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Abstract

Unate functions arise naturally in diverse areas of mathematics and computer science and
play a central role in the modeling of gene regulatory systems with Boolean networks, where
each regulator acts as an inducer or a repressor. Inferring such functions from observational data
is a fundamental task that has been primarily approached from a biological perspective. We ad-
dress the problem of determining whether there exists a unate function compatible with a set of
observations by introducing two central concepts: the multiset of discrepancies and the coverage
vector. We demonstrate that the existence of a covering vector is a necessary and sufficient
condition for solving the unate compatibility problem, and we characterize the entire space of
functions associated with a coverage vector, thereby formalizing the unate inference process. We
propose two complementary algorithms: a coverage algorithm that efficiently constructs sparse
coverage vectors, and an exploratory algorithm that analyzes collections of coverage solutions
to identify patterns of influence and derive representative quasi-solutions. Experiments on syn-
thetic datasets demonstrate scalability and feasibility, while the Drosophila ventral furrow case
study indicates that, together, the algorithms constitute an exploratory approach for Boolean
network inference when information is limited to observations and that they have the potential
to systematically explore plausible regulatory architectures.
Keywords: Unate Boolean functions, Coverage vector, Gene regulatory systems, Boolean net-
works, Inference.

1 Introduction

A Boolean function f of n Boolean variables is a map f : Bn → B, where B = {0, 1}. The Boolean
function f is said to be monotone increasing in the i-th variable if, for all x ∈ Bn with xi = 0, we
have f(x) ≤ f(x⊕ ei); and it is monotone decreasing if f(x) ≥ f(x⊕ ei), where ei ∈ Bn denotes the
vector with all coordinates equal to 0 except for the coordinate i, which is equal to 1. Additionally,
⊕ is the component-wise addition modulo 2. When the inequality is strict for at least one x, we
say that i is an influencer ; otherwise, f is constant in the i-th variable. These notions lead to the
definition of unate functions, which are the focus of this study. A Boolean function f is called a
unate function if, for each i ∈ [n] (where [n] = {1, . . . , n}), it is monotone increasing or monotone
decreasing in the i-th variable. Unate functions gain particular importance in the study of Boolean
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networks (BNs), especially in the modeling of gene regulatory systems ([11]), where they naturally
capture inducer and repressor interactions ([8]).

A central question is the induction of Boolean functions from observations: given binary data
partitioned into ‘positive examples’ and ‘negative examples’, the objective is to decide whether
there exists a function belonging to a specific class that accepts all the positives and rejects all the
negatives and, if so, to identify it. This problem is framed within the theory of partially defined
Boolean functions ([6, 13]), and it is shown that, for several classes, including unate functions,
deciding existence is NP-complete ([6]). In this work, we refer to this as the compatible unate
function problem. The inference problem of BNs from observational data, in its general form,
has been widely studied ([1, 9, 14]), and numerous algorithms have been proposed and compared
([16, 17]). Most of these approaches aim to approximate the entire biological system, aligning
the inferred BN with the underlying molecular mechanisms ([15]). By contrast, our approach is
exploratory: it operates at the node level, inferring compatible unate functions independently,
which could be combined to reveal the structural properties of the network as a whole.

The compatible unate function problem is addressed through two key concepts: the multiset
of discrepancies, which summarizes how positive and negative observations differ; and the cover-
age vector, which represents a possible way to solve these differences. Once the theoretical results
have been established, we propose two complementary algorithms: a coverage algorithm designed
to produce sparse coverage vectors and to converge quickly, subject to a stop condition that lim-
its computational effort; and an exploratory algorithm to analyze collections of coverage vectors,
identify recurrent patterns of influence, and derive representative quasi-solutions. Together, they
define an exploratory approach that is flexible and adaptable to diverse experimental scenarios. In
experiments with synthetic datasets, the coverage algorithm exhibits scalability, maintaining prac-
tical execution times even for functions with several hundred variables. Under constraints on the
weight of the coverage solutions, execution times remain practical, and the observed success rates
indicate feasibility, even though the constraint makes it difficult to find solutions. In the Drosophila
ventral furrow regulatory BN case study presented in this work, the inferred functions preserve the
regulatory structure in terms of the number of influencers, which indicates that our approach is
suitable for inferring BNs when the available information is limited to observations.

In Corollary 4, we establish that the existence of a coverage vector is a necessary and sufficient
condition for the existence of a compatible unate function. Meanwhile, in Theorem 6, we characterize
all compatible unate functions associated with a given coverage vector, bounding them between lower
and upper functions, thereby grounding the inference process. We also analyze optimization aspects
of coverage vectors: minimal subcoverage captures the local effort to simplify coverage solutions and
admits a linear time procedure, while minimum subcoverage reflects the global effort and defines an
NP-complete problem.

2 Theoretical Results

2.1 The main problem

An observation is a pair (x, t), where x ∈ Bn and t ∈ B. Given a set F of observations, we
distinguish F0 = {x : (x, 0) ∈ F} and F1 = {x : (x, 1) ∈ F}, and assume that F0 ∩ F1 = ∅. We
say that f : Bn → B is compatible with F0 and F1 if, for all y ∈ F0, f(y) = 0, and for all z ∈ F1,
f(z) = 1. We refer to the process of identifying one or more functions that satisfy this condition as
the inference of compatible functions.

For the general case, it is always possible to infer a function f that is compatible with a set
of observations simply by defining f(x) = 1 ⇔ x ∈ F1. However, such a function does not need
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to be unate, and even if it is, it is not necessarily unique. For example, consider F0 = {000, 111}
and F1 = {100, 011}, and let f : B3 → B be compatible with F0 and F1. From f(000) = 0 and
f(100) = 1, we obtain that f is monotone increasing in x1, while f(111) = 0 and f(011) = 1 force
it to be monotone decreasing in x1; hence, there is no compatible unate function. Conversely, for
F0 = {011} and F1 = {101, 110}, there are at least two compatible unate functions: f(x) = x1 and
g(x) = x2 ∧ x3.

The first purpose of the paper is to determine whether there exists a unate function f that is
compatible with a set of observations. If so, the second purpose is to infer it.

Problem 1 (Compatible Unate Function Problem (CUF)). Given F0, F1 ⊆ Bn. Does there
exist a unate function f : Bn → B compatible with F0 and F1?

Theorem 1. ([6]) CUF is NP-Complete.

2.2 The notion of discrepancy

In the following, subscripts indicate coordinates and superscripts label vectors. We say that a vector
x is signed if x ∈ {0,−,+}n. The support of a signed vector x is supp(x) = {i : xi ̸= 0}, and its
weight is w(x) = | supp(x)|.

For y ∈ F0 and z ∈ F1, the discrepancy between y and z is defined as the signed vector δ(y, z),
such that for each i ∈ [n],

δ(y, z)i =


+ if yi < zi,

− if yi > zi,

0 otherwise

We write simply δ when no confusion can arise.
Since F0 ∩ F1 = ∅, no discrepancy is equal to the vector with all its coordinates equal to 0,

denoted by 0. Furthermore, as different pairs of observations can share the same discrepancy, we
maintain multiplicities and obtain what we call the multiset of discrepancies, denoted by ∆F .

Example 1. Given F0 = {1000, 0010} and F1 = {1111, 0100}, we get the following discrepancies:
δ(1000, 1111) = [ 0 + + + ], δ(1000, 0100) = [− + 0 0 ], δ(0010, 1111) = [ + + 0 + ], and
δ(0010, 0100) = [ 0 + − 0 ].

Every set of observations induces a multiset of discrepancies, but the converse does not nec-
essarily hold. This is not due to the function being unate or not; rather, it is a dimensionality
issue.

Example 2. Let S = {[ + + − ], [ 0 − − ]}. For this to be a multiset of discrepancies, necessarily
[ + + − ] = δ(001, 110) and [ 0 − − ] = δ(α11, α00), where α ∈ B. So, F0 = {001, 011} and
F1 = {110, 000}, or F0 = {001, 111} and F1 = {110, 100}. In both cases, [ 0 0 − ] = δ(001, 000) =
δ(111, 110) /∈ S, hence S is not a multiset of discrepancies.

Given a signed vector Σ, we say that a discrepancy δ is covered by Σ if there exists k ∈ [n] such
that Σk = δk = + or Σk = δk = −. Moreover, Σ is a coverage vector for a multiset of discrepancies
∆ if every δ ∈ ∆ is covered by some coordinate of Σ.

Example 3. Continuing with Example 1, [− 0 − + ] is a coverage vector for ∆F . Note that
the second coordinate is 0, since all discrepancies are covered by the other coordinates. Besides,
[ 0 + 0 0 ] is also a coverage vector, proving that coverage vectors are not necessarily unique.
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The dependence of each variable in a unate function f is summarized by a signed vector, denoted
by Σ(f), and referred to as the influence vector of f . Its i-th entry is + (for monotone increasing),
− (for monotone decreasing), or 0 (for constant); based on the behavior of f in the i-th variable.
For Σ(f) to be uniquely defined, we assume minimality, i.e., Σ(f)i ̸= 0 if and only if there exists
x ∈ Bn such that f(x) ̸= f(x⊕ ei). A fundamental observation is:

Proposition 2. Let F0, F1 ⊆ Bn. If f is a unate function compatible with F0 and F1, then Σ(f) is
a coverage vector for ∆F .

Proof. Let y ∈ F0 and z ∈ F1, with supp(δ(y, z)) = {s1, s2, . . . , sl}. We define a path P : x0 =
y, x1, x2, . . . , xl = z in Bn, where ∀i ∈ [l], xi := xi−1 ⊕ esi . Since f(y) < f(z), ∃j ∈ [l] such
that f(xj−1) < f(xj), which is equivalent to f(xj−1) < f(xj−1 ⊕ esj ). Note that ysj = xj−1

sj and

zsj = xjsj , which implies that δ(xj−1, xj)sj = δ(y, z)sj . We now show that δ(y, z) is covered by Σ(f).
If δ(xj−1, xj)sj = +, then by the definition of monotone increasing, we have Σ(f)sj = +; hence
Σ(f)sj = δ(y, z)sj . Analogously, if δ(x

j−1, xj)sj = −, then by the definition of monotone decreasing,
we have Σ(f)sj = −, and again Σ(f)sj = δ(y, z)sj . As y ∈ F0 and z ∈ F1 were arbitrary, every
discrepancy is covered; therefore, Σ(f) is a coverage vector for ∆F .

Proposition 2 suggests that the coverage vector is a good candidate for solving Problem 1. We
now show that at least two compatible unate functions can be inferred from a coverage vector,
which may be identical. For this purpose, we use a well-known result: a Boolean function is unate
if it can be written in DNF or CNF with each variable appearing only in its negated or non-negated
form ([2]).

Proposition 3. Let F0, F1 ⊆ Bn, and let Σ be a coverage vector for ∆F . The functions:

f↓Σ(x) :=
∨
z∈F1

Cz and f↑Σ(x) :=
∧
y∈F0

Cy,

where,

Cz :=
∧
zi=1
Σi=+

xi ∧
∧
zi=0
Σi=−

xi and Cy :=
∨
yi=1
Σi=−

xi ∨
∨
yi=0
Σi=+

xi,

are unate functions and compatible with F0 and F1.

Proof. We begin by introducing the notation used in the proof. Define sgn : Bn → {−,+}n such
that ∀x ∈ Bn, ∀i ∈ [n]:

sgn(x)i =

{
− if xi = 0,

+ if xi = 1.

We also rely on the following two observations, which follow directly from the definitions of
discrepancies and coverage:

(a) there does not exist y ∈ F0 such that ∀i ∈ [n], Σi ̸= 0 =⇒ sgn(y)i = Σi;

(b) there does not exist z ∈ F1 such that ∀i ∈ [n], Σi ̸= 0 =⇒ sgn(y)i ̸= Σi.

Indeed, if either of the two conditions fails, we could find a pair ŷ ∈ F0 and ẑ ∈ F1 such that:

∀i ∈ [n], (Σi = + =⇒ ŷi = 1 ∧ ẑi = 0) ∧ (Σi = − =⇒ ŷi = 0 ∧ ẑi = 1),

which would imply,

∀i ∈ [n], (Σi = + =⇒ δ(ŷ, ẑ)i = −) ∧ (Σi = − =⇒ δ(ŷ, ẑ)i = +),
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so δ(ŷ, ẑ) is not covered by Σ, which is a contradiction.
With these preliminaries established, we now prove the proposition. By (a) and (b), all clauses

Cz and Cy are non-empty, and each variable appears only in its negated or non-negated form; hence
f↓Σ and f↑Σ are unate. Now we prove that f↓Σ is compatible with F0 and F1.

Let ŷ ∈ F0. Since Σ is a coverage vector, for every z ∈ F1 there exists j ∈ [n] such that
Σj = δ(ŷ, z)j = + or Σj = δ(ŷ, z)j = − . If Σj = +, then ŷj = 0 and zj = 1, which implies that
Cz evaluated on ŷ is 0. Similarly, if Σj = −, then ŷj = 1 and zj = 0, which also implies that Cz

evaluated on ŷ is 0. Therefore, f↓Σ(ŷ) = 0.
Let ẑ ∈ F1 and evaluate Cz at ẑ: ∧

ẑi=1
Σi=+

ẑi ∧
∧
ẑi=0
Σi=−

ẑi = 1 .

Hence f↓Σ(ẑ) = 1. As y ∈ F0 and z ∈ F1 were arbitrary, f↓Σ is compatible with F0 and F1.
The proof that f↑Σ is compatible is analogous.

Therefore, once we have a coverage vector, a compatible unate function can be inferred in
polynomial time, as is also shown in [18].

Remark 1. The functions f↓Σ and f↑Σ are referred to as the lower and upper bounds, respectively,
as shown in Theorem 6. Due to compatibility, it is evident that F1 ⊆ {x ∈ Bn : f↓Σ(x) = 1}
and F0 ⊆ {x ∈ Bn : f↑Σ(x) = 0}; however, the inclusions may be strict. For example, consider
F0 = {01, 11} and F1 = {10}, where Σ = [ 0 − ] is a coverage vector for ∆F . It is easy to verify
that f↓Σ = f↑Σ = x2. Thus F1 ⊊ {x ∈ B2 : f↓Σ(x) = 1} = {00, 10}.

The following corollary captures the key theoretical idea behind our approach; and it is a direct
consequence of Proposition 2 (necessity) and Proposition 3 (sufficiency).

Corollary 4. The existence of a coverage vector is a necessary and sufficient condition for the
existence of a compatible unate function.

Corollary 4 solves Problem 1: finding a coverage vector is equivalent to finding a compatible
unate function, and once it exists and is found, we can infer at least two functions in polynomial
time, which may be identical. This result yields the following immediate consequences:

(i) If δ1 and δ2 are discrepancies with the same support {j}, then there exists a compatible unate
function if and only if δ1j = δ2j .

(ii) A unate function f that is monotone increasing in every variable is compatible with F0 and
F1 if and only if, for every δ ∈ ∆F , there exists j ∈ [n] such that δj = +.

(iii) A unate function f is not compatible with F0 and F1 if there exists δ ∈ ∆F such that, for
every j ∈ supp(Σ(f)) ∩ supp(δ), Σ(f)j ̸= δj .

2.3 Characterization of compatible unate functions

Our next goal is to characterize the set of compatible unate functions beyond f↓Σ and f↑Σ , providing
a complete description of their structure and addressing the inference process. This description relies
on the role of antichains in Boolean functions; it is well known that the sets formed by the variables
of the clauses of an irreducible CNF form an antichain in the set of literals under the inclusion
relation ([5]).
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We define the partial order ≤Σ on Bn induced by a signed vector Σ. For x, y ∈ Bn, x ≤Σ y if
and only if for each i ∈ [n], xi ≤ yi when Σi = +, and xi ≥ yi when Σi = −. We write x <Σ y
when at least one inequality is strict. A subset A ⊆ Bn is a Σ-antichain if, for all x, y ∈ A, they are
incomparable with respect to ≤Σ, i.e., neither x ≤Σ y nor y ≤Σ x.

For a unate function f with influence vector Σ = Σ(f), we say that A1
f ⊆ Bn describes the ones

of f when f(x) = 1 if and only if there exists z ∈ A1
f such that z ≤Σ x; and that A0

f ⊆ Bn describes

the zeros of f when f(x) = 0 if and only if there exists y ∈ A0
f such that x ≤Σ y.

With these definitions, F1 and F0 naturally describe the behavior of f↓Σ and f↑Σ , respectively.

Proposition 5. Let F0, F1 ⊆ Bn, and let Σ be a coverage vector for ∆F . Then:

(1) F1 describes the ones of f↓Σ ;

(2) F0 describes the zeros of f↑Σ .

Proof. Let us first prove (1). We want to show that for each x ∈ Bn, f↓Σ(x) = 1, if and only if there
exists z ∈ F1 such that z ≤Σ x.

By definition of f↓Σ , we have that:

∀x ∈ Bn, f↓Σ(x) = 1⇔ ∃z ∈ F1,
∧
zi=1
Σi=+

xi ∧
∧
zi=0
Σi=−

xi = 1 .

The last equality is satisfied if:

∀i ∈ [n], (Σi = + ∧ zi = 1 =⇒ xi = 1) ∧ (Σi = − ∧ zi = 0 =⇒ xi = 0),

which implies that xi = zi.
On the other hand,

∀i ∈ [n], (Σi = + ∧ zi = 0 =⇒ xi ∈ {0, 1}) ∧ (Σi = − ∧ zi = 1 =⇒ xi ∈ {0, 1}),

indicating that zi ≤ xi and zi ≥ xi, respectively. Hence, for each i ∈ [n], zi ≤ xi when Σi = +, and
zi ≥ xi when Σi = −. Therefore, z ≤Σ x, which proves the claim.

The proof of (2) is similar: using the definition of f↑Σ and analogous reasoning, we prove that
for each x ∈ Bn, f↑Σ(x) = 0, if and only if there exists y ∈ F0 such that x ≤Σ y.

Remark 2. The sets describing the ones and zeros of f can be turned into antichains through a
process of elimination: if there is z1, z2 ∈ A1

f with z1 <Σ z2, then by the transitivity of <Σ,

A1
f − {z2} still describes the ones. Similarly, if there is y1, y2 ∈ A0

f with y1 <Σ y2, then A0
f − {y1}

still describes the zeros. Removing all redundancies yields minimal sets with the same property,
called the 1-antichain and 0-antichain of f , respectively.

The above descriptive overview provides the basis for a complete characterization of the space
of compatible unate functions, thus addressing the inference problem:

Theorem 6. Let F0, F1 ⊆ Bn, and let Σ be a coverage vector for ∆F . A unate function f such
that Σ(f) = Σ is compatible with F0 and F1 if and only if f↓Σ ≤ f ≤ f↑Σ .

Proof. We prove the double implication.
⇐= If f↓Σ ≤ f ≤ f↑Σ , it is immediate that f is compatible with F0 and F1, since both f↓Σ and
f↑Σ are.
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=⇒ We first show that f↓Σ ≤ f . On the contrary, suppose that there exists x ∈ Bn such that
f↓Σ(x) = 1 and f(x) = 0. From Proposition 5 (1), F1 describes the ones of f↓Σ . Let A0

f denote

the set that describes the zeros of f . Then, there exist ẑ ∈ F1 and ŷ ∈ A0
f such that ẑ ≤ x and

x ≤Σ ŷ. By the transitivity property of ≤Σ, we have ẑ ≤Σ ŷ. By the definition of A0
1, we obtain

that f(ẑ) = 0, which contradicts the compatibility of f with F1.
The inequality f ≤ f↑Σ follows by an analogous argument, denoting A1

f as the set that describes
the ones of f and applying Proposition 5 (2).

Remark 3. If
⋃

y∈F0
{x : x ≤Σ y} ∪

⋃
z∈F1
{x : z ≤Σ x} ̸= Bn, then f↓Σ < f↑Σ . Hence, compatible

unate functions are in one-to-one correspondence with the antichains obtained by adding to F0 or
F1 those vectors that are incomparable with any element of the respective set.

2.4 About minimal and minimum subcovering

Questions about the minimal and minimum weight of a coverage vector arise naturally, as these
notions are relevant to analyzing the effort required to simplify solutions. Therefore, we establish
basic terminology and briefly discuss the complexity of related problems.

Given two signed vectors x and y, we say that x is a subvector of y, denoted x ⊆ y, if for each
i ∈ [n], xi ̸= 0⇒ yi = xi.

A coverage vector is minimal if no proper subvector of it is also a coverage vector. This raises
the following question: given ∆ a multiset of discrepancies and Σ a coverage vector for ∆, find a
minimal subvector of Σ that is also a solution. This can be done in linear time in the number of
coordinates: it suffices to choose any order in supp(Σ) and check, one by one, whether each entry
can be replaced by zero while maintaining Σ as a coverage vector.

A coverage vector is minimum if its weight is the smallest among all solutions. Analogous to
the minimal case, we consider a subvector problem associated with the minimum:

Problem 2 (Minimum Subcoverage Problem (MinSUB)). Given ∆ a multiset of discrepan-
cies, Σ a coverage vector for ∆ and k an integer, decide if there exists a subvector of Σ that is a
coverage vector for ∆ and whose weight is at most k.

It is clear that the minimum coverage vector problem is NP-complete, and it turns out that the
restricted subcoverage version is also NP-complete.

Theorem 7. MinSUB is NP-complete.

Proof. It is clear that MinSUB is NP. We prove that MinSUB is NP-hard by providing a polynomial
reduction from the Set Cover problem, which is known to be NP-complete. In Set Cover, given a
universal set U = [m], a family of subsets of U denoted by S = {S1, S2, . . . , Sn} and an integer k;
the goal is to determine whether there exists a subfamily of S of size at most k whose union is equal
to U . We now transform an instance of Set Cover into an instance of our problem.

We define F0, F1 ∈ Bn, where F0 = {0} and F1 = {z1, z2, . . . , zm}, such that ∀i ∈ [m]:

∀j ∈ [n], zij =

{
1 if i ∈ Sj ,

0 otherwise.

Then, the set of discrepancies is given by ∆F = {δ1, δ2, . . . , δm} such that ∀i ∈ [m]:

∀j ∈ [n], δij =

{
+ if zij = 1,

0 otherwise,
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so that Σ = [ + + . . . + ] ∈ {0,+}n is a coverage vector for ∆F .
Note that Si is an element of a solution to the Set Cover problem if and only if the i-th coordinate

is nonzero in a MinSUB solution. Therefore, Ŝ = {Si1 , Si2 , . . . , Sik} is a subfamily of S that covers
U if and only if the subvector Σ̂ of Σ, defined as follows: Σ̂i = + for all i ∈ {i1, i2, . . . , ik} and 0
otherwise, is a coverage vector for ∆F .

3 Materials and methods

In the following, we introduce the practical components of our exploratory approach: a coverage
algorithm for constructing a solution and an exploratory algorithm to analyze the structure of a
collection of solutions in terms of patterns of influence.

3.1 The coverage algorithm

We present the Algorithm 1, which focuses on finding a covering vector for the multiset of discrep-
ancies induced by F0 and F1.

The process begins by computing ∆ = ∆F and initializing Σ = 0. In cases where prior knowledge
is available, such as known signs of specific variables, this information can be preassigned in Σ, with
subsequent steps adapted accordingly. Each discrepancy δ ∈ ∆ is characterized by its support and
weight and marked as unselected. At each iteration, an unselected discrepancy δ∗ under Rule A
is chosen, a coordinate j from its support under Rule B is selected, and Σj is set to δ∗j . This
assignment ensures that every discrepancy consistent with the sign at coordinate j is covered by
Σ and subsequently marked as selected. For the remaining unselected discrepancies containing j
in their supports, j is removed and weights are updated to prevent j from being selected again in
subsequent steps. When a discrepancy reaches weight equal to 0 before being covered by Σ, the
attempt is aborted and restarted. The process is repeated until all discrepancies are covered or a
stop condition holds, for example, a limit on the execution time or on the number of operations.

Although this algorithm does not include the explicit construction of a compatible unate func-
tion, once a coverage vector is obtained, it can be inferred by the procedure presented in Proposi-
tion 3, constructing f↓Σ or f↑Σ ; moreover, an intermediate compatible function can be derived as
discussed in Remark 3.

3.1.1 Practical rules

The rules used in Algorithm 1 are motivated by fast convergence, either producing a coverage vector
or concluding that no compatible unate function can be found. Also, there is a preference for simple
solutions, where simplicity is interpreted as low weight.

Given ∆ = {δ1, δ2, . . . , δd} and j ∈ [n], write [∆]j =
[
δ1j δ2j . . . δdj

]
. The coverage potential

of δij is defined as the number of discrepancies that would be covered if Σj is set to δj .
Rule A. Choose the unselected discrepancy δ∗ with the smallest positive weight, as it imposes the
strictest restrictions; in the extreme case, a discrepancy with support {j} sets the value of Σj . If
there is a tie, select the discrepancy whose support has the largest sum of coverage potentials across
its coordinates. This criterion prioritizes a sign assignment under which many other discrepancies
are covered by Σ.
Rule B. Choose j ∈ supp(δ∗) for which [∆]j exhibits the greatest deviation from a balanced sign
distribution. Because we maintain multiplicities in the multiset of discrepancies, sign frequencies
in [∆]j are accurately represented. This selection criterion offers practical advantages over simply
choosing the coordinate with the highest coverage potential. An unbalanced pattern may indicate
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Algorithm 1 Coverage algorithm

Require: Number of variables n, sets F0 and F1

Ensure: A coverage vector Σ ∈ {0,−,+}n or report failure
1: ∆← {δ(x, y) : x ∈ F0, y ∈ F1}
2: for all δ ∈ ∆ do
3: Supp[δ]← supp(δ), Wt[δ]← w(δ), Selected[δ]← False

4: repeat
5: S ← Supp, W ← Wt, C ← Selected

6: Σ← 0
7: while (∃δ ∈ ∆, C[δ] = False) do
8: if ∃δ ∈ ∆, C[δ] = False ∧W [δ] = 0 then break

9: Choose δ∗ ∈ ∆ with C[δ∗] = False under Rule A
10: Choose j ∈ S[δ∗] under Rule B
11: Σj ← δ∗j , C[δ∗]← True
12: for all δ ∈ ∆, C[δ] = False ∧ j ∈ S[δ] do
13: if δj = Σj then
14: C[δ]← True
15: else
16: S[δ]← S[δ] \ {j}, W [δ]←W [δ]− 1

17: if (∀δ ∈ ∆, C[δ] = True) then return Σ

18: until a specified stop condition is met
19: return Failure: no compatible unate function can be found

a more decisive role of a coordinate as an influencer; thus, favoring that bias tends to produce more
robust solutions, i.e., more stable and consistent patterns of influence.

For i ∈ supp(δ∗), we write νi = w([∆]i). To quantify the deviation exhibited by i, we define
the proportion of signs in [∆]i that are equal to δ∗i as p∗i = 1

νi

∑
δ∈∆ I(δi = δ∗i ), where I(α = β) is

the indicator function, which is equal to 1 if α = β and 0 otherwise. Assuming that the signs in
[∆]i are drawn independently from Bin(νi, 1/2) and approximating this by a normal distribution,
we define α∗

i := Φ(|p∗i − 1/2|/
√

1/(4νi)), where Φ is the cumulative distribution function of the
standard normal N (0, 1). The quantity α∗

i measures the deviation of pki from randomness: values
near 0.5 suggest balance, whereas values near 1 indicate pronounced bias. For i /∈ supp(δ∗), we set
α∗
i = 0. The resulting vector is then normalized to form a probability distribution, and a coordinate

j is randomly selected according to this distribution. We present an illustrative example:

Example 4. Consider n = 6 and the set of observations given by:

F0 = {011110, 100101, 011001},
F1 = {101100, 000010, 000011, 110000, 100110}.

The multiset of discrepancies ∆ = {δ1, . . . , δ15}, together with their supports and weights, is
shown in Figure 1a. In what follows, we display only the discrepancies marked as unselected.

We initialize the signed vector Σ = 0. Next, we show the iterations necessary to determine a
coverage vector.

(i) Iteration 1: δ6 and δ10 have the smallest positive W , with sums of coverage potentials over the
coordinates in S equal to 9 and 14, respectively. Under Rule A, δ∗ = δ10. We compute p∗5 =

6
8
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and p∗6 = 8
9 , yielding the probability distribution [0, 0, 0, 0, 0.482, 0.518]. Suppose that, under

Rule B, we randomly choose j = 5. We set Σ5 = δ∗5 = +, mark the discrepancies covered
by Σ as selected, and update S and W for the discrepancies that have a sign − in the 5th
coordinate. The corresponding updates are shown in Figure 1b.

(ii) Iteration 2: δ1 and δ6 have the smallest positive W , with sums of coverage potentials over the
coordinates in S equal to 10 and 5, respectively. Under Rule A, δ∗ = δ1. We compute p∗1 =

5
5

and p∗2 = 5
6 , yielding the probability distribution [0.51, 0.49, 0, 0, 0, 0]. Suppose that, under

Rule B, we randomly choose j = 1. We set Σ1 = δ∗1 = +, mark the discrepancies covered
by Σ as selected, and update S and W for the discrepancies that have a sign − in the 1st
coordinate. The corresponding updates are shown in Figure 1c.

(iii) Iteration 3: δ6 has the smallest positive W . Under Rule A, δ∗ = δ6. We compute p∗3 = 1
3

and p∗6 =
2
3 , yielding the probability distribution [0, 0, 0.5, 0, 0, 0.5]. Suppose that, under Rule

B, we randomly choose j = 6. We set Σ6 = δ∗6 = −, mark the discrepancies covered by Σ as
selected, and update S and W for the discrepancies that have a sign + in the 6th coordinate.
The corresponding updates are shown in Figure 1d.

(iv) Iteration 4: δ2 and δ3 have the smallest positive W , both with same sum of coverage potentials
equal to 6. We randomly choose δ∗ = 2. We compute p∗2 = p∗3 = p∗4 = 1 and thus all
coordinates have the same probability 1

3 . We randomly choose j = 2. We set Σ2 = δ∗2 = −, so
that there are no discrepancies to be covered, and the algorithm returns the coverage vector
Σ = [ + − 0 0 + − ].

1 2 3 4 5 6 S W

δ1 + − 0 0 − 0 {1, 2, 5} 3
δ2 0 − − − 0 0 {2, 3, 4} 3
δ3 0 − − − 0 + {2, 3, 4, 6} 4
δ4 + 0 − − − 0 {1, 3, 4, 5} 4
δ5 + − − 0 0 0 {1, 2, 3} 3
δ6 0 0 + 0 0 − {3, 6} 2
δ7 − 0 0 − + − {1, 4, 5, 6} 4
δ8 − 0 0 − + 0 {1, 4, 5} 3
δ9 0 + 0 − 0 − {2, 4, 6} 3
δ10 0 0 0 0 + − {5, 6} 2
δ11 + − 0 + 0 − {1, 2, 4, 6} 4
δ12 0 − − 0 + − {2, 3, 5, 6} 4
δ13 0 − − 0 + 0 {2, 3, 5} 3
δ14 + 0 − 0 0 − {1, 3, 6} 3
δ15 + − − + + − {1, 2, 3, 4, 5, 6} 6

(a)

1 2 3 4 5 6 S w

δ1 + − 0 0 − 0 {1, 2} 2
δ2 0 − − − 0 0 {2, 3, 4} 3
δ3 0 − − − 0 + {2, 3, 4, 6} 4
δ4 + 0 − − − 0 {1, 3, 4} 3
δ5 + − − 0 0 0 {1, 2, 3} 3
δ6 0 0 + 0 0 − {3, 6} 2
δ9 0 + 0 − 0 − {2, 4, 6} 3
δ11 + − 0 + 0 − {1, 2, 4, 6} 4
δ14 + 0 − 0 0 − {1, 3, 6} 3

(b)

1 2 3 4 5 6 S w

δ2 0 − − − 0 0 {2, 3, 4} 3
δ3 0 − − − 0 + {2, 3, 4, 6} 4
δ6 0 0 + 0 0 − {3, 6} 2
δ9 0 + 0 − 0 − {2, 4, 6} 3

(c)

1 2 3 4 5 6 S w

δ2 0 − − − 0 0 {2, 3, 4} 3
δ3 0 − − − 0 + {2, 3, 4} 3

(d)

Figure 1: Step-by-step evolution of the discrepancy during the execution of Algorithm 1.
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3.2 The exploratory algorithm

Because multiple compatible unate functions may exist, the coverage algorithm may return different
solutions across runs. This variability provides an opportunity to explore the solution space and
identify recurrent patterns of influence. We present Algorithm 2, whose purpose is to determine a
representative vector for a collection of minimal solutions constructed for the covering algorithm.

Let M = {Σ1, . . . ,Σr} denote the collection of minimal covering vectors for ∆ obtained by
applying Algorithm 1 independently r times. For each coordinate i, we compute the normalized
frequencies of the signs + or − assigned to i across the elements ofM. This yields two frequency
vectors, F+(M) and F−(M), defined for each i as follows:

F+(M)i =
1

r

r∑
ℓ=1

I(Σℓ
i = +) and F−(M)i =

1

r

r∑
ℓ=1

I(Σℓ
i = −) .

To extract a meaningful representative vector from these frequency profiles, we apply a filtering
step with a user-defined threshold p ∈ [0, 1]. We define the vector R(M) ∈ {0,−,+,±}n where
R(M)i is +, −, or ± whenever F+(M)i, F

−(M)i, or both exceed p, respectively; otherwise 0.
The choice of p is central to the outcome of the exploratory algorithm: lower values of p favor the

inclusion of weaker but recurrent signals that may reflect underlying causal relationships; conversely,
under limited sample size or high noise, higher values of p improve robustness by filtering less
consistent attributions. Thus, the algorithm can be adjusted according to the characteristics of the
dataset and the goals of the analysis, with p balancing sensitivity and robustness in the detection
of patterns of influence. However, the optimal choice of p is beyond the scope of this work.

It is important to note that the representative vector R(M) obtained by the algorithm is not
necessarily a coverage vector: a unate function can be derived from it by fixing + or − in coordinates
where ± appears, but coverage is not guaranteed. Nevertheless, R(M) can be viewed as a quasi-
solution that preserves partial coverage. This reflects the purpose of the exploratory approach:
the trade-off between exact solutions and informative patterns when only observational data are
available.

Algorithm 2 The exploratory algorithm

Require: Number of experiments r, filtering parameter p and the collectionM = {Σ1, . . . ,Σr}
Ensure: A vector R ∈ {0,−,+,±}n
1: for i = 1 to n do
2: if F+(M)i ≥ p ∧ F−(M)i ≥ p then R[i]← ±
3: if F+(M)i ≥ p ∧ F−(M)i < p then R[i]← +

4: if F+(M)i < p ∧ F−(M)i ≥ p then R[i]← −
5: if F+(M)i < p ∧ F−(M)i < p then R[i]← 0

6: return R

4 Results

4.1 Stop condition

We need to stablish a practical stop condition for the coverage algorithm. To do so, we analyze
how the search effort, denoted by ω, scales with the number of discrepancies d and the size of the
network n using synthetic data. Here, ω is defined as the number of failed attempts before the first
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valid coverage vector is found. For brevity, we will refer to this measure as complexity in figures
and tables. We model ω as a function of problem size as:

ω = αd · d+ αn · n+ αdn · d · n, (1)

where the term d · n reflects the O(d · n) cost of testing whether a candidate vector covers all
discrepancies.

We evaluate this model empirically for six families of unate functions: majority functions, and
bounded in-degree functions with degrees from 1 and 5. Together, these families represent extreme
cases in terms of in-degree: in majority functions all variables can influence the output, while in
bounded in-degree functions only a few variables are active. This contrast allows us to measure ω
across the spectrum of relevant structures.

To generate data under these settings, each run begins by fixing the network size n, drawn
uniformly between 5 and 200. Given n, we then sample one function instance from the chosen
family. For majority functions, we draw random signed vectors uniformly from {−,+}n, with a
tie-breaking rule for the discontinuity in 0. For bounded in-degree functions, we generate random
unate functions within the specified in-degree class, sampled uniformly. Once a function instance
is fixed, we draw an observation set of size m independently and uniformly from Bn. From these
sets, we build the multiset of discrepancies with cardinality d. For each family, we perform 3000
independent runs, discarding those with d = 0; and for each retained run, we record ω. We then
study the scaling across function classes using linear regressions of ω on d, n, and d·n. The regression
coefficients for the families are summarized in Table 1.

The following are the most relevant conclusions:

(i) The coefficient of discrepancies d is consistently positive and highly significant, so the search
effort grows monotonically with the number of discrepancies.

(ii) The coefficient of network size n is negative, evidencing the fact that larger networks provide
more opportunities to cover discrepancies, which reduces the average complexity.

(iii) The estimated coefficients show consistent signs across the families, and their associated p val-
ues are uniformly small, indicating statistical significance. This stability suggests a reasonable
degree of robustness in the empirical results.

(iv) Adjusted R2 values are high across all families and tend to increase with in-degree. This
indicates that the proposed linear specification captures most of the variance in search effort,
providing a reliable empirical basis for the stop condition.

(v) The effect of d strengthens with increasing in-degree, reflecting that more complex functions
require more effort to cover discrepancies. By contrast, the effect of n shows no clear trend for
bounded in-degree functions. Comparing across families, the scaling observed for in-degree 5 is
already close to that of majority functions, indicating that the additional density of influencers
does not substantially increase complexity.

We also provide visual representations: Figure 2 shows simple regressions of ω on d for bounded
in-degree 5 and for majority functions, because they represent the sparse and dense extremes of
in-degree, respectively. The figures illustrate the stability of the linear trend and that the upper
quantiles determine the maximum complexity observed. We also include log–log regressions of ω on
d alone to test wether the scaling can be captured by a near–power law, thereby providing a more
robust basis for the stop condition.
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Family Coefficient Estimate Std. Error t value Pr(> |t|)

In-degree 1

αd 9.206 0.463 19.863 < 2e−16
αn -49.52 18.061 -2.742 0.0062
αdn 0.120 0.004 29.907 < 2e−16

Adjusted R2 = 0.782

In-degree 2

αd 13.56 0.322 42.081 < 2e−16
αn -34.00 9.558 -3.557 0.00038
αdn 0.097 0.003 34.868 < 2e−16

Adjusted R2 = 0.889

In-degree 3

αd 14.67 0.336 43.702 < 2e−16
αn -35.86 10.89 -3.292 0.0010
αdn 0.094 0.003 32.534 < 2e−16

Adjusted. R2 = 0.894

In-degree 4

αd 16.39 0.287 57.195 < 2e−16
αn -42.32 9.876 -4.285 1.9e−05
αdn 0.085 0.002 34.422 < 2e−16

Adjusted R2 = 0.917

In-degree 5

αd 18.39 0.270 68.054 < 2e−16
αn -19.11 9.368 -2.040 0.0415
αdn 0.072 0.002 31.312 < 2e−16

Adjusted R2 = 0.934

Majority

αd 19.88 0.231 86.071 < 2e−16
αn -23.11 6.626 -3.489 0.00049
αdn 0.062 0.002 31.244 < 2e−16

Adjusted R2 = 0.951

Table 1: OLS regression coefficients for bounded in-degree 1 to 5, and majority functions. Each
block shows coefficient estimates with standard errors, t values and p-values; adjusted R2 is reported
in the last row of each block.

The above results indicate that a logarithmic analysis is more appropriate for advancing toward
a practical stop condition. The dependence of ω on discrepancies is nearly linear in the upper
tail, with slope γ ≈ 1.16 on majority functions. This motivates a power-law on the number of
discrepancies, which we extend to a multiplicative form in both d and n: ω ∼ nβ1dβ2 . Concretely,
we fit a τ = 0.999 quantile regression on the majority family with predictors log d and log n (the
interaction d · n is omitted in log scale due to collinearity). This yields:

log(ω) = 1.78277 + 1.15688 log(d) + 0.07946 log(n) .

For the range of our experiments (5 ≤ n,m ≤ 200), less than 0.1% of cases exceed this bound,
so we adopt it as a conservative stop condition. In the main text, we extrapolate this bound to
larger networks as a pragmatic approximation, supported by the approximately power-law relation
between discrepancies and complexity.

4.2 Synthetic datasets

To evaluate the computational behavior of the coverage algorithm, we generated synthetic datasets
based on random Boolean networks (BNs) constructed using the R-package BoolNet. The procedure
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(a) OLS regression (blue) of complexity on dis-
crepancies for in-degree 5, with 0.99 and 0.01
quantile regressions (red).

(b) OLS regression (blue) of complexity on dis-
crepancies for majority functions, with 0.99 and
0.01 quantile regressions (red).

(c) Log–log regression of complexity on discrep-
ancies for in-degree 5. OLS in blue; 0.99 and 0.01
quantile regressions in red.

(d) Log–log regression of complexity on discrep-
ancies for majority functions. OLS in blue; 0.99
and 0.01 quantile regressions in red.

Figure 2: Complexity regressed on discrepancies for representative families. Bounded in-degree 5
(sparse) and majority functions (dense) are displayed. Blue lines correspond to OLS regressions;
red lines to upper (0.99) and lower (0.01) quantile regressions.

is designed to produce sets of observations under the following main parameters: the number of
variables (n), the number of observations (m), and the number of discrepancies (d).

For each parameter configuration, we generate a single random BN:

N : Bn → Bn, x = (x1, . . . , xn) ∈ Bn 7→ N (x) = (f1(x), . . . , fn(x)),

where each coordinate function fi : Bn → B is the local activation function of node i. For every
i ∈ [n], we define the dependency set Di ⊆ [n] such that fi depends only on the variables in Di;
the in-degree of node i is then given by |Di|. In this work, we consider random BNs with bounded
in-degree, meaning that all local activation functions have a maximum in-degree k.

Each BN N is generated in R using the following command:

generateRandomNKNetwork(n, k, simplify = TRUE, readableFunctions = TRUE),

where the option simplify = TRUE ensures that redundant dependency variables are removed
for each fi, and readableFunctions = TRUE displays the DNF representation for the local func-
tions. Other parameters are set to their default values:
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topology = "fixed", linkage = "uniform", functionGeneration = "uniform"

For further details, see the documentation https://cran.r-project.org/web/packages/BoolNet/
index.html.

For a BN N = (f1, . . . , fn), a trajectory is a sequence of m + 1 states in Bn, denoted by
T = (x(0), x(1), . . . , x(m)), which evolves according to the rule:

∀t ∈ {0, 1, . . . ,m− 1}, x(t+ 1) = N (x(t)) =
(
f1(x(t)), . . . , fn(x(t))

)
,

known as the synchronous update scheme.
For each BN generated, we simulated 100 trajectories of length m + 1, each initialized from a

distinct randomly drawn state using the following command:

generateTimeSeries(net, 100, m, type = "synchronous")

where net represents the random BN, and the option type = "synchronous" specifies the
update scheme.

For each trajectory T i of length m + 1, starting from the initial state xi(0), we construct the
corresponding set of observations F i as:

F i = {
(
xi(t), fi(x

i(t))
)
}m−1
t=0 .

where xi(t) ∈ Bn is the state of the entire BN at time t, and fi(x
i(t)) is the value of node i at the

next time step. Then, F i is partitioned into F i
0 and F i

1 according to the value of fi(x
i(t)).

This construction, which uses only the evolution of node i along trajectory T i, ensures that
each F i originates from a distinct trajectory starting from a different initial state, thereby reducing
overlap among the sets of observations and providing an approximate form of independence, even
though all trajectories are derived from the same BN.

4.2.1 Scalability with respect to n and m

The practical applicability of the coverage algorithm depends on the behavior of the execution
time as the input size increases. Thus, we evaluate the execution time for different values of n
and m. The parameter settings are given by all pairs (n,m) with n ∈ {100, 200, 300, 400, 500, 600}
and m ∈ {50, 100, 150, 200, 250, 300}, where the sets of observations F0 and F1 are balanced, i.e.,
|F0| ≈ |F1| ≈ m/2. Because our algorithm is more sensitive to d than to m, choosing m provides a
consistent basis for comparison.

Figure 3 summarizes the results, showing the average execution time as a function of m for
different values of n. The algorithm maintains practical execution times even for n = 600, demon-
strating scalability across the tested range. As expected, the execution time grows with both n and
m, but the increase is more pronounced with respect to m. This asymmetry arises because d, which
grows quadratically with m, dominates the total computational cost, whereas the contribution of n
is only linear. For small m (m ≤ 100), the execution times are similar across different n; for larger m
(m > 100), the curves exhibit comparable trends, but the differences in the execution times among
n become more significant. Finally, at higher values of n, the observed growth becomes more pro-
nounced, indicating that additional factors, possibly related to the structure of the discrepancies,
contribute to the performance of the execution times.
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Figure 3: Average execution time of Algorithm 1 as a function of the number of observations m,
for different values of the number of variables n. For each pair (n,m), the reported execution time
corresponds to the average across the dataset of 100 instances generated. Every run successfully
returned a coverage vector, and no failures were reported.

4.2.2 Feasibility under bounded coverage weight

In many applications, particularly in biological network modeling, relevant solutions involve only
a few influencers. To explore the behavior of the coverage algorithm in this scenario, we evaluate
the execution time and success rate under the constraint that solutions have a weight bounded
by k ∈ {3, 5, 10}. The parameter settings are defined by all pairs (n, d) with n = 50 fixed and
d ∈ {d1, . . . , d18}, where each di denotes an interval di =

(
100(i − 1), 100i

]
for i ∈ {1, . . . , 18}.

Because d varies with m when the number of influencers k is small, grouping by intervals provides
a consistent basis for comparison.

Since the bounding restriction significantly increases the difficulty of finding a solution, with
frequent restarts when the weight exceeds k, especially for small values of k, we employed a relaxed
version of the stopping condition, replacing log(ω) with log(ω) · log(5) for k = 3 and k = 5, a factor
chosen empirically to expand the search. In contrast, for k = 10, the constraint is less strict, so the
original log(ω) rule is sufficient.

Figure 4 reports the average execution times as a function of the discrepancy intervals di, together
with the corresponding success rates. Across all values of k, execution time increases almost steadily
with d, remaining within a moderate range. For k = 5, the times are slightly smaller than for k = 3,
whereas for k = 10 the reduction is considerably more pronounced. A different behavior is observed
for the success rates across the values of k. For k = 3, the success rate declines as the multiset of
discrepancies grows, but the decrease is not strictly monotonic: certain intervals with higher values
of d still exhibit substantial success rates, suggesting that feasibility may depend not only on d but
also on its internal structure, such as redundancies among discrepancies. For k = 5, the success
rate also decreases with increasing d but tends to stabilize toward the higher intervals. For k = 10,
it remains nearly constant and significantly higher than in the other cases. These differences reflect
the fact that the bounds k = 3 and k = 5 impose stricter constraints on feasible solutions, whereas
k = 10 allows substantially greater flexibility.

4.3 Real datasets: Drosophila ventral furrow

We consider the Drosophila ventral furrow regulatory BN published by Aracena et al. [3], for which
both the interaction graph and the Boolean update rules are available. The BN topology is shown
in Figure 5 and the corresponding Boolean functions are listed in Table 2. This model provides a
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Execution time vs number of discrepancies interval
(bounded coverage k = 5)
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Success rate (bounded coverage, k = 5)
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Execution time vs number of discrepancies interval
(bounded coverage k = 10)
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Success rate (bounded coverage, k = 10)
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Figure 4: Average execution time and success rate of Algorithm 1 under bounded coverage with
k = 3 ((a)-(b)), k = 5 ((c)-(d)) and k = 10 ((e)-(f)), all measures as a function of the discrepancy
intervals di. For each interval, the reported execution time corresponds to the average across the
dataset of 100 instances generated; and the percentage corresponds to the proportion of bounded
coverage vectors that were found.

concrete ground truth for evaluating our algorithms on a biologically meaningful problem.
We constructed two random BN trajectories of lengths 21 and 51. From each trajectory, we

extracted the observations for the update functions of each node, obtaining sets of observations of
sizes 20 and 50, respectively. For each node, we applied the coverage algorithm 1000 times and
generated a collection of minimal solutions with weights bounded by k = 3. Finally, we applied the
exploratory algorithm to construct a representative vector that satisfies the coverage property and
inferred the lower bound function described in Proposition 3.

The results show that the inferred functions preserve the structure of the BN in terms of the
number of influencers. Nodes with an in-degree equal to one or two are consistently identified,
confirming that even with a limited number of observations, our procedure finds simple dependen-
cies. On the other hand, the inferred functions for the node with an in-degree equal to three (Rho)
are also consistently identified, and they differ because the number of coverage vectors tends to be
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Figure 5: Drosophila ventral furrow regulatory BN topology.

Gene True f Inf. f (20 obs) Inf. f (50 obs)

D 1 1 1
Twi Twi∨D Twi∨D Twi∨D
Sna D D D
Fog Twi∨Sna Twi∨Sna Twi∨Sna
FogR Fog Fog Fog
Cta FogR FogR FogR
GEF Cta Cta Cta
Csk Cta Cta Cta

Src Csk Csk Csk
GAP Src∨GAP Src Src

Rho GDI∧GEF∧GAP Moe∧FogR∧Csk GDI∧GEF∧GAP
rock Rho Rho Rho

GDI Moe Moe Moe

Moe rock∧mlcp∧Moe rock∧mlcp∧GAP rock∧mlcp∧Moe

mlcp rock rock rock
mlck 1 1 1

mlc mlcp∧rock∧mlck mlcp∧rock∧mlck mlcp∧rock∧mlck
Actin Moe∧mlc Moe∧mlc Moe∧mlc

Table 2: Inference of the Drosophila regulatory BN with 20 and 50 observations and bounded weight
restriction k = 3.

higher when there are few observations from functions with larger in-degrees. In general, this case
study indicates that our exploratory approach is well suited for inferring a compatible regulatory
BN when available information is limited to observations. This is mainly because the algorithms
presented are based on techniques that favor sparse solutions, i.e., involving few influencers, and
their rapid convergence allows the construction of large collections of solutions in a reasonable time.
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5 Discussion

From a theoretical perspective, we present a framework that connects observational data with com-
patible unate functions through the notions of multisets of discrepancies and coverage vectors. In
this way, the CUF problem is reformulated as the search for a coverage vector, and we provide
the basis for the inference problem: once such a vector is found, the corresponding set of com-
patible unate functions can be characterized. Furthermore, the notions of minimal and minimum
subcoverage highlight the computational limits involved in simplifying coverage vectors.

On a practical level, we establish an exploratory approach that integrates a coverage algorithm
and an exploratory algorithm. The coverage algorithm exhibits scalability with execution times
remaining convenient even for functions with several hundred variables and growth driven primarily
by the number of discrepancies. In addition, it is flexible enough to incorporate prior knowledge
about specific influencers or constraints on the weight of the solutions. These features enable the
generation of a large collection of solutions within a reasonable time frame, which is analyzed by
the exploratory algorithm to identify recurring patterns of influence and derive a representative
quasi-solution. In the context of BN inference, this approach is effective when the information is
limited to a small number of observations; although its node by node design does not directly exploit
global dependencies, the results indicate its potential to systematically explore plausible regulatory
architectures and guide the future refinement of the model.

There are several ways to expand this work. Beyond unate functions, it is natural to ask whether
this approach can be extended to canalizing functions ([12]), whose stability makes them relevant
as models for key regulatory genes. At the level of observations, one direction is to explore how the
framework could be adapted to observations with missing bits ([4]) or to non-Boolean observations
with continuous expression values ([10]). Finally, the problem of efficiently inferring all compatible
unate functions remains largely unexplored ([7]).
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