) if and only if (A, 5, w) is a solution of
Problem 3.2.1, with A = 1/p and a suitable g € Hé(Q)2. Let us recall that our aim is to
approximate the smallest eigenvalues of Problem 3.2.1, which correspond to the largest
eigenvalues of the operator T;.

To end this section we prove an additional regularity result for the solution to prob-
lem (3.2.6) which will be used in the sequel. To do this, first we rewrite problem (3.2.6)

in a convenient way (see [5]). Using the following Helmholtz decomposition,
v = Vi + curlp, Y € Hy(Q), p e HY(Q)/R, (3.2.7)

we have that problem (3.2.6) is equivalent to the following one:



o6

Given f € HY(Q), find (¢, 3,p,w) € HY(Q) x HY(Q)? x HY(Q)/R x HY(Q) such that

(((VY,V0)gq = (0Vf,Vv)og Vo€ Hi(Q),

a(ﬁﬂ) - (CU.I'lp, 77)079 = (V¢7U)O7Q V77 € H(l)(Q)2>
—(B,curlq)y o — k7't? (curlp, curlq)y, =0 Vg € H(Q)/R,

\ (VU), vé-)O,Q = (67 vé-)O,Q + "i_lt2 (Viﬂ, Vg)O,Q vg S H(l)(Q>

We recall the following result for the solution of problem (3.2.8) (see [5]):

(3.2.8)

Theorem 3.2.1 Let €2 be a convex polygon or a smoothly bounded domain in the plane.
For any t > 0, o € L>®(Q)**%, and f € H}(Q), there exists a unique solution of prob-
lem (3.2.8). Moreover, 3 € H2(Q)*, p € HX(Q) and there ezists a constant C, independent
of t and f, such that

191l + 1Bllag + Pl g + tlpleq + [lwll o < CllfllLq-

As a consequence of Theorem 3.2.1, by virtue of (3.2.7) and the equivalence between
problems (3.2.6) and (3.2.8), we have that problem (3.2.6) is well-posed and there exists
a constant C', independent of ¢t and f, such that

18]z + 1wl o + 7lloe < Clifllq- (3.2.9)

3.3 Spectral properties

The aim of this section is threefold: (i) to prove a spectral characterization for the
operator T; defined above, (ii) to study the convergence of T, and the behavior of its
spectrum as t goes to zero, and (iii) to prove additional regularity for the eigenfunctions
Of Tt'

3.3.1 Spectral characterization

As stated above, we are only interested in approximating the largest eigenvalues of T;.

However, we will show that the spectrum of this operator does not reduce to eigenvalues. In
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fact, T} is not compact and it has a non-trivial essential spectrum. Such essential spectrum
is not relevant from the physical viewpoint, but its presence is a potential source of spectral
pollution in the numerical methods (see, for instance [18]).

This will not be the case for the numerical method that we will propose, thanks to
the results that will be proved in this subsection, which can be summarized as follows:
Although T; has a non-trivial essential spectrum, this is confined within a small ball
around the origin, which is well separated from the largest eigenvalues of 7} (that are the
goal of our numerical computation). To prove this, first we recall some basic definitions
from spectral theory.

Given a generic linear bounded operator T : X — X, defined on a Hilbert space
X, the spectrum of T is the set Sp(T") := {z € C: (2 —T) is not invertible} and the
resolvent set of T is its complement: p(T") := C \ Sp(7'). For any z € p(T), R.(T) =
(2 — T)_1 . X — X is the resolvent operator of T' corresponding to z.

We recall the definitions of the following components of the spectrum.
e Discrete spectrum:

Spa(T) :={z€ C: Ker(zI —T) # {0} and (2 —T) : X — X isFredholm}.

e Fssential spectrum:

Sp(T):={2€C: (2I =T): X — X is not Fredholm}.

The main result of this subsection is the following theorem which provides a suitable

spectral characterization for the operator T; defined in (3.2.5).

Theorem 3.3.1 The spectrum of Ty decomposes as follows: Sp(T;) = Spq(71:) U Spe(T7),
with

o Spy(T}), the discrete spectrum, which consists of real isolated eigenvalues of finite

multiplicity and ascent one,

e Sp,(T}), the essential spectrum.
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Moreover, Sp.(T}) C {z eC: |z| <k 't? ||0'||oo,9}'

The proof of this theorem will be given at the end of this subsection. Here and there-
after, we denote ||| ¢ := max,cq |o(z)|, with |- | being the matrix norm induced by the
standard Euclidean norm in R?. Notice that the maximum above is well defined because
of (3.2.3) and the fact that WH(Q) C C(9).

As a consequence of this theorem we know that, although 7T; may have essential spec-
trum, all the points of Sp(7;) outside a ball centered at the origin of the complex plane
are non-defective isolated eigenvalues. Moreover, the thinner the plate, the smaller the
ball containing the essential spectrum.

The proof of Theorem 3.3.1 will be an immediate consequence of the results that

follow. Consider the following continuous bilinear forms defined in H}(€2)* x H}(€):

A((B.w), (1,v)) = a(B,m) + 35 (Vw = B, Vo = 1) g (33.1)
B((g, f), (n,v)) = (aVf,Vv)gq- (3.3.2)

We notice that A(-,-) is symmetric and elliptic (cf. [11]). Moreover, from the symmetry

of o, it follows that B(-,-) is symmetric too. Consider the bounded linear operator
T, : Hy(®)" x H{(Q) — H{(Q)" x Hj(©),
(9, f) — (B, w),

where (3,w) € H5(Q)? x HL(€) is the solution of

(3.3.3)

A((B,w), (n,0)) = B((g, ), (n,0))  Y(n,v) € HY(Q)* x HY(€).

We will prove in Lemma 3.3.4 below that the spectra of T, and ﬁ coincide.
By virtue of the symmetry of A(:,-) and B(-,-), we have

A(T(g. f). (n,0)) = B((g. [), (n,0)) = B((n,0), (9. ) = Al(g. [): Ti(n, v))

for every (g, f), (n,v) € HY(Q)* x HL(Q). Therefore, T} is self-adjoint with respect to the
inner product A(-,-). As a consequence, we have the following theorem (see, for instance,
[17, Theorem 3.3]).
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Theorem 3.3.2 The spectrum of T, is real (i.e., Sp(T,) C R) and it decomposes as
follows: Sp(T;) = Spy(T3)USp.(T;). Finally, if i € Spy(Ty), then p is an isolated eigenvalue
of finite multiplicity.

The following result shows that the essential spectrum of T, is confined in a neighbor-

hood of the origin of diameter proportional to 2.
Proposition 3.3.3 Let p € Sp(T;) be such that |p| > k=2 10| o0 Then p € Spa(Th).

Proof. Let u € Sp(7}) be such that || > £ 2 ||| .- By virtue of Theorem 3.3.2, we
only have to prove that (uI —T;) is a Fredholm operator. To this end, it is enough to
show that there exists a compact operator G such that (uf ~T, + é) is invertible. Let us

introduce the operator S as follows:
S Hy() — Hy(®)",
f— 0,

where (3 is the first component of the the unique solution (3, w) of problem (3.2.6). Notice
that

Tig. f) = (S£.Tof)- (3.3.4)

According to (3.2.9), we have that § € H2(Q2)” and hence S is compact. Let us now define

the operator G as follows:

G : Hy(Q) — Hy(Q), (3.3.5)
f — U, N

where u € H}(Q2) is the unique solution of

(Vu, V€)q = (Sf,VE)ga = (8. VEa V& € Hy(Q).

The operator GG is compact as a consequence of the compactness of S. Next, we define G

as follows:
G HY(Q)" x Hy(Q) — H{(Q)" x Hy(Q),
(9. ) = (S£,GF).
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Since S and G are compact, G is compact, too. In addition,

(ul =T+ G)g. f) = (ug — Sf+Sf), (ul = T, + G) f) = (g, (ul = T, + G) f).

Therefore, (ul — T, + G) is invertible if and only if (I — T}, + @) is invertible.
From the fourth equation in (3.2.8), we notice that v := (ul — T; + G) f satisfies

(VU, v&)o,ﬂ = (Vfu v&)o,g - (va v@o@ + (67 v&)o,g
= ((uI — m_1t2a') VT, VS)O’Q Ve € Hy(Q).

Consequently, the operator (1l — T; + G) will be invertible if and only if, given v € H}(Q2),

there exists a unique f € H}(2) solution of
((uI — k™ '?0) V, Vg =(Vo,VEq V€ H(92). (3.3.6)

Now, because of the symmetry of o (z), there exists an orthogonal matrix P(x) such
that o(r) = P(x)D(x)P"(x), where

o(z) 0]
0 w@)]’

with w(z) < W(z) being the two real eigenvalues of o (x). Hence, we write

— kHP0(x 0
(uI — k%) = P(x) |" (=) P(2)"
0 pu— K HPw()
Let us denote wyax = max,cq®(z) and wyin = mingeqw(z). Since [lof o =
max,cq |o(r)| = max {|wmax| , [Wmin| }, for |u] > &7 |o]l o, there holds either p >

KWWy OF 1 < K 12w, Hence, (uI — k~'t%0) is uniformly positive definite in the
first case or uniformly negative definite in the second one. Therefore, in both cases, there
exists a unique solution f € H}(Q) of (3.3.6). Consequently, (uI —T; + G) is invertible
and hence (ul — T, + G) is invertible, too. Thus, we have that (1] — T}) is Fredholm and
we conclude the proof. O

The following result shows that T, and ft have the same spectrum.
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Lemma 3.3.4 If T, and T, are the operators defined in (3.2.5) and (3.3.3), respectively,
then Sp(T;) = Sp(T3).

Proof. We will prove that p(T;) = p(T}). Let z be such that (2] —T}) is invertible. We will
prove that (zI — T}) is invertible, too. By hypothesis, for every (3, w) € H}(€)* x HL(Q)
there exists a unique (g, f) € H:(€2)* x HL(Q) such that

(=1 = T3)(g. f) = (B,w). (3.3.7)

Recalling (3.3.4), we infer that there is a unique (g, f) such that zg — Sf = ( and
(2 —T;) f = w. Hence, we deduce that the operator (zI —T;) : H}(Q) — H(Q) is
onto. Now, let us assume that there exists another f such that (2 — 7)) f = w. Taking
g = %(Sf + ), we have that (21 — T,)(9, f) = (8, w). Since by hypothesis (2] — T}) is
invertible, from (3.3.7) it follows that f = f. Therefore, (21 — T}) is also one-to-one and
thus invertible.

Conversely, let z be such that (zI — T3) is invertible. We will prove that (21 — T}) is
invertible, too. Recalling (3.3.4) again, we have to show that for every (3, w) € H3(Q)” x
HL(Q), there exists a unique (g, f) € H3(Q)* x HL(€) such that

Zg_Sf:67
2f =T f = w.

Let (8,w) € HL(Q)® x HL(Q) be given. There exists a unique f € HL(Q) such that
(21 = T,) f = w. Therefore, taking g := 2 (Sf + ), we obtain (zf— ﬁ)(g, f) = (B, w).
The uniqueness of g follows immediately from the uniqueness of f and the first equation
of the system above. The proof is complete. O

The following result shows that the eigenvalues of 7T; are non-defective.
Lemma 3.3.5 Suppose that n # 0 is an isolated eigenvalue of Ty. Then its ascent is one.

Proof. By contradiction. Let (u, w) be an eigenpair of T}, u # 0, and let us assume that 7;

has a corresponding generalized eigenfunction, namely, Jw # 0 such that Tyw = pw + w.
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Since (u,w) is an eigenpair of T}, there exists 5 € HL(Q)? such that (cf. (3.2.5) and
Problem 3.2.1)

a(B)+ 15 (V0= 5,90 =g = 5 (V0. Tolyq  Vin,0) € HYD® x H(@),
(3.3.8)

On the other hand, since Tyw = pw + w, the definition of T; implies the existence of
3 € HL(€)? such that

a(B,m) + 35(V (w+ pib) = B, Vo =), = (oVib, Vo)
V(n,v) € Hy(Q)" x HY(€).

Defining 3 := (/3 — )/ 1, the equation above can be written as follows:
_ KL R = R N
:U“a'(ﬁa 77) + a(ﬁa 77) + t_g(vw - /67 Vo — 77)079 + t_g(vw - ﬁ> Vu — 77)0,9 = (vaa v'U)O,Q'

We now take (n,v) = u(3,%) in (3.3.8) and (n,v) = (5, w) in the equation above and

subtract the resulting equations. Using also the symmetry of a(-,-) and o, we obtain

a(B,8) + 3 [Vw = Blls 0 = 0.

Thus, from the ellipticity of a(-, ), we infer 5§ = 0 and hence w = 0, which is a contradiction
since w is an eigenfunction of T;. The proof is complete. O
We are now in a position to prove Theorem 3.3.1.
Proof of Theorem 3.3.1. The proof follows easily by combining Lemma 3.3.4 with
Theorem 3.3.2, Proposition 3.3.3, and Lemma 3.3.5. O

3.3.2 Limit problem

In this subsection we study the convergence properties of the operator T as t goes
to zero. First, let us recall that it is well-known (see [11]) that, when ¢ goes to zero, the
solution (3, w,y) of problem (3.2.6) converges to the solution of the following problem:

Given f € HY(), find (8o, wo,70) € HL(Q)? x HE(Q) x Hy(rot; Q) such that

a(Bosn) + (10, Vv = 1) = @V, Vo)oq  Vln,v) € H(Q)" x Hy(),
Vw() - ﬁo = 0.

(3.3.9)
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Above, (-, -) stands now for the duality pairing in Hy(rot; €2). Problem (3.3.9) is a mixed
formulation for the following well-posed problem, which corresponds to the buckling of a
Kirchhoff plate:

Given f € HY(Q), find wy € H3(Q) such that

E

m (AwO, AU)O,Q = (O'Vf, VU)()’Q Vv € Hg(Q) (3.3.10)

Let Ty be the bounded linear operator defined by

Ty : Hy(Q) — Hy(Q),

wa()a

where wy is the second component of the solution of problem (3.3.9). Since wy € H3(9),
the operator Tj is compact and hence its spectrum satisfies Sp(7p) = {0} U{u, : n € N},
where {/i, },,cn 1 a sequence of positive eigenvalues which converges to 0. The multiplicity
of each non-zero eigenvalue is finite and its ascent is 1. The following lemma, which yields

the convergence in norm of 7} to Tj has been essentially proved in [21, Lemma 3.1].

Lemma 3.3.6 There exists a constant C', independent of t, such that

I(Ti = To) fllig < Ctlifle  Vf€H).

As a consequence of this lemma, standard properties about the separation of isolated

parts of the spectrum (see [31], for instance) yield the following result.

Lemma 3.3.7 Let g # 0 be an eigenvalue of Ty of multiplicity m. Let D be any disc
in the complex plane centered at pg and containing no other element of the spectrum of
Ty. Then there exists tg > 0 such that, Vt < ty, D contains exactly m isolated eigenvalues
of Ty (repeated according to their respective multiplicities). Consequently, each nonzero

eigenvalue o of Ty is a limit of isolated eigenvalues p; of Ty, as t goes to zero.

Our next goal is to show that the largest eigenvalues of T; converge to the largest
eigenvalues of Ty as t goes to zero. With this aim, we prove first the following lemma.
Here and thereafter, we will use || - || to denote the operator norm induced by the H!(£2)

norm.
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Lemma 3.3.8 Let F' C C be a closed set such that F' N Sp(Ty) = 0. Then there exist
strictly positive constants ty and C' such that, Vt < to, F N\ Sp(T;) =0 and

|17 (TH)wll g

|R.(T3)]| = <C VzeF

weH}(Q) ||w||17Q
w#0

Proof. The mapping z — || (21 — Ty) ™" | is continuous for all z € p(T}) and goes to zero
as |z| — oo. Consequently, it attains its maximum on any closed subset F' C p(Tp). Let
Cy =1/ max.cp || (21 — Ty)~" ||; there holds

1
I(z1 = To) wl, o = o lwllg  YweH(Q) VzeF.

Now, according to Lemma 3.3.6, there exists ¢; > 0 such that, for all ¢t < ¢,
I = Toyulg < 5wl Vo € HYQ).
Therefore, for all w € H}(Q), for all z € F, and for all ¢ < ¢,
1 = T w2 1 = To) wl g = N(T = To)wlh g 2 o lwlle (3311

and, consequently, z ¢ Spy(T3).

On the other hand, d := min,cp|z| is strictly positive, because Sp(7p) > 0, F' N
Sp(Th) = 0, and F is closed. Let t; > 0 be such x~'t3 [|o ||, o, < d. Hence, for all z € F and
for all ¢ < t5, we have |z| > k™'#? |
either z € Spy(7}) or z ¢ Sp(T3).

Altogether, if ty := min {tq,t5}, then (2 — T;) is invertible for all ¢t < t; and all z € F.

Moreover, because of (3.3.11),

|0l .o and, consequently, by virtue of Theorem 3.3.1,

IRAT)| = || (] —T)~"|| <2Cy

and we conclude the proof. O
It is easy to show that the spectrum of Ty is real; in fact, this follows readily from the
symmetric formulation (3.3.10). Since T} is compact, its nonzero eigenvalues are isolated

and of finite multiplicity, so that we can order the positive ones as follows:

1 2 k
po! > ==l >
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where each eigenvalue is repeated as many times as its corresponding multiplicity. A
similar ordering holds for the negative eigenvalues, too, if they exist.

According to Lemma, 3.3.7, for ¢ sufficiently small there exist eigenvalues of T} close to
each ,u(()k). On the other hand, according to Theorem 3.3.1, the essential spectrum of T is
confined within a ball centered at the origin of the complex plane with radius proportional
to t2. Therefore, at least for ¢ sufficiently small, the points of the spectrum of T} largest
in modulus have to be isolated eigenvalues of finite multiplicity. Since the spectrum of 7;

is also real, we order the positive eigenvalues as we did with those of Tj:

k) > ...

1 2
i > P > >

Once more, a similar ordering holds for the negative eigenvalues of T;, if they exist.
The following theorem shows that the k-th positive eigenvalue of T; converges to the
k-th positive eigenvalue of Ty as t goes to zero. A similar result holds for the negative

eigenvalues, as well.

Theorem 3.3.9 Let ,ugk), ke N, t >0, be as defined above. For all k € N, u,ﬁk) — ,u(()k)

ast — 0.

Proof. We will prove the result for the largest eigenvalue ,ugl). The proof for the others
is a straightforward modification of this one.

Let D be an open disk in the complex plane centered at uél) with radius r < [,u(()l) —

) is the largest eigenvalue of T satisfying ,u(()k) < ,u(()l). Therefore, D N

,u(()k)] /2, where ,ugk
Sp(To) = {1y}

Let H be the half plane {z € C : Re(z) < [u((]k) + ,u(()l)]/Q}. Hence Sp(Ty) € DU H.
Let FF := C\ (DUH). The set F is closed and F N Sp(Ty) = 0. Hence, according to
Lemma 3.3.8, there exists to > 0 such that, for all ¢t < ¢y, F N Sp(7T};) = 0, too, and hence
Sp(Ty) € DU H, as well.

On the other hand, because of Lemma 3.3.7, there exists t; > 0 such that, for all
t < t;, D contains as many eigenvalues of T; as the multiplicity of uél). Therefore, for
all ¢ < min {to,t;}, the largest eigenvalue of T}, ,ugl), has to lie in D. Since D can be
taken arbitrarily small, we conclude that ,ugl) converges to ,u(()l) as t goes to zero. Thus, we

conclude the proof. O
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3.3.3 Additional regularity of the eigenfunctions

The aim of this subsection is to prove a regularity result for the eigenfunctions of

Problem 3.2.1. More precisely, we have the following proposition.

Proposition 3.3.10 Let ,ugk), k€N, t >0, be as in Theorem 3.3.9. Let (A, 3, w,) be
a solution of Problem 3.2.1 with A = 1/,u§k). Then there exists tg > 0 such that, for all
t < ty, f€HAN), we HAQ), divy € L2(Q), and there holds

18ll2.0 < CIAlwlly o (3.3.12)
[wllyo < CIAH w0 (3.3.13)
Idivallpo < C A lwllyg (3.3.14)

with C' a positive constant independent of t.

Proof. Using the Helmholtz decomposition (3.2.7), Problem 3.2.1 is equivalent to finding
AeRand 0 (¢, 5, p,w) € HY(Q) x HY(Q)* x HY(Q)/R x HL() such that
( (Vi) Vv)yo = A(aVw, V) Vo € HY(Q),
a(ﬁ»ﬁ) - (CU.I'lp, 77)079 = (V¢7n)07ﬂ V77 € H(l)(Q)2>
—(B,curlq)y o — k7't? (curlp, curlq)y, =0 Vg € H(Q)/R,
\ (Vw7 Vg)o,ﬂ - (/67 Vg)O,Q + K'_lt2 (V'@D, Vg)O,Q \V/S € H(l)(Q)
From Theorem 3.2.1 applied to the problem above, we immediately obtain that g €

H2(Q)? and the estimate (3.3.12).
On the other hand, the first and the last equations of the system above lead to

(I = Xe"'tP0) Vu, VS)O’Q = (8, V&)oa Ve € Hy(Q).

Since ,ugk) — ,u(()k) > 0 as t — 0, there exists ¢; > 0 such that uik) > u(()k)/Q Vt < t;. Hence

A=1/u" <2/ We take ty < t; such that k=3 o]l < 1 /2. Therefore, for all
t < to, (I — M\x~20) is uniformly positive definite. Thus, since w is the solution of the
problem

div [(I — Ax™'#20) V] = div 3 in €,

w=20 on 052,
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using a standard regularity result (see [42]), we have that w € H?(Q) and
[wllyq < Clldiv By q < CliBllLq < CAlwll g,

the last inequality because of (3.3.12).
Furthermore, taking n = 0 in Problem 3.2.1, using the estimate above and (3.2.3), it
follows that
divy = Mdiv(eVw) € L*(Q).
and
[divyllyq < CIA[wllyg -
The proof is complete. O

Once more a similar result holds for negative eigenvalues uik) — u((]k) < 0.

3.4 Spectral approximation

For the numerical approximation, we focus on the finite element method proposed and
studied in [22]. In what follows we introduce briefly this method (see this reference for
further details). Let {7}, be a regular family of triangular meshes of . We will define
finite element spaces Hj,, W), and I'j, for the rotations, the transverse displacements, and
the shear stress, respectively.

For K € 7, let ay, as, ag be its barycentric coordinates. We denote by 7; a unit vector

tangent to the edge a; = 0 and define
piK = Qo(¥3Ty, pf = Q1 (3T, p?f{ = Q1 (aT3.
The finite element space for the rotations is defined by
Hy, = {nh e HYAQ)? : milx € P2 (¥, p pK) VK € Th}

To approximate the transverse displacements, we use the usual piecewise-linear continuous

finite element space:

Wy, = {Uh € H(l](Q) : Uh|K € ]P)l(K) VK € ZL}
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Finally, for the shear stress, we use the lowest-order rotated Raviart-Thomas space:
Iy, = {Q5 c Ho(l"Ot; Q) : ¢|K c ]P)g @D (SL’Q, —S(Zl)PO VK € ZL} .
We consider as reduction operator the rotated Raviart-Thomas interpolant

R: HI(Q)2 N Ho(rot; Q) — 'y,

/ZRcb-Te:/ecb-Te

for every edge ¢ of the triangulation, 7, being a unit vector tangent to /. It is well-known
that

which is uniquely determined by

1ROl < Cllollg Vo€ HY(Q), (3.4.1)
¢ — Rolloo < Chlollq Vo e H(Q) (3.4.2)

Moreover, the operator R can be extended continuously to H*(€)? N Hy(rot; ) for any
s > 0 and it is also well known that, for all v € H™*(Q) N H} (),

R(Vv) = Vu, (3.4.3)

where v; € W), is the standard piecewise-linear Lagrange interpolant of v (which is well
defined because H'**(Q) C C(Q) for all s > 0).

The discretization of Problem 3.2.1 reads as follows:
Problem 3.4.1 Find A\, € R and 0 # (6n, wy,) € Hy, x Wy, such that

a(Bn,mn) + (Y, Vo — Rin)oq = An (@Vwn, Vor)o g V(n, o) € Hy x Wy,
K
Yh = t_2 (th — Rﬂh) .

Notice that this leads to a nonconforming method, since consistency terms arise be-
cause of the reduction operator R. The final goal of this paper is to prove that the smallest
(in absolute value) eigenvalues A\, converge to the smallest (in absolute value) eigenvalues
A of Problem 3.2.1. We will also prove convergence of the corresponding eigenfunctions
and error estimates.

Our first step is to obtain a characterization of the solutions to Problem 3.4.1.
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Lemma 3.4.1 LetY) := {wh e Wy, : (O'th,Vvh)QQ =0 VYo, € Wh}. Then Problem 3.4.1
has exactly dim W, — dim Y}, eigenvalues, repeated according to their respective multiplic-

ities. All of them are real and nonzero.

Proof. We eliminate 7, in Problem 3.4.1 to write it as follows:

R
a(ﬂfﬂ nh) + t_2 (vwh - Rﬁh, Vuy, — RT]h)()’Q =\ (O'th, Vvh)oﬂ (344)
V(nh,vh) € Hh X Wh.

Taking particular bases of Hj, and W), this problem can be written in matrix form as

A[ﬂ"] =\ ﬁh] , (3.4.5)

Wy wp,

follows:
0 o0

0 E

where 3, and wy, denote the vectors whose entries are the components in those basis of 3,

and wy,, respectively. The matrix A is symmetric and positive definite because the bilinear
form on the left-hand side of (3.4.4) is elliptic in Hé(Q)2 x H}(2) (cf. [22]). Consequently,
An # 0 and, since E is also symmetric, A\, € R. Now, (3.4.5) holds true if and only if

ﬁh] A [ﬁh]
wp wy,

with A\, = 1/, and py, # 0. The latter is a well-posed generalized eigenvalue problem

00
0 E

with dim W), — dim Ker(E) nonzero eigenvalues. Thus, we conclude the lemma by noting
that Ew;, = 0 if and only if w, € Y. O

Remark 3.4.2 If (A, B, wy) is a solution of Problem 3.4.1, then
w} Bw), = (oVwy, Vwp)yq # 0.

In fact, this follows by left multiplying both sides of (3.4.5) by (8}, w!) and using the

positive definiteness of \A.

As in the continuous case, we introduce for the analysis the discrete solution operator
Ty = Hy(Q2) — Wi — Hy(Q),

f'_>wh7
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where wy, is the second component of the solution (/3,,wy,) to the corresponding discrete

source problem:
Given f € HY(Q), find (Bn,wn) € Hy X Wy, such that

a(ﬂh, 77h> + (’yh, Vo, — RT]h)O’Q = (O'Vf, Vvh)(m V(Tlh, Uh) € H, x Wy,

3.4.6
vh:g(th—Rﬁh). (3.4.6)

Existence and uniqueness of the solution to problem (3.4.6) follow easily (see [22]).
Moreover, the nonzero eigenvalues of Ty, are given by p, := 1/\,, with A, being the

eigenvalues of Problem 3.4.1, and the corresponding eigenfunctions coincide.

Remark 3.4.3 The solution to (3.4.6) is a finite element approximation of the solution
to (3.2.6). However, given a generic f € Hj(2), the usual convergence rate in terms of
positive powers of the mesh-size h does not hold in this case, because the solution to
(3.2.6) is not sufficiently smooth. Indeed, the right-hand side is not regular enough, since
div(eVf) ¢ L2(Q). Now, whenever f is more regular, for instance assuming f € H?(Q),
by taking into account the regularity of o (cf. (3.2.3)), the convergence results of [22] can
be applied to obtain

18— ﬁh”LQ + 1ty - 'Vh”o,Q + [lw — whHl,Q < Ch ||f||2,Q :

3.4.1 Auxiliary results

In what follows we will prove several auxiliary results which will be used in the following
section to prove convergence and error estimates for our spectral approximation. The first
of them is the following lemma which shows that the operator T};, defined above is bounded

uniformly in ¢ and h.
Lemma 3.4.4 There exists C' > 0 such that ||Ty|| < C for allt > 0 and all h > 0.

Proof. Let f € H{(Q) and (8, w;,) be the solution to problem (3.4.6). Taking (n,,v;) =

(Bh,wy) as test function in (3.4.6), we obtain

— 2
a(Bn, Bn) + 67 mlloe < 10 ]lecn IV Fllon Vwnllog -
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Hence, from the ellipticity of a(-,-),

1Bull30 + 578 Imllon < Cllollwg IV Fllog Vwnllog -
Therefore, using the definition of 75, (cf. (3.4.6)) and (3.4.1),

2 —
IVwnlloo = (|67 9 + BBl o < Cllollao IV o IVwnllog

los

which allows us to conclude the proof. O
Next, we will adapt the theory developed in [18, 19] for non-compact operators to our

case. With this aim, we will prove the following properties:

1(To — Tin) [l
PL [Ty — Tull, = sup
f}LeWh ||fh||1,Q
h

P2. Vu € Hy(Q) inf |lu—wvpll,q—0, as h — 0.

v, EWp

— 0, as (h,t) — (0,0);

From now on, we will use the operator norm ||-||, as defined in property P1.
We focus on property P1, since property P2 follows from standard approximation
results. We notice first that

170 = Tinll,, < WTo = Tull, + T2 = Tinll,, (3.4.7)

where T} is the operator defined in (3.2.5). Since W), C H}(Q), from Lemma 3.3.6 we
deduce that for all A > 0
Ty — 13|, < Ct. (3.4.8)

Regarding the other term in the right-hand side of (3.4.7), we aim at proving the following

result.
Proposition 3.4.5 Suppose that the family {1}, is quasi-uniform. Then we have
Ty — T, < C(h+1).

The proof of Proposition 3.4.5 will be given at the end of this section. With this aim,

we consider problems (3.2.6) and (3.4.6) with source term in W}, namely:
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Given f € Wy, find (3,w) € HY(Q)? x HL(Q) such that

a(B,n) + (1, Vo =)y = OV i, Vv)oq  ¥(n,v) € HY(Q)® x HY(Q), 5.09)

Given f, € Wy, find (B, wy) € Hy, x Wy, such that

a(Bn,mn) + (Yn, Vo, — Rin)og = (0V o, Vor)o g V(n,vn) € Hy X W,

3.4.10
Y = tﬁz (th — Rﬂh) . ( )

We need some results concerning the solutions of these problems. First, we apply the
Helmholtz decomposition (3.2.7) to the term ~ from (3.4.9):

v = Vi + curlp, Y € Hy(Q), p € HY(Q)/R. (3.4.11)

Then, we apply Theorem 3.2.1 and (3.2.9), to obtain the following a priori estimate for
the solution to problem (3.4.9):

1110 + 1Blly.0 + lwlly o + 2l o +Plo0 + [Vlloa < Cllfallio- (3.4.12)

The following result shows that, for f, € W), w and ¢ are actually smoother and an

inverse estimate which will be used to prove Proposition 3.4.5.

Lemma 3.4.6 Let w be defined by problem (3.4.9) and v as in (3.4.11). Then w, ) €
H'5(Q) for all s € (0, 3). Moreover, if the family {Tp},., is quasi-uniform, then

190 < CP2 ([ fullg -

Proof. Recall the equivalence between problems (3.4.9) and (3.2.8), the latter with source
term fj, instead of f. From the first equation of (3.2.8) we have that 1 is the weak solution
of

Ay =div(aV f) € H(Q),

oo 0 (3.4.13)
= on .
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Since fj, is a continuous piecewise linear function, we have that f, € H'**(Q) Vs € (0, ).
Therefore, the assumption (3.2.3) implies oV f, € H*(Q)°. Hence, div(eV f,) € H* ' (Q).
Then, from standard regularity results for problem (3.4.13), v € H**(Q) Vs € (0, %) and

[Pl 450 < Clldiv(eV fn)ll,_10 < Cllfalliisq-

If the family of meshes is quasi-uniform, then the inverse inequality || fal,,, o < Ch™* || full,

holds true and from this and the estimate above we obtain

[Pl 100 < CP ([l o

On the other hand, from the last equation of (3.2.8) we have that

(V (w—r""t%) ,vg)m = (6, V&) Ve € HE(Q).
Therefore, (w — k~'t%)) is the weak solution to the problem
A (w — rk12) = div g € L3(Q),
(w—r"%) =0  on ON.

Hence, (w — k™ 't%)) € H*(Q) (recall Q is convex) and w = (w — k™ '%Y) + k™ 't%) €
H'™#(Q) for all s € (0,1). Thus the proof is complete. O

The following lemma is the key point to prove Proposition 3.4.5.
Lemma 3.4.7 If (6,w,~) and (Bn,wn,vn) as in (3.4.9) and (3.4.10), respectively, then

18 = Bullio +tlly = mllog < C A+ [[fullq-

Proof. It has been proved in [22] (see Example 4.1 from this reference) that there exists
E € Hj, satisfying
R = RS,
15 = B0 < ChlBllye-

Let

~ K
V= t_2(vw1 - Rﬂ)v
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where wy € W, is the Lagrange interpolant of w, which is well defined because of

Lemma 3.4.6. Notice that by virtue of (3.4.3) and the equation above,
v = Rny.
It has also been proved in [22] that
13— Bullq 15 = o < € (13 = Bl + £17 — o + A lllg) -
Hence, by adding and subtracting B and 7 = R~, we obtain

16~ Bullg + 17 = mlloq < € (18 = Bllug + 111y = Brlloq + klirllon)

The first and last term in the right-hand side above are already bounded. To estimate
the second one, we use (3.4.11), Lemma 3.4.6, and (3.4.3), to obtain

17 = Ryl < IVY = Vg g + [leurlp — R(curl p)|lq - (3.4.14)
Next, from standard error estimates for the Lagrange interpolant, we have
IV = Vihillg o < CR* 9] 1400
whereas from (3.4.2) and the fact that p € H?(Q) (cf. (3.4.12))
|curlp — R(CUTIP)HO,Q <Ch ||p||2Q :
Thus, by using Lemma 3.4.6, we conclude

18— Bullg + 1 =l < O (18l + 1Al + th 9l + h Il
< C(h+t) 1 fullio
where we have used (3.4.12) for the last inequality. The proof is complete. O
We are now in a position to prove Proposition 3.4.5.

Proof of Proposition 3.4.5. Let (8,w,~) and (B, wn,y4) be as in (3.4.9) and (3.4.10),
respectively. We need to prove that

|w—wall; o <Ch+1) | fallq-
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Since
Vw — Vuwy, = k1t (v =)+ (B—RB),

adding and subtracting R, we obtain
IVw = Vunllgg < 57 Iy = mlloq + 118 = RBlloq + 1R(B = Bu)llon-  (3-4.15)
Hence, using Poincaré inequality, (3.4.1), Lemma 3.4.7, (3.4.2), and (3.4.12), we have
lw —wally o < C(h+ ) [[fullyq-

The proof is complete. O
We end this section by proving property P1.

Lemma 3.4.8 Suppose that the family {T,},-, is quasi-uniform. Then we have
[ To — Tinll, < C(h+1).

Proof. The assertion follows immediately from estimate (3.4.7), by using (3.4.8) and
Proposition 3.4.5. O

3.5 Convergence and error estimates

In this section we will adapt the arguments from [19] to prove error estimates for the
approximate eigenvalues and eigenfunctions. Throughout this section, we will assume that
the family of meshes {7},},., is quasi-uniform, so that property P1 holds true, although
such assumption is not actually necessary in some particular cases (see the appendix
below).

Our first goal is to prove that, provided the plate is sufficiently thin, the numerical
method does not introduce spurious modes with eigenvalues interspersed among the rel-
evant ones of 7} (namely, around u,ﬁk) for small k). Let us remark that such a spectral
pollution could be in principle expected from the fact that 7; has a non-trivial essential
spectrum. However, that this is not the case is an immediate consequence of the following

theorem, which is essentially identical to Lemma 1 from [18].
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Theorem 3.5.1 Let F C C be a closed set such that F N Sp(Ty) = 0. There exist strictly
positive constants hg, to, and C' such that, Yh < hg and ¥t < to, there holds FNSp(Ty,) =
0 and

[R(Twn)ll, <€ VzeF.

Proof. The same arguments used to prove Lemma 3.3.8 (but using Lemma 3.4.8 instead of
Lemma 3.3.6) allow us to show an estimate analogous to (3.3.11), namely, for all w, € W},

and all z € F,

1
11 = Tin) wnllyo 2 I(z1 = To) waly o = 1(To = Tin) wally 0 = 55 llwnlla

provided h and ¢ are small enough. Since W)}, is finite dimensional, the inequality above
implies that (z/ —Ty,) |w, is invertible and, hence, z ¢ Sp(Tin|w,). Now, Sp(Ti,) =
Sp(Tin|w, )U{0} (see, for instance, [9, Lemma 4.1]) and, for z € F', z # 0. Thus, z ¢ Sp(T3;,)
either. Then (21 — Ty,) is invertible too and

IRA(Tin)ll, = | (2 = Tin) I, <2C1 Yz e F

The proof is complete. O

We have already proved in Theorem 3.3.1 that the essential spectrum of T} is con-
fined to the real interval (—r~'¢?||0| 000, £ '?||0||0.n). The spectrum of T} outside this
interval consists of finite multiplicity isolated eigenvalues of ascent one, which converge to
eigenvalues of Tp, as t goes to zero (cf. Theorem 3.3.9). The eigenvalue of T, with phys-
ical significance is the largest in modulus, ,ugl), which corresponds to the limit of elastic
stability that leads to buckling effects. This eigenvalue is typically simple and converges
to a simple eigenvalue of Tj, as t tends to zero. Because of this, for simplicity, from now
on we restrict our analysis to simple eigenvalues.

Let o # 0 be an eigenvalue of Ty with multiplicity m = 1. Let D be a closed disk
centered at g with boundary I' such that 0 ¢ D and D N Sp(Ty) = {po}. Let to > 0 be

small enough, so that for all t < #:

e D contains only one eigenvalue pu; of T;, which we already know is simple (cf.
Lemma 3.3.7) and
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e D does not intersect the real interval (—x™'t?||0||oo.q, £ 12||0 || s0.02), Which contains

the essential spectrum of T;.

According to Theorem 3.5.1 there exist ¢ty > 0 and hg > 0 such that V¢ < t; and
Vh < ho, I' C p(Ti). Moreover, proceeding as in [18, Section 2], from properties P1
and P2 it follows that, for h small enough, 7}, has exactly one eigenvalue puy, € D. The
theory in [19] could be adapted too, to prove error estimates for the eigenvalues and
eigenfunctions of T}, to those of Ty as h and t go to zero. However, our goal is not this
one, but to prove that py, converges to p; as h goes to zero, with t < ¢, fixed, and to
provide the corresponding error estimates for eigenvalues and eigenfunctions. With this
aim, we will modify accordingly the theory from [19].

Let IT;, : HY(Q2) — H{(2) be the projector with range W), defined for all u € H}(S2) by

(V (pu —u), Vop)g g =0 Yy, € Wi,

The projector ITj, is bounded uniformly on A, namely, |[TTyul|, o < [ull, o, and the following

error estimate is well known:
[Thu — ull, o < Chllullyq Yu € H*(Q). (3.5.1)

Let us define
By, = Ty, - HY(Q) — W), — HE(Q).

It is clear that T}, and By, have the same nonzero eigenvalues and corresponding eigen-

functions. Furthermore, we have the following result (cf. [19, Lemma 1]).

Lemma 3.5.2 There exist hg, tg, and C' such that

|R.(By)| <C  Vh<hy, Vt<ty, Vzel.

Proof. Since By, is compact it suffices to verify that ||(21 — Bu) ul|, o > C'llul|, (, for all
u € H{(Q) and 2 € I'. Taking into account that 0 ¢ T' and using Theorem 3.5.1, we have

-1
lully o < [Mnully o + [l = Maull, o < Cll(21 = Ton) Taully o + 27 (]2 (u = a5 -
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By using properties of the projector IIj, we obtain

lully g < Cll(zI = Bu) Myully g + 2] 7 12 (u = ) = Bu(u — M)l
= C |M(2] = BuJull, g + 27" |(I = T0) (21 = B) ull,
S Oz = Bn) ully g -

Thus we end the proof. O

Next, we introduce:

e £, : H{(Q) — H(Q), the spectral projector of T; corresponding to the isolated
eigenvalue p;, namely,

1
Et =
2m Jr

R.(T}) dz;

o Iy, HY(Q) — HY(Q), the spectral projector of By, corresponding to the eigenvalue
fitn, namely, .

Fy, = — [ R.(By)dz.

th o Jp (Bin) dz
As a consequence of Lemma 3.5.2, the spectral projectors Fjj, are bounded uniformly in A
and ¢, for h and t small enough. Notice that E;(H}(£2)) is the eigenspace of T} associated
to py and Fy,(H(2)) the eigenspace of By, (and hence of Ty, too) associated to iy,
According to our assumptions, E;(Hj(€2)) and Fy,(H{(€2)) are both one dimensional. The

following estimate (cf. [19, Lemma 3]) will be used to prove convergence of the eigenspaces.

Lemma 3.5.3 There exist positive constants hy, t1, and C, such that for all h < hy and
for allt < tq,

I (B — Fin) | gy | < CI(T = Bi) | g,z | < Ch

Proof. The first inequality is proved using the same arguments of [19, Lemma 3| and Lem-
mas 3.3.8 and 3.5.2. For the other estimate, fix w € E;(H}(€)). From Proposition 3.3.10,
Remark 3.4.3, Lemma 3.4.4, and (3.5.1), we have

[(T: = Bin) wll; o < (T = Ten)wll1,0 + [[(Tin — Bin)wll1.0
< (Tt = Ta)wllr,o + Tl I(1 — Hp) wll, g
< Chllwllyg-
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Therefore, by using (3.3.13), we conclude the proof. O

To prove an error estimate for the eigenspaces, we also need the following result.
Lemma 3.5.4 Let
Awn = Funlpam) © Br(H(Q)) — Fu(Hg(9)).
For h and t small enough, the operator Ay, is invertible and
lagl = c.
with C independent of h and t.

Proof. See the proof of Theorem 1 in [19]. O
We recall the definition of the gap 0 between two closed subspaces Y and Z of HL(Q):

A

5(Y, Z) = max {8(Y, 2),8(Z,Y)},

where

5, 7) = sup (inf Iy - z||m) .

yey z€Z
vl o=1

The following theorem shows that the eigenspace of T}, (which coincides with that of

Byy,) approximate the eigenspace of T; with optimal order.

Theorem 3.5.5 There exist constants hg, t1, and C, such that, for all h < hg and for
all t < ty, there holds
0 (Fun(Hy(9)), E(Hy(Q))) < Ch.

Proof. It follows by arguing exactly as in the proof of Theorem 1 from [19], and using
Lemmas 3.5.3 and 3.5.4. O
Next, we prove a preliminary sub-optimal error estimate for |, — pu,|, which will be

improved below (cf. Theorem 3.5.8).
Lemma 3.5.6 There exists a positive constant C' such that, for h and t small enough,

e — pan| < Ch.
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Proof. We define the following operators:

Ti = Til gy Ee(H3(Q)) — E(HH(Q),
Bu, == A By Ay, Ey(HN(Q)) — E,(HL(Q)).

The operator ﬁ has a unique eigenvalue pu; of multiplicity m = 1, while the unique
eigenvalue of LA?th 1S e
Let v € Ey(Hy(Q)). Since (Ay,'Fin — I) Tyl a1y = 0 and By, commutes with its

spectral projector Fj,, we have
(Ti = Bu)v = (T, — Bu) v+ (A Fon — I) (T; — Bun) v,

Therefore, using Lemmas 3.5.3 and 3.5.4 and the fact that || F};|| is bounded uniformly in

h and t, for h and ¢ small enough, we obtain

(T2 = Bun)olly o < (T = Bun) vlly o + [| (A Fin = 1) (Ty = Bin) o[, < Chlvll -

Hence, the lemma follows from the fact that YA} = ! and LA?th = . O

Since the eigenvalue p; # 0 of T; corresponds to an eigenvalue A = 1/p; of Prob-
lem 3.2.1, Lemma 3.5.6 leads to an error estimate for the approximation of A as well.
However, the order of convergence is O(h) as in this lemma. We now aim at improving
this result. Let A\, := 1/pyn, wy, Br and 7, be such that (A, wp, By, vn) is a solution of
Problem 3.4.1, with [[wp[[, 5 = 1. According to Theorem 3.5.5, there exists a solution
(A, w, B,7) to Problem 3.2.1, with [Jwl[, o = 1, such that

lw = wpl[, o < Ch.

The following lemma will be used to prove a double order of convergence for the
corresponding eigenvalues, but it is interesting by itself, too. In fact, it shows optimal

order convergence for the rotations of the vibration modes.

Lemma 3.5.7 Let (\,w, 8) be a solution of Problem 3.2.1, with |[w||, o, = 1, and (An, wp, Bs)

a solution of Problem 3.4.1, with |wy|, o = 1, such that

|w —wyl]; o < Ch. (3.5.2)
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Let v and v, be as defined in Problems 3.2.1 and 3.4.1, respectively. Then for h and t

small enough there holds

18 = Bulliq +tllY —mlloq < Ch. (3.5.3)
Proof. Let w;, € Wy, ﬁh € Hj and 4, be the solution of the auxiliary problem:

(B, ) + (A Von = B g = A (0Vw, Voo V(i va) € Hy x Wi,
~ R A A
Yh = t—2(th — Rﬁh).
This problem is the finite element discretization of Problem 3.2.1, with source term

f = w € H*(Q)NH{(Q). Then, from Remark 3.4.3, (3.3.13), and the fact that [wy]|, o =

1, we obtain the following error estimate:
18 = Bullio + v = Alloq + [lw —dnlly g < ChIA[lwllyq < CRIA[. (3.5.4)

On the other hand, from Problem 3.4.1, we have that (3, — Bh, wy, — wyp) € Hp x Wy,

satisfies

a(By = Buymn) + (7 = A, Vor — Ri)g g = (0 (Awwn — Aw) , Vog)g g
p V(nh,'l}h) € Hh X Wh,

(Y (wy, — ) — R(Br — Bn)).

Vh—%ztz

Taking n, = 3, — By and v), = wy, — Wy in the system above, from the ellipticity of a(+-),

we obtain

18 = Bl + +7 lm =l
< C|[Awn — Awl|; g |lwn — ol
< ¢ (alllw = will o+ 1) = Ml Il o) (e = willy g + o = nllyg)
< Ch?,

where we have used Lemma 3.5.6 and estimates (3.5.2) and (3.5.4) for the last inequality.

Therefore, we have
180 = Bullio +tlvn — Anlloq < Ch.
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Thus, the lemma follows from this estimate and (3.5.4). O
We are now in a position to prove an optimal double-order error estimate for the

eigenvalues.

Theorem 3.5.8 There exist positive constants hg, ti, and C such that, Yh < hy and
vVt < t1,
IA— A\ < Ch2

Proof. We adapt to our case a standard argument for eigenvalue problems (see [6,
Lemma 9.1]). Let (A, 5, w,~) and (An, Bn, wp,7s) be as in Lemma 3.5.7. We will use the
bilinear forms A and B defined in (3.3.1) and (3.3.2), respectively, as well as the bilinear

form A;, defined in H;, x W), as follows:

An((Bn wn). (s 00)) #= @By ) + 25 (Vwn = Rbh, Vor = R

With this notation, Problems 3.2.1 and 3.4.1 can be written as follows:

A((ﬁaw)a (777 U)) - )‘B((ﬁaw)v (777 U)),
An((Brswn), (Mns vn)) = A B((Br, wh), (1, vn))-

From these equations, straightforward computations lead to

(A — A) B((Bh, wr), (B, wn)) = A((B = Bh, w — wy), (8 — B, w —wp,)) (3.5.5)
- )‘B((ﬂ — By w — wh)v (5 = Bp,w — wh))
+ [An((Br wn), (Br, wn)) — A((Br, wn), (Brs wn))] -

Next, we define 7, := t% (Vwy, — Br). Recalling that RVw;, = Vw, (cf. (3.4.3)), from
the definition of v, (cf. Problem 3.4.1) we have that v, = R7;,. On the other hand, from

the definition of A and Aj; we write

A((B = By w — wy), (B = Bpyw —wp)) = a(B— B, 8= Bn) + 5 |y = Anllog »
Ap((Bns0n), (B wn)) = AL(Brs wn), (B wn)) = 57 (IRl = Wnlly )
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Therefore,
(An = A) B((Bn, wn), (Bn, wn)) = a8 = Br, 6 — On)
678 (I =Tl + 1830 — 1l
— AB((8 = B, w — wa), (B = B, w — wh)).

The first and the third term in the right-hand side above are easily bounded by virtue of
(3.5.2) and (3.5.3). For the second term, we write

~ 1|12 — 112 — 112 — 112 _ _
17 = mlloo + 1 Bllo0 = [Mulloq = [ = BAnlloe =2 (30 = Rin)oa (3.5.6)
2K
2
= ny o fthO,Q + t_2 (Vvﬂh - Rﬂh)()’Q .

For # € H2(Q)* N HL(Q), we denote by 3" € H, the standard Clément interpolant of
[, which satisfies

18,0 <ClBlLg  and 86", o< ChIIBlyg. (35.7)
It follows that
(/77 6h - Rﬂh)o,ﬂ = (fy’ (6h - 61) - R(ﬁh - BI))()’Q + (77 61 - Rﬂl)o’g
< ||'Y||0,Q H (/Gh - /61) — R(Br — ﬁI)Ho,Q + (7’ /BI - RﬁI)O,Q'

Thus, using (3.4.2) and Lemma 3.3 from [21], we obtain

(7, Br = RBr)og < Chlllog |18n = B, o + CR* [divylloq 18111 ¢

< Chllllog (I8 = Ballug + (18 = 8',0) + Ch div Yl 18]

and from Lemma 3.5.7, (3.5.7), and Proposition 3.3.10, we have

(3. B~ B < Chlrllg (Ch + Ch [Bl0) + OR2 M [l 18], < C1 A

Finally, we use this estimate, (3.5.5), (3.5.6), and the fact that B((5y, wp), (Bn, wp)) =
(oVwy, Vwy)y o # 0 (cf. Remark 3.4.2) to obtain

2 2 — 2
18 = Bullig + llw—wnlli o + £ Y2 ||y — Ynlloo + Ch? |\

A= <C | B((Bn wh), (Br, w))]
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Consequently, from Lemma 3.5.7,
A= | < CR?

and we conclude the proof. O

3.6 Numerical results

In this section we report some numerical experiments carried out with our method
applied to Problem 3.2.1. We recall that the buckling coefficients can be directly computed
from the eigenvalues of Problem 3.2.1: A\, = \t%.

For all the computations we have taken € := (0,6) x (0, 4) (all the lengths are measured
in meters) and typical parameters of steel: the Young modulus has been chosen F =
1.44 x 10" Pa and the Poisson ratio v = 0.30. The shear correction factor has been taken
k =5/6.

We have used uniform meshes as those shown in Fig. 3.1; the meaning of the refinement

parameter N can be easily deduced from this figure. Notice that h ~ N~!.

N =1 N =2 N =3

Figure 3.1: Rectangular plate. Uniform meshes.

3.6.1 Uniformly compressed rectangular plate

For this test we have used o = I, which corresponds to a uniformly compressed plate.



3.6 Numerical results 85

Simply supported plate

First, we have considered a simply supported plate, because analytical solutions are
available in this case (see [38, 40]). Even though our theoretical analysis has been devel-
oped only for clamped plates, we think that the results of Sections 3.4 and 3.5 should
hold true for more general boundary conditions, as well. The results that follow give some

numerical evidence of this.

In Table 3.1 we report the four lowest eigenvalues ()\;, i = 1,2, 3,4) computed by our
method with four different meshes (N = 2,4, 8,16) for a a simply supported plate with
thickness ¢ = 0.001. The table includes computed orders of convergence, as well as more
accurate values extrapolated by means of a least-squares fitting. The last column shows

the exact eigenvalues.

Table 3.1: Lowest eigenvalues \; (multiplied by 107!%) of a uniformly compressed simply
supported plate with thickness ¢ = 0.001.

Eigenvalue || N=2 | N=4 | N=8 | N =16 || Order || Extrapolated || Exact
Al 1.1793 | 1.1759 | 1.1752 | 1.1750 2.14 1.1750 1.1749
A2 2.2638 | 2.2602 | 2.2596 | 2.2595 2.68 2.2595 2.2595
A3 3.7293 | 3.6441 | 3.6224 | 3.6170 1.98 3.6151 3.6152
A4 4.1573 | 4.0892 | 4.0726 | 4.0685 2.03 4.0672 4.0671

It can be seen from Table 3.1 that the method converges to the exact values with an

optimal quadratic order.

Figure 3.2 shows the transverse displacements for the principal buckling mode com-
puted with the finest mesh (N = 16).
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Figure 3.2: Uniformly compressed simply supported plate; principal buckling mode.

Clamped plate

In Table 3.2 we present the results for the lowest eigenvalue of a uniformly compressed
clamped rectangular plate, with varying thickness. We have used the same meshes as in
the previous test. Again, we have computed the orders of convergence, and more accurate
values obtained by a least-squares fitting. In the last row we report for each mesh the

limit values as t goes to zero obtained by extrapolation.

Table 3.2: Lowest eigenvalue \; (multiplied by 107'%) of uniformly compressed clamped

plates with varying thickness.

Thickness N=2| N=4| N=8| N =16 || Order || Extrapolated
t=0.1 3.4031 | 3.3440 | 3.3293 | 3.3258 2.02 3.3246
t =0.01 3.4324 | 3.3723 | 3.3571 | 3.3533 1.99 3.3520
t =0.001 3.4327 | 3.3726 | 3.3574 | 3.3536 1.99 3.3522
t = 0.0001 3.4327 | 3.3726 | 3.3574 | 3.3536 1.98 3.3522
t =0 (extrap.) || 3.4327 | 3.3726 | 3.3574 | 3.3536 1.99 3.3523

Figure 3.3 shows the transverse displacements for the principal buckling mode, for
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t = 0.1, and the finest mesh (N = 16).

Figure 3.3: Uniformly compressed clamped plate; principal buckling mode.

According to Lemma 3.3.7, the values on the last row of Table 3.2 should correspond
to the lowest eigenvalues of a Kirchhoff-Love uniformly compressed clamped plate with
thickness ¢t = 1. As a further test, we have also computed the latter, by using the methods
analyzed in [16] and [36]. We show the obtained results in Table 3.3, where an excellent

agreement with the last row of Table 3.2 can be appreciated.

Table 3.3: Lowest eigenvalue \; (multiplied by 1071%) of a uniformly compressed clamped
thin plate (Kirchhoff-Love model) computed with the methods from [16] and [36].

Method || N=8 | N=12 | N=16 | N =20 || Order || Extrapolated
[16] 3.3718 | 3.3611 | 3.3573 | 3.3555 1.97 3.3523
[36] 3.3514 | 3.3519 | 3.3521 | 3.3522 1.95 3.3523

It is clear that the results from the Reissner-Mindlin model do not deteriorate as the

plate thickness become smaller, which confirms that our method is locking-free.



88

3.6.2 Clamped plate uniformly compressed in one direction

10
o= ,
0 0

which corresponds to a plate uniformly compressed in one direction. Notice that in this

We have used for this test

test o is only positive semi-definite. Table 3.4 shows the same quantities as Table 3.2 in

this case.

Table 3.4: Lowest eigenvalue \; (multiplied by 107'%) of clamped plates with varying

thickness, uniformly compressed in one direction.

Thickness N=2| N=4| N=8 | N=16 || Order || Extrapolated
t=0.1 6.7969 | 6.7274 | 6.7104 | 6.7066 2.05 6.7052
t=0.01 6.8825 | 6.8143 | 6.7971 | 6.7930 2.00 6.7915
t =0.001 6.8834 | 6.8151 | 6.7980 | 6.7939 2.00 6.7924
t =0.0001 6.8834 | 6.8152 | 6.7980 | 6.7939 2.00 6.7924
t =0 (extrap.) || 6.8834 | 6.8152 | 6.7980 | 6.7939 2.00 6.7924

Figure 3.4 shows the principal buckling mode for ¢ = 0.1 and the finest mesh (N = 16).

Figure 3.4: Clamped plate uniformly compressed in one direction; principal buckling mode.
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Finally, Table 3.5 shows the same quantities as Table 3.3 in this case. Once more, an
excellent agreement with the values extrapolated from the Reissner-Mindlin model (last

row of Table 3.4) can be clearly appreciated.

Table 3.5: Lowest eigenvalue \; (multiplied by 107!°) of a clamped thin plate (Kirchhoff-
Love model) uniformly compressed in one direction, computed with the methods from
[16] and [36].

Method || N=8 | N=12 | N=16 | N =20 || Order || Extrapolated
[16] 6.8450 | 6.8158 | 6.8056 | 6.8009 2.00 6.7925
[36] 6.7904 | 6.7913 | 6.7917 | 6.7920 1.92 6.7926

3.6.3 Shear loaded clamped plate

01
o= ,
10

which corresponds to a uniform shear load. Notice that o is indefinite in this test. The

In this case we have used

numerical results are reported in Table 3.6, Figure 3.5, and Table 3.7, using the same

pattern as the previous tests.

Table 3.6: Lowest eigenvalue A\; (multiplied by 1071°) of shear loaded clamped plates with

varying thickness.

Thickness N=4| N=8| N=12 | N =16 || Order || Extrapolated
t=0.1 9.4306 | 9.2179 | 9.1783 | 9.1645 1.99 9.1464
t=0.01 9.6098 | 9.3923 | 9.3514 | 9.3371 1.98 9.3184
t =0.001 9.6116 | 9.3942 | 9.3533 | 9.3389 1.98 9.3202
t = 0.0001 9.6117 | 9.3942 | 9.3533 | 9.3389 1.98 9.3202
t =0 (extrap.) || 9.6117 | 9.3942 | 9.3533 | 9.3389 1.98 9.3202
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Figure 3.5: Shear loaded clamped plate; principal buckling mode.

Table 3.7: Lowest eigenvalue \; (multiplied by 107!°) of a shear loaded clamped thin plate
(Kirchhoff-Love model) computed with the methods from [16] and [36].

Method || N=8 | N=12 | N =16 | N =20 || Order || Extrapolated
[16] 9.4625 | 9.3840 | 9.3563 | 9.3435 1.98 9.3203
[36] 9.3660 | 9.3408 | 9.3319 | 9.3278 1.99 9.3204

In all cases, an excellent agreement between the numerical experiments and the theo-
retical results detailed in Section 3.5 can be noticed and the method appears thoroughly

locking-free.

3.7 Appendix. Uniformly compressed plates

The aim of this appendix is to show that the results of Sections 3.3, 3.4, and 3.5 can be
refined when o = I, which corresponds to a uniformly compressed plate. In this case, we
are able to give a better characterization of the spectrum of 7; and to prove the spectral

approximation without assuming that the family of meshes is quasi-uniform.
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3.7.1 Spectral characterization

We have the following counterpart of Theorem 3.3.1, showing that the spectrum of T}

is simply a shift of the spectrum of a compact operator.

Theorem 3.7.1 Suppose that o = I. For allt > 0, the spectrum of T satisfies
Sp(T}) = Sp(G) + k™'t

where G is the compact operator defined in (3.3.5).

Proof. The first equation of (3.2.8) leads in this case to ¢ = f, due to the fact that
o = I. Therefore, (3.2.8) reduces to

a(ﬂvn) - (Cur1p7 77)0,9 = (va 7])079 vlr] e H(l)(Q)27
— (B, curlq)y g — k7't? (curlp, curlq)y, =0 Vg € HY(Q)/R, (3.7.1)

(Vw, V€)oo = (8, VE)gq + k712 (VF,VE)eq V¢ € Hy(Q).

Next, recall that G is defined in (3.3.5) as the operator mapping f +— u, with u € H}(Q2)
such that

(vu> Vg)O,Q = (ﬁ’ VS)O,Q \V/S S Hé(Q)a

where § € HL(€)” is determined in this case by the first two equations from (3.7.1).
Therefore, the third equation from (3.7.1) yields T, = G + x~'#*I. Since G has been
already shown to be compact, this allows us to conclude the theorem. O

As a consequence of this theorem, Sp(T}) = {x1*} U {u, : n € N}, with u, being a
~142

sequence of finite-multiplicity eigenvalues converging to k="' ¢°. Therefore, in this particular

case, the essential spectrum of T} reduces to a unique point: £~ '¢2.

3.7.2 Spectral approximation

In this particular case, we will improve the error estimate shown in Section 3.4 in that
we will not need to assume quasi-uniformity of the meshes. Indeed, this property was used

above only to prove Proposition 3.4.5. Instead, we have now the following result.
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Proposition 3.7.2 Suppose that o = I. Then, for any regular family of triangular
meshes {T},,< . there exists C > 0 such that, for allt > 0,

[Ty = Tinll, < Ch.

Proof. We will simply sketch the proof, since it follows exactly the same steps as that of
Proposition 3.4.5. First, we notice that in the decomposition (3.4.11) we have ¢ = f;, € W),
(cf. problem (3.4.13) with o = I).

As a consequence, we infer that the term [|[Vi) — V||, ¢, in (3.4.14) vanishes. Hence,

the last estimate in the proof of Lemma 3.4.7 changes into

16 = Bulla + 1y = Wl < C (B 1Bllag + th Ipllag +Al1Vlog) < CIl g

By using the above estimate in the proof of Proposition 3.4.5 (in particular in (3.4.15)),

we obtain
(T = Tin) full1q = lw —wnllyq < Ch | full g,

from which we conclude the proof. O
As a consequence of Proposition 3.7.2, we can improve Lemma 3.4.8. In fact, now for

t small enough there holds directly
HTt - Tth”h < Ch7

with a constant C' independent of h and . By using this instead of property P1, we could
give somewhat simpler proofs for the error estimates from Section 3.5. However the final
results, Theorems 3.5.1, 3.5.5, and 3.5.8 are the same, although now valid for any regular

family of triangular meshes, without the need of being quasi-uniform.



Chapter 4

A locking-free finite element method
for the buckling problem of a

non-homogeneous Timoshenko beam

4.1 Introduction

This paper deals with the numerical approximation of the buckling problem of a non-
homogeneous beam modeled by Timoshenko equations. Structural components with con-
tinuous and discontinuous variations of the geometry and the physical parameters are
common in buildings and bridges as well as in aircrafts, cars, ships, etc. For that reason,
it is important to know the limit of elastic stability of this kind of structures.

On the other hand, it is very well known that standard finite element methods applied
to models of thin structures, like beams, rods and plates, are subject to the so-called
locking phenomenon. This means that they produce very unsatisfactory results when the
thickness is small with respect to the other dimensions of the structure. To avoid locking,
the techniques most used are based on reduced integration or mixed formulations (see [23]
and references therein).

In this paper, we present a rigorous thorough analysis of a low order finite element

method to compute the buckling coefficients and modes of a non-homogeneous Timo-
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shenko beam, the method was introduced for source problems on homogeneous beams by
Arnold in [4], and was recently analized for the vibration problem of a rod in [28] (which

covers the vibration problem of the Timoshenko beam).

The main drawback that appears in the formulation of the problem is the fact that
the solution operator (whose eigenvalues are the reciprocals of the buckling coefficients)
is non-compact. Among other consequences, we have that this operator has a non-trivial
essential spectrum, which is a potencial source of spectral pollution in the numerical
methods. Thus, our first task will be to prove that the eigenvalues corresponding to the
limit of elastic stability (i.e., the smallest buckling coefficients) can be isolated from the
essential spectrum of the solution operator, at least for sufficiently thin beams. Let us

mention that similar arguments were used in [33] for Reissner-Mindlin plates.

To study the convergence of the proposed method and obtain error estimates, we will
adapt the classical theory developed for non-compact operators in [18, 19]. We will obtain
optimal order error estimates for the approximation of the buckling modes and a double

order for the buckling coefficients, all these estimates being uniform in the beam thickness.

This approach follows the strategy used in [33] for buckling problem of plates. How-
ever, the one-dimensional character of the present problem allows us to give simpler
proofs valid on a more general context. In particular, the results of this paper are valid
for non-homogeneous beams, whose physical and geometrical properties may be even dis-

continuous at a finite number of points.

The outline of this paper is as follows: In Section 4.2, we introduce the buckling
problem and a non-compact linear operator whose spectrum is related with the solution
of the buckling problem. We end this section with some preliminary regularity results. In
Section 4.3 we provide a thorough spectral characterization of this operator; its eigenvalues
and eigenfunctions are proved to converge to the corresponding ones of the limit problem
(an Euler-Bernoulli beam) as the thickness goes to zero. Additional regularity results
are also proved. In Section 4.4 we introduce a finite element discretization with piecewise
polinomials of low order. In Section 4.5 optimal order of convergence for the eigenfunctions
and a double order for the eigenvalues are proved; all these error estimates are proved to

be independent of the thickness of the beam, which allows us to conclude that the method
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is locking-free. Finally, in Section 4.6, we report some numerical tests which confirm the
theoretical order of the error and allow us to assess the performance of the proposed
method.

Throughout the paper we will use standard notations for Sobolev spaces, norms and
seminorms. Moreover, we will denote with ¢ and C', with or without subscripts, tildes or
hats, a generic constant independent of the mesh parameter h and the plate thickness t,

which may take different values in different occurrences.

4.2 Timoshenko beam model.

Let us consider an elastic beam which satisfies the Timoshenko hypotheses for the
admissible displacements. The deformation of the beam is described in terms of the vertical
displacement w and the rotation of the vertical fibers 3. Let x be the coordinate in the
axial direction. Moreover, we assume that the geometry and the physical parameters of
the beam may change along the axial direction.

The buckling problem for a clamped Timoshenko beam loaded by a constant compres-
sive (positive) load P, reads as follows:

Find A\ € R and 0 # (B(x),w(z)) € V := H}(I) x H}(I) such that

JE@I) (@) do + / G(a) Ak (3(z) — ! (@) (n(z) — /() d

I
= e /Pw'(x)v'(z) dx

I
for all (n(x),v(z)) € V, where I := (0, L), L being the length of the beam, F(z) the Young

modulus, I(z) the moment of inertia of the cross-section, A(z) the area of the cross-section
and G(z) := E(x)/(2(1 + v(x))) the shear modulus, with v(z) the Poisson ratio, and k.

a correction factor. We consider that E(x), I(x), A(z) and v(x) are piecewice smooth in

(4.2.1)

I, the most usual case being when all those coefficients are piecewise constant. Moreover,
primes denote derivative with respect to the z-coordinate.

The eigenvalues of the problem above are called the buckling coefficients and the
eigenfunctions the buckling modes. We recall that the limit of elastic stability correspond

to the smallest buckling coefficient A..
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Remark 4.2.1 The buckling problem above can be formally obtained from the three-
dimensional linear elasticity equations as follows (see [17, 45]): The first step is to consider
the beam as a three-dimensional structure. Then, the beam is supposed inextensible and
only deformation in the plane (x,z) is allowed. According to the Timoshenko hypothe-
ses, the admissible displacements at each point of the beam are of the form u(z,y,z) =
(z6(x),0,w(x)). Test and trial displacements of this form are taken in the variational for-
mulation of the buckling problem for the three-dimensional structure. By integrating over
the cross-sections, multiplying the shear term by a correcting factor k. and eliminating a
higher order shear term in the right hand side, one arrives at problem (4.2.1) (see [39]

for the same problem for a homogeneous beam,).

For very thin structures, it is well known that standard finite element procedures,
when used in formulations such as (4.2.1), are subject to numerical locking, a phenomenon
induced by the difference of magnitude between the coefficients in front of the different
terms (see [4]). The appropriate framework for analysing this difficulty is obtained by
rescaling formulation (4.2.1) so as to identify a well-posed sequence of problems in the
limit as the thickness becomes infinitely small. With this aim, we introduce the following

nondimensional parameter, characteristic of the thickness of the beam,

1 I(x)
2 == 4.2.2
=1 /IA(x)L2 4, (422)
which we assume may take values in the range (0, tyax]-
We define
A= i—g I(z) := Hi—f) A(z) = @, E(z) := E(z)[(z) and k(z) = G(2)A(z)k,,

(4.2.3)
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Furthermore, because of the assumption on the physical and geometrical parameters,
we have that E(z) and k(z) are piecewise smooth. More precisely, there exists a partition
0 =359 < ---<s, =L, of the interval I, where s;, « = 1,...,n — 1 are the points of
possible discontinuities of E(x) and x(z). If we denote S; := (s; — s;_1), then, we assume
that E;(x) := E(z)]s, € W'*°(S;) and k;(x) := k(z)]s, *(S;),i=1,...,n

Then, problem (4.2.1) can be equivalently written as follows, where from now on we

omit the dependence on the axial variable x:
Find A € R and 0 # (B,w) € V such that

/Eﬁ/n/ dx + 12 /m(ﬂ —w')(n—1")dr = )\/Pw'v/ dx Y(n,v) V. (4.2.4)
I =y I

Note that all the eigenvalues of (4.2.4) are strictly positive, because of the symmetry
and positiveness of the bilinear forms.

Finally, introducing the scaled shear stress v := g(ﬂ — '), problem (4.2.4) can be
written as follows:

Problem 4.2.1 Find A € R™ and 0 # (3,w) € V such that
/Eﬂ’n’ dx + /7(7} —v)dx = A/Pw’v’ dr Y(n,v) €V,
I I I
K
= t_g(ﬁ —w').

The goal of this paper is to propose and analyse a finite element method to solve

(4.2.5)

Problem 4.2.1. In particular, the aim is to obtain accurate approximations of the smallest
eigenvalues A\ (which correspond to the buckling coefficients A, = At?) and the correspond-
ing eigenfuctions or buckling modes.

In the rest of the section, we will introduce an operator whose spectrum will be related
with that of Problem 4.2.1 and will prove some regularity results which will be used in
the sequel. With this aim, first, we consider the following source problem associated with
the spectral Problem 4.2.1:

Given f € H}(1), find (B,w) € V such that

/Eﬁ'n' dx + /7 "dx = /Pf’v' dx Y(n,v) €V,
I I
(ﬂ w'),

(4.2.6)
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and introduce the following bounded linear operator called the solution operator:
T+ Hy(I) — Hy (1),
f=w,
where (3, w) is the unique solution of problem (4.2.6).

It is easy to check that (u,w), with p # 0 is an eigenpair of 7} (i.e., Tyw = pw, w # 0)
if and only if there exists 3 € H{(I) such that (X, 3, w) with A = i being a solution of
Problem 4.2.1. We recall that these eigenvalues are strictly positive. Let us recall that our
aim is to approximate the smallest eigenvalues of Problem 4.2.1, which correspond to the
largest eigenvalues of the operator 7;.

We note that 7} is self-adjoint with respect to the inner product [, Pu'v' dz in H(I).
In fact, for f, g € H}(I), let (w, 3) and (v,n) be the solutions of (4.2.6) with source terms
f and g, respectively. Therefore, w = T, f and v = T;g and

‘[Rﬂﬂm%x:[Pfﬁm
= [Eavde+ [Ho w0 )ie = [Pywds= [Pymis) ie

I I I
Now, considering the following decomposition for the shear stress:

v =1+, (4.2.7)
with ¢ € H}(I) and k := 1 [,7 € R. Replacing (4.2.7) in the first equation of (4.2.6) and
testing with (n,v) = (0, + Pf) € V, we obtain

= —Pf. (4.2.8)
Thus, we have that problem (4.2.6) and the following problem are equivalent:
Given f € H}(1), find (3, k,w) € Hy(I) x R x Hy(I) such that

/Eﬂ’n’dm—i—/knd:c:/Pf’nd:c vy € Hy (1),
I I I

k Pf
/ﬁqu—tz/—qu:—tQ/ﬂdx Vq € R, (4.2.9)
I 1 R 1 K

\ /I/iw/ﬁldx = /Imﬁﬁ/dx +¢2 /IPf/gldm ve e Hy(D).
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For this problem, we have the following stability result:

Theorem 4.2.2 For anyt € [0, e and f € HY(1), there exists a unique triple (3, k,w) €
H}(I) x R x H}(I) solving (4.2.9). Moreover, there exists a constant C independent of t
and f, such that

1Bllx+ 1k + [[wllix < Cllfllr-

Proof. For all ¢t € (0, ¢, we can apply Theorem 5.1 of [4] to obtain that there exists a
unique solution (3, k) € HJ(I) x R of problem (4.2.9); 5, moreover,

18111+ K] < ClLF o,

where the constant C'is independent of £. If £ = 0 the clasical theory for mixed formulations
considered in [11] can be applied to obtain the same result.
Finally, we obtain by the Lax-Milgram’s lemma, that there exists a unique solution

w € Hy(T) of problem (4.2.9)3, and taking & = w, we get

lwlire < CUBlox + 1 o) < Cllf [l

This completes the proof. O
Consequently, by virtue of (4.2.7) and (4.2.8), and the equivalence between problems
(4.2.6) and (4.2.9), we have that there exists C' independent of ¢ and f such that

1811 + wllve + Ivllox < ClLf v (4.2.10)

We end this section with the following result which shows additional regularity of the
rotation [ from the solution of (4.2.6).

Proposition 4.2.3 Let (3,w) be the solution of problem (4.2.6). Then B|s, € H*(S;),

1=1,...,n, and

n 1/2
(Z ||6”H3,si> < Ol (1 + max ||E;||w,si) .
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Proof. Testing, (4.2.6);, with (n,0), we obtain

/Eﬂ’n’dz+/7ﬂdz=0 v € Hy(I).
I I

Foralli=1,...,n, we take n € D(S;), to get

(E4') =~ in S,

namely,

ﬁ”| _ YIS — Egﬂl Si
S; Ez .

Hence f3|s, € H%(S;) and by virtue of (4.2.3),

18%l0,s: < CUlo.s, + 1Eilloo,s:[[8lo,s)  Vi=1,....n.

Finally, summing over ¢ and using (4.2.10), we conclude the proof. O

4.3 Spectral characterization.

The aim of this section is give a thorough spectral characterization for the operator
T; introduced in Section 4.2, to study the spectral properties of T; as t goes to zero
(limit problem), and to show an additional regularity result for the eigenfunctions of
Problem 4.2.1

4.3.1 Description of the spectrum.

In this section, we will show that the operator T} is non-compact. In fact, this operator
has a non-trivial essential spectrum which is well separated from its largest eigenvalues;
which as we stated above are the relevant ones in practice. With this end, we recall some
basic properties about spectral theory.

Given a generic linear bounded operator 7' : X — X, defined on a Hilbert space
X, we denote the spectrum of T" by Sp(T') := {2z € C: (zI —T) is not invertible} and
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by p(T) := C \ Sp(T') the resolvent set of T'. Moreover, for any z € p(T), R.(T) :=
(2 — T)_1 : X — X denotes the resolvent operator of T' corresponding to z.

We define the following components of the spectrum as in [17].
(1) Discrete spectrum

Spg(T) :={z€C:Ker(zf —T)# {0} and (2 —T) : X — X is Fredholm}.

(2) Essential spectrum

Sp(T):={2€C: (2l —=T): X — X is not Fredholm} .

Then, the self-adjointness of 7} yields the following result (see [17, Theorem 3.3]).

Theorem 4.3.1 The spectrum of Ty decomposes as follows: Sp(T;) = Spq(T3) U Sp(T7).
Moreover, if p € Spy(1y), then, p is an isolated eigenvalue of finite multiplicity.

Our next goal is to show that the essential spectrum of T} is well separated from the

largest eigenvalues. With this aim, first we prove the following result.

Lemma 4.3.2 Let (3,w) be the solution of problem (4.2.6) with source term f € H{(I).
Let uw € H(I) be the unique solution of the following problem:

/FLU/U/ dx = /Foﬁv' dx Vv e H)(I). (4.3.1)
I

I
Then, u|s, € H*(S;), i =1,...,n. Moreover,

n 1/2
(Z ||u"||§,si> < O fllus (1 + max ||fe;||oo,si) .
i=1 o

Proof. Notice that the existence of a unique u solution of (4.3.1) is guaranteed by (4.2.3)
and Lax-Milgram’s lemma. Taking v = u in (4.3.1), from (4.2.10) and the Poincaré in-

equality, we obtain

[ullir < ClIBllox < Cll fll1- (4.3.2)
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For alli =1,...,n, we take v € D(S;), to get

(Iiiu/)/ = (Iiiﬁ)/ in SZ',
namely,

10
S, — RyU|s;

_ kB

%

S; + ’%iﬂ,
Ri

2

By virtue of (4.2.3), we have

1u"llo.s; < CllBlo.s; + Cllilloo,s: (

Bllo.s. + lu'llo.s,)-

Summing over ¢ and using (4.2.10) and (4.3.2), we conclude the proof. O
The following result shows that the essential spectrum of T} is confined to a real
interval proportional to t?; we note that the thinner the beam, the smaller the interval
containing the essential spectrum.
t*P t*P

Proposition 4.3.3 Sp,(T}) C [T, —] .
F K

Proof. Let p ¢ [tzTP tz—P]. We have to show that (ul — T;) is a Fredholm operator. To

R’ K

prove this, it is enough to show that there exists a compact operator G : H}(I) — Hg(T)
such that (uI — T, + @) is invertible. We define G as follows: for f € Hi(Q)I, let G(f) = u,
with u as in Lemma 4.3.2. By standard arguments, it follows that the subspace of H}(I)
with second derivative piecewise in L*(I) is compactly included in HJ(I). Therefore, using
Lemma 4.3.2, we deduce that G is a compact operator.

Thus, there only remains to prove that (ul — Ty + G) : Hi(I) — H{(I) is invertible.
First, notice that given f,v € H}(I), v = (ul — T; + G) f if and only if

/Im/g'd:c = /H [(ul =T, + G)f] & de V€ € Hy(D).

I

Now, for f € HE(I), let (3, k,w) be the solution of problem (4.2.9), so that w = T}f,
and let u be the solution of problem (4.3.1), so that v = G f. Hence, from (4.3.1) and
problem (4.2.9)3, we have that
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it =T+ 1€ e = [wuf —uf + )¢

I I

— [Wuf ~ ! + p)¢'da

:/n (u— 152_P) ¢ dx.
I K

Therefore, v = (I — T, + G) f if and only if

1t _ _tz_P I ot
/I/{vfdx—/ln (u p )f&dx. (4.3.3)

Then, if y ¢ [t%P, tzTP] , we have that for each v € H}(I) there exists a unique f € H}(I)
such that (4.3.3) holds true; therefore (ul — 1) is Fredholm operator and the proof is
complete. O

The following theorem is an immediate consequence of Theorem 4.3.1 and Proposition
4.3.3.

Theorem 4.3.4 The spectrum Sp(T;) decomposes into:
e Spy(T}), which consists of finite multiplicity real positive eigenvalues.

e Sp (T}), the essential spectrum.

Moreover, for all pu € Sp(T;) such that p ¢ [t%P, %D}, i€ Spy(Ty).

4.3.2 Limit problem.

In this section we study the convergence properties of the operator T; as t goes to zero.
With this end, we introduce the so-called limit problem:
Given f € Hy (1), find (B, wo,Y0) € V x L*(I) such that

/Eﬁ(’)n’ dx + /70(77 — ') dr = /Pf'v' dx Y(n,v) €V,
I I I

ﬂo—wézo

(4.3.4)



104

This is a mixed formulation of the following well-posed problem, which corresponds

to the source problem associated with the buckling of an Fuler-Bernoulli beam:
Find wy € H2(1) such that

/Ewgv” dx = /Pf/z/ dr Vv e HZ(I). (4.3.5)
I I

On the other hand, we have that the proof of Theorem 4.2.2 holds for ¢ = 0, too.
Thus, problem (4.3.4) has a unique solution (8y, wg, o) € V x L*(I) and there exists C'
such that

1Boll1.x + [[wollix + l1vollox < ClIf 11 (4.3.6)
Moreover, wy is the solution of problem (4.3.5) and ||wol|21 < C|| f]1.1-
Let Ty be the following bounded linear operator
Ty Hy(1) — Hy(D),
f = Wo,

where (39, wo, Vo) is the unique solution of problem (4.3.4). Since wy € HZ(I), the operator

T} is compact and hence its spectrum satisfies Sp(7y) = {0}U{,, : n € N}, where {1}, o

is a sequence of positive eigenvalues which converges to 0. The multiplicity of each non-
zero eigenvalue is finite and its ascent is 1.

The following lemma states the convergence in norm of T; to T.

Lemma 4.3.5 There exists a constant C, independent of t, such that

(T = To) fllva < Ctl[ v,
for all f € H}(T).

Proof. Subtracting (4.3.4) from (4.2.6), we obtain

/1 E(5' — Gy dr + / (v = 0)(n — ') dz =0 V(n,v) € V.
7= 55 (6= ) = (' —up)].
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and taking n = 3 — By and v = w — wy, we obtain

t2
(Y = 0) da.

JR Ry

Now, using the Poincaré inequality, (4.2.10) and (4.3.6), we have

K

18— Bollir < CE(llox + [ollo) 1Vllox < CEIf1IT 1,

which implies

18— Bollix < Ctl| fll11- (4.3.7)

Finally, observe that
t2
(W' —wp) = (8= ) — EV-

Thus, using the Poincaré inequality and (4.2.3), we obtain

lw = wolli; < C(II8 = Bollog + £ [17llo.r),

which together with (4.3.7), and again the a priori estimate (4.2.10) allow us to conclude
the proof. O
As a consequence of this lemma, standard properties about the separation of isolated

parts of the spectrum (see [31], for instance) yield the following result.

Lemma 4.3.6 Let py be an eigenvalue of Ty of multiplicity m. Let D be any disc in
the complex plane centered at pg and containing no other element of the spectrum of Ty.
Then, there exists to > 0 such that, Vt < ty, D contains exactly m isolated eigenvalues of
T} (repeated according to their respective multiplicities). Consequently, each eigenvalue pug

of Ty 1s a limit of isolated eigenvalues p; of Ty, as t goes to zero.

Our next goal is to show that the largest eigenvalues of T; converge to the largest
eigenvalues of Ty as t goes to zero. With this aim, we prove first the following lemma.
Here and thereafter, we will use || - || to denote the operator norm induced by the H*(I)

norm.
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Lemma 4.3.7 Let ' C C be a closed set such that F' N Sp(Ty) = 0. Then there exist
strictly positive constants ty and C' such that, Vt < to, F N\ Sp(T;) =0 and

|17 (TH)wll g

| RT3 = <C VzeF

wemom w7
w0
Proof. The proof is identical to that of Lemma 3.8 from [33] and makes use of Theo-
rem 4.3.4 to localize the essential spectrum. O
Since T} is a compact operator, its nonzero eigenvalues are isolated and we can order
them as follows:

1 2 k
B N

where each eigenvalue is repeated as many times as its corresponding multiplicity. Accord-
ing to Lemma 4.3.6, for ¢ sufficiently small there exist eigenvalues of T} close to each u((]k).
On the other hand, according to Theorem 4.3.4, the essential spectrum of T} is confined
in the interval [%D, tZTP] Therefore, at least for ¢ sufficiently small, the largest points of
the spectrum of T; hajve to be isolated eigenvalues. Hence we order them as we did with
those of Tj:

n = >

The following theorem, whose proof is similar to that of Theorem 3.9 from [33], shows

that the k-th eigenvalue of T; converge to the k-th eigenvalue of T}, as t goes to zero.

Theorem 4.3.8 Let ,ugk), ke N, t >0, be as defined above. For all k € N, ,u,gk) — ,u(()k)

ast — 0.

4.3.3 Additional regularity of the eigenfunctions.

The aim of this section is to prove additional regularity for the eigenfunctions of

Problem 4.2.1. More precisely, we have the following result.

Lemma 4.3.9 Let ,ugk), k€ N, t >0, be as in Theorem 4.3.8. Let (A, 5,w,v) be a
solution of Problem 4.2.1 with A = l/ugk). Then, there exists tg > 0 such that, for all
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s, € H*(S;),i=1,...,n, and there holds

n 1/2
(Z ||ﬁ”||3,si> < CAlwlly s
2:1 1/2
<Z ||w”!|3,si> < Ol
i=1

with C' a positive constant independent of t.

t<t0; 6517“1

(4.3.8)

(4.3.9)

Proof. Using the decomposition (4.2.7) in Problem 4.2.1, we obtain that

¥ = —\Puw.

Moreover, (4.2.9) holds true with f substituted by Aw and Theorem (4.2.2) leads in our

case to

1B1I1x =+ [k + [lwll1; < CAllwl]1r (4.3.10)

Thus, repeating the arguments used in the proof of Proposition 4.2.3, we immediately

obtain (4.3.8).
Now, from problem (4.2.9)3 with f substituted by Aw as above, we have

/(KJ — MP)w'¢ dz = /Hﬂf' dr V¢ e Hi(D).
I I

For all i =1,...,n, we take £ € D(S5;), to obtain
[(5i = M*P) '] = (i) in S,

and consequently,
" Kiﬁ/ s, T K;ﬁlSi - "{;wllsi

wls: = (K)i — )\t2p)

Choosing ty such that Vt < tg, M?P < (r/2), and using (4.2.3), we obtain

Bllos) -

Bllo.s + 1illoc.s:

wlo,s; + [1£illoc.s,

1w llo.s, < — (1#5]loc.s:

(=)
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Summing over ¢, using Poincaré inequality, and (4.3.10), we get

n 1/2
(Z IIw"II3,5i> < CAJwlfir
i=1

Thus, we conclude the proof. O

4.4 Spectral approximation.

For the numerical approximation, we consider a family of partitions of I

7;12:0:$0<"'<$N:L,

which are refinements of the initial partition 0 = 5o < - -+ < s, = L. We denote 1, = (z; —
zj_1), j = 1,...,N, and the maximun subinterval length is denoted h := max;<j<n ;.
Notice that for any mesh 7j, each I; is contained in some subinterval S;, i = 1,...,n,
where the coefficients are smooth.

To approximate the transverse displacement and the rotations, we consider the space

of piecewise linear continuous finite elements:

Wiy = {v, € Hy(I) = wply, € Py, j=1,...,N, vy(0) = vy (L) = 0}.

To approximate the shear stress, we will use the space of piecewise constant functions:

Qn:={v, € L*(I) : vpl, €Py, j=1,...,N}.
We consider the L?-proyector onto Qp:
P L*(1) — Qp,

v—P):=7 : /(u—@)qhzo Va, € Qn.
I

The discretization of Problem 4.2.1 reads as follows:
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Problem 4.4.1 Find A\, € R* and 0 # (B, wp,) € Vj, := W), x W), and v, € Q), such that

/Eﬂ;mg dx + /%(Uh — ) dr = A\, /ngvg dr  Y(nu,vn) € Vi,
! ! ! (4.4.1)

s
/(5}; — w})sp, dx —tz/mda: =0 Vs, € Qp.
I 1 R
As in the continuous case, we introduce the solution operator
Tin : Wi — Wh,

[ = wp,

where (B, wpy, vn) € Vi, X @y, is the solution of the corresponding discrete source problem:
Given f € Wy, find (B, wh,vn) € Vi X Qn such that

/Eﬁ;m;z dx + /%(nh — ) dr = /Pf'vﬁl dx  Y(nn,vp) € Vi,
! ! ! (4.4.2)

B — wj)sp dv — 12 dezo Vs € Qp.
h

I 1 K
Clearly, the nonzero eigenvalues of Ty, are given by uy; := 1/\,, with A, being the
nonzero eigenvalues of Problem 4.4.1, and the corresponding eigenfunctions coincide.
By adding equations (4.4.2), because of the symmetry of the resulting bilinear forms,
Ty, is self-adjoint with respect to the inner product [, Pf'¢’dx in Hj(I).

We will prove the following spectral characterization for Problem 4.4.1:

Lemma 4.4.1 Problem 4.4.1 has exactly dim W) eigenvalues, repeated accordingly to

their respective multiplicities. All of them are real and positive.

Proof. Taking particular bases of W), and )}, Problem 4.4.1 can be written as follows:

A 0 B B, o0 o0]|]|a,
0 0 C wyo =M |0 E 0] w |, (4.4.3)
B* C' -D Y 000 Y

where 3,,, wy, and 7y, denote the vectors whose entries are the components in those basis
of By, wy, and 7y, respectively. Matrices A, D and E are symmetric and positive definite.
From the last row of (4.4.3), we have that

v, =D7'(B'B, + C'wy),
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thus, defining
A+ BD B! BD!C!
CD'B! CD-!Ct

)

problem (4.4.3) can be written as follows:

A[ﬁh]:% 0 0

Wi 0 E Wp

B ] . (4.4.4)

The matrix A is a positive definite. In fact,

B

Wh

8, wilA [ ] ~B,AB, + B,BD'B'B, + 28,BD"'C'w;, + w,CD"'C'w,

=B,AB, + (B'B), + C'w;,)'D'(B'8, + C'w),) > 0.

Hence A is non-negative definite. Moreover, the expression above vanishes if and only
if B, = 0 and (B'8,, + C'w;) = 0, namely, 3, = 0 and C'w;, = 0. Now, C'w;, = 0
implies that ij wp, = 0,7 = 1,...,N, then wy(z;1) = wp(x;), 7 = 1,...,N. But,
wp (o) = wp(zn) = 0. Hence, wy(z;) =0, 5 =1,...,N — 1, and wy, € W),. Therefore,
wy, = 0 and we conclude that A is positive definite.

Consequently, from (4.4.4) A, # 0 and, since E is symmetric and positive definite,
An € Rt Moreover, (4.4.4) holds true if and only if

]2

Wi, Wi,

0 0
0 E

with A\, = “ih and p, # 0. The latter problem is a well posed generalized eigenvalue

problem with dim W), non-zero eigenvalues. Thus we conclude the proof. O

Remark 4.4.2 As a consequence of the above lemma the second component of any eigen-
function (B, wy) of Problem 4.4.1 can not vanish. In fact, from (4.4.4), we have

/Pwﬁlwﬁl dz = wiEwy, > 0.
i
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Since T is not compact, in the next section we will adapt the theory from [18, 19] to
prove convergence of our spectral approximation and nonexistence of spurious modes, as
well as to obtain error estimates. To do this, the remainder of this section is devoted to

prove the following properties:

P1. There holds:

T, — 1T,
|7} — Tinl|n == sup (T2 — Ton) fiull 11

fh€Wn Hfh“1,1
h 0

— 0, as h—0.

P2. Vu € HJ(I), there holds:

inf — 0 h 0.
vhlgWh |lu—vp|l1r— 0, as —

P2 is a consequence of the fact that D(I) is a dense subspace of H}(I) and standard
approximation results for finite element spaces.

To prove property P1, we consider the following auxiliary problems:

Given f, € Wy, find (3,%,7) € V x L*(1) such that

/E@’n’dij /’y(n — v )dx = /Pf,’Lv’dx V(n,v) €V,
I I I

s (4.4.5)
/(ﬁ — @ )s dx — 13 /% dr =0 Vse L*(I).
1 1
Given f, € Wy, find (ﬁh,ﬁ}h,%) € Vi, x Qy, such that
/EB,’Ln;L dr + /%(nh —wy,)dx = /Pf,’zvﬁl dx  N(np,vp) € Vi,
! ! - ! (4.4.6)
/(ﬁh —ﬁ)g)shdx—tzf%dx =0 Vs, € Qh.
I I
An estimate analogous to (4.2.10) also holds for problem (4.4.5):
131l + @)1 + [Allox < Cll fallr- (4.4.7)

Using the following decompositions for v and 7,

F=0'+k, and A=+ kn, (4.4.8)
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with ¢ € H(T), Un € Wy, and k, kj, € R, we have that the previous problems are respec-
tively equivalent to the following ones:
Given f, € Wy, find (4, 5, k, @) € HNI) x HE(I) x R x H}(I) such that

/J/v’d;p = —/Pf,’lv'dx Vv € Hy(I),
1 1

/Eﬁ/n/d:c + /lénd:c = — /d/ndx v € HE (D),

¥ (4.4.9)
/ﬁqd;p—ﬂf da —t2/ Y94z vgeR,
~ ! !
/w/g’dx:/ﬁg/dx /@b5 /kf dr e € HY(D).
Ul I
Given f, € Wy, find (@Eh,/@h, kp,wp) € Wy, x Wy, x R x W), such that
/@E;lv;l dr = — /Pf,’lvﬁl dx v, € Wy,
I I
/E@TIZ dx + /ifhﬁh dr = — /%Uh dr  Vn, € Wh,
I I I (4.4.10)

ﬁhqhdx—ﬂ/h—q"dx:ﬁ/%dx Van € R,
I I I

K

- et ];; /
/u?z&d:c:/ﬂhﬁzd:c—ﬁ/%dx—t?/h—ghdx Ve, € W
\ I I 1 R 1 K

First of all we prove that 1; and @h coincide.

Lemma 4.4.3 The solution i of problem (4.4.9)1 and the solution ¥y, of problem (4.4.10),
satisfy
15 = @h i L.
Proof. Testing the first equation from (4.4.9) with v € D(I;), we obtain that ¢ =
—(Pf)=0inl;, j=1,...,N. Hence Y € W, is also the solution of the first equation
n (4.4.10). Namely, 1) = 1. O
Using this lemma, we have that problem (4.4.10)5_3 is the finite element discretization

of problem (4.4.9)3_3. Then, from standard approximation for mixed problems (see [11,

Proposition 2.11]), we obtain
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183 = Bullig+ |k —Ep| < inf |8 =l < 118 = B,
M EWH

where 3/ € W), is the Lagrange interpolant of B Using Proposition 4.2.3 applied to

problem (4.4.5), we have that
N 1/2
18 = B[l < <Z 15 - ﬁIHin)
j=1
N 1/2
< (Z Ch?H/J’”HS,Ij)
j=1

N 1/2
<o (311 ) < cnll
i=1

Thus,
18 = Ballix + |k — k| < CR| fllvr-

Then, from (4.4.8), Lemma 4.4.3 and the estimate above, we have

15 = Anllos = (' + &) — (&), + En)llox < Clk — kn| < Ch| fall11-

On the other hand, from (4.4.5),, we obtain
W =577,
and from (4.4.6)s,
wy, =P (Bh - t2f€_17h) =P(B) — P (k') -

Then,

1@ — @3 llox < 18 = P(Bu)llog + 21575 = P(x"Fn)llosr

Now,

13 =PBu)llox < 118 =P B)lox + IP(B = Bu)llox < Chllfall11,

(4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)
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the last inequality because of (4.4.7) and (4.4.11).

On the other hand, on each subinterval I;, j = 1,..., N, since 7, is piecewise constant,

1575 = P(sm)lo, <1 (571 = PG) Ao, + 1P G =0,
<|l&™" = P oo, [1Fll0; + P oor, 17 — Fnlloy,-

Moreover, it is simple to prove that
I57! = P57 lloo, < glls oo, < Ch,
with C' depending on £ and [|£|[1,00,1,, and
1P lloot, < 15 oo, < 570
Hence, from (4.4.7) and (4.4.12), the last three inequalities yield
1575 = P (" Fn)llox < CAIl fullLr. (4.4.15)
Therefore, from (4.4.13), (4.4.14), (4.4.15) and Poincaré inequality, we obtain

(T} — Tin) fullrx = |10 — Dullrr < OB fallir

Consequently, we have proved the following result.

Lemma 4.4.4 P1 holds true; moreover,

|13 — Ton||n < Ch.

4.5 Convergence and error estimates.

In this section we will adapt the arguments from [18, 19] to prove convergence of our
spectral approximation and nonexistence of spurious modes, as well as to obtain error
estimates for the approximate eigenvalues and eigenfunctions.

Our first goal is to prove that the numerical method does not introduce spurious

eigenvalues interspersed among the relevant ones of 7; (namely, around ,ugk) for small
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k), provided the beam is sufficiently thin. Let us remark that such a spectral pollution
could be in principle expected from the fact that T, has a nontrivial essential spectrum.
However, that this is not the case is an immediate consequence of the following theorem,

which is essentially identical to Lemma 1 from [18].

Theorem 4.5.1 Let F C C be a closed set such that F N Sp(Ty) = 0. There exist strictly
positive constants hy, tg, and C such that, Yh < hg and Yt < tg, there holds FNSp(T}y,) =
0 and

|R.(Ty)|, < C Vz e F.

Proof. Let F be a closed set such that F' N Sp(7Ty) = (). As an inmediate consequence of
Lemma 4.3.7, we have that for all w € H(I), for all z € F', and for all ¢ < t,

[wll1; < Cll(I = T)w[1,1-
From Lemma 4.4.4 we have for h small enough
1
(T} — Tin)wn|l1x < @Hwhﬂl,l Vwy, € W,
then, for w, € W), and z € F, we have

1
(2] — Tyn)wa g > [[(2I = T)wpll1x — (T — Tin)wal|1g > %Hwhﬂl,l-

Since W), is finite dimensional, we deduce that (zI — Ty,) is invertible and, hence, z ¢

Sp(T3). Moreover,

IR.(Tu)ll, = | (2] = Tin) "], <2C  Vz€F

The proof is complete. O
We have already proved in Theorem 4.3.4 that the essential spectrum of 7T} is confined
to the real interval [t%P, tzTP] The spectrum of T; outside this interval consists of finite
multiplicity isolated eigen\;alues of ascent one, which converge to eigenvalues of Ty, as t
goes to zero (cf. Theorem 4.3.8).
The eigenvalue of T; with physical significance is the largest in modulus, ,ugl), which

corresponds to the critical load that leads to buckling effects. This eigenvalue is typically
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simple and converges to a simple eigenvalue of Tj, as ¢ tends to zero. Because of this, for
simplicity, from now on we restrict our analysis to simple eigenvalues.

Let o # 0 be an eigenvalue of Ty with multiplicity m = 1. Let D be a closed disk
centered at gy with boundary I' such that 0 ¢ D and D N Sp(7Ty) = {po}. Let to > 0 be
small enough, so that for all t < #:

e D contains only one eigenvalue of T}, which we already know is simple (cf. Lemma 4.3.6)

and

e D does not intersect the real interval [t%}), RTP], which contains the essential spec-

trum of T;.

According to Theorem 4.5.1 there exist tg > 0 and hg > 0 such that V¢ < t; and
Vh < hg, I' C p(Ty,). Moreover, proceeding as in [18, Section 2|, from properties P1
and P2 it follows that, for A small enough, 7}, has exactly one eigenvalue sy € D. In
principle, the theory in [19] could be used to prove error estimates for the eigenvalues
and eigenfunctions of T3, to those of T} as h goes to zero. However, proceeding in this
way, we would not be able to prove that the constant in the resulting error estimates are
independent of ¢ and, consequently, that the proposed method is locking-free. Thus, our
goal will be to prove that py, converges to s as h goes to zero, with ¢ < ¢, fixed, and to
provide the corresponding error estimates for eigenvalues and eigenfunctions. With this
aim, we will modify accordingly the theory from [19].

Let IIj, : HY(I) — Ha(I) be the standard elliptic projector with range W;, defined by

/(Hhu —w) v, =0 Yu, € W),
I

Notice that 11, is bounded uniformly on h (namely, ||II,ul[11 < ||u|/11) and the follow-

ing classical error estimate holds true

N 1/2
|ITu —ul|i; < Ch (Z ||u”||3752_> vu € Hy(I) : uls, € H*(S;), i =1,...,n. (4.5.1)
i=1
Let us define
By, = Ty Iy, - Hy(I) — W,
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It is clear that T}, and By, have the same eigenvalues and corresponding eigenfunctions.
Let E; : Hi(I) — H}(I) be the spectral projector of T; relative to the isolated eigen-
value p;. Let Fyy, : Hy (1) — H}(I) be the spectral projector of By, relative to its eigenvalues

Hth-

Lemma 4.5.2 There exist strictly positive constants hg, to and C' such that

IR.(Ba)| <C Vh <hy, ¥t<ty, Vzel.

Proof. It is identical to that of Lemma 5.2 from [33]. O
Consequently, for h and ¢t small enough, the spectral projectors Fj;, are bounded uni-

formly in h and t.

Lemma 4.5.3 There exist stricly positive constants hg, t1 and C such that Vh < hy and
Vit < t1,
(B — Fa)lgumrapll < CN(TE — Ba)lgymayll < Ch.

Proof. The proof of the first inequality follows from the same arguments of Lemma 3
from [19], and Lemmas 4.3.7 and 4.5.2. For the other inequality, let w € E;(H}(I)). We
have
(T2 = Bn)wl[1x < [[(T: = Tedlp)wllvx + [(Ted1n — Bew)w|[11
< [T = T )wllve + 1T = Tonlln 1 Tnwll

" 1/2
< Ch (Z ||w"Hg,Sz.> +lwl
i=1

< Chl|wl|1 1,

where we have used Lemma 4.4.4, (4.5.1) and (4.3.9). O
Now, we are in position to prove an optimal order error estimate for the eigenfunctions.
We recall the definition of the gap § between two closed subspaces Y and Z of H{(T), let

0Y,Z) = sup (inf lly — z||171)
yey z€Z
[lyll1,1=1
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and

oY, Z) == max{d(Y, Z),0(Z,Y)}.
Theorem 4.5.4 There exist strictly positive constants hg, t1 and C' such that, for h < hg
and t < tq,

0 (Fin(H3(1), E(H3(1))) < Ch.

Proof. The proof follows by arguing exactly as in the proof of Theorem 1 in [19], and
using Lemma 4.5.3. O

Our final goal is to obtain an error estimate for the approximate eigenvalues. First, by
repeating the same steps as in the proof of Lemma 5.6 from [33] we are able to prove the

following preliminary estimate.

Lemma 4.5.5 There exist strictly positive constants hg, t1 and C' such that, for h < hg
and t < tq,
e — | < Ch.

The error estimates for the eigenvalues p; # 0 of T, and pyy, of T}y, yield analogous
estimates for the eigenvalues A = 1/u, and A\, = 1/py;,. However, the order of convergence
in Lemma 4.5.5 is not optimal. Our next goal is improve this order. Let wy, £, and v,
be such that (As, wp, By, 7s) is a solution of Problem 4.4.1 with ||wy]|11 = 1. According to
Theorem 4.5.4, there exists a solution (A, w, 3,7) of Problem 4.2.1 with ||w||;; = 1 such
that ||w — wy|11 < Ch. The following lemma, will be used to prove a double order of

convergence for the corresponding eigenvalues.

Lemma 4.5.6 Let (A, w,3,7) be a solution of Problem 4.2.1 and (An,wn, Bn,vn) be a
solution of Problem 4.4.1 with ||w||11 =1, ||wp|[11 =1 and such that

lw — wplx < Ch. (4.5.2)

Then, for h and t small enough, there holds

18 = Bullix + v — vallox < Ch.



4.5 Convergence and error estimates. 119

Proof. Let (w, B) € V be the solution of the auxiliary problem

/Eﬁ/n/ dx + /’y(n — ) dr = N\, /Pw;ﬂ/ dx Y(n,v) €V,
v I I (4.5.3)
~ A ~/

v= t_2( —u').
Notice that (4.4.1) can be seen as a discretization of the problem above. The arguments
in the proof of Lemma 4.4.4 can be repeated, using (4.4.11) and (4.4.12) with f, = A,wp,
to show that the solutions of (4.5.3) and (4.4.1) satisfy

16 = Bullis + 15 = mllor < ChulJwall1x < ChA, (4.5.4)

the last inequality because A\, — A\ as a consequence of Lemma 4.5.5.
On the other hand, using (4.2.5) and (4.5.3), we have

/E(ﬁ' — @')7}' dx + /(7 —A)(n =) de = /P()\w/ — \wy)v' dx V(n,v) €V,

== S5 B) — (w — ).

Now, from the estimate (4.2.10) applied to the problem above, we obtain

13 = Bl + 7 = Allox < ClIMw — Mywa] |
< CA|lw — w11+ [N = Aalllwn]1,1)-

Therefore, using Lemma 4.5.5 and (4.5.2), we have

18 = Bllux+ v = Allox < Ch. (4.5.5)

Hence, the result follows from triangular inequality and the estimates (4.5.4) and (4.5.5).
O

Now we are in a position to prove a double order of convergence for the eigenvalues.

Theorem 4.5.7 There exist strictly positive constants hg, t1 and C' such that, for h < hg
and t < tq,
A — | < Ch2
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Proof. We adapt to our case a standard argument for eigenvalue problems (cf. [6, Lemma 9.1]).
Let (A, B,w,~) and (Ap, Bp, wn, v,) be as in Lemma 4.5.6. We consider the following bilin-

ear forms defined by

Altw,8.) (09 = B do+ [2tn =)ot [s(3—w)de—e [Zaa

I I 1 R

B((w, 8,7), (v,n,s)) := /Pw’z/ da.

I
Using this notation, Problems 4.2.1 and 4.4.1 can be respectively written as follows:

A((w> B, 7)7 (U> n, S)) = )‘B((w> B, 7)7 (U> n, S))>

A((wh, Bry )5 (Vny My S1)) = AB(Wh, Bry Y1)s (Vks s S1))-

Defining U := (w, 3,7) and Uy, := (wp, Bn, Yn), it is straightforward to show that

A = NB(Uy,Up) = AU — U, U — Up) — AB(U — Uy, U — Up).
Therefore, using that B(U, Uy) = [; Plw}|* dz # 0 (cf. Remark 4.4.2) and Lemma 4.5.6,

we obtain

A= Au| < CR%

Thus we end the proof. O

4.6 Numerical results.

We report in this section the results of some numerical tests computed with a MATLAB
code implementing the finite element method described above.

In all cases we consider a clamped beam subjected to a compresssive load P = 1 and
uniform meshes of N elements, with different values of N. We have taken the following

physical parameters (typical of steel):

e Elastic moduli: £ = 30 x 109,
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e Poisson coefficient: v = 0.25,

e Correction factor: k. = 5/6.

4.6.1 Test 1: Uniform beam with analytical solution.

The aim of this first test is to validate the computer code by solving a problem with
known analytical solution. With this purpose, we will compare the exact buckling coef-
ficients of a beam as that shown in Figure 4.1 (undeformed beam) with those computed

with the method analized in this paper.

b

—

L

Figure 4.1: Undeformed uniform beam.

Let b and d as shown in Figure 4.1. For this kind of beam, we have that I = %3 and

A = bd are constant. In this case (4.2.1) is equivalent to find 8, w € H{(I) solution of

—FI5" + GAk. (6 —w') = 0,
f" + GAk(f — w) (4.6.1)
GAk.(f —w') = ="
The problem above leads to the following non-standard boundary value problem:
ﬁ/// + w2ﬁ/ _ 0’
p(0) = pB(L) = 0, (4.6.2)

~EI((L) - 30) + Gk, [ “Bdu— o,
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where

, NG AE,
w = .
EI(GAk, — \e)

Once ( is determined, w can be obtained by solving

o (_GAk Y
YT\ GAk - )

w(0) =w(L) =0.

(4.6.3)

By imposing the boundary conditions on the general solution of the differential equa-

tion in (4.6.2);, we obtain that w has to be the solution of the following nonlinear equation:

ET 1
GAkcw + ;) (1 —cos(Lw)) = 0.

Lsin(Lw) — 2 <

We have solved numerically this equation and used (4.6.3), to obtain the exact values
of .

In Table 4.1 we report the four lowest eigenvalues ()\.(f), i =1,2,3,4) computed by
our method with four diferent meshes (N = 10, 20, 30,40). We have taken a total length
L = 100, and a square cross section of side-length b = d = 5. The table includes computed
orders of convergence, as well as more accurate values extrapolated by means of a least-

squares fitting. Furthermore, the last column shows the exact eigenvalues.

Table 4.1: Lowest eigenvalue A (multiplied by 10~7) of a uniform beam.

N=10 N=20 N=30 N =40 Order Extrapolated Exact
ALY 0.642863  0.611794 0.606318 0.604421  2.08 0.602162 0.601997
AP 1.375703 1236684 1.213566 1.205649  2.16 1.196744 1.195600
AP 2914531 2.387288 2.306884 2.279802  2.30 2.253185 2.245754
AP 4801022 3.536107 3.361391 3.303593  2.45 3.253759 3.231672

It can be seen from Table 4.1 that the computed buckling coefficients converge to the

exact ones with an optimal quadratic order.
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We show in Figure 4.2 the deformed transversal section of the beam for the first four

buckling modes.

e
EEA
AL )

Ty

ig&‘g“'ﬂ..g.@. Prun

> O
L

Figure 4.2: Uniform beam; four lowest buckling modes.

4.6.2 Test 2: Rigidly joined beams.

The aim of this test is to apply the method analized in this paper to a beam of
rectangular section with area varying along its axis. With this purpose, we consider a
composed beam formed by two rigidly joined beams as shown in Figure 4.3. Moreover,

we will assess the performance of the method as the thickness d approaches to zero.
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. L2

L

Figure 4.3: Rigidly joined beams.

Let b and d be as shown in Figure 4.3. We have taken L = 100 and b = 3, so that the

area of the cross section and the moment of inertia are:

27d3
9d, 0<x <50 ==, 0< 2 <50,
A(:c):{ P == 1

I(z) = ¢
3d, 50 < x < 100. & 50 < z < 100.

e

We have taken meshes with an even number of elements N, so that the point z = L/2

is always a node as required by the theory.

In Table 4.2 we present the results for the lowest scaled buckling coefficient A\ =

AL /t3, with varying thickness d and different meshes. According to (4.2.2), in this case

5d?
8L2

the orders of convergence, and more accurate values obtained by a least-squares fitting.

we take t? = so that A has a limit as d goes to zero. Again, we have computed

Furthermore, in the last row we also report for each mesh the limit values as d goes to

zero obtained by extrapolation.
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Table 4.2: Computed lowest scaled buckling coefficients AV (multiplied by 107'°) of a

composed beam with varing thickness d.

Thickness N =8 N =16 N =32 N =64 Order Extrap.
d=4 22.667732 19.570170 18.789287 18.594783 1.99  18.527905
d=10.4 23.702364 20.438746 19.611856 19.405572 1.98  19.332297
d=10.04 23.713096 20.447761 19.620395 19.413989 1.98  19.340691
d = 0.004 23.713181 20.447850 19.620485 19.414041 1.98 19.340765
d =0 (Extrap.) 23.713235 20.447881 19.620510 19.414090 1.98  19.340799

These result show that the our method does not deteriorate when the thickness pa-

rameter becomes small, i.e., the method is locking free.

We show in Figure 4.4 the deformed transversal section of the beam for the first four

buckling modes.

Figure 4.4: Rigidly joined beams; four lowest buckling modes.
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4.6.3 Test 3: Beam with a smoothly varying cross-section.

The aim of this final test is to apply the method analized in this paper to a beam of
rectangular section with area and moment of inertia defined by a smooth function along
its axis. With this purpose, we consider a beam as that shown in Figure 4.5. We will

assess again the performance of the method as the thickness d approaches to zero.

L

Figure 4.5: Smoothly varying cross-section beam.

Let b and d be as shown in Figure 4.5. We have taken L = 100, b = 3 and the equation

of the top and botton surfaces of the beam are

150d
=4 """ 0<2x<100
SR L 1)) M e

so that the area of the cross section and the moment of inertia are defined as follows:

Az) 900d 1 ( 300d

3
= 0 )= (L 0< 2 < 100.
i @=g 2x—%100) : ==

In Table 4.3 we report the results for the lowest scaled buckling coefficient A =

AL /t3, with varying thickness d and different meshes. According to (4.2.2), in this case
2 _ _ T75d?

we take t* = m,

the orders of convergence, and more accurate values obtained by a least-squares fitting.

so that AV has a limit as d goes to zero. Again, we have computed

Furthermore, in the last row we also report for each mesh the limit values as d goes to

zero obtained by extrapolation.
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Table 4.3: Computed lowest scaled buckling coefficients AV (multiplied by 107'°) of a

smoothly varying cross-section beam with varing thickness d.

Thickness N =10 N =20 N =30 N =40 Order Extrap.
d=4 83.524954 77.384182 76.297239 75.920330 2.07  75.465288
d=10.4 87.106303 80.498122 79.331886 78.927724 2.06 78.436615
d=10.04 87.143633 80.530498 79.363423 78.958974  2.07  78.467482
d = 0.004 87.143970 80.530779 79.363716 78.959322 2.07 78.467788
d =0 (Extrap.) 87.144068 80.530899 79.363824 78.959393 2.07 78.467886

We show in Figure 4.6 the deformed transversal section of the beam for the first four

buckling modes.

Figure 4.6: Smoothly varying cross-section beam; four lowest buckling modes.
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Chapter 5
Conclusiones y trabajo futuro

En este capitulo se presenta un resumen de los principales aportes de esta tesis y una

descripcion del trabajo futuro a desarrollar.

5.1 Conclusiones

1. Se estudio el problema de pandeo y el problema de vibraciones de una placa poligonal
empotrada no necesariamente convexa modelada por las ecuaciones de Kirchhoff-
Love. Usando elementos finitos lineales a trozos y continuos para todas las variables
de la formulaciéon en momentos de ambos problemas, mediante la teoria espectral
para operadores compactos, se obtuvieron 6rdenes 6ptimos de convergencia O(h)
para los desplazamientos transversales de los modos de pandeo y de vibraciéon y un
orden O(h') para las variables secundarias del modelo, donde t € (3,1] depende de
la regularidad Sobolev del dominio para los problemas bilaplaciano y de Laplace (si
el dominio es convexo entonces t = 1). Ademads, se obtuvo un orden O(h*) para la
aproximacion de los coeficientes de pandeo y para las frecuencias de vibracion. Se

presentaron resultados numéricos que confirman los resultados tedricos obtenidos.

2. Se estudi6 el problema de pandeo de una placa elastica modelada por las ecuaciones
de Reissner-Mindlin. Se dio una caracterizacion espectral completa de este problema.

Adaptando la teoria espectral clasica para operadores no compactos desarrollada

129
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5.2

por Descloux, Nassif y Rappaz, se obtuvieron érdenes 6ptimos de convergencia para
las autofunciones y un doble orden de convergencia para los autovalores. Para la
aproximacion por elementos finitos se usaron elementos DL3. Se demostré que el
método propuesto es libre de bloqueo y se presentaron resultados numéricos que
confirman los resultados tedricos obtenidos. Cabe mencionar que estos resultados
son los primeros que incluyen el anélisis numérico de un método de elementos finitos

para el problema de pandeo de placas Reissner-Mindlin.

. Se estudié un método de elementos finitos para el problema de pandeo de una viga no

homogénea modelada por las ecuaciones de Timoshenko. Se demostraron 6rdenes
6ptimos de convergencia para las autofunciones (desplazamiento, rotaciones y es-
fuerzos de corte) y un orden doble para los autovalores (coeficientes de pandeo). Se
demostré que el método es libre de bloqueo. Por tltimo incluimos también resulta-
dos numéricos que muestran el buen comportamiento del método. Cabe mencionar
que son muy pocos los articulos que incluyen el andlisis numérico de vigas no ho-

mogéneas.

Trabajo futuro

. Extender los resultados obtenidos en los Capitulos 2, 3 y 4 considerando condiciones

de contorno més generales.

Estudiar otros métodos de elementos finitos para el problema de pandeo y vibra-

ciones de placas Kirchhoff y Reissner-Mindlin.

Estudiar métodos de elementos finitos para el problema de pandeo y vibraciones de

otro tipo de estructuras delgadas.
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