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Abstract

We propose and analyze an HDG scheme for the Laplace-domain interaction between a transient acoustic
wave and a bounded elastic solid embedded in an unbounded fluid medium. Two mixed variables (the stress
tensor and the velocity of the acoustic wave) are included while the symmetry of the stress tensor is imposed
weakly by considering the antisymmetric part of the strain tensor (the spin or vorticity tensor) as an additional
unknown. Convergence of the method is demonstrated and theoretical rates are obtained; numerical results
suggesting optimal order of convergence and superconvergence of the traces are presented.
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1 Introduction

We are interested in the computational simulation of the interaction between a transient acoustic wave and a
homogeneous, isotropic and linearly elastic solid. The physical setting of the problem is as follows. An incident
acoustic wave, represented by its scalar velocity potential vinc, propagates at constant speed c in a homogeneous,
isotropic and irrotational fluid with density ρf filling a region ΩA and impinges upon an elastic body of density
ρE contained in a bounded region ΩE with Lipschitz boundary Γ and exterior unit normal vector nE . Part of the
energy and momentum carried by the acoustic wave is transferred to the elastic solid, exciting an internal elastic
wave u, while the remaining momentum and energy are carried by an acoustic wave v that is scattered off the
surface Γ of the elastic body. The physical setting is represented graphically in the left panel of Figure 1.

Due to the linearity of the problem, the total acoustic wave vtot = vinc + v is the superposition of the known
incident field vinc and the unknown scattered field v. The unknowns are thus the scattered acoustic field v and the
excited elastic displacement field u that satisfy the following system of time-dependent partial differential equations
[50]:

−∇· (2µε (u) + λ∇· uI) + ρEü = f in ΩE ,

−∆v + c−2v̈ = f in ΩA,

∇vtot · nE + u̇ · nE = 0 on Γ,

ρf v̇
totnE + (2µε (u) + λ∇· uI)nE = 0 on Γ,
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Figure 1: Schematic representation of the problem geometry. Left: The elastic domain ΩE is bounded; its Lipschitz
boundary is denoted as Γ. The domain ΩA where the acoustic waves propagate is unbounded. Right: An artificial
boundary ΓA enclosing the elastic domain is introduced. The artificial boundary is split onto two disjoint components
ΓD
A and ΓN

A where Dirichlet and Neumann boundary conditions are imposed respectively.

including suitable initial and radiation conditions, where the upper dot represents differentiation with respect to
time, ε (u) := 1

2 (∇u+∇⊤u) is the strain tensor, I is the identity tensor, f and f are square integrable source terms
for every time, and the Lamé constants, µ (shear modulus) and λ (Lamé’s first parameter), encode the material
properties of the solid. The symmetric tensor

σ := 2µε (u) + λ∇· uI

is known as the Cauchy stress tensor and can be represented compactly as σ = Cε(u), where Hooke’s elasticity
tensor C is defined by its action on an arbitrary square matrix M as

CM := 2µM + λtr(M)I and C−1(M) :=
1

2µ
M − λ

2µ(nλ+ 2µ)
tr(M)I,

where tr(M) :=
∑n

i=1 Mii is the matrix trace operator. We will follow the approach from [20], where the symmetry
of the stress tensor σ is imposed weakly by introducing the spin (or vorticity) tensor

γ(u) := (∇u−∇⊤u)/2

as an additional unknown.

When viewed in full generality, the acoustic propagation region ΩA is in fact unbounded and given by ΩA := Rn\ΩE .
This fact introduces further computational challenges that are often addressed either through an integral equation
representation of the acoustic wave [4, 36, 37, 51], the introduction of a perfectly matched layer [39], the use
of absorbing boundary conditions [24, 34, 35, 55] or the representation of the acoustic field through a moment
expansion [1].

In this communication, we simplify the analysis by introducing an artificial boundary that will allow us to assume
that the acoustic domain is in fact bounded. As depicted in the right panel of Figure 1, we pick a polygon with
boundary ΓA (the subscript standing for “artificial”) that compactly contains the elastic domain ΩE . The boundary
ΓA is divided into mutually disjoint Dirichlet and Neumann segments (denoted respectively by ΓD

A and ΓN
A ) such

that ΓA = ΓD
A ∪ ΓN

A . The acoustic domain ΩA is then defined to be the region exterior to ΩE and contained inside
the polygon. Its boundary takes the form

∂ΩA := Γ ∪ ΓD
A ∪ ΓN

A

where the three components are mutually disjoint and Γ denotes the interface between the acoustic and elastic
regions. We emphasize that the boundary conditions imposed on ΓA do not attempt to account for a physically
outgoing wave, but simply to ensure the well-posedness of the simplified problem. The goal of this work is to establish
the well-posedness theory for the coupling of HDG discretizations for elastic and acoustic wave propagation. The
treatment of the fully unbounded problem with appropriate outgoing boundary conditions will be the subject of a
separate communication.
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Assuming that at the initial time the incident wave vinc is supported away from the elastic domain ΩE , the distribu-
tional version of the system above admits a Laplace transform [37] that maps time differentiation to multiplication
by the Laplace parameter s ∈ {z ∈ C : Re(z) > 0}. Upon Laplace transformation and using the same symbols for
the unknowns in the time domain and in the Laplace domain, the elastic wave u and the scattered acoustic wave
v satisfy the coupled system of equations in mixed form

C−1σ −∇u+ γ = 0 in ΩE , (1a)

−∇· σ + ρEs
2u = f in ΩE , (1b)

q −∇v = 0 in ΩA, (1c)

−∇· q + (s/c)2v = f in ΩA, (1d)

q · nA − su · nE = −∇vinc · nA on Γ, (1e)

−σnE + ρfs vnA = −ρfs v
inc nA on Γ, (1f)

v = gD on ΓD
A , (1g)

q · nA = gN on ΓN
A . (1h)

Here, q is the acoustic velocity field, and gD ∈ H1/2(ΓD
A ) and gN ∈ H−1/2(ΓN

A ) are given boundary data.

In the system above, equations (1a) and (1b) account for the Navier-Lamé or elastic wave equation in the interior
of the elastic solid ΩE . Similarly, equations (1c) and (1d) are the mixed form of the acoustic wave equation in ΩA.
The elastic and acoustic variables are coupled through the continuity of the normal component of the velocity field
across the interface Γ, encoded in equation (1e), and the balance of normal forces at the contact surface, given
in (1f). The nonphysical boundary conditions (1g) and (1h) prescribed at the artificial boundary ΓA are given to
ensure the well-posedness of the problem.

In the literature, there is a vast amount of research related to fluid-structure interaction problems. For instance, some
of them use a Mixed Finite Elements approach [23, 29] and there are also couplings of this technique with Boundary
Element Methods [28]. Studies on their spectral problems [41] and an analysis of the elastoacustic problem in the
time domain [2] have been done. However, most of these works assume a time-harmonic regime, while we intend
to focus on the transient regime. A notable time–domain contribution is the very recent contribution [42], where a
Hybrid High Order (HHO) method is used for a similar acoustic/elastic interaction in the time domain.

Since two different systems of PDEs posed in different domains are being coupled across an interface, we prefer
to use a discontinuous Galerkin scheme due to its flexibility to handle the transmission conditions. In particular,
by considering the HDG method introduced in [16], it is very easy to impose transmission conditions from the
computational point of view. In fact, in HDG schemes the only globally coupled degrees of freedom are precisely
those of the numerical traces on the boundaries between elements, while the remaining unknowns are obtained by
solving local problems in each element. Therefore, if we have two independent HDG solvers, one for the acoustic
problem and another one for the elastic system, we can couple them across the interface through the numerical
traces associated with the acoustic wave v and the elastic displacements u.

After [16] and the pioneering work [18] that set a framework that simplifies the analysis of a family of HDG schemes
by introducing a suitable projection, HDG schemes have been developed for a wide variety of problems. For
example, convection-diffusion equation [27, 43], Stokes flow [17, 30]; Brinkman, Oseen and Navier–Stokes equations
[8, 9, 26, 45]. In the context of electromagnetism and wave propagation problems, HDG schemes have also been
introduced: Maxwell’s operator [11, 12], eddy current problems [5], Maxwell’s equations in the frequency-domain
[25, 44] and heterogeneous media [6] and Helmholtz equation [10, 32, 57], and even for nonlinear problems arising
from plasma physics [47, 48, 52, 53]. For the elasticity problem, we refer the reader to [20, 46]. The preceding list
of references is not exhaustive, but provides an overview of the development of HDG schemes during the last fifteen
years.

On the other hand, in the context of coupled problems with piecewise linear interfaces, HDG schemes have been
proposed for elliptic [38] and for the Stokes interface problems [56], and for Stokes-Darcy coupling [31]. The influence
of hanging-nodes along the interface and the use of different polynomial degree over each local space, have been
analyzed in [13, 14]. Recently, a new approach based on the Transfer Path Method [19, 21, 49] has been proposed to
handle discrete interfaces that do not necessarily coincide with the true interface, as in the case of a curved interface
[3, 40, 54]. This technique produces a high order method and is closely related with our ultimate goal, where it is
crucial to have a numerical scheme that couples an HDG discretization of the problem posed in an bounded domain
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considering a solid with a curved boundary, and a representation of the acoustic wave in the unbounded region. To
the best of our knowledge, the use of HDG schemes has not been analyzed for the coupled problem (1), and the
main contribution of this work is to provide a convergence analysis.

2 Preliminaries and notation

2.1 Sobolev spaces.

Let O be a Lipschitz continuous domain in Rn. We use standard notations for Lebesgue Lt(O) and Sobolev spaces
Wl,t(O), with l ≥ 0 and t ∈ [1,+∞). Here W0,t(O) = Lt(O), and if t = 2 we write Hl(O) instead of Wl,2(O), with
the corresponding norm and seminorm denoted by ∥ · ∥Hl(O) and | · |Hl(O), respectively. The spaces of vector-valued
functions will be denoted in boldface, therefore Hs(O) := [Hs(O)]n, whereas for tensor-valued functions, we write
Hs(O) := [Hs(O)]n×n. Using the same notation, we write L2(O) := [L2(O)]n and L2(O) := [L2(O)]n×n.

The complex L2-inner products will be denoted by (·, ·)O and ⟨·, ·⟩Σ, where Σ is either a Lipschitz curve (n = 2) or
a surface (n = 3). The associated norms will be denoted by ∥ · ∥O and ∥ · ∥Σ.

It is easy to verify that Hooke’s tensor satisfies the following inequalities for all η ∈ L2(O):(
1

2µ
+

n2λ

2µ(nλ+ 2µ)

)−1

∥η∥2O,C−1 ≤ ∥η∥2O ≤ 2µ∥η∥2O,C−1 ,

∥η∥2O,C ≤ (2µ+ n2λ)∥η∥2O,

where we denote ∥ · ∥O,C−1 := (C−1·, ·)1/2O and ∥ · ∥O,C := (C·, ·)1/2O .

2.2 Mesh and mesh-dependent inner products.

Let TA and TE be two families of regular triangulations of ΩA and ΩE , respectively. We will assume that these
triangulations are compatible along the common interface Γ and that both are characterized by a common mesh size
h in their respective domains. Given an element K, hK will denote its diameter and nK its outward unit normal.
When there is no confusion, we will simply write n instead of nK . Set † ∈ {A,E}, then ∂T† := {∂K : K ∈ T†}
and let E† denote the set of all faces F of all elements K ∈ T†. We will also use the following notation for L2 inner
products of scalar-, vector- and tensor-valued functions, respectively, over an integration domain D:

(u, v)D :=

∫
D

uv, (u,v)D =

∫
D

u · v, (M ,N)D =

∫
D

M :N ,

where the overline denotes complex conjugation and the colon “ : ” is used to denote the Frobenius inner product
of matrices

M :N :=

n∑
i,j=1

MijNij .

With this notation we can express the mesh-dependent L2 inner products as

(u, v)T†
:=

∑
K∈T†

(u, v)K , (u,v)T†
:=

∑
K∈T†

(u,v)K , (M ,N)T†
:=

∑
K∈T†

(M ,N)K ,

along with the inner products over the mesh skeleton

⟨u, v⟩∂T† :=
∑
K∈T†

⟨u, v⟩∂K , ⟨u,v⟩∂T† :=
∑
K∈T†

⟨u,v⟩∂K , ⟨M ,N⟩∂T† :=
∑
K∈T†

⟨M ,N⟩∂K .

We denote the norms induced by these inner products by

∥ · ∥T† :=
√
(·, ·)T†

and ∥ · ∥∂T† :=
√
⟨·, ·⟩∂T† .

Finally, to avoid proliferation of superflous constants, we will write a ≲ b when there exists a positive constant C,
independent of the mesh size, such that a ≤ Cb.
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2.3 The HDG polynomial spaces

We will make use of the discrete spaces for the HDG method proposed in [20] for simplices. For an element
K ∈ TA ∪ TE , we define the following function spaces. The set of scalar-valued polynomials of degree at most k
defined over K will be denoted by Pk(K), while the corresponding vector and tensor product spaces are denoted
respectively as

Pk(K) := [Pk(K)]n and Pk(K) := [Pk(K)]n×n.

The polynomial spaces of degree exactly k will be denoted with a tilde as P̃k(K), P̃k(K), and P̃k(K). We now
define

Aij (K) :=

{
Pk(K) if i ̸= j,

0 if i = j,
,

and use it to construct the matrix-valued space

A(K) := [Aij (K)]n×n.

We will denote the space of L2 integrable skew-symmetric matrices over K by

AS(K) := {M ∈ L2(K) :M +M⊤ = 0},

and will require that A(K) ⊂ AS(K).

Now, we would like to define a divergence-free space of functions through the use of bubble matrices or bubble
scalars, depending on the dimension, as in [7, 15, 20, 33]. Following [33], a matrix-valued function b defined in ΩE

is said to be an admissible bubble matrix if for each K ∈ TE the matrix bK := b|K is a matrix with polynomial
entries that satisfies

1. The tangential components of each row of bK vanish on all the faces of K,

2. There exists C1 > 0 such that C1(v,v)K ≤ (vbK ,v)K , for all v ∈ L2(K),

3. There exists C2 > 0 such that ∥bK∥L∞(K) ≤ C2,

where the constants C1 and C2 depend only on the shape regularity of TE .

Thus, following [15, 20], if ηF is the barycentric coordinate associated to the edge F of K, and if we define

bK :=



∏
F⊂∂K

ηF in 2D ,

∑
F⊂∂K

 ∏
F ′⊂∂K\{F}

ηF ′

∇ηF ⊗∇ηF in 3D,

the polynomial space B(K) associated to bubble functions is defined as:

B(K) := ∇× ((∇×A(K))bK).

We can observe that any function

v ∈ Bh := {η ∈ L2(ΩE) : η|K ∈ B(K) ,K ∈ TE}

is such that
∇· v|K = 0,∀K ∈ TE and vn|F = 0,∀F ∈ EE .

In the three-dimensional case the curl operator acts row-wise, while in the two-dimensional case the curl of matrices
and column vectors are defined respectively by

∇×
(
M11 M12

M21 M22

)
:=

(
∂xM12 − ∂yM11

∂xM22 − ∂yM21

)
and ∇×

(
m1

m2

)
:=

(
−∂ym1 ∂xm1

−∂ym2 ∂xm2

)
We will also make use of the local space V (K) := Pk(K) +B(K), and notice that

V (K) = Pk(K) +∇× ((∇×A(K))bK) = Pk(K)⊕∇× ((∇× Ã(K))bK),

where Ã(K) := A(K) ∩ P̃k(K).
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3 An HDG discretization

Let us begin by introducing the piecewise polynomial spaces

V h = {τ ∈ L2(TE) : τ |K ∈ V (K) , ∀K ∈ TE}, (2a)

WE
h = {t ∈ L2(TE) : t|K ∈ Pk(K) , ∀K ∈ TE}, (2b)

Ah = {η ∈ L2(TE) : η|K ∈ A(K) , ∀K ∈ TE}, (2c)

Mh = {µ ∈ L2(EE) : µ|F ∈ Pk(F ) , ∀F ∈ EE}, (2d)

WA
h = {r ∈ L2(TA) : r|K ∈ Pk(K) , ∀K ∈ TA}, (2e)

Wh = {w ∈ L2(TA) : w|K ∈ Pk(K) , ∀K ∈ TA}, (2f)

Mh = {ξ ∈ L2(EA) : ξ|F ∈ Pk(F ) , ∀F ∈ EA}. (2g)

The HDG discretization seeks a piecewise polynomial approximation

(σh,uh,γh, ûh, qh, vh, v̂h) ∈ V h ×WE
h ×Ah ×Mh ×WA

h ×Wh ×Mh

of the exact solution (σ,u,γ, u|EE
, q, v, v|EA

). The approximation must satisfy the discrete weak formulation

(C−1σh, τ )TE
+ (uh,∇· τ )TE

+ (γh, τ )TE
− ⟨ûh, τn⟩∂TE

= 0, (3a)

(σh,∇t)TE
− ⟨σ̂hn, t⟩∂TE

+ ρEs
2(uh, t)TE

= (f , t)TE
, (3b)

(σh,η)TE
= 0, (3c)

⟨σ̂hn,µ⟩∂TE\Γ = 0, (3d)

(qh, r)TA
+ (vh,∇· r)TA

− ⟨v̂h, r · n⟩∂TA
= 0, (3e)

(qh,∇w)TA
− ⟨q̂h · n, w⟩∂TA

+ (s/c)2(vh, w)TA
= (f, w)TA

, (3f)

⟨q̂h · n, ξ⟩∂TA\(Γ∪ΓD
A ) = ⟨gN , ξ⟩ΓN

A
, (3g)

⟨v̂h, ξ⟩ΓD
A
= ⟨gD, ξ⟩ΓD

A
, (3h)

⟨q̂h · nA − s ûh · nE , ξ⟩Γ = −⟨∇vinc · nA, ξ⟩Γ, (3i)

⟨−σ̂hnE + ρfs v̂h nA,µ⟩Γ = −ρfs ⟨vinc nA,µ⟩Γ (3j)

for all test functions (τ , t,η,µ, r, w, ξ) ∈ V h ×WE
h ×Ah ×Mh ×WA

h ×Wh ×Mh, where

σ̂hn := σhn− τE(uh − ûh) on ∂TE , (3k)

q̂h · n := qh · n− τA(vh − v̂h) on ∂TA. (3l)

Here, τE and τA are stabilization parameters whose properties will be determined when analyzing the scheme.

4 Discrete well posedness.

Theorem 4.1. If Re(sτA) > 0 and Re(sτE) > 0, then the scheme (3) has a unique solution.

Proof. By the Fredholm alternative, it is enough to show uniqueness of the solution. To that end, if we assume zero
sources, we will show that the solution to the corresponding system is the trivial one.

Let
vinc = 0 and (f,f , gD, gN ) = (0,0, 0, 0),

and choose

(τ , t,η,µ, r, w) = (σ̂h,uh,γh, ûh, qh, vh) and ξ =

{
v̂h, on ∂TA \ ΓD

A

q̂h · n, on ΓD
A

.
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With this choice of test functions, applying integration by parts to (3b) and adding its conjugate to (3a) we obtain

(C−1σh,σh)TE
+ (uh,∇· σh)TE

+ (γh,σh)TE
− ⟨ûh,σhn⟩∂TE

− (∇· σh,uh)TE
+ ⟨σhn,uh⟩∂TE

− ⟨σ̂hn,uh⟩∂TE
+ ρEs2(uh,uh)TE

= 0.

We know from (3c) that (σh,γh)TE
= 0, so the latter equation becomes

(C−1σh,σh)TE
+ ⟨σhn− σ̂hn,uh⟩∂TE

− ⟨ûh,σhn⟩∂TE
+ ρEs2(uh,uh)TE

= 0.

Adding and subtracting ûh in the second argument of the second term, we have that

∥σh∥2TE ,C−1 + ⟨σhn− σ̂hn,uh − ûh⟩∂TE
+ ⟨σhn− σ̂hn, ûh⟩∂TE

− ⟨ûh,σhn⟩∂TE
+ ρEs2 ∥uh∥2TE

= 0.

Multiplying by s and using (3d), along with the definition (3k), we obtain

s ∥σh∥2TE ,C−1 + s⟨τE(uh − ûh),uh − ûh⟩∂TE
− s⟨ûh, σ̂hnE⟩Γ + ρEs|s|2 ∥uh∥2TE

= 0. (4)

Analogously for the acoustic terms, (3f) is integrated by parts and its conjugate is added to (3e), yielding

∥qh∥2TA
+(vh,∇· qh)TA

− ⟨vh, qh · n⟩∂TA
− (∇· qh, vh)TA

+ ⟨qh · n, vh⟩∂TA
− ⟨q̂h · n, vh⟩∂TA

+
s2

c2
∥vh∥2TA

= 0.

Adding and subtracting v̂h and using (3g) and (3h), we can deduce that

∥qh∥2TA
+ ⟨τA(vh − v̂h), vh − v̂h⟩∂TA

− ⟨v̂h, q̂h · nA⟩Γ +
s2

c2
∥vh∥2TA

= 0.

We multiply the latter equation by ρfs to obtain

ρfs ∥qh∥2TA
+ ρfs⟨τA(vh − v̂h), vh − v̂h⟩∂TA

− ρfs⟨v̂h, q̂h · nA⟩Γ + ρfs(|s|/c)2 ∥vh∥2TA
= 0. (5)

Adding (4) with the conjugate of (5) leads to

s ∥σh∥2TE ,C−1 + s⟨τE(uh − ûh),uh − ûh⟩∂TE
− s⟨ûh, σ̂hnE⟩Γ + ρEs|s|2 ∥uh∥2TE

+ρfs ∥qh∥2TA
+ ρfs⟨τA(vh − v̂h), vh − v̂h⟩∂TA

− ρfs⟨v̂h, q̂h · nA⟩Γ + ρfs(|s|/c)2 ∥vh∥2TA
= 0

(6)

Notice that from (3i) and (3j) we have

−s⟨ûh, σ̂hnE⟩Γ − ρfs⟨v̂h, q̂h · nA⟩Γ =− s⟨ûh, σ̂hnE − ρfsv̂hnA⟩Γ − s⟨ûh, ρfsv̂hnA⟩Γ
− ρfs⟨v̂h, q̂h · nA − sûh · nE⟩Γ − ρfs⟨v̂h, sûh · nE⟩Γ

=− s⟨ûh, ρfsv̂hnA⟩Γ − ρfs⟨v̂h, sûh · nE⟩Γ
=− ssρf ⟨ûh, v̂hnA⟩Γ + ssρf ⟨ûh, v̂hnA⟩Γ = 0.

So, (6) is equivalent to

s ∥σh∥2TE ,C−1 + s⟨τE(uh − ûh),uh − ûh⟩∂TE
+ ρEs|s|2 ∥uh∥2TE

+ρfs ∥qh∥2TA
+ ρfs⟨τA(vh − v̂h), vh − v̂h⟩∂TA

+ ρfs(|s|/c)2 ∥vh∥2TA
= 0.

Thus, taking real part of this expression, we obtain

E 2
E + E 2

A + ρE |s|2Re(s) ∥uh∥2TE
+

ρf
c2

|s|2Re(s) ∥vh∥2TA
= 0 ,

where we have defined

EE :=

√∥∥∥Re(s)1/2 σh

∥∥∥2
TE ,C−1

+
∥∥∥Re(sτE)1/2 (uh − ûh)

∥∥∥2
∂TE

EA :=

√∥∥∥ρ1/2f Re(s)
1/2
qh

∥∥∥2
TA

+
∥∥∥ρ1/2f Re(sτA)

1/2
(vh − v̂h)

∥∥∥2
∂TA

.
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From here, we can conclude that σh = 0 in TE , uh = 0 in TE , qh = 0 in TA, vh = 0 in TA, ûh = uh = 0 on ∂TE
and v̂h = vh = 0 on ∂TA.

It only remains to show that γh = 0 in TE . This will be achieved by performing an analog of the steps done in the
proof of [7, Lemma 3.6]. We will need the two following technical results proven in [33]:

1. [33, Lemma 2.8] Given η ∈ A0
h := {η ∈ Ah : (η,v)K = 0,∀v ∈ P0(K) ,∀K ∈ TE}, there exists v ∈ Bh such

that
Pv = η and ∥v∥TE

≤ C0 ∥η∥TE
.

Here P : L2(ΩE) → Ah is the L2-projection onto Ah and C0 is a positive constant independent of h, arising
from a Poincaré-type inequality and inverse estimates.

2. [33, Proposition 2.9] Given η ∈ Ac
h := Ah ∩P0(TE), there exists v ∈H(div; ΩE) ∩P1(TE) such that

∇· v = 0 , P cv = η , and ∥v∥TE
≤ Cc ∥η∥TE

, (7)

where P c is the L2-projection onto Ac
h, and Cc > 0 is a constant independent of h.

Let us consider the orthogonal decomposition

γh = γ0
h + γc

h where γc
h|K :=

1

|K|

∫
K

γh,∀K ∈ TE (component-wise) and γ0
h = γh − γc

h.

It is clear that γ0
h ∈ A0

h and γc
h ∈ Ac

h.

By [33, Lemma 3.9], there exists

v0 ∈ Bh := {η ∈ L2(ΩE) : η|K ∈ B(K) ,K ∈ TE} ⊂ V h

such that
(γ0

h,ρ
0)TE

= (v0,ρ0)TE
for all ρ0 ∈ Ah. (8)

Taking τ = v0 in (3a), we obtain
(γ0

h + γc
h,v

0)TE
= 0.

Now, considering ρ0 = γc
h, and the fact that the decomposition of γh is orthogonal in L2, the two expressions above

imply
(γ0

h,v
0)TE

= (γ0
h,γ

c
h)TE

= 0.

Hence, taking ρ0 = γ0
h in (8), the equality above shows that (γ0

h,v
0)TE

=
∥∥γ0

h

∥∥2
TE

= 0, and we can conclude that

γ0
h = 0.

Finally, by the second property in (7), there exists vc ∈H(div; ΩE) ∩P1(TE) such that

(vc,ρc)TE
= (γc

h,ρ
c)TE

for all ρc ∈ Ac
h.

Taking ρc = γc
h in the expression above we have

(γc
h,v

c)TE
= ∥γc

h∥
2
TE

. (9)

Now, recalling that σh = 0 and uh = 0 in TE and ûh = 0 on ∂TE , choosing τ = vc in (3a), we have that
(γh,v

c)TE
= 0. Then, since γ0

h = 0, from (9) we conclude γc
h = 0 in TE , and therefore γh = 0.

5 Error Analysis.

5.1 The HDG Projections.

We will need the HDG projections defined in [18]. For the acoustic terms, the projected function is denoted by
ΠA(q, v) := (ΠAq,ΠAv), where ΠAq and ΠAv are the components of the projection inWA

h and Wh, respectively.
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The values of the projection on any simplex K ∈ TA are fixed when the components are required to satisfy the
equations

(ΠAq, r)K = (q, r)K , ∀r ∈ Pk−1(K) ,

(ΠAv, w)K = (v, w)K , ∀w ∈ Pk−1(K) ,

⟨ΠAq · n− τAΠAv, ξ⟩F = ⟨q · n− τAPMv, ξ⟩F , ∀ξ ∈ Pk(F ) ,

for all faces F of the simplex K ∈ TA, where PM is the L2 projection onto F . It was shown in [18] that, if
(q, v) ∈Hk+1(K)×Hk+1(K) and τA|∂K is nonnegative and max

∂K
τA > 0, the components of the projection satisfy

the estimates

∥ΠAq − q∥K ≲ hk+1
K

(
|q|Hk+1(K) + |v|Hk+1(K)

)
, (10a)

∥ΠAv − v∥K ≲ hk+1
K

(
|v|Hk+1(K) + |∇· q|Hk(K)

)
. (10b)

Therefore, for the sake of simplicity, from now on we assume that τE and τA are positive functions.

For the elastic terms, on each element K ∈ TE , a component-wise version of the above projection is defined by
ΠE(σ,u) := (ΠEσ,ΠEu) ∈ Pk(K)×Pk(K) where

(ΠEσ, τ )K = (σ, τ )K , ∀τ ∈ Pk−1(K) ,

(ΠEu, t)K = (u, t)K , ∀t ∈ Pk−1(K) ,

⟨(ΠEσ)n− τEΠEu,µ⟩F = ⟨σn− τEPMu,µ⟩F , ∀µ ∈ Pk(F ) ,

for all faces F of the element K ∈ TE . Above, PM is the L2 projection onto F . Analogously, if (σ,u) ∈
Hk+1(K)×Hk+1(K), then

∥ΠEσ − σ∥K ≲ hk+1
K

(
|σ|Hk+1(K) + |u|Hk+1(K)

)
, (11a)

∥ΠEu− u∥K ≲ hk+1
K

(
|u|Hk+1(K) + |∇· σ|Hk(K)

)
. (11b)

In addition, for each element K ∈ TE , we will denote by Πγ the L2(K)-projection of γ on A(K). Thus, if
γ ∈Hk+1(K), then

∥Πγ − γ∥K ≲ hk+1
K |γ|Hk+1(K) .

Having defined the projections, we now define the projection errors in each of the volume unknowns by

δσ :=σ −ΠEσ, δu :=u−ΠEu, δγ :=γ −Πγ,

δq := q −ΠAq, δv := v −ΠAv.

The following quantity will play a fundamental role in the error estimations:

Θ(σ,u,γ, q, v) :=
(
∥δσ∥2TE

+ ∥δu∥2TE
+ ∥δγ∥2TE

+ ∥δq∥2TA
+ ∥δv∥2TA

)1/2
.

The next lemma follows readily from the projection bounds (10) and (11).

Lemma 5.1. If (σ,u,γ, q, v) ∈Hk+1(ΩE)×Hk+1(ΩE)×Hk+1(ΩE)×Hk+1(ΩA)×Hk+1(ΩA), then

Θ(σ,u,γ, q, v) ≲ hk+1
(
|σ|Hk+1(ΩE) + |u|Hk+1(ΩE) + |γ|Hk+1(ΩE) + |q|Hk+1(ΩA) + |v|Hk+1(ΩA)

)
.

5.2 Error estimates.

Let us define the projections of the errors (not to be confused with the projection errors defined above):

eσ := ΠEσ − σh, eσ̂n := PM (σn)− σ̂hn, eu := ΠEu− uh,

eû := PMu− ûh, eγ := Πγ − γh, eq := ΠAq − qh,
eq̂ · n := PM (q · n)− qh · n, ev := ΠAv − vh, ev̂ := PMv − v̂h.
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Direct calculations imply that, for all (τ , t,η,µ, r, w, ξ) ∈ V h×WE
h ×Ah×Mh×WA

h ×Wh×Mh, the projections
of the errors satisfy the following system:

(C−1eσ, τ )TE
+ (eu,∇· τ )TE

+ (eγ , τ )TE
− ⟨eû, τn⟩∂TE

= −(C−1δσ, τ )TE
− (δγ , τ )TE

, (12a)

(eσ,∇t)TE
− ⟨eσ̂n, t⟩∂TE

+ ρEs
2(eu, t)TE

= −ρEs
2(δu, t)TE

, (12b)

(eσ,η)TE
= −(δσ,η)TE

, (12c)

⟨eσ̂n,µ⟩∂TE\Γ = 0, (12d)

(eq, r)TA
+ (ev,∇· r)TA

− ⟨ev̂, r · n⟩∂TA
= −(δq, r)TA

, (12e)

(eq,∇w)TA
− ⟨eq̂ · n, w⟩∂TA

+ (s/c)2(ev, w)TA
= −(s/c)2(δv, w)TA

, (12f)

⟨eq̂ · n, ξ⟩∂TA\(Γ∪ΓD
A ) = 0, (12g)

⟨ev̂, ξ⟩ΓD
A
= 0, (12h)

⟨eq̂ · nA − s eû · nE , ξ⟩Γ = 0, (12i)

⟨−eσ̂nE + ρfs ev̂ nA,µ⟩Γ = 0 (12j)

while eσ̂ and eq̂ satisfy

eσ̂n = eσn− τE(eu − eû) on ∂TE , (12k)

eq̂ · n = eq · n− τA(ev − ev̂) on ∂TA. (12l)

The following lemma can be proven by arguing as in the first part of the proof of Theorem 4.1.

Lemma 5.2. The projections of the errors satisfy

e2E + e2A + ρE |s|2Re(s) ∥eu∥2TE
+

ρf
c2

|s|2Re(s) ∥ev∥2TA

= − Re
(
s(C−1δσ, eσ)TE

)
+Re(s(eγ , δσ)TE

)− Re(s(δγ , eσ)TE
)

− ρE |s|2Re(s(eu, δu)TE
)− ρfRe(s(eq, δq)TA

)− ρf
c2

|s|2Re(s(δv, ev)TA
) , (13)

where

eE :=

√∥∥∥Re(s)1/2 eσ∥∥∥2
TE ,C−1

+
∥∥∥Re(s)1/2 τ1/2E (eu − eû)

∥∥∥2
∂TE

,

eA :=

√∥∥∥ρ1/2f Re(s)
1/2
eq

∥∥∥2
TA

+
∥∥∥ρ1/2f Re(s)

1/2
τ
1/2
A (ev − ev̂)

∥∥∥2
∂TA

.

Let us now decompose now eγ = e0γ+e
c
γ , where e

c
γ is such that ecγ |K =

1

|K|

∫
K

eγ for all K ∈ TE and e0γ := eγ−ecγ .

Since δσ is orthogonal to piecewise constant polynomials, we have

(eγ , δσ)TE
= (e0γ , δσ)TE

+ (ecγ , δσ)TE
= (e0γ , δσ)TE

.

Then, using this information and applying the triangle, Cauchy-Schwarz and Young inequalities several times to
the expression (13), we deduce that there exists a positive constant C1, independent of h, such that

e2E + e2A + ρE |s|2Re(s) ∥eu∥2TE
+

ρf
c2

|s|2Re(s) ∥ev∥2TA
≤ C1Θ(σ,u,γ, q, v)2 +

1

2
∥e0γ∥2TE

. (14)

5.3 Error estimates for the rotation.

It remains to obtain error bounds for e0γ and ecγ . For the elasticity boundary value problem, these bounds were
obtained in [20]. In our case, we obtain an optimal error estimate for ∥e0γ∥TE

following the same arguments presented
in [20]. However, the error estimate for the L2-norm of ecγ depends on the term eû associated with the transmission
conditions in Γ as we will see in the next result.
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Lemma 5.3. There exist positive constants, Cc
γ and C0

γ , independent of h, such that

∥e0γ∥TE
≤ C0

γΘ(σ,u,γ, q, v). (15a)

and

∥ecγ∥TE
≤Cc

γ

(
h−1/2Θ(σ,u,γ, q, v) + ∥h−1eu∥TA

)
. (15b)

Proof. By [20, Theorem 3.6], we now that

∥e0γ∥TE
≤ ∥eσ∥TE

+ ||δσ||TE
+ ∥δγ∥TE

.

The first term can be bounded by (14), and therefore

∥e0γ∥2TE
≲ Θ(σ,u,γ, q, v)2 +

s2

2
∥δσ∥2TE

+
1

2
∥e0γ∥2TE

+ ||δσ||2TE
+ ∥δγ∥2TE

≲ Θ(σ,u,γ, q, v)2 +
1

2
∥e0γ∥2TE

and (15a) follows.

Now, we will modify the proof of [20, Theorem 3.8] to estimate ecγ . Let η := ecγ ∈ Ac
h. There exists v ∈

H(div; ΩE)∩P1(TE) satisfying the properties in (7). Then, taking τ = v in (12a) and using the fact that ∇·v = 0,
we obtain

(C−1eσ,v)TE
+ (eγ ,v)TE

− ⟨eû,vn⟩∂TE
= −(C−1δσ,v)TE

− (δγ ,v)TE
.

Now, since (eγ ,v)TE
= (e0γ ,v)TE

+ (ecγ ,v)TE
and (ecγ ,v)TE

= ∥ecγ∥2TE
, according to the second property in (7), we

deduce that

∥ecγ∥2TE
=− (C−1eσ,v)TE

− (e0γ ,v)TE
− (C−1δσ,v)TE

− (δγ ,v)TE
+ ⟨eû,vn⟩∂TE

≲Θ(σ,u,γ, q, v)∥ecγ∥TE
+ |⟨eû,vn⟩∂TE

|,

where we have used the second and third properties of (7), and also the estimates (14) and (15a). For the last
term, we have ⟨eû,vn⟩∂TE

= ⟨eû,vn⟩Γ because eû is single-valued and v ∈ H(div; ΩE), and this is precisely the
term that in our case does not vanish, in contrast to the case in [20].

Let e be a face in Γ of an element K ∈ TE . By the discrete trace inequality, (14) and (7) we deduce that

⟨eû,vn⟩e ≤⟨τ1/2E (eû − eu), τ−1/2
E vn⟩e + ⟨eu,vn⟩e

≲h−1/2Θ(σ,u,γ, q, v)∥ecγ∥K + ∥h−1eu∥K∥ecγ∥K ,

which implies (15b).

If we consider the energy error estimate (14) to bound ∥eu∥TE
, we will obtain the suboptimal error bound

∥ecγ∥TE
≲h−1Θ(σ,u,γ, q, v).

We can improve this result by considering a duality argument and gain an additional factor of h1/2. In addition,
the energy estimate (13) provides an order of convergence of hk+1 for the projection errors eu and ev. Using
also a duality argument, it is possible to prove the superconvergence for eu and ev, as we will show in the next
section.
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5.4 The duality argument.

Given θe ∈ L2(ΩE) and θa ∈ L2(ΩA), we introduce the following auxiliary problem:

C−1ψe −∇ϕe + ξe = 0 in ΩE ,

∇·ψe − ρEs2 ϕe = θe in ΩE ,

ξa +∇ϕa = 0 in ΩA,

∇· ξa − (s/c)2 ϕa = θa in ΩA,

ξa · nA + sϕe · nE = 0 on Γ,

ψenE + ρfs ϕa nA = 0 on Γ,

ϕa = 0 on ΓD
A ,

ξa · nA = 0 on ΓN
A .

Here, ξe =
1
2 (∇ϕe −∇⊤ϕe). We assume that this problem admits the regularity estimate

∥ψe∥Hse (ΩE) + ∥ϕe∥H1+se (ΩE) + ∥ξa∥Hsa (ΩA) + ∥ϕa∥H1+sa (ΩA) ≲ ∥θe∥ΩE
+ ∥θa∥ΩA

(16)

for some se, sa ≥ 0.

Performing calculations analogous to those in [18, 20], it is possible to obtain the following lemma:

Lemma 5.4. For any ϕke ∈ Pk(TE) ,ϕk−1
e ∈ Pk−1(TE) and θe ∈ L2(ΩE), we have

(eu,θe)TE
= (C−1eσ, δψe)TE

+ (eγ , δψe)TE
+ (eσ, δξe)TE

+ (δσ, δξe)TE
+ (C−1δσ, δψe)TE

+ (δγ , δψe)TE
− (δσ,∇(ϕe − ϕke))TE

− ρEs
2(u− uh, δϕe)TE

+ ρEs
2(δu,ϕe − ϕk−1

e )TE
+ ⟨eû,ψenE⟩Γ − ⟨eσ̂nE ,ϕe⟩Γ. (17a)

In addition, for any ϕk
a ∈ Pk(TA) , ϕk−1

a ∈ Pk−1(TA) and θa ∈ L2(ΩA), there holds

(ev, θa)TA
= (q − qh, δξa)TA

− (δq,∇(ϕa − ϕk
a))TA

− ⟨eq̂ · nA, ϕa⟩Γ
− (s/c)2(v − vh, δϕa

)TA
+ (s/c)2(δv, ϕa − ϕk−1

a )TA
+ ⟨ev̂, ξa · nA⟩Γ. (17b)

Based on the above two lemmas, we can derive the estimate.

Corollary 5.4.1. If the regularity assumption (16) holds with se, sa ≥ 0 and k ≥ 1, then

∥ev∥TA
+ ∥eu∥TE

≲ (hse + hsa)Θ(σ,u,γ, q, v), (18a)

∥ecγ∥TE
≲ (h−1/2 + hse−1 + hsa−1)Θ(σ,u,γ, q, v). (18b)

Proof. Taking θe = eu in (17a) and θa = ev in (17b), let us add ∥ev∥2TA
and ρ−1

f ∥eu∥2TE
. Then, by (12k) and (12l),

the terms in Γ cancel out and we obtain

∥ev∥2TA
+ ρf ∥eu∥2TE

= (q − qh, δξa)TA
− (δq,∇(ϕa − ϕk

a))TA
− (s/c)2(v − vh, δϕa

)TA

+ (s/c)2(δv, ϕa − ϕk−1
a )TA

+ ρ−1
f

{
(C−1eσ, δψe)TE

+ (eγ , δψe)TE

+(eσ, δξe)TE
+ (δσ, δξe)TE

+ (C−1δσ, δψe)TE
+ (δγ , δψe)TE

−(δσ,∇(ϕe − ϕke))TE
− ρEs

2(u− uh, δϕe)TE
+ ρEs

2(δu,ϕe − ϕk−1
e )TE

}
Now, we notice that

(eγ , δψe)TE
= (e0γ , δψe)TE

+ (ecγ , δψe)TE
= (e0γ , δψe)TE

,

because δψe is orthogonal to piecewise constant polynomials. In addition, the terms on Γ cancel each other out.
Then, applying the triangular and Cauchy-Schwarz inequalities, we obtain

∥ev∥2TA
+ ρf ∥eu∥2TE

≲ (OPT ×APT ) + ∥δψe∥TE
∥e0γ∥TE

, (19)
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where OPT stands for “original problem terms” and APT for “auxiliary problem terms”:

OPT :=

(
∥q − qh∥2TA

+ ∥v − vh∥2TA
+ ∥u− uh∥2TE

+ ∥eσ∥2TE

+ ∥δq∥2TA
+ ∥δv∥2TA

+ ∥δσ∥2TE
+ ∥δu∥2TE

+ ∥δγ∥2TE

)1/2

and

APT :=

(
∥δξa∥

2
TA

+ ∥δϕa∥
2
TA

+
∥∥∇(ϕa − ϕk

a)
∥∥2
TA

+
∥∥ϕa − ϕk−1

a

∥∥2
TA

+ ∥δξe∥
2
TE

+ ∥δϕe∥
2
TE

+
∥∥∇(ϕe − ϕke)

∥∥2
TE

+
∥∥ϕe − ϕk−1

e

∥∥2
TE

)1/2

.

In the OPT term, we add and subtract the projections ΠAq, ΠAv and ΠEu in the first three terms, use (14) and
the definition of Θ(σ,u,γ, q, v), to conclude that

OPT ≲ Θ(σ,u,γ, q, v) +

√
1

2
∥e0γ∥TE

.

Regarding the APT, we first consider ϕk−1
a and ϕk

a as the L2-projections of ϕa over Pk−1(TA) and Pk(TA), resp.
Similarly, we take ϕk−1

e and ϕke as the L2-projections of ϕe over Pk−1(TE) and Pk(TE), resp. Then, by the ap-
proximation properties of the L2- [22, Lemma 1.58] and the HDG-projections (10)-(11), and assuming the regularity
assumption (16), we can deduce that

APT ≲ (hse + hsa)
(
∥ev∥TA

+
√
ρf ∥eu∥TE

)
.

Then, replacing these expressions in (19), and noticing that

∥δψe∥TE
≲ h(∥θe∥ΩE

+ ∥θa∥ΩA
) ≲ h

(
∥ev∥TA

+
√
ρf ∥eu∥TE

)
,

we obtain that

∥ev∥2TA
+ ρf ∥eu∥2TE

≲

(
Θ(σ,u,γ, q, v) +

√
1

2
∥e0γ∥TE

)(
(hse + hsa)

(
∥ev∥TA

+
√
ρf ∥eu∥TE

))
+ ∥δψe∥TE

∥e0γ∥TE

≲
(
Θ(σ,u,γ, q, v) + ∥e0γ∥TE

) (
(hse + hsa)

(
∥ev∥TA

+
√
ρf ∥eu∥TE

))
,

which implies that

∥ev∥2TA
+ ρf ∥eu∥2TE

≲ (hse + hsa)
(
Θ(σ,u,γ, q, v) + ∥e0γ∥TE

)
≲ (hse + hsa)Θ(σ,u,γ, q, v),

Summarizing all previous estimates, and using the estimate in Lemma 5.1, we have the following result.

Theorem 5.5. If (σ,u,γ, q, v) ∈Hk+1(ΩE)×Hk+1(ΩE)×Hk+1(ΩE)×Hk+1(ΩA)×Hk+1(ΩA) and k ≥ 1, then

||σ − σh||TE
+ ||u− uh||TE

+ ||q − qh||TA
+ ||v − vh||TA

≲ hk+1.

and

||γ − γh||TA
≲ hk(h1/2 + hse + hsa).

Finally, we have the following error estimates for the numerical traces:
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Lemma 5.6. Under the same hypothesis of previous theorem, there holds

|||eû|||∂TE
≲ (h−1/2 + hse−1 + hsa−1)hk+1 (20a)

and

|||ev̂|||∂TA
≲ (h+ hse + hsa)hk+1. (20b)

where, for † ∈ {A,E}, we consider the norm

|||·|||∂T†
:=

∑
K∈T†

hK∥ · ∥2∂K

1/2

.

Proof. By following the argument in the proof of Theorem 4.1 in [18], let K ∈ TE and τK ∈ Pk(K) such that

τn = eû on ∂K and ∥τK∥K ≲ h
1/2
K ∥eû∥∂K . According to (12a), taking τ = τK in K and τ = 0 otherwise, we can

write

∥eû∥2∂K = (C−1eσ, τ )K + (eu,∇· τ )K + (eγ , τ )K + (C−1δσ, τ )K + (δγ , τ )K .

By the Cauchy-Schwarz and inverse inequalities, we can obtain

∥eû∥2∂K ≲
(
∥eσ∥K + h−1

K ∥eu∥K + ∥eγ∥K + ∥δσ∥K + ∥δγ∥K
)
∥τ∥K ,

which implies that

∥eû∥∂K ≲ h
1/2
K ∥eσ∥K + h

−1/2
K ∥eu∥K + h

1/2
K ∥eγ∥K + h

1/2
K ∥δσ∥K + h

1/2
K ∥δγ∥K ,

because ∥τK∥K ≲ h
1/2
K ∥eû∥∂K . This expression, together with (18a) and (14) to bound ∥eu∥K and ∥eσ∥K ,

respectively, implies that ( ∑
K∈TE

hK∥eû∥2∂K

)1/2

≲hΘ(σ,u,γ, q, v) + ∥eγ∥TE
.

The estimate follows after using (15a) and (18b).

A similar procedure for ev̂ (see also the proof of Theorem 4.1 of [18]) leads to

h
1/2
K ∥ev̂∥∂K ≲hK∥eq∥K + ∥ev∥K + hK∥δq∥K ,

for K ∈ TA. Adding over K, ( ∑
K∈TA

hK∥ev̂∥2∂K

)1/2

≲(h+ hse + hsa)Θ(σ,u,γ, q, v),

where we used (14), (15a) and (18a). The result follows after considering the estimate in Lemma 5.1

6 Numerical Experiments

6.1 Acoustic problem.

To test our HDG scheme applied to the acoustic problem, we consider equations (1c)-(1d) complemented with
Dirichlet boundary conditions v = gD on ∂ΩA. We take a manufactured acoustic field v(x, y) = sin(x) sin(y). The
source f and boundary data gD are set in such a way that v satisfies (1c)-(1d) in a domain ΩA = (0, 1)2, with c = 1
and, for example, s = 2 − i. The stabilization parameter τA is taken to be equal to one everywhere. As it can be
inferred from Theorem 5.5 and (20a) (see also [18]), the theoretical orders of convergence for this case are hk+1 for
v and q; and hk+2 for the numerical trace, since the domain is convex (sa = 1).

We consider quasi-uniform refinements of ΩA and set k ∈ {1, 2, 3} in the local spaces. Figure 2 shows the results
obtained for this problem, where N is the number of mesh triangles. Note that for the errors in q and v the
optimal theoretical order of convergence k+ 1 was reached. In turn, for the numerical trace we can see an order of
superconvergence k + 2, as expected.
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Figure 2: Discretization error as a function of the number of triangles in the domain for the acoustic problem.

6.2 Elastic problem.

Analogously to the previous subsection, let us apply the HDG scheme to the equations (1a)-(1b) considering
ΩE = (0, 1)2, ρE = 1, s = 2 − i and τE = 1 everywhere. The source f and the Dirichlet boundary condition are
defined such that

u(x, y) =

(
sin(πx) cos(πy)
cos(πx) sin(πy)

)
, (x, y) ∈ (0, 1)2,

is the exact solution of the problem.

It is known that the Lamé’s first parameter (λ) and the shear modulus (µ) (or Lamé’s second parameter) satisfy
the following expressions in terms of the Young’s modulus (E) and the Poisson’s ratio (ν):

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
,

so let us take E = 1 and two values of ν, 0.3 and 0.49999 (a nearly incompressible isotropic material deformed
elastically at small strains would have a Poisson’s ratio of exactly 0.5).

From Theorem 5.5, we can deduce that the theoretical order of convergence is hk+1 for the displacements and the
Cauchy stress tensor. Now, the negative powers of h in (15b) are due to the term ⟨eû,vn⟩∂TE

in the proof of
Lemma 5.3. This term arises when coupling the elasticity and acoustic equations. Since in this example there is no
coupling, the term ⟨eû,vn⟩∂TE

disappears and we can obtain that

∥ecγ∥TE
≲ Θ(σ,u,γ, q, v).

Therefore, the theory guarantees an order hk+1 for the rotation, which agrees with the results in [20]. The same
reason led the suboptimal estimates in (20a). Since in this example we are considering only the elasticity problem
in a convex domain, we have regularity se = 1 and (20a) can be improved:

|||eû|||∂TE
≲ hk+2.

Moreover, the HDG scheme is also optimal in the nearly incompressible case [7, 20].

The numerical results are shown in Figure 3. Observe that the experimental orders of convergence of the errors in
σ,u and γ, k + 1, coincide with the theoretical results. In addition, for the numerical trace of u we also have a
superconvergence of order k + 2.

6.3 Coupled problem.

We now test our HDG scheme applied to the coupled problem (1a)-(1h) with Dirichlet boundary conditions v = gD
on ΓA. We take a manufactured acoustic field v(x, y) = sin(x) sin(y). The source f and boundary data gD are set
in such a way that v satisfies (1c)-(1d) in a domain ΩA = (−2, 2)2, with c = 1 and s = 2− i. For the elastic region,
we consider ΩE = (−1, 1)2, ρE = 1 and τE = 1 everywhere. The source f is defined such that

u(x, y) =

(
sin(πx) cos(πy)
cos(πx) sin(πy)

)
, (x, y) ∈ (−1, 1)2,
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Figure 3: Discretization error as a function of the number of elements in the elastic domain for Poisson’s ratio
ν = 0.3 (first row) and ν = 0.49999 (second row).

satisfies (1a)-(1b). We set the field vinc(x, y) = − sin(x) sin(y) and include additional terms on the right-hand sides
of (1e)-(1f) so that our manufactured solution satisfies them.

Figure 4 presents the numerical results obtained. The experimental orders of convergence of σ, u, q and v coincide
with the theoretical results predicted by Theorem 5.5. Now, for the rotation, Theorem 5.5 guarantees an order
hk+min{1/2,se,s1}, where we recall that se and sa are the regularity indices in (16). Numerically, we observe a
better result and obtain a convergence rate of hk+1. Moreover, Theorem 5.6 predicts |||eû|||∂TE

≲ hk+min{1/2,se,sa}
and |||ev̂|||∂TA

≲ hk+1+min{1,se,sa}. Computationally superconvergence of order k + 2 is observed for the numerical
traces.

7 Concluding remarks

The current work presents what—to the authors’s best knowledge—is the first analysis and proof of convergence of
an HDG discretization for the a Laplace–domain system modeling the interaction between acoustic and elastic waves
on a bounded domain. The numerical experiments suggest that convergence rates superior to those theoretically
obtained can be expected. The challenge of rigorously establishing such improved rates remains outstanding.

In practical applications, it is often the case that the domain of interest is unbounded. The work presented here is a
first step towards a discretization of such physically meaningful cases. In particular, the treatment of the coupling
between the scheme analyzed in this communication with a boundary integral formulation for the exterior problem
is the subject of ongoing work.
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Moya: Well-balanced physics-based finite volume schemes for Saint-Venant-Exner-type
models of sediment transport

2025-19 Harold D. Contreras, Paola Goatin, Luis M. Villada: Well-posedness of a
nonlocal upstream-downstream traffic model

2025-20 Thierry Coulbois, Anahi Gajardo, Pierre Guillon, Victor H. Lutfalla:
Aperiodic monotiles: from geometry to groups

2025-21 Esteban Henriquez, Tonatiuh Sanchez-Vizuet, Manuel Solano: An unfit-
ted HDG discretization for a model problem in shape optimization

2025-22 Fernando Artaza-Covarrubias, Tonatiuh Sanchez-Vizuet, Manuel
Solano: A coupled HDG discretization for the interaction between acoustic and elastic
waves

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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