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Abstract

We apply an unfitted HDG discretization to a model problem in shape optimization. The method proposed
uses a fixed, shape regular, non-geometry conforming mesh and a high order transfer technique to deal with the
curved boundaries arising in the optimization process. The use of this strategy avoids the need for constant
remeshing and enables a highly accurate description of the domain using a coarse computational mesh. We
develop a rigorous analysis of the well-posedness of the problems that arise from the optimality conditions, and
provide an a priori error analysis for the resulting discrete schemes. Numerical examples with manufactured
problems are provided demonstrating the convergence of the scheme and the efficiency of the transfer path
method. The approach proposed yields high resolution approximations of the boundary using grids with as few
as 100 times less elements than an interpolatory technique.
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===========================================

1 Introduction

Shape optimization is an important branch of the study of optimal control theory, which was developed extensively
in the 1990s and arises from the need to minimize a quantity (for instance the amount of material needed to build
an industrial component or the energy cost of production) through the modification of the design shape. This area
has inspired the development of a wide variety of theoretical and purely mathematical tools and has a large number
of applications in science and engineering, such as architecture and civil engineering [5], fluid mechanics [16, 33, 60],
modeling of quantum chemistry phenomena [8, 12], electromagnetism or photonics [40, 42], among other research
fields. From a mathematical point of view, we can see shape optimization as finding the minimum (possibly local)
of a cost functional defined over a set of admissible domains. In many cases—and we shall focus on these—the
minimization problem is constrained by a partial differential equation (PDE) defined on the target domain. The
computation of this minimum often requires the repeated solution of further partial differential equations arising
from the optimality conditions associated to the functional in question.

The first Discontinuous Galerkin (DG) method was developed in 1973 by Reed and Hill in the context of a neutron
transport problem involving a linear, time-independent, hyperbolic equation [50]. Since then, DG methods have
become one of the most widely used tools for the numerical solution of PDEs. However, DG discretizations were
criticized due to the fact that the associated linear systems involve too many unknowns and involve a complicated
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computational implementation compared to Continuous Galerkin (CG) methods. These criticisms were resolved
after the development of Hybridizable Discontinuous Galerkin (HDG) methods, first for diffusion problems and
later presented in a unified framework [21].

During the last two decades, HDG methods have been extensively developed for different types of equations, for
instance, diffusion equations [19, 22, 23, 41], convection-diffusion equations [20, 34, 48], acoustic and elastic waves
[4, 25], Stokes flow [13, 27, 35, 43], Oseen and Brinkman equations [3, 14, 36], Navier-Stokes equations [15, 47, 51],
linear and nonlinear elasticity [28, 46, 59], just to name a few.

In recent years, the development of the transfer path method has allowed the application of HDG to domains that
are not necessarily polygonal/polyhedral by approximating the solution in a polygonal subdomain. This transfer
technique was introduced within the context of HDG discretizations for linear elliptic equations in [24, 29] and
allows for the use of simple polygonal, non-interpolating meshes while still maintaining high order of convergence.
Since then, this method has been used for Stokes flow [57], Oseen equations [58], the Helmholtz equation [11],
convection diffusion equations [30], the Grad-Shafranov equation [55, 56], coupling with integral equations [26],
non-linear problems [52, 53, 54], and recently for a distributed optimal control problem [38], among others.

For the treatment of partial differential equations arising from the shape optimization problem, work has been
carried out using a variety of methods, for instance, Finite Element Method (FEM) [32], Cut Finite Element
Methods (CutFEM) [9, 10], Boundary Element Method (BEM) [7, 45], level-set methods [1, 2], among others. For
this manuscript we seek to make a first approach in using the combination of the transfer path method with an
HDG discretization to deal with the curved domains that arise naturally in shape optimization problems. These
techniques combined shall allow for the use of simple, shape regular triangulations, while maintaining the high order
of convergence of these methods in this new context.

In Section 2 we introduce a model problem and derive the optimality conditions associated to the optimization
problem as well as the optimization algorithms at the continuous level. Section 3 is devoted to the introduction of
the transfer path method and the technical assumptions related to the geometry and triangulation. The unfitted
HDG discretizations of the state, adjoint and deformation variables are introduced in Section 4, followed by the
corresponding a priori error analysis in Section 5. Finally, using manufactured examples, Section 6 presents
numerical experiments showcasing the convergence of the discrete variables and the behavior of the suggested
shape–optimization algorithm.

2 The model problem

Let U ⊂ Rd be a fixed domain, µ(·) denote the Lebesgue measure in Rn, and define the set

O := {Ω : Ω ⊂ U and µ(Ω) = m0} .

We will refer to any Ω ∈ O as an admissible domain and will denote its boundary as Γ := ∂Ω. For a fixed target
function ỹ ∈ H1(U) we will define the energy functional J : O ×H1(U) → R as

J(Ω; y) :=
1

2

∫
Ω

(y − ỹ)2.

In this work we will consider the model problem of finding a domain Ω̂ ∈ O such that(
Ω̂, y

)
= argmin

Ω∈O
J (Ω; y) (1)

where the function y is subject to the state equation

−∇ · (a∇y) = f in Ω , (2a)

y = g on Γ. (2b)

Above, the scalar function a is assumed to be such that there exist real numbers a and a satisfying

0 < a ≤ a ≤ a <∞ almost everywhere on U ,

and f ∈ H1(U) and g ∈ H2(U) are given problem data. Note that, since y is defined as the solution of a PDE
defined on Ω, it is itself a function of Ω. To keep notation as light as possible, we will avoid denoting this fact
explicitly as y(Ω), but the reader should keep this dependence in mind.
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If we consider a Lipschitz mapping V : U → Rd and small deformations of the domain Ω of the form

Ω ∋ x 7→ x+ ϵV (x) for 0 < ϵ < 1,

the variation δJ(Ω;V ) of the functional J(Ω; y) can be characterized (cf. [44, Chapter 11]) in terms of the problem
data, g and ỹ, and the adjoint function z, as

δJ(Ω;V ) =

∫
Γ

G(Γ)V · n, (3)

where

G(Γ) := a ∂nz ∂n(y − g) +
1

2
(g − ỹ)2 , (4)

and z ∈ H2(Ω) is the solution to the adjoint problem

−∇ · (a∇z) = y − ỹ in Ω ,

z = 0 on Γ .
(5)

Therefore, we look for a domain Ω̂ that satisfies δJ(Ω̂;V ) = 0 for some admissible direction V that we will call
the deformation field and will be specified below.

It is known [39] that shape optimization problems generally do not have a unique solution because the optimality

condition δJ(Ω̂;V ) = 0 does not uniquely determine V . For instance, to first order, deformations in the direction
tangential to Γ will not affect the value of the functional. Hence, a common choice is to fix a small portion, ΓD, of
the boundary and to look for a deformation field that satisfies

−∆V = 0 in Ω,

∂nV = −G(Γ)n on ΓN ,

V = 0 on ΓD,

(6)

where ΓN is the piece of the boundary that can be deformed and ΓD is the piece of the boundary that will remain
fixed and Γ = ΓD ∪ ΓN . We will assume that µ(ΓN ) ̸= 0 and µ(ΓD) ̸= 0.

The space
[HD(Ω)]d := {w ∈ [H1(Ω)]d, w = 0 on ΓD}.

will be used to enforce the Dirichlet boundary condition in the weak formulation for the problem (6), which we can
now state as

Find V ∈ [HD(Ω)]d such that (7)∫
Ω

∇V : ∇w +

∫
ΓN

G(Γ)w · n = 0 ∀ w ∈ [H1
D(Ω)]d .

Here, for any tensor fields ψ = (ψij)i,j=1,n and ζ = (ζij)i,j=1,n, the tensor inner product is defined as

ψ : ζ =

n∑
i=1

n∑
j=1

ψij ζij .

Thus, by letting w = V , it follows from the weak formulation (7) and equation (3) that

δJ(Ω;V ) =

∫
ΓN

G(Γ)V · n = −
∫
Ω

|∇V |2 ≤ 0 , (8)

which implies that deformations of Ω in a direction V that satisfies (6) guarantee a decrease in the value of the
functional. Note that this is not the only possible choice for V , but we will stick to it for the remainder of this
work.
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The previous argument motivates the following algorithm to compute an approximation for Ωopt based on the
gradient descent method [44, Algorithm 11.1]. Starting from an initial guess Ω(0), the approximation can be
updated iteratively as

Ω(k+1) = (I + τk V
(k))Ω(k) (k ∈ N) ,

where τk is a scalar parameter, referred to as the step size, that controls the size of the deformation (its precise
value will be determined later) and the descent direction V (k) is the solution to

−∆V (k) =0 in Ω(k), (9a)

∂nV
(k) = − G(Γ(k))n on Γ

(k)
N , (9b)

V (k) =0 on Γ
(k)
D . (9c)

Analogously to (8) we can prove that V (k) is a descent direction for each k ∈ N, and therefore

J(Ω(k+1), y(k+1)) ≤ J(Ω(k), y(k)) ∀ k ∈ N .

Generating the Neumann data for the problem above requires the successive solution of the state equation (2) and
the adjoint equation (5) at every iteration. The process can be repeated until the value of the functional falls below
a predetermined tolerance TOL > 0.

In summary, given an initial guess for the domain Ω(0) and a desired tolerance TOL for the value of the functional
J(Ω, y) the sequence of steps to obtain an approximation to the shape optimal shape, is

Algorithm 1 [44, Algorithm 11.1]

Require: Initial domain Ω(0) and tolerance parameter TOL
y(0) ← y(Ω(0)) by solving the state equation (cf. (2)) in Ω(0)

z(0) ← z(Ω(0)) by solving the adjoint equation (cf. (5)) in Ω(0)

compute J(Ω(0))
compute G(Γ(0))
compute a deformation field V (0) by solving (9)
k ← 0
while |δJ(Ω(k);V (k))/δJ(Ω(0);V (0))| > TOL or |J(Ω(k))− J(Ω(k−1))| > TOL do

compute the step size parameter τk with a line search routine
Ω(k+1) ← (I + τkV

k)(Ω(k))
y(k+1) ← y(Ω(k+1)) by solving the state equation (2) in Ω(k+1)

z(k+1) ← z(Ω(k+1)) by solving the adjoint equation (5) in Ω(k+1)

compute J(Ω(k+1))
compute G(Γ(k+1))
compute a deformation field V (k+1) by solving (9)
k ← k + 1

end while

In practice, the volume constraint on the admissible domains µ(Ω) = m0 can be challenging to enforce computa-
tionally. Thus, we follow [44, Section 11.5.1], and introduce a Lagrange multiplier ξ and the functional

J̃(Ω, ξ; y) := J(Ω; y) + ξ(µ(Ω)−m0).

The variation δJ̃(Ω, ξ;V ) of the functional J̃(Ω, ξ; y) can be characterized by

δJ̃(Ω, ξ;V ) = δJ(Ω;V ) + ξ

∫
Γ

V · n =

∫
Γ

G̃(Γ, ξ)V · n,

where G̃(Γ, ξ) := G(Γ) + ξ. We compute V by solving (6) using the quantity −G̃(Γ)n as a Neumann boundary
condition. In addition, the Lagrange multiplier is updated every iteration according to

ξ(k+1) =
ξ(k) + χ(Γ)

2
+ ϵ(µ(Ω)−m0), with χ(Γ) := − 1

µ(Γ)

∫
Γ

G(Γ) , (10)
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and ϵ > 0 a sufficiently small fixed constant. This leads to the following modified algorithm:

Algorithm 2 Modification of Algorithm 1

Require: Initial domain Ω(0), parameters TOL and ϵ
y(0) ← y(Ω(0)) by solving the state equation (cf. (2)) in Ω(0)

z(0) ← z(Ω(0)) by solving the adjoint equation (cf. (5)) in Ω(0)

compute χ(Γ(0)) and set ξ(0) := χ(Γ(0))

compute J̃(Ω(0), ξ(0))

compute G̃(Γ(0), ξ(0))

compute a deformation field V (0) by solving (9) with G̃(Γ(0), ξ(0)) as Neumann boundary data
k ← 0
while |δJ̃(Ω(k), ξ(k);V (k))/δJ̃(Ω(0), ξ(0);V (0))| > TOL or |J̃(Ω(k), ξ(k))− J̃(Ω(k−1), ξ(k−1))| > TOL do

for a fixed ξ(k), compute the step size parameter τk by a line search routine.
Ω(k+1) ← (I + τkV

k)(Ω(k))
y(k+1) ← y(Ω(k+1)) by solving the state equation (2) in Ω(k+1)

z(k+1) ← z(Ω(k+1)) by solving the adjoint equation (5) in Ω(k+1)

compute χ(Γ(k+1)) and set ξ(k+1) =
ξ(k) + χ(Γ(k+1))

2
+ ϵ(µ(Ω(k+1))−m0)

compute J̃(Ω(k+1), ξ(k+1))

compute G̃(Γ(k+1), ξ(k+1))

compute a deformation field V (k+1) by solving (9) with G̃(Γ(k+1), ξ(k+1)) as Neumann boundary data
k ← k + 1

end while

3 Unfitted geometric discretization

In addition to the solution to three boundary value problems at every step, Algorithm 1 requires the update of the
domain Ω(k) where the state, adjoint, and deformation equations will be posed on the next iteration. For many
numerical schemes, this poses the need to repeatedly generate a new computational mesh. This requirement can
render an algorithm too costly, especially if the iteration count is high—which is typically the case. Moreover, to
achieve a highly accurate approximation of Ωopt, traditional methods would require either the use of an extremely
fine interpolatory mesh, or an isogeometric triangulation, or a high order curvilinear mesh. All of these methods
can produce a precise description of the target geometry, but they achieve so at an additional computational cost
per step that may result unacceptable if the iteration count is high—which is typically the case.

Due to these particularities, the transfer path method [24, 29]—that we describe below—provides an ideal tool
for dealing with this iterative process, as it obviates both the need to create a new mesh with every successive
iteration and the requirement of a mesh that finely captures the geometric properties of the boundary Γ(k). These
characteristics can dramatically decrease the additional costs associated with the geometric approximation. The
aim of this paper is to propose and analyze unfitted HDG discretizations that take advantage of the transfer path
method for the three relevant equations in the process. Here, we describe the geometric setting for the computations
and the transfer path method.

The computational domain
We will assume that the domain Ω has a Lipschitz boundary Γ and will choose a background polyhedral domainM
such that Ω ⊂ U ⊂ M. We will denote a generic triangulation (or tetrahedrization, depending on the dimension)
ofM by Th and a generic element in the triangulation by K. As usual, we will denote

h := max
K∈Th

{diam(K)} and h := min
K∈Th

{diam(K)} .

We refer to Th as a background triangulation and define

Th := {K ∈ Th : K ⊂ Ω}, (11)

i.e. the set of all the elements K ∈ Th, which are completely contained in Ω. For any given background triangulation

5



Th we will define the computational domain as

Dh :=

{
x ∈

( ⋃
K∈Th

K
)◦}

and will refer to its boundary Γh := ∂Dh as the computational boundary. An example of the construction of Dh is
shown in the left panel of Fig. 1.

We will say that e is an interior edge or face of the triangulation Th if there are two elements K+ and K− in Th,
such that, e = ∂K+ ∩ ∂K−. In the same way, we will say that e is a boundary edge or face if there is an element
K ∈ Th such that e = ∂K ∩Γh. We will let Eh be the set of all edges or faces of the triangulation, E◦h be the set of
interior edges or faces, and E∂h the set of exterior edges or faces of Th. Thus Eh = E◦h ∪ E∂h .

The outward unit normal of the element K ∈ Th will be denoted by n and will denote it by ne whenever we want to
emphasize that n is the normal to a particular face e. Moreover, for each edge or face e of K, we denote the height
of the element with respect to that edge or face as h⊥e . On a similar vein, for every boundary edge/face e ∈ ∂Eh,
we define H⊥

e as the length of the longest segment connecting e and Γ that is both parallel to the normal direction
ne and completely contained in Ke

ext. We then define the parameter

re := H⊥
e / h

⊥
e ,

that serves as a measure of the local distance between Γ and Γh, relative to the local mesh size. Related to this,
we have the proximity parameter

R := max
e∈E∂

h

re .

Admissible triangulations
For all the analysis that follows, we will consider only families {Th}h>0 of admissible triangulations, where a
triangulation Th is said to be admissible if the following conditions are satisfied:

1. There exists a constant r > 0 such that rh ≤ h. This condition is known as quasi uniformity.

2. There exists ρ > 0 such that, for any triangle K ∈ Th we have that diam(BK) ≥ ρ diam(K), where BK is
the biggest ball inscribed in the element K. This condition is called uniform shape regularity.

3. If for any two distinct elements K,K ′ ∈ Th it holds that the intersection K ∩K ′ is either empty, it consists
of a single common vertex or a single common edge/face. When this holds we say that the triangulation has
no hanging nodes. This is in fact not a necessary, but it considerably simplifies the analysis [6, 17, 18].

4. There exists a bijective function
ϕ : Γh −→ Γ (12)

That, for every point x ∈ Γh, assigns a point x̄ := ϕ(x) ∈ Γ such that the straight segment connecting x to
x satisfies the following conditions:

(a) Does not intersect the interior of the computational domain Dh.

(b) |x− x̄| ≤ Chn+δ, for some C > 0, n ∈ N and 0 < δ < 1. We refer to this as the local proximity condition
of order n. For Dirichlet problems, it is enough to require n = 1 [53, 56]. This condition can also be
expressed as

max
e∈E∂

h

H⊥
e ≤ Chn+δ . (13)

(c) There exist generic positive constants such that

∥ψn ◦ ϕ∥Γh
≲ ∥ψn∥Γ ≲ ∥ψn ◦ ϕ∥Γh

(14)

for every ψ ∈ H1(Ω) ∩H1(Ωh).

Up to this point, the conditions imposed on admissible triangulations have had a purely geometric character. They
have pertained solely to the capability of a family of triangulations to smoothly approximate the desired domain as
the mesh is refined. The next batch of conditions considers the interaction of the physical parameters, the geometry
and a stabilization parameter characteristic of HDG. In particular, they will determine the maximum admissible
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distance between the computational and physical boundaries in terms of the physical parameters, the stabilization
parameter and the polynomial degree of the approximation.

We start by introducing the a pair of edge–wise constant functions that will be useful in the convergence analy-
sis

Cext
e :=

1
√
re

sup
ζ∈[Pk(Ke)]d·ne\{0}

∥ζ∥Ke
ext

∥ζ∥Ke

, and Cinv
e := h⊥e sup

ζ∈[Pk(Ke)]d·ne\{0}

∥∂neζ∥Ke

∥ζ∥Ke

,

where Pk(D) denotes the set of polynomials of degree at most k over the domainD. As proven in [24], these functions
can be bounded globally in terms of the polynomial degree of the approximation k and the mesh regularity parameter
as

Cext
e ≤ C1(k + 1)2(3β + 2)k (15a) Cinv

e ≤ C2k
2 (15b)

Finally, we introduce the mesh–dependent function τ : Eh → R, which will act as a stabilization parameter and will
be used in the analysis of sections 4 and 5. In the most general case, this stabilization function needs only to be
strictly positive and essentially bounded (i.e. τ ∈ L∞(Eh) ). However, in this work we will consider it to be simply
any positive constant.

With these definitions we are prepared to establish our next set of assumptions, which will be used from now on
for the analysis in the following sections.

5. For every e ∈ E∂h , the maximum distance between Γ and Γh satisfies

H⊥
e ≤

(
4τ ·min

{
1,max

x∈Γh

(1 + a−1)

})−1

. (16)

Regarding this somewhat esoteric condition we can state the following. Recalling that a−1 is the reciprocal
of the diffusivity coefficient, it informs about the possible formation of boundary layers—which are likely to
be present if a−1 is large. Therefore, the distance between the physical and computational boundaries must
be aware about this value. On the other hand, the stabilization parameter τ penalizes the size of the jump of
the discrete approximations across adjacent elements. A large value of τ will reduce the size of the jump and
will make it more difficult to approximate a steep gradient (or a boundary layer) across an element. If this is
the case, the distance between boundaries must be reduced.

6. The local proximity parameter must satisfy

R < 2−1/3
(
Cinv

e Cext
e

)−2/3
. (17)

In view of the estimates (15) and the fact that—as we will soon explain in detail—we will extrapolate some
approximations from Γh to Γ, this estimate sets an acceptable ratio in terms of the polynomial degree of the
approximation.

Transfer paths
We must now describe how to transfer the boundary data from the problem boundary Γ to the computational
boundary Γh. We will refer to the straight segment from condition 4 above as a transfer path associated to x. We
will denote its unit tangent vector and its length respectively by

t(x) := (x− x)/|x− x|, and l(x) := |x− x|.

This construction is represented schematically in the center–left panel of Fig. 1.

Since ϕ is a bijection, each boundary face e ∈ ∂Eh will be identified with its corresponding image in Γ, which we
will denote by

Γe := {x ∈ Γ : x = ϕ(x) for some x ∈ e}.

A depiction of the segment Γe associated to an edge e is shown in the center right panel of Fig. 1. An algorithm
for constructing a collection of transfer paths, satisfying the additional condition that no transfer paths do not
intersect each other, was developed in [24] for the two dimensional case. The intersection–avoiding condition is not
necessary for the analysis, but provides a simple and natural way to construct the extension patches that will be
defined below.
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Ω

Dh

Γ Γh

M

Γ

Γh

x

x̄

l(x)
t(x)

Ke

e

Γe

σ(x1) σ(x2)
x1 x2

x̄1 x̄2

Figure 1: Left: Example of a domain Ω, its boundary Γ, a background domain M and the construction of the
computational domain Dh, shaded in gray. Center left: A transfer path associated to x. Center right: The extension
patch Kext

e is the region enclosed by the edge e, the segment Γe and the transfer paths σ(x1) and σ(x2). Right:
Tessellation of the full domain. The extension patches are the white tiles filling the space between Γ and Γh.

Extension patches
For computational purposes that will become clear soon, we will have to tessellate the complement of the compu-
tational domain Dc

h := Ω\Dh in such a way that there is a one-to one correspondence between boundary edges
e ∈ E∂h and tiles in the tessellation. We will denote by Kext

e the only tile that has e as a face and will refer to it as
an extension patch. One possible way of constructing such a tessellation is to use the algorithm from [24] and define
the extension patch Kext

e as the region bounded by the edge e, the transfer paths associated to the endpoints of e
and the segment of Γ delimited by the transfer paths, as depicted in the two panels on the right of (1).

If Ke is the element that shares the edge e with the extension patch Kext
e and p is a polynomial defined over Ke,

we define the extrapolation of p from Ke to Kext
e by

Eh(p)(y) := p(y) for all y ∈ Kext
e .

To simplify notation, whenever possible we will simply notation by simply writing p(y) understanding that the
extrapolation operator is used tacitly.

4 Unfitted HDG discretizations

In this section we present and analyze HDG schemes for the state, adjoint and deformation field equations—the
latter inspired by [49]. All the schemes will make use of the transfer path technique [29, 24] introduced in the
previous section. This will allow us to pose the HDG discretization using only polyhedral elements, even in domains
which are not necessarily polyhedral.

The discretization will use the following global polynomial spaces:

Zh :=
{
v ∈ [L2(Th)]d : v|K ∈ [Pk(K)]d ∀K ∈ Th

}
, (18a)

Wh :=
{
w ∈ L2(Th) : w|K ∈ Pk(K) ∀K ∈ Th

}
, (18b)

Mh :=
{
µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀ e ∈ Eh

}
. (18c)

We will also use the following inner products associated to Th and ∂Th

(u, v)Dh
:=

∑
K∈Th

∫
K

u v and ⟨s, t⟩Eh
:=

∑
K∈Th

∫
∂K

s t ,

which induce the norms
∥u∥Dh

:= (u, u)
1/2
Dh

and ∥s∥Eh
:= ⟨s, s⟩1/2Eh

.

If w is a positive function defined along every edge of the triangulation, we define the weighted norms

∥v∥Eh,w := ∥w1/2v∥Eh
and ∥v∥Γ,w :=

(∑
e⊂Γh

∫
e

w |v|2
)1/2

. (19)
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The same notation will be used for tensor- and vector-valued polynomial functions defined on Ke.

State and adjoint equations
As proposed in [24], we consider the strong mixed formulations for the state and adjoint equations, restricted to
the polygonal domain Dh:

a−1 p + ∇y = 0 in Dh , (20a)

∇ · p = f in Dh , (20b)

y = φ1 on Γh , (20c)

a−1 r + ∇z = 0 in Dh , (21a)

∇ · r − y = −ỹ in Dh , (21b)

z = φ2 on Γh , (21c)

where the unknowns φ1 and φ2 correspond to the traces of y and z, respectively, on Γh. Let x ∈ Γh and x̄ its
corresponding point on Γ. By integrating (20a) and (21a) along the transfer path joining x and x̄, we obtain

φ1(x) := g(x̄) +

∫ l(x)

0

a−1 p (x + s t) · t ds and φ2(x) :=

∫ l(x)

0

a−1 r (x + s t) · t ds . (22)

The HDG method for the state equation seeks an approximation (ph, yh, ŷh) of the exact solution (p, y, y|Eh
) in the

space Zh ×Wh ×Mh satisfying

(a−1 ph,v1)Dh
− (yh,∇ · v1)Dh

+ ⟨ŷh,v1 · nh⟩Eh
= 0 , (23a)

− (ph,∇w1)Dh
+ ⟨p̂h · nh, w1⟩Eh

= (f, w1)Dh
, (23b)

⟨p̂h · nh, µ1⟩Eh\Γh
= 0 , (23c)

⟨ŷh, µ1⟩Γh
= ⟨φh

1 , µ1⟩Γh
, (23d)

for all (v1, w1, µ1) ∈ Zh ×Wh ×Mh. In turn, the HDG method for the adjoint equation seeks and approximation
(rh, zh, ẑh) of the exact solution (r, z, z|Eh

) in the space Zh ×Wh ×Mh such that

(a−1 rh,v2)Dh
− (zh,∇ · v2)Dh

+ ⟨ẑh,v2 · n⟩Eh
= 0 , (24a)

− (rh,∇w2)Dh
+ ⟨r̂h · nh, w2⟩Eh

= (yh − ỹ, w2)Dh
, (24b)

⟨r̂h · nh, µ2⟩Eh\Γh
= 0 , (24c)

⟨ẑh, µ2⟩Γh
= ⟨φh

2 , µ2⟩Γh
, (24d)

for all (v2, w2, µ2) ∈ Zh×Wh×Mh. The functions φ
h
1 and φh

2 appearing in the systems above are discrete analogs of
(22). They transfer the Dirichlet boundary conditions from Γ to Γh and are defined along all faces in E∂h , by

φh
1 (x) := g(x̄) +

∫ l(x)

0

a−1Eh(ph)(x + s t(x)) · t(x) ds ,

φh
2 (x) :=

∫ l(x)

0

a−1Eh(rh)(x + s t(x)) · t(x) ds ,
(25)

where Eh(ph) and Eh(rh) are the extrapolation of ph and rh respectively. The numerical fluxes p̂h and r̂h are
defined along every edge e ∈ Eh by

p̂h = ph + τ (yh − ŷh)nh and r̂h = rh + τ (zh − ẑh)nh , (26)

and τ is a positive and bounded stabilization function defined on Eh, whose maximum and minimum values will be
denoted respectively by τ and τ .

The unfitted schemes in (23) and (24) were studied in [24], where their well-posedness was established. We will use
this result without not repeating the argument here. Instead we will now move on to study the discretization of
the deformation field.

The deformation field equation
We now present the HDG scheme for the deformation field equation which is inspired by the work done on [49].
It shall be noted that, due to the presence of a Neumann boundary condition, the treatment cannot be the same
as in the cases of the state and adjoint equations. In particular, a transfer function in the style of (22) to transfer
the Neumann data from the curved boundary Γ to the polygonal computational boundary Γh is not available.
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Instead, we will make use of the bijection ϕ defined on (12) to impose the Neumann condition on the computational
boundary. Under these conditions, the deformation field equation can be written in the computational domain Dh

as follows:

σ + ∇V = 0 in Dh , (27a)

div(σ) = 0 in Dh , (27b)

σnh = gN on ΓN
h , (27c)

V = gD on ΓD
h . (27d)

We assume that the computational boundary Γh is split between ΓD
h (the part of Γh with Dirichlet datum) and ΓN

h

(the part of Γh with Neumann datum) in such a way that

Γh = ΓD
h ∪ ΓN

h and ΓD
h ∩ ΓN

h = ∅.

The Neumann datum gN is defined by
gN := (G(Γ)n) ◦ ϕ ,

Where G(Γ) is as defined in (4), and the transfer function ϕ is the one defined on (12). Recalling the mixed
variables

∇y = − a−1 p and ∇z = − a−1 r

introduced in the state and adjoint mixed formulations, we can rewrite G(Γ) as

G(Γ) = r · n(a−1 p · n + ∂ng) +
1

2
(g − ỹ)2 . (28)

The Dirichlet datum gD is transferred using the same technique used in the state and adjoint equations, that
is,

gD(x) :=

∫ l(x)

0

σ(x + s t) t ds .

Before presenting the discrete scheme, we define the vector–valued polynomial spaces used for the discretization,
which are defined as

Zh := {ξ ∈ [L2(Th)]d×d : ξ|K ∈ [Pk(K)]d×d , ∀K ∈ Th} ,
Wh := {w ∈ [L2(Th)]d : w|K ∈ [Pk(K)]d , ∀K ∈ Th} ,
Mh := {µ ∈ [L2(Eh)]d : µ|e ∈ [Pk(e)]

d , ∀ e ∈ Eh} .

Then, our discrete scheme seeks an approximation (σh,Vh, V̂h) ∈ Zh×Wh×Mh of the exact solution (σ,Vh,Vh|Eh
),

which is given by

(σh,ψ)Dh
− (Vh,div(ψ))Dh

+ ⟨V̂h,ψnh⟩Eh
= 0 , (30a)

− (σh,∇w)Dh
+ ⟨σ̂h nh,w⟩Eh

= 0 , (30b)

⟨σ̂h nh,µ⟩Eh\Γh
= 0 , (30c)

⟨σ̂h nh,µ⟩ΓN
h

= ⟨(Gh(Γ)n) ◦ ϕ,µ⟩ΓN
h
, (30d)

⟨V̂h,µ⟩ΓD
h

= ⟨gDh ,µ⟩ΓD
h
, (30e)

for all (ψ,w,µ) ∈ Zh ×Wh ×Mh, where

σ̂h nh :=σh nh + τ (Vh − V̂h) , (30f)

Gh(Γ) := rh · n (a−1 ph · n + ∂ng) +
1

2
(g − ỹ)2 , (30g)

gDh (x) :=

∫ l(x)

0

Eh(σh)(x + s t(x)) t(x) ds . (30h)

From now on, for the sake of simplicity, we assume t(x) = nh for all x ∈ e and all e ⊂ ΓD
h . Otherwise, the results

follow from assuming t · nh > 0 and analyzing the tangential and normal components separately.
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Theorem 4.1. If Th is a sufficiently fine admissible triangulation, then there exists a unique solution of the HDG
scheme (30) associated to the deformation field equation.

Proof. We will use the Fredholm alternative. Let us start by assuming that Gh(Γ) = 0 and by taking test functions

ψ = σh , w = Vh , and µ =

{
V̂h in Eh \ ΓD

h

σ̂hnh in ΓD
h

.

Substituting the chosen value of µ into (30c), (30e), and (30d), and adding the resulting expressions shows that

⟨σ̂h nh, V̂h⟩Eh
= ⟨σ̂h nh, g

D
h ⟩ΓD

h
. (31)

Then, integrating by parts (30b) and adding the resulting expression to (30a), we get

0 = ∥σh∥2Dh
+ ⟨(σ̂h − σh)nh,Vh⟩Eh

+ ⟨σh nh, V̂h⟩Eh

= ∥σh∥2Dh
+ ∥τ1/2 (Vh − V̂h)∥2Eh

+ ⟨σ̂h nh, V̂h⟩Eh
(Using (30f))

= ∥σh∥2Dh
+ ∥τ1/2 (Vh − V̂h)∥2Eh

+ ⟨σ̂h nh, g
D
h ⟩ΓD

h
(By (31)). (32)

On the other hand, adding and subtracting σh in the definition of gDh , we can write

gDh (x) =

∫ l(x)

0

(Eh(σh)(x + snh) − σh(x)) · nh ds + σh(x)nh l(x) ,

which leads to the expression
σh(x)nh = l−1(x) gDh (x) − Λσh(x),

where, to keep notation compact, we have defined the term

Λσh(x) :=
1

l(x)

∫ l(x)

0

(E(σh)(x + snh) − σh(x)) · nh ds . (33)

Then,substituting the expression for σh(x)nh obtained above into (30f), we have that

⟨σ̂h nh, g
D
h ⟩ΓD

h
= ∥l−1/2 gDh ∥2ΓD

h
+ ⟨l1/2(τ (Vh − V̂h)− Λσh), l−1/2 gDh ⟩ΓD

h
.

Substituting this into (32) we find that

∥σh∥2Dh
+ ∥τ1/2 (Vh − V̂h)∥2Eh

+ ∥l−1/2 gDh ∥2ΓD
h

= ⟨l1/2(Λσh − τ (Vh − V̂h)), l
−1/2 gDh ⟩ΓD

h
.

Now, we use Young’s inequality to bound the right-hand side of the expression above as

⟨l1/2(Λσh − τ (Vh − V̂h)), l
−1/2 gDh ⟩ΓD

h
≤ 1

2

(
∥l1/2Λσh∥2ΓD

h
+ ∥l1/2τ(Vh − V̂h)∥2ΓD

h
+ ∥l−1/2gDh ∥2ΓD

h

)
≤ 1

2

(
H⊥

e ∥Λσh∥2ΓD
h
+H⊥

e ∥τ(Vh − V̂h)∥2ΓD
h
+ ∥l−1/2gDh ∥2ΓD

h

)
.

From the last two expressions it follows that

∥σh∥2Dh
+(1− 1

2H
⊥
e )
(
∥τ1/2(Vh − V̂h)∥2Eh

+ ∥l−1/2 gDh ∥2ΓD
h

)
≤ 1

2H
⊥
e ∥Λσh∥2ΓD

h

≤ 1
6H

⊥
e r

3
e(C

ext
e Cinv

e )2∥σh∥2Dh
(By (56))

≤ 1
2H

⊥
e ∥σh∥2Dh

(By (17)).

Hence, the local proximity condition (13) implies that if the mesh is sufficiently fine

σh =0 in Dh , (34a)

Vh = V̂h on Eh , (34b)

gDh =0 on ΓD
h . (34c)
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From here, we see that integrating by parts the second term in equation (30a), letting ψ = ∇Vh, and using (34a),
it follows that ∥∇Vh∥Dh

= 0. On the other hand, (34b) and (34c) together with (30e) imply

⟨Vh,µ⟩ΓD
h

= ⟨V̂h,µ⟩ΓD
h

= ⟨gDh ,µ⟩ΓD
h

= 0

for all µ ∈Mh. Hence, Vh = 0 in Dh. Since the only solution to the homogeneous problem is the trivial one, the
problem is uniquely solvable by the Fredholm alternative.

5 A priori error estimates.

For the error analysis we will make use of the HDG projection introduced in [22] and summarized in the Appendix
B for convenience. For a discrete space Xh we will denote its HDG projector by ΠX and the L2 projector by PX

and use them to define the projections of the error for all our unknowns:

εp :=ΠZp − ph , εy := ΠW y − yh , εŷ :=PMy − ŷh , εp̂ := PMp − p̂h , (State)

εr :=ΠZr − rh , εz := ΠW z − zh , εẑ :=PMz − ẑh , εr̂ := PMr − r̂h , (Adjoint)

εσ :=ΠZσ − σh , εV :=ΠWV − Vh , εV̂ :=PMV − V̂h , εσ̂ :=PMσ − σ̂h , (Deformation)

We also define the interpolation errors as

Ip :=p − ΠZp , Ir := r − ΠZr , Iσ :=σ − ΠZσ ,

Iy := y − ΠW y , Iz := z − ΠW z , IV :=V − ΠWV .

5.1 Error estimates for the state and adjoint equations

As mentioned before, the analysis for unffitted HDG schemes for independent equations of the type satisfied by the
state and adjoint variables were analyzed in [24]. The main difference is that, for the present case, the problems are
coupled through the adjoint boundary condition (21b). This is reflected in the presence of both variables in some
of the error estimates below. Nevertheless, the results from [24] carry over in almost straightforward manner and
we shall not repeat the arguments here. Instead, we summarize the error estimates in the following theorem.

Theorem 5.1 ([24] Theorem 2.1). Let (y,p) be a solution pair to the state problem (20) and (z, r) be a solution
pair to the adjoint problem (21), and (yh,ph) and (zh, rh) be solutions to the corresponding HDG schemes (23) and
(23). We have that

∥p− ph∥Ω ≲ ∥Ip∥Dh
+ ∥Ip · n∥Γh,h⊥ + hk+1 |p|Hk+1(Ω) ,

∥r − rh∥Ω ≲ ∥Ir∥Dh
+ ∥Ir · n∥Γh,h⊥ + hk+1 |r|Hk+1(Ω) + ∥εyh∥Dh

+ ∥Iy∥Dh
.

Moreover, recalling the definition of the proximity parameter R := maxe∈E∂
h
re and

H1 :=
(
h+ τ1/2Rh+R2h1/2

)
, H2 :=

(
1 + τ1/2Rh1/2

)
, H3 :=

(
h+R1/2h+R3/2 h1/2

)
,

then the following estimate holds

∥y − yh∥Ω + ∥z − zh∥Ω ≲ H1 (∥Ip∥Dh
+ ∥Ir∥Dh

) + R1/2h (∥Ip · n∥Γh,h⊥ + ∥Ir · n∥Γh,h⊥)

+H2 (∥Iy∥Dh
+ ∥Iz∥Dh

) + H3 h
k+1 (|p|Hk+1(Ω) + |r|Hk+1(Ω)) .

Corollary 5.1.1. If the stabilization parameter τ = O(1), then,

∥p − ph∥Ω ≲ hk+1 , ∥y − yh∥Ω ≲ hk+1 , ∥r − rh∥Ω ≲ hk+1 , ∥z − zh∥Ω ≲ hk+1 .

5.2 Error estimates for σ − σh

We start by recalling that nh to denotes the unitary normal vector for Γh, while n denotes the unitary normal
vector for Γ. To begin with the analysis of the error for the velocity field equation, we note that the projections of
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the errors satisfy the following equations

(εσ,ψ)Dh
− (εV ,div(ψ))Dh

+ ⟨εV̂ ,ψnh⟩Eh
= − (Iσ,ψ)Dh

, (35a)

(εσ,∇w)Dh
− ⟨εσ̂nh,w⟩Eh

= 0 , (35b)

⟨εσ̂nh,µ⟩Eh\Γh
= 0 , (35c)

⟨εσ̂nh,µ⟩ΓN
h

= ⟨(G−Gh)n ◦ ϕ,µ⟩ΓN
h
, (35d)

⟨εV̂ ,µ⟩ΓD
h

= ⟨gD − gDh ,µ⟩ΓD
h
, (35e)

εσ̂ nh = εσnh + τ (εV − εV̂ ) , (35f)

for all (ψ,w,µ) ∈ Zh ×Wh ×Mh.

The following lemma provides a useful representation of the normal component of the error on the deformation field
flux εσ .

Lemma 5.2. Consider the definition in (33). The following equation holds

εσ nh = l−1 (gD − gDh ) − ΛIσ − Λεσ − Iσ nh . (36)

Proof. Let us note that

gD − gDh =

∫ l(x)

0

σ(x+ snh) ds −
∫ l(x)

0

Eh(σ)(x+ snh) ds =

∫ l(x)

0

(σ −Eh(σ))(x+ snh) ds .

Adding and subtracting ΠZσ in the integrand above we get

gD − gDh =

∫ l(x)

0

(Iσ + εσ)(x+ snh) ds

=

∫ l(x)

0

(Iσ(x+ snh)− Iσ(x))nh ds + l(x) Iσ(x)nh +

∫ l(x)

0

(εσ(x+ snh)− εσ(x))nh ds

+ l(x) εσ(x)nh

= l(x)(ΛIσ + Iσ nh + Λεσ + εσ nh)(x) ,

after a rearrangement of terms the result follows.

Now, we present a useful result for the analysis

Lemma 5.3. Let εσ, εσ̂, εV , εV̂ be solutions to the system (35); then the following holds:

∥εσ∥2Dh
+ ∥τ1/2 (εV − εV̂ )∥2Eh

+ ⟨gD − gDh , εσ̂ nh⟩ΓD
h
+ ⟨(G−Gh)n ◦ ϕ, εV̂ ⟩ΓN

h
= − (Iσ, εσ)Dh

. (37)

Proof. Setting ψ = εσ and w = εV , integrating by parts and adding both equations we obtain

∥εσ∥2Dh
+ ⟨εσ̂ nh − εσ nh, εV ⟩Eh

+ ⟨εV̂ , εσ nh⟩Eh
= − (Iσ, εσ)Dh

,

then, by (35f)

∥εσ∥2Dh
+ ∥τ1/2 (εV − εV̂ )∥2Eh

+ ⟨εσ̂ nh, εV̂ ⟩Eh
= − (Iσ, εσ)Dh

.

Furthermore, note that by (35c), (35d), and (35e) we obtain

⟨εσ̂ nh, εV̂ ⟩Eh
= ⟨εσ̂ nh, εV̂ ⟩Eh\Γh

+ ⟨εσ̂ nh, εV̂ ⟩ΓD
h

+ ⟨εσ̂ nh, εV̂ ⟩ΓN
h

= ⟨gD − gDh , εσ̂ nh⟩ΓD
h

+ ⟨(G−Gh)n ◦ ϕ, εV̂ ⟩ΓN
h
.

and the result follows.

Let us now introduce a key lemma for the error analysis,
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Lemma 5.4. Suppose that Th is an admissible triangulation and define

|||(εσ, εV − εV̂ , g
D − gDh )||| :=

(
∥εσ∥2Dh

+ ∥εV − εV̂ ∥
2
Eh,τ

+ ∥gD − gDh ∥2ΓD
h ,l−1

)1/2
. (38)

The following inequality holds

|||(εσ, εV − εV̂ , g
D − gDh )||| ≲ ∥Iσ∥Dh

+ R1/2 ∥Iσnh∥ΓD
h ,h⊥ +

∥∥∥(h−1/2 ϵ
2 + τ−1/2

)
(G−Gh)n ◦ ϕ

∥∥∥
ΓN
h

(39)

+ R ∥∂nh
(Iσnh)∥Dc

h,(h
⊥)2 + ∥ 1

2ϵCtrεV ∥Dh
,

with ϵ > 0 a parameter at our disposal and Ctr a positive constant independent of h.

Proof. Applying the Cauchy-Schwarz inequality followed by Young’s inequality in (37) we get

1

2
∥εσ∥2Dh

+ ∥τ1/2 (εV − εV̂ )∥2Eh
+ ⟨gD − gDh , εσ̂ nh⟩ΓD

h
+ ⟨(G−Gh)n ◦ ϕ, εV̂ ⟩ΓN

h
≤ 1

2
∥Iσ∥2Dh

. (40)

On the other hand, note that combining (35f) and (36), the following equation holds,

⟨εσ̂ nh, g
D − gDh ⟩ΓD

h
= ∥l−1/2 (gD − gDh )∥2ΓD

h
− ⟨ΛIσ , gD − gDh ⟩ΓD

h
− ⟨Λεσ , gD − gDh ⟩ΓD

h

− ⟨Iσ nh, g
D − gDh ⟩ΓD

h
+ ⟨τ (εV − εV̂ ), gD − gDh ⟩ΓD

h
.

Then, substituting the expression obtained above in (40) and performing some algebraic manipulations, we obtain

1

2
∥εσ∥2Dh

+ ∥τ1/2 (εV − εV̂ )∥2Eh
+ ∥l−1/2 (gD − gD

h )∥2ΓD
h

≤ 1

2
∥Iσ∥2Dh

+ ⟨ΛIσ , gD − gD
h ⟩ΓD

h
+ ⟨Λεσ , gD − gD

h ⟩ΓD
h

+ ⟨Iσ nh, g
D − gD

h ⟩ΓD
h

− ⟨τ (εV − εV̂ ), gD − gD
h ⟩ΓD

h
− ⟨(G−Gh)n ◦ ϕ, εV̂ ⟩ΓN

h

=
1

2
∥Iσ∥2Dh

+ ⟨ΛIσ , gD − gD
h ⟩ΓD

h
+ ⟨Λεσ , gD − gD

h ⟩ΓD
h

+ ⟨Iσ nh, g
D − gD

h ⟩ΓD
h
− ⟨τ (εV − εV̂ ), gD − gD

h ⟩ΓD
h

+ ⟨τ1/2(εV − εV̂ ), τ−1/2 (G−Gh)n ◦ ϕ⟩ΓN
h
− ⟨εV , (G−Gh)n ◦ ϕ⟩ΓN

h
. (41)

Focusing on the expression (41), we note that applying successively the Cauchy-Schwarz inequality and Young’s
ab ≤ ϵ

2a
2 + 1

2ϵb
2 inequality (with constants ϵi for i = 1, 2, 3, 4) to each of the terms on the the second–to last line

above, it follows that

⟨ΛIσ , gD − gD
h ⟩ΓD

h
+ ⟨Λεσ , gD − gD

h ⟩ΓD
h
+ ⟨Iσnh, g

D − gD
h ⟩ΓD

h
− ⟨τ(εV − εV̂ ), gD − gD

h ⟩ΓD
h

≤ 1

2ϵ1
∥l1/2ΛIσ∥2ΓD

h
+

1

2ϵ2
∥l1/2Λεσ∥2ΓD

h
+

1

2ϵ3
∥l1/2Iσnh∥2ΓD

h
+

1

2ϵ4
∥l1/2τ(εV − εV̂ )∥2ΓD

h

+
1

2
(ϵ1 + ϵ2 + ϵ3 + ϵ4)∥l−1/2(gD − gD

h )∥2ΓD
h

=3(∥l1/2ΛIσ∥2ΓD
h
+ ∥l1/2Λεσ∥2ΓD

h
+ ∥l1/2Iσnh∥2ΓD

h
) +

1

2
∥l1/2τ(εV − εV̂ )∥2ΓD

h
+

3

4
∥l−1/2(gD − gD

h )∥2ΓD
h
, (42)

where we have chosen ϵ1 = ϵ2 = ϵ3 = 1/6 and ϵ4 = 1. By a similar argument we have for the last line in (41),

⟨τ1/2( εV − εV̂ ), τ−1/2(G−Gh)n ◦ ϕ⟩ΓN
h
− ⟨εV , (G−Gh)n ◦ ϕ⟩ΓN

h

≤
∥∥∥(h−1/2 ϵ

2
+ τ−1/2

)
(G−Gh)n ◦ ϕ

∥∥∥2

ΓN
h

+ 1
4
∥τ1/2(εV − εV̂ )∥2ΓN

h
+

∥∥∥ 1
2ϵ
h1/2εV

∥∥∥2

ΓN
h

(Cauchy-Schwarz & Young)

≤
∥∥∥(h−1/2 ϵ

2
+ τ−1/2

)
(G−Gh)n ◦ ϕ

∥∥∥2

ΓN
h

+ 1
4
∥τ1/2(εV − εV̂ )∥2ΓN

h
+

∥∥ 1
2ϵ
CtrεV

∥∥2

Dh
(discrete trace inequality) , (43)
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with ϵ > 0 a parameter at our disposal. Substituting the estimates (42) and (43) into (41) it follows that

1

2
∥εσ∥2Dh

+
1

4
∥τ1/2 (εV − εV̂ )∥2Eh

+
1

4
∥l−1/2 (gD − gDh )∥ΓD

h

≤ 1

2
∥Iσ∥2Dh

+ 3 ∥l1/2 ΛIσ∥2ΓD
h

+ 3 ∥l1/2 Λεσ∥2ΓD
h

+ 3 ∥l1/2 Iσnh∥2ΓD
h

+
∥∥∥(h−1/2 ϵ

2 + τ−1/2
)
(G−Gh)n ◦ ϕ

∥∥∥2
ΓN
h

+
∥∥ 1
2ϵCtrεV

∥∥2
Dh

.

Then applying (55), (56), and taking into account that l(x) ≤ H⊥
e = re h

⊥
e , we find

1

2
∥εσ∥2Dh

+
1

4
∥τ1/2 (εV − εV̂ )∥2Eh

+
1

4
∥l−1/2 (gD − gDh )∥ΓD

h

≤ 1

2
∥Iσ∥2Dh

+ R2 ∥∂nh
(Iσnh)∥2Dc

h,(h
⊥)2 + R3(Cext

e Cinv
e )2∥εσ∥2Dh

+ 3 ∥r1/2e (h⊥e )
1/2Iσnh∥2ΓD

h

+
∥∥∥(h−1/2 ϵ

2 + τ−1/2
)
(G−Gh)n ◦ ϕ

∥∥∥2
ΓN
h

+
∥∥ 1
2ϵCtrεV

∥∥2
Dh

≤ 1

2
∥Iσ∥2Dh

+ R2 ∥∂nh
(Iσnh)∥2Dc

h,(h
⊥)2 + R3(Cext

e Cinv
e )2∥εσ∥2Dh

+ 3R ∥Iσnh∥2ΓD
h ,h⊥

+
∥∥∥(h−1/2 ϵ

2 + τ−1/2
)
(G−Gh)n ◦ ϕ

∥∥∥2
ΓN
h

+
∥∥ 1
2ϵCtrεV

∥∥2
Dh

.

Finally, by (17), we have that R3(Cext
e Cinv

e )2 < 1/2, and rearranging terms, (39) holds.

To derive the estimates for ∥εσ∥Dh
we need to control the term ∥(G−Gh)n◦ϕ∥ΓN

h
. We achieve that in the following

lemma.

Lemma 5.5. Let p and r be the solutions of the state problem (20) and adjoint problem (21), respectively. There
exists a positive constant CG such that

∥(G(Γ)−Gh(Γ))n ◦ ϕ∥ΓN
h
≤ CG

(
∥(r − rh) · n∥ΓN

∥(p− ph) · n∥ΓN

+∥r∥H1(Ω) ∥(p− ph) · n∥ΓN
+ ∥p∥H1(Ω) ∥(r − rh) · n∥ΓN

+ ∥(r − rh) · n∥ΓN

)
,

(44)

Furthermore, for q ∈ {p, r}, there holds

∥(q − qh) · n∥ΓN
≲ hm+1/2(∥q∥Hm+1(Ω) + |y|Hk+1(Ω)) + h−1/2∥Iq∥Dh

+Rh−1/2∥εq∥Dh
. (45)

Proof. Let us note the following

G(Γ) − Gh(Γ) = a−1 (p · nr · n− ph · nrh · n) + ∂ng (r − rh) · n ,

hence, we have that

∥(G−Gh)n ◦ ϕ∥ΓN
h
≲ ∥(G−Gh)n∥ΓN

≲ ∥Gh −G∥ΓN

≲ ∥p · nr · n− ph · nrh · n∥ΓN
+ ∥(r − rh) · n∥ΓN

≲ ∥p · n (r − rh) · n∥ΓN
+ ∥rh · n (p− ph) · n∥ΓN

+ ∥(r − rh) · n∥ΓN

≲ ∥p · n∥ΓN
∥(r − rh) · n∥ΓN

+ ∥(r − rh) · n∥ΓN
∥(p − ph) · n∥ΓN

+ ∥r · n∥ΓN
∥(p− ph) · n∥ΓN

+ ∥(r − rh) · n∥ΓN
.

Then, (44) follows by the continuous trace inequality. On the other hand, we will prove the bound of the statement
only for ∥(p− ph) · n∥ΓN

, since the proof for the bound of ∥(r − rh) · n∥ΓN
is analogous.

Let Γe ⊂ ΓN . By adding and subtracting E(ΠZp) we have that

h1/2e ∥(p− ph) · n∥Γe
≤ h1/2e ∥p−E(ΠZp)∥Γe

+ h1/2e ∥E(ΠZp)− ph∥Γe
.

We bound the first term of the right hand side of the above equation by (59), and by (58), we bound the second
term of the above equation, thus obtaining

h1/2e ∥(p− ph) · n∥Γe ≲ ∥Ip∥Kext
e ∪Ke

+ he∥∇Ip∥Kext
e ∪Ke

+ ∥εp∥Kext
e

,
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In turn we note that using the definition of Cext
e (see [24, Lemma A.1]), we have that ∥εp∥Kext

e
≲ r

1/2
e ∥εp∥Ke

, thus
we deduce

h1/2e ∥(p− ph) · n∥Γe
≲ ∥Ip∥Kext

e ∪Ke
+ he∥∇Ip∥Kext

e ∪Ke
+ r1/2e ∥εp∥Ke

≲ ∥Ip∥Kext
e ∪Ke

+ hm+1
e |E(p)|Hm+1(Be) + r1/2e hm+1

e ∥E(p)∥Hm+1(Ke)

+ r1/2e ∥Ip∥Ke
+ he∥∇Ip∥Ke

+ r1/2e ∥εp∥Ke
. (by (62))

≲ (1 + r1/2e )hm+1∥E(p)∥Hm+1(Be) + (1 + r1/2e )∥Ip∥Ke + he∥∇Ip∥Ke + r1/2e ∥εp∥Ke . (by (61))

Dividing by h
1/2
e , adding over all the elements and applying (60), (67), and bearing in mind the definition of R and

h, (45) holds.

We can note that the fourth term on the right hand side in (39) is controlled by [24, Lemma 3.8]. Then, the unique
term that is not controlled is ∥εV ∥Dh

. In order to have an estimate for the latter we have to present the error
estimates for V − Vh, which is presented in the next section. Once we have performed this analysis, we will be in
position to establish the error estimates for the deformation field equation.

5.3 Error estimates for V − Vh

In this section we develop the error estimates for V − Vh, for this purpose we will follow the same strategy done
for the estimates of ey and ez, i.e., we will use a dual problem to find the estimates. For any given U ∈ [L2(Ω)]d,
let be (γ,u) solution of

γ + ∇u = 0 in Dh , (46a)

div(γ) = U in Dh , (46b)

u = 0 on ΓD
h , (46c)

γ nh = 0 on ΓN
h . (46d)

We assume that the solution to this dual problem satisfies the elliptic regularity

∥u∥s+1,Dh
+ ∥γ∥s,Dh

≤ C ∥U∥Dh
, (47)

where s ≥ 0, and C > 0 depend on the domain Dh.

Remark 1. The elliptic regularity holds with s = 1, for example, when the domain is a convex polyhedral or has a
C2 boundary as in [24]. This H2-regularity is usually used to prove superconvergence properties of HDG schemes.
However, since in our context the domain Dh might be a nonconvex polyhedron, the purpose of this duality argument
is not to show suerconvergence but rather to to bound ∥εV ∥Dh

and obtain error estimates even for the case s = 0.

We have the following identity.

Lemma 5.6. The projection of the errors and the interpolation errors satisfy the following identity

(εV ,U)Dh
= (Iσ,ΠZγ)Dh

− (εσ,γ −ΠZγ)Dh
+ TV ,h , (48)

where
TV ,h := ⟨gD − gDh ,γ nh⟩ΓD

h
− ⟨(G−Gh)n ◦ ϕ,u⟩ΓN

h
. (49)

Proof. Let us note that bearing in mind (46a), (46b), we get

(εV ,U)Dh
=(εV ,div(γ))Dh

= (εV ,div(γ))Dh
− (εσ,γ)Dh

− (εσ,∇u)Dh

=(εV ,div(ΠZγ))Dh
+ (εV ,div(γ −ΠZγ))Dh

− (εσ,ΠZγ)Dh
− (εσ,γ −ΠZγ)Dh

− (εσ,∇ΠWu)Dh
− (εσ,∇(u−ΠWu))Dh

.

Setting ψ = ΠZγ in (35a) and w = ΠWu in (35b), implies that

(εV ,U)Dh
= (Iσ,ΠZγ)Dh

− (εσ,γ −ΠZγ)Dh
+ TV ,h ,
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where TV ,h is defined as

TV ,h := ⟨εV ,ΠZγ nh⟩Eh
− ⟨εσ̂ nh,ΠWu⟩Eh

+ (εV ,div(γ −ΠZγ))Dh
− (εσ,∇(u−ΠWu))Dh

.

Integrating by parts we can deduce

TV ,h = ⟨εV ,ΠZγnh⟩Eh
− ⟨εσ̂nh,ΠWu⟩Eh

− (∇εV ,γ −ΠZγ)Dh
+ ⟨εV ,γ −ΠZγ⟩Eh

+ (div(εσ),u−ΠWu)Dh
− ⟨εσnh,u−ΠWu⟩Eh

= ⟨εV ,ΠZγnh⟩Eh
− ⟨εσ̂nh,ΠWu⟩Eh

+ ⟨εV ,γ −ΠZγ⟩Eh

− ⟨εσnh,u−ΠWu⟩Eh
(by (63a) and (63b))

= ⟨εV̂ − εV , (ΠZγ − γ)nh⟩Eh
− ⟨(εσ̂ − εσ)nh,ΠWu− u⟩Eh

+ ⟨εV̂ ,γ nh⟩Eh
− ⟨εσ̂ nh,u⟩Eh

.

By (35c) we have that ⟨εσ̂ nh,u⟩Eh\Γh
= 0. Moreover, since εV̂ is single-valued in Eh and γ ∈ H(div; Ω), it follows

that ⟨εV̂ ,γ nh⟩Eh
= ⟨εV̂ ,γ nh⟩Γh

. In turn, by (35f) we obtain

TV ,h = ⟨εV̂ − εV , (ΠZγ − γ)nh + τ (ΠWu− u)⟩Eh
+ ⟨εV̂ ,γ nh⟩Γh

− ⟨εσ̂ nh,u⟩Γh
.

We note by (63c) that ⟨εV̂ − εV , (ΠZγ − γ)nh + τ (ΠWu− u)⟩Eh
= 0. Finally by (35d), (35e), (46c), and (46d)

we get

TV ,h = ⟨gD − gDh ,γ nh⟩ΓD
h
− ⟨(G−Gh)n ◦ ϕ,u⟩ΓN

h
.

We can now establish one of the most important results of this section. In fact, thanks to this lemma, we will be
able to deduce the convergence rate of the scheme.

Lemma 5.7. Suppose that Th is an admissible triangulation and assume the local proximity condition (13) is
satisfied for n ≥ 1 and 0 < δ < 1 and s ≥ 0 in (47). Then,

∥εV ∥Dh
≲
(
HV ∥Iσ∥Dh

+ hn+δHV ∥∂nh
(Iσnh)∥Dc

h,(h
⊥)2 + hn/2+δ/2HV ∥Iσnh∥ΓD

h ,h⊥

+ (H2
V h

−1/2 + 1)∥(G−Gh)n ◦ ϕ∥ΓN
h

)
, (50)

where HV := hs + hn/2+δ/2−1/2.

Proof. From Lemma 5.6, we find

TV ,h =⟨gD − gDh ,γnh⟩ΓD
h
− ⟨(G−Gh)n ◦ ϕ,u⟩ΓN

h

≤∥l−1/2(gD − gDh )∥ΓD
h
∥l1/2γnh∥ΓD

h
+ ∥(G−Gh)n ◦ ϕ∥ΓN

h
∥u∥ΓN

h
.

Adding and subtracting ΠZγ, using (65) and recalling that l(x) := |x− x̄| ≲ hn+δ, we obtain

TV ,h ≤∥l−1/2(gD − gDh )∥ΓD
h
∥l1/2(ΠZγ − γ)∥ΓD

h
+ ∥l−1/2(gD − gDh )∥ΓD

h
∥l1/2ΠZγ∥ΓD

h

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
∥u∥ΓN

h

≲hn/2+δ/2+s−1/2∥l−1/2(gD − gDh )∥ΓD
h
∥U∥Dh

+ hn/2+δ/2−1/2∥l−1/2(gD − gDh )∥ΓD
h
∥U∥Dh

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
∥U∥Dh

≲hn/2+δ/2−1/2∥l−1/2(gD − gDh )∥ΓD
h
∥U∥Dh

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
∥U∥Dh

. (51)

On the other hand, mimicking [24, Step 4 of the proof of Lemma 3.5], we deduce

(Iσ,ΠZγ)Dh
+ (εσ,ΠZγ − γ)Dh

≲ hs(∥Iσ∥Dh
+ ∥εσ∥Dh

)∥U∥Dh
. (52)

Combining (51) and (52) with (48), we get

(εV ,U)Dh
≲hs(∥Iσ∥Dh

+ ∥εσ∥Dh
)∥U∥Dh

+ hn/2+δ/2−1/2∥l−1/2(gD − gDh )∥ΓD
h
∥U∥Dh

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
∥U∥Dh

.
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Then,

(εV ,U)Dh
≲(hs + hn/2+δ/2−1/2)(∥Iσ∥Dh

+ ∥εσ∥Dh
+ ∥l−1/2(gD − gDh )∥ΓD

h
)∥U∥Dh

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
∥U∥Dh

.

Setting U = εV in Dh, using (39) and defining HV := hs + hn/2+δ/2−1/2.

∥εV ∥Dh
≲HV ∥Iσ∥Dh

+R1/2HV ∥Iσnh∥ΓD
h ,h⊥ +HV

∥∥∥(h−1/2 ϵ
2 + τ−1/2

)
(G−Gh)n ◦ ϕ

∥∥∥
ΓN
h

+HV R∥∂nh
(Iσnh)∥Dc

h,(h
⊥)2 +HV ∥ 1

2ϵCtrεV ∥Dh
+ ∥(G−Gh)n ◦ ϕ∥ΓN

h
.

In addition, considering that R ≲ hn+δ (cf. (13)), we deduce that there exists a constant C > 0, independent of h,
such that

∥εV ∥Dh
≤C
(
HV ∥Iσ∥Dh

+ hn/2+δ/2HV ∥Iσnh∥ΓD
h ,h⊥ +HV

∥∥∥(h−1/2 ϵ
2 + τ−1/2

)
(G−Gh)n ◦ ϕ

∥∥∥
ΓN
h

+ hn+δHV ∥∂nh
(Iσnh)∥Dc

h,(h
⊥)2 +HV ∥ 1

2ϵCtrεV ∥Dh
+ ∥(G−Gh)n ◦ ϕ∥ΓN

h

)
.

Finally, choosing ϵ = CCtrHV , we have

∥εV ∥Dh
≲ HV ∥Iσ∥Dh

+ hn/2+δ/2HV ∥Iσnh∥ΓD
h ,h⊥ +HV (HV h

−1/2 + 1)∥(G−Gh)n ◦ ϕ∥ΓN
h

+ ∥(G−Gh)n ◦ ϕ∥ΓN
h
+ hn+δHV ∥∂nh

(Iσnh)∥Dc
h,(h

⊥)2 ,

and (50) after noticing that s ≥ 0 and n/2 + δ/2− 1/2 ≥ 0.

From the above lemma we can state the following theorem which gives us the convergence rates of the approxima-
tions.

Theorem 5.8. Let us assume that V ∈ [Hk+1(Ω)]d and σ ∈ [Hk+1(Ω)]d×d. If the local proximity condition (13)
is satisfied for n ≥ 1 and 0 < δ < 1 and s ≥ 0 in (47), then

∥εV ∥Dh
≲hk+1HV + CGh

k+1/2(H2
V h

−1/2 + 1), (53a)

∥εσ∥Dh
≲hk+1 + CGh

k + ∥εV ∥Dh
, (53b)

and
∥V − Vh∥Ω ≲ hk+1 + ∥εV ∥Dh

, ∥σ − σh∥Ω ≲ hk+1 + CGh
k + ∥εV ∥Dh

. (53c)

Here, we recall that where HV := hs + hn/2+δ/2−1/2.

Proof. By (64a), [24, Lemma 3.8] and (65), we note that

HV ∥Iσ∥Dh
+ hn+δHV ∥∂nh

(Iσnh)∥Dc
h,(h

⊥)2 + hn/2+δ/2HV ∥Iσnh∥ΓD
h ,h⊥ ≲ HV h

k+1.

In turn, by Lemma 5.5, we can deduce that

(H2
V h

−1/2 + 1)∥(G−Gh)n ◦ ϕ∥ΓN
h
≲ CGh

k+1/2(H2
V h

−1/2 + 1).

Therefore, combining all the above estimates, we prove (53a). On the other hand, choosing ϵ = 1 in (39), we can
deduce

∥εσ∥Dh
≲∥Iσ∥Dh

+ hn/2+δ/2∥Iσ∥ΓD
h ,h⊥ + ∥h−1/2(G−Gh)n ◦ ϕ∥ΓN

h

+ hn+δ∥∂nh
(Iσnh)∥Dc

h,(h
⊥)2 + ∥εV ∥Dh

.

Then, by following steps analogous to those used to derive (53a), combining them with the estimate in Lemma 5.5
and bounding ∥εV ∥Dh

by (53a), we obtain (53b). Now, note that

∥V − Vh∥Ω ≤ ∥V − Vh∥Dh
+ ∥V − Vh∥Dc

h
≤ ∥IV ∥Dh

+ ∥εV ∥Dh
+ ∥V − Vh∥Dc

h
.
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Then, applying [24, Lemma 3.7], we get

∥V − Vh∥Ω ≤ ∥IV ∥Dh
+ ∥εV ∥Dh

+ h∥Iσ∥Dc
h
+ hδ/2+1∥εV ∥Dh

,

which implies the first estimate of (53c).

From [24, Lemma 3.8] we have that ∥Iσ∥Dc
h
≲ hk+1. In turn, By (64a) and (53a), we find that the first estimate of

(53c) holds. On the other hand, analogue as above, we have

∥σ − σh∥Ω ≤ ∥Iσ∥Dh
+ ∥εσ∥Dh

+ ∥σ − σh∥Dc
h
.

By [24, Lemma 3.7], we get

∥σ − σh∥Ω ≤ ∥Iσ∥Dh
+ ∥εσ∥Dh

+ ∥Iσ∥Dc
h
+ hδ/2∥εσ∥Dh

.

Finally, applying (64a), (53b), and [24, Lemma 3.8], then the second estimate of (53c) holds.

6 Numerical experiments

We consider two numerical examples in two dimensions and set the stabilization parameter equal to one in all of
them. The first one consists of a manufactured solution in a fixed domain, with the aim to compute errors and
order of convergence of the schemes, while the second is intended to observe how a domain evolves when minimizing
the energy functional.

6.1 Computational grids

The domainM is triangulated by a family (background triangulation) {Th}h>0 that satisfies the first three properties
in the definition of admissible triangulation from Section 3. This ensures that the computational grids {Th}h>0

obtained through (11) also satisfy these three conditions, as we can observe in Fig. 3. Regarding the fourth
condition, computations require only that the mapping (12) is bijective at the vertices and the quadrature points of
boundary edges. This—along with condition 4(a)—can be guaranteed by constructing the transfer paths according
to the algorithm in [29, Section 2.4]. Said algorithm also provides the local proximity condition (13) with n = 1 and
δ = 0. In practice, numerical experiments show that the method performs optimally by picking the computational
mesh from a family of background triangulations satisfying only these conditions.

6.2 Experiment 1: Convergence of the HDG scheme

In order to verify the orders of convergence of the HDG solvers, we consider a fixed domain

Ω := {x = (x1, x2) ∈ R2 : (0.05)2 ≤ |x|2 < (0.2)2},

the target function ỹ(x1, x2) = − sin(x1) sin(x2) and a = 1. The data f and g, and a non-homogeneous boundary
condition in (5) are chosen such that y(x1, x2) = sin(x1) sin(x2) is the solution to (2) and z(x1, x2) = sin(x1) sin(x2)
is the solution to (5), leading to G(Γ) = 0. Then, to test the HDG approximation to the deformation field, we

consider artificial right-hand sides in (6) so that V (x1, x2) = e|x|
2−0.052(1, 1)t is the solution to (6).

Numerical experiments for polynomial bases of degrees k = 1, 2, 3 were performed and the convergence history of
the scheme, as a function of the number of mesh elements N , is shown in Figure 2. As a reference, the black dashed
line indicates the slope hk+1, which coincides with the experimental order of convergence, in the L2–norm, of the
volume variables (plotted in blue and red lines in the figure). This behavior is better than the one predicted by
Theorem 5.8 which, for n = 1 and δ = 0 as in our case, predicts that the order of convergence for all the errors is
hk. Note that the error in the traces (plotted in yellow) measured with respect to the norm

||| · |||h :=

( ∑
K∈Dh

hK∥ · ∥2∂K

)1/2

,

superconverges with order hk+2 as proven for Dirichlet boundary value problems in [24, 29].

19



Degree k = 1 Degree k = 2 Degree k = 3

S
ta
te

va
ri
ab

le
s

A
d
jo
in
t
va
ri
ab

le
s

D
ef
or
m
at
io
n
fi
el
d

Figure 2: Convergence history for the variables associated to the three systems— state, adjoint and deformation—
for different orders of polynomial bases. The trace variables (denoted with a “ hat ·̂ ” and plotted in yellow) all
converge with an additional power of h.
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Initial guess 30 iterations 50 iterations 90 iterations

Figure 3: Numerical approximation to the optimal shape for iterations: 0, 30, 50, 90. The optimal shape is drawn
in blue, while the numerical approximation is drawn in red. The computational mesh used for solving the state,
adjoint and deformation equations is plotted in black. After 90 iterations the two curves are indistinguishable to
the naked eye.

6.3 Experiment 2: Shape optimization with a manufactured example.

Consider the target function

ỹ(x1, x2) :=

(
|x|2 − 1

2π

)(
|x|2 − 0.052

)
,

along with the problem data

f(x1, x2) =

(
4|x|2 − 1

2π
− 0.052

)
, g = 0 , and a = 1.

With these parameters, the solution to the state equation (2) is y(x1, x2) =
1
4 ỹ(x1, x2).

Let U := {x = (x1, x2) ∈ (−1, 1)2 : |x| > 0.05} and consider the set of admissible domains

O :=

{
Ω : Ω ⊂ U and µ(Ω) = m0 := π

(
1

2π
− 0.052

)
with {|x| = 0.05} ⊂ ∂Ω

}
.

In this case, we expect the optimal domain to be

Ω̂ =

{
x = (x1, x2) ∈ U : |x|2 < 1

2π

}
,

and the optimal energy to be given by

J(Ω̂; y) =
9

8

∫
Ω̂

ỹ2(x1, x2) d(x1, x2) =
9π

16

∫ 1/
√
2π

0.05

r

(
r2 − 1

2π

)2

(r2 − 0.052)2 dr ≈ 6.83× 10−8.

Algorithm 2 was employed using the value ϵ = 10−4 (see eq. (10)) and starting from the initial guess for Ω displayed
in red on the leftmost panel of Figure 3. To enforce the condition that |x| = 0.05 remains a subset of ∂Ω, the initial
guess includes this segment in its boundary and the Dirichlet condition V = 0 on {|x| = 0.05} is included in the
BVP for the deformation field. The initial guess for the domain Ω consisted of a sample of N = 2000 points pi not
located on the fixed inner circle {|x = 0.05|}. These points were iteratively displaced according to the deformation
field as pi 7→ pi + τV (pi), where the value of τ is updated in every step through an Armijo line search.

This results in a polygonal approximation of the optimal boundary. As the shape of the approximated domain
changes, the computational mesh (displayed in black on Figure 3) is updated. The approximation after 90 itera-
tions is displayed on the rightmost panel in Figure 3. The maximum length of a segment in our final polygonal
approximation is ℓ = 1.8 × 10−3. Using a traditional approach reliant on an interpolatory uniform mesh, where
the number of elements is proportional to h−2, such a resolution would require approximately 3 × 105 elements
compared to the 1924 elements in our grid. This dramatic reduction (a factor of approximately 1.5 × 102) on the
number of elements required underscores the efficiency of the proposed technique.

21



Energy J(Ω; y) Area difference |µ(Ω)−m0| Lagrange multiplier ξ

Figure 4: Left: The target energy functional J(Ω; y) decreases as the number of iterations grows, settling after
about 50 iterations. Center: The violation of the area constraint decreases steadily and reaches a steady state after
about 60 iterations. Right: The value of the Lagrange multiplier grows with the number of iterations, switching
from assigning more importance to the shape of the domain at the beginning, towards enforcement of the area
constraint at the end.

Initial guess for y y after 30 iterations y after 90 iterations Optimal y

Figure 5: The three panels on the left depict the evolution of the state variable from the initial guess until 90
iterations. The rightmost panel shows the optimal state, which equals ỹ/4.

The value of the Lagrange multiplier is updated according to equation (10). As shown in the right panel of Figure 4,
initially the value of the Lagrange multiplier ξ is small, penalizing mostly the energy term J(Ω; y) that determines
the shape of the domain. As the algorithm progresses, the value of ξ increases, penalizing mostly the violation
of the volume constraint. Accordingly, the value of the energy decreases sharply at the beginning (left panel of
Figure 4 and increases a little before settling down, while the value of the area difference decreases steadily until
it oscillates around a steady value (center panel of Figure 4). The slight increase in the energy towards the end of
the process reflects the fact that a more energetically efficient shape can be obtained (similar to the red curve in
the center–left panel of Figure 3) if the volume constraint is dropped. The evolution of the state variable y as the
shape of the domain changes is depicted in Figure 5.

7 Concluding remarks

This article was mostly devoted to the analysis of the unfitted HDG discretizations associated to the state, adjoint
and deformation problems arising from a model problem in geometric shape optimization. The analysis faces the,
now well–known, challenges associated to a Neumann type boundary condition stemming from condition (27c) in the
problem for the deformation field. The challenge manifests itself in the error bounds for V through the appearance
of the term ∥(G − Gh)n ◦ ϕ∥ΓN

h
, whose optimal bound remains elusive. Nevertheless, numerical experiments (as

is the case of Experiment 1) repeatedly show that the optimal order may be feasible, even in the when employing
triangulations that are not fully admissible in the sense defined in Section 3. Ensuring these bounds theoretically
remains an open challenge.

However, an interesting and promising path arises from the findings of the second numerical experiment. The fact
that the transfer path technique enables a very accurate and efficient description of the optimal boundary. Efficiency
in this context refers to the fact that the maximum length of the sides of the polygonal approximation can be made
at least as small as h2 for a regular mesh of diameter h. This feature has the potential of speeding up computations
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by several orders of magnitude and, very importantly, is independent of the method chosen for the discretization of
the associated boundary value problems, as long as they are cast in a mixed form. Due to the fact that this feature
is independent of HDG, its analysis and further explorations are the subject of ongoing work and will be shared in
a separate communication [37].
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A Auxiliary estimates

For any e ∈ E∂h , any point x lying on the face e and any smooth enough function v defined in Kext
e , we set

Λv(x) :=
1

l(x)

∫ l(x)

0

(v(x + snh) − v(x)) · nh ds . (54)

For each e ∈ E∂h , and vector–valued functions v and nh such that their scalar product v ·uh ∈ H1(Kext
e ), it satisfies

(cf. [24, Lemma 5.2])

∥Λv∥e,l ≤
1√
3
re ∥∂nh

(v · nh)∥Kext
e ,(h⊥)2 , (55)

where we have used the notation ∂nh
u := ∇u · nh. Moreover, if v ∈ [Pk(Ke)]

d, we have that

∥Λv∥e,l ≤
1√
3
r3/2e Cext

e Cinv
e ∥v∥Ke

. (56)

We also recall the discrete trace inequality, whose proof can be found in [31, Lemma 1.52], for instance. Let K
be an element of Th with diameter h and v ∈ Pk(K). Then there exists Ctr > 0, depending only on k and mesh
regularity, such that

h1/2 ∥v∥e ≤ Ctr ∥v∥K , (57)

where e is a edge or face of K.

The following estimates are used in Section 5.1 to find estimates for the term ∥(G−Gh)n ◦ ϕ∥ΓN
h
.

Lemma A.1. For a polynomial p defined over a boundary element Ke associated with the edge e and the extension
patch Kext

e , and for all v ∈ H1(Ke) the following estimates hold

h1/2e ∥p∥Γe
≲ ∥p∥Kext

e ∪Ke
, (58)

h1/2e ∥v∥Γe
≲
(
∥v∥2Kext

e ∪Ke
+ h2e ∥∇v∥2Kext

e ∪Ke

)1/2
. (59)

Proof. Let us define the following reference patch

K̂ := {ŷ : ŷ = y/(He + he) , y ∈ Kext
e ∪Ke} .

Additionally, we define p̂(ŷ) := p(y/He) and Γ̂e denotes the part of the boundary of K̂ext
e that has been mapped

form Γe. Then, applying trace inequality in the reference patch K̂ext
e , we have

∥p∥2Γe
≲ |Γe|∥p̂∥2Γ̂e

≲ |Γe|∥p̂∥2K̂ ≲ |Γe||Kext
e ∪Ke|−1∥p∥2Kext

e ∪Ke
≲ h−1

e ∥p∥2Kext
e ∪Ke

∀p ∈ Pk(K
ext
e ∪Ke) ,

where we note that |Γe| is proportional to he and |Kext
e ∪Ke| is proportional to h2e, and then (58) holds. Next, (59)

holds following similar steps to ones above, but using the continuous trace inequality on the reference patch.
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Lemma A.2. If Be is a ball with center at the middle point of e, such that Kext
e ∪Ke ⊂ Be, and for all m ∈ Z+

0 ,

E :Hm+1(Ω)→Hm+1(Rd)

is an extension operator such that

E(ρ)|Ω = ρ for all ρ ∈Hm+1(Ω) and ∥E(ρ)∥Hm+1(Rd) ≲ ∥ρ∥Hm+1(Ω) , (60)

then

∥Ip∥Kext
e

≲ (1 + r1/2e )hm+1
e |E(p)|Hm+1(Be) + r1/2e ∥Ip∥Ke

, (61)

∥∇Ip∥Kext
e

≲hm |E(p)|Hm+1(Be) + r1/2e hme ∥E(p)∥Hm+1(Ke) + r1/2e h−1
e ∥Ip∥Ke

. (62)

For the proof of this Lemma we refer to [11, Lemma 3].

B HDG–projections and their properties

For the error analysis we will use an extension of the HDG–projection developed in [22] for matrix/vector valued
functions. For (σ,w) ∈ Zh ×Wh we define Πh(σ,w) := (ΠZσ,ΠWw) to be the unique solutions of the system

(ΠZσ, s)K = (r, s)K ∀ s ∈ [Pk−1(K)]d×d , (63a)

(ΠWw,v)K = (w,v)K ∀v ∈ [Pk−1(K)]d , (63b)

⟨ΠZσn + τ ΠWw,µ⟩e = ⟨σn + τ w,µ⟩e ∀µ ∈ [Pk(e)]
d, and ∀ e ⊂ ∂K . (63c)

As proven in [22, Theorem 2.1], the HDG–projection is well–defined and satisfies the following properties:

• If r ∈Hk+1(K) and w ∈ Hk+1(K),

∥ΠZr − r∥K ≲ hk+1
K |r|Hk+1(K) + hk+1

K τ |w|Hk+1(K) , (64a)

∥ΠWw − w∥K ≲ hk+1
K |w|Hk+1(K) +

hk+1
K

τ
|∇ · r|Hk(K) . (64b)

• If e is an edge or face of Γh then (cf. [24])

∥(ΠZr − r)nh∥Γh,h⊥ ≲ hk+1 |r|Hk+1(Ω) + hk+1 τ |w|Hk+1(Ω) , (65)

where the weighted norm ∥ · ∥Γh,h⊥ is as defined in (19).

We will also make use of the orthogonal L2–projection over an element K of a function v, denoted by PL2(K)v. It

is well known ([31, Lemmas 1.58 and 1.59]) that, if v ∈ H l+1(K) for 0 ≤ l ≤ k,

|v − PL2(K)v|Hm(K) ≲ hl+1−m |v|Hl+1(K) ∀m ∈ {0, . . . , k} , (66a)

∥v − PL2(K)v∥∂K ≲ hl+1/2 |v|Hl+1(K) . (66b)

We point out that the previous projection errors can be extended to the vector-valued case.

As final property we state the following estimate

Lemma B.1. Let r ∈Hk+1(K) and w ∈ Hk+1(K), then

∥∇(ΠZr − r)∥K ≲ hkK
(
|r|Hk+1(K) + |y|Hk+1(K)

)
. (67)

Proof. Note that
∥∇(ΠZr − r)∥K ≤ ∥∇(ΠZp− PL2(K)p)∥K + ∥∇(PL2(K)p− p)∥K .

Using and inverse inequality (see [31, Lemma 1.44]) in the first term and (66a) in the second term,

∥∇(ΠZr−r)∥K ≲ h−1
K ∥ΠZp−PL2(K)p∥K+hkK |p|Hk+1(K) ≤ h−1

K ∥ΠZp−p∥K+h−1
K ∥p−PL2(K)p∥K+hkK |p|Hk+1(K).

Finally, applying (64a) and (66a), we find that (67) holds.
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