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Preface

Meanwhile finishing my Mathematical Engineering at Universidad de Concepción I ap-

plied for a PhD position at the same University. I started the post-graduate program at

Centro de Investigación en Ingenieŕıa Matemática (CI2MA). My PhD has been funded

by REDOC CTA, Universidad de Concepción, CRHIAM, Basal and CONICYT in dif-

ferent stages during my studies and internships for research in the field of mathematical

modeling and numerical techniques.

This Thesis is based on the following publications:

• R. Bürger, S. Diehl, and C. Mej́ıas. On time discretizations for the simulation

of the batch settling-compression process in one dimension. Water Science and

Technology, 73(5):1010 – 1017, 2016.

• R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, I. Nopens, P.A. Vanrolleghem, and

E. Torfs. Simulations of reactive settling of activated sludge with a reduced

biokinetic model. Computers and Chemical Engineering, 92:216 – 229, 2016.

• R. Bürger, S. Diehl, and C. Mej́ıas. A difference scheme for a degenerating

convection-diffusion-reaction system modelling continuous sedimentation. ESAIM:

Mathematical Modelling and Numerical Analysis, 52(2):365 – 392, 2018.

Are, major parts is based upon contributions presented and published at the following

conferences or proceedings:

• R. Bürger, S. Diehl, and C. Mej́ıas. R. Bürger, S. Diehl, and C. Mej́ıas. A

model for continuous sedimentation with reactions for wastewater treatment. In

G. Mannia, editor, Frontiers in Wastewater Treatment and Modelling (FICWTM

2017), Lecture Notes in Civil Engineering, volume 4, pages 596 – 601, Cham,

Switzerland, 2017. Springer International Publishing.
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• R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, and R. Ruiz-Baier. Convection-

diffusion-reaction and transport-flow problems motivated by models of sedimen-

tation: some recent advances. In P.N. de Souza and M. Viana, editors, Proceed-

ings of the International Congress of Mathematicians, Rio de Janeiro 2018 Vol.

IV: Invited Lectures, Singapore. World Scientific, in press

Finally, at the end of fourth year of PhD I started a new way from the initial research:

together with Diego Maldonado, another colleague for the undergraduate studies, we

co-founded a company, namely Hibring Ingenieŕıa, and the objective includes math-

ematical modelling and numerical techniques in industrial solutions for companies.

First we won a public funding for start the company in December of 2017 and we

developed different software and made experimental researching for settling velocities

of particulate systems.



In the memory of Dr. Luis Sanchez, who teach to me to think different.
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a excellent life-experience even in Malmö, as Lund too. Thanks. Writing this words,

I remember the first time when I decided to work with Raimund, at the third year of

my undergraduate studies and I came to his office and I asked if we can work together

because I wanted to produce a paper before my thesis and use that for applying to

an international PhD and Raimund agreed that and we start to work with different

courses, sometimes I was the only student (not every time the best) until a breakfast

in a Hotel in La Serena, where Raimund offered me the possibility to doing the PhD

with him here in Concepción and not choose leave to the other country. At the first

instance I was dubitative but now I think was the best decision. Thanks Raimund for

that, I really appreciate it.

Along my studies I was hosted at CI2MA, an excellent place for doing my work at the

top of a hill, with 122 stairs. Thanks to professor Gabriel Gatica for makes a lot of

efforts in built and maintenance this center as we know todays, and also thanks to for

all the advices and support along my studies even though hard discussions sometimes

were necessary. In the same way, the advices of prof. Freddy Paiva was every time a

good voice for support to me and helped me in solving problems even from start my

undergraduate studies at this University! Thanks.

I wanna to thanks many people, friends that supported me and I know this sheet is short

for this instance, but I can’t forget all my office-mates at CI2MA, the classic-group, the

philosophic talks, the high-level conversations in maths, politics, academy, etc. When

I left the center I really missed this talks. Thanks for contribute to my formation as

ix



x Contents

a knowledge person. Special thanks to Felipe Lepe, Elvis G., Victor Osores, Joaqúın,
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Introduction

“Ensure availability and sustainable management of water and sani-

tation for all”. Sustainable Development Goal No. 6 - United Nations

General Assembly.

Water scarcity affects more than 40 percent of people around the world, an alarming

figure that is projected to increase with the rise of global temperatures as a result

of climate change. For this reason, in 2015, more than 190 world leaders committed

to 17 Sustainable Development Goals [115] to help us all end extreme poverty, fight

inequality and injustice, and fix climate change. We each have a role to play if we are

going to achieve these goals of a more prosperous, equitable, and sustainable world.

The Sustainable Development Goal No. 6 talks about water problem. More than half

of the households worldwide have access to clean water in their homes; however, the

number of people without adequate sanitation (a safe toilet) is increasing as people

move into more crowded cities. Diseases caused by contaminated water kill more people

every year than all forms of violence, including war. By prioritizing clean water, we

can improve the health and livelihoods of millions of people [114].

Water problem is a global issue, taken for many nonprofit organisations (water.org

[136], Global Citizen [63], World Health Organisation [138], etc.) and many efforts are

made every day improve the water accessibility for everyone and for safe water bodies.

This PhD thesis is based in one principle: Improve the understanding about solids

particles inside a liquid as water for create better techniques in water recovery and

reuse. This knowledge can be applied to industries ’or cities’ developments.

Water reuse in industry

Water consumption is important for many industrial processes. The paper and chem-

ical industry, medicine, vulcanology, bioreactors, wastewater treatment, among other

xix
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Figure 1: Dorr Thickener in 1905. (a) Original dorr thickener scheme. (1) Feed of
mixture, (2) Clear water effluent, (3) thickened solid underflow. (b) Dorr thickener at
mine. Buckeye Coal Company, Nemacolin Mine, Nemacolin, Greene County, Pennsyl-
vania, 1946. Reprinted from National Archives at College Park, USA, by Department
of the Interior. Solid Fuels Administration For War. (4/19/1943-6/30/1947), Re-
trieved October 20, 2018, from https://catalog.archives.gov/id/540270. Reprinted
with permission.

areas require a large amount of water in their processes, which due to various factors

cannot be eliminated directly to bodies of water. In general, they have a homogeneous

initial suspension must be separated into a clarified liquid and a concentrated sediment

inside a conditioned tank for the process. In all these cases, it is considered that the

initial homogeneous suspension is composed of solid and fine particles, which are small

compared to the tank that contains them.

In particular, in Chile, the copper mining industry is the largest industry owned by the

country, contributing to a third of the world’s production. It is an important part of the

high and sustained growth that the Chilean economy has had in the last decades and

its to importance for the development of our country is undeniable. Geographically,

mining in Chile takes place mainly in desert and very remote areas, specifically in the

Atacama Desert, the driest desert in the world, where water is a scarce resource, but

at the same time vital for the separation of metals, like copper and dynamite rock. For

this reason, the recovery of water and research into new technologies to obtain more

efficient processes are of public interest and should be studied.

The continuous sedimentation of suspensions of fine solid particles dispersed in a vis-

cous fluid is a process that recovers the water used in the processes of commination

(reduction of size) and flotation (separation of the desired mineral from the gangue) in

sulphide copper mineral recovery plants. The first and most important stage of water
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Figure 2: Three thickeners in Pelambres mine, Chile. The rightmost thickener shows
a short-circuit in gray color at center of the unit. Reprinted from CENTRA Ingenieŕıa
Adquisiones Construcción, by CENTRA Ingenieŕıa Adquisiones Construcción, Re-
trieved October 20, 2018, from http://www.centra.cl/construction-en/mining3-en/.
Shows with permission.

recovery is thickening, that is, continuous sedimentation, where large cylindrical ponds

are used in which the separation of solids and liquids occurs due to gravity.

Here, together with the goal to recover as much of this resource as possible after the

sedimentation process, we also seek to generate a tailing, that is, as dry as possible

so that in its later deposit in collection sites the risks of producing pollution to the

underground layers by means of percolated liquids it minimized.

Thickeners

The thickener is a device invented by John Van Nostrand Dorr (1872 –1962) in 1905

for gold concentrator plants in South Dakota and marks the beginning of the modern

thickening era [37] (see Figure 1).
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Figure 3: Salamanca thickeners. Both units presents a short-circuit in gray
color at center Reprinted from CENTRA Ingenieŕıa Adquisiones Construcción, by
CENTRA Ingenieŕıa Adquisiones Construcción, Retrieved October 20, 2018, from
http://www.centra.cl/construction-en/mining3-en/. Reprinted with permission.

The concept of thickening is simple and lies in decanting; it consists in leaving a liquid

and homogeneous mixture inside a tank and that the fine solid particles settle to in the

bottom only by gravity, thus separating the solid material, from the clarified liquid in

the upper part. There is evidence of this process in Egyptian culture, approximately

2,500 years BC. [59].

Previous to Dorr’s innovation, the ponds only had a settling process, that is, a batch

sedimentation system, which is a semi-continuous process, as documented by Agŕıcola

as early as 1556 [2]. The contribution of Dorr lies in being the first to evolve this semi-

continuous decantation process, to a continuous thickening process; which consists of a

tank that is fed by a pipe inserted in it, called feed, which continuously adds material

and this settles by gravity, thus obtaining in the bottom a thick mixture, which is

removed by a pipe at the bottom of the tank, called underflow, while the clear water,

at the top, is removed by a channel at the top, called effluent or overflow [52].

Many thickener designs exists in industry [36] (e.g. conventional, deep cone, high rate,

in paste). In all of those cases the main part are the feedwell, that ensure the feed

flow energy must be dissipated and directed vertical instead of horizontal and provide

conditions to flocculate the solids so to first collect the solids and then settle them.

Sometimes the feedwell mechanism produces short circuiting, which means that the

flow short-circuits through the feedwell and can carry with it particles that have not

been properly flocculated (Figure 3). The feed flow is more likely to escape the larger

the feedwell diameter. The surface solids are fine particles that were not collected in
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Figure 4: A couple of thickener in operation in Chile and Australia. In order from
left to right and upper to down: (a) Escondida mine, Chile (b) Collahuasi mine, Chile
(c) Candelaria mine, Chile (d) CODELCO Chuquicamata mine, Chile, (e) CODELCO
DMH mine, Chile (f) APEX Wiluna Gold Mine, Australia. Adapted from Imagery
c©2018 Google Maps, by Elias Godoy and Camilo Mej́ıas, Retrieved October 01, 2018,
from http://www.maps.google.com/. adapted with permission.

the feedwell and follow in the direction of this lost flow. The main issue is poor overflow

clarity [78].

Short-circuiting is common in regular hydrometallurgical processes (Figures 2-3). An

example of this is a quickly Satellite analysis using Imagery by Google Maps (Figure 4)

and we can see at least 80% of different thickeners in Chile and Australia present

problems in initial mixing generating losses in water recovery. This is a huge motivation
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for improving mathematical models for understanding behaviours inside the thickener

units to get a better operation control and save water cost and helping communities in

their public health conditions related to clean drinking water and adequate treatment

and disposal of industrial waters.

Another industry that concerns the sanititation objective (including the management

of human waste and solid waste as well as stormwater-drainage-management) are Waste

Water Treatment Plants (WWTPs). Wastewater treatment is a process used to convert

dirty wastewater into an effluent that can be returned to the water cycle with minimum

impact on the environment, or directly reused.

Wastewater treatment

Wastewater treatment consists of a series of physical, chemical and biological processes

that aim to eliminate the contaminants present in effluent water for human use.

In Chile, the treatment of wastewater has increased substantially in recent years, reach-

ing a level of coverage close to 99.8% with respect to the sewage collected from the

national urban population, which has made it possible the gradual decontamination of

the streams of maritime and continental waters.

Wastewater is liquid that normally comes from sinks, bathrooms, kitchens, industries,

shops, etc; which are discarded to sewers. These culverts fluids flow into a sewage

plant that has various levels of treatment (see Table 1), returning to the water sources

a less polluted processed water than in the beginning.

The thickening process occurs in the secondary sedimentation tank (SST, Secondary

settling tank, and it corresponds to the final step of the secondary stage of the treat-

ment, where the biological flocs are removed. Filtrate, and treated water is produced

with low levels of organic matter and suspended matter. Once the biological mass

is removed, the resulting water is discharged (or reintroduced) back into the body of

natural water (stream, river or bay) or other environment (surface or subsoil), etc. If

necessary, an additional disinfection process can be applied before discharging. The

process is carried out in a Wastewater treatment plant. In Figure 5 a schematic view

of the process of the biological treatment of a plant [118] is shown.

The sedimentation and thickening models that will be treated are of a macroscopic

nature and have the advantage that they can predict the behavior of a given thickener

in relatively large time and space. On the contrary, microscopic information such as

the position of a particle given at each instant, it is not possible to obtain and has
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Table 1: Levels of wastewater treatment. Reprinted from [98].

Level of treatment Description

Preliminary Remove large objects such as rags, sticks, floating elements,
sand and grease that can cause maintenance or operational
problems in the following processes.

Primary Elimination of a portion of the solids and organic matter
suspended from the wastewater.

Advanced Primary Improved removal of suspended solids and organic matter.
Typically accompanied by an addition of some chemical or
a filtration process.

Secondary Elimination of biodegradable organic material (in solution or
suspension) and suspended solids. Disinfection is also typi-
cally included in the definition of a conventional secondary
treatment.

Secondary with nutrient
removal

Removal of organic material and suspended biodegradable
solid and nutrients (nitrogen, phosphorus, or both).

Tertiary Removal of residual suspended solids (after secondary treat-
ment).

Advanced Disposal of dissolved and suspended material after a nor-
mal biological treatment, when reuse of water is required
for certain applications.

little practical interest in a process of large scales. For these models, considerations

are used that represent solid and liquid particles as continuous phases superimposed

within the tank; specifically, we have a liquid phase, which is called the clarified water

and one solid phase (or several solid phases), consisting of solids.

Contribution of the thesis

Numerous works including [12, 14, 15, 17–19, 24, 26, 27, 29, 31, 47, 120] have con-

centrated on the mathematical and numerical analysis of models of sedimentation-

consolidation processes of flocculated suspensions given by strongly degenerate convection-

diffusion equations of the type

∂φ

∂t
+
∂f(φ)

∂x
=
∂2A(φ)

∂x2 . (1)
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Figure 5: Overview of a biological wastewater treatment facility. Reprinted from
[98].

Here the sought unknown is the local solids concentration φ as a function of height (or

depth) x and time t. The material specific behaviour is described by two functions,

namely f = f(φ) and A = A(φ) . In the simplest setting, namely for batch settling

in a column, the convective flux density function f is chosen as the Kynch batch flux

density function f(φ) = fb(φ) , and we have

A(φ) =

∫ φ

0
a(s)ds, a(φ) =

|fb(φ)|σ′e(φ)

4ρgφ (2)

where g is the acceleration of gravity, 4ρ is the solid-fluid density difference, and σ′e
is the derivative of the effective solid stress function that is usually assumed to satisfy

σe(φ), σ′e(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
, (3)
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where φc is a critical concentration above which the particles touch each other. Note

that (1) is strongly degenerate parabolic or hyperbolic-parabolic since a(φ) = 0 for

u ∈ [0, φc], where the location of the type-change interface φ = φc, i.e., the sediment

level or sludge blanket height, is usually unknown beforehand. For batch settling in a

column of height L, (1) is equipped with the zero-flux boundary conditions

The precise algebraic forms of the functions f and a, or of f and σe, depends on the

material under consideration. The determination of f = fb from suitable settling tests

was topic of the author’s undergraduate thesis [94], see [8].

Continuously operated sedimentation tanks, which have one inlet and two outlets, are

common in mineral processing and wastewater treatment plants. For such processes,

additional difficulties arise in the governing partial differential equation (PDE) because

of spatially discontinuous coefficients due to the in- and outflows of suspension [25–

27, 40, 41, 43, 44].

In wastewater treatment plants, the situation is more complex, since the continuous

sedimentation process is coupled to one or several biological reactors in the so-called

activated sludge process (ASP). The processes in the biological reactors are often mod-

elled by ordinary differential equations (ODEs). The entire model thus consists of a

coupled system of nonlinear ODEs and PDEs.

The simulation model for secondary settling tanks in [18] was introduced mainly to

resolve spatial discretization problems when both hindered settling and the phenomena

of compression and dispersion are included. Straightforward time integration unfortu-

nately means long computational times. In Chapter 1 we introduce and investigate

time-integration methods for more efficient simulations, but where other aspects such

as implementation complexity and robustness are equally considered. The purpose of

Chapter 1 is to present a new linearly implicit (LI) time integration method, which

falls within the class of semi-implicit methods for the discretization of (1) plus initial

and boundary conditions. The new method is easier to implement than the nonlinearly

implicit semi-implicit method described in [16]. That method has the favourable time

step restriction common to all semi-implicit treatments of equation (1) but involves

the necessity to solve nonlinear systems of algebraic equations. This is avoided by the

approach to be pursued in this work.

This results are summarized in:

• R. Bürger, S. Diehl, and C. Mej́ıas. On time discretizations for the simulation

of the batch settling-compression process in one dimension. Water Science and

Technology, 73(5):1010 – 1017, 2016.
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Chapter 2 is focused on different kinds of models for secondary settling tanks (SSTs)

in water resource recovery facilities. Such a model is extended herein to describe the

sedimentation of multicomponent particles that react with several soluble constituents

of the liquid phase. The governing model can be expressed as a system of nonlinear

partial differential equations (PDEs) that can be solved consecutively in each time

step by an explicit numerical scheme. Simulations of denitrification in SSTs illustrate

the model and its discretization. Notation here is sightly different, but is according

with terms in wastewater treatment community. The main variables are explained in

Figure 6. The unknowns are X,L,pX and pL as functions of z and t.

We define the batch settling flux function fb(X) := Xvhs(X), where X means con-

centration and is equivalent with φ explained previously. he hindered settling velocity

vhs(X) (see [89]) and the function dcomp = dcomp(X) accounts for the sediment com-

pressibility [18]. The compression function dcomp are given by [27]

dcomp(X) := vhs(X)
ρsσ
′
e(X)

g∆ρ
, (4)

where the solid and fluid densities, ρX and ρL are assumed constant and ρL < ρX , g is

the acceleration of gravity, and σe = σe(X) is the effective solid stress function, whose

derivative satisfies

σ′e(X) =

{
= 0 for 0 ≤ X < Xc,

> 0 for X > Xc,
(5)

where Xc is the material-dependent critical concentration which solids particles start

touch each other, and we define the primitive

D(X) :=

∫ X

Xc

dcomp(s) ds. (6)

So we can get the following equation

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
0 < z < B, t > 0, (7)

and can be solve as is known. In Chapter 2 we add a source term from the chemical

reactions that occurs inside of tank and we can get a equation as:

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
+R(X), 0 < z < B, t > 0, (8)
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where R(X) is a source term that contains reaction and provides an accurate model

for reactive settling. This is in fact the Bürger-Diehl model with a reaction term. As a

consequence of (5)–(6), the PDE (8) is second-order parabolic wherever the solution X

exceeds Xc and first-order hyperbolic for lower concentration values. Thus, the PDE

(8) is called strongly degenerate parabolic or parabolic-hyperbolic, where the location

of the type-change interface is not known beforehand. Moreover, due to the nonlinear

and degenerate nature, discontinuities in the solution appear and special techniques

for the numerical solution have to be used (which are incorporated in the numerical

method outlined herein).

The total flux within the parenthesis on the right-hand side of (8) is

v(X,Xz)X = fb(X)− ∂D(X)

∂z
. (9)

This means that for (8) we can utilize ingredients of the numerical method by [18] with

the addition of the reaction term. A way for R(X) is consider that particulate mi-

croorganisms are divided into only two components: ordinary heterotrophic organisms

(XOHO) and undegradable organics (XU) since we only need access to those state vari-

ables to describe the denitrification process. The total concentration of the flocculated

particles is X := XOHO + XU. To find numerical updates for the two portions XOHO

and XU of X, we use the idea by [41, 43]. To this end, we introduce the percentage

p := XOHO/X when X > 0, so that XOHO = pX and XU = (1 − p)X, and rewrite

XOHO Equation as

∂(pX)

∂t
= − ∂

∂z

(
v(X,Xz)pX

)
+R(X)pX, 0 < z < B, t > 0. (10)

Sightly similar for XU. The idea of the numerical method is the following. In each

discrete time step, X is first updated via a discretized version of (8). This means that

the flux (9) is known during this time step, which is essential for any finite volume

numerical method. Since the flux of (10) is p times the known flux (9), it is only

the variable p that needs to be updated, and this can be achieved by a discretized

version of (10). Then the concentration of the second particulate component is simply

XU = (1− p)X. Those results are summarized in:

• R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, I. Nopens, P.A. Vanrolleghem, and

E. Torfs. Simulations of reactive settling of activated sludge with a reduced

biokinetic model. Computers and Chemical Engineering, 92:216 – 229, 2016.

Another extension of this new numerical method is explain in details in Chapter 3 and

is based on theory for the system of model PDEs and can be seen as an extension of the
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Bürger-Diehl simulation model [18] that includes biological reactions of an activated

sludge model no. 1 (ASM1) model by [69] or, in their widely form, different ASMx

models. The approach is therefore different from previous investigations on reactive

settling [57, 60, 65, 100]

The one-dimensional SST setup is outlined in Figure 6. The model describes the

evolution of the concentrations of the solids and liquid phases, X = X(z, t) and L =

L(z, t), as functions of depth z and time t. The solid and fluid densities, ρX and ρL,

are assumed to be constant. Moreover, the model keeps track of kX particulate and kL
liquid components (kL−1 substrates and water), whose concentrations are collected in

vectors C = C(z, t), S = S(z, t) and W = W (z, t) or equivalently, percentage vectors

pX and pL:

C = pXX =


p

(1)
X
...

p
(kX)
X

X,

kX∑
i=1

p
(1)
X = 1,

pLL =


p

(1)
L
...

p
(kL)
L

L =

(
S

W

)
=


S(1)

...

S(kL−1)

W

 ,

kL∑
i=1

p
(i)
L = 1.

The governing model may include a full biokinetic ASMx at every depth z, and is based

on the idea that hindered and compressive settling depend on the total particulate

concentration (flocculated biomass) X. The governing system of equations are given

as follows:

∂X

∂t
+
∂FX
∂z

= δ(z)
XfQf

A
+ γ(z)R̃X , where FX = Xq + γ(z)

(
fb(X)− ∂D(X)

∂z

)
,

∂(pXX)

∂t
+
∂(pXFX)

∂z
= δ(z)

pX,fXfQf

A
+ γ(z)RX ,

L = ρL

(
1− X

ρX

)
,

∂(p̄LL)

∂t
+
∂(p̄LFL)

∂z
= δ(z)

p̄L,fLfQf

A
+ γ(z)R̄L, where FL = ρL

(
q − FX

ρX

)
,

p
(kL)
L = 1−

(
p

(1)
L + . . .+ p

(kL−1)
L

)
,

where the variables are explained in Figure 6c. The unknowns are X,L,pX and pL
as functions of z and t. Moreover p̄L. Here we define fb(X)Xvhs(X), where vhs is

the given hindered settling velocity funcion, and D is a function that describes the
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A SST cross-sectional area
C particulate concentrations vec-

tor
e (index): effluent
f (index): feed
Q volume bulk flows
pL substrate percentages vector
pX particulate percentages vector
RX particulate reactions vector
RX substrate reactions vector
R̃X sum of particulate reactions
C substrate concentrations vector
u (index): underflow
W concentration of water
δ Dirac delta function
γ indicator: one inside SST, zero

outside

Figure 6: (a) An ideal secondary settling tank (SST) with variables of the feed
inlet, effluent and underflow indexed with f, e and u, respectively. The effluent,
clarification, thickening, and underflow zones correspond to the respective intervals
z < −H, −H < z < 0, 0 < z < B, and z > B. The sludge blanket (concentration
discontinuity) separates the hindered settling zone and the compression zone. (b)
Aligned illustration of the subdivision of the SST into layers. The SST is divided into
N internal computational cells, or layer. (c) Nomenclature for PDE model. Reprinted
from [22]

sediment compressibility and satisfies D(X) = 0 for velocity q is defined in terms of

the given bulk flows as

q(z, t) =

{
Qf(t)−Qu(t)

A for z < 0
Qe(t)
A for z > 0.

Models of SSTs form a topic for well-posedness and numerical analysis even in one space

dimension due to the spatially discontinuous coefficients of the underlying strongly de-

generate parabolic, nonlinear model PDE. Here we concentrate on the development

and analysis of a numerical scheme for the approximate solution of the model [23].

The main difficulties are its coupled nature, the discontinuous dependence of FX on
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spatial position z, and the strongly degenerate behaviour that comes from the fact

that D(X) = 0 on an X-interval of positive length. This scheme combines a differ-

ence scheme for conservation laws with discontinuous flux [27] with an approach of

numerical percentage propagation for multi-component flows [42]. The main result is

an invariant-region property, which implies that physically relevant numerical solutions

are produced.

Those results are sumarized in:

• R. Bürger, S. Diehl, and C. Mej́ıas. A difference scheme for a degenerating

convection-diffusion-reaction system modelling continuous sedimentation. ESAIM:

Mathematical Modelling and Numerical Analysis, 52(2): 365 – 392, 2018.

• R. Bürger, S. Diehl, and C. Mej́ıas. A model for continuous sedimentation

with reactions for wastewater treatment. In G. Mannia, editor, Frontiers in

Wastewater Treatment and Modelling (FICWTM 2017), Lecture Notes in Civil

Engineering, volume 4, pages 596 – 601, Cham, Switzerland, 2017. Springer

International Publishing.

• R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, and R. Ruiz-Baier. Convection-

diffusion-reaction and transport-flow problems motivated by models of sedimen-

tation: some recent advances. In P.N. de Souza and M. Viana, editors, Proceed-

ings of the International Congress of Mathematicians, Rio de Janeiro 2018 Vol.

IV: Invited Lectures, Singapore. World Scientific, in press.
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“Asegurar la disponibilidad y gestión sostenible del agua y saneamiento

para todos.”. Objetivo de Desarrollo Sostenible Nro. 6 - Asociación General

de Naciones Unidas.

La escasez de agua afecta a más del 40 por ciento de la población mundial, una cifra

alarmante que probablemente crecerá con el aumento de las temperaturas globales

producto del cambio climático. Por esta razón, es que en el año 2015, más de 190

ĺıderes mundiales se comprometieron con 17 Objetivos de Desarrollo Sostenible [115]

para ayudarnos a todos a acabar con la pobreza extrema, combatir la desigualdad y

la injusticia, y corregir el cambio climático. Cada uno de nosotros tiene un papel que

desempeñar si vamos a lograr estos objetivos de un mundo más próspero, equitativo y

sostenible.

El Objetivo de Desarrollo Sostenible No. 6 hace referencia al problema del agua. Si

bien, más de la mitad de los hogares en todo el mundo tienen acceso a agua potable

en sus hogares, hay un aumento del número de personas sin saneamiento adecuado

(un baño seguro), el cual se agudiza a medida que las personas migran a las ciudades

producto de la industrialización de páıses en v́ıas del desarrollo. Como consecuencia

de ello, las enfermedades causadas por el agua contaminada matan cada año a más

personas que todas las formas de violencia juntas e incluida la guerra. Aśı, al priorizar

el agua limpia, podemos mejorar la salud y los medios de vida de millones de personas

[114].

El problema del agua, accesibilidad y saneamiento, es un problema global, y ha sido

recogido por muchas organizaciones sin fines de lucro (water.org [136], Global Citizen

[63], World Health Organization [138], etc.) quienes buscan concientizar a la población

y proveer esfuerzos para mejorar el acceso a agua potable y limpia, aśı también a

mantener o recuperar cuerpos de agua descontaminados (llámese cuerpos de agua,

a todas las extensiones de agua que se encuentran por la superficie terrestre o en

el subsuelo, tanto naturales como artificiales, es decir, lagos, ŕıos, lagunas, pozos,

xxxiii
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etc.). Esta tesis doctoral se basa en un principio claro: Mejorar la comprensión de

las part́ıculas sólidas dentro de un ĺıquido, como el agua, para crear mejores técnicas

en la recuperación y reutilización del agua. Este conocimiento puede ser aplicado a

industrias o desarrollo de ciudades.

Reutilización del agua en la industria

El consumo de agua es una parte importante en la mayoŕıa de los procesos industriales,

como por ejemplo, la industria papelera, qúımica, medicina, vulcanoloǵıa, bioreactores,

tratamiento de aguas residuales, entre otras áreas requieren en sus procesos una gran

cantidad de agua y, que por diversos factores, no pueden ser eliminadas directamente

a cuerpos de agua sin provocar impactos negativos al entorno. A grandes rasgos, todos

estos procesos son similares y poseen una suspensión inicial homogénea que debe ser

separada en un ĺıquido clarificado y un sedimento concentrado dentro de un tanque

acondicionado para el proceso. En todos los casos, se considera que la suspensión

inicial homogénea está compuesta por part́ıculas sólidas y finas, las cuales son pequeñas

comparadas con las escalas tanque que las contiene.

En particular, en Chile, la industria minera del cobre es la industria más grande que

posee el páıs, en efecto, aporta un tercio de la producción mundial. Es parte im-

portante del alto y constante crecimiento que ha tenido la economı́a chilena en las

últimas décadas y es innegable su importancia para el desarrollo de nuestro páıs. Ge-

ográficamente hablando, la mineŕıa en Chile se desarrolla principalmente en zonas

desérticas y muy remotas, espećıficamente en el Desierto de Atacama, el desierto más

árido del mundo, en donde el agua es un recurso escaso, pero a la vez vital para la

separación de los metales, como el cobre y la roca dinamitada. Por esta razón la re-

cuperación del agua y la investigación sobre nuevas tecnoloǵıas que permitan obtener

procesos más eficientes son de interés público y deben ser estudiados.

Después de los procesos de conminución (reducción de tamaño) y flotación (separación

del mineral deseado de la ganga) en las plantas de recuperación de minerales de cobre

sulfurados, se debe recuperar el agua utilizada en un proceso de sedimentación con-

tinua, en donde es necesario separar el agua de las suspensiones de part́ıculas sólidas

finas dispersas en un fluido viscoso. La primera y más importante etapa de recu-

peración de agua es el espesamiento, es decir, la sedimentación continua, donde se

utilizan grandes estanques ciĺındricos en los cuales se produce la separación de sólidos

y ĺıquidos por efecto de la gravedad.
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Aqúı, junto con desear recuperar la mayor cantidad posible de este recurso después del

proceso de sedimentación, también se busca generar un relave lo más seco posible para

que en su posterior depósito en lugares de acopio este minimice los riesgos de producir

contaminación a las napas subterráneas por medio de ĺıquidos percolados.

Espesadores

El espesador es un equipo inventado por John Van Nostrand Dorr (1872–1962) en 1905

para las plantas concentradoras de oro en Dakota del Sur y significa el comienzo de la

era moderna de espesamiento [37] (ver Figura 1).

El concepto de espesamiento es simple y radica en la decantación; consiste en dejar una

mezcla ĺıquida y homogénea dentro de un tanque y que las part́ıculas sólidas finas se

acumulen en el fondo sólo por efecto de la gravedad, separando aśı el material sólido,

del ĺıquido clarificado en la parte superior. Existen evidencias de este proceso en la

cultura egipcia, aproximadamente 2.500 años A.C. [59].

Antes de la innovación de Dorr, los estanques solo poséıan un proceso de decantación,

es decir un sistema batch de sedimentación, el cual es un proceso semi continuo, según

documenta Agŕıcola ya en le año 1556 [2]. El aporte de Dorr radica en ser el primero

en evolucionar este proceso semi continuo de decantación, a un proceso continuo de

espesamiento; el cual consiste en un tanque que es alimentado por una tubeŕıa inserta

en él, llamada alimentación, la cual agrega continuamente material y éste sedimenta

por efecto de la gravedad, obteniendo aśı en el fondo una mezcla más espesa, la cual

es retirada por una tubeŕıa en el fondo del tanque, llamada descarga, mientras que

el agua clara, que se produce en la parte superior, se retira mediante una canaleta,

llamada efluente [52].

Existen muchos diseños de espesantes en la industria [36] (por ejemplo, convencional,

deep cone, hight rate, en pasta, entre otros). En todos esos casos, la parte principal

es el feedwell, que garantiza que la enerǵıa del flujo de alimentación debe ser disipada

y dirigida verticalmente, en lugar de horizontal, y proporciona las condiciones para

flocular los sólidos para que primero recojan los sólidos y luego los sedimenten. A

veces, el mecanismo del feedwell tiene problemas para mantener el correcto y produce

un cortocircuito, esto significa que el flujo se cortocircuita a través del feedwell y puede

transportar part́ıculas que no han sido adecuadamente floculadas (Figura 3) Cuando

esto sucede, el flujo de alimentación es más probable que escape a mayor diámetro

del pozo de alimentación. Los sólidos de la superficie son part́ıculas finas que no se

recolectaron en el pozo de alimentación y siguen la dirección de este flujo perdido. El

problema principal es la escasa claridad de desbordamiento [78].
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Durante el proceso hidrometalúrgico en régimen, es común detectar un cortocircuito

(Figura 2). Un ejemplo de esto es un rápido análisis satelital que usa imágenes de

Google Maps (Figura 4) y podemos ver que al menos el 80% de espesantes diferentes en

Chile y Australia presentan problemas en la mezcla inicial generando pérdidas en recu-

peración de agua. Esta es una gran motivación para mejorar los modelos matemáticos y

aśı comprender los comportamientos dentro de las unidades de espesadores, obteniendo

un mejor control de operación y ahorrar costos de agua y ayuda a las comunidades en

sus condiciones de salud pública relacionadas con el agua potable limpia como también

en el tratamiento y eliminación adecuada de aguas industriales para su captura. Mejo-

rando aśı la calidad de vida de las personas.

Otra industria relacionada con el objetivo de saneamiento (que incluye la gestión de

desechos humanos y sólidos, aśı como la gestión de aguas pluviales - drenaje) son las

plantas de tratamiento de aguas residuales (PTAR). El tratamiento de aguas residuales

es un proceso utilizado para convertir aguas residuales sucias en un efluente que puede

devolverse al ciclo del agua con un impacto mı́nimo en el medio ambiente, o reutilizarse

directamente.

Tratamiento de aguas servidas

El tratamiento de aguas residuales consiste en una serie de procesos f́ısicos, qúımicos y

biológicos que tienen como fin eliminar los contaminantes presentes en el agua efluente

del uso humano.

En Chile, el tratamiento de las aguas servidas se ha incrementado sustancialmente en

los últimos años, alcanzando un nivel de cobertura cercano al 99.8% respecto a las

aguas servidas recolectadas de la población urbana nacional, lo cual ha posibilitado la

descontaminación paulatina de los cursos de aguas maŕıtimas y continentales.

Las aguas residuales son ĺıquidos que normalmente provenienen de lavamanos, baños,

cocinas, industrias, comercios, etc; los cuales son desechados a las alcantarillas o cloa-

cas. Estas alcantarillas desembocan en una planta de aguas servidas que tiene diversos

niveles de tratamiento (ver Tabla 2), devolviendo a los causes de agua un agua proce-

sada menos contaminada que en un comienzo.

El proceso de espesamiento ocurre en los tanques de sedimentación secundaria (SST,

Secondary settling tank, por sus siglas en inglés) y corresponde al paso final de la etapa

secundaria del tratamiento, en donde se retiran los flóculos biológicos del material pre-

viamente filtrado, y se produce un agua tratada con bajos niveles de materia orgánica

y materia suspendida. Una vez que la masa biológica es removida, el agua resultante,
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Nivel de tratamiento Descripción

Preliminar Remover los objetos grandes tales como trapos, palos, ele-
mentos flotantes, arena y grasa que pueden causar problemas
de mantenimiento u operacionales en los procesos siguientes.

Primaria Eliminación de una porción de los sólidos y materia orgánica
suspendidos del agua residual.

Primaria avanzada Eliminación mejorada de sólidos y materia orgánica sus-
pendidos. T́ıpicamente acompañado por una adición de
algún qúımico o un proceso de filtración.

Secundario Eliminación de material orgánico biodegradable (en solución
o suspensión) y sólidos suspendidos. Desinfección es también
t́ıpicamente incluido en la definición de un tratamiento se-
cundario convencional.

Secundario con elimi-
nación de nutrientes

Eliminación de material orgánico y sólido suspendido
biodegradable y nutrientes (nitrógeno, fósforo, o ambos).

Terciario Eliminación de sólidos suspendidos residuales (después del
tratamiento secundario).

Avanzado Eliminación de material disuelto y suspendido después de un
tratamiento biológico normal, cuando se requiere reutilizar
el agua para ciertas aplicaciones.

Table 2: Niveles del tratamiento de aguas residuales [98].

es descargada (o reintroducida) de vuelta al cuerpo de agua natural (corriente, ŕıo o

bah́ıa) u otro ambiente (terreno superficial o subsuelo), etc. De ser necesario, antes de

descargar se puede aplicar un proceso de desinfección adicional.

El proceso se lleva a cabo en una Planta de tratamiento de aguas residuales, en la 5

se muestra una vista esquemática del proceso del tratamiento biológico de una planta

[118].

Los modelos de sedimentación y espesamiento que serán tratados son de carácter

macroscópicos y poseen la ventaja que pueden ser capaces de predecir el compor-

tamiento de un espesador dado en un tiempo y espacio relativamente grandes, por el

contrario, la información microscópica tal como la posición de una part́ıcula dada en

cada instante, no es posible de obtener y y tiene poco interés práctico en un proceso

de grandes escalas. Para estos modelos, se utilizan consideraciones que representan las

part́ıculas sólidas y ĺıquidas como fases continuas superpuestas dentro del tanque; en

espećıfico, se tiene una fase ĺıquida, la cual se llama a la zona del agua clarificada y una

(o varias) fase sólida (fases sólidas), en donde se encuentra el sedimento que decanta.
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Contribución de esta tesis

Numerosos trabajos incluidos [12, 14, 15, 17–19, 24, 26, 27, 29, 31, 47, 120] están

enfocados en el modelo matemático y análisis numérico de procesos de sedimentación-

consolidación de suspensiones floculadas dado por ecuaciones fuertemente degeneradas

del tipo

∂φ

∂t
+
∂f(φ)

∂x
=
∂2A(φ)

∂x2 . (11)

Aqúı lo desconocido es la concentración local de sólidos φ en función de la altura (o

profundidad) x y el tiempo t. El comportamiento espećıfico del material se describe

mediante dos funciones, a saber: f = f(φ) y A = A(φ). En la configuración más simple,

una sedimentación batch en una columna, la función de densidad de flujo convectivo f

se elige como la función de densidad de flujo batch de Kynch f(φ) = fb(φ), y tenemos

A(φ) =

∫ φ

0
a(s)ds, a(φ) =

|fb(φ)|σ′e(φ)

4ρgφ , . (12)

donde g es a aceleración de gravedad, 4ρ es la diferencia de densidades sólido-ĺıquido,

y σ′e es la derivada de la funciónde estrés efectivo de sólido, donde el supuesto general

es que satisface

σe(φ), σ′e(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
, (13)

donde φc es una concentración cŕıtica sobre la cual las part́ıculas empiezan a a inter-

actuar unas a otras. Note que la ecuación 11 es parabólica fuertemente degerenada o

bien, hiperbólica-parabólica ya que a(φ) = 0 for φ ∈ [0, φc], donde la ubicación de la

interfaz de cambio de tipo φ = φc, es decir, el nivel de sedimento o la altura de la capa

de lodo, generalmente se desconoce de antemano. Para la sedimentación batch en una

columna de altura L, (11) está equipada con las condiciones de ĺımite de flujo cero.

La forma algebraica precisa de las funciones f y a, o de f y σe, depende del material en

consideración. La determinación de f = fb a partir de las pruebas de ajuste adecuadas

fue tema de la tesis de ingenieŕıa del autor [94], (ver [8]).

Los tanques de sedimentación de operación continua, que tienen una entrada y dos

salidas, son comunes en las plantas de procesamiento de minerales y de tratamiento de

aguas residuales. Para tales procesos, surgen dificultades adicionales en la ecuación
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diferencial parcial (EDP) que rige debido a coeficientes espacialmente discontinuos

debidos a las entradas y salidas de la suspensión [25–27, 40, 41, 43, 44].

En las plantas de tratamiento de aguas residuales, la situación es más compleja, ya que

el proceso de sedimentación continua se acopla a uno o varios reactores biológicos en el

llamado proceso de lodo activado (ASP, por sus siglas en inglés). Los procesos en los

reactores biológicos a menudo se modelan mediante ecuaciones diferenciales ordinarias

(EDO). El modelo completo consiste aśı en un sistema acoplado de EDOs no lineales

y EDPs

El modelo de simulación para tanques de asentamiento secundarios en [18] se introdujo

principalmente para resolver problemas de discretización espacial cuando se incluyen

tanto el asentamiento obstaculizado como los fenómenos de compresión y dispersión. La

integración de tiempo directa desafortunadamente significa tiempos computacionales

largos. En Caṕıtulo 1 introducimos e investigamos métodos de integración de tiempo

para simulaciones más eficientes, pero donde otros aspectos, como la complejidad de

implementación y la robustez, se consideran igualmente. El propósito del Caṕıtulo 1

es implementar, aplicar y probar la convergencia de un nuevo método de integración de

tiempo linealmente impĺıcito (LI), que se encuentra dentro de la clase de métodos semi-

impĺıcitos para la discretización de (11) más las condiciones iniciales y de contorno. El

nuevo método es más fácil de implementar que el método semi-impĺıcito impĺıcito no

lineal descrito en [16]. Ese método disfruta de la restricción de paso de tiempo favorable

común a todos los tratamientos semi-impĺıcitos de (11) pero implica la necesidad de

resolver sistemas no lineales de ecuaciones algebraicas. Esto se evita por el enfoque

que se persigue en este trabajo.

Estos resultados están resumidos en:

• R. Bürger, S. Diehl, and C. Mej́ıas. On time discretizations for the simulation

of the batch settling-compression process in one dimension. Water Science and

Technology, 73(5):1010 – 1017, 2016.

El Chapter 2 esta centrado en diferentes tipos de modelos para tanques se asen-

tamiento secundario (SST, por sus siglas en ingles) en instalaciones de recuperación

de recursos h́ıdricos. Dicho modelo se extiende aqúı para describir la sedimentación de

part́ıculas multicomponentes que reaccionan con varios constituyentes solubles de la

fase ĺıquida. El modelo gobernante se puede expresar como un sistema de ecuaciones

diferenciales parciales no lineales (EDPs) que se pueden resolver consecutivamente en

cada paso de tiempo mediante un esquema numérico expĺıcito. Las simulaciones de

desnitrificación en SST ilustran el modelo y su discretización. La notación de este
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caṕıtulo es levemente diferente al anterior, pero es acorde al estándar de la comunidad

de tratamiento de aguas servidas. Las principales variables están explicadas en la

Figura 6. Las variable son X,L,pX and pL como función de z y t.

Definimos la función de flujo de sedimentación batch fb(X) := Xvhs(X), donde X es la

concentración y es equivalente con la variable φ explicada previamente. La velocidad

de sedimentación obstaculizada vhs(X) es tal como fue definida en [89] y la función

dcomp = dcomp(X) es la encargada de medir la compresibilidad del sedimento (ver [18])

y está dada por [27]:

dcomp(X) := vhs(X)
ρsσ
′
e(X)

g∆ρ
, (14)

donde las densidades del sólido y del fluido, ρs y ρf se consideran constantes y tales

queρf < ρs; g es la aceleración de gravedad y σe = σe(X) es la función de estrés efectivo

de sólidos, cuya derivada satisface

σ′e(X) =

{
= 0 para 0 ≤ X < Xc,

> 0 para X > Xc,
(15)

donde Xc es la concentración cŕıtica, que depende del material, y consiste en el punto

en que las part́ıculas sólidas empiezan a tocarse unas a otras. Definimos la primitiva

D(X) :=

∫ X

Xc

dcomp(s) ds. (16)

Aśı podemos obtener la siguiente ecuación:

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
0 < z < B, t > 0, (17)

y podemos resolver como es conocido. En Caṕıtulo 2 añadimos un término fuente

proveniente de reacciones qúımicas que ocurren dentro del tanque y podemos obtener

una ecuación como:

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
+R(X), 0 < z < B, t > 0, (18)

donde R(X) es un término fuente que contiene reacciones y provee un modelo más

preciso para la sedimentación reactiva. Esto es, en efecto, el modelo de Bürger-Diehl

con un término de reacción. Como consecuencia de (15)-(16), la EDP (18) es del tipo

parabólica de segundo orden cuando X excede Xc y es hiperbólica de primer orden para

concentraciones menores que Xc. Aśı, la EDP (18) es llamada parabólica fuertemente

degenerada o ecuación parabólica-hiperbólica, donde la posición del tipo de cambio
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de interface no es conocido a priori. Más aún, la naturaleza no lineal y degenerada,

provoca que discontinuidades aparezcan en la solución aún si el dato inicial es suave, lo

que provoca que técnicas numéricas especiales deben ser empleadas para su resolución.

El flujo total, dentro del paréntesis del lado derecho de (18) es

v(X,Xz)X = fb(X)− ∂D(X)

∂z
. (19)

Esto significa que para (18) podemos utilizar ingredientes del método numérico de

[18] con la adición del término de reacción. Un camino para R(X) es considerar

que microorganismos particulados están clasificados sólo en dos grupos: organismos

heterotróficos ordinarios (XOHO, con OHO, por sus siglas en inglés) y orgánicos no

degradables (XU, con U, por su sigla en inglés de undegradable) y que se sustentan

en los únicos estados posibles en el proceso que describe la denitrificación. De esta

manera, la concentración total de part́ıculas floculadas es X := XOHO + XU. Para

actualizar numéricamente las variables X, XOHO y XU usamos las ideas propuestas en

[41, 43], esto es, introducir la variable porcentaje o cuociente p := XOHO/X cuando

X > 0, aśı, XOHO = pX y XU = (1−p)X, y podemos reescribir (18) para XOHO como

∂(pX)

∂t
= − ∂

∂z

(
v(X,Xz)pX

)
+R(X)pX, 0 < z < B, t > 0. (20)

En el caso de XU se procede similarmente. La idea del método numérico propuesto

es el siguiente: En cada paso de tiempo discreto, X es la primera en ser actualizada

a través de una discretización de (18). Esto significa que el flujo (19) es conocido

durante este paso de tiempo, el cual es esencial para cualquier método numérico de

volúmenes finitos. Debido a que el flujo de (20) es p veces el flujo conocido en (19), solo

se necesita actualizar p, y se puede proceder con una versión discreta de (19). Luego

la concentración del segundo componente particulado es simplemente XU = (1− p)X.

Los resultados y detalles están explicados en:

• R. Bürger, J. Careaga, S. Diehl, C. Mej́ıas, I. Nopens, P.A. Vanrolleghem, and

E. Torfs. Simulations of reactive settling of activated sludge with a reduced

biokinetic model. Computers and Chemical Engineering, 92:216 – 229, 2016.

Una extensión de este método numérico es explicado en detalles en Caṕıtulo 3 y está

basado en la teoŕıa para el modelo de sistema de ecuaciones diferenciales parciales

y puede ser visto como una extensión del modelo de Bürger-Diehl [18] que incluye

reacciones biológicas de un modelo de lodos activados número 1 (ASM1, por sus siglas

en inglés) dado por [69] o, en su forma más amplia, diferentes modelos ASMx. La
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aproximación es por lo tanto, diferente a las previas investigaciones en sedimentación

reactiva [57, 60, 65, 100]).

En Figura 6 se muestra un tanque de sedimentación secundario en una dimensión

junto con la distribución de sus principales variables de entrada y salida. El modelo

describe la evolución de las concentraciones de las fases sólida y ĺıquida, X = X(z, t)

y L = L(z, t), como funciones de profundidad z y tiempo t. Las densidades de sólido

y ĺıquido, ρX y ρL, respectivamente, son consideradas constantes. Además, el mod-

elo mantiene la cantidad de componentes particulados kX y componentes ĺıquidos kL
de manera constante en el tiempo. Note que la cantidad de sustratos es kL − 1 si

consideramos el agua como el kL-ésimo componente ĺıquido. Las respectivas concen-

traciones son almacenadas en los vectores C = C(z, t), S = S(z, t) y W = W (z, t) o

equivalentemente, en vectores de porcentajes pX y pL:

C = pXX =


p

(1)
X
...

p
(kX)
X

X,

kX∑
i=1

p
(1)
X = 1,

pLL =


p

(1)
L
...

p
(kL)
L

L =

(
S

W

)
=


S(1)

...

S(kL−1)

W

 ,

kL∑
i=1

p
(i)
L = 1.

El modelo gobernante puede incluir una biocinética completa ASMx en cada punto de

profundidad z, y está basada en la idea del asentamiento compresivo y obstaculizado,

que depende del total de la concentración particulada (biomasa floculada) X. El

sistema gobernante de ecuaciones es:

∂X

∂t
+
∂FX
∂z

= δ(z)
XfQf

A
+ γ(z)R̃X , where FX = Xq + γ(z)

(
fb(X)− ∂D(X)

∂z

)
,

∂(pXX)

∂t
+
∂(pXFX)

∂z
= δ(z)

pX,fXfQf

A
+ γ(z)RX ,

L = ρL

(
1− X

ρX

)
,

∂(p̄LL)

∂t
+
∂(p̄LFL)

∂z
= δ(z)

p̄L,fLfQf

A
+ γ(z)R̄L, donde FL = ρL

(
q − FX

ρX

)
,

p
(kL)
L = 1−

(
p

(1)
L + . . .+ p

(kL−1)
L

)
,
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donde las variables son explicadas en Figura 6c. Las variables a determinar son

X,L,pX y pL como funciones de z y t, Además de p̄L. Definiendo fb(X)Xvhs(X),

donde vhs ies la velocidad de sedimentación obstaculizada dada, y D es una función

que describe la compresibilidad del sedimento y satisface D(X) = 0 para una velocidad

q es definida en términos del flujo bulk dado como

q(z, t) =

{
Qf(t)−Qu(t)

A for z < 0
Qe(t)
A for z > 0.

Los modelos de tanques de sedimentación secundarios forman un tópico por si mismo,

ya sea para el buen planteamiento de las ecuaciones o bien para el análisis numérico de

los métodos propuestos, incluso si se resuelve el problema en una dimensión espacial.

Esto, al tratarse con coeficientes espacialmente discontinuos dentro de un modelo de

EDPs no lineal y parabólico fuertemente degenerado. El desaf́ıo abordado en el presente

caṕıtulo fue desarrollar y analizar un esquema numérico coherente para aproximar la

solución del modelo (ver [23]). Las principales dificultades identificadas fueron con la

naturaleza acoplada del modelo, la dependencia discontinua de FX en la posición espa-

cial z y el comportamiento fuertemente degenerado proveniente del efecto de D(X) = 0

en un X-intervalo de largo positivo. Este esquema combina un esquema por diferencias

finitas para las leyes de conservación con flujo discontinuo (ver [27]) con una aproxi-

mación de la propagación del porcentaje numérico para flujos multicomponente (ver

[42]). El principal resultado es la propiedad de una región invariante, la cual implica

que se producen soluciones f́ısicamente relevantes.

Estos resultados están resumidos en:
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Chapter 1

On time discretizations for the

simulation of the batch

settling-compression process in

one dimension

The main purpose of the Bürger-Diehl simulation model for secondary settling tanks

was to resolve spatial discretizarion problems when both hindered settling and the phe-

nomena of compression and dispersion are included. Straightfoward time integration

unfortunately means long computational times, so the next step in the development is

to introduce and investigate time-integration methods for more efficient simulations,

but where other aspects such as implementation complecity and robustness are equally

considered. This is done for batch settling simulations. The key finding are partly

a new time-discretization method and partly its comparison with other specially tai-

lored and standard methods. Several advantages and disadvantages for each method

are given. One conclusion is that the new linearly implicit method is easier to imple-

ment than another one (semi-implicit method), but less efficient based on two types of

batch sedimentation test.

1.1 Introduction

Benchmark simulations of entire wastewater treatment plants (WWTPs) are today per-

formed with one-dimensional simulation models of the secondary settling tank [61, 91].

1
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In the model by [20, 24], sometimes referred to as “Bürger-Diehl model”, the physical

phenomena of hindered settling, volumetric bulk flows, compression of the sludge at

high concentrations and dispersion of the suspension near the feed inlet can be included

in a flexible way. Each phenomenon is associated with a separate constitutive function

with its model parameters, and can be activated or de-activated at the user’s discre-

tion. The possibility to include sludge compression is particularly important, since

this improves the predictive power considerably ([34, 66, 105, 120, 122]). However, the

inclusion of physical phenomena that result in second-order derivative terms in the

model partial differential equation (PDE), e.g. compression, means that straightfor-

ward time discretization by easy-to-implement, explicit methods such as the explicit

Euler method leads to long simulation times.

In [18] the author provided implementation details of a numerical algorithm, which

gives reliable simulations with respect to the underlying physical principles and can be

obtained with a user-defined accuracy. For long-time simulations of entire WWTPs,

it is important to keep discretization errors small. This calls for a fine resolution in

both space (many layers in the settler) and time (short time steps), which implies long

computational times. Conversely, fast computations obtained with a low resolution in

space and time come at the cost of poor accuracy.

In scientific computing, the numerical error is a measure of how close a numerical

solution is to the exact solution or reference solution (obtained by a very fine dis-

cretization) of the model, i.e., the governing differential equation. The efficiency of a

numerical method is assessed by relating the numerical errors to the computational

(central processing unit; CPU) times necessary to obtain the numerical solutions for

different discretizations. It is then said that one numerical method is more efficient

than another if it allows to obtain a numerical solution with a determined numerical

error in less CPU time, or equivalently, a given budget of CPU time allows one to

obtain a more accurate numerical solution by the first method than by the second.

The simulation model of [18] is based on a method-of-lines formulation of the underlying

nonlinear PDE. This means a system of time-dependent ordinary differential equations

(ODEs), one for each layer of the settler. Simulations of PDEs are stable and reliable if

a so-called CFL (Courant-Friedrichs-Lewy) condition is satisfied. This gives a maximal

time step ∆t for each given layer thickness ∆z. If only hindered settling and bulk flows

are included, then the CFL condition means that ∆t can be chosen proportional to ∆z,

i.e., ∆t ∼ ∆z, which results in fast simulations. When compression or dispersion is

included and standard ODEs solvers used, the CFL condition states that ∆t ∼ (∆z)2,

which means very small ∆t when the error should be reduced (small ∆z is chosen).
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The purpose of this contribution is to investigate different time-integration methods, of

which one is new, with respect to efficiency and other aspects, such as implementation

complexity. There is a qualitative difference in the numerical treatment depending

on whether only hindered settling and bulk flows are considered or, if in addition,

compression or dispersion are included. For clarity of presentation, we limit ourselves

here to batch sedimentation in a vessel with a constant cross-sectional area, and for

which the depth z is measured from the suspension surface downwards to the bottom

at z = B. The model partial differential equation (PDE) is

∂C

∂t
= −∂f(C)

∂z
+

∂

∂z

(
d(C)

∂C

∂z

)
, 0 < z < B, t > 0, (1.1)

where the flux function f(C) = Cvhs(C) contains the hindered settling velocity function

vhs(C) and the compression function is d(C) = Kvhs(C)σ′e(C), where K is a constant

containing the solid and fluid mass densities and the acceleration of gravity, and σe

is the effective solid stress function, which is zero below a critical concentration and

increasing above.

The investigated methods are used for the simulation of two different batch settling

tests in a vessel with B = 1 m. While the present study is limited to batch settling in

a column, the method proposed herein should be appropriate to handle SSTs as well

(under suitable modifications that would mainly affect the convective flux, but not

the compression term for whose discretization the present method has been tailored).

It is therefore essential to demonstrate that the method can robustly handle several

scenarios, in particular such that exhibit some spatial variation of the solution. For

this reason we consider a conventional Kynch test [89], that is, the settling of an

initially homogeneous suspension, and a Diehl test [45], where a body of concentrated

suspension is initially located above clear liquid, separated by, e.g., a membrane. The

Diehl test shows a stronger variation of the solution than the Kynch test. Both tests

provide complementary information that can be used to identify large portions of the

flux function f [8].



4 1. A linear implicit method

1.2 Methods of discretization

As hindered settling velocity function we choose for simplicity vhs(C) = v0e−rC with

v0 = 10 m/h and r = 0.45 m3/kg, and the effective solids stress chosen is

σe(C) =

{
0 for 0 ≤ C ≤ Cc,

α(C − Cc) for C > Cc,

where α = 0.5 m2/s2 and Cc = 6 kg/m3. To obtain a working numerical method an

important preparation is to compute the primitive

D(C) :=

∫ C

0
d(s) ds

of the compression function d(C). In the present case, with the functions vhs(C) and

σe(C) chosen herein, we can obtain D(C) in closed algebraic form; if this is not possible

(for other choices of these functions), the function D(C) can be obtained numerically

[18]. Now (1.1) can be written as

∂C

∂t
=

∂

∂z

(
−f(C) +

∂D(C)

∂z

)
.

For batch sedimentation, this PDE should be complemented with initial data C(z, 0) =

C0(z) and zero-flux boundary conditions

−f(C) +
∂D(C)

∂z

∣∣∣∣
z=0

= 0 = −f(C) +
∂D(C)

∂z

∣∣∣∣
z=B

. (1.2)

Suitable numerical schemes for the approximate solution of (1.1) are based on subdi-

viding the depth interval [0, B] into a number N of layers of equal thickness ∆z = B/N .

A discetization in space leads to the following method-of-lines formulation [18], which

is a system of N ODEs

dC1

dt
= −

G3/2

∆z
+
J3/2

∆z
, (1.3)

dCj
dt

= −
Gj+1/2 −Gj−1/2

∆z
+
Jj+1/2 − Jj−1/2

∆z
, j = 2, . . . , N − 1, (1.4)

dCN
dt

=
GN−1/2 − JN−1/2

∆z
, (1.5)
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where Cj(t) is the concentration of layer j, Gj+1/2 denotes the numerical convective

flux due to hindered settling between layer j and layer j + 1, which can be chosen, for

instance, as the Godunov flux, and Jj+1/2 is the compressive numerical flux chosen as

Jj+1/2 =
D(Cj+1)−D(Cj)

∆z
.

Note that (1.2) implies that the boundary fluxes G1/2 = J1/2 = GN+1/2 = JN+1/2 =

0. Implementation details on how to compute these fluxes are provided by [18].

The last term in (1.4) now becomes the usual second-order difference approximation

of ∂2D(C)/∂z2, i.e.,

Jj+1/2 − Jj−1/2

∆z
=
D(Cj+1)− 2D(Cj) +D(Cj−1)

∆z2
. (1.6)

The method-of-lines formulation (1.3)–(1.5) is converted into a fully discrete scheme

by time discretization. Although a variety of methods could be used for (1.3)–(1.5),

there is nothing to gain by applying a standard ODE solver of accuracy higher than

first order, e.g. a Runge-Kutta method. On the contrary, this will only cause longer

computational times producing the same error as explicit Euler time stepping [49].

For the discussion of the various time-stepping methods, which will take the numerical

solution from t = tn to tn+1 = tn + ∆t, it will be important to carefully distinguish

between numerical fluxes and concentrations that are evaluated at the old time step tn
and those evaluated at tn+1, which we mark by the respective upper index n and n+1.

The time-integration methods compared herein are the following, where k1, k2 are

constants that depend on the choice of the functions f and d.

1.2.1 The explicit Euler method

The explicit Euler method is used for all simulations in [20, 24]. The CFL condition

of the fully discrete scheme can be captured by ∆t ≤ k2∆z2 when ∆z is small. The

method is easy to implement since all terms in the right-hand side of (1.3)–(1.5) are

evaluated at t = tn and therefore each concentration Cn+1
j is an explicit function of

the known ones at the previous time tn. Thus, the fully discrete version of (1.4) is

Cn+1
j − Cnj

∆t
= −

Gnj+1/2 −Gnj−1/2

∆z
+
D(Cnj+1)− 2D(Cnj ) +D(Cnj−1)

∆z2
, j = 2, . . . , N − 1,

with analogous formulas replacing the boundary updates (1.3) and (1.5).
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1.2.2 The semi-implicit (SI) method

The SI method [16] is described in detail in [47]. The CFL condition is ∆t ≤ k1∆z.

To advance the solution from tn to tn+1 we must solve the following nonlinear system

of algebraic equations, where Cn+1
j , j = 1, . . . , N , are the unknowns:

Cn+1
j − Cnj

∆t
= −

Gnj+1/2 −Gnj−1/2

∆z
+
D
(
Cn+1
j+1

)
− 2D

(
Cn+1
j

)
+D

(
Cn+1
j−1

)
∆z2

, (1.7)

j = 2, . . . , N − 1, supplemented with analogous formulas replacing the boundary up-

dates (1.3) and (1.5). These equations are solved iteratively, for example, by the

Newton-Raphson method.

1.2.3 The linearly implicit (LI) method

The idea of the LI method goes back to [6] and is based on first considering the

contribution from the compressive flux term (1.6) from time tn to tn+1. The purpose

of the LI method is to avoid the numerical solution of the nonlinear system of equations

(1.7). The nonlinearities in (1.7) are found in the evaluations of the function D. The

idea is to replace D(Cnj ) in (1.7) by ξqnj (where ξ is a parameter connected to the

convergence of the method) so that

Cn+1
j − Cnj

∆t
= −

Gnj+1/2 −Gnj−1/2

∆z
+ ξ

qn+1
j−1 − 2qn+1

j + qn+1
j+1

∆z2
, (1.8)

and to find a simple update formula for qnj , j = 1, . . . , N , to be executed first in each

time step. A stable implicit Euler time step implies the formula

qn+1
j − qnj

∆t
= ξ

qn+1
j−1 − 2qn+1

j + qn+1
j+1

∆z2
.

This means that a linear system of equations should be solved for qn+1
j at the next

time step. Then (1.8) can be updated explicitly to obtain Cn+1
j .

To completely describe the LI method, we define

ξ := γ max
0≤C≤Cmax

d(C),

where Cmax is a (nominal) maximum concentration and γ > 1 a parameter. This

parameter can be chosen at the user’s discretion. To provide some guidance we mention

that based on theoretical considerations (not detailed here) and numerical evidence
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(presented below), the closer γ > 1 is chosen to the value one, the more accurate is

the scheme. However, the admissible time step ∆t behaves as ∆t → 0 when γ → 1.

Consequently, the choice of γ is subject to the competing goals of accuracy (small

errors) and speed (short CPU times) of the simulation. A detailed discussion of the

optimal choice of γ under these restrictions is provided below.

To advance the solution from tn to tn+1, one proceeds as follows:

1. For j = 1, . . . , N , set qnj = D(Cnj )/ξ.

2. Solve the following linear system for qn+1
1 , . . . , qn+1

N :

qn+1
1 − qn1

∆t
= −ξ q

n+1
1 − qn+1

2

∆z2
,

qn+1
j − qnj

∆t
= ξ

qn+1
j−1 − 2qn+1

j + qn+1
j+1

∆z2
, j = 2, . . . , N − 1,

qn+1
N − qnN

∆t
= ξ

qn+1
N−1 − qn+1

N

∆z2
.

(1.9)

3. Calculate Cn+1
1 , . . . , Cn+1

N from

Cn+1
1 − Cn1

∆t
= −

Gn3/2

∆z2
+
qn+1

1 − qn1
∆t

,

Cn+1
j − Cnj

∆t
= −

Gnj+1/2 −Gnj−1/2

∆z
+
qn+1
j − qnj

∆t
, j = 2, . . . , N − 1,

Cn+1
N − CnN

∆t
=
GnN−1/2

∆z
+
qn+1
N − qnN

∆t
.

Note that the linear system (1.9) can be written as follows, where µ := ∆t/∆z2:

1 + ξµ −ξµ 0 . . . 0

−ξµ 1 + 2ξµ −ξµ . . .
...

0
. . .

. . .
. . . 0

...
. . . −ξµ 1 + 2ξµ −ξµ

0 . . . 0 −ξµ 1 + ξµ


q

n+1
1
...

qn+1
N

 =

q
n
1
...

qnN

 ,

This tridiagonal linear system of equations can easily be solved, for example by the

Thomas algorithm [49]. A preliminary analysis on the stability of the scheme (not
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presented here) implies that the CFL condition of the LI scheme is

∆t ≤ ∆z

2 max
0≤C≤Cmax

f ′(C)

(
1− 1

γ

)
. (1.10)

1.2.4 Other time-stepping methods

Any ODE solver could be used for the method-of-lines system (1.3)–(1.5). Possibly

competitive methods are adaptive step-size methods and we choose here the ODE

solver ode15s in Matlab (2014), which is an implicit multi-step method of variable

order with step-size control. Of several standard ODE solvers investigated by [49]

this was the second most efficient one (after the SI method) in the investigations with

both stand-alone settler simulations and benchmark simulations for the entire activated

sludge process.

1.3 Results and discussion
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Figure 1.1: Numerical solution of the Kynch test (left) and Diehl test (right) using
Euler method. Both figures are a proyection from referential solution (N = 2430
layers) to a coarse mesh of 90 layes. Properly elaboration, published in [21].

For both the Kynch test and the Diehl test we measure the performance of the nu-

merical methods in terms of numerical error and CPU time. The error of a total

simulated solution Ctot,N with N layers up to a time T is calculated by compar-

ing with a reference solution Cref obtained by Euler’s method and N = 2430 layers
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Figure 1.2: Kynch test simulated by the LI method with N = 90 layers for the
values of γ = 1.5 (left), γ = 3.0 (center) and γ = 5.0 (right). Properly elaboration,
published in [21].

(∆z = B/N = 1 m/2430 ≈ 0.41 mm) see Figure 1.1. The relative L1 error is calculated

as

EN =

∫ T

0

∫ B

0
|Ctot,N (z, t)− Cref(z, t)|dz dt

/∫ T

0

∫ B

0
Cref(z, t) dz dt .
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Figure 1.3: Diehl test simulated by the LI method with N = 90 layers for the values
of γ = 1.5 (left), γ = 3.0 (center) and γ = 5.0 (right). Properly elaboration, published
in [21].

For the Kynch test we choose an initial concentration of C0 = 5 kg/m3 and T = 1.5 h,

which means that almost steady state has been reached. This test is also used to study

the dependence of the numerical solutions produced by the LI method on the choice

of the parameter γ. For each run, the time step ∆t is chosen according to the CFL

condition (1.10) (with equality). Note that the right-hand side of (1.10) is a decreasing

function of γ and it tends to infinity as γ approaches one from above. Figure 1.3 shows

numerical solutions obtained for three different values of γ. This figure and Figure 1.5

indicate that for a given number of layers N > 30, the values of γ closest to one produce
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the solutions with the smallest errors, but the highest CPU times. We note that, for

instance, for a given value of N the time step for γ = 3 can be chosen twice larger

than that for γ = 1.5, so the total CPU time for γ = 3 should be about half of that

for γ = 1.5. To assess which value of γ is optimal, an efficiency plot (of relative L1

error versus CPU time) is helpful, see Figure 1.5. The curves are roughly L-shaped,

indicating that γ should be chosen close to the point corresponding to the point of

“bend”, since smaller or larger values would lead to larger numerical errors (at only

slightly smaller CPU times) or to smaller numerical errors at much increased CPU

times. Based on these considerations, the choice γ = 3 seems a good compromise for

further comparison with other methods.

For the Diehl test (Diehl test) we choose the initial data

C(z, 0) =

{
10 kg/m3 for 0 < z < 0.4 m,

0 for 0.4 m < z < B = 1 m.

Figure 1.2 and Figure 1.3 shows the numerical solution by the LI method with γ =

1.5, γ = 3.0 andγ = 5.0, and a contour plot of the reference solution. The right plot

illustrates that in those regions where C < Cc, therefore d = 0, and (1.1) reduces to

a first-order hyperbolic PDE, iso-concentration curves are straight lines, in complete

agreement with the corresponding theory.
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Figure 1.4: Efficiency plots for the Kynch test (left) and the Diehl test (right) and
the Euler, SI and LI methods (γ = 3) and Matlab’s ode15s solver. In the right
plot the cross corresponding to N = 810 for the SI method is not shown since the
Newton-Raphson iterations did not converge, i.e., the method failed. Reprinted from
[21].



1.3. Results and discussion 11

computational time [s]
10-2 10-1 100 101 102

re
la

tiv
e 

L
1  e

rr
or

0

0.02

0.04

0.06

0.08

0.1

0.12
N=10
N=30
N=90
N=270
N=810.=10

.=5

.=4

.=3

.=2
.=1.5

.=1.1

10
1

10
2

10
3

10
−2

10
−1

N

r
e
la

ti
v
e
 L

1
 e

r
r
o
r

 

 

γ = 1.1

γ = 1.2

γ = 1.4

γ = 1.5

γ = 2.0

γ = 3.0

γ = 4.0

γ = 5.0

γ = 10.0

Figure 1.5: LI method applied to Kynch test: (left) efficiency plots (relative
L1 error versus CPU time) for the indicated values of N , determined for γ =
10, 5, 4, 3, 2, 1.5, 1.1 (from top to bottom, the curve for N = 30 is labeled for il-
lustration). (Right) efficiency plots (relative L1 error versus number of layers) in
logarithmic scale. Properly elaboration, published in [21].

Figure 1.4 and Figure 1.2 shows the efficiency curves for all methods investigated plus

those produced by employing Matlab’s ode15s solver. It turns out that the latter

method is the least efficient, and that for both tests the implicit methods are most

efficient, as expected from the corresponding CFL conditions. Moreover, for a given

number of layers N , the LI method is the fastest, although not necessarily the one with

the smallest error. Note that the efficiency curve for the SI method for the Diehl test

(the right plot of Figure 1.3) is composed of four symbols only. In fact, no information

is available for the run with N = 810 since the Newton-Raphson iterations did not

converge for that case. While this situation could be easily overcome by the ad-hoc

remedy of further reducing ∆t (say, to 80% of its maximal value determined by the

CFL condition), it alerts to a more fundamental problem observed with the SI method;

namely that the convergence of (iterative) solvers for the nonlinear equations is not

ensured a priori.

For accurate simulation results, ∆z should be chosen small, wherefore the CFL condi-

tion implies that the explicit Euler method requires much smaller time steps than the

other methods. On the other hand, the SI method needs more computations at every

time step and requires the evaluation of the Jacobian matrix of the nonlinear algebraic

system of equations. However, even when this system is solved by the Newton-Raphson

method, the SI method has turned out to be far more efficient than explicit Euler [49].

To reduce the implementation complexity and to remove the necessity to solve numer-

ically a system of nonlinear algebraic equations at every iteration in the SI method,
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whose convergence depends on the Newton-Raphson iterations, the LI method can be

used instead. The advantage of solving a linear system only in each iteration, which

also means an easier implementation, is paid by the price of a larger numerical error.

1.3.1 Influence of compression in experiments

We use the same idea for visualize the influence of compression term in Kynch and

Diehl test. In this case the iso-concentration lines lines, that are straight lines from a

hyperbolic problem has been curved given by compression for a parabolic problem, see

Figure 1.6
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Figure 1.6: First row: Schematic view of Vhs and f(C) showing the influence of
compression term as 0 < C < Cc (light brown) and C > Cc (dark brown). Second
row: Compression terms are nonzero when C > Cc (dark brown). Third row: contour
plot of the reference solution, for Kynch test (left) and Diehl test (right) showing
areas of C = 0 (blue), 0 < C < Cc (light brown) and C > Cc (dark brown) and
iso-concentration lines corresponding to the annotated values of C [kg/m3]. Properly
elaboration.





Chapter 2

A model of batch settling withal

reactions

2.1 Introduction

Most models of the activated sludge process in wastewater treatment plants (WWTPs)

are based on the assumption that all reactions occur in the biological reactor and that

there are no reactions in the secondary settling tank (SST) [61]. It is, however, well

known that certain biological reactions can occur in the settler. In particular, at long

residence times and incomplete denitrification in the upstream bioreactor, denitrifica-

tion can take place at the bottom of the tank, where the concentration of sludge is

high, nitrate levels are substantial, biomass decay operates, and no oxygen is present.

[112] and [88] reported measurements from three plants showing that of the total den-

itrification in each plant, 15%, 30% and 37% occurred in the settler, respectively. This

is problematic since the produced N2 can lead to bubbles that can attach to the sludge

flocs, reduce their density, and lead to floating sludge which is disastrous for a settler.

Thus, mathematical models that are able to capture the mechanical sedimentation-

compression process in a SST in combination with biological reactions, in particular

denitrification, are urgently needed to allow for the simulation of operational scenarios.

We are interested in modelling reactive settling, which is a process where biological

conversions and physical sedimentation occur simultaneously. To describe the settling

process, a consistent methodology was presented by [24] which considers both hindered

and compression settling. Biological conversion processes in WWTPs are well known

and dedicated models are available [69]. However, combining biological and settling

15
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processes is not straightforward as it requires the extension of existing model equations

as well as the development of a numerical method to deal with this extended set of

equations.

It is the purpose of this chapter to advance a spatially one-dimensional, dynamical

(time-dependent) deterministic model for this process of “reactive settling”, formulated

as five scalar coupled partial differential equations (PDEs) that represent the mass

balances for two particulate and three soluble components. The presentation includes

a detailed description of a method for numerical solution of the PDE model, and

therefore for numerical simulation of reactive settling.

2.1.1 Related work

A couple of modelling approaches of reactive settling can be found in the literature.

[60] presented a simulation study of two different models to account for the reactions

taking place in the settler. Both models use the simulation model by [117] for the

sedimentation process. The first model includes an extra model block in the return

sludge line consisting of an empirical, algebraic elimination of oxygen and nitrate to

account for the reactions in the settler. It is obvious that this first approach does not

model the combination of sedimentation and reactions. The second model consists

in placing the entire activated sludge model no. 1 (ASM1) model by [69], modelling

the bioreactions, in each of the 10 layers in the Takács settler model. Improvements

in nitrogen removal predictions were obtained and the first model was recommended

mainly because of the much larger computational cost for the second one, but also

because the second model overestimates the reactive capacity of the settler.

Further studies with the second model type and different ASMx models were reported

by [57, 65, 100]. To compensate for the overestimation of the 10-layer reactive settler

model, [65] introduced a reduction factor to the kinetics. Such factors are not present

in the original mass balances and it is therefore not in agreement with a consistent

modelling methodology [24] to introduce any such as a compensation for some other

phenomenon — in this case the coarse spatial discretization (10 layers) of the settler

for the numerical simulation.

Already without reactions, the Takács simulation model is not recommended because

of failure of agreement with the solutions of the conservation of mass partial differential

equation (PDE) in certain situations [19, 24, 41, 76], but also for other shortcomings

during normal operating conditions specifically during wet weather [120].
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A related application is reactive settling occurring in sequencing batch reactors (SBRs),

for which modelling approaches without PDEs can be found [3, 83–86] modelled SBRs

without reactive settling. SBRs are processes in which the bioreaction and settling

processes occur in the same reactor, but sequenced in time, with reactor filling, reaction,

settling and draw phases occurring sequentially in time rather than in space.

Convection-diffusion-reaction PDEs arise in many models of physical, chemical and bio-

logical processes. For the present nonlinear process of simultaneous sedimentation and

reactions, PDE models and appropriate numerical methods are scarce in literature.

A related application is a rotating wall vessel bioreactor developed by the National

Aeronautics and Space Administration (NASA), USA, and used during the launch and

landing of space shuttles to protect cultured cells from high shear forces. For this biore-

actor, [33] presented a two-dimensional convection-diffusion-reaction model, simulated

it with available finite-element-method software and validated against experimental

data.

2.1.2 Novelty of this work

When only the settling process is considered, the settling tanks can be modelled by

a single PDE describing the change of particulate concentration in depth. However,

when biological reactions are added, the sludge can no longer be considered as a single

particulate phase as different activated sludge components will be involved in different

biological reactions. Moreover, additional equations to describe the concentration of

soluble components over the depth of the settling tank need to be added. Hence,

moving from a non-reactive settler to a reactive settler model does not only include

additional rate expressions to account for biological reactions but also increases the

number of state variables from a single particulate concentration to several particulate

components in combination with soluble components. In this contribution, the settling

model presented by [18, 24], called the Bürger-Diehl model, is extended with a reduced

biological model where only denitrification reactions are considered.

The Bürger-Diehl model originates from the conservation of mass and can be stated

as a scalar, nonlinear PDE for the sludge concentration as function of depth and time.

Moreover, the Bürger-Diehl model has shown to provide a more realistic representation

of the sludge blanket height and thus the sludge accumulation in a secondary clarifier

[120] which is an important driving factor for the denitrification process. It is the

purpose of this contribution to make a first step towards extending these advances

for the numerical treatment of non-reactive settling to the reactive case. To this end,
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we focus on a reduced-order problem for the biological reactions and confine to batch

sedimentation in a closed vessel as a first approach.

We are interested in modelling reactive settling with a consistent modelling methodol-

ogy [24] by starting with the mass balances and using appropriate numerical methods

for the discretization of the model PDEs. Despite the simplicity of our reduced model,

it accounts for three constitutive assumptions that determine its mathematical nature:

(i) the hindered settling of the flocculated particles;

(ii) compression of the flocculated particles at high concentrations when a network

is formed;

(iii) reaction terms containing nonlinear growth rate kinetics and a constant decay

rate of biomass.

Properties (i) and (ii) are already realized in the Bürger-Diehl model described in

a number of previous papers [18, 24, 120]. The combination of all three properties

(i)–(iii) in the present PDE-based model, and the numerical method presented for its

solution constitute, however, a new (original) contribution.

2.1.3 Outline of the chapter

The remainder of this Chapter is organized as follows. In Section 2.2 we introduce the

governing model, which is defined by a system of convection-diffusion-reaction PDEs

supplemented by suitable initial and boundary conditions. (The word “diffusion” is

a common mathematical terminology for terms in the PDE with second-order spatial

derivative; in our case such terms model either some diffusion or dispersion phenomena

or, in the case of the particulate material, the compression of the network of floccu-

lated particles at high concentrations.) Specifically, we first identify the unknown vari-

ables, then state the governing PDEs along with their initial and boundary conditions

(Section 2.2.1), and finally introduce material specific constitutive model functions

(Section 2.2.2), namely the specific growth rate related to biokinetics as well as the

hindered settling and effective solid stress functions. In Section 2.3.2, the numerical

method is introduced. After stating some preliminaries, we start from discretization in

space only, which is closely related to a system of method-of-lines ordinary differential

equations (ODEs). We then outline a fully discrete, explicit scheme in Section 2.3.2.

In Section 2.3.3 the final method is explained in almost algorithmic form so that it can

easily be programmed. A theoretical result stating the method produces non-negative
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values only is stated in Section 2.3.4. Next, in Section 2.4, we present examples of

numerical solutions of the governing model, where we are interested in three types

of initial conditions: the traditional Kynch test (KT) [89], which describes the set-

tling of an initially homogeneous suspension in a column; the Diehl test [45], in which

the suspension is initially located above clear liquid; and the “overcompressed” test

(OT), which corresponds to an initial configuration with a highly concentrated layer

at the bottom. The initial condition for the Diehl test can be obtained either by a

membrane, which is removed at t = 0, or by rising the sludge to the top by aeration,

e.g., in an SBR. The OT corresponds to a hypothetical initial configuration of a layer

of strongly concentrated sediment (e.g., after centrifugation) with clear liquid above

where the “pressure” is released at t = 0, allowing the bed to expand. The OT was

employed by [14, 32] as an example to illustrate the consequences of modelling sedi-

ment compressibility by a nonlinear, possibly degenerate diffusion term under extreme

conditions. Since the particle velocities in OT are negative in some regions, contrary

to the KT and DT, this experiment is important for testing a numerical scheme. Sec-

tions 2.4.1, 2.4.2 and 2.4.3 present the numerical results for KT, DT, and OT scenarios,

respectively, and are followed by a brief discussion of numerical error and convergence

properties of the scheme (Section 2.4.4).

liquid componentsSolid particles

Figure 2.1: A schematic view of a settler vessel. Our focus is in the different
components, solids particles and liquids components inside the settler and how they
reacted between them. Properly elaboration.



20 2. A model of batch settling withal reactions

2.2 Governing model

We study one-dimensional batch sedimentation of suspended particles in water with

soluble substrates in a closed vessel with a constant cross-sectional area. The depth z

is measured from the suspension surface z = 0 downwards to the bottom at z = B. For

simplicity, we study the last settling phase of a SBR process where aeration is switched

off and the sludge is allowed to settle. We assume that, in addition to particulate

biomass, there is still a certain amount of dissolved nitrate (NO3) in the water. As the

biomass decays, readily biodegradable Chemical Oxygen Demand (COD) is produced,

which can be converted to cell biomass using nitrate as electron acceptor and nitrogen

gas (N2) is produced.

The particulate microorganisms are divided into only two components: ordinary het-

erotrophic organisms (XOHO) and undegradable organics (XU) since we only need

access to those state variables to describe the denitrification process. The total con-

centration of the flocculated particles is X := XOHO + XU. Each particle is assumed

to settle with a velocity v = v(X,Xz) given by constitutive assumptions for hindered

and compressive settling involving the local concentration X and its spatial derivative

Xz := ∂X/∂z. The notation for the soluble concentrations is SNO3 for the nitrate, SS

for the readily biodegradable substrate and SN2 for nitrogen gas. The small spatial

movement of the substrate caused by the settling particles is captured by a single dif-

fusion coefficient dS in the model equations. Hence, particulate components undergo

settling and biological reactions whereas soluble components are subject to diffusion

and biological reactions. The resulting set of equations is able to describe the evolu-

tion of particulate concentrations (XOHO and XU) as well as concentrations of soluble

components (SNO3 , SS, SN2) during the settling process.

Summarizing, the unknown variables are the five functions

XOHO(z, t), XU(z, t), SNO3(z, t), SS(z, t), SN2(z, t)

sought for 0 ≤ z ≤ B and t ≥ 0, and which are determined as solutions of five PDEs,

supplied with initial and boundary conditions, stated in the next section.

2.2.1 Governing partial differential equations, initial and boundary

conditions

At the start of settling, the initial concentration distribution of particles may be piece-

wise constant described by the function X0(z), whereas we assume that the substrate
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concentrations are constant: the nitrate concentration S0
NO3

, readily biodegradable

substrate S0
S and zero concentration of nitrogen gas. Each particle consists initially of

a certain percentage p0 of heterotrophs and the remainder is undegradable organics.

The balance of mass yields the following partial differential equations for 0 < z < B

and t > 0:

∂XOHO

∂t
= − ∂

∂z

(
v(X,Xz)XOHO

)
+
(
µ(SNO3 , SS)− b

)
XOHO, (2.1)

∂XU

∂t
= − ∂

∂z

(
v(X,Xz)XU

)
+ fPbXOHO, (2.2)

∂SNO3

∂t
= dS

∂2SNO3

∂z2
− 1− Y

2.86Y
µ(SNO3 , SS)XOHO, (2.3)

∂SS

∂t
= dS

∂2SS

∂z2
−
(
µ(SNO3 , SS)

Y
− (1− fP)b

)
XOHO, (2.4)

∂SN2

∂t
= dS

∂2SN2

∂z2
+

1− Y
2.86Y

µ(SNO3 , SS)XOHO, (2.5)

which are posed along with the initial conditions

XOHO(z, 0) = p0X
0(z), XU(z, 0) = (1− p0)X0(z),

SNO3(z, 0) = S0
NO3

, SS(z, 0) = S0
S, SN2(z, 0) = 0,

(2.6)

where X0(z) is a givn function, p0, S0
NO3

and S0
S are given numbers, and the zero-flux

boundary conditions are

v(X,Xz)X|z=0 = v(X,Xz)X|z=B = 0,

(SNO3)z(0, t) = (SNO3)z(B, t) = 0,

(SS)z(0, t) = (SS)z(B, t) = 0,

(SN2)z(0, t) = (SN2)z(B, t) = 0.

(2.7)

2.2.2 Model parameters and constitutive functions

The parameter Y is a dimensionless yield factor and b is the constant decay rate of

heterotrophs. The specific growth rate function is the following product of two Monod

expressions:

µ(SNO3 , SS) := µmax
SNO3

KNO3 + SNO3

SS

KS + SS
, (2.8)

where µmax > b is the maximum growth rate and KNO3 ,KS > 0 are half-saturation

constants (see Table 3.1). This expresses that denitrification only takes place when

favourable conditions for SNO3 and SS prevail. The constitutive function for the particle
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Table 2.1: Parameter values employed for the simulation of reactive settling.
Reprinted from [13].

Model parameter symbol value and unit
parameter in hindered sett. function vhs, cf. (2.10) v0 1.76× 10−3 m s−1

parameter in hindered sett. function vhs, cf. (2.10) X̄ 3.87 kg m−3

parameter in hindered sett. function vhs, cf. (2.10) q 3.58 [−]
unbiodegradable fraction fP 0.2 [−]
critical concentration Xc 5 kg m−3

parameter in effective stress function σe, cf. (2.11) α 0.2 m2 s−2

solid density ρs 1050 kg m−3

solid-fluid density difference ∆ρ 52 kg m−3

acceleration of gravity g 9.81 m s−2

diffusion coefficient dS 1.00× 10−6 m2 s−1

heterotrophic yield Y 0.67 [−]
heterotrophic maximal specific growth rate µmax 4.8 d−1 = 5.56× 10−5 s−1

heterotropic decay rate b 0.6 d−1 = 6.94× 10−6 s−1

half-saturation coefficient (hsc) for heterotrophs KS 20 g m−3 = 0.02 kg m−3

hsc for denitrifying heterotrophs KNO3
5.00× 10−4 kg m−3

velocity v(X,Xz) takes into account both hindered settling and compression and is of

the form [24]

v(X,Xz) =


vhs(X) for X < Xc,

vhs(X)

(
1− ρsσ

′
e(X)

Xg∆ρ

∂X

∂z

)
for X > Xc.

(2.9)

Here, vhs(X) is the hindered settling velocity function, σ′e(X) := dσe(X)/dX is the

derivative of the effective solids stress function σe(X), ρs the density of the solids,

∆ρ the density difference between solids and liquid, and Xc is a critical concentration

above which the particles touch each other and form a network which can bear a certain

stress.

For the simulations, we choose [47, 119]

vhs(X) =
v0

1 + (X/X̄)q
, (2.10)

where the parameters v0, X̄ and q have the values given in Table 3.1 (Torfs et al.,

2016), and

σe(X) =

{
0 for X < Xc,

α(X −Xc) for X > Xc,
(2.11)

where the values of α and the critical concentration Xc are indicated in Table 3.1.
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2.3 Numerical method

We define the batch settling flux function fb(X) := Xvhs(X), set

dcomp(X) := vhs(X)
ρsσ
′
e(X)

g∆ρ
, (2.12)

and define the primitive

D(X) :=

∫ X

Xc

dcomp(s) ds. (2.13)

The sum of (2.1) and (2.2) gives the following equation, which apart from the reaction

term only contains derivatives of the total concentration X:

∂X

∂t
= − ∂

∂z

(
fb(X)− ∂D(X)

∂z

)
+ (µ(SNO3 , SS)− (1− fP)b)XOHO, 0 < z < B, t > 0.

(2.14)

This is in fact the Bürger-Diehl model with a reaction term. As a consequence of (2.11)–

(2.13), the PDE (2.14) is second-order parabolic wherever the solution X exceeds Xc

and first-order hyperbolic for lower concentration values. Thus, the PDE (2.14) is

called strongly degenerate parabolic or parabolic-hyperbolic, where the location of the

type-change interface is not known beforehand. Moreover, due to the nonlinear and

degenerate nature, discontinuities in the solution appear and special techniques for the

numerical solution have to be used (which are incorporated in the numerical method

outlined herein).

The total flux within the parenthesis on the right-hand side of (2.14) is

v(X,Xz)X = fb(X)− ∂D(X)

∂z
. (2.15)

This means that for (2.14) we can utilize ingredients of the numerical method by [18]

with the addition of the reaction term. To find numerical updates for the two portions

XOHO and XU of X, we use the idea by [41, 43]. To this end, we introduce the

percentage p := XOHO/X when X > 0, so that XOHO = pX and XU = (1− p)X, and

rewrite Equation (2.1) as

∂(pX)

∂t
= − ∂

∂z

(
v(X,Xz)pX

)
+
(
µ(SNO3 , SS)− b

)
pX, 0 < z < B, t > 0. (2.16)
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The idea of the numerical method is the following. In each discrete time step, X is first

updated via a discretized version of (2.14). This means that the flux (2.15) is known

during this time step, which is essential for any finite volume numerical method. Since

the flux of (2.16) is p times the known flux (2.15), it is only the variable p that needs

to be updated, and this can be achieved by a discretized version of (2.16). Then the

concentration of the second particulate component is simply XU = (1 − p)X. The

numerical updates of SNO3 , SS and SN2 are then straightforward for the corresponding

equations (2.3)–(2.5).

2.3.1 Spatial discretization

We introduce the spatial discretization by dividing the interval (0, B) into N layers

and set ∆z := B/N . Let Xj = Xj(t) and denote the approximate concentrations in

layer j and likewise Pj = Pj(t) the approximation of p. The numerical fluxes between

layer j and j + 1 (therefore indexed by j + 1/2) are defined as follows. The convective

flux fb is discretized by the standard Godunov numerical flux, i.e.,

Gj+1/2 :=


min

Xj≤X≤Xj+1

fb(X) if Xj ≤ Xj+1,

max
Xj≥X≥Xj+1

fb(X) if Xj > Xj+1.
(2.17)

If the numerical compressive flux is defined as

Jj+1/2 :=
D(Xj+1)−D(Xj)

∆z
, (2.18)

then the total flux (2.15) between layers j and j + 1 is approximated by Fj+1/2 :=

Gj+1/2 − Jj+1/2. The corresponding flux of (2.16) is Pj+1/2(Gj+1/2 − Jj+1/2), where

Pj+1/2 needs to be defined. We use the idea of [43], which is the following. If the total

flux Fj+1/2 is positive, this means that particles move in the direction of the z-axis

over the boundary between layer j to j + 1. Consequently, the value of Pj+1/2 at the

boundary between the layers is the one in the layer above, i.e. Pj . If Fj+1/2 ≤ 0, then

the value is Pj+1, i.e.

Pj+1/2 =

{
Pj+1 if Fj+1/2 ≤ 0,

Pj if Fj+1/2 > 0.
(2.19)

Moreover, we define the soluble component diffusive fluxes

DΥ,j+1/2 := dS
SΥ,j+1 − SΥ,j

∆z
, j = 1, . . . , N − 1, Υ ∈ {NO3,S,N2} (2.20)
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and finally introduce the zero boundary fluxes and percentages

G1/2 = GN+1/2 = J1/2 = JN+1/2 = P1/2 = PN+1/2 = 0,

DΥ,1/2 = DΥ,N+1/2 = 0, Υ ∈ {NO3, S,N2}.

We then obtain the following semi-discretized ODE system for the PDEs:

dXj

dt
= −

Fj+1/2 − Fj−1/2

∆z
+
(
µ(SNO3,j , SS,j)− (1− fP)b

)
XOHO,j , (2.21)

d(PjXj)

dt
= −

Pj+1/2Fj+1/2 − Pj−1/2Fj−1/2

∆z
+
(
µ(SNO3,j , SS,j)− b

)
XOHO,j , (2.22)

dSNO3,j

dt
=
DNO3,j+1/2 −DNO3,j−1/2

∆z
− 1− Y

2.86Y
µ(SNO3,j , SS,j)XOHO,j , (2.23)

dSS,j

dt
=
DS,j+1/2 −DS,j−1/2

∆z
−
(
µ(SNO3,j , SS,j)

Y
− (1− fP)b

)
XOHO,j , (2.24)

dSN2,j

dt
=
DN2,j+1/2 −DN2,j−1/2

∆z
+

1− Y
2.86Y

µ(SNO3,j , SS,j)XOHO,j , (2.25)

XOHO,j = PjXj ,

XU,j = (1− Pj)Xj ,

where j = 1, . . . , N . These equations are thus exact conservation laws for each of the

N layers. Note that XU,j can be defined after the entire simulation.

2.3.2 Time discretization

Let tn, n = 0, 1, . . . denote the discrete time points and ∆t the time step that should

satisfy a certain Courant-Friedrichs-Lewy (CFL) condition depending on the chosen

time-integration method. For explicit schemes, the right-hand sides of the equations

are evaluated at time tn. The value of a variable at time tn is denoted by an upper

index, e.g., Pnj . The main restriction of the time step (for small ∆z) is due to the

second-order spatial derivatives in the compression term [19, 27] and in the diffusion

term for the solubles. Let Xmax denote the maximally possible particle concentration.

The CFL condition for explicit Euler and batch sedimentation is

∆t ≤ 1

max{k1, k2}
, (2.26)
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with

k1 :=
1

∆z
max

0≤X≤Xmax

∣∣f ′b(X)
∣∣+

1

∆z2
max

0≤X≤Xmax

dcomp(X)

+ max
{
µmax − (1− fP)b, (1− fP)b

}
+ max

{
ρLµmaxXmax

ρXKNO3

, µmax − b, b
}
,

k2 :=
2dS

∆z2
+
µmaxXmax

KNO3

(
ρL
ρX

+ 1

)
.

For explicit Euler, the time derivatives on the left-hand side of (2.21)–(2.25) are ap-

proximated by the standard finite difference ratio and the right-hand side is evaluated

at time tn. First, Equation (2.21) gives the update Xn+1
j according to

Xn+1
j = Xn

j + ∆t

(
−
Fnj+1/2 − Fnj−1/2

∆z
+
(
µ(SnNO3,j , S

n
S,j)− (1− fP)b

)
Xn

OHO,j

)
.

(2.27)

The equations for the substrates can be written in an analogous way, namely

Sn+1
NO3,j

= SnNO3,j + ∆t

(DnNO3,j+1/2 −DnNO3,j−1/2

∆z
− 1− Y

2.86Y
µ
(
SnNO3,j , S

n
S,j

)
Xn

OHO,j

)
,

(2.28)

Sn+1
S,j = Sn+1

S,j + ∆t

(
DnS,j+1/2 −DnS,j−1/2

∆z
−
(
µ(SnNO3,j

, SnS,j)

Y
− (1− fP)b

)
Xn

OHO,j

)
,

(2.29)

Sn+1
N2,j

= SnN2,j + ∆t

(DnN2,j+1/2 −DnN2,j−1/2

∆z
+

1− Y
2.86Y

µ
(
SnNO3,j , S

n
S,j

)
XOHO,j

)
. (2.30)

As for Equation (2.22), the approximation of the time derivative is

d(PjXj)

dt
≈
Pn+1
j Xn+1

j − Pnj Xn
j

∆t
.
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Note that if Xn+1
j = 0, then there is no particle in layer j, hence the value of Pn+1

j is

irrelevant since Pn+1
j Xn+1

j = 0. We get the following update formula for Pn+1
j :

Pn+1
j =



Pnj if Xn+1
j = 0,

1

Xn+1
j

[
Pnj X

n
j + ∆t

(
−
Pnj+1/2F

n
j+1/2 − Pnj−1/2F

n
j−1/2

∆z

+
(
µ(SnNO3,j , S

n
S,j)− b

)
Xn

OHO,j

)] if Xn+1
j > 0.

(2.31)

2.3.3 Numerical method in final form

For the ease of reference, we here summarize the information provided in this section

and present the resulting numerical method for the approximate solution of the model

(2.1)–(2.7), and thereby for the simulation of reactive settling.

1. Assume that the solution is sought at time t = T > 0. Choose ∆z = B/N and

∆t = T/nmax, N and nmax being integers, such that the CFL condition (CFL)

is satisfied.

2. Calculate the discrete initial values either by averaging

X0
j =

1

∆z

∫ j∆z

(j−1)∆z
X0(z) dz, j = 1, . . . , N,

or by using the value in the mid of each layer:

X0
j = X0

(
(j − 1/2)∆z

)
, j = 1, . . . , N.

Then set for j = 1, . . . , N :

P 0
j = p0, X0

OHO,j = p0X
0
j , S0

NO3,j = S0
NO3

, S0
S,j = S0

S, S0
N2,j = 0.

3. For n = 0, 1, . . . , nmax − 1, update the discrete solution values as follows:

(a) For j = 0, . . . , N , calculate the numerical fluxes Gnj+1/2 and Jnj+1/2 from

(3.33) and (2.18), respectively, where Xj = Xn
j , Xj+1 = Xn

j+1, for j =

1, . . . , N − 1; and set

Gn1/2 = GnN+1/2 = Jn1/2 = JnN+1/2 = 0.
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(b) Calculate the total numerical fluxes

Fnj+1/2 = Gnj+1/2 − Jnj+1/2, j = 0, . . . , N.

(c) Calculate the percentage numerical fluxes

Pnj+1/2 =

Pnj+1 if Fnj+1/2 ≤ 0,

Pnj if Fnj+1/2 = 0,
j = 0, . . . , N.

(d) Calculate Xn+1
j for j = 1, . . . , N from the update formula (2.27).

(e) Calculate Pn+1
j for j = 1, . . . , N from the update formula (2.31).

(f) Calculate Xn+1
OHO,j = Pn+1

j Xn+1
j for j = 1, . . . , N .

(g) Calculate Xn+1
U,j = (1−Pn+1

j )Xn+1
j for j = 1, . . . , N . (This step is optional.)

(h) For each soluble substrate Υ ∈ {NO3,S,N2}, calculate the corresponding

numerical diffusive fluxes DnΥ,j+1/2 from (2.20), where SΥ,j = SnΥ,j and

SΥ,j+1 = SnΥ,j+1, for j = 1, . . . , N − 1, and set

DnΥ,1/2 = DnΥ,N+1/2 = 0.

(i) Calculate Sn+1
NO3,j

, Sn+1
S,j and Sn+1

N2,j
from the update formulas (2.28)–(2.30).

All calculations are based on explicit evaluations of update formulas, so the numerical

method can be readily implemented (for instance, in Fortran or any other programming

language). No solution of linear or nonlinear systems is necessary; it is not necessary

to appeal to any numerical solver or software (except, of course, for the visualization

of results).

2.3.4 A theoretical result

The idea is that the CFL condition should imply that the right-hand side of the update

formula for each variable is a monotone function of the same variables in all layers at

the previous time point. For example, the CFL condition (CFL) implies that the

right-hand side of (2.27) is a monotone function of the arguments Xn
j−1, Xn

j and Xn
j+1

(note that Xn
OHO,j = Pnj X

n
j ) for any values of the substrate concentrations and Pnj

appearing in the formula. A more comprehensive analysis can be found in [13], which

also contains results that imply the following theorem.
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Figure 2.2: Example 1 (Kynch test, dS = 10−6 m2 s−1). Here and in Figures 2.3
to 3.7, 2.9 and 2.10, the visual grid used to display the numerical solution is coarser
than the computational grid, and the plot of the solution for SNO3

has been rotated.
Reprinted from [13].

Theorem 2.3.1. Assume that the numerical scheme in Section 2.3.3 produces

Xn
j ≤ Xmax, for all j = 1, . . . , N and n = 1, . . . , nmax,

and that the CFL condition (CFL) holds. Then the following holds (j = 1, . . . , N and

n = 1, . . . , nmax):{
0 ≤ Xn

j , S
n
NO3,j , S

n
S,j , S

n
N2,j ,

0 ≤ Pnj ≤ 1
=⇒

{
0 ≤ Xn+1

j , Sn+1
NO3,j

, Sn+1
S,j , S

n+1
N2,j

,

0 ≤ Pn+1
j ≤ 1.

The theorem guarantees that if the variables are positive (rather, non-negative) ini-

tially, the numerical method will keep them positive. Likewise, percentage values Pnj
will stay between zero and one.
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2.4 Numerical results

For all tests we employ the hindered settling velocity function vhs and effective stress

function σe given by (2.10) and (2.11), respectively. The heterotrophic specific growth

rate µ is given in (2.8), and all other parameters are indicated in Table 3.1 (unless

otherwise stated). For the KT we simulated three different scenarios differing in the

choice of the diffusion coefficient dS (Examples 1 to 3), while the two scenarios consid-

ered for each of the DT (Examples 4 and 5) and OT (Examples 6 and 7) differ in the

initial concentration of particles.

In all numerical examples, we employ the explicit scheme with N = 100 layers for a

column of height B = 1 m. To properly represent the reaction dynamics we present

simulations up to t = T = 2 h, except for one long simulation of the KT, which is

run to T = 100 h. (This final time is quite irrealistic since the settling phase in an

SBR takes at most one hour. However, in this case we are interested in the long-time

predictions of the model and the numerical algorithm.) The time step ∆t is chosen by

98% of the bound given in the right-hand side of (CFL).

The initial values common to all examples are

S0
S = 9.00× 10−4 kg m−3 and S0

NO3
= 6.00× 10−3 kg m−3,

while we recall that by (2.6), the initial value of SN2 is zero.

2.4.1 Examples 1 to 3: Kynch test (batch settling of an initially ho-

mogeneous suspension)

In Examples 1–3, we simulate the settling of an initially homogeneous suspension of

initial density X0 = 3.5 kg m−3, which is divided into heterotrophs and undegradable

organics by p0 = 5/7 ≈ 0.7143, so that

XOHO(z, 0) = 2.5 kg m−3, XU(z, 0) = 1.0 kg m−3 for 0 < z < B.

We employ this configuration to assess the influence of the substrate diffusion coefficient

dS. Example 1 has been obtained by employing the default value dS = 10−6 m2 s−1

informed in Table 3.1. Figure 2.2 and 2.3 show the numerical results for all un-

knowns for T = 2 h and T = 100 h, respectively. We observe that the solids settle

downwards to the bottom rapidly and form a sludge blanket with a sharp interface

at Xc = 5 kg m−3. Moreover, the concentration increases downwards gradually until
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Figure 2.3: Example 1 (Kynch test, dS = 10−6 m2 s−1): long-time simulation (T =
100 h). Reprinted from [13].

reaching about 20 kg m−3 at the bottom. Here, and in Examples 2 to 7, the solutions

for all quantities are bounded and non-negative. The SNO3 plot indicates a very rapid

degradation of nitrate within the sludge blanket while that same quantity decays only

very slowly within the supernatant clear liquid. We observe the formation of readily

biodegradable substrate (of concentration SS) at the bottom of the column through

decay of heterotrophs. This is no longer degraded when all nitrate is depleted. Fur-

thermore, the solution for SN2 has a plateau at 6× 10−3 kg m−3, which is equal to the

initial value of SNO3 . This suggests that within the sludge blanket, almost all soluble

nitrate has been converted into nitrogen.

For this particular case we also present a simulation until T = 100 h to study the

long-time behaviour of the model. The results shown in Figure 2.3 illustrate that the

total solids concentration attains a maximum of about 20 kg m−3 at the bottom but

that this maximum, as well as the total solids mass, decay in time. Moreover, the

proportion of undegradable organics increases in time (as expected). The substrates
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Figure 2.4: Example 2 (Kynch test, dS = 9× 10−6 m2 s−1). Reprinted from [13].

slowly approach an equilibrium concentration as a consequence of their slow diffusive

movement.

Figures 2.4 and 2.5 show the corresponding results for the same scenario but with

increased values of the substrate diffusion parameter, namely dS = 9 × 10−6 m2 s−1

(Figure 2.4) and dS = 1.3 × 10−5 m2 s−1 (Figure 2.5). We observe that the changes

in this parameter practically do not affect the solids settling behaviour; the solutions

for X, XU and XOHO are virtually the same as in Example 1. However, differences

in the solution behaviour of the substrates are appreciable as can be seen for example

by the reduction in SNO3 at the top of the settling column at time t = 2 h when dS

increases. Roughly speaking, since increasing dS means increasing the diffusive flux

of each substrate, that is, the flow rate from regions of high concentration to those of

low concentration, we observe that the flux of nitrate into the sludge zone consistently

increases when comparing the results of Examples 1, 2, and 3. Since the degradation of

nitrate takes place due to reactions in that zone, we obtain that for this test, increasing

dS produces an overall more rapid denitrification. Corresponding differencs in solution

behaviour are visible with the two other substrates.
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Figure 2.5: Example 3 (Kynch test, dS = 1.3× 10−5 m2 s−1). Reprinted from [13].

2.4.2 Examples 4 and 5: Diehl test (batch settling of suspension ini-

tially located above clear liquid)

We here choose the following initial distribution of the solids:

X0(z) =

{
7 kg m−3 for 0 m < z ≤ 0.5 m,

0 for 0.5 m < z ≤ 1 m

for Example 4, and

X0(z) =

{
14 kg m−3 for 0 m < z ≤ 0.25 m,

0 for 0.25 m < z ≤ 1 m

for Example 5. All other parameters are chosen as in Example 1. Since the initial

total solids mass is the same as in Examples 1 to 3, results can be compared. The

numerical solutions are shown in Figures 3.6 and 3.7. We observe in both examples

that the initial body of sludge dilutes, forming a so-called rarefaction wave, the solids
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Figure 2.6: Example 4 (Diehl test, X(z, 0) = 7 kg m−3 above z = 0.5 m). Reprinted
from [13].

settle downward, and accumulate at the bottom to form a sludge layer. Under suitable

choices of parameters and initial concentrations, the solution behaviour of a Diehl

test produces a curved trajectory of the suspension-supernatant interface that does

not arise with a Kynch test, and that can be converted into certain portions of the

function fb. While this property has led us to propose a Diehl test as a device for

identification of fb [8, 18, 45], we use this configuration basically to test the numerical

method. We see that the solution for SNO3 is non-monotone (as a function of z for

fixed t), which is also reflected in the solution for SN2 . Comparing the SNO3 plot of

Figure 3.7 with that of Figure 2.2 shows that the total amount of nitrate at T = 2 h is

significantly smaller in Examples 4 and 5 than in Example 1. Consequently, the total

amount of dissolved nitrogen gas shows the opposite behaviour.
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Figure 2.7: Example 5 (Diehl test, X(z, 0) = 14 kg m−3 above z = 0.25 m).
Reprinted from [13].
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Figure 2.8: Examples 1 to 5: evolution of the approximate normalized nitrate
inventory I∆

N2
(t). Examples 1–3 show results of three KTs with increasing diffusion

coefficient dS, while Examples 4–5 show results of two DT with the same value on dS

as in Ex. 1. Properly elaboration, published in [13].
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In light of the latter observation we quantify the evolution of N2 in the system by

measuring the time-dependent average N2 concentration, defined by

IN2(t) :=
1

B

∫ B

0
SN2(z, t) dz.

For a given discretization ∆ := (∆z,∆t) and t = n∆t this quantity is approximated

by

I∆
N2

(t) :=
1

B

N∑
j=1

SnN2,j∆z =
1

N

N∑
j=1

SnN2,j .

Figure 2.8 displays the evolution of I∆
N2

(t) for Examples 1 to 5. Comparing the curves

for Examples 1, 2 and 3, we find confirmed that an increased value of the substrate

diffusion coefficient dS accelerates the denitrification process in the setup of the Kynch

test. However, dS is a model parameter that is not possible to control, so it is of more

practical interest to compare the results of Example 1 (KT) with those of Examples 4

and 5 (DT) (calculated with the same value of dS). Here we observe that the initial

rate of fairly rapid denitrification is the same in all of these three examples up to 30

minutes, but is maintained slightly longer in case of the DT, with the effect that the

portions of the curves corresponding to slow rates of denitrification (produced in the

consolidation stage after 30 mins) lie about 10% and 15%, in the respective cases of

the DT Examples 4 and 5, above that of the KT Example 1 for a couple of hours.

This result illustrates how the initial placement of solids mass may influence the rate

of denitrification. For long times, the right plot in Figure 2.8 shows that the curves

approach each other, which means that also a small diffusion dS makes the nitrate

slowly move down into the sediment where it is converted to nitrogen gas.

2.4.3 Examples 6 and 7: overcompressed test (expansion of com-

pressed sludge)

We utilize the same parameters as in Example 1 and place a highly compressed body

of sludge near the bottom of the column. Specifically, we choose

X(z, 0) =

{
0 for 0 m < z ≤ 0.7 m,

20 kg m−3 for 0.7 m < z ≤ 1 m
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Figure 2.9: Example 6 (overcompressed test, X(z, 0) = 20 kg m−3 below z = 0.5 m).
Reprinted from [13].

for Example 6 and

XOHO(z, 0) =

{
0 for 0 m < z ≤ 0.9 m,

25 kg m−3 for 0.9 m < z ≤ 1 m

for Example 7. The respective numerical results are shown in Figures 2.9 and 2.10.

In both cases, the compressed layer expands once the system starts to evolve. These

simulations alert to the limitations of modelling sediment compressibility by a nonlin-

ear diffusion term ∂2D(φ)/∂z2. This approach corresponds to elastic and in a sense

reversible material behaviour which is usually not observed with activated sludge in

reality. Describing this behaviour in an anomalous situation with more realism calls for

an improvement of the constitutive assumptions concerning sediment compressibility.

We emphasize, however, that this test produces an upward movement of solid parti-

cles, which is associated with negative values of the velocity v defined in (2.9) allowing

to test the numerical scheme under different conditions. The case discrimination in

(2.19), which goes back to the method by [43], has precisely been devised to handle
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Figure 2.10: Example 6 (overcompressed test, X(z, 0) = 25 kg m−3 below z =
0.9 m). Reprinted from [13].

this situation. Thus, Figures 2.9 and 2.10 demonstrate that the model is sound, and

the numerical scheme works properly, even for settling velocities of variable sign.

2.4.4 Numerical solution versus discretization

To illustrate the accuracy of the method, we plot in Figures 2.11 and 2.12 solutions

of Examples 1 and 4 obtained at two different times with fairly coarse discretizations,

N = 20 and N = 50, against a reference solution obtained with N = 3200 subintervals.

We observe that smooth portions of the solution profiles are approximated quite well

by approximate solutions at these coarse discretizations. Nevertheless, discontinuities

appear smeared out. Furthermore, to gain some systematic insight into how the nu-

merical solution behaves versus discretization, we calculated the approximate relative

error, defined at a fixed time point T , by adding the relative errors of the individual

components. The latter are obtained by dividing with the average masses at times
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zero and T for the reference solution:

mref
OHO(T ) :=

1

2

(
‖Xref

OHO(·, 0)‖L1 + ‖Xref
OHO(·, T )‖L1

)
, where ‖h‖L1 :=

∫ B

0
h(z) dz,

and similarly for the other variables. Both the masses at times zero and T are used

as some component may be zero at either of those two time points because of the

reactions. We define the normalized relative error

erel
N (T ) :=

‖(XOHO −Xref
OHO)(·, T )‖L1

mref
OHO(T )

+
‖(XU −Xref

U )(·, T )‖L1

mref
U (T )

+
‖(SNO3 − Sref

NO3
)(·, T )‖L1

mref
NO3

(T )
+
‖(SN2 − Sref

N2
)(·, T )‖L1

mref
N2

(T )

+
‖(SS − Sref

S )(·, T )‖L1

mref
S (T )

,

and the observed convergence rate between two discretizations with N = N1 and N =

N2

θ := − log(erel
N1
/erel
N2

)/ log(N1/N2).

Our results, collected in Table 2.2, are consistent with the fact that the scheme is

formally first-order accurate in space and time, and moreover the approximate solutions

exhibit discontinuities. Of course, while these results suggest that the scheme converges

to a definite limit function, a rigorous convergence proof is still lacking. Furthermore,

the CFL condition (CFL), which determines the admissible time step ∆t for a given

spatial discretization ∆z, essentially imposes that ∆t ∼ ∆z2. This means that if one

halves the spatial discretization ∆z, or equivalently, doubles N (to increase accuracy)

and chooses ∆t according to (CFL), then one should expect that the total CPU time

to solve the problem to a final time increases by a factor of eight. The CPU times

reported in Table 2.2 indicate that this is indeed the case.
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Figure 2.11: Example 1 (Kynch test): comparison between a reference solution
(N = 3200) and two fastly obtained simple numerical solutions (N = 20 and N = 50)
at simulated times T = 4 min (top row and half of second row) and T = 30 min
(half of second row and bottom row), showing results (in order) for X, SNO3

and SS.
Properly elaboration, published in [13].
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Figure 2.12: Example 4 (Diehl test): comparison between a reference solution (N =
3200) and two fast obtained simple numerical solutions (N = 20 and N = 50) at
simulated times T = 6 min (top row and half of second row) and T = 30 min (half of
second row and bottom row), showing results (in order) for X SNO3

and SS. Properly
elaboration, published in [13].
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Table 2.2: Examples 1 and 4: approximate relative errors erel
N , convergence rates

θ (calculated between neighboring values of N) and CPU times for two different
simulated times (cf. Figures ?? and 3.9). Properly elaboration, published in [13].

Example 1, T = 4 min Example 1, T = 30 min

N erel
N θ CPU [s] erel

N θ CPU [s]

20 0.066 — 0.0076 0.195 — 0.0163
50 0.020 1.765 0.0255 0.073 1.423 0.1533

100 0.011 0.788 0.1770 0.037 0.980 1.2127
200 0.005 1.262 1.3987 0.017 1.117 8.8516
400 0.002 1.191 9.5642 0.008 1.077 56.3849
800 0.001 0.783 63.8714 0.003 1.210 432.2561

Example 4, T = 6 min Example 4, T = 30 min

N erel
N θ CPU [s] erel

N θ CPU [s]

20 0.147 — 0.0016 0.087 — 0.0132
50 0.077 0.925 0.0148 0.035 1.309 0.1512

100 0.047 0.727 0.1141 0.021 0.777 1.1988
200 0.028 0.759 0.8956 0.011 0.944 9.8084
400 0.015 0.868 7.1999 0.006 0.916 55.8816
800 0.008 1.003 39.6432 0.003 1.127 423.4776



Chapter 3

A difference scheme for a

degenerating

convection-diffusion-reaction

system modelling continuous

sedimentation

3.1 Introduction

The separation of fine solid particles from a liquid by gravity under continuous flows in

and out of large tanks is a unit operation in wastewater treatment, mineral processing,

hydrometallurgy, and other applications. Since gravity acts in one dimension and

computational resources for simulations are limited, spatially one-dimensional models

are common. The continuous sedimentation of a suspension subject to applied feed

and bulk flows, hindered settling and sediment compressibility can be modelled by a

nonlinear, strongly degenerate parabolic PDE for the solids concentration X = X(z, t)

as a function of depth z and time t [27]. This PDE is based on the solid and liquid

mass balances, and its coefficients depend discontinuously on z.

Important applications also involve chemical reactions between different components

of the solid and liquid phases. In wastewater treatment, there are biokinetic reactions

between flocculated activated sludge (bacteria) and substrates (nutrients) dissolved in

43
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the liquid. This work combines the model of continuous sedimentation with compres-

sion [27] with a description of the transport and reaction of these components. The

final model can be written as the system of PDEs

∂X

∂t
+

∂

∂z

(
F(X, z, t)− γ(z)∂zD(X)

)
= AX(X,pX , p̄L, z, t),

(3.1a)

∂(pXX)

∂t
+

∂

∂z

(
pX
(
F(X, z, t)− γ(z)∂zD(X)

))
= AX(X,pX , p̄L, z, t),

(3.1b)

∂(p̄Ll1(X))

∂t
+

∂

∂z

(
p̄Ll2

(
F(X, z, t)− γ(z)∂zD(X), z, t

))
= AL(X,pX , p̄L, z, t) (3.1c)

for z ∈ R and t > 0, along with suitable initial conditions. The convective flux

function F describes the bulk flow and hindered settling, while the function D accounts

for sediment compressibility. The characteristic function γ distinguishes between the

interior and the exterior of the settling tank, i.e., γ(z) = 1 if −H < z < B and

γ(z) = 0 outside; see Figure 3.1 (a). Both F and D depend nonlinearly on X and

discontinuously on z, and it is assumed that D = 0 on an X-interval of positive length,

so the model is strongly degenerate and its solutions will, in general, be discontinuous.

Moreover, pX = pX(z, t) and p̄L = p̄L(z, t) are vectors of unknown (mass) percentages

of components of the solid and liquid phases, l1 and l2 are certain given functions,

and AX , AX and AL are algebraic expressions that stand for given feed and reaction

terms. (Precise definitions and assumptions are provided in Section 3.2.)

We herein derive the new model (3.1) from volume and mass balances and common

constitutive assumptions on the relative velocity between the two phases and on the

reactions between components. One can insert any suitable constitutive functions that

model the effects of hindered settling, compression and biochemical reactions. The

model equations are written in a form suitable for explicit numerical methods where

the equations in (3.1) are solved consecutively. We derive a difference scheme that

combines the approach of [20, 27] for the non-reactive case (i.e., suitable for (3.1a) in

the absence of reactions) with the numerical percentage transport introduced in [43] for

a related multi-component, non-reactive model. The main mathematical result is an

invariant-region principle proved under a suitable CFL condition. This result ensures

that numerical solutions are physically relevant and, in particular, non-negative. Sev-

eral examples illustrate the predictions of the new model and the convergence property

of the scheme.
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3.1.1 Related work

For the non-reactive case, the first model for the hyperbolic case (D ≡ 0) [41] described

hindered settling, and was extended in [27] by a strongly degenerating diffusion function

D 6≡ 0 to include sediment compression at high solids concentrations. The discontin-

uous dependence of F on z and the presence of γ(z) arise from the description of

the inlet and outlet streams of the sedimentation tank. Therefore, in the non-reactive

case, (3.1a) represents an application of the theory of first-order conservation laws with

discontinuous flux and its extensions to degenerate parabolic PDEs. It is well known

that solutions of such equations are in general discontinuous and need to be defined as

weak solutions along with a selection criterion or entropy condition to ensure unique-

ness. The main mathematical issues posed by (3.1a) are to find suitable uniqueness

conditions and establish well-posedness [27, 40, 46, 62], as well as to define numerical

schemes that provably converge to the unique solution [25]. The well-posedness and

numerical analysis of [27] is strongly based on the work by Karlsen, Risebro and Towers

[79, 81, 82]. Versions of the scalar equation (3.1a) are still topic of current research in

numerical analysis: adaptive resolution schemes for the case AX ≡ 0 can be found in

[30], monotone entropy stable schemes for the case D ≡ 0 and AX ≡ 0 in [1], and a

convergence rate in the case AX ≡ 0 with several spatial variables is derived in [80].

The well-posedness and numerical analysis of the non-reactive version of (3.1a) has

led to a recent simulation model for secondary settling tanks (SSTs) in wastewater

treatment and an adhering numerical scheme [20, 24]. That model has shown to give

more realistic predictions than previous standard models [92, 120].

There are several motivations for extending our previous non-reactive model to the

system (3.1). In both mineral processing and wastewater treatment, liquid flocculant

added to the suspension sticks to the small particles so that larger flocs are formed

and thereby their settling velocity increased. The importance of reactive sedimenta-

tion in wastewater treatment has been demonstrated in [3, 57, 60, 65, 67, 93, 100].

Similar phenomena modelled by PDEs are flocculation in mineral processing [110],

multi-component two-phase flow in porous media [4, 10] and particle-size segregation

in granular avalanches [64]. Another application with potential modelling advantages

is counter-current “washing” of solids, a process of solvent extraction in hydrometal-

lurgy by coupling a series of clarifier-thickeners [116]. A system of PDEs modelling

two-dimensional hydrodynamics coupled to biological reactions for algal growth and a

numerical scheme can be found in [11].

A PDE model and numerical scheme for batch sedimentation (closed vessel) of two

particulate components including a reduced biokinetic model were presented in [13].
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Figure 3.1: (a) An ideal secondary settling tank (SST) with variables of the feed
inlet, effluent and underflow indexed with f, e and u, respectively. The effluent,
clarification, thickening, and underflow zones correspond to the respective intervals
z < −H, −H < z < 0, 0 < z < B, and z > B. The sludge blanket (concentration
discontinuity) separates the hindered settling zone and the compression zone. (b)
Aligned illustration of the subdivision of the SST into layers (see Section 3.3). The
SST is divided into N internal computational cells, or layers, of depth ∆z = (B +
H)/N . Reprinted from [23].

The movements of the substrates were only modelled by simple diffusion. In the

examples herein we use the same biokinetic denitrification reactions as in [13].

Positivity preservation of numerical scheme for conservation laws [5, 101] is a challenge

in itself. Standard numerical fluxes for finite volume schemes do not preserve the

fundamental requirements that the mass percentages belong to the interval [0, 1] and

their sum is always equal to one [74]. This is, however, handled by our numerical

scheme.
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3.1.2 Outline of the remainder of this chapter

In Section 3.2, the model is derived. To this end, we introduce in Section 3.2 the

concept of an ideal secondary settling tank (SST) (see Figure 3.1), the model variables

and some fundamental assumptions. Simplifying assumptions typical of wastewater

treatment are collected in Section 3.2.1. The mathematical model, based on conserva-

tion laws, is stated in Section 3.2.2. To convert it into an equivalent model suitable

for simulation, we first replace (in Section 3.2.3) the abstract solid and fluid phase ve-

locities by a mixture bulk velocity, expressed by the given volumetric flows and model

variables, and a solid-fluid relative velocity, prescribed by constitutive functions. Next,

in Section 3.2.4 we derive explicit expressions for the total fluxes of the solid and liquid

phases, and after further reformulations arrive in Section 3.2.5 at the model in final,

solvable form akin to (3.1). To close the model we introduce in Section 3.2.6 constitu-

tive functions for hindered and compressive settling, and address in Section 3.2.7 the

choice of initial data and feed input functions for a reactive model of denitrification. In

Section 3.3, a numerical scheme is derived along with a CFL condition and an invari-

ant region property. This is done via a method-of-lines discretization (Section 3.3.1)

that combines ingredients from [24] and [48]. A time discretization leading to a fully

discrete scheme is introduced in Section 3.3.2, and the corresponding CFL condition is

stated in Section 3.3.3. Section 3.3.4 is devoted to the proof, via several lemmas that

appeal to monotonicity arguments, of the main mathematical result, Theorem 3.3.1,

which states that the scheme satisfies an invariant-region principle. In Section 3.4, we

present numerical examples for a reaction model of denitrification. These illustrate

the response of the SST to variations of the feed inputs and the impact of different

constitutive assumptions. Section 3.4.4 contains estimations of the corresponding error

and convergence rate.

3.2 Model formulation

In mineral processing and hydrometallurgy, continuously operated sedimentation tanks

are usually referred to as “clarifier-thickeners” or simply “thickeners”, and in wastew-

ater treatment (our main motivation) as “secondary clarifiers” or “secondary settling

tanks” (SSTs). The ideal SST, shown in Figure 3.1 (a), has a constant cross-sectional

area A. The concentration of each component is assumed to depend only on time t

and depth z measured from the feed inlet located at z = 0. The balance laws that

make up the model hold for z ∈ R, have coefficients that are spatially discontinuous at

z = −H, 0 and B, and need no boundary condition. The suspension is constituted by
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the solid phase that consists of particles and the liquid phase that consists of substrates

dissolved in water.

The total concentration of particles (or the solid phase) is denoted by X(z, t). Each

(flocculated) multi-component particle is assumed to consist of a number kX of com-

ponents described by the (mass) percentage vector

pX =
(
p

(1)
X , p

(2)
X , . . . , p

(kX)
X

)T
, where p

(1)
X + · · ·+ p

(kX)
X = 1. (3.2)

The effluent concentration is Xe(t) := limε→0+ X(−H − ε, t). The underflow concen-

tration Xu and the percentage vectors pX,e and pX,u are defined analogously. The

concentrations of all solid components are

pXX =: C =
(
C(1), . . . , C(kL)

)T
.

For X = 0 the values of pX are irrelevant; however, they should always satisfy (3.2).

The total concentration of the liquid phase is denoted by L(z, t). The percentage vector

pL and the concentrations at the in- and outlets are defined in the same way as for

the solid phase. We assign the last percentage p
(kL)
L for the water component, which

is much larger than the percentages of the soluble components p
(i)
L , i = 1, . . . , kL − 1.

If the concentrations of the soluble components are contained in the vector

S =
(
S(1), . . . , S(kL−1)

)T
and W denotes the water component, then

pLL =

(
S

W

)
, where W = p

(kL)
L L =

(
1−

kL−1∑
i=1

p
(i)
L

)
L = L−

kL−1∑
i=1

S(i). (3.3)

The concentrations Xf , Lf , percentage vectors pX,f , pL,f , and volumetric flows Qf ≥
Qu > 0 are given functions of t. It turns out that the effluent volumetric flow

Qe(t;C,S) generally depends on unknown variables via the reaction terms; see Sec-

tion 3.2.3. We define qf := Qf/A, qe := Qe/A and qu := Qf/A.

The density of the solid phase ρX is assumed to be constant and much greater than

the maximum packing concentration of the solids Xmax.

The (unknown) solid and liquid phase velocities are denoted by vX = vX(z, t) and

vL = vL(z, t), respectively. Inside the SST, the particles undergo hindered settling and

compression according to some constitutive function (see Section 3.2.6) for the relative
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velocity

vX − vL =: vrel = vrel(X, ∂X/∂z). (3.4)

In the effluent and underflow zones, both phases move at the same velocity, i.e.,

vrel := 0 for z < −H and z ≥ B. (3.5)

The reaction terms for all particulate and soluble components are collected in the

vectors RX(C,S) of length kX and RL(C,S) of length kL. We define

R̃X(C,S) :=

kX∑
i=1

R
(i)
X (C,S), R̃L(C,S) :=

kL∑
i=1

R
(i)
L (C,S).

We assume that every volume of the suspension initially contains either of the two

phases in the SST and always for the feed input. For a small volume V = VX + VL of

suspension, where VX and VL are the respective volume of each phase, the masses of

the two phases in V can be expressed as ρXVX = XV and ρLVL = LV , respectively.

Remark 3.2.1. To allow for defining local values of density, concentration and vol-

ume fraction, the volume V should be sufficiently small but contain enough particles

to be representative. We refer to [53] for a discussion including different definitions

involving, e.g., the average or expected values of VX and the mass mX such that the

limit limV→0+ mX/VX exists and can define the density ρX .

3.2.1 Specific assumptions for wastewater treatment

The assumptions stated so far refer to any application. The further analysis will,

however, rely on some simplifying assumptions typical of wastewater treatment with

biological reactions. Since the liquid phase in the feed inlet consists almost entirely of

water, the density of the liquid phase ρL is assumed to be constant.

The water concentration W = p
(kL)
L L does not influence, nor is influenced by, any

reaction, so that R
(kL)
L = 0. We assume zero growth of bacteria when there is no, i.e.,

RX,j(0,S) = 0, and allow that a zero soluble substrate concentration may increase

due to decay of bacteria, that is, RL,j(C,0) ≥ 0 (non-negative components). We also

assume that that if one component is not present, i.e. p
(k)
X = 0, then there cannot vanish

any such material, i.e.,

R
(k)
X (pXX,S)

∣∣
p

(k)
X =0

≥ 0, (3.6)
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and similarly for the substrate reaction functions RL. Furthermore, we assume that

there is no reaction in the effluent and underflow regions. Finally, the following as-

sumptions are technical but not restrictive for the application:

R̃X(pXXmax,S) = 0, vrel(Xmax, ∂zX) = 0. (3.7)

The former states that the bacteria cannot grow when they have reached the maximum

concentration Xmax and the latter that the particles follow the liquid flow at Xmax.

3.2.2 Balance equations

The fundamental equation that every volume of the suspension contains either of the

two phases can be written as

VX + VL = V ⇔ X

ρX
+

L

ρL
= 1 ⇔ L = ρL − rX, where r :=

ρL
ρX

. (3.8)

We assume that this is satisfied at t = 0 within the SST and always for the given feed

concentrations; Xf/ρX + Lf/ρL = 1. The assumption ρX > Xmax implies that always

L > 0.

The conservation of mass for each particulate and soluble/liquid component and the

requirements of the percentages imply the following system of equations for z ∈ R and

t > 0, where δ(z) is the delta function:

∂(pXX)

∂t
+
∂(pXXvX)

∂z
= δ(z)pX,fXfqf + γ(z)RX(C,S), (3.9a)

∂(pLL)

∂t
+
∂(pLLvL)

∂z
= δ(z)pL,fLfqf + γ(z)RL(C,S), (3.9b)

p
(1)
X + · · ·+ p

(kX)
X = 1, (3.9c)

p
(1)
L + · · ·+ p

(kL)
L = 1. (3.9d)

3.2.3 Phase, bulk and relative velocities

The full set of kX+kL+4 balance equations are (3.4), (3.8) and (3.9), and the unknowns

are pX , X, vX , pL, L and vL. We now reduce the number of equations by eliminating

the variables vX and vL. To this end, we first replace them by vrel and the average bulk

velocity of the suspension q, and then express q in terms of the rest of the unknowns.
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Lema 3.2.1. Equations (3.9a) and (3.9c) are equivalent to (3.9a) and

∂X

∂t
+
∂(XvX)

∂z
= δ(z)Xfqf + γ(z)R̃X . (3.10)

Analogously, (3.9b) and (3.9d) are equivalent to (3.9b) and

∂L

∂t
+
∂(LvL)

∂z
= δ(z)Lfqf + γ(z)R̃L. (3.11)

Proof. Summing all equations in (3.9a), using (3.9c) and that pX,f satisfies (3.2), we

get (3.10). Conversely, summing all equations in (3.9a) and subtracting (3.10) im-

plies (3.9c).

Second part is solved similarly to the first part.

With the volume fraction of the solid phase φ := VX/V , we have X = ρXφ and

L = ρL(1 − φ), cf. (3.8). Analogously, the feed inlet concentrations can be written as

Xf = ρXφf and Lf = ρL(1− φf). Substituting these expressions into (3.10) and (3.11)

and dividing by the constant densities ρX and ρL, respectively, we get

∂φ

∂t
+
∂(φvX)

∂z
= δ(z)φfqf + γ(z)

R̃X
ρX

,

∂(1− φ)

∂t
+
∂
(
(1− φ)vL

)
∂z

= δ(z)(1− φf)qf + γ(z)
R̃L
ρL

.

Adding these two equations and defining the average bulk velocity and a weighted

reaction function:

q(z, t) := φvX(z, t) + (1− φ)vL(z, t), (3.12)

R(C,S) :=
R̃X(C,S)

ρX
+
R̃L(C,S)

ρL
, (3.13)

we get an equation without any time derivative:

∂zq = δ(z)qf + γ(z)R(C,S). (3.14)

We can express vX and vL in terms of q and vrel since (3.4) and (3.12) are equivalent

to

vX = q + v, where v := (1− φ)vrel, (3.15)

vL = q − φvrel. (3.16)
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We now derive an explicit expression for q. In view of (3.5), (3.12) implies:

q(z, t) =

{
vX(z, t) = vL(z, t) = −qe(t) for z ≤ −H,

vX(z, t) = vL(z, t) = qu(t) for z ≥ B,
(3.17)

where qu is known and qe is unknown. We integrate (3.14) from z to B to get

q(z, t;C,S) = q(B, t)−
∫ B

z

(
δ(ξ)qf(t) + γ(ξ)R

(
C(ξ, t),S(ξ, t)

))
dξ. (3.18)

The following function describes the additional bulk velocity due to the reactions:

qreac(z;C,S) :=

∫ B

z
γ(ξ)R(C,S) dξ. (3.19)

Since by (3.17), q(B, t) = qu(t), we may express q in terms of the unknowns as follows:

q(z, t;C,S) :=


qu(t)− qf(t)− qreac(−H;C,S) for z ≤ −H,

qu(t)− qf(t)− qreac(z;C,S) for −H < z < 0,

qu(t)− qreac(z;C,S) for 0 < z < B,

qu(t) for z ≥ B.

(3.20)

Moreover, (3.17) states that q(z, t) = −qe(t) for z ≤ −H, so (3.20) defines the effluent

bulk velocity in terms of the unknowns: qe(t;C,S) = qf(t)− qu(t) + qreac(−H;C,S).

3.2.4 Solid and liquid total fluxes

The flux functions of the PDEs (3.10) for X and (3.11) for L can, by means of (3.15)

and (3.16), be written as

XvX = Xq +Xv, (3.21)

LvL = ρL(1− φ)(q − φvrel) = ρL
(
(1− φ)q − φv

)
= ρL

(
q − Xq +Xv

ρX

)
. (3.22)

Thus, we define the total fluxes in terms of q and v = (1− φ)vrel as follows:

FX := Xq +Xv = Xq +X

(
1− X

ρX

)
vrel, (3.23)

FL := ρLq − rFX ⇔ FX
ρX

+
FL
ρL

= q. (3.24)
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With q defined by (3.20), FX by (3.23) and FL by (3.24) we get the following governing

equations, which neither contain vX nor vL:

∂(pXX)

∂t
+
∂(pXFX)

∂z
= δ(z)pX,fXfqf + γ(z)RX(C,S), (3.25a)

∂(pLL)

∂t
+
∂(pLFL)

∂z
= δ(z)pL,fLfqf + γ(z)RL(C,S), (3.25b)

p
(1)
X + · · ·+ p

(kX)
X = 1, (3.25c)

p
(1)
L + · · ·+ p

(kL)
L = 1. (3.25d)

The proof of the following lemma is analogous to that of Lemma 3.2.1.

Lema 3.2.2. Equations (3.25a) and (3.25c) are equivalent to (3.25a) and

∂X

∂t
+
∂FX
∂z

= δ(z)Xfqf + γ(z)R̃X . (3.26)

Analogously, (3.25b) and (3.25d) are equivalent to (3.25b) and

∂L

∂t
+
∂FL
∂z

= δ(z)Lfqf + γ(z)R̃L. (3.27)

Lema 3.2.3. Equations (3.26) and (3.27) are equivalent to (3.26) and (3.8).

Proof. Dividing (3.26) by ρX , (3.27) by ρL and summing these two equations, we get

the following equation which can replace (3.27) (with maintained equivalence):

∂

∂t

(
X

ρX
+

L

ρL

)
+

∂

∂z

(
FX
ρX

+
FL
ρL

)
= δ(z)qf

(
Xf

ρX
+
Lf

ρL

)
+ γ(z)

(
R̃X
ρX

+
R̃L
ρL

)
All terms except the first cancel. This is because of the equality (3.24), the expression

(3.18) for q and the definition of R in (3.13). The remaining equation is

∂

∂t

(
X

ρX
+

L

ρL

)
= 0 ⇔ ∂

∂t

(
VX
V

+
VL
V

)
= 0 ⇔ VX

V
+
VL
V

= g(z),

where the function g(z) must be equal to one, since it is at time t = 0 by assumption.

Hence, the remaining equation is equivalent to (3.8).

Lema 3.2.4. Equations (3.4), (3.8) and (3.9) are equivalent to the governing equations

(3.25).
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Proof. Lemma 3.2.1 states that (3.9c) and (3.9d) can be replaced (keeping the equiv-

alence) by (3.10) and (3.11). Equations (3.4) and (3.8) imply via (3.21)–(3.24) that

XvX = FX and LvL = FL. Hence, (3.10) and (3.11) are equivalent to (3.26) and

(3.27), which by Lemma 3.2.2 can be replaced by (3.25c) and (3.25d). For the other

implication, we should prove that (3.4), (3.8), FX = XvX and FL = LvL hold.

Lemma 3.2.2 implies first that (3.25c) and (3.25d) can be replaced by (3.26) and (3.27).

Then Lemma 3.2.3 implies (3.8). By (3.15) and (3.16), (3.4) is directly satisfied and

FX = X(q + v) = XvX . With this equality and φ = X/ρX , we obtain from (3.12)

FX/ρX + (1 − X/ρX)vL = q. Substituting this into the definition of FL (3.24), we

get FL = ρL(q − rFX) = (ρL − rX)vL = LvL, where the last equality follows from

(3.8).

3.2.5 Model equations in final form

We observe that the last scalar equation of (3.25b) determines p
(kL)
L for the water

component of the liquid. This variable does not appear in any other equation. A

simpler equation to determine p
(kL)
L is (3.25d). Let the notation with a bar p̄L denote

the first kL − 1 components of pL.

Theorem 3.2.1. The balance equations (3.4) and (3.9) are equivalent to the following

set of model equations defined for z ∈ R and t > 0:

∂X

∂t
+
∂FX
∂z

= δ(z)Xfqf + γ(z)R̃X , (3.28a)

∂(pXX)

∂t
+
∂(pXFX)

∂z
= δ(z)pX,fXfqf + γ(z)RX , (3.28b)

L = ρL − rX, (3.28c)

∂(p̄LL)

∂t
+
∂(p̄LFL)

∂z
= δ(z)p̄L,fLfqf + γ(z)R̄L, where FL = ρLq − rFX , (3.28d)

p
(kL)
L = 1−

(
p

(1)
L + · · ·+ p

(kL−1)
L

)
. (3.28e)

Proof. We apply Lemmas 3.2.4, 3.2.2 and 3.2.3 (in that order) to obtain equivalently

(3.28a)–(3.28c) and (3.25b). It remains to prove that (3.25b) can be split into (3.28d)

and (3.28e). Lemma 3.2.3 states that we can replace (3.28c) by (3.27), which in turn

by Lemma 3.2.2 can be replaced by (3.28e). Conversely, summing the equations in

(3.28d), recalling that R
(kL)
L = 0 and using (3.28e), we get

∂

∂t

(
(1− p(kL)

L )L
)

+
∂

∂z

(
(1− p(kL)

L )FL
)

= δ(z)(1− p(kL)
L,f )Lfqf + γ(z)R̃L
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Now subtract (3.27) to obtain the last equation of (3.25b).

The formulation (3.28) has two advantages. Firstly, for a numerical method with ex-

plicit time stepping, the new value of X is obtained by solving (3.28a) only. Then pX
is updated by (3.28b), etc. Secondly, this form of the governing equations yields the

invariant-region property of the numerical scheme (see Theorem 3.3.1), which states

that the solution stays in the following region (vectors in inequalities should be inter-

preted component-wise):

Ω :=
{
U ∈ RkX+kL+2 : 0 ≤ pX ,pL ≤ 1, 0 ≤ X ≤ Xmax,

ρL − rXmax ≤ L ≤ ρL, p(1)
X + · · ·+ p

(kX)
X = 1, p

(1)
L + · · ·+ p

(kL)
L = 1

}
.

We have no proof that an exact solution of system (3.28) stays in Ω if the initial

datum does since the well-posedness (existence and uniqueness) analysis of the model

is not yet concluded, and a suitable concept of a (discontinuous) exact solution is not

yet established. However, it is reasonable to expect that an exact solution of (3.28)

should also assume values within Ω. To support this conjecture, we mention first that

the invariant region property proved herein holds uniformly for approximate solutions,

and therefore will hold for any limit to which the scheme converges as discretization

parameters tend to zero. In fact, in some previous work on related models the existence

of an exact solution is proved by convergence of a suitable numerical scheme [25, 27, 81],

where the convergence proofs involve a uniform L∞ bound, that is, a simple form of

an invariant-region principle. For instance, consider the Cauchy problem for the scalar

equation (3.28a) without the reaction term (R̄X ≡ 0). Bürger et al. [27] proved the

existence of a solution X = X(z, t), which has the interval [0, Xmax] as invariant region,

via the convergence of an explicit numerical scheme. With the properties of the reaction

term here, namely that R̃X = 0 if X = 0 or X = Xmax, the invariance property of

the numerical scheme follows with the arguments of the proof of Lemma 3.3.3 (in

Section 3.3.4). The convergence of that scheme with a reaction term being a function

of X only (and utilizing that it is zero for X = 0 or X = Xmax) can be established by

modifying the proof in [27].

Another important property of (3.28) is its hyberbolicity, that is, in those regions where

the governing system of PDEs reduces to a first-order system of conservation laws, the

corresponding flux Jacobian should have real eigenvalues only. To verify satisfaction of

this property here, we assume for a moment that FX is a convective flux function, i.e.,

a function of X only (vrel is a function of X only; see (3.23)). Then the system (3.28)
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is of first order where the Jacobian is the same as for the homogeneous system

∂

∂t

 X

pXX

p̄LL

+
∂

∂z


FX

(pXX)
FX
X

(p̄LL)
FL
L

 = 0,

that is, since FX , FL and L are functions of X, its Jacobian is a lower triangular matrix

with the diagonal(
F ′X(X),

FX(X)

X
, . . . ,

FX(X)

X
,
FL(X)

L
, . . . ,

FL(X)

L

)
.

Since these entries are real, the system is hyperbolic. In the next subsection, we will

assume a constitutive assumption that implies that the system (3.28) in addition to

the convective flux has second-order derivatives.

3.2.6 Constitutive assumptions for hindered and compressive settling

Consistently with [13, 24, 27] we assume that vrel = v/(1− φ), where

v = v(X, ∂X/∂z, z) := γ(z)vhs(X)

(
1− ρXσ

′
e(X)

Xg(ρX − ρL)

∂X

∂z

)
.

Here, vhs is the hindered settling velocity and σe the effective solids stress, for which

constitutive functions are needed; see Section 3.4. We require that σe(X) = 0 for

X < Xc, where Xc is a critical concentration above which the particles form a network,

and σ′e(X) ≥ 0 for X > Xc (see [27]). It is convenient to define

fb(X) := Xvhs(X), d(X) := vhs(X)
ρXσ

′
e(X)

g(ρX − ρL)
, D(X) :=

∫ X

Xc

d(s) ds.

With the batch settling flux function fb(X), the total particulate flux (3.23) becomes

FX(X, ∂X/∂z, z, t) = Xq(z, t) + γ(z)

(
fb(X)− ∂D(X)

∂z

)
. (3.29)

Remark 3.2.2. We verify that the final model can be expressed as (3.1) when the reac-

tive bulk velocity is neglected, i.e., qreac := 0. Then (3.20) implies that q = q(z, t), and

comparing (3.1a) with (3.28a) and (3.29), we get F(X, z, t) = Xq(z, t) + γ(z)fb(X).

Moreover, by (3.8) we can express L = l1(X) := ρL − rX. Thus, all variables pX , X,
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pL, L, S and C can be expressed in terms of pX , p̄L and X, so that the right-hand sides

of (3.28a), (3.28b) and (3.28d) can be written as functions AX , AX and AL, respec-

tively, of (X,pX , p̄X , z, t). Finally, (3.24) gives FL = l2(FX , z, t) := ρLq(z, t)− rFX .

3.2.7 Initial data and feed input functions

Initial data at t = 0, namely

X(z, 0) = X0(z), pX(z, 0) = p0
X(z), pL(z, 0) = p0

L(z), L(z, 0) = L0(z), z ∈ R

are obtained either from direct information on the particulate total concentrationX0(z)

and the percentage vector p0
X(z), or from given component concentrations:

p0
XX

0 = C0 =
(
C(1),0, . . . , C(kX),0

)T
.

In the latter case, summation yields

X0 = X0
(
p

(1),0
X + · · ·+ p

(kX),0
X

)
= C(1),0 + · · ·+ C(kX),0 and p0

X = C0/X0.

If S0 = (S(1),0, S(2),0, . . . , S(kL−1),0)T denotes the initial soluble concentrations, then

(3.8) and (3.3) give L0 = ρL − rX0 and

p0
L =

(
S0/L0

1−∑kL−1
i=1 S(i),0/L0

)
.

The feed input functions pX,f(t), Xf(t), pL,f(t) and Lf(t) are defined analogously.

3.3 A numerical scheme

As in [18], we divide the SST into N internal computational cells, or layers, of depth

∆z = (B +H)/N ; see Figure 3.1 (b). The midpoint of layer j is assumed to have the

coordinate zj , hence the layer is the interval [zj−1/2, zj+1/2]. Layer 1, the top layer in

the clarification zone, is thus [z1/2, z3/2] = [−H,−H + ∆z], and the bottom location is

z = zN+1/2 = B. We define jf to be the smallest integer larger than or equal to H/∆z,

i.e., jf := dH/∆ze. Then the feed inlet (z = 0) is located in layer jf (the feed layer).

Layers −1 and N + 1 have been added to obtain the correct effluent and underflow

concentrations, respectively. The average values of the unknowns in each layer j are

denoted by PX,j = PX,j(t), Xj = Xj(t), etc. The unknown output functions at the
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effluent and underflow are Xe(t) := X0(t), Xu(t) := XN+1(t), etc. To simplify formulas

below, we use two mirror cells and set X−1 := X0, XN+2 := XN+1 and analogously

for the other variables.

3.3.1 Spatial discretization

The computational domain is composed of N + 2 intervals and one needs to define

numerical fluxes for N + 3 layer boundaries. Except for the reaction term, (3.28a) is

a model for which a working numerical scheme is available [18]. The reaction term

depends on all variables, and is strongly coupled to the other equations via the total

flux (3.29), which contains the bulk velocity q = q(z, t,C,S), which, in contrast to

the non-reactive case, depends on the unknown concentrations via qreac in (3.19) and

(3.20). This function is well defined at zj+1/2 because of the integration in (3.19). For

piecewise constant functions in each layer, i.e. X(z, t) = Xj , z ∈ (zj−1/2, zj+1/2], etc.,

we obtain

qreac
j+1/2 := qreac(zj+1/2) :=

{∑N
i=j+1 γiRi∆z for j = −1, . . . , N − 1,

0 for j = N,N + 1,
(3.30)

where we recall that R = 0 outside the SST, and then define qj+1/2 := q(zj+1/2, t) in

accordance with (3.20):

qj+1/2 =


qu(t)− qf(t)−

∑N
i=j+1Ri∆z for j = −1, . . . , jf − 1,

qu(t)−∑N
i=j+1Ri∆z for j = jf , . . . , N − 1,

qu(t) for j = N,N + 1.

(3.31)

The first bulk flow term qX of (3.29) can be handled by a standard upwind flux:

Bj+1/2 :=

{
qj+1/2Xj+1 if qj+1/2 ≤ 0,

qj+1/2Xj if qj+1/2 > 0,
j = −1, . . . , N + 1. (3.32)

The rest of the terms of (3.29) are only non-zero (strictly) inside the SST. We de-

fine γj+1/2 := γ(zj+1/2) (recall that γ(−H) = γ(B) = 0) and define the numerical

convective flux Gj+1/2 for j = −1, . . . , N + 1 by means of the Godunov flux G:

Gj+1/2 := γj+1/2G(Xj , Xj+1), where G(u, v) :=


min

u≤X≤v
fb(X) if u ≤ v,

max
u≥X≥v

fb(X) if u > v.
(3.33)
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Analogously, the numerical diffusive flux (modelling compression in sedimentation) is

Jj+1/2 := γj+1/2
D(Xj+1)−D(Xj)

∆z
, j = −1, . . . , N + 1.

Then the total flux (3.29) between cells j and j + 1 is approximated by

FX,j+1/2 := Bj+1/2 +Gj+1/2 − Jj+1/2, j = −1, . . . , N + 1.

The corresponding flux of (3.28b) is PX,j+1/2FX,j+1/2, where PX,j+1/2 needs to be

defined. If FX,j+1/2 > 0, then particles move in the direction of the z-axis over the

boundary zj+1/2, i.e. downwards. Then the values of PX,j+1/2 at the cell boundary

are those coming from the left cell, i.e. PX,j . If FX,j+1/2 ≤ 0, then the particles move

upwards and the values are PX,j+1. Consequently, following [43] we define

PX,j+1/2 :=

{
PX,j+1 if FX,j+1/2 ≤ 0,

PX,j if FX,j+1/2 > 0,
j = −1, . . . , N + 1.

For the liquid percentage vector appearing in (3.28d), we use the same principle. By

(3.24), we define FL,j+1/2 := ρLqj+1/2 − rFX,j+1/2 for j = −1, . . . , N + 1 and

P L,j+1/2 :=

{
P L,j+1 if FL,j+1/2 ≤ 0,

P L,j if FL,j+1/2 > 0,
j = −1, . . . , N + 1.

We introduce the notation [∆F ]j := Fj+1/2−Fj−1/2 and let δj,jf denote the Kronecker

delta, which is 1 if j = jf and zero otherwise. The conservation of mass for each layer

gives the following method-of-lines equations (for j = 0, . . . , N + 1):

dXj

dt
= − [∆FX ]j

∆z
+ δj,jf

Xfqf

∆z
+ γjR̃X,j , (3.34a)

d(PX,jXj)

dt
= − [∆(PXFX)]j

∆z
+ δj,jf

pX,fXfqf

∆z
+ γjRX,j , (3.34b)

Lj = ρL − rXj ,

FL,j+1/2 = ρLqj+1/2 − rFX,j+1/2,

d(P L,jLj)

dt
= − [∆(P LFL)]j

∆z
+ δj,jf

pL,fLfqf

∆z
+ γjRL,j , (3.34c)

P
(kL)
L = 1−

(
P

(1)
L + · · ·+ P

(kL−1)
L

)
. (3.34d)

If Xj = 0, i.e. there are no solids in layer j, then the value of PX,j is irrelevant.

Furthermore, note that in (3.34a) we have R̃X,j = R̃X(Cj ,Sj), where Cj = PX,jXj
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and Sj = P̄ L,jLj = P̄ L,j(ρL − rXj), where P̄ L,j is a vector containing the first kL− 1

components of P L,j . The same holds for each component of RX,j and RL,j . In (3.34c)

and similar formulas below for the computation of P L we skip the notation with a

bar over all vectors. It is understood that the last equation of (3.34c) is replaced

by (3.34d).

3.3.2 Explicit fully discrete scheme

First, we recall that the initial data for any (one-step) time discretization method can

be obtained as is shown in Section 3.2.7. If the final simulation time is T , we let

tn, n = 0, 1, . . . , nT , denote the discrete time points and ∆t = T/nT the time step

that should satisfy a certain CFL condition depending on the chosen time-integration

method. Set λ := ∆t/∆z. For explicit schemes, the right-hand sides of the equations

are evaluated at time tn. The value of a variable at time tn is denoted by an upper

index, e.g., Xn
j . For explicit Euler time integration of (3.34a)–(3.34c), we note in

particular the approximation

d(PX,jXj)

dt
≈

P n+1
X,j X

n+1
j − P n

X,jX
n
j

∆t
,

which implies the following explicit scheme (recall that always Ln+1
j > 0):

Xn+1
j = Xn

j + λ
(
− [∆FnX ]j + δj,jfX

n
f q

n
f

)
+ ∆t γjR̃

n
X,j , (3.35a)

P n+1
X,j =


irrelevant, e.g. P n

X,j , if Xn+1
j = 0,

1

Xn+1
j

[
P n
X,jX

n
j + λ

(
δj,jfp

n
X,fX

n
f q

n
f − [∆(P n

XF
n
X)]j

)
+ ∆t γjR

n
X,j

]
, if not,

(3.35b)

Ln+1
j = ρL − rXn+1

j , (3.35c)

FnL,j+1/2 = ρLq
n
j+1/2 − rFnX,j+1/2, (3.35d)

P n+1
L,j =

1

Ln+1
j

[
P n
L,jL

n
j + λ

(
− [∆(P n

LF
n
L )]j + δj,jfp

n
L,fL

n
f q
n
f

)
+ ∆t γjR

n
L,j

]
, (3.35e)

P
(kL),n+1
L,j = 1−

(
P

(1),n+1
L,j + · · ·+ P

(kL−1),n+1
L,j

)
. (3.35f)

The biological reactions do not only influence the variables locally via the reaction

terms, but also globally via the additional bulk velocity term qreac,n
j+1/2. In fact, a local

volume increase or decrease at z = z0 has an immediate influence for all z < z0. In

other words, the bulk velocity change qreac(z;C,S) given by (3.19) depends on the
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reactions in the interval [z,B]. For the numerical scheme, this means that the update

formulas for the concentrations in a layer j0 contain the other concentrations in all

layers j > j0; see (3.31). We will see in Section 3.3.4 that this unfortunately means

that the scheme is not monotone. The terms Rj , j = 1, . . . , N in (3.30) destroy the

monotonicity. Since these are negligible in wastewater treatment (see Section 3.4), we

define qreac
j+1/2 := 0 instead of (3.30).

3.3.3 CFL condition

We define the vector of unknowns U := (pX , X,pL, L) and the following bounds (which

are assumed to be finite):

‖fb‖∞ := max
0≤X≤Xmax

|fb(X)|, ‖q‖∞ := max
0≤t≤T

qf(t),

MC := sup
U∈Ω

1≤k≤kX

∣∣∣∣∣ ∂R̃X∂C(k)

∣∣∣∣∣ , MS := sup
U∈Ω,1≤k≤kL−1

∣∣∣∣∣ ∂R̃X∂S(k)

∣∣∣∣∣ ,
MX
C := sup

U∈Ω
1≤k≤kX

∣∣∣∣∣∂R
(k)
X

∂C(k)

∣∣∣∣∣ , ML
S := sup

U∈Ω
1≤k≤kL−1

∣∣∣∣∣∂R
(k)
L

∂S(k)

∣∣∣∣∣
along with M := MC + rMS . The CFL condition is

∆t

(‖q‖∞
∆z

+ max(βX , βPX
, βPL

)

)
≤ 1, (CFL)

where

βX :=
‖f ′b‖∞

∆z
+

2‖d‖∞
∆z2

+M, βPX
:=
‖f ′b‖∞

∆z
+

2‖d‖∞
∆z2

+MX
C , (3.36)

βPL
:=

‖fb‖∞
∆z(ρX −Xmax)

+
2D(Xmax)

∆z2(ρX −Xmax)
+ML

S .
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3.3.4 Properties of the numerical scheme

With η := λ/∆z = ∆t/∆z2 the update formula (3.35a) reads for each layer:

Xn+1
0 = Xn

0 − λ[∆Bn]0,

Xn+1
1 = Xn

1 − λ
(
[∆Bn]1 + G(Xn

1 , X
n
2 )
)

+ η
(
D(Xn

2 )−D(Xn
1 )
)

+ ∆t R̃nX,1,

Xn+1
j = Xn

j − λ
(
[∆Bn]j + G(Xn

j , X
n
j+1)− G(Xn

j−1, X
n
j )
)

+ η
(
D(Xn

j+1)− 2D(Xn
j ) +D(Xn

j−1)
)

+ λδj,jfX
n
f q

n
f + ∆t R̃nX,j , j = 2, . . . , N − 1,

Xn+1
N = Xn

N − λ
(
[∆Bn]N − G(Xn

N−1, X
n
N )
)
− η
(
D(Xn

N )−D(Xn
N−1)

)
+ ∆t R̃nX,N

Xn+1
N+1 = Xn

N+1 − λ[∆Bn]N+1.

To be able to prove an invariant region property for each variable, we want every for-

mula to be a monotone function of each argument, i.e., we wish to have ∂Xn+1
j /∂Xn

k ≥ 0

for all j, k. For j = k, this can be achieved by invoking (CFL). The problematic terms

above are λ[∆Bn]j since they contain the bulk velocity reaction function qreac in (3.19).

To see this, we let the characteristic function χI be equal to 1 if the statement I is

true, otherwise 0. Then

Bj+1/2 = Xj+1qj+1/2χqj+1/2≤0 +Xjqj+1/2χqj+1/2>0 (3.37)

and hence, for j = 0, . . . , N − 1 and k = j + 2, . . . , N + 1, we have

∂Xn+1
j

∂Xk
= −λ∂[∆B]j

∂Xk

= −λ
(

(Xj+1χqj+1/2≤0 +Xjχqj+1/2>0)
∂qj+1/2

∂Xk

+ (Xjχqj−1/2≤0 +Xj−1χqj−1/2>0)
∂qj−1/2

∂Xk

)
.

The derivatives of qnj+1/2 can have any sign due to the reaction terms. We therefore

confine the analysis to the scheme when we set Rj := 0, j = 1, . . . , N in (3.30),

i.e. qreac
j+1/2 := 0. Then qj+1/2 depends only on time and (3.35) becomes a three-point

scheme.
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Lema 3.3.1. Assume that 0 ≤ Xj ≤ Xmax for all j. Then the Godunov flux Gj+1/2 =

G(Xj , Xj+1), see (3.33), applied on 0 ≤ fb ∈ C1 satisfies

− ‖f ′b‖∞ ≤
∂Gj+1/2

∂Xj+1
≤ 0 ≤

∂Gj+1/2

∂Xj
≤ ‖f ′b‖∞,∣∣∣∣∂[∆G]j

∂Xj

∣∣∣∣ ≤ ‖f ′b‖∞, Gj+1/2

Xj
≤ ‖f ′b‖∞,

Gj+1/2

Xj+1
≤ ‖f ′b‖∞.

Proof. If Xj ≤ Xj+1, then

Gj+1/2 = min{fb(Xj), fb(ξ), fb(Xj+1)},

where ξ ∈ (Xj , Xj+1) is a (possible) stationary point of fb. If Gj+1/2 = fb(Xj), then

Xj is the minimum point and the left endpoint of the interval, hence

∂Gj+1/2/∂Xj = f ′b(Xj) ≥ 0.

Otherwise, ∂Gj+1/2/∂Xj = 0 holds. Similarly, if Xj > Xj+1, then ∂Gj+1/2/∂Xj =

0 or = f ′b(Xj) ≥ 0 (the right endpoint Xj is a maximum point). Analogously,

∂Gj+1/2/∂Xj+1 = 0 or = f ′b(Xj+1) ≤ 0. Combining these results, we get

∂[∆G]j
∂Xj

∈ {f ′b(Xj), 0,−f ′b(Xj)}.

Assume again Xj ≤ Xj+1, so that Gj+1/2 = min{fb(Xj), fb(ξ), fb(Xj+1)}. Then

Gj+1/2/Xj ≤ fb(Xj)/Xj and Gj+1/2/Xj+1 ≤ fb(Xj+1)/Xj+1. If Xj > Xj+1, then

Gj+1/2 = max{fb(Xn
j ), fb(ξ), fb(Xn

j+1)} where ξ ∈ (Xj+1, Xj) is a possible stationary

point. Then we have

Gj+1/2

Xj+1
≤
Gj+1/2

Xj
=


either fb(Xj)/Xj ,

or fb(ξ)/Xj ≤ fb(ξ)/ξ,

or fb(Xj+1)/Xj ≤ fb(Xj+1)/Xj+1.

For any X ∈ (0, Xmax), take ξ̄ ∈ (0, X) according to the mean-value theorem so that

fb(X)

X
=
fb(X)− fb(0)

X
= f ′b(ξ̄) ≤ ‖f ′b‖∞.

We define the vector of unknown discrete variables Un
j := (P n

X,j , X
n
j ,P

n
L,j , L

n
j ).
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Lema 3.3.2. Assume that Un
j ∈ Ω for all j. Then the following holds for i = 1, . . . , kX :

∣∣∣∣∣∂R̃X,j∂Xk

∣∣∣∣∣
{
≤M if k = j,

= 0 if k 6= j,

∣∣∣∣∣∣∂R̃X,j∂P
(i)
X,k

∣∣∣∣∣∣ = Xk

∣∣∣∣∣∂R̃X,j∂C
(i)
k

∣∣∣∣∣
{
≤ XjMC if k = j,

= 0 if k 6= j.

Proof. The cases k 6= j are trivial. Assume that k = j and differentiate

∂R̃X,j
∂Xk

=
∂R̃X,j
∂Xk

(
PX,jXj , P̄ L,j(ρL − rXj)

)
= PT

X,j∇CR̃X − rP̄T
L,j∇SR̃X ,

where

|PT
X,j∇CR̃X | ≤

kX∑
i=1

|P (i)
X,j |

∣∣∣∣∣∂R̃X,j∂C(i)

∣∣∣∣∣ ≤MC

kX∑
i=1

|P (i)
X,j | = MC ,

and the second term is estimated similarly. The derivative |∂R̃X,j/∂P (i)
X,k| is handled

similarly.

We define a+ := max{a, 0} and a− := min{a, 0}.

Lema 3.3.3. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j and (CFL) holds, then 0 ≤ Xn+1
j ≤ 1

for all j.

Proof. We write the update formula (3.35a) for j = 0, . . . , N + 1 as

Xn+1
j = HX

(
Xn
j−1, X

n
j , X

n
j+1

)
,

and we shall show that HX is a monotone function in each of its variables. We can

write (3.37) as

Bnj+1/2 = Xj+1q
n,−
j+1/2 +Xjq

n,+
j+1/2,

so that

∂[∆Bn]j
∂Xn

j

=
∂

∂Xn
j

(
Bnj+1/2 − Bnj−1/2

)
=

∂

∂Xn
j

(
Xn
j+1q

n,−
j+1/2 +Xn

j q
n,+
j+1/2 −X

n
j q

n,−
j−1/2 −X

n
j−1q

n,+
j−1/2

)
= qn,+j+1/2 − q

n,−
j−1/2 ≤ q

n,+
jf+1/2 − q

n,−
jf−1/2 = qnu + qne = qnf

≤ ‖q‖∞.
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Differentiation of (3.35a) and utilization of (CFL) and Lemmas 3.3.1 and 3.3.2 imply

∂Xn+1
0

∂Xn
0

= 1− λ∂[∆Bn]0
∂Xn

0

≥ 1− λ‖q‖∞ ≥ 0,

∂Xn+1
0

∂Xn
1

= −λqn,−1/2 ≥ 0,

∂Xn+1
1

∂Xn
0

= λqn,+1/2 ≥ 0,

∂Xn+1
1

∂Xn
1

= 1− λ
(
∂[∆Bn]1
∂Xn

1

+
∂G(Xn

1 , X
n
2 )

∂Xn
1

)
− ηd(Xn

1 ) + ∆t
∂R̃nX,1
∂Xn

1

≥ 1−
(
λ
(
‖q‖∞ + ‖f ′b‖∞

)
+ η‖d‖∞ + ∆tM

)
≥ 0,

∂Xn+1
1

∂Xn
2

= λ

(
−qn,−3/2 −

∂G(Xn
1 , X

n
2 )

∂Xn
2

)
+ ηd(Xn

2 ) ≥ 0,

∂Xn+1
j

∂Xn
j−1

= λ

(
qn,+j−1/2 +

∂G(Xn
j−1, X

n
j )

∂Xn
j−1

)
+ ηd(Xn

j−1) ≥ 0, j = 2, . . . , N − 1,

∂Xn+1
j

∂Xn
j

= 1− λ
(
∂[∆Bn]j
∂Xn

j

+
∂[∆Gn]j
∂Xn

j

)
− 2ηd(Xn

j ) + ∆t
∂R̃nX,j
∂Xn

j

≥ 1−
(
λ(‖q‖∞ + ‖f ′b‖∞) + 2η‖d‖∞ + ∆tM

)
≥ 0, j = 2, . . . , N − 1,

∂Xn+1
j

∂Xn
j+1

= −λ
(
qn,−j+1/2 +

∂G(Xn
j , X

n
j+1)

∂Xn
j+1

)
+ ηd(Xn

j+1) ≥ 0, j = 2, . . . , N − 1.

The remaining derivatives at the boundary z = B are symmetric to those at z = −H.

The proved monotonicity of HX and the assumptions (3.7) imply that, for j 6= jf ,

0 = HX(0, 0, 0) ≤ Xn+1
j = HX(Xn

j−1, X
n
j , X

n
j+1) ≤ HX(Xmax, Xmax, Xmax) = Xmax

and for j = jf we have

0 ≤ ∆tXfqf = HX(0, 0, 0) ≤ Xn+1
j = HX(Xn

j−1, X
n
j , X

n
j+1) ≤ HX(Xmax, Xmax, Xmax)

= Xmax − λ
(
quXmax − (qu − qf)Xmax

)
+ λXfqf = Xmax − λqf(Xmax −Xf) ≤ Xmax.

Lema 3.3.4. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j, and (CFL) holds, then 0 ≤ P n+1
X,j ≤ 1

for all j.
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Proof. If Xn+1
j = 0, then P n+1

X,j := P n
X,j ∈ [0, 1]. We assume that Xn+1

j > 0 and write

(3.35b) as

P n+1
X,j =

Ψn
X,j

Xn+1
j

,

where Ψn
X,j := P n

X,jX
n
j + λ

(
− [∆(P n

XF
n
X)]j + δj,jfp

n
X,fX

n
f q

n
f

)
+ ∆t γjR

n
X,j , and

[∆(P n
XF

n
X)]j =P n

X,j+1/2F
n
X,j+1/2 − P n

X,j−1/2F
n
X,j−1/2

=P n
X,j+1F

n,−
X,j+1/2 + P n

X,jF
n,+
X,j+1/2 − P n

X,jF
n,−
X,j−1/2 − P n

X,j−1F
n,+
X,j−1/2.

(3.38)

Consider Ψ
(k),n
X,j = Ψ

(k),n
X,j (P

(k),n
X,j ). We have

(
Ψ

(k),n
X,j

)′(
P

(k),n
X,j

)
= Xn

j − λ
{
Fn,+X,j+1/2 − F

n,−
X,j−1/2

}
+ ∆t γj

∂R
(k),n
X,j

∂P
(k),n
X,j

. (3.39)

The last term here is estimated by

∆t γj
∂R

(k),n
X,j

∂P
(i),n
X,j

= Xn
j ∆t γj

∂R
(k),n
X,j

∂C
(i),n
j

≥ −Xn
j ∆tMX

C ,

cf. Lemma 3.3.2. To estimate the expression within curled brackets in (3.39), we note

that −a− = (−a)+, (a + b)+ ≤ a+ + b+ and start with the first of three terms of

FX = B +G− J :

Bn,+j+1/2 + (−Bnj−1/2)+ =
(
Xn
j+1q

n,−
j+1/2 +Xn

j q
n,+
j+1/2

)+
+
(
−Xn

j q
n,−
j−1/2 −X

n
j−1q

n,+
j−1/2

)+
≤ Xn

j (qn,+j+1/2 − q
n,−
j−1/2) ≤ Xn

j (qn,+jf+1/2 − q
n,−
jf+1/2)

= Xn
j (qnu + qne ) = Xn

j q
n
f ≤ Xn

j ‖q‖∞.

Since G(u, v) > 0 whenever fb > 0 we use Lemma 3.3.1 to obtain

Gn,+j+1/2 + (−Gnj−1/2)+ = Gn,+j+1/2 = Gnj+1/2 ≤ Xn
j ‖f ′b‖∞.
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The term corresponding to −J is estimated by utilizing that D(X) is a non-decreasing

function, which is zero for X ≤ Xc:

(−Jn,+j+1/2)+ + Jn,+j−1/2 =
1

∆z

((
D(Xn

j )−D(Xn
j+1)

)+
+
(
D(Xn

j )−D(Xn
j−1)

)+)
≤ 1

∆z
2D(Xn

j ) =
2

∆z

∫ Xn
j

Xc

d(s) ds ≤ Xn
j

2‖d‖∞
∆z

.
(3.40)

The CFL condition (CFL) now implies that

(Ψ
(k),n
X,j )′(P

(i),n
X,j ) ≥ Xn

j

[
1−

(
λ
(
‖q‖∞ + ‖f ′b‖∞

)
+ 2η‖d‖∞ + ∆tMX

C

)]
≥ 0.

By assumption (3.6), we have

Ψ
(k),n
X,j (0) = λ

(
− P (k),n

X,j+1F
n,−
X,j+1/2 + P

(k),n
X,j−1F

n,+
X,j−1/2 + δj,jfp

(k),n
X,f Xn

f q
n
f

)
+ ∆t γj R

(k),n
X,j

∣∣∣
P

(k),n
X,j =0

≥ 0.

Hence, Ψ
(k),n
X,j = Ψ

(k),n
X,j (P

(k),n
X,j ) ≥ 0 holds for all k = 1, . . . , kX , and since

kX∑
k=1

Ψ
(k),n
X,j = Xn+1

j ,

it follows that Ψ
(k),n
X,j ≤ Xn+1

j . We have proved that 0 ≤ P n+1
X,j ≤ 1.

Lema 3.3.5. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j and (CFL) holds, then 0 ≤ P n+1
L,j ≤ 1 for

all j.

Proof. We follow the proof of Lemma 3.3.4 and write (3.35e) as

P n+1
L,j =

Ψn
L,j

Ln+1
j

,

where Ψn
L,j := P n

L,jL
n
j + λ

(
− [∆(P n

LF
n
L )]j + δj,jfp

n
L,fL

n
f q
n
f

)
+ ∆t γjR

n
L,j . We consider

Ψ
(k),n
L,j = Ψ

(k),n
L,j (P

(k),n
L,j ) and calculate

(Ψ
(k),n
L,j )′(P

(i),n
L,j ) = Lnj − λ

{
Fn,+L,j+1/2 − F

n,−
L,j−1/2

}
+ ∆t γj

∂R
(k),n
L,j

∂P
(k),n
L,j

. (3.41)
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For the expression within curled bracket of (3.41), we note that

Fn,+L,j+1/2 = (qnj+1/2ρL − rFnX,j+1/2)+

= (qnj+1/2ρL − rBnj+1/2 − rGnj+1/2 + rJnj+1/2)+ ≤ T1 + rJn,+j+1/2,

where T1 := (qnj+1/2ρL − rBnj+1/2)+. Similarly, we obtain

(−Fn,+L,j−1/2)+ ≤ T2 + rGn,+j−1/2 + r(−Jnj−1/2)+, T2 := (−qnj−1/2ρL + rBnj−1/2)+.

Utilizing qnj+1/2 = qn,+j+1/2 + qn,−j+1/2 and Bnj+1/2 = Xj+1q
n,−
j+1/2 +Xjq

n,+
j+1/2, we get

T1 + T2 =
(
qn,+j+1/2(ρL − rXn

j ) + qn,−j+1/2(ρL − rXn
j+1)

)+
+
(
− qn,+j−1/2(ρL − rXn

j−1)− qn,−j−1/2(ρL − rXn
j )
)+

=
(
qn,+j+1/2L

n
j + qn,−j+1/2L

n+1
j

)+
+
(
−qn,+j−1/2L

n
j−1 − qn,−j−1/2L

n
j

)+
≤ (qn,+j+1/2 − q

n,−
j−1/2)Lnj ≤ Lnj ‖q‖∞.

For the rest of the terms, we have from Lemma 3.3.2 and (3.40):

rGn,+j−1/2 ≤ r‖fb‖∞ =
Lnj

ρL − rXn
j

r‖fb‖∞ ≤
Lnj

ρX −Xmax
‖fb‖∞,

r(−Jn,+j+1/2)+ + rJn,+j−1/2 ≤
r2D(Xn

j )

∆z
≤

Lnj
ρX −Xmax

2D(Xmax)

∆z
.

The reaction term of (3.41) is handled as

∆t γj
∂R

(k),n
L,j

∂P
(k),n
L,j

= ∆t γjL
n
j

∂R
(k),n
L,j

∂S
(k),n
j

≥ −∆t LnjM
L
S .

The CFL condition implies

(Ψ
(k),n
L,j )′(P

(i),n
L,j ) ≥ Lnj

(
1− λ‖q‖∞ −

λ‖fb‖∞ + 2ηD(Xmax)

ρX −Xmax
−∆tML

S

)
≥ 0.

As in the proof of Lemma 3.3.4 we have Ψ
(k),n
L,j (0) ≥ 0 by the assumption on R

(k)
L

corresponding to (3.6). Hence, Ψ
(k),n
L,j = Ψ

(k),n
L,j (P

(k),n
L,j ) ≥ 0 holds for all k = 1, . . . , kX .

Since (see (3.38))

kX∑
i=1

[∆(P
(i),n
X FnX)]j = FnX,j+1/2 − FnX,j−1/2 = [∆FnX ]j ,
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we have, by (3.35c), (3.35d) and (3.19) with R = 0,

kL∑
k=1

Ψ
(k),n
X,j = Lnj + λ

(
− [∆FnL ]j + δj,jfL

n
f q
n
f

)
+ ∆t γjR̃

n
L,j

= ρL − rXn
j + λ

(
− ρL[∆qn]j + r[∆FnX ]j + δj,jf (ρL − rXn

f )qnf

)
− r∆t γjR̃nX,j

= ρL − r
(
Xn
j + λ

(
− [∆FnX ]j + δj,jfX

n
f q

n
f

)
+ ∆t γjR̃

n
X,j

)
− λ (ρL[∆qn]j − δj,jfρLqnf )

= ρL − rXn+1
j − λρL

(
[∆qn]j − δj,jf qnf

)
= Ln+1

j − λρL
(
[∆qn]j − δj,jf qnf

)
= Ln+1

j ,

where we in the latter equality has used (3.31), which implies [∆qn]j = 0 for j 6= jf

and [∆qn]jf = qnu − (qnu − qnf ) = qf . It follows that Ψ
(k),n
L,j ≤ Ln+1

j and have proved that

0 ≤ P n+1
L,j ≤ 1.

Theorem 3.3.1. If (3.7) and (CFL) hold, then Ω is invariant under the scheme (3.35)

with qreac,n
j+1/2 := 0 for all j and n, i.e., Un

j ∈ Ω⇒ Un+1
j ∈ Ω for all j and n.

Proof. The bounds on Xn
j , P n

X,j and P n
L,j for all j and n were proved in Lemmas 3.3.3–

3.3.5. We get ρL − rXmax ≤ Ln+1
j = ρL − rXn+1

j ≤ ρL. Summing all equations in

(3.35b) and using (3.35a), we get

kX∑
i=1

P
(i),n+1
X,j = 1.

By definition (3.35f) we have

kL∑
i=1

P
(i),n+1
L,j = 1.

3.4 Numerical Examples

The biological reactions are those of a model of denitrification, which is conversion of

bound nitrogen to free nitrogen (N2) that occurs in SSTs in wastewater treatment [13].

The kX = 2 particulate concentrations are XOHO (ordinary heterotrophic organisms)

and XU (undegradable organics), and the kL − 1 = 3 soluble concentrations SNO3
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Figure 3.2: Graphs of the constitutive functions used in Examples 1 and 2 (dashed
blue) and 3 (solid red): (a) hindered settling velocity, (b) batch settling flux, (c)
effective solids stress, (d) compression. Properly elaboration, published in [23].

(nitrate), SS (readily biodegradable substrate) and SN2 (nitrogen), so that pXX =

C = (XOHO, XU)T and S = (SNO3 , SS, SN2)T. The reaction terms are

RX = XOHO

(
µ(S)− b
fPb

)
Z(X), RL = XOHO


− 1−Y

2.86Y µ(S)

− 1
Y µ(S) + (1− fP)b

1−Y
2.86Y µ(S)

0

 ,

where Y = 0.67 is a yield factor, b = 6.94× 10−6 s−1 is the decay rate of heterotrophic

organisms and fP = 0.2 is the portion of these that decays to undegradable organics.

The continuous function Z(X) should be equal to one for low concentrations and

decrease to zero at some large concentration so that the second technical assumption

in (3.7) is satisfied. The function Z(X) should not influence the condition (CFL). We

have used Z(X) ≡ 1 for all simulations and still obtained bounded solutions. Hence,

after some trial simulations, the maximum concentration Xmax can be defined and used

in (CFL). We have used Xmax = 30 kg/m3. The specific growth rate function is

µ(S) := µmax
SNO3

KNO3 + SNO3

SS

KS + SS
,

where µmax = 5.56× 10−5 s−1, KNO3 = 5× 10−4 kg/m3, KS = 0.02 kg/m3. We get

R̃X =
(
µ(S)− (1− fP)b

)
XOHOZ(X), R̃L = −

(
µ(S)

Y
− (1− fP)b

)
XOHO.
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Figure 3.3: Examples 1 (a, b), 2 (c) and 3 (d, e): (a, d, e) volumetric flows, (b)
solids feed concentration, (c) particulate feed percentages. The piecewise constant
values and time points of changes are indicated. Properly elaboration, published in
[23].

In light of (3.13), this implies

|R(C,S)| ≤
(
µmax

∣∣∣∣ 1

ρX
− 1

ρLY

∣∣∣∣+ (1− fP)b

∣∣∣∣ 1

ρX
− 1

ρL

∣∣∣∣)Xmax = 7.0792× 10−7 m/s,

so that qreac is negligibly small in comparison to the bulk velocities qe and qu in contin-

uous sedimentation. It is also negligible in batch sedimentation (although qe = qu = 0),

where the interval of settling velocities is [0, v0] with v0 = 1.76× 10−3 m/s. For Exam-

ples 8 and 9, we choose the constitutive functions for hindered settling and compression

(where Z(X) ≡ 1 is used in the simulations)

vhs(X) =
v0

1 + (X/X̄)r̄
Z(X), σe(X) =

{
0 for X < Xc,

α(X −Xc) for X > Xc,

where v0 = 1.76× 10−3 m/s, X̄ = 3.87 kg/m3, r̄ = 3.58, α = 0.2 m2/s2 and Xc =

5 kg/m3. Other constants used are A = 400 m2, ρX = 1050 kg/m3, ρL = 998 kg/m3
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Table 3.1: Coefficients for the calculation of the CFL condition (CFL), where κ :=
‖q‖∞/∆z . Properly elaboration, published in [23].

Examples 8 and 9 Example 3
∆z κ βX βPX

βPL
κ βX βPX

βPL

N [m] [s−1] [s−1] [s−1] [s−1] ∆t [s] [s−1] [s−1] [s−1] [s−1] ∆t [s]

10 0.400 0.001 3.178 0.007 0.166 0.311 0.001 3.182 0.011 0.166 0.311
30 0.133 0.003 3.207 0.037 0.166 0.308 0.003 3.247 0.076 0.167 0.304
90 0.044 0.009 3.420 0.249 0.167 0.288 0.008 3.776 0.606 0.167 0.261

270 0.015 0.027 5.175 2.004 0.171 0.190 0.023 8.384 5.213 0.173 0.117
405 0.010 0.040 7.591 4.420 0.176 0.129 0.035 14.81 11.64 0.181 0.066
810 0.005 0.081 20.49 17.32 0.205 0.048 0.070 49.37 46.20 0.223 0.020

2430 0.002 0.243 156.9 153.7 0.515 0.006 0.211 416.8 413.6 0.670 0.002

and g = 9.81 m/s2. For Example 3, we choose the constitutive functions

vhs(X) = v0e−rVXZ(X), σe(X) =

{
0 for X < Xc,

α̃ log
(
(X −Xc + β̃)/β̃

)
for X > Xc,

with rV = 0.55 m3/kg, α̃ = 7.0 Pa and β̃ = 2.9 kg/m3. Graphs of the constitutive

functions are shown in Figure 3.2. All other parameters are as in Examples 1 and 2.

All simulations start from a steady state obtained by a long-time simulation. For Ex-

amples 1 and 2, Qf(0) = 175 m3/h, Qu(0) = 22 m3/h and Xf(0) = 3.5 kg/m3, whereas

Example 3 starts from Qf(0) = 100 m3/h, Qu(0) = 25 m3/h, and Xf(0) = 3 kg/m3.

These feed inputs are kept constant for a while, but then varied with time accord-

ing to Figure 3.3. The vector of particulate feed percentages is pX,f(0) = (5/7, 2/7)T

in all examples, and this value is varied only in Example 2; see Figure 3.3 (c). The

feed substrate concentrations have the following constant values during all simulations:

SS,f(t) = 9.00× 10−4 kg/m3, SNO3,f(t) = 6.00× 10−3 kg/m3, and SN2,f(t) = 0 kg/m3.

Different simulation times are used and the values of ∆t for different N determined

from (CFL) are given in Table 3.1. For fine mesh resolutions, the large values of βX and

βPX
establish the expected fact that the time step ∆t is limited by the second-order

derivative term modelling compression.
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Figure 3.4: Example 1: Simulation of reactive settling in an SST starting from a
stationary state followed by variations of the volumetric flows Qu and Qf and of the
solids feed concentration Xf . Here and in Figures 3.6 and 3.8, the solution displayed
is the reference solution obtained with N = Nref = 2430 projected onto a coarser
visual grid, and plots (d) and (g) have been rotated. Properly elaboration, published
in [23].

3.4.1 Example 1: variations of feed flow and particle concentration

We choose the volume flows Qf(t), Qu(t) and the feed concentration Xf(t) as piecewise

constant functions of time specified in Figures 3.3 (a) and (b), respectively, and we let

pX,f and pL,f be constant in time. We have chosen these extreme variations to test

the scheme. The initial steady state is kept during the first hour of the simulation; see

Figure 3.4. There is a sludge blanket, i.e., a discontinuity from a low concentration

up to the critical concentration Xc = 5 kg/m3 separating the hyperbolic and parabolic
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Figure 3.5: Example 1: Numerical solutions for coarse discretizations (N =
10, 30, 90) at (a, d) t = 3 h, (b, e) t = 5 h, (c, f) t = 7 h. The reference solution
(N = Nref = 2430) is included. Properly elaboration, published in [23].

regions; see also Figure 3.5 (a). The movement of this discontinuity is of particular

interest to model in wastewater treatment. Below the discontinuity, the solution is

continuous because of the compression effect. At t = 4 h, the step increase in Qf(t),

decrease in Qe(t) and simultaneous increase in the fed bacteria XOHO to the SST imply

a rapidly rising sludge blanket that reaches the top of the SST around t = 7 h, which

means that the SST becomes overloaded with solids leaving also through the effluent.

The fast reactions imply that the soluble nitrate (NO3) is quickly converted to N2 in

regions where the bacteria OHO are present, which is below the sludge blanket. At

the end of the simulation, this phenomenon is clearly seen by the peak near z = 0 in

Figure 3.4 (d) and the corresponding dip in Figure 3.4 (f) and Figure 3.5 (f).

3.4.2 Example 2: variations of the feed percentages

In this case Qf , Qu, Xf and pL,f are kept the same constants as for the initial steady-

state solution. Only pX,f(t) is chosen as a periodically varying function of time as

shown in Figure 3.3 (c). The resulting waves in the particle components through from

the feed to the bottom are shown in Figure 3.6 (b) and (c). A part of the incoming

nitrate (NO3) is transported upwards to the effluent without undergoing any reaction
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Figure 3.6: Example 9: Simulation starting from a stationary state followed by
variations of the feed percentages of the substrates. Properly elaboration, published
in [23].

since there is no solids in the clarification zone. The need for a high mesh resolution

for such extremely varying particle concentrations can be seen in Figure 3.7 (a)–(c).

3.4.3 Example 3: transitions between steady states

In this simulation, shown in Figures 3.8 and 3.9, only the volumetric flows Qf(t) and

Qu(t) are varied in a piecewise constant way according to Figure 3.3 (d) and (e). After

7 h the volumetric flows are set to constant values slightly different from the initial

ones and a new steady state arises after a transient period with a sludge blanket rising

into the clarification zone above the feed inlet. The rise of this discontinuity ends
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Figure 3.7: Example 9: Numerical solutions for coarse discretizations (N =
10, 30, 90) at (a, d) t = 8 h, (b, e) t = 12 h and (c, f) t = 18 h. The reference
solution (N = Nref = 2430) is included. Properly elaboration, published in [23].

at t = 3 h where Qf(t) is lowered substantially. After t = 4 h, the sludge blanket

sinks because of the increased volumetric underflow Qu(t). The transport of N2 in

the thickening zone is in accordance with the changes of th e bulk flows. The short

appearance of particulate bacteria in the clarification zone implies that some of the

otherwise non-reacted overflow of nitrate (NO3) is converted to N2; see Figures 3.8 (d)

and (f).
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Figure 3.8: Example 10: Simulation starting and ending in two different steady
states. Properly elaboration, published in [23].

3.4.4 Approximate errors

For a given spatial discretization ∆z = (B + H)/N , we denote by XOHO,N the

piecewiese constant function with XOHO,N (z, t) = P
(1),n
X,j Xn

j if z ∈ (zj−1/2, zj+1/2] and

t ∈ (tn−1, tn], and define the approximate relative L1 error

erel
N,XOHO

(t) :=
‖(XOHO,N −XOHO,Nref

)(·, t)‖L1(−H,B)

‖XOHO,Nref
(·, t)‖L1(−H,B)

,
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Figure 3.9: Example 10: Numerical solutions for coarse discretizations (N =
10, 30, 90) at (a, d) t = 3 h, (b, e) t = 5 h and (c, f) t = 10 h. The reference so-
lution (N = Nref = 2430) is included. Properly elaboration, published in [23].

where Nref = 2430. The corresponding quantities for XU, SNO3 , SN2 and SS are defined

in the same way. We define the total approximate relative error

erel
N (t) := erel

N,XOHO
(t) + erel

N,XU
(t) + erel

N,SNO3
(t) + erel

N,SN2
(t) + erel

N,SS
(t)

and the observed convergence rate between two discretizations N = N1 and N = N2,

θ(t) := −
log
(
erel
N1

(t)/erel
N2

(t)
)

log(N1/N2)
.

Table 3.2 shows values of erel
N (t), θ(t) and corresponding CPU times, for selected exam-

ples and times of those used in Figures 3.5, 3.7 and 3.9. We observe that all approximate

total relative errors tend to zero as N is increased. The rates θ assume values between

zero and one for N ≤ 270 (among the selected values of N), as should be expected for a

first-order discretization in time and for the convective flux (see [25, 27] for comparable

results). The values θ > 1 observed for N = 810 do, however, alert to the limitations

of error analysis via a reference solution with Nref = 2430.
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Table 3.2: Total approximate relative L1 errors erel
N (t), convergence rates θ(t) and

CPU times for selected examples and indicated simulated times. Properly elaboration,
published in [23].

Example 1, t = 3 h Example 1, t = 5 h Example 1, t = 7 h
N erel

N (t) θ(t) CPU [s] erel
N (t) θ(t) CPU [s] erel

N (t) θ(t) CPU [s]

10 0.570 — 0.08 0.639 — 0.13 0.257 — 0.17
30 0.233 0.812 0.19 0.324 0.618 0.31 0.133 0.598 0.43
90 0.085 0.924 0.56 0.136 0.791 0.92 0.056 0.789 1.26

270 0.029 0.973 2.41 0.047 0.971 4.03 0.024 0.772 5.44
405 0.018 1.190 5.28 0.031 1.045 8.66 0.018 0.732 11.97
810 0.007 1.264 28.18 0.012 1.306 47.35 0.007 1.276 65.06

Example 2, t = 8 h Example 2, t = 12 h Example 2, t = 18 h

10 0.679 — 0.24 0.646 — 0.30 0.722 — 0.55
30 0.497 0.284 0.48 0.711 -0.087 0.72 0.789 -0.080 1.04
90 0.317 0.410 1.40 0.537 0.255 2.08 0.632 0.201 3.10

270 0.156 0.643 6.05 0.293 0.553 9.07 0.373 0.480 13.42
405 0.113 0.797 13.61 0.212 0.801 20.26 0.276 0.744 30.25
810 0.056 1.003 75.02 0.105 1.006 110.58 0.138 1.004 167.98

Example 3, t = 3 h Example 3, t = 5 h Example 3, t = 10 h

10 0.302 — 0.05 0.381 — 0.08 0.332 — 0.15
30 0.102 0.990 0.12 0.226 0.477 0.19 0.183 0.540 0.35
90 0.053 0.599 0.32 0.120 0.572 0.50 0.072 0.855 0.92

270 0.020 0.878 0.94 0.054 0.722 1.50 0.029 0.817 2.78
405 0.012 1.299 1.53 0.039 0.809 2.41 0.022 0.735 4.37
810 0.005 1.220 3.96 0.018 1.107 6.28 0.009 1.207 11.64





Summary and concluding

remarks

Conclusions Chapter 1

With the aim of finding an efficient time-integration method for the simulation of sedi-

mentation with compression, we have in this work confined to two batch sedimentation

tests for the comparison of some methods. The ideas of the new LI method and its

implementation have been provided. When evaluated on the batch settling tests, we

believe that is a good approach for make more research. In this area, convergence proof

is under preparation. We show a benchmark of current methods in Table 3.3.

Conclusions Chapter 2

A reduced model of simultaneous biological reactions and sedimentation of flocculated

particles in batch operation is written as a system of convection-diffusion-reaction

PDEs, and a numerical scheme for its simulation is suggested. The idea of introducing

a percentage vector for the composition of the flocculated particles [43] can be used in

a natural way also when the effects of compression and reactions are included in the

equations. In the present reduced model, with only two particulate components, this

vector is simply (p, 1 − p)T. The advantage of this approach is that since the vector

appears linearly in each term of the equations for the particle concentrations, the sum of

these equations yields an equation of the total suspended solids concentration X except

for a reaction term. This equation is the Bürger-Diehl settler model equation with an

additional reaction term. Consequently, we can utilize the ingredients by [18] for a

correct spatial discretization into computational cells (layers). The time discretization

81
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Explicit Euler method

Pros: Implementation easy. Convergence proof exists also for
continuous sedimentation (numerical approximate solutions
converge to the PDE solution as ∆z → 0) by Bürger et al.
(2005). Robust method.

Cons: Slow performance and not efficient

Semi-implicit method

Pros: Most efficient of the investigated methods. Under the as-
sumption that the Newton-Raphson iterations find a solu-
tion each time step, convergence of the numerical method
was proved for batch sedimentation by [16].

Cons: Implementation more complex than Euler and LI. At each
time step, a nonlinear system of algebraic equations is solved
e.g. by Newton-Raphson iterations, which require tolerance
parameter to be set. There is no guarantee that these iter-
ations converge.

Linear-implicit method

Pros: Implementation easy. The ingredient in addition to the Eu-
ler method is basically that a linear system of equations is
solved at each time step. Robust method.

Cons: econd most efficient for N ≈ 100 for batch sedimentation.
The efficiency can be adjusted to some extent by a parame-
ter. Fastest method for a given N ≥ 30, but least accurate.

Matlab ode15s

Pros: Ready-to-use standard time solver.
Cons: Implementation most complex of the investigated methods.

Well-established robust ODE solver for stiff problems, but
not developed for solutions containing discontinuities. Least
efficient of the investigated methods.

Table 3.3: Benchmark of different numerical schemes for compute a batch sedimen-
tation
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utilizes that X can be updated first, so that the numerical fluxes between the layers

are known, which is then utilized in the updates of the percentage vectors.

Numerical examples for the modelling of the last stage of an SBR process, where

denitrification occurs, indicate that the suggested numerical scheme works well and the

expected denitrification process is simulated correctly. Furthermore, numerical tests

with other initial data, resulting in non-monotone concentration profiles and movement

of particles upwards, indicate that the numerical method could be extended to the case

of continuous sedimentation in secondary settlers of WWTPs. The latter is an obvious

continuation of this initial work on reactive settling for batch sedimentation. Other

potential improvements are: a more accurate modelling of the liquid, in which the

substrates are dissolved; the extension to include a full activated sludge model for the

biokinetic reactions; an analysis of the convergence properties of the numerical scheme;

the development of more efficient time discretizations; and the extension of the model

to polydisperse particles and several space dimensions.

Concerning the latter two points, we finally mention that more rigorous mathematical

and numerical treatments are available in the non-reactive case [7, 19, 28] that in

particular deal with the necessity to solve additional equations for the motion of the

mixture in several space dimensions. On the other hand, the non-spatial ASM1 model

[69] is more involved than the reactive model incorporated into our model. However,

here does not present a simpler version of any more rigorous published model since

the combined description of the mechanical sedimentation-compression process with

biological reactions is new.

Conclusions Chapter 3

The one-dimensional model equations (3.1) for continuous sedimentation of multi-

component solid particles in a liquid, containing several soluble components, with

possible biochemical reactions have been derived. Previous model ingredients such

as hindered settling and compression at high concentrations have been complemented

with the transport and reactions of components. Focus has been laid on the applica-

tion to wastewater treatment, for which special simplifying model assumptions have

been made. One assumption is that the solid and liquid phases have constant densities.

This is not restrictive in wastewater treatment, where the concentrations of the soluble

substrates are negligible in the water component.

Although there are only two densities, their difference and the reactions cause a volume

change of the suspension; see the bulk velocity component due to reactions qreac of the
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total bulk velocity q in (3.20). In wastewater treatment, qreac seems to be negligible.

Hence, our numerical scheme will produce very similar solutions when setting qreac =

0. The latter was, however, done to obtain a three-point explicit scheme with the

monotonicity properties that lead to the invariant-region property; see Theorem 3.3.1.

For other applications with larger qreac, our scheme can still be used.

We are focussed on the model formulation, the development of a numerical scheme

and its applications, the well-posedness analysis is still open. The basic difficulties

associated with the model (3.1) are discussed in Section 3.1.1. The numerical results

confirm that solutions are discontinuous due to changes in the definitions of fluxes

across the inlet z = 0 and outlets z = −H,B (visible, for instance, in Figure 3.4 (a) at

z = 0), the nonlinearity of the flux as a function of X, and the strongly degenerating

behaviour of D. The combined effect of both becomes visible, for instance, in the

sharpness of the solution at the typical sludge blanket in Figure 3.4 (a), which moves up

into the clarification zone and eventually overloads the SST. Moreover, the invariant-

region principle (Theorem 3.3.1) is not only an asset in itself for practical purposes

(concentrations are nonnegative and percentages satisfy their natural requirements,

properties that are not automatically built into finite volume schemes [74]), but along

with the underlying monotonicity could also form an important step towards proving

existence of a weak solution of the problem via convergence of a scheme, as was done

in [25, 27, 81] and many other works for related problems.

Our numerical scheme entails the well-known drastic growth of CPU time concomitant

with mesh refinement for explicit discretizations of convection-diffusion-reaction prob-

lems. It is therefore highly desirable to develop more efficient solvers for the model, for

example, a semi-implicit variant of the scheme that would limit this growth [16]. Such

a scheme would be based on an implicit discretization of the diffusive terms arising in

the fully discrete formulation (3.35), with the consequence that the corresponding CFL

condition imposes a limitation on ∆t/∆z instead of ∆t/∆z2 as in the present treatment

(cf. (CFL), (3.36)). While parts of the analysis related to the invariant-region principle

can easily be adapted to such an implicit treatment (for instance, Lemma 3.3.3 can

be adapted to a semi-implicit scheme by following [16, Lemma 3.2]), it is not obvious

how to define (in the semi-implicit case) several quantities, for instance the analogue

of FnX,j+1/2, that arise in the update formulas for the percentage vectors, (3.35b) and

(3.35e). We therefore leave the definition of efficient semi-implicit or implicit-explicit

(IMEX) schemes as an open research problem.



Summary and concluding remarks 85

Figure 3.10: Batch sedimentation scheme. Solids particles turn down to the bottom
under a external force, the gravity. Raimund Bürger, private communication.

Outlook

A different point of view

At the end of 2017 in together with another colleague and a friend, Diego Maldon-

ado, with focus in discrete mathematics and theoretical informatics we decided that is

necessary for academy and our country make a technological transfer to industry and

society. Become hybrids from research and practical solutions and we created a com-

pany namely Hibring Ingenieŕıa (translated is a acronym from hybrid and engineering).

Our mission is contribute to industry knowledge given solutions to engineering prob-

lems using new developments and technological transfer and we try to be the main

connection (or bridge) academy-industry in Chile, improving the productive sector us-

ing scientifical innovation following the idea: knowledge as way to development. This

chapter is a summary of the main research that we are developed.

This work isn’t possible without CORFO funding and Everis support (an NTT data

Company [99]) for offices and workspaces and of course all the people that as part of

Hibring, they are (Daniel Fernández (Informatics eng.), Edison San Mart́ın (Electronic

eng. and 3D designer), Emilio Cifuentes (student eng.), Elias Godoy (student eng.),

Manuel Silva (Metallurgical eng.), Greco Mora (aerospace eng.)).

Thickening is a very important process in industry, e.g. copper mine or wastewater

treatment, because is dedicated to water recovery as was well explained in Introduction.



86 Summary and concluding remarks

Greater effort was made for understand physical process and develop reliable mathe-

matical models that can simulate and predict real data operation. Most of them find

concentration φ(x, t) in each time and space steps.

One of the first contribution was Coe and Clevenger [35] tracking the sedimentation

curve h(t) in a small vessel (assuming scalability in height) and get estimate unit area

for build thickener units. Coe and Clevenger made a biig improvement at early years

of past century and even now is widely used, but this technique has limitations and

arise new models.

Roughly speak, for modelling a thickener process must have the material properties,

namely constitutive functions as fb = fb(φ) (batch flux function) and σe and are

calculated from laboratory experiments and batch sedimentation. The most widely

method used for compute fb consist in a parametric reconstruction, where given a few

batch sedimentation and clear water - sediment profile h(t), is compute parameters for

fitting a curve for fb, as Richardson and Zaki method [109] or Vesilind method [129].

For σe is calculated using samples from lateral pipes in a continuous experiment under

laboratory conditions. This method is really invasive and can’t use in excess because

the assumption of constant volume (or constant height) is altered.

In this chapter we show real data experiment that suggest consider particle size, namely

γ for find and compute batch flux function, that is, we propose fb = fb(φ, γ).

Light as way for calculate batch flux function

We develope a new mechanism following the next principle: In a homogeneous liquid-

solid mixture at a transparent vessel, the light that pass from one point to the other in a

constant cross section area is inversely proportional to the concentration of solids. This

means that in a mixture with a few solids particles, a beam light cross freely without

interferences, but in a high number of solids particles (or greater solids concentration),

jus a little quantity of light cross the vessel from one to the other side of the vessel as

show Figure 3.11.

Using a right calibration, we postulate that just we need light concentration measure

in both sides of the vessel for compute the solids concentration at the cross sectional

area. So we developed a preliminar instrument as show Figure 3.12 in which we explain

the rough idea for send data and take measurements. The prototype has the following

essential parts:
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Figure 3.11: Schematic view of the light influence across a transparent vessel. (left)
A sedimentation with a few particles (low concentration). (Right) A sedimentation
with more particles. Properly elaboration.

• Laser array: They are adapter as a light source and send a constant beam. Each

laser has different height and is adapted such that his light across the vessel just

for his diameter avoid refraction issues.

• Vessel: Is a transparent tube with constant circular cross section along the height.

• Photoresistor: They are sensible with light. So every laser beam will be measure

with a Photoresistor at the same height but to the other side of the vessel if the

laser beam cross the vessel.

Application from scientific computation to online platform with many

users

In order to find the way for many people are interacting with new mathematical de-

velopments is we build a robust architecture for support that. In Figure 3.13 we show

a different way for compute a numerical result. Previously in [94] we explain with

a diagram how compute a thickener simulation from different operational parameters

and constitutive functions, now we coupled to those result a informatic backend using

python language and Django framework [50]. This alternative has many advantages,

for example you can couple other results in different languages as modules, that is the
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h1

h2

h3

h4

h5

h6

Figure 3.12: Diagram of a prototype that measure the light quantity and transform
to a concentration value. (left) Array of different light source and light sensors along
the vessel. (Right) A scheme for one sensor and light source. Properly elaboration.

case of electronic backend : is a mini-system that compile real data using a wide kind

of sensors and this results are used as input for mathematical models. Here we use

Flask framework [56] for make inner connection. All the results are showed for users

using a continuously updating backup in a database. This is a key point, the user

never see scientific computation and his electronic device never compute that, just is

a visualisation from a database using ajax. After that, the front end is a couple of

widgets that make more comfortable the visualisation in different size screen (respon-

sive), with colourful and less buttons (minimalistic). In general, we use Bootstrap [9]

framework programming in HTML [73] with Javascript [75] application. Is important

for dashboard use a Sufee framework [113] and some graphic motor tools as Highcharts

[71], D3 [38] or D3plus [39].

Previous system description makes it possible to compute a scientific result, add ex-

perimental results and couple with operational control parameters for make possible

to build an automatic system of prevent alerts. We apply the system to thickener

and clarifier process, but the architecture is adaptable for many other industries using

essentially same modules.
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Figure 3.13: Flow diagram of RelaveSeco plataform. At the first part is as [94] and
after is coupled with a FullStack development (informatic backend and frontend) and
a Electronic background for manage remotely operation control parameters. Properly
elaboration.

Future work

Along my PhD research we found and develop initially many ideas for aboard. One of

them was the Biofilm area. We put here an introduction to the problema and related

word for be used in a future work. Actually is under construction.

Biofilms

Since 2017 we work developing a mathematical model and reliable numerical scheme,

that consider the biofilm behaviour in two different spatial scales, biofilm scale and
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Figure 3.14: A couple of thickener in operation in Chile and Australia. In order from
left to right and upper to down: (a) Escondida mine, Chile (b) Collahuasi mine, Chile
(c) Candelaria mine, Chile (d) CODELCO Chuquicamata mine, Chile, (e) CODELCO
DMH mine, Chile (f) APEX Wiluna Gold Mine, Australia. Adapted from Imagery
c©2018 Google Maps, by Elias Godoy and Camilo Mej́ıas, Retrieved October 01, 2018,

from http://www.maps.google.com/. adapted with permission.

reactor scale and are separate by a boundary layer as a stagnant liquid layer, using

approximate Fick’s Law when he phases between the granule and water are changed.

In the Figure 3.15 we can see a conceptual idea of the model with the different stages

define by a radial axis. We assume radial symmetry so we work in just one dimension.
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∆ll

Granule - Biofilm

Boudary Layer Bulk liquid

(l + ∆l)+

biofilm scale reactor scale

Figure 3.15: A 1D scheme of the granule and the boundary layer that is a quiet
liquid and is the transition between the granule to the bulk reactor. Fick’s Law is
available here. Properly elaboration.

The granules are a special kind of biofilm that not obey the assumption “grouting of

cell attached over a solid surface”. In this case (granules) the bacterias be attach over

itself. The standard assumption for create granules is work over a SBR (sequencing

batch reactors) with lows settling residencial time. If his sedimentation time is low,

then when you wash the small particles that not reach to settled, with this manner you

chose just bacteria that settled and attached itself. Summarising the formation stages

are:

• Starting of attachment (young bacterias)

• Grouting of granules by grouting of cell mass and adhesion of suspended and

floculent biomass

• Re-granulation from detachment of old granules.

The isolating of anammox in the center of the granule occur by natural selection and

you can build your anammox granules this in a anoxic SBR and then add nitrificant

biomass and transform the system to a CANON system with change of substrate and

add aeration.
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Biofilm related work

In the last years mathematical models have been developed to understand the par-

tial nitrification processes and the biofilm and granule knowledge. One of that work

was [87] who used a dynamic model to compare competition between autotrophic and

heterotrophic biomass in a developing biofilm. In these work they never considerate

detachment. This variable was first added in[133] as result of a mass balance and

some upgrades in [134] with changes of the biofilm porosity and simultaneous detach-

ment and attachment processes. This model is widely used and is called Wanner and

Gujer model. Many researchers work in the detachment process, for example in [95]

they concluded that mathematical models assuming constant biofilm thickness produce

wrong results in performance of systems. Some upgrades you can find in [139]. On

the other hand [90] work in experimental models to detachment velocity and [121, 123]

introduced a free surface model with varying the large L as a function between growth

and detachment velocity, they said “The biofilm structure is determinated by the ratio

between detachment forces and biomasss production rate in biofilm”. Another point of

view was given by [102, 103] that build a model applied to simulate growth of biofilm

attached on solid flat surfaces and write the boundary conditions for PDE system

solved with cellular automata. In the same time [108, 135] work in a complete model

for capture all small process inside the granule like a particulate materia suspended

in the liquid and introduce a porosity concept for the granule. With this basis papers

Reichert built the AQUASIM software [106, 107] that 20 year over is widely used yet.

Wanner et. al. in [132] gave a review of all works in the area and summarise some

things under the same notation. Moreover introduce a new mass balance. The granule

size and its importance to the whole processes was studied by [55, 90, 97, 128, 130, 131]

and biofilm shape is also an important parameter for the stability of the reactor showed

by [58].

Recently [126] using a systematic modelling framework in [68] and some ideas about

reaction vector as ASM1 in [70] suggest a new free surface coupled with nonlinear

flux model for explain the liquid diffusion and particulate advection with reactions

inside the granule. This model result a simplification of Wanner and Reichert model

[108, 135] but applied for granules itself and not over a solid surface. They validate

this model in a steady state and fix L in [127] while in [96] work in steoquiometric

reaction for nitrogen consume. All was summarized in [125] using a realistic test given

by [77]. Some approaches for a numerical consumption scheme were showed in [124]

but is an incomplete discretization.
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Other ways for model granules are Wood in [137] that introduced a method like volume

averaging for the models and [51] gave a first model that consider the biomass as a

viscous fluid. This is called Dockery model and is very used too.

First approach in build a reliable framework with mathematical emphases, analysis

error are studied by Eberl in [54].

Some reviews in Biofilm modelling you can find in [72, 104, 111, 132].

So our future work can be summarised in:

• Proof the numerical scheme convergence for linearly implicit method in Chap-

ter 1. Here we made some approaches, but still we have issues in a certain

parameters independence.

• Apply mathematical model proves in Chapter3 for other industrial process, such

that leaching.

• Finish the Biofilm model with applications to CANON and SNAD processes.

• Investigate more about the influence of granule size to the sedimentation veloci-

ties and how this granulometry affects to the determination of fb(φ), where φ is

the volume concentration.

• Make a better architecture for provide a online simulator for strongly degenerate

parabolic partial differential equations.
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