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Centro de Investigación en
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Maŕıa Carmen Mart́ı, Yolanda Vásquez

PREPRINT 2025-17

SERIE DE PRE-PUBLICACIONES





A NUMERICAL SCHEME FOR A MODEL OF A FLOTATION COLUMN

INCLUDING THE TRANSPORT OF LIQUID COMPONENTS

RAIMUND BÜRGERA, STEFAN DIEHLB, MARÍA DEL CARMEN MARTÍC, AND YOLANDA VÁSQUEZD

Abstract. Froth flotation in a column is a widely used unit operation in mineral processing,
wastewater treatment, and other applications. The flotation process selectively separates finely di-
vided hydrophobic materials (valuable minerals or ores; repelled by water) from hydrophilic (slimes
or gangue; attracted to water), where both are suspended in a viscous fluid. A flotation column
roughly functions as follows: gas is introduced close to the bottom and generates bubbles that rise
through the continuously injected pulp that contains the solid particles. The hydrophobic particles
attach to the bubbles, forming foam or froth (the concentrate) that is removed through a launder.
The hydrophilic particles do not attach to bubbles, but normally settle to the bottom, and are re-
moved continuously. Additional wash water, injected close to the top, may assist with the rejection
of entrained impurities and increase froth stability. A recently formulated partial differential equa-
tion model [R. Bürger, S. Diehl, M.C. Mart́ı, Y. Vásquez, IMA J. Appl. Math. 87 (2022) 1151–1190]
describes the process by a pair of degenerate parabolic PDEs with discontinuous flux for the volume
fractions of bubbles and hydrophilic solid particles as functions of height and time. An extension of
that model is presented, which includes the effect of wash water to be injected into the froth as well
as the transport of an arbitrary number of components (such as slimes or chemical reagents) with
the liquid. The numerical scheme for bubble and particle volume fractions is extended to simulate
percentages representing the liquid components, which are proven to remain nonnegative and sum
up to one. In addition, a theory of desired steady states of the flotation column is outlined. It is
proven that the condition of “positive bias” in a determined zone of the flotation column (i.e., net
downward flow of water) coincides with the mathematically derived condition for the existence of
a stationary bubble concentration profile, including a stable froth layer. It is demonstrated how
steady-state solutions to the governing model can be constructed and conditions for their exis-
tence can be conveniently mapped through so-called “operating charts.” Numerical simulations are
presented.

1. Introduction

1.1. Scope. Froth flotation in a column is a unit operation widely used in mineral processing
and wastewater treatment. In the latter application, flotation is a pre-treatment for reducing oil
droplets and fat. In the former application it serves to separate valuable mineral particles from
worthless gangue particles in finely ground ores. The valuable mineral particles are hydrophobic
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Figure 1. Schematic of a froth flotation column: (left) denomination of zones,
(middle) height axis (z-axis) showing the location of feed and discharge levels, (right)
schematic of the column. The open circles and solid magenta dots represent bubbles
and hydrophilic particles, respectively. The information to the left indicates the
overflow or effluent rateQE, volume feed rates (QW, QF, andQG) and concentrations
(ϕW, ψW, ϕF, ψF, ϕG, and ψG), and the underflow volume rate QU, along with
limitations the feed concentrations must satisfy. The denomination of zone 2 as
“collection zone” is common in mineral processing, although the process of collection
(adhesion of hydrophobic particles to bubbles) is not part of the model.

and attach to bubbles of air injected into the pulp. The bubble-particle aggregates rise to the top of
the flotation column where they accumulate to a froth that is removed through a launder for further
processing. At the same time, the hydrophilic gangue particles settle and are removed continuously
(see Figure 1). The drainage of liquid due to capillarity is essential for the formation of stable froth.
A small amount of water, the so-called “wash water,” is sprinkled onto the top of or is injected
into the froth. The introduction of wash water assists with the rejection of entrained impurities
(slimes), tends to increase froth stability, and contributes to better recovery [23,25,30,33]. A part
of the wash water overflows with the froth bubbles and the remaining part flows down the froth
counter-current to the gas phase and is referred to as bias water. In the engineering literature (see,
e.g., [6,12,21,23]) a net downward flow of water through the froth is usually referred to as “positive
bias,” see Figure 2.
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Figure 2. Schematic of the concepts of (a) “positive bias” and (b) “negative bias”
in a froth flotation column (after [21, Fig. 8]), which refers to wash water passing
zone three downwards.

A three-phase model describing the stationary and transient behaviour of a flotation column with
drainage for a one-dimensional setup (slightly different from that of Figure 1) was developed in [10].
For the column drawn in Figure 1 this model can be written as the system of partial differential
equations (PDEs)

A(z)∂t

(
ϕ
ψ

)
+ ∂z

(
A(z)

(
J(ϕ, z, t)

−F̃ (ψ, ϕ, z, t)

))
= ∂z

(
A(z)γ(z)

(
1

−ψ/(1− ϕ)

)
∂zD(ϕ)

)
+

∑
S∈{G,F,W}

QS(t)

(
ϕS(t)
ψS(t)

)
δ(z − zS),

(1.1)

where z ∈ R is height, t > 0 is time, A(z) is the cross-sectional area of the column at height z, ϕ =
ϕ(z, t) is the volume fraction of bubbles, ψ = ψ(z, t) is the volume fraction of gangue (hydrophilic)

solid particles, J = J(ϕ, z, t) and F̃ = F̃ (ψ, ϕ, z, t) are convective flux functions that depend
discontinuously on z at the locations of the gas inlet (z = zG), the pulp feed inlet (z = zF), the
wash water inlet (z = zW), the underflow outlet (z = zU) at the bottom, and the overflow outlet
(z = zE) at the top, see Figure 1. The characteristic function γ indicates the interior of the column:

γ(z) :=

{
1 inside the column, i.e., if zU ≤ z ≤ zE,

0 outside the column, i.e., if z < zU or z > zE.

The function D models the capillarity, which is in effect when the bubbles are in contact. This is
assumed to occur whenever ϕ > ϕc, where ϕc is a given critical bubble volume fraction that marks
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the interface between pulp (where ϕ ≤ ϕc) and froth (where ϕ > ϕc). The function D is given by

D(ϕ) :=

∫ ϕ

0
d(s) ds, where d(ϕ) = D′(ϕ)

{
= 0 for 0 ≤ ϕ ≤ ϕc,

> 0 for ϕc < ϕ ≤ 1.
(1.2)

(Precise definitions of the underlying ingredients will be provided in Section 2.)
It is the purpose of this contribution, firstly, to extend the model (1.1) beyond the framework

of [10] by the assumption that the liquid phase is subdivided into a number kf of components. These
components can be finely divided solids, so-called slimes; chemical substances such as reagents
(chemicals added to enhance the flotation process, for instance collectors to make the mineral
particles hydrophobic or frothers to help create a stable foam); or one may wish to mark portions
of the fluid that enter through either the feed or the wash water inlet. These components give rise
to a vector of percentages p for the components of the fluid phase. The final partial differential
equation governing the evolution of p = p(z, t) is given by

∂t(A(z)ϕfp) + ∂z

(
A(z)

(
q − J(ϕ, z, t) + F̃ (ψ, ϕ, z, t) + γ(z)

1− ϕ− ψ

1− ϕ
∂zD(ϕ)

)
p

)
= QF(t)ϕf,F(t)pF(t)δ(z − zF) +QW(t)ϕf,W(t)pW(t)δ(z − zW),

(1.3)

where ϕf,F(t) is the fluid volume fraction and pF(t) the percentage vector associated with the pulp
feed, and ϕf,W(t) and pW(t) are the corresponding quantities for the wash water. Notice that for
given functions ϕ = ϕ(z, t) and ψ = ψ(z, t), suitable initial conditions and feed functions pF(t)
and pW(t), (1.3) is a linear transport equation for p = p(z, t) with singular source terms. It is
demonstrated that the monotone numerical scheme introduced in [10], which can easily be adapted
to handle (1.1), can be extended by a scheme to solve (1.3), and thereby to simulate the transport
of these components or equivalently, the propagation of the percentage vector p. The scheme
approximating (1.3) is designed in such a way that under a suitable Courant–Friedrichs–Lewy
(CFL) condition, the percentages are bounded between zero and one and sum up to one when the
initial data have this property.

Secondly, we formulate a theory of stationary (steady-state) solutions of (1.1) that is based on
the solution of suitable ordinary differential equations (ODEs) arising from (1.1) in the stationary
case in combination with jump and entropy jump conditions, and which incorporates the effect of
wash water. In particular, the condition of “positive bias” is cast in mathematical terms and leads
to the concept of “desirable steady states.”

Thirdly, we illustrate the new scheme by numerical examples that illustrate that the system
attains, abandons, or recovers desirable steady states as predicted by the theory, and utilize the
description of liquid components to provide numerical simulations that distinguish between water
that initially fills the column, slimes (fine suspended particles that follow the fluid), and the two
inflows of feed water and wash water. In particular situations of positive bias flow are simulated.

1.2. Related work. The present contribution is part of current efforts to design methods for
multicomponent or multispecies transport, and flow problems in general, that would satisfy an
“invariant region preservation (IRP)” principle. In the present context the IRP principle requires
that the (numerically simulated) volume fractions ϕ and ψ should be nonnegative and sum up at
most to one; and the percentages of components for the solid or liquid phase should be nonnegative
and sum up to exactly one. Numerical schemes for conservation laws that would preserve the IRP
or related properties were recently reviewed in [28]. On the other hand, the idea to augment an
existing scheme for a scalar conservation law with discontinuous flux by a procedure to compute
the transport of components was introduced in [13]. This approach was extended in [8] to models of
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reactive settling including the transport of solid and liquid components. Related work on positivity-
and bound-preserving schemes (i.e., that are endowed with an IRP property) includes [2,4,26,27].
Our approach leads to a scheme that is formally first-order accurate in space and time due to the
first-order time discretization and usage of a monotone numerical flux. A related problem, namely
convergence of entropy stable schemes for a degenerate parabolic equation (such as the ϕ-equation
of (1.1)) with a discontinuous flux function, is studied in [1]. The concept of operating charts
for the visualization of necessary inequalities for obtaining a steady-state solution was introduced
in [14] to categorize steady-state solutions of the similar continuous-sedimentation process for the
separation of biomass from liquid in wastewater treatment plants and utilized for control of steady
states [15, 16] and dynamic behaviour [17, 18]. In [5], the use of operating charts for a flotation
setup was in agreement with laboratory tests.

With respect to related work from the engineering literature, besides the references [6,12,25,30,
32,33] cited within the model development elsewhere in this work, we mention handbooks or reviews
related to the fundamentals of flotation columns in mineral processing (such as [21,23,24,31]) and
wastewater treatment [20,29]. Other references can be found in [10].

1.3. Outline of the paper. The remainder of the paper is organized as follows. In Section 2,
the three-phase model for a flotation column is deduced. Supposing that mass is conserved inside
the column, we obtain in Section 2.1 a system of three balance equations for the time and spatial
evolution of the volume fraction of three phases, namely aggregates (bubbles fully loaded with
hydrophobic particles), hydrophilic solid particles and fluid, including three feed inlets in the column
and the effect of the drainage of water that may occur at the top of the column when a froth layer is
created. In Section 2.2 we incorporate the drift-flux and solid-flux theories that define the nonlinear
dependence of J on ϕ and of F̃ on ϕ and ψ, respectively. The function d(ϕ) defining the capillarity
termD(ϕ) in (1.2) is specified in Section 2.3. The new model ingredient, namely the system of PDEs
(1.3) that governs the evolution of the vector of percentages p = p(z, t), is derived in Section 2.4.
Although the model handles an arbitrary number kf of liquid components, we limit the numerical
experimentation to the particular case kf = 4 addressed at the end of Section 1.1. The corresponding
components and percentages are properly introduced in Section 2.5. In Section 3, we introduce the
numerical scheme used for the simulation of the flotation process starting, in Section 3.1, with the
discretization of (1.1) by a variant of the scheme introduced in [10] (in that work, for a different
arrangement of feed and discharge openings). We outline the proof of monotonicity of the resulting
scheme and demostrate that for suitable initial conditions, the numerical solution always satisfies
0 ≤ ϕ ≤ 1 and 0 ≤ ψ ≤ 1 − ϕ in the appropriate discrete sense. Then, in Section 3.2, we
add the discretization of (1.3) and prove its properties. Section 4 is devoted to the study of the
steady-state solutions of the system satisfying that a froth layer appears at the top of the column,
with no aggregates leaving at the underflow, and that there is a positive bias flow, i.e., there is a
downwards directed water flow under the wash water inlet, which is crucial in real applications to
clean the foam from entrained hydrophilic solid particles. These properties, listed in Section 4.1,
are motivated by the conditions under which a flotation column should operate in engineering
applications without the necessity to permanently apply control actions. We derive the necessary
conditions for the so-called desired steady states to be feasible, in terms of inequalities involving the
bulk velocities in each zone of the column, defined by the volumetric flows QU, QG, QF and QW,
and the incoming volume fractions of aggregates ϕG and solids ψF. Next, in Section 4.2, we utilize
the jump and entropy conditions [19] for a stationary solution of the degenerate parabolic equation
with discontinuous flux function given by the ϕ-component of (1.1) (known from [5,10] for similar
models of froth flotation) to construct a desirable steady-state solution for the aggregates. This
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construction is feasible only if the operating parameters satisfy a total number of seven restrictions
(conditions). A similar analysis is done in Section 4.3 for the solid particles, which yields three
additional conditions. The total number of ten inequality conditions can be conveniently visualized
in an operating chart, that is, by intersection of subregions in a qG versus qU plane, as is explained
in Section 4.4. The theoretical results of Sections 3 and 4 are exemplified in Section 5 by a series of
numerical examples. We show some simulations using the operating charts created from conditions
in Section 4 to illustrate the dynamics of the column until it reaches a desired steady state. We
also show some simulations to illustrate the response of the system to changes in the operating
conditions. Finally, some conclusions and future work are presented in Section 6.

2. Governing model

2.1. Phases, bulk flows and mass conservation. The governing three-phase model is formed
by two disperse phases, gas bubbles fully loaded with hydrophobic particles, referred to as the
aggregates, and (hydrophilic) solid particles. Both are dispersed within the fluid, which is the third
phase. The dimensionless volume fractions ϕ := ϕ(z, t) of aggregates, ψ := ψ(z, t) of (hydrophilic)
solid particles and ϕf := ϕf(z, t) of the fluid satisfy

ϕf + ψ + ϕ = 1, 0 ≤ ϕf , ψ, ϕ ≤ 1. (2.1)

We suppose that the column initially is filled with fluid. A height z = zG, only gas bubbles enter
the column at a volumetric rate QG > 0. Thus, the solid and liquid feed concentration at zG are
zero (ψG, ϕf,G ≡ 0) while the feed bubble volume fraction at zG is ϕG = 1. The process of adhesion
of hydrophobic particles to bubbles is not included in the model, and is assumed to occur before
the slurry enters the column so that the gas bubbles injected into the column are fully loaded with
hydrophobic particles.

A mixture of slurry and water is fed at height z = zF at the volumetric flow QF > 0, with ϕF ≡ 0
and ψF, ϕf,F ∈ (0, 1). Wash water is injected near the top of the column at height z = zW at the
volumetric flow QW > 0. Only clear wash water is injected, which means ϕW ≡ 0, ψW ≡ 0, and
ϕf,W ≡ 1. All phases can leave the column through the underflow, at the bottom of the column
at height z = zU, with volumetric flow QU > 0, or through the effluent, located at the top of the
column at height z = zE, with volumetric flow

QE = −QU +QG +QF +QW > 0.

This assumption ensures that the mixture is conserved and the column is always completely filled.
The flotation column can be divided into zones, depending on the position of the inlets considered.

The interior of the flotation column is divided into four zones; see Figure 1. We denote ‘ the
subinterval [zU, zG) as ‘zone 1,” [zG, zF) as “zone 2,” [zF, zW) as “zone 3,” and [zW, zE) as “zone 4.”
Moreover, we consider the “effluent zone,” where z ≥ zE, and the “underflow zone,” where z < zU,
outside the column.

The column may have a variable cross-sectional area with depth given by the function A(z). For
simplicity, we will consider a constant cross-sectional area above the gas inlet (z ≥ zG) and let it
be decreasing with depth in zone 1.

The conservation of mass for each of the three phases defines the system

∂t(A(z)ϕ) + ∂z(A(z)ϕva) = QG(t)ϕG(t)δ(z − zG),

∂t(A(z)ψ) + ∂z(A(z)ψvs) = QF(t)ψF(t)δ(z − zF),

∂t(A(z)ϕf) + ∂z(A(z)ϕfvf) = QF(t)ϕf,F(t)δ(z − zF) +QW(t)ϕf,W(t)δ(z − zW)

(2.2)
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of balance equations for the time and spatial evolution of the volume fractions, where va, vs and
vf are the phase velocities of the aggregates, solid and fluid, respectively. The right-hand sides
describe the three singular sources zG, zF, and zW, with QS(t), S ∈ {G,F,W}, the corresponding
volume feed rate and ϕS(t), ψS(t), and ϕf,S(t) the aggregates, solids and fluid volume fraction at
each feed inlet, respectively. (This notation is consistent with [10].)

We define the volume-average velocity, or bulk velocity, of the mixture as

q := ϕva + ψvs + ϕfvf . (2.3)

Adding up the three equations in (2.2) and considering that A(z)q(z, t) = −QU(t) for z < zG yields

q(z, t) :=


q4 = qE := (−QU +QG +QF +QW)/A in zone 4 and the effluent,

q3 := (−QU +QG +QF)/A in zone 3,

q2 := (−QU +QG)/A in zone 2,

q1 = qU := −QU/A in zone 1 and the underflow.

2.2. Drift-flux and hindered-settling functions. The functions J(ϕ, z, t) and F̃ (ψ, ϕ, z, t) in
(1.1) are defined based on the constitutive functions for the aggregates batch flux jb(ϕ) and the
solid batch sedimentation flux fb(φ), respectively, where φ denotes the volume fraction of solids
within the suspension that fills the interstices between bubbles:

φ :=
ψ

ψ + ϕf
=

ψ

1− ϕ
.

Following [9], we define the total convective fluxes for ϕ and φ as:

J(ϕ, z, t) =


jE(ϕ, t) := qE(t)ϕ in the effluent zone,

jk(ϕ, t) := qk(t)ϕ+ jb(ϕ) in zone k = 1, . . . , 4,

jU(ϕ, t) := q1(t)ϕ in the underflow zone,

(2.4)

F (φ, ϕ, z, t) =


fE(φ, ϕ, t) := −(1− ϕ)qE(t)φ in the effluent zone,

fk(φ, ϕ, t) := (1− ϕ)fb(φ) +
(
jk(ϕ, t)− qk(t)

)
φ, in zone k = 1, . . . , 4,

fU(φ, ϕ, t) := −(1− ϕ)q1(t)φ in the underflow zone.

(2.5)

The functions fk(φ, ϕ, t) are positive in the direction of sedimentation, that is, decreasing z, while
the functions jk(ϕ, t) are positive in an increasing z direction. Figure 3 shows graphs of the zone
flux functions jk(ϕ) in (2.4).

From (2.5), we define the convective flux for the solids in (1.1) by

F̃ (ψ, ϕ, z, t) :=

{
F
(
ψ/(1− ϕ), ϕ, z, t

)
if 0 ≤ ϕ < 1,

0 if ϕ = 1.

The constitutive functions for jb(ϕ) and fb(φ) arising in (2.4) and (2.5), are given by jb(ϕ) :=
ϕṽ(ϕ) and fb(φ) := φvhs(φ), where ṽ(ϕ) is a given drift-flux velocity function and vhs(φ) is a given
hindered-settling function. We herein adopt the common Richardson–Zaki expression [32]

vhs(φ) = v∞(1− φ)nRZ , (2.6)
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Figure 3. Graphs of zone flux functions j(·; q) for different bulk velocities q.

where v∞ is the velocity of a single particle and nRZ is a parameter satisfying nRZ > 1. On the
other hand, as in [10] we define

ṽ(ϕ) :=

vterm(1− ϕ)nb for 0 ≤ ϕ ≤ ϕc,

vterm
(1− ϕ)2nS+1

(1− ϕc)2nS+1−nb
for ϕc < ϕ ≤ 1,

(2.7)

where ϕc is the so-called critical concentration (see Section 1.1). A single bubble distant from
others travels upward with the constant velocity vterm > 0 (hence, ṽ(ϕ) ≥ 0). The parameter nb is
a dimensionless constant. For ϕ > ϕc, the liquid between the aggregates drains as they accumulate,
creating a dry foam region at the top of the column. In [10], the second expression in (2.7) was
derived for this scenario in detail, where nS is a dimensionless constant.

2.3. Capillarity. When aggregates are in contact and foam is starting to form, it is necessary to
take into account the effect of capillarity, i.e., the movement of the liquid through the narrow space
between two adjacent bubbles as it drains from the foam layer. This drainage process results in
the second-order spatial derivative terms in the PDE system (1.1) [10]. The generalized drainage
equation expressed in ϕ is given by the function ṽ(ϕ) in (2.7) and the function d(ϕ) defined by

d(ϕ) :=

0 for 0 ≤ ϕ ≤ ϕc,

vtermdcap
ϕ(1− ϕ)nS

(1− ϕc)2nS+1−nb
for ϕc < ϕ ≤ 1,

(2.8)

with dcap a capillarity-to-gravity constant present in the froth when ϕ > ϕc; see [10] for a detailed
deduction of this expression. From (1.2) and (2.8) we obtain

D(ϕ) =

0 for 0 ≤ ϕ ≤ ϕc,

vtermdcap
ω(ϕc)− ω(ϕ)

(1− ϕc)2nS+1−nb(nS + 1)(nS + 2)
for ϕc < ϕ ≤ 1,

(2.9)

where ω(ϕ) := (1− ϕ)nS+1((nS + 1)ϕ+ 1).
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Table 1. Fixed values of some parameters.

Symbol Significance Value

zU underflow level 0m
zG gas feed level 0.07m
zF pulp feed level 2.20m
zW wash water feed level 2.70m
A interior cross-sectional area 0.018241m2

v∞ velocity of a single solid particle 0.005m/s
nRZ dimensionless parameter in (2.6) 1.5
vterm velocity of a single aggregate 0.1m/s
nb dimensionless parameter in (2.7) 2
nS dimensionless parameter in (2.7) 0.46
dcap dimensionless capillarity-to-gravity constant in (2.9) 0.003331
ϕc critical volume fraction of aggregates 0.74

The model development outlined so far specifies all ingredients of the governing system of equa-
tions (1.1). Some of the parameters have fixed values throughout this work, which are used to
produce all figures, see Table 1.

2.4. Components of the liquid phase. By analogy with treatments of reactive settling [7, 8],
we denote the total number of fluid components by kf . The volume fractions of these components
are ϕ

(l)
f = ϕ

(l)
f (z, t), l = 1, . . . , kf , where we assume that

0 ≤ ϕ
(l)
f (z, t) ≤ ϕf(z, t) for all l = 1, . . . , kf ;

ϕ
(1)
f (z, t) + . . .+ ϕ

(kf)
f (z, t) = ϕf(z, t) for all (z, t).

(2.10)

It is convenient to describe the evolution of these components by a vector of percentages p = p(z, t),
where we assume that

ϕ
(l)
f (z, t) = p(l)(z, t)ϕf(z, t) for all (z, t) and l = 1, . . . , kf ,

such that, in light of (2.10),

0 ≤ p(l)(z, t) ≤ 1 for all l = 1, . . . , kf ; p(1)(z, t) + . . .+ p(kf)(z, t) = 1 for all (z, t).

Furthermore, we associate with each of the feed streams a percentage vector pS = pS(t), where

0 ≤ p
(l)
S (t) ≤ 1 for all l = 1, . . . , kf ; p

(1)
S (t) + . . .+ p

(kf)
S (t) = 1 for all t ∈ [0, T ], S ∈ {F,W}.

(It is assumed that no liquid is injected through the gas feed at zG.)
The PDEs that govern the evolution of p are the system of balance equations

∂t(A(z)ϕfp) + ∂z(A(z)ϕfvfp) = QF(t)ϕf,F(t)pF(t)δ(z − zF) +QW(t)ϕf,W(t)pW(t)δ(z − zW).

The sum of these kf scalar equations yields precisely the third equation in (2.2). From (2.1) and
(2.3), we get q = ϕva + ψvs + (1− ϕ− ψ)vf , which means that

ϕfvf = (1− ϕ− ψ)vf = q − ϕva − ψvs.

By the detailed three-phase analysis of [9, Sect. 2.4] and [10, Sect. 3.3], we have also

ϕva = J(ϕ, z, t)− γ(z)∂zD(ϕ), (2.11)
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ψvs = −F̃ (ψ, ϕ, z, t) + γ(z)ψ

1− ϕ
∂zD(ϕ), (2.12)

and therefore

ϕfvf = q − J(ϕ, z, t) + F̃ (ψ, ϕ, z, t) + γ(z)
1− ϕ− ψ

1− ϕ
∂zD(ϕ). (2.13)

Consequently, we may write the PDE for p as (1.3). The volume fraction of the fluid ϕf does not
appear explicitly in (1.3), since it can be substituted by ϕf = 1−ϕ−ψ. The numerical scheme will
be based precisely on the formulation (1.3), so we do not further decompose the transport term
(2.13).

2.5. Choice of percentages to describe bias flow and desliming. In the context of the study
of desliming and the effect of the wash water, we find distinguish between the following kf = 4
components of the fluid volume fraction: the water that initially fills the flotation column (volume
fraction ϕ

(1)
f ), slimes, that is fine solid particles transported with the fluid (ϕ

(2)
f ), feed water (ϕ

(3)
f ),

and wash water (ϕ
(4)
f ). The quantities ϕ

(i)
f,F = ϕ

(i)
f,F(t), ϕ

(i)
f,W = ϕ

(i)
f,W(t), and ϕ

(i)
f,0 = ϕ

(i)
f,0(z), i = 1, . . . , 4

describe the corresponding volume fractions in the feed inflow, wash water inflow, and initial fluid
volume fraction, respectively. The corresponding percentage vectors are pF = pF(t), pW = pW(t),
and p0 = p0(z). In light of the comments made above, we assume

p0(z) =
(
p
(1)
0 (z), 1− p

(1)
0 (z), 0, 0

)T
, 0 ≤ p

(1)
0 (z) ≤ 1, z ∈ R,

i.e., initially, the unit is full of water with possibly a fraction of slimes,

pF(t) =
(
0, 1− p

(3)
F (t), p

(3)
F (t), 0

)T
, 0 ≤ p

(3)
F (t) ≤ 1, t ≥ 0,

which corresponds to the composition of the feed liquid that may carry slimes, and

pW(t) = (0, 0, 0, 1)T, t ≥ 0,

which means that the wash water does not carry any slimes.

3. Numerical scheme

3.1. Numerical scheme for the aggregate and solid phases. The spatial discretization of
the flotation column is shown in Figure 4 with the constant spatial mesh width ∆z := zi − zi−1

for each cell interval Ii−1/2 := [zi−1, zi]. With zi−1/2 denoting the midpoint of cell i, we also define
Ii := [zi−1/2, zi+1/2]. The cross-sectional area is discretized by

Ai−1/2 :=
1

∆z

∫
Ii−1/2

A(z) dz, Ai :=
1

∆z

∫
Ii

A(z) dz. (3.1)

The initial conditions are discretized by

ϕ0i−1/2 =
1

Ai−1/2∆z

∫
Ii−1/2

ϕ(z, 0)A(z) dz, ψ0
i−1/2 =

1

Ai−1/2∆z

∫
Ii−1/2

ψ(z, 0)A(z) dz,

i = 1, . . . , N.

(3.2)

In what follows, we define the forward and backward spatial difference operators ∆+ai := ai+1−ai
and ∆−ai := ai − ai−1, as well as a

+ := max{a, 0}, a− := min{a, 0}, and
γi := γ(zi), qn,±i := q(zi, t

n)±, Qn,±i := Aiq
n,±
i , etc., for i ∈ Z.

Furthermore, we define the function by v̂(ϕ) := ṽ(ϕ)/(1 − ϕ), which is bounded on [0, 1] (due to
kinematic relations outlined e.g. in [9]); for instance, if ṽ(ϕ) is given by (2.7), then ∥v̂∥∞ = vterm.
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Figure 4. Grid for the discretization of the flotation column.

The simulation is done over NT time steps until a final time T = NT∆t, where the fixed time
step ∆t is chosen such that the CFL condition

∆t

∆z

(
2∥Q∥∞,T

Amin
+M1∥ṽ′∥∞ + β1(∆z)

)
≤ 1 (CFL)

is satisfied, where

Amin := min
i=1,...,N

Ai, ∥Q∥∞,T := max
0≤t≤T

(
QF(t) +QW(t) +QG(t)

)
,

M1 := max
i∈{2,...,N}

{
Ai

Ai−1/2
,
Ai−1

Ai−1/2

}
, β1 := 2M1

(
∥q∥∞ + ∥ṽhs∥∞ + ∥ṽ′hs∥∞ + ∥v̂∥∞ +

∥d∥∞
∆z

)
.

The first equation in (1.1) depends on ϕ only. The total numerical flux for ϕ associated with the
cell interface z = zi at time t = tn is given by

Φni :=


ϕn1/2q

n,−
0 for i = 0,

ϕni−1/2q
n,+
i + ϕni+1/2q

n,−
i + γiϕ

n
i−1/2ṽ

(
ϕni+1/2

)
− γi

∆z
∆+D

(
ϕni−1/2

)
for i = 1, . . . , N − 1,

ϕnN−1/2q
n,+
N for i = N ,

(3.3)

where we recall that ṽ = ṽ(ϕ) is given by (2.7). Since the bulk fluxes above and below the column are
directed away from it, ϕni−1/2q

n+
0 = 0 and ϕnN+1/2q

n−
N = 0 for any values of ϕni−1/2 and ϕnN+1/2. To

simplify the presentation, we use the formula for the case i = 1, . . . , N − 1 in (3.3) as the definition
of Φni for all i along with setting ϕn−1/2

:= 0 and ϕnN+1/2
:= 0. Furthermore, we set λ := ∆t/∆z.
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Then the marching formula for advancing the numerical solution for ϕ from t = tn to tn+1 is

ϕn+1
i−1/2 = ϕni−1/2 −

λ

Ai−1/2

(
∆−(AiΦ

n
i )−QnFϕ

n
FδF,i−1/2 −QnGϕ

n
GδG,i−1/2

)
= ϕni−1/2 −

λ

Ai−1/2

(
∆−
(
ϕni−1/2Q

n+
i

)
+∆−

(
ϕni+1/2Q

n−
i

)
+∆−

(
(Aγ)iϕ

n
i−1/2ṽ

(
ϕni+1/2

))
−∆−

(
(Aγ)i
∆z

∆+D
(
ϕni−1/2

))
−QnFϕ

n
FδF,i−1/2 −QnGϕ

n
GδG,i−1/2

)
.

(3.4)

The total numerical flux for ψ is given by

Ψn
i := ψni−1/2q

n+
i + ψni+1/2q

n−
i + γi

(
Gni
(
ψni−1/2, ψ

n
i+1/2

)
+

ψni+1/2

1− ϕni+1/2

(
−ϕni−1/2ṽ

(
ϕni+1/2

)
+

(∆+D(ϕni−1/2))
−

∆z

)
+

ψni−1/2

1− ϕni−1/2

(∆+D(ϕni−1/2))
+

∆z

)
,

(3.5)

where we set ψn−1/2
:= 0 and ψnN+1/2

:= 0 with the same motivation as for ϕ above (these values are
irrelevant) and Gni (ψ

n
i−1/2, ψ

n
i+1/2) is the Engquist–Osher numerical flux [22] associated with the

function

fnb,i(ψ) := −ψṽhs(ψ/ψnmax,i), ṽhs(u) :=

{
vhs(u) for u < 1,

0 for u > 1,
(3.6)

where we define

ψnmax,i := min
{
1− ϕni−1/2, 1− ϕni+1/2

}
= 1−max

{
ϕni−1/2, ϕ

n
i+1/2

}
, (3.7)

and recall that vhs ≥ 0 is given by (2.6) and the minus sign appears in (3.6) since we expect particles
to settle downward.

For later use, we recall from [11] an (easily proven) scaling property.

Lemma 3.1. Assume that ω and ω̃ are the unique local maximum and inflection point, respectively,
of [0, 1] ∋ u 7→ f(u) := uvhs(u) (cf. (3.6)). Then ψ̂

n
i = ωψnmax,i for all i and n and all possible values

0 ≤ ψnmax,i ≤ 1. Moreover, the unique inflection point ψninfl,i ∈ (ψ̂ni , ψ
n
max,i) satisfies ψ

n
infl,i = ω̃ψnmax,i

for all i and n and all possible values 0 ≤ ψnmax,i ≤ 1.

Proof. See [11, Lemma 3.1]. □

For the implementation and later analysis, we use that

Gni
(
ψni−1/2, ψ

n
i+1/2

)
= Gn,+i

(
ψni−1/2

)
+Gn,−i

(
ψni+1/2

)
, (3.8)

where by utilizing that fnb,i has a unique minimum at ψ̂ni ,

Gn,+i
(
ψni−1/2

)
:=

∫ ψn
i−1/2

0
max

{
0, (fnb,i)

′(s)
}
ds =

{
0 if ψni−1/2 ≤ ψ̂ni ,

fnb,i(ψ
n
i−1/2)− fnb,i(ψ̂

n
i ) if ψni−1/2 > ψ̂ni ,

Gn,−i
(
ψni+1/2

)
:=

∫ ψn
i+1/2

0
min

{
0, (fnb,i)

′(s)
}
ds =

{
fnb,i(ψ

n
i+1/2) if ψni+1/2 ≤ ψ̂ni ,

fnb,i(ψ̂
n
i ) if ψni+1/2 > ψ̂ni .

(3.9)
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The marching formula for advancing the numerical solution for ψ from t = tn to tn+1 now becomes

ψn+1
i−1/2 = ψni−1/2 −

λ

Ai−1/2

(
∆−(AiΨ

n
i )−QnFψ

n
FδF,i−1/2

)
= ψni−1/2 −

λ

Ai−1/2

(
∆−
(
ψni−1/2Q

n+
i

)
+∆−

(
ψni+1/2Q

n−
i

)
+∆−

(
(Aγ)i

(
Gni
(
ψni−1/2, ψ

n
i+1/2

)
+

ψni+1/2

1− ϕni+1/2

(
−ϕni−1/2ṽ

(
ϕni+1/2

)
+

(∆+D(ϕni−1/2))
−

∆z

)

+
ψni−1/2

1− ϕni−1/2

(∆+D(ϕni−1/2))
+

∆z

))
−QnFψ

n
FδF,i−1/2

)
.

(3.10)

By a slight modification of the proofs of [10, Theorems 5.1 and 5.3] we may prove the following
lemma.

Lemma 3.2. Assume that the CFL condition (CFL) is in effect and the initial data for ϕ satisfy
0 ≤ ϕ(z, 0) ≤ 1, then the ϕ-scheme (3.4) is monotone and produces approximate solutions that
satisfy

0 ≤ ϕni−1/2 ≤ 1 for all i = 1, . . . , N and n = 1, . . . , NT .

If the initial data for ψ satisfy 0 ≤ ψ(z, 0) ≤ 1 − ϕ(z, 0) and the feed volume fraction ψF(t) ≤
1 − ϕF(t), then the marching formula of the ψ-scheme (3.10) monotone and combined with (3.4)
produces approximate solutions that satisfy

0 ≤ ψni−1/2 ≤ 1− ϕni−1/2 for all i = 1, . . . , N and n = 1, . . . , NT .

3.2. Numerical scheme for the liquid components. The sum of the marching formulas for ϕ
and ψ, (3.4) and (3.10),

ϕn+1
i−1/2 + ψn+1

i−1/2 = ϕni−1/2 + ψni−1/2

− λ

Ai−1/2

(
∆−
(
Ai(Φ

n
i +Ψn

i )
)
−QnF(ϕ

n
F + ψnF)δF,i−1/2 −QnGϕ

n
GδG,i−1/2

)
,

can be written as

1− ϕn+1
i−1/2 − ψn+1

i−1/2 = 1− ϕni−1/2 − ψni−1/2

− λ

Ai−1/2

(
∆−
(
Ai(−Φni −Ψn

i )
)
+QnF(ϕ

n
F + ψnF)δF,i−1/2 +QnGϕ

n
GδG,i−1/2

)
.

If we define the local fluid volume fraction ϕnf,i−1/2
:= 1− ϕni−1/2 − ψni−1/2 and consistently with

(2.11)–(2.13), the numerical flux Φnf,i := qni − Φni −Ψn
i , then we obtain

ϕn+1
f,i−1/2 = ϕnf,i−1/2

− λ

Ai−1/2

(
∆−(AiΦ

n
f,i) +QnF(1− ϕnf,F)δF,i−1/2 +QnG(1− ϕnf,G)δG,i−1/2 −∆−(Aiq

n
i )
)
.

Taking into account that

−∆−(Aiqi) =

{
−QnS if δS,i−1/2 = 1, S ∈ {F,G,W},
0 otherwise,
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and ϕnf,W = 1, we get

ϕn+1
f,i−1/2 = ϕnf,i−1/2 −

λ

Ai−1/2

(
∆−(AiΦ

n
f,i)−QnFϕ

n
f,FδF,i−1/2 −QnGϕ

n
f,GδG,i−1/2 −QnWϕ

n
f,WδW,i−1/2

)
.

(3.11)

Based on (3.11) and the explicit percentage propagation scheme proposed in [8], and utilizing the
upwind operator Upw(a; b, c) := max{a, 0}b+min{a, 0}c, we get the scheme

pn+1
i−1/2ϕ

n+1
f,i−1/2 = pni−1/2ϕ

n
f,i−1/2 −

λ

Ai−1/2

(
∆−
(
AiUpw(Φ

n
f,i;p

n
i−1/2,p

n
i+1/2)

)
−QnFp

n
Fϕ

n
f,FδF,i−1/2 −QnGp

n
Gϕ

n
f,GδG,i−1/2 −QnWpnWϕ

n
f,WδW,i−1/2

)) (3.12)

for the update of the percentage vectors pni−1/2. This scheme delivers pn+1
i−1/2 whenever ϕn+1

f,i−1/2 > 0;
in the possible case that ϕn+1

f,i−1/2 = 0, we set

pn+1
i−1/2

:= pni−1/2 (3.13)

From (3.3) and (3.5) we deduce that the numerical flux Φnf,i is explicitly given by

Φnf,i = qni −
(
ϕni−1/2q

n+
i + ϕni+1/2q

n−
i + γiϕ

n
i−1/2ṽ

(
ϕni+1/2

)
− γi

∆z
∆+D

(
ϕni−1/2

))
−
(
ψni−1/2q

n+
i + ψni+1/2q

n−
i + γi

(
Gni
(
ψni−1/2, ψ

n
i+1/2

)
+

ψni+1/2

1− ϕni+1/2

(
−ϕni−1/2ṽ

(
ϕni+1/2

)
+

(∆+D(ϕni−1/2))
−

∆z

)
+

ψni−1/2

1− ϕni−1/2

(∆+D(ϕni−1/2))
+

∆z

))
=
(
1− ϕni−1/2 − ψni−1/2

)
qn,+i +

(
1− ϕni+1/2 − ψni+1/2

)
qn,−i

− γi

(
ϕni−1/2ṽ

(
ϕni+1/2

)
−

∆+D(ϕni−1/2)

∆z
+Gni

(
ψni−1/2, ψ

n
i+1/2

)
+

ψni+1/2

1− ϕni+1/2

(
−ϕni−1/2ṽ

(
ϕni+1/2

)
+

(∆+D(ϕni−1/2))
−

∆z

)
+

ψni−1/2

1− ϕni−1/2

(∆+D(ϕni−1/2))
+

∆z

)
= ϕnf,i−1/2q

n,+
i + ϕnf,i+1/2q

n,−
i − γi

(1− ϕni+1/2 − ψni+1/2

1− ϕni+1/2

ϕni−1/2ṽ
(
ϕni+1/2

)
+Gni

(
ψni−1/2, ψ

n
i+1/2

)
−

1− ϕni+1/2 − ψni+1/2

1− ϕni+1/2

(∆+D(ϕni−1/2))
−

∆z
−

1− ϕni−1/2 − ψni−1/2

1− ϕni−1/2

(∆+D(ϕni−1/2))
+

∆z

)
.

Thus, we finally get

Φnf,i = ϕnf,i−1/2q
n,+
i + ϕnf,i+1/2q

n,−
i + γi

(
−
ϕni−1/2ṽ(ϕ

n
i+1/2)

1− ϕni+1/2

ϕnf,i+1/2 −Gni
(
ψni−1/2, ψ

n
i+1/2

)
+

(∆+D(ϕni−1/2))
−

∆z(1− ϕni+1/2)
ϕnf,i+1/2 +

(∆+D(ϕni−1/2))
+

∆z(1− ϕni−1/2)
ϕnf,i−1/2

)
.

(3.14)

To be able to invoke arguments akin to those of the proofs of Lemmas 3.2 and 3.4 of [8] in order
to prove that the numerical percentages determined via (3.10) are all non-negative, we first prove
the following lemma related to one particular term in the right-hand side of (3.14).
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Lemma 3.3. Assume that the CFL condition (CFL) is in effect and Gni (ψ
n
i−1/2, ψ

n
i+1/2) denotes

the Engquist–Osher numerical flux as defined by (3.6) to (3.9). Then we may write

−Gni
(
ψni−1/2, ψ

n
i+1/2

)
= G̃n,+i

(
ψni−1/2, ψ

n
i+1/2

)(
1− ϕni−1/2 − ψni−1/2

)
+ G̃n,−i

(
ψni−1/2, ψ

n
i+1/2

)(
1− ϕni+1/2 − ψni+1/2

)
= G̃n,+i

(
ψni−1/2, ψ

n
i+1/2

)
ϕnf,i−1/2 + G̃n,−i

(
ψni−1/2, ψ

n
i+1/2

)
ϕnf,i+1/2

(3.15)

with functions G̃n,+i (ψni−1/2, ψ
n
i+1/2) ≥ 0 and G̃n,−i (ψni−1/2, ψ

n
i+1/2) ≤ 0 that satisfy∣∣G̃n,±i (

ψni−1/2, ψ
n
i+1/2

)∣∣ ≤ ∥ṽhs∥∞ + ∥ṽ′hs∥∞. (3.16)

Proof. From (3.9) we obtain

−Gni (ψni−1/2, ψ
n
i+1/2) =


−fnb,i(ψni+1/2) if ψni−1/2, ψ

n
i+1/2ψ̂

n
i (Case1),

−fnb,i(ψ̂ni ) if ψni−1/2 ≤ ψ̂ni < ψni+1/2 (Case 2),

fnb,i(ψ̂
n
i )− fnb,i(ψ

n
i−1/2)− fnb,i(ψ

n
i+1/2) if ψni+1/2 ≤ ψ̂ni < ψni−1/2 (Case 3),

−fnb,i(ψni−1/2) if ψni−1/2, ψ
n
i+1/2 > ψ̂ni (Case 4).

In Case 1, and exploiting that fnb,i(1− ϕni−1/2) = 0 as well as that

1− ϕni−1/2 − ψni−1/2 ≥ 1− ϕni−1/2 − ψ̂ni = 1− ϕni−1/2 − ωmin
{
1− ϕni−1/2, 1− ϕni+1/2

}
≥ (1− ω)

(
1− ϕni−1/2

)
> 0,

where ω is introduced in Lemma 3.1, we can write

0 ≤ −
Gni (ψ

n
i−1/2, ψ

n
i+1/2)

1− ϕni−1/2 − ψni−1/2

= −
fnb,i(ψ

n
i+1/2)

1− ϕni−1/2 − ψni−1/2

≤ −
fnb,i(ψ̂

n
i )

1− ϕni−1/2 − ψ̂ni

=
fnb,i(1− ϕni−1/2)− fnb,i(ψ̂

n
i )

1− ϕni−1/2 − ψ̂ni
= (fnb,i)

′(ξni−1/2), ξni−1/2 ∈ [ψ̂ni , 1− ϕni−1/2].

This proves that for Case 1 we may define

G̃n,+i
(
ψni−1/2, ψ

n
i+1/2

)
:= −

fnb,i(ψ
n
i+1/2)

1− ϕni−1/2 − ψni−1/2

≥ 0, G̃n,−i
(
ψni−1/2, ψ

n
i+1/2

)
:= 0,

where ∣∣G̃n,+i (
ψni−1/2, ψ

n
i+1/2

)∣∣ ≤ ∥fnb,i∥∞ ≤ ∥ṽhs∥∞ + ∥ṽ′hs∥∞. (3.17)

The same discussion also handles Case 2, for which we may choose

G̃n,+i
(
ψni−1/2, ψ

n
i+1/2

)
:= −

fnb,i(ψ̂
n
i )

1− ϕni−1/2 − ψni−1/2

≥ 0, G̃n,+i
(
ψni−1/2, ψ

n
i+1/2

)
:= 0,

and (3.17) remains in effect. In Case 3, we define

G̃n,−i (ψni−1/2, ψ
n
i+1/2) :=

fnb,i(ψ̂
n
i )− fnb,i(ψ

n
i+1/2)

1− ϕni+1/2 − ψni+1/2

≤ 0,

G̃n,+i (ψni−1/2, ψ
n
i+1/2) := −

fnb,i(ψ
n
i−1/2)

1− ϕni−1/2 − ψni−1/2

≥ 0.
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In the present case,

1− ϕni+1/2 − ψni+1/2 ≥ 1− ϕni+1/2 − ψ̂ni = 1− ϕni+1/2 − ωmin
{
1− ϕni−1/2, 1− ϕni+1/2

}
≥ (1− ω)

(
1− ϕni+1/2

)
> 0,

hence, since fnb,i(1− ϕni+1/2) = 0,∣∣G̃n,−i (ψni−1/2, ψ
n
i+1/2)

∣∣ = fnb,i(ψ
n
i+1/2)− fnb,i(ψ̂

n
i )

1− ϕni+1/2 − ψni+1/2

≤
−fnb,i(ψ̂ni )

1− ϕni+1/2 − ψni+1/2

≤
fnb,i(1− ϕni+1/2)− fnb,i(ψ̂

n
i )

1− ϕni+1/2 − ψ̂ni
= (fnb,i)

′(ξ̃ni+1/2), ξ̃ni+1/2 ∈ [ψ̂ni , 1− ϕni+1/2].

(3.18)

On the other hand, since fnb,i(1− ϕni−1/2) = 0,

G̃n,+i (ψni−1/2, ψ
n
i+1/2) =

fnb,i(1− ϕni−1/2)− fnb,i(ψ
n
i−1/2)

1− ϕni−1/2 − ψni−1/2

= (fnb,i)
′(ξ̂ni−1/2), ξ̂ni−1/2 ∈ [ψni−1/2, 1− ϕni−1/2],

(3.19)

so by repeating the discussion of Cases 1 and 2, we may deduce from (3.18) and (3.19) that (3.16)
also holds in Case 3. Finally, in Case 4 we choose

G̃n,+i (ψni−1/2, ψ
n
i+1/2) = −

fnb,i(ψ
n
i−1/2)

1− ϕni−1/2 − ψni−1/2

= −
fnb,i(1− ϕni−1/2)− fnb,i(ψ

n
i−1/2)

1− ϕni−1/2 − ψni−1/2

and G̃n,−i (ψni−1/2, ψ
n
i+1/2) = 0 and apply arguments known from Cases 1 to 3 to conclude that also

in Case 4, (3.16) holds. □

For later use we prove the following properties of the numerical flux Φnf,i.

Lemma 3.4. The following inequality holds:

max
{
Φn,+f,i ,−Φn,−f,i−1

}
≤
(
∥q∥∞ + ∥ṽhs∥∞ + ∥ṽ′hs∥∞ + ∥v̂∥∞ +

∥d∥∞
∆z

)
ϕnf,i−1/2. (3.20)

Proof. From (3.14) and (3.15) we obtain

Φn,+f,i ≤
(
qn,+i + γi

(
G̃n,+i (ψni−1/2, ψ

n
i+1/2) +

(∆+D(ϕni−1/2))
+

∆z(1− ϕni−1/2)

))
ϕnf,i−1/2,

−Φn,−f,i−1 ≤
(
qn,−i−1 + γi−1

(ϕni−3/2ṽ(ϕ
n
i−1/2)

1− ϕni−1/2

− G̃n,−i−1(ψ
n
i−3/2, ψ

n
i−1/2)−

(∆+D(ϕni−3/2))
−

∆z(1− ϕni−1/2)

))
ϕnf,i−1/2.

We observe that ∣∣∣∣ϕni−3/2ṽ(ϕ
n
i−1/2)

1− ϕni−1/2

∣∣∣∣ = ∣∣ϕni−3/2v̂
(
ϕni−1/2

)∣∣ ≤ ∥v̂∥∞.

Furthermore, since D = D(ϕ) is nondecreasing, (∆+D(ϕni−1/2))
+ = 0 if ϕni+1/2 ≤ ϕni−1/2 and

(∆+D(ϕni−1/2))
+

∆z(1− ϕni−1/2)
=

1

∆z

D(ϕni+1/2)−D(ϕni−1/2)

1− ϕni−1/2

≤ 1

∆z

D(1)−D(ϕni−1/2)

1− ϕni−1/2

≤ ∥d∥∞
∆z



FLOTATION COLUMN WITH TRANSPORT OF LIQUID COMPONENTS 17

if ϕni+1/2 > ϕni−1/2. By analogous reasoning we also get

−
(∆+D(ϕni−3/2))

−

∆z(1− ϕni−1/2)
≤ ∥d∥∞

∆z
.

Utilizing these estimates and (3.16), we finally get

Φn,+f,i ≤
(
∥q∥∞ + ∥ṽhs∥∞ + ∥ṽ′hs∥∞ +

∥d∥∞
∆z

)
ϕnf,i−1/2,

−Φn,−f,i−1 ≤
(
∥q∥∞ + ∥ṽhs∥∞ + ∥ṽ′hs∥∞ + ∥v̂∥∞ +

∥d∥∞
∆z

)
ϕnf,i−1/2.

□

Lemma 3.5. If the CFL condition (CFL) is in effect and for some n ∈ {0, . . . , NT − 1},
p
(l),n
i−1/2 ≥ 0 for all l = 1, . . . , kf and i = 1, . . . , N, (3.21)

p
(1),n
i−1/2 + · · ·+ p

(kf),n
i−1/2 = 1 for all i = 1, . . . , N, (3.22)

and analogous properties hold for the feed percentage vectors pnS, S ∈ {F,G,W}, then the percentage
vectors

pn+1
i−1/2 =

(
p
(1),n+1
i−1/2 , . . . , p

(kf),n+1
i−1/2

)T
defined by (3.12) satisfy

p
(l),n+1
i−1/2 ≥ 0 for all l = 1, . . . , kf and i = 1, . . . , N, (3.23)

p
(1),n+1
i−1/2 + · · ·+ p

(kf),n+1
i−1/2 = 1 for all i = 1, . . . , N. (3.24)

Proof. Assume that (3.22) holds, and select i ∈ {1, . . . , N}. If ϕn+1
i−1/2 = 0, then p

(l),n+1
i−1/2 ≥ 0 follows

from (3.13), so let us assume that ϕn+1
i−1/2 > 0. Choose l ∈ {1, . . . , kf}. Then we obtain for the l-th

component of (3.12):

p
(l),n+1
i−1/2 ϕn+1

f,i−1/2 = p
(l),n
i−1/2ϕ

n
f,i−1/2 −

λ

Ai−1/2

(
AiΦ

n,+
f,i p

(l),n
i−1/2 +AiΦ

n,−
f,i p

(l),n
i+1/2 −Ai−1Φ

n,+
f,i−1p

(l),n
i−3/2

−Ai−1Φ
n,−
f,i−1p

(l),n
i−1/2 −QnFp

(l),n
F ϕnf,FδF,i−1/2 −QnGp

(l),n
G ϕnf,GδG,i−1/2

−QnWp
(l),n
W ϕnf,WδW,i−1/2

)
≥ p

(l),n
i−1/2ϕ

n
f,i−1/2 −

λ

Ai−1/2

(
AiΦ

n,+
f,i p

(l),n
i−1/2 −Ai−1Φ

n,−
f,i−1p

(l),n
i−1/2

)
≥
(
ϕnf,i−1/2 − λM1

(
Φn,+f,i − Φn,−f,i−1

))
p
(l),n
i−1/2.

From Lemma 3.4 we now get

p
(l),n+1
i−1/2 ϕn+1

f,i−1/2 ≥
{
1− λ2M1

(
∥q∥∞ + ∥ṽhs∥∞ + ∥ṽ′hs∥∞ + ∥v̂∥∞ +

∥d∥∞
∆z

)}
ϕnf,i−1/2p

(l),n
i−1/2.

Due to the CFL condition, {. . . } > 0, so if ϕn+1
f,i−1/2 > 0 (the case ϕn+1

f,i−1/2 = 0 is trivial), we conclude
that p

(l),n+1
i−1/2 ≥ 0.

On the other hand, assume that (3.22) holds, and select i ∈ {1, . . . , N}. Again, if ϕn+1
i−1/2 = 0,

then

p
(1),n+1
i−1/2 + · · ·+ p

(kf),n+1
i−1/2 = 1
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follows from (3.13), so we assume that ϕn+1
i−1/2 > 0. Noticing that

kf∑
l=1

∆−

(
AiUpw

(
Φnf,i; p

(l),n
i−1/2, p

(l),n
i+1/2

))

=

kf∑
l=1

(
AiΦ

n,+
f,i p

(l),n
i−1/2 +AiΦ

n,−
f,i p

(l),n
i+1/2 −Ai−1Φ

n,+
f,i−1p

(l),n
i−3/2 −Ai−1Φ

n,−
f,i−1p

(l),n
i−1/2

)
= AiΦ

n,+
f,i +AiΦ

n,−
f,i −Ai−1Φ

n,+
f,i−1 −Ai−1Φ

n,−
f,i−1 = ∆−(AiΦ

n
f,i),

we get by summing the kf scalar equations in (3.11) and taking into account (3.22), along with the
analogous properties for the feed percentage vectors pnS , S ∈ {F,G,W},

ϕn+1
f,i−1/2

kf∑
l=1

p
(l),n+1
i−1/2 = ϕnf,i−1/2 −

λ

Ai−1/2

(
∆−(AiΦ

n
f,i)

−QnFϕ
n
f,FδF,i−1/2 −QnGϕ

n
f,GδG,i−1/2 −QnWϕ

n
f,WδW,i−1/2

)
The right-hand side is exactly ϕn+1

f,i−1/2. Consequently,

ϕn+1
f,i−1/2

(
p
(1),n+1
i−1/2 + · · ·+ p

(kf),n+1
i−1/2 − 1

)
= 0,

which implies (3.24) due to the assumption ϕn+1
i−1/2 > 0. □

4. Steady-state analysis

4.1. Desired steady states. We are interested in studying the steady-state solutions of (1.1),
which depend on the values of the volume fractions at each inlet and the volumetric flows in and
out of the column. Desired steady states are defined by the following properties.

(1) There is no solid particle (gangue) above the feed level at z = zF, since there is otherwise a
risk that it follows the froth upwards and through the effluent. The means that ψ3 = ψ4 =
ψE = 0, where ψ3 and ψ4 denote the steady-state value of ψ in zone 3 and 4, respectively.

(2) There is no aggregate below the gas inlet at z = zG, so that no aggregate is lost through
the underflow; ϕ1 = ϕU = 0, where ϕ1 denotes the steady-state value of ϕ in zone 1.

(3) There is a stable froth layer above the feed level z = zF, which, to enhance the washing of
the foam, fills a part of zone 3; that is, the froth height zfr satisfies zF < zfr < zW.

(4) There is a positive bias flow, i.e., the water flow in zone 3 is directed downwards with the
purpose of washing entrained gangue particles from the froth: ϕf,3vf < 0.

For the requirements on the volume fraction of aggregates, we recall that only gas is pumped into
the column at z = zG; ϕG = 1, and no gas enters elsewhere; ϕF = ϕW = 0. The wash water inlet
contains only clear wash water; ϕf,W = 1 and ϕf,G = ϕf,F = 0.

4.2. Conditions on stationary solutions for the aggregates. A stationary solution ϕ = ϕ(z)
of (1.1) satisfies, in the weak sense,

d

dz

(
J(ϕ, z)− γ(z)

dD(ϕ)

dz
− qGH(z − zG)

)
= 0,

where H is the Heaviside function. This ODE is equivalent to

J(ϕ, z)− γ(z)d(ϕ)
dϕ(z)

dz
− qGH(z − zG) =M for all z, (4.1)
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where M denotes the constant mass flux per area unit. (This flux cannot have a discontinuity in z
by the conservation of mass.) Outside the column, at z < zU and z > zE, there holds γ(z) = 0,
and in those intervals, (4.1) becomes

M = jU(ϕU) = −qUϕU, (4.2)

M = jE(ϕE)− qG = qEϕE − qG, (4.3)

In light of property (2), we require that ϕU = 0, hence (4.2) implies that M = 0, and from (4.3)
we conclude that the effluent aggregate volume fractionϕE is given by

ϕE =
qG
qE

=
qG

qW + qF + qG − qU
. (4.4)

Based on the constructions made in [5,10], to which we refer for further details, and the definition
of desired steady-state solution above, we conclude that ϕ(z) < ϕc for all z < zfr, and Equation (4.1)
withM = 0 implies that the solution is piecewise constant (since d(ϕ) = 0 for these ϕ). For z > zfr,
the solution z 7→ ϕ(z) is strictly increasing and continuous. This property also holds across z = zW,
because of the nonzero term d(ϕ), which makes the PDE parabolic. Consequently, we denote such
solutions with the subindex ‘par’. Thus, the desired steady-state solution is ϕ(z) = ϕk(z) in zone k,
k = 1, . . . , 4 (see Figure 1), where the subindex refers to the zone number and the constants with
a bar are determined below:

ϕ1(z) = 0 for zU < z < zG (zone 1),

ϕ2(z) = ϕ̄2 for zG < z < zF (zone 2),

ϕ3(z) =

{
ϕ̄3 for zF < z < zfr,

ϕ3par(z) for zfr < z ≤ zW
(zone 3), (4.5)

ϕ4(z) = ϕ4par(z) for zW < z ≤ zE (zone 4).

This solution satisfies Equation (4.1) with M = 0, which yields the following:

j2(ϕ̄2; q2)− qG = 0, jump condition at zG, (4.6)

j2(ϕ̄2; q2) = j3(ϕ̄3; q3), jump condition at zF, (4.7)

j3(ϕ3(z); q3)− d(ϕ3(z))
dϕ3(z)

dz
− qG = 0, in zone 3, (4.8)

j3(ϕ4(z); q4)− d(ϕ4(z))
dϕ4(z)

dz
− qG = 0, in zone 4, (4.9)

where ϕ3(z) has a discontinuity at z = zfr from ϕ3(z
−
fr ) = ϕ̄3 up to the larger value ϕ3(z

+
fr ) = ϕc.

Furthermore, the solution is continuous at z = zW, hence ϕ3par(zW) = ϕ4par(zW). The constant
solution in zone 2 is the smallest solution ϕ̄2 of (4.6) under the constraints

qG ≤ j2(ϕ
M
2 (q2); q2), (FIa)

ϕ̄2 ≤ ϕ1Z(q1), (FIb)

where ϕM2 denotes the maximum point of j2 for given q2, and ϕ1Z(q1) is the positive zero of j1(ϕ; q1);
see [10] for exact definitions. Then ϕ̄3 is given by (4.7) in [0, ϕM3 ], which implies that ϕ̄3 < ϕ̄2 (since
qf > 0). No additional condition is necessary for this coupling.

The strictly increasing sub-solutions ϕ3par(z) and ϕ4par(z) satisfy the ODEs given by (4.8)
and (4.9), respectively, which we write in the opposite order, since its solutions are obtained from
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the initial value at the top:

dϕ4
dz

=
j4(ϕ4; q4)− qG

d(ϕ4)
, zW < z < zE; ϕ4(zE) = ϕE, (4.10)

dϕ3
dz

=
j3(ϕ3; q3)− qG

d(ϕ3)
, zfr < z < zW; ϕ3(zW) = ϕ4(zW). (4.11)

The solutions are obtained in the following way. If all bulk velocities are given, then the value ϕE is
defined by (4.4). Equation (4.10) is solved backwards from zE to zW to obtain ϕ4par(z); in particular,
the value ϕ4par(zW) = ϕ3par(zW) > ϕc is the starting value for (4.11), which is solved backwards
from zW until the volume fraction ϕ3par(z) reaches down to ϕc, which defines the location zfr. This
procedure defines a function Zfr(qU, qG, qF, qW) that gives the froth level zfr as a function of all bulk
velocities. Necessary conditions for the existence of these sub-solutions ϕ3par(z) and ϕ4par(z) are

ϕc < ϕE ≤ 1 ⇔ 0 ≤ −qU + qF + qW <

(
1

ϕc
− 1

)
qG, (Froth1)

zF < zfr < zW ⇔ zF < Zfr(qU, qG, qF, qW) < zW, (Froth2)

qG < j3(ϕ; q3) for all ϕ ∈ (ϕM3 , ϕE) ⇔ qG

{
< j3(ϕ3M; q3) if ϕ3M < ϕE,

≤ j3(ϕE; q3) if ϕ3M ≥ ϕE.
(Froth3)

Note that the condition ϕ4par(zW) = ϕ3par(zW) > ϕc is implied by (Froth2), and must be checked in
the computer code in order to imply the right inequality of (Froth2). Condition (Froth3) guarantees
that the right-hand sides of (4.11) and (4.10) are positive, so that the parabolic solutions are strictly
increasing.

For this steady state to be a desirable one, there should also be a positive bias flow in zone 3,
which by the definition of the bulk flow q3 can be written as

ϕf,3(z)vf,3(z) = q3 − ϕ3(z)va,3(z)− ψ3(z)vs,3(z) < 0, (4.12)

where va,3 and vs,3 are the aggregate and solid velocities in zone 3. A desired steady state has
ψ3 = 0, and q3 = −qU+ qG+ qF. At the lower part of zone three, we have ϕ3(z) = ϕ̄3 < ϕc. Hence,
by (4.6) and (4.7) the second term on the right-hand side of (4.12) is ϕ̄3va,3(z) = j3(ϕ̄3; q3) = qG.
Consequently, (4.12) implies the condition

−qU + qF < 0 ⇔ qF < qU. (Bias)

The first inequality in (Froth1) and (Bias) imply that qF < qU ≤ qF + qW; hence, qW > 0.

4.3. Condition on the solids. For the steady state of the solid phase, we have stated that solids
should not move above the feed level. To ensure this, the following conditions must hold; see [10]:

f1(φ1, 0) = f2(φ2, ϕ2) (FJCs)

qFψF ≤ f1(φ
M
1 , 0) (FIas zone 1)

qFψF ≤ f2(φ
M
2 , ϕ̄2) (FIas zone 2)

Note that, since we are supposing ϕF = 0, then ψF = φF. The desired steady-state solution for the
solids phase is then the following:

ψ1(z) = ψ̄1, zU < z < zG,

ψ2(z) = ψ̄2 =
φ̄2

1− ϕ̄2
, zG < z < zF,

ψ3(z) = 0, zF < z < zW, (4.13)
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Figure 5. Operating charts showing in white the region where each of six conditions
is satisfied for fixed values of qF = 0.02m/s and qW = 0.002m/s.

ψ4(z) = 0, zW < z ≤ zE.

where ψ̄1 and ψ̄2 satisfy the jump condition at zU and zG, respectively.

4.4. Visualization of conditions by operating charts. The ten necessary conditions (inequali-
ties or equalities) that have to be satisfied for a steady state to be desired are visualized in Figures 5
and 6. The white region represents the values of (qU, qG) where the condition is satisfied, for a fixed
value of qF = 0.02m/s, qW = 0.002m/s and ψF = 0.1, and the values of the parameters stated in
Table 1, with zE = 2.7025m. In Figure 6(e), we can see the operating chart whose white region is
given by the intersection of all ten conditions. To obtain a desired steady state given by (4.5) and
(4.13), it is thus necessary to have a point (qU, qG) inside that white region.

In Figure 7, we show the surface z = Zfr(qU, qG, qF, qW) for fixed (qF, qW) and for the values of
(qU, qG) inside the white region of the operating chart in Figure 6(e). As the contour lines show in
Figure 7(c), the depth of the froth below the wash water inlet zW ranges between 0 and 10 cm.

In Figure 8, we show how the white region of the operating charts evolves with the size of zone 4.
As it is shown, the closer the wash water inlet zw is to the effluent zE, the larger is the feasible
region in the operating charts.

5. Numerical simulations

5.1. Preliminaries. We simulate the flotation process in a column with height H = 2.7025m,
with zE = 2.7025m and the rest of the inlets are located at the heights given in Table 1. We place
the wash water inlet really close to the effluent, as wash water is typically sprinkled at the very top
of the column. The rest of the parameters are taken as in Table 1.
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Figure 6. Operating charts showing in white the region where each of four condi-
tions is satisfied for fixed values of qF = 0.02m/s and qW = 0.002m/s. Subplot (e)
shows the intersection of all ten conditions.
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Figure 7. Graph of (qU, qG) 7→ Zfr(qU, qG, qF, qW) and its contours for fixed values
qF = 0.02m/s and qW = 0.002m/s with column height H = 2.7025m.

Throughout this section, the composition of the liquid phase components will be the following:
p0 = (1, 0, 0, 0) is the initial state of the column, pF = (0, 0.02, 0.98, 0) at the feed inlet, i.e., the
feed inlet contains 2% slimes, and pW = (0, 0, 0, 1) for the wash water inlet.

5.2. Approximate errors. To evaluate the accuracy of the numerical scheme, we compute the
approximate error

ε∆zN (T ) := eϕN (T ) + eψN (T ) +
4∑
i=1

e
ϕ
(i)
f
N (T ),

where the error for each component is computed by comparing the numerical solution obtained
with a spatial discretization with N cells, denoted by ϕ∆z(z, t), with a reference solution computed
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Figure 9. Example 1 (accuracy test, smooth solution). Numerical solution for
the volume fraction of aggregates ϕ (left) and solids ψ (right) at T = 4 s for the
sinusoidal initial condition and for different values of N .

with Nref cells, denoted by ϕ∆zref (z, t). Its expression is given by:

eϕN (T ) =
||ϕ∆z(·, T )− ϕ∆zref (·, T )||

||ϕ∆zref (·, T )|| ,

with

||ϕ∆z(·, T )− ϕ∆zref (·, T )|| =
N−1∑
i=0

∆zref

m−1∑
k=0

A∆zref
im+1/2+k

∣∣∣ϕ∆zi+1/2 − ϕ∆zrefim+1/2+k

∣∣∣,
where A∆zref is the cross-sectional area (3.1) discretized with Nref cells.

In this work, we will compare the numerical solutions on a sequence of meshes with N =
50, 100, 200, 400, 800, and 1600 grid cells, with an approximate reference solution with Nref = 6400.
For these meshes, the convergence order is estimated by

ΥN (T ) := log2(ε
∆z
N/2(T )/ε

∆z
N (T )).
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Table 2. Examples 1 and 2 (accuracy tests): approximate total relative L1 errors
ε∆zN (t) and estimated orders of convergence ΥN (t) for Example 1 at t = 4 s and
Example 2 at t = 100 s.

N
smooth solution discontinuous solution
ε∆zN (t) ΥN (t) ε∆zN (t) ΥN (t)

50 1.1384×10−1 —— 2.2207 —–
100 6.0321×10−2 0.9163 1.3541 0.7137
200 3.1950×10−2 0.9168 7.4303×10−1 0.8658
400 1.6291×10−2 0.9717 4.5034×10−1 0.7224
800 7.7365×10−3 1.0743 2.9061×10−1 0.6319
1600 3.8611×10−3 1.0027 1.5534×10−1 0.9037
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Figure 10. Example 2 (accuracy test, discontinuous solution): Volume fraction of

aggregates ϕ, solids ψ and initial water ϕ
(1)
f at T = 100 s for various values of N .

5.3. Examples 1 and 2: accuracy tests. In Example 1, we assess the spatial convergence
of the method by computing the error ε∆zN (T ) of a smooth solution. In this simulation, we set
qU = qG = qF = qW = qE = 0 cm/s, use sinusoidal initial conditions for the volume fraction of
aggregates ϕ and solids ψ and compute the numerical solution at a short time T = 4 s before a
discontinuity appears. Figure 9 shows the evolution of the numerical profiles of ϕ and ψ at T = 4 s
as the mesh is refined. In the left block of Table 2, the total estimated relative L1 errors ε∆zN (T )
and the corresponding estimated orders of convergence ΥN (T ) are presented. As expected for a
first-order method applied to smooth data, the convergence rate approaches one.

In Example 2, we start from a column filled with fluid at t = 0 s, when we start pumping aggre-
gates, solids, fluid, and wash water, with flow rates (qU, qF, qG, qW) = (2.0217, 2.0, 0.9605, 0.2) cm/s
and ϕG = 1, ϕF = ϕW = 0, ψF = 0.1 and ψG = ψW = 0. In Figure 10, we can see the numerical

discontinuous solutions of ϕ, ψ and ϕ
(1)
f at T = 100 s for different values of N . The right block of

Table 2 displays the total approximate relative L1 errors ε∆zN (T ) and the corresponding convergence
rates ΥN (T ). As expected, in the presence of discontinuities, the observed orders are slightly below
those obtained for smooth solutions.
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Figure 11. Examples 3 to 7: operating chart with (qF, qW) = (2.0, 0.2) cm/s.
The red point (qU, qG) = (2.0217, 0.9605) cm/s lies in the white region where a
desired steady state is feasible, whereas the blue and green points (2.1, 1.1) cm/s
and (2.3, 1.25) cm/s, respectively, lie in the grey region, where some conditions but
not all are satisfied and a desired steady state will not be attained.

5.4. Examples 3 and 4: achieving a desired steady state of liquid and solid phases. In
Examples 3 and 4, we start from a column filled only with fluid at time t = 0 s, when we start
pumping aggregates, solids, fluid, and wash water, with ϕG = 1 and ϕF = ϕW = 0, ψF = 0.1
and ψG = ψW = 0. The flow rates corresponding to the red point marked in the operating chart
of Figure 11: (qU, qF, qG, qW) = (2.0217, 2.0, 0.9605, 0.2) cm/s. In Example 3, we simulate until
t = 300 s, and in Example 4, until t = 3000 s.

For Example 3, Figures 12(a) and (b) show that the numerical solution evolves into a steady
state where the aggregates have a low froth concentration in zone 2, the collection zone, a slightly
lower one in most of zone 3, and a thin froth layer forming at the top of the column within zone 3
below the wash water inlet. Initially, most of the solids settle downwards from the inlet but some
of them rise and reach zone 3 due to the lack of bubbles in that zone initially. When aggregates
reach zone 3, the solids stop rising and settle so that, after about 100 s, a desired steady state is
achieved for solids, since they remain below the feed level zF.

The corresponding time evolution of the liquid components for t = 300 s is shown in Figures 12(c)
to (f). The volume fraction of initial water ϕ

(1)
f decreases significantly throughout the process. The

initial body of water is displaced mainly by the feed water ϕ
(3)
f and the wash water ϕ

(4)
f . The feed

water reaches the part of the column above zF and replaces the initial water. In the upper part of
the column, near the effluent, wash water appears and slowly increases until it reaches ϕ

(4)
f = 1, so

wash water completely displaces the other components in zone 4. After t = 100 s, the wash water
slowly moves downwards through zone 4, which indicates positive bias flow in zone 4.

In Example 4 we have repeated this simulation for a longer time, t = 3000 s, see Figure 13 in
order to see when the liquid components reach a steady state and which configuration the steady
state achieves. As seen in Figure 13(c), after approximately 2500 s, the initial water leaves the
column completely through the underflow, as one would expect. The other components reach a
steady state around this time. The slimes and the feed water descend and remain in the part of
the column below the feed inlet, leaving also through the underflow, whereas the wash water slowly
fills zone 4 and, after t = 2000 s, a small part of its volume fraction travels down the column and
leaves through the underflow. This positive bias flow is necessary to effectively wash the entrained
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Figure 12. Example 3 (achieving a desired steady state, short-time simulation):
simulation from t = 0 s to 300 s, with N = 1600, of the volume fractions of (a)
aggregates ϕ, (b) solids ψ, (c) the initial water ϕ

(1)
f , (d) the slimes ϕ

(2)
f , (e) the feed

water ϕ
(3)
f , and (f) the wash water ϕ

(4)
f .

particles in the liquid part below zF, in zone 3, so that they do not move up to zone 4 and report
into the effluent. Hence, the effluent volume fractions are approximately ϕ ≈ 0.8, ψ = 0, and
ϕf ≈ 0.2, and that the effluent liquid entirely comes from the wash water. This is an ideal scenario
where no feed water leaves through the effluent, and moreover, aggregates are washed of entrained
solid particles in zone 3 by the wash water that moves down the column. Figure 13 illustrated that
the water component dynamics detailed before do not affect the steady state reached for ϕ and ψ
before t = 300 s (shown in Figure 12).

5.5. Example 5 (gas-free configuration). Figure 12(b) of Example 3 (or equivalently, Fig-
ure 13(b) of Example 4) shows that transitorily solid particles are entrained into zone 3. To
illustrate that this phenomenon is related to the injection of gas, we performed an additional simu-
lation using the same parameters as above but setting both the initial bubble volume fraction and
the volumetric flow of gas to zero, i.e., we use ϕG = ϕF = ϕW = 0, ψF = 0.1 and ψG = ψW = 0,
and (qU, qF, qG, qW) = (2.021, 2.0, 0, 0.2) cm/s. In this gas-free configuration, shown in Figure 14,
we observe a significant change in the behavior of the solids. In contrast to Example 3, the solids
do not reach zone 3 and remain below zF. In Figures 14(b) to (e) we show the water components
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Figure 13. Example 4 (achieving a desired steady state, long-time simulation):
simulation from t = 0 s to 3000 s, with N = 1600, of the volume fractions of (a)
aggregates ϕ, (b) solids ψ, (c) the initial water ϕ

(1)
f , (d) the slimes ϕ

(2)
f , (e) the feed

water ϕ
(3)
f , and (f) the wash water ϕ

(4)
f .

dynamics for this case. As can be seen, the initial water eventually disappears after t = 2500 s,
approximately. It is also interesting to note that, once the initial water is out of the column, the
wash water travels down the column, and a small quantity leaves through the underflow. The
behavior of the water components in this case is very similar to the case with gas.

5.6. Example 6 (dynamic transition between steady states). We now analyze the dynamic
transition between three steady states obtained using the three different points in the operating
chart in Figure 11, exploring the effects of modifying the flow rates qU and qG on the evolution of ag-
gregates and solids. Initially, we use the flow rates (qU, qF, qG, qW) = (2.0217, 2.0, 0.9605, 0.2) cm/s,
which are represented by the red star in Figure 11, and simulate until t = 500 s where the system
reaches a desired steady state for aggregates and solids, as Figure 15 shows. As we have seen in
Examples 3 and 4, at t = 500 s the liquid components have not reached a steady state yet; see
Figures 13(c) to (f). Once the first steady state is reached, we change the underflow and gas flow
rates to (qU, qG) = (2.1, 1.1) cm/s. These values correspond to the blue point in Figure 11. Af-
ter this change, the dynamics of the vessel change: bubbles flow downwards and eventually leave
through the bottom of the column, resulting in an undesired steady state reached at approximately
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Figure 14. Example 5 (gas-free configuration): simulation from t = 0 s to 3000 s,
with N = 1600, of the volume fractions of (a) solids ψ, (b) the initial water ϕ

(1)
f , (c)

the slimes ϕ
(2)
f , (d) the feed water ϕ

(3)
f , and (e) the wash water ϕ

(4)
f .

t = 2500 s. At this time, we readjust the flow rates again to the values (qU, qG) = (2.3, 1.25) cm/s
represented by the green cross and located in the dark gray region of the operating chart in Fig-
ure 11. Now aggregates remain in an undesired steady state, leaving through the bottom of the
column but with a slightly different volume fraction. Despite these dynamic transitions, it can be
observed in Figure 15 that the solids always remain below the feed entry level zF throughout the
simulation, except for a small time at the beginning. Figures 15(c) to (f) show the dynamics of the
liquid components during this simulation. As mentioned, these components do not reach steady
state with the first pair of flow rates (qU, qG) chosen, but they do for the subsequent two.

5.7. Example 7 (recovery of a desired steady state). We continue the simulation of Exam-
ple 6 by adjusting the flow rates back to the red point in the white zone of the operating chart in
Figure 11 to see if we can obtain a desired steady state, i.e, if we can reach a steady state with no
aggregates leaving through the underflow and no solids above the feed inlet. As Figure 16 shows,
at t = 7500 s, a desired steady state is reached, the same we saw at t = 500 s in Figure 12. In
Figure 16(c) to (f), we can see the steady states that the liquid components settle into.
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Figure 15. Example 6 (dynamic transition between steady states): simulation from
t = 0 s to 4000 s, with N = 1600, of the volume fractions of (a) aggregates ϕ, (b)
solids ψ, (c) the initial water ϕ

(1)
f , (d) the slimes ϕ

(2)
f , (e) the feed water ϕ

(3)
f , and

(f) the wash water ϕ
(4)
f .

6. Conclusions and future work

The present work extends the two-phase flotation model proposed by the authors in [10] to a
three-phase model, given by a convection-diffusion-reaction system, that includes the fluid dynam-
ics, in particular, the transport of several liquid components are included. A new partial differential
equation is introduced to model the dynamics of all the different elements that constitute the fluid
of the column. The evolution of each component is described by a percentage vector. For the
numerical simulation examples, we divide the fluid into four components: the water that initially
fills the flotation column, fine solid particles transported with the fluid, called slimes, feed water
and wash water, which are the most relevant in the context of the flotation process, but more
components can be considered.

The governing model is described in detail, including the constitutive functions modelling the
settling of the hydrophilic solid particles, the rising of the aggregates through the column and the
diffusive term that describes the drainage of the liquid between bubbles when they accumulate at
the top of the column forming a foam layer. All volume fractions are discontinuously space due
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Figure 16. Example 7 (recovery of a desired steady state): simulation from t =
4000 s to 7500 s, with N = 1600, of the volume fractions of (a) aggregates ϕ, (b)
solids ψ, (c) the initial water ϕ

(1)
f , (d) the slimes ϕ

(2)
f , (e) the feed water ϕ

(3)
f , and

(f) the wash water ϕ
(4)
f .

to the presence of inlets and outlets of the column, and have spatial-temporal discontinuity curves
due to the degenerate parabolic PDEs.

The study of the possible steady states with a froth layer at the top of the column and a positive
bias flow (a small quantity of water travelling downwards from the wash water inlet), called desired
steady states, performed in Section 4 showed that they are feasible if ten inequalities are satisfied.
These inequalities can be represented in operating charts that show the values of (qU, qG).

The present treatment is based on a first-order accurate scheme. Future directions of work
could therefore consist in improving formal order of accuracy while maintaining the IRP property
through the application of high-order weighted essentially non-oscillatory (WENO) reconstructions
including a scaling limiter, as was originally proposed in [34–36] (see [3]).
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fully mixed finite element methods for the n-dimensional Boussinesq problem with
temperature-dependent parameters
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Ingenieŕıa Matemática (CI2MA)

Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


	1. Introduction
	1.1. Scope
	1.2. Related work
	1.3. Outline of the paper

	2. Governing model
	2.1. Phases, bulk flows and mass conservation
	2.2. Drift-flux and hindered-settling functions
	2.3. Capillarity
	2.4. Components of the liquid phase
	2.5. Choice of percentages to describe bias flow and desliming

	3. Numerical scheme
	3.1. Numerical scheme for the aggregate and solid phases
	3.2. Numerical scheme for the liquid components

	4. Steady-state analysis
	4.1. Desired steady states
	4.2. Conditions on stationary solutions for the aggregates
	4.3. Condition on the solids
	4.4. Visualization of conditions by operating charts

	5. Numerical simulations
	5.1. Preliminaries
	5.2. Approximate errors
	5.3. Examples 1 and 2: accuracy tests
	5.4. Examples 3 and 4: achieving a desired steady state of liquid and solid phases
	5.5. Example 5 (gas-free configuration)
	5.6. Example 6 (dynamic transition between steady states)
	5.7. Example 7 (recovery of a desired steady state)

	6. Conclusions and future work
	Acknowledgements
	References

