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Abstract

We introduce and analyze new mixed formulations, within Banach spaces-based frameworks, for
numerically solving the model given by the coupling of the Brinkman–Forchheimer equations with a
convection-diffusion-reaction phenomenon. Specifically, for the former, we consider a pseudostress-
velocity mixed formulation, whereas for the latter we analyze both primal and mixed approaches. In
particular, for the mixed one the convection-diffusion-reaction part is reformulated by introducing
the pseudodiffusion vector as an additional unknown, thus leading to a fully-mixed formulation of
the coupling. On the other hand, in the mixed-primal setting, the Dirichlet boundary condition for
the concentration is enforced through a suitable Lagrange multiplier. In contrast, this requirement
is avoided with the fully-mixed approach, but an additional theoretical constraint on the data needs
to be assumed. We establish the well-posedness of both formulations using a fixed-point strategy
and prove the well-posedness of the uncoupled problems by relying on recently established solvability
results for perturbed saddle-point problems in Banach spaces, together with the Banach–Nečas–
Babuška theorem and the Babuška–Brezzi theory. Additionally, we provide a discrete analysis
for both approaches under specific hypotheses on arbitrary finite element spaces. For instance,
for each integer k ě 0, we consider tensor and vector Raviart–Thomas subspaces of order k for
the pseudostress and pseudodiffusion, respectively, along with piecewise polynomial subspaces of
degree ď k for the velocity and concentration. This choice yields stable Galerkin schemes for the
fully-mixed approach, for which optimal theoretical convergence rates are achieved. Finally, we
illustrate the theoretical results through several numerical examples, comparing both approaches
and testing the associated data assumptions.
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1 Introduction

The transport of chemical species in a saturated porous medium often involves complex interactions
between fluid flow, pressure distribution, and reactive processes occurring within the porous structure.
These coupled phenomena play a key role in a wide range of applications, including groundwater
contamination, reactive filtration, catalytic reactors, biomedical flows, and enhanced oil recovery.
Accurate modeling and numerical simulation of such systems are essential for process optimization,
environmental protection, and risk assessment. Over the years, various mathematical models have
been developed to capture different aspects of these flows, with considerable focus placed on coupling
the Stokes (or Brinkman) model with convection-diffusion transport. However, models based on Darcy
or Stokes flow may fail to adequately represent the behavior of the fluid in highly porous media or
at moderate-to-high Reynolds numbers. To address these limitations, the Brinkman–Forchheimer
equations have been introduced as a generalization that incorporates both viscous effects and inertial
corrections (see, e.g., [19], [26], [18], and [17]). On the transport side, the evolution of chemical species
can be more accurately described by a convection-diffusion-reaction (CDR) equation (see, e.g., [20],
[8], [33]), which accounts for advective transport by the fluid, molecular diffusion, and local reaction
kinetics. Based on the preceding discussion, the present work focuses on the analysis and numerical
simulation of a coupled flow and transport system, where the Brinkman–Forchheimer equations govern
the velocity field, which in turn drives the evolution of the concentration governed by a CDR equation.

Regarding the literature, several works address the mathematical and numerical analysis of coupled
systems involving Stokes (Brinkman or Darcy–Forchheimer) flow and transport (or CDR) equations.
To begin, [1] proposed and analyzed an augmented mixed formulation for the fluid equations combined
with a standard primal scheme for the transport equation. This approach was later extended in [2] to
strongly coupled flow and transport systems, modeled by the Brinkman problem with variable viscosity
expressed through Cauchy pseudo-stresses and the bulk velocity of the mixture, along with a nonlinear
advection-diffusion equation representing the transport of the solids volume fraction. Additionally, [7]
established the existence of solutions for a related model describing chemically reacting non-Newtonian
fluids. More recently, [3] analyzed a flow-transport interaction model in a porous-fluidic domain by
employing techniques developed in [1] and [2]. This model considers a highly permeable medium
where the flow of an incompressible viscous fluid is governed by the Brinkman equations formulated in
terms of vorticity, velocity, and pressure, alongside a porous medium where Darcy’s law describes the
fluid motion via filtration velocity and pressure. Furthermore, an augmented fully mixed variational
formulation for the model initially introduced in [1] was proposed and studied in [30], where a dual-
mixed method combined with an augmentation technique was employed for both the Stokes and
transport equations. In [33], the authors investigated the coupling of the CDR problem with Darcy–
Forchheimer flow, considering a nonlinear external force dependent on concentration. They proved
existence and uniqueness of solutions using a Galerkin method and developed a finite element numerical
scheme accompanied by optimal a priori error estimates. On the other hand, we highlight [4] and [5],
where non-augmented mixed-primal and fully mixed formulations for the coupled problems analyzed in
[1] and [30], respectively, were introduced and studied within Banach space frameworks. We conclude
by mentioning [9], where the authors analyze the convective Brinkman–Forchheimer equations coupled
with a nonlinear transport phenomenon. This approach relies on the incorporation of the fluid velocity
gradient, the incomplete nonlinear fluid pseudostress, the concentration gradient, the total (diffusive
plus advective) flux of the concentration, as well as the velocity and the concentration themselves, as
auxiliary variables, leading to a Banach spaces-based fully-mixed formulation.

The purpose of this work is to develop and analyze mixed formulations within an appropriate Ba-
nach space framework for the coupling of the Brinkman–Forchheimer and CDR equations, as well as
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to study suitable numerical discretizations. Motivated by [23], [22], [15], [18], and [12], we propose and
analyze a pseudostress-velocity mixed formulation for the Brinkman–Forchheimer equations. In turn,
for the CDR equation, we consider two distinct strategies. First, we formulate the coupled problem
using a mixed-primal approach, as in [22], but without employing any augmentation procedure. Next,
similarly to [15], we reformulate the CDR equation by introducing the pseudodiffusion vector as an
additional unknown, resulting in a fully-mixed formulation of the coupled problem within a complete
Banach space framework. In the mixed-primal approach, the Dirichlet boundary condition for the con-
centration is enforced via a suitable Lagrange multiplier. The fully-mixed formulation, by contrast,
avoids this requirement but entails an additional assumption on the data. Following the ideas in [24],
[22], and [12], we combine fixed-point arguments, the abstract results from [23], the Banach–Nečas–
Babuška theorem, the Babuška–Brezzi theory, small data assumptions, and the Banach fixed-point
theorem to establish existence and uniqueness of solutions for both formulations. Additionally, we
perform a discrete analysis of both approaches under specific assumptions on general finite element
spaces. In particular, for each integer k ě 0, we consider tensor and vector Raviart–Thomas subspaces
of order k for the pseudostress and pseudodiffusion, respectively, along with piecewise polynomial sub-
spaces of degree ď k for the velocity and concentration. This choice yields stable Galerkin schemes for
the fully-mixed approach, for which optimal theoretical convergence rates are achieved. Analogously,
optimal convergence rates are also obtained for the mixed-primal approach when using continuous
piecewise polynomial subspaces of degree k ` 1 for the concentration.

This work is organized as follows. The remainder of this section introduces the standard nota-
tion and functional spaces used throughout the paper. In Section 2, we present the model problem.
Section 3 is dedicated to the derivation and analysis of the mixed-primal variational formulation in
Banach spaces. We establish the well-posedness of both the continuous problem and the correspond-
ing Galerkin scheme, applying the discrete counterpart of the continuous theory to prove existence,
uniqueness, and a priori error estimates for general discrete spaces. Convergence rates are then ob-
tained by considering specific finite element subspaces. Section 4 focuses on the fully-mixed variational
formulation and its associated Galerkin scheme. In a similar way, we prove their well-posedness and
derive convergence rates based on suitable choices of finite element spaces. Finally, Section 5 illus-
trates the performance of the proposed methods through numerical examples in both 2D and 3D,
including test cases with and without manufactured solutions, validating the accuracy and flexibility
of the Banach-space-based mixed finite element methods and comparing the numerical approaches.

Preliminary notations

Let Ω Ă Rn, n P t2, 3u, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces LppΩq and Sobolev
spaces Ws,ppΩq, with s P R and p ą 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by } ¨ }0,p;Ω and } ¨ }s,p;Ω, respectively. In particular, given a non-negative
integer m, Wm,2pΩq is also denoted by HmpΩq, and the notations of its norm and seminorm are
simplified to || ¨ ||m,Ω and | ¨ |m,Ω, respectively. In addition, H1{2pΓq is the space of traces of functions
of H1pΩq, and H´1{2pΓq denotes its dual. On the other hand, given any generic scalar functional space
S, we let S and S be the corresponding vectorial and tensorial counterparts, whereas } ¨ }, with no
subscripts, will be employed for the norm of any element or operator whenever there is no confusion
about the space to which they belong. Also, | ¨ | denotes the Euclidean norm in both Rn and Rnˆn,
and as usual, I stands for the identity tensor in Rnˆn. In turn, for any vector field v “ pviqi“1,n, we
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set the gradient and divergence, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj
Bxj

,

whereas for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

τ t :“ pτjiqi,j“1,n , trpτ q :“
n
ÿ

i“1

τii , τ d :“ τ ´
1

n
trpτ q I , and τ : ζ :“

n
ÿ

i,j“1

τij ζij .

Furthermore, for each t P r1,`8q we introduce the Banach spaces

Hpdivt; Ωq :“
!

v P L2pΩq : divpvq P LtpΩq

)

, and (1.1)

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.2)

endowed with the natural norms

}v}divt;Ω :“ }v}0,Ω ` }divpvq}0,t;Ω @v P Hpdivt; Ωq , and

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .

In addition, we consider the canonical injections ip,q : LppΩq Ñ LqpΩq for all p, q P r1,`8q, p ě q,
and ip : H1pΩq Ñ LppΩq for all p P r1,`8q when n “ 2, and for all p P r1, 6s when n “ 3, which are
continuous with norms depending on the domain. In particular, we have

}ip,q} ď |Ω|pp´qq{ppqq . (1.3)

In turn, we let ip,q and ip be the corresponding vector counterparts of ip,q and ip, respectively. Note
that the norm of ip,q also achieves the bound (1.3). Additionally, we recall that, proceeding as in
[28, eq. (1.43), Section 1.3.4] (see also [11, Section 4.1] and [21, Section 3.1]), one can prove that for

t P

#

p1,`8s in R2 ,

r65 ,`8s in R3 ,
there holds

⟨ξ ¨ n, φ⟩ “

ż

Ω

!

ξ ¨ ∇φ` φdivpξq

)

@ pξ, φq P Hpdivt; Ωq ˆ H1pΩq , and (1.4)

⟨τn,v⟩ “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.5)

where ⟨¨, ¨⟩ in (1.4) and (1.5) denotes the duality pairing between H´1{2pΓq and H1{2pΓq, and between
H´1{2pΓq and H1{2pΓq, respectively.

2 The model problem

We consider the physical process of fluid flow and reactive transport in a saturated porous medium
occupying the region Ω. The fluid flow is governed by the Brinkman–Forchheimer equations (cf. [19],
[25], [18]), characterized by the velocity u and the pressure p. In addition, following the approach in
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[33], the scalar field ϕ denotes the concentration of a chemical species transported by the fluid and
modeled by a convection-diffusion-reaction equation. As a result, the coupled model of interest is
described by the following system of partial differential equations:

´div
`

ν∇u
˘

` Du ` F |u|ρ´2 u ` ∇p “ fpϕq in Ω , (2.1a)

divpuq “ f in Ω , (2.1b)

´κ∆ϕ ` u ¨ ∇ϕ ` η ϕ “ g in Ω , (2.1c)

where ν ą 0 is the Brinkman coefficient (or effective viscosity), D ą 0 is the Darcy coefficient, F ą 0 is
the Forchheimer coefficient, ρ P r3, 4s is a given number, κ ą 0 is the diffusion coefficient, and η ą 0
is the reaction coefficient. We assume that ν, D, and F may vary spatially and are bounded in terms
of positive constants ν0, ν1, D0, D1, F0, and F1 satisfying

ν0 ď νpxq ď ν1 , D0 ď Dpxq ď D1 , and F0 ď Fpxq ď F1 , @x P Ω . (2.2)

The source terms f and g belong to suitable function spaces to be specified later. In addition, the
external force fpϕq is defined by

fpϕq :“ ´pϕ´ ϕrqg , (2.3)

where g represents the gravitational acceleration of potential type, and ϕr is the reference concentration
of the solute.

Equations (2.1) are complemented with Dirichlet boundary conditions for the velocity and concen-
tration fields, namely,

u “ uD and ϕ “ ϕD on Γ , (2.4)

with given data uD P H1{2pΓq and ϕD P H1{2pΓq. Due to condition (2.1b) and the Dirichlet boundary
condition for u, the datum uD must satisfy the compatibility condition

ż

Γ
uD ¨ n “

ż

Ω
f . (2.5)

Additionally, to ensure uniqueness of the pressure p in (2.1a), we seek p in the space

L2
0pΩq :“

"

q P L2pΩq :

ż

Ω
q “ 0

*

.

3 The mixed-primal approach

In this section, we derive a mixed-primal formulation for the model problem (2.1). To this end, we
introduce a pseudostress-velocity mixed formulation for the Brinkman–Forchheimer equations (2.1a)–
(2.1b), while a primal approach is employed for the convection-diffusion-reaction equation (2.1c). We
then establish the well-posedness of the coupled system using a fixed-point strategy. Next, we present
a Galerkin scheme, prove its well-posedness, and derive a Céa estimate. Finally, we introduce specific
finite element spaces and establish convergence rates.

3.1 The continuous formulation

Following the approach in [18] (see also [12, 14, 15]), we first introduce the pseudostress tensor σ as
an additional unknown, defined by

σ :“ ν∇u ´ p I in Ω . (3.1)
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Thus, by taking the matrix trace and using the fact that trpν∇uq “ ν divpuq “ νf (cf. (2.1b)), along
with the application of the deviatoric operator to σ, we deduce from (3.1) that

p “ ´
1

n
trpσq `

ν

n
f and

1

ν
σd “ ∇u ´

1

n
f I . (3.2)

We note that (3.2) is equivalent to the combination of (3.1) and (2.1b). Next, by taking the divergence
of σ, substituting it into (2.1a), and eliminating the unknown p, which is subsequently computed using
the identity in (3.2), we obtain a system equivalent to (2.1)–(2.4): Find u, σ, and ϕ in suitable spaces
to be indicated below, such that

´div
`

σq ` Du ` F |u|ρ´2 u “ fpϕq in Ω , (3.3a)

1

ν
σd ´ ∇u “ ´

1

n
f I in Ω , (3.3b)

´κ∆ϕ ` u ¨ ∇ϕ ` η ϕ “ g in Ω , (3.3c)

u “ uD, ϕ “ ϕD on Γ , (3.3d)
ż

Ω

!

trpσq ´ ν f
)

“ 0. (3.3e)

We remark that the constraint p P L2
0pΩq is equivalently enforced by equation (3.3e).

We now proceed with the derivation of the variational formulation for our mixed-primal system
(3.3). We begin with the Brinkman-Forchheimer part by testing (3.3a) against a vector field v,
formally obtaining

ż

Ω
v ¨ div

`

σ
˘

´

ż

Ω
Du ¨ v ´

ż

Ω
F |u|ρ´2 u ¨ v “ ´

ż

Ω
fpϕq ¨ v . (3.4)

Regarding the Forchheimer term, given by the third expression in (3.4), we observe that it can be
bounded directly by applying Hölder’s inequality twice and invoking the boundedness of F (cf. (2.2)),
thereby obtaining

ˇ

ˇ

ˇ

ˇ

ż

Ω
F |z|ρ´2 u ¨ v

ˇ

ˇ

ˇ

ˇ

ď F1

"
ż

Ω
|z|ℓpρ´2q |u|ℓ

*1{ℓ

}v}0,j; Ω ď F1 }z}
ρ´2
0,ℓpρ´1q; Ω }u}0,ℓpρ´1q; Ω }v}0,j; Ω ,

where j, ℓ P p1,`8q are Hölder conjugates to each other, meaning that 1{j ` 1{ℓ “ 1. Here, we
introduced the field z, which will be used to handle the nonlinearity of this term. Further details
are provided in Section 3.2. Naturally, if z “ u, we recover the original term given in (3.4). For
this reason, we assume that both fields belong to the same space. We may continue our analysis by
considering arbitrary values of j and ℓ, which leads to the requirement that z,u P Lℓpρ´1qpΩq and
v P LjpΩq. However, in order to derive a formulation that yields a classical Galerkin method with
symmetry in the function spaces, we simplify our setting by assuming that ℓpρ´ 1q “ j. In this way,
since j and ℓ are conjugates to each other, we discover that j “ ρ P r3, 4s and ℓ “ ρ{pρ´1q P r4{3, 3{2s.
Consequently, we require z,u,v P LρpΩq. Having established these function spaces, we observe that
the second term of (3.4) is finite due to the boundedness of D (cf. (2.2)), the Cauchy–Schwarz inequality
and the Sobolev embedding of LρpΩq into L2pΩq (cf. (1.3)) since ρ ą 2. Moreover, the first term of
(3.4) is well-defined provided that divpσq P LℓpΩq, so we require σ P Hpdivℓ; Ωq (cf. (1.2)). On the
other hand, recalling the definition of fpϕq (cf. (2.3)), and applying the Cauchy-Schwarz and Hölder
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inequalities, the later with conjugate indexes ρ
ρ´2 and ρ

2 , we find that the term on the right-hand side
of (3.4) is bounded as

ˇ

ˇ

ˇ

ˇ

ż

Ω
fpϕq ¨ v

ˇ

ˇ

ˇ

ˇ

ď }
`

ϕ´ ϕr
˘

v}0,Ω }g}0,Ω ď }ϕ´ ϕr}0,2ρ{pρ´2q; Ω }v}0,ρ; Ω }g}0,Ω

ď
`

}ϕ}0,s; Ω ` }ϕr}0,s; Ω
˘

}g}0,Ω }v}0,ρ; Ω ,

(3.5)

where s :“ 2ρ{pρ ´ 2q P r4, 6s. Thus, we consider the data ϕr P LspΩq and g P L2pΩq. While it would
be sufficient to seek ϕ P LspΩq, we shall see below that this unknown must instead be sought in H1pΩq.
This is consistent with (3.5), since, by invoking the continuous embedding of H1pΩq into LspΩq, we
find that

ˇ

ˇ

ˇ

ˇ

ż

Ω
fpϕq ¨ v

ˇ

ˇ

ˇ

ˇ

ď
`

}is} }ϕ}1,Ω ` }ϕr}0,s; Ω
˘

}g}0,Ω }v}0,ρ; Ω .

Now, since σ P L2pΩq, we deduce from (3.3b) that ∇u P L2pΩq, provided that the datum f belongs
to L2pΩq as well. Moreover, since u lies in LρpΩq, which is continuously embedded into L2pΩq for
ρ P r3, 4s, it follows that u P H1pΩq. Consequently, we multiply equation (3.3b) by a test function
τ P Hpdivt; Ωq, where t lies in a suitable range that allows us to integrate by parts according to (1.5),
thereby obtaining

ż

Ω

1

ν
σd : τ d `

ż

Ω
u ¨ divpτ q “ ⟨τ n,uD⟩ ´

1

n

ż

Ω
f trpτ q . (3.6)

Recalling that ℓ P r4{3, 3{2s is the Hölder conjugate of ρ, it suffices to seek u in LρpΩq and set t “ ℓ,
so that every term in (3.6) is well-defined. On the other hand, we now consider the decomposition
Hpdivℓ; Ωq “ H0pdivℓ; Ωq ‘ R I, with

H0pdivℓ; Ωq :“
!

τ P Hpdivℓ; Ωq :

ż

Ω
trpτ q “ 0

)

,

which implies, in particular, that there exist unique components σ0 P H0pdivℓ; Ωq and dσ P R such
that σ “ σ0 ` dσI. Moreover, employing the uniqueness condition for p (cf. (3.3e)), we deduce that
dσ can be computed explicitly as

dσ “
1

n |Ω|

ż

Ω
trpσq “

1

n |Ω|

ż

Ω
ν f , (3.7)

so that, in order to complete σ, it would only remain to find σ0. In this regard, we notice that (3.4)
and (3.6) remain unaltered if σ is replaced by σ0, and hence from now on we simply redefine σ :“ σ0

and seek σ P H0pdivℓ; Ωq. The original σ can then be recovered through post-processing by employing
the aforementioned decomposition and (3.7). Furthermore, invoking the compatibility condition (cf.
(2.5)), we note that equation (3.6) is trivially satisfied for all τ P R I. Therefore, we may restrict the
test space from Hpdivℓ; Ωq to H0pdivℓ; Ωq.

Now we aim to derive a primal formulation for the convection-diffusion-reaction equation (cf. (3.3c)).
To this end, following the approach of [22], we seek ϕ P H1pΩq, test equation (3.3c) against ψ P H1pΩq,
integrate by parts, and introduce the additional unknown λ :“ ´κ∇ϕ ¨ n P H´1{2pΓq, obtaining

κ

ż

Ω
∇ϕ ¨ ∇ψ `

ż

Ω
pu ¨ ∇ϕqψ ` η

ż

Ω
ϕψ ` xλ, ψyΓ “

ż

Ω
g ψ @ψ P H1pΩq . (3.8)

Regarding the well-definedness of the second term, we proceed similarly as for the derivation of (3.5),
so that applying the Cauchy–Schwarz and Hölder inequalities along with the continuous embedding
is : H

1pΩq Ñ LspΩq, we arrive at
ż

Ω
pu ¨ ∇ϕqψ ď }u}0,ρ; Ω }∇ϕ}0,Ω }ψ}0,s; Ω ď }is} }u}0,ρ; Ω }ϕ}1,Ω }ψ}1,Ω . (3.9)
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In turn, assuming that the datum g belongs to L2pΩq, and recalling that ϕ, ψ P H1pΩq, the remaining
terms in (3.8) are well defined. Finally, the Dirichlet condition for the concentration, given in (3.3d),
is imposed weakly via

xξ, ϕyΓ “ xξ, ϕDyΓ @ ξ P H´1{2pΓq . (3.10)

Therefore, denoting from now on H :“ H0pdivℓ; Ωq and Q :“ LρpΩq, and suitably grouping the
equations (3.4), (3.6), (3.8) and (3.10), the aforementioned mixed-primal formulation reads: Find
pσ,uq P H ˆ Q and pϕ, λq P H1pΩq ˆ H´1{2pΓq such that

apσ, τ q ` bpτ ,uq “ Fpτ q @ τ P H ,

bpσ,vq ´ cupu,vq “ Gϕpvq @v P Q ,

aupϕ, ψq ` bpψ, λq “ Fpψq @ψ P H1pΩq ,

bpϕ, ξq “ Gpξq @ ξ P H´1{2pΓq ,

(3.11)

where the bilinear forms a : H ˆ H Ñ R, b : H ˆ Q Ñ R, and cz : Q ˆ Q Ñ R, for each z P Q, and
the linear functionals F : H Ñ R and Gφ : Q Ñ R, for each φ P H, are defined as

apχ,τ q :“

ż

Ω

1

ν
χd : τ d , bpτ ,vq :“

ż

Ω
v ¨ divpτ q , (3.12)

czpw,vq :“

ż

Ω
Dw ¨ v `

ż

Ω
F |z|ρ´2w ¨ v , (3.13)

Fpτ q :“ ⟨τ n,uD⟩ ´
1

n

ż

Ω
f trpτ q , Gφpvq :“ ´

ż

Ω
fpφq ¨ v , (3.14)

while the bilinear forms az : H1pΩqˆH1pΩq Ñ R and b : H1pΩqˆH´1{2pΓq Ñ R, and linear functionals
F : H1pΩq Ñ R and G : H´1{2pΓq Ñ R, are given by

azpφ,ψq :“ κ

ż

Ω
∇φ ¨ ∇ψ `

ż

Ω
pz ¨ ∇φqψ ` η

ż

Ω
φψ , (3.15)

bpψ, ξq :“ xξ, ψyΓ , Fpψq :“

ż

Ω
g ψ and Gpξq :“ xξ, ϕDyΓ . (3.16)

Now, for the stability properties of the bilinear forms and functionals associated with (3.11), we apply
again the Cauchy–Schwarz and Hölder inequalities, the continuous embeddings (1.3), the continuity
of the canonical and normal trace operators, and the data assumptions (2.2), to deduce that

|apχ, τ q| ď
1

ν0
}χ}H }τ }H , |bpτ ,vq| ď }τ }H }v}Q , (3.17a)

|czpw,vq| ď

´

D1 |Ω|pρ´2q{ρ ` F1 }z}
ρ´2
0,ρ;Ω

¯

}w}Q }v}Q , (3.17b)

|Fpτ q| ď

´

maxt1, }iρ}u }uD}1{2,Γ `
1

?
n

}f}0,Ω

¯

}τ }H , (3.17c)

|Gφpvq| ď }g}0,Ω
`

}is} }φ}1,Ω ` }ϕr}0,s; Ω
˘

}v}Q , (3.17d)

|azpφ,ψq| ď
`

κ` }is} }z}0,ρ; Ω ` η
˘

}φ}1,Ω }ψ}1,Ω , (3.17e)

|bpψ, ξq| ď }ξ}´1{2,Γ }ψ}1,Ω , |Fpψq| ď }g}0,Ω }ψ}1,Ω , (3.17f)

and |Gpξq| ď }ϕD}1{2,Γ }ξ}´1{2,Γ . (3.17g)
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3.2 Solvability analysis

In order to establish the well-posedness of (3.11), we propose a fixed-point strategy. To this end,
we first define the operator S : Q ˆ H1pΩq Ñ Q by Spz, φq :“ u, where, given pz, φq P Q ˆ H1pΩq,
pσ,uq P H ˆ Q denotes the unique solution, as will be shown below in Lemma 3.1, to the uncoupled
Brinkman–Forchheimer component arising from the formulation (3.11) when cu and Gϕ are replaced
by cz and Gφ, respectively, that is

apσ, τ q ` bpτ ,uq “ Fpτ q @ τ P H ,

bpσ,vq ´ czpu,vq “ Gφpvq @v P Q .
(3.18)

Equivalently, pσ,uq P H ˆ Q is the unique solution of

Az

`

pσ,uq, pτ ,vq
˘

“ Rφpτ ,vq @ pτ ,vq P H ˆ Q , (3.19)

where
Az

`

pχ,wq, pτ ,vq
˘

:“ apχ, τ q ` bpτ ,wq ` bpχ,vq ´ czpw,vq

and
Rφpτ ,vq :“ Fpτ q ` Gφpvq ,

for all pχ,wq, pτ ,vq P H ˆ Q. Secondly, we define rS : Q Ñ H1pΩq by rSpzq :“ ϕ, where, given z P Q,
pϕ, λq P H1pΩq ˆ H´1{2pΓq is the unique solution, as will be confirmed below in Lemma 3.2, to the
convection-diffusion-reaction part arising from (3.11) when au is replaced by az, that is

azpϕ, ψq ` bpψ, λq “ Fpψq @ψ P H1pΩq ,

bpϕ, ξq “ Gpξq @ ξ P H´1{2pΓq .
(3.20)

Finally, we introduce the operator T : Q Ñ Q defined by

Tpzq :“ Spz, rSpzqq @ z P Q ,

and realize that solving (3.11) is equivalent to finding a fixed point of the operator T, namely, seeking
u P Q such that

Tpuq “ u . (3.21)

In what follows, we prove that the operators S and rS are well-defined, meaning that the problems
(3.18) and (3.20) are well-posed. As a consequence, the operator T is well-defined as well.

We begin by applying [23, Theorem 3.4] to problem (3.18). Indeed, note that the null space of the
operator τ ÞÑ bpτ , ¨q P Q1 is given by

V :“
!

τ P H : bpτ ,vq “ 0 @v P Q
)

“

!

τ P H0pdivℓ; Ωq : divpτ q “ 0
)

. (3.22)

In turn, from a slight modification of [28, Lemma 2.3], we have the existence of a positive constant c1
such that

}τ d}0,Ω ` }divpτ q}0,ℓ; Ω ě c1 }τ }0,Ω @ τ P H0pdivℓ; Ωq ,

which implies }χd}0,Ω ě c1 }χ}0,Ω “ c1 }χ}divℓ; Ω for all χ P V. This inequality and the boundedness
of ν (cf. (2.2)) allow us to infer that

sup
0‰τPV

apχ, τ q

}τ }divℓ; Ω
“ sup

0‰τPV

ż

Ω

1

ν
χd : τ d

}τ }divℓ; Ω
ě

}χd}20,Ω

ν1 }χ}divℓ;Ω
ě
c21
ν1

}χ}divℓ; Ω ,
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for all χ P V zt0u. Since the resulting inequality holds trivially for χ “ 0, we have established the
inf-sup condition for a (cf. (3.12)) required by [23, Theorem 3.4], namely,

sup
0‰τPV

apχ, τ q

}τ }divℓ; Ω
ě α }χ}divℓ; Ω @χ P V , (3.23)

where α :“ c21{ν1. On the other hand, by extending the argument employed in [31, Lemma 2.9] to the
tensorial case (see also [10, Lemma 3.3]), we establish the inf-sup condition for b (cf. (3.12)) that is
needed by [23, Theorem 3.4], namely:

sup
0‰τPH

bpτ ,vq

}τ }divℓ; Ω
ě β }v}0,ρ; Ω @v P Q , (3.24)

where β is a positive constant depending only on Ω. Finally, the bilinear forms a and cz (cf. (3.12),
(3.13)) are certainly symmetric and satisfy

apτ , τ q ě
1

ν1
}τ d}20,Ω ě 0 and czpv,vq ě D0 }v}20,Ω ` F0

ż

Ω
|z|ρ´2 |v|2 ě 0 , (3.25)

for all τ P H and v P Q, which says that a and cz are positive semi-definite.

Consequently, the well-definedness of the operator S is stated as follows.

Lemma 3.1 Given δ ą 0 and pz, φq P Q ˆ H1pΩq such that }z}0,ρ; Ω ď δ, the problem (3.18) has a
unique solution pσ,uq P H ˆ Q, and, consequently, Spz, φq is well-defined. Moreover, there exists a
positive constant CS, depending on δ, ρ, ν0, ν1, D1, F1, β, and |Ω|, such that

}Spz, φq}0,ρ;Ω ď }pσ,uq}HˆQ ď CS

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φ}1,Ω ` }ϕr}0,s; Ω
˘

)

. (3.26)

Proof. Bearing in mind (3.23), (3.24), and the symmetry and positive semi-definiteness of a and cz
(see (3.25)), the existence of a unique solution for (3.18) follows from a straightforward application of
[23, Theorem 3.4]. Moreover, (3.26) is obtained from the a priori bound established in [23, eq. (3.51)
in Theorem 3.4] and the stability bounds (3.17a)–(3.17d). In particular, note that the bound for }cz}

provided by (3.17b) depends on D1, |Ω|, ρ, F1, and δ. ˝

Having proved the well-posedness of (3.18), the analysis from [23, Theorem 3.4] also gives us the
inf-sup condition for Az. More precisely, given δ ą 0, there exists a constant αA ą 0, depending only
on δ, ρ, ν0, D1, F1, α, β, and |Ω|, such that for each z P Q satisfying }z}0,ρ; Ω ď δ, there holds

sup
0‰pτ ,vqPHˆQ

Az ppχ,wq, pτ ,vqq

}pτ ,vq}HˆQ
ě αA }pχ,wq}HˆQ @ pχ,wq P H ˆ Q . (3.27)

In order to show next the well-posedness of (3.20), we need to invoke the classical Poincaré inequality,
which establishes the existence of a positive constant cP such that

|ψ|21,Ω ě cP }ψ}21,Ω @ψ P H1
0pΩq . (3.28)

In addition, and in contrast to Lemma 3.1, it is required that }z}0,ρ;Ω be bounded by a specific constant,
which, in turn, depends on cP .

Lemma 3.2 Given z P Q such that }z}0,ρ; Ω ď δ0 :“ 1
2 }is}

´1 κ cP , the problem (3.20) has a unique

solution pϕ, λq P H1pΩq ˆH´1{2pΓq, and, consequently, rSpzq is well-defined. In addition, there exists a
positive constant C

rS
, depending only on κ, η, cP , and |Ω|, such that

}rSpzq}1,Ω ď }pϕ, λq}H1pΩqˆH´1{2pΓq ď C
rS

!

}g}0,Ω ` }ϕD}1{2,Γ

)

. (3.29)

10



Proof. While this proof is a slight adaptation of that of [22, Lemma 3.4], we include the details here for
the sake of completeness. In fact, let B : H1pΩq Ñ H´1{2pΓq be the linear and bounded operator defined
by xBpψq, ξy´1{2,Γ “ bpψ, ξq, for all pψ, ξq P H1pΩq ˆ H´1{2pΓq, where x¨, ¨y´1{2,Γ stands for the inner

product of H´1{2pΓq. It can be readily shown that B “ R˚
´1{2 ˝ γ0, where R´1{2 : H

´1{2pΓq Ñ H1{2pΓq

denotes the Riesz operator, R˚
´1{2 its adjoint, and γ0 : H1pΩq Ñ H1{2pΓq the trace operator. Thus,

being the composition of two surjective operators, B becomes surjective as well. Certainly, this is
equivalent (cf. [28, Lemma 2.1]) to the existence of a positive constant rβ, depending only on Ω, such
that

sup
0‰ψPH1pΩq

bpψ, ξq

}ψ}1,Ω
ě rβ }ξ}´1{2,Γ @ ξ P H´1{2pΓq .

We now address the ellipticity of az in the null space of B, which is easily seen to be given by H1
0pΩq.

Indeed, employing the Cauchy–Schwarz and Hölder inequalities, along with (3.28) and the continuous
embedding is : H

1pΩq Ñ LspΩq, we find that

azpψ,ψq ě
`

κ cP ´ }is} }z}0,ρ;Ω
˘

}ψ}21,Ω ě
1

2
κ cP }ψ}21,Ω @ψ P H1

0pΩq , (3.30)

where we have used the assumption }z}0,ρ;Ω ď δ0 “ 1
2 }is}

´1 κ cP . Consequently, by applying the
Babuška–Brezzi theory in Hilbert spaces (see, for instance, [28, Theorem 2.3]), we deduce the well-
posedness of (3.20), as well as the corresponding a priori estimate (3.29), using the stability bounds
(3.17e)–(3.17g). Note, in particular, that the bound for }az} provided by (3.17e), and hence neither
the a priori estimate (3.29), does not depend on }is}. ˝

Having established the well-definedness of the operators S and rS, our next goal is to prove the
well-posedness of (3.11), equivalently that (3.21) admits a unique solution, for which we aim below
to apply the Banach fixed-point theorem. In fact, given δ and δ0 as in Lemmas 3.1 and 3.2, we now
consider r P p0, r0s, where

r0 :“ min
␣

δ, δ0
(

, (3.31)

and introduce the closed and convex subset of Q given by

Wprq :“
!

z P Q : }z}0,ρ; Ω ď r
)

.

The following lemma proves that T maps Wprq into itself.

Lemma 3.3 Let r P p0, r0s, with r0 as in (3.31), and assume that the data satisfy

CT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

ď r , (3.32)

where CT :“ CS max
␣

C
rS
, 1
(

, (cf. Lemmas 3.1 and 3.2). Then, TpWprqq Ă Wprq and the restricted
operator T|Wprq : Wprq Ñ Wprq is well-defined.

Proof. Given z P Wprq, it is clear from Lemmas 3.1 and 3.2 that Tpzq is well-defined. Moreover,
employing the estimate (3.26) in combination with (3.29), we deduce that

}Tpzq}0,ρ;Ω “ }Spz, rSpzqq}0,ρ;Ω ď CS

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}rSpzq}1,Ω ` }ϕr}0,s; Ω
˘

)

ď CT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

,

which, thanks to assumption (3.32), implies that Tpzq P Wprq, thus completing the proof. ˝

Hereafter, we simplify the notation by denotingT as the restricted operatorT
ˇ

ˇ

Wprq
: Wprq Ñ Wprq.

The two following results establish the Lipschitz continuity of the operators S and rS, respectively.
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Lemma 3.4 Let r P p0, r0s, with r0 as in (3.31). Then, there exists a positive constant LS, depending
on r, ρ, F1, |Ω|, CS, }is}, and αA, such that

}Spz1,φ1q ´ Spz2, φ2q}0,ρ; Ω ď LS

!

C
`

uD, f,g, ϕr, φ2

˘

}z1 ´ z2}0,ρ;Ω ` }g}0,Ω }φ1 ´ φ2}1,Ω

)

, (3.33)

for all pz1, φ1q, pz2, φ2q P Wprq ˆ H1pΩq, where

C
`

uD, f,g, ϕr, φ
˘

:“ }uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φ}1,Ω ` }ϕr}1,Ω
˘

@φ P H1pΩq .

Proof. Let pz1, φ1q, pz2, φ2q P Wprq ˆ H1pΩq such that Spz1, φ1q “ u1 and Spz2, φ2q “ u2, where, for
each i P t1, 2u, pσi,uiq P H ˆ Q is the unique solution of (3.18), or equivalently, the unique solution
of (3.19), with the given pzi, φiq instead of z and φ there. Thus, making use of (3.27) with z “ z1
and pχ,wq “ pσ1,u1q ´ pσ2,u2q, we obtain

αA }pσ1 ´ σ2,u1 ´ u2q}HˆQ ď sup
0‰pτ ,vqPHˆQ

Az1 ppσ1 ´ σ2,u1 ´ u2q, pτ ,vqq

}pτ ,vq}HˆQ
. (3.34)

In turn, setting problem (3.19) with pz, φq equal to both pz1, φ1q and pz2, φ2q, and then subtracting
the resulting equations, we obtain

Az1

`

pσ1 ´ σ2,u1 ´ u2q, pτ ,vq
˘

“ cz1pu2,vq ´ cz2pu2,vq ` Gφ1pvq ´ Gφ2pvq , (3.35)

for all pτ ,vq P H ˆ Q. Next, from a slight modification of [12, Lemma 4.4], one deduces that there
exists a positive constant Lc, depending only on ρ, F1 and |Ω|, such that

ˇ

ˇcz1pu2,vq ´ cz2pu2,vq
ˇ

ˇ ď Lc

!

}z1}0,ρ; Ω ` }z2}0,ρ; Ω

)ρ´3
}u2}0,ρ; Ω }z1 ´ z2}0,ρ; Ω }v}0,ρ; Ω , (3.36)

for all v P Q, whereas the definitions of Gφ and f (cf. (3.14), (2.3)), together with Hölder’s inequality,
allow us to deduce that

ˇ

ˇGφ1pvq ´ Gφ2pvq
ˇ

ˇ “

ż

Ω

`

fpφ1q ´ fpφ2q
˘

¨ v ď }is} }g}0,Ω }φ1 ´ φ2}1,Ω }v}0,ρ; Ω . (3.37)

Finally, substituting (3.35) back into (3.34), using the bounds given in (3.36) and (3.37), along with
the fact that zi P Wprq for each i P t1, 2u, and applying the a priori estimate (3.26) to Spz2, φ2q “ u2,
we derive (3.33) with LS “ max

␣

LcCS p2rqρ´3, }is}
(

{αA, thus completing the proof. ˝

Lemma 3.5 Let r P p0, r0s, with r0 as in (3.31). Then, there exists a positive constant L
rS
, depending

only on κ, cP , C
rS
, and }is}, such that

}rSpz1q ´ rSpz2q}1,Ω ď L
rS

!

}g}0,Ω ` }ϕD}1{2,Γ

)

}z1 ´ z2}0,ρ; Ω @ z1, z2 P Wprq . (3.38)

Proof. Let z1, z2 P Wprq such that rSpz1q “ ϕ1 and rSpz2q “ ϕ2, where, for each i P t1, 2u, pϕi, λiq P

H1pΩq ˆ H´1{2pΓq is the unique solution of the problem (3.20), with the given zi instead of z there.
Then, subtracting both problems, we easily deduce that bpϕ1 ´ ϕ2, ξq “ 0 for all ξ P H´1{2pΓq, and

az1pϕ1, ψq ´ az2pϕ2, ψq ` bpψ, λ1 ´ λ2q “ 0 @ψ P H1pΩq .

Next, taking ψ “ ϕ1 ´ϕ2, we obtain the identity az1pϕ1, ϕ1 ´ϕ2q “ az2pϕ2, ϕ1 ´ϕ2q, which, combined
with the coercivity of the bilinear form az2 (cf. (3.30)), yields

1

2
κ cP }ϕ1 ´ ϕ2}21,Ω ď az2pϕ1 ´ ϕ2, ϕ1 ´ ϕ2q “ az2pϕ1, ϕ1 ´ ϕ2q ´ az1pϕ1, ϕ1 ´ ϕ2q ,
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and using the definition of the bilinear form az (cf. (3.15)) and (3.9), we deduce that

1

2
κ cP }ϕ1 ´ ϕ2}21,Ω ď

ż

Ω

␣

pz2 ´ z1q ¨ ∇ϕ1
(

pϕ1 ´ ϕ2q

ď }is} }ϕ1}1,Ω }z1 ´ z2}0,ρ; Ω }ϕ1 ´ ϕ2}1,Ω .

(3.39)

Finally, applying the a priori estimate (3.29) (cf. Lemma 3.2) to rSpz1q “ ϕ1 in (3.39), we arrive at
(3.38), with L

rS
“ 2 }is}C

rS
{pκ cP q, and conclude the proof. ˝

The following lemma establishes that the operator T is indeed Lipschitz continuous.

Lemma 3.6 Let r P p0, r0s, with r0 as in (3.31). Then, there exists a positive constant LT, depending
on LS, C

rS
, and L

rS
, such that

}Tpz1q ´ Tpz2q}0,ρ; Ω

ď LT

␣

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘(

}z1 ´ z2}0,ρ; Ω ,
(3.40)

for all z1, z2 P Wprq.

Proof. First, given z1, z2 P Wprq, we observe from (3.33) that

}Tpz1q ´ Tpz2q}0,ρ; Ω “ }Spz1, rSpz1qq ´ Spz2, rSpz2qq}0,ρ; Ω

ď LS

!

C
`

uD, f,g, ϕr, rSpz2q
˘

}z1 ´ z2}0,ρ;Ω ` }g}0,Ω }rSpz2q ´ rSpz1q}1,Ω

)

.
(3.41)

In turn, using the estimate (3.29), we certainly have

C
`

uD, f,g, ϕr, rSpz2q
˘

ď }uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω

!

C
rS

p}g}0,Ω ` }ϕD}1{2,Γq ` }ϕr}0,s; Ω

)

,

and using (3.38), the last term in (3.41) can be bounded as

}rSpz2q ´ rSpz1q}1,Ω ď L
rS

!

}g}0,Ω ` }ϕD}1{2,Γ

)

}z2 ´ z1}0,ρ; Ω . (3.42)

Thus, replacing back (3.42) into (3.41), and performing simple algebraic manipulations, we get (3.40),
with LT :“ LS maxt1, C

rS
` L

rS
u. ˝

Theorem 3.7 Let r P p0, r0s, with r0 as in (3.31), and assume that the data satisfy (3.32) and

LT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

ă 1 . (3.43)

Then, there exists a unique u P Wprq such that Tpuq “ u, or equivalently, the problem (3.11) has a
unique solution pσ,u, ϕ, λq P HˆQˆH1pΩqˆH´1{2pΓq, with u P Wprq. Moreover, there exist positive
constants C1 and C2, depending only on CS and C

rS
, such that

}pσ,uq}HˆQ ď C1
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω

´

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω

¯)

,

and }pϕ, λq}H1pΩqˆH´1{2pΓq ď C2
!

}g}0,Ω ` }ϕD}1{2,Γ

)

.
(3.44)

Proof. By (3.32) and Lemma 3.3, we know that T : Wprq Ñ Wprq is well-defined. Since Wprq is
a closed and convex subset of LρpΩq, it is a complete metric space. Moreover, since T is Lipschitz
continuous with constant LT (cf. Lemma 3.6), under the assumption (3.43) we conclude that T is
a contraction. Therefore, by the Banach fixed-point theorem, the operator T admits a unique fixed
point, or equivalently, the problem (3.11) has a unique solution. In addition, the a priori estimates
(3.44) follows from Lemmas 3.1 and 3.2. We omit further details. ˝
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3.3 The Galerkin scheme

In this section, we analyze a Galerkin scheme associated with the mixed-primal formulation (3.11).
To do so, we first consider a regular family of triangulations tThuhą0 of sΩ made up of triangles K
(when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , and set h :“ max thK : K P Thu.

Additionally, let rHσh , Hu
h , H

ϕ
h, and Hλh be generic finite-dimensional subspaces of Hpdivℓ; Ωq, LρpΩq,

H1pΩq and H´1{2pΓq, respectively. Specific choices of these subspaces, satisfying suitable hypotheses
to be introduced later in the discussion, will be described below. Finally, to obtain a conforming
approximation setting, we also define the space Hσh :“ rHσh X H0pdivℓ; Ωq.

Under this notation, we introduce the Galerkin scheme associated with (3.11): Find pσh,uhq P

Hσh ˆ Hu
h and pϕh, λhq P Hϕh ˆ Hλh such that

apσh, τ hq ` bpτ h,uhq “ Fpτ hq @ τ h P Hσh ,

bpσh,vhq ´ cuh
puh,vhq “ Gϕhpvhq @vh P Hu

h ,

auh
pϕh, ψhq ` bpψh, λhq “ Fpψhq @ψh P Hϕh ,

bpϕh, ξhq “ Gpξhq @ ξh P Hλh .

(3.45)

In order to address the solvability of (3.45), we adopt the discrete analogue of the fixed-point strategy

employed in the continuous case (cf. Section 3.2). We first define the operator Sd : Hu
h ˆ Hϕh Ñ Hu

h

by Sdpzh, φhq :“ uh, where pσh,uhq P Hσh ˆ Hu
h is the unique solution, which will be confirmed below

(cf. Lemma 3.8), of the uncoupled problem arising from the first two rows of (3.45), after replacing

puh, ϕhq by the given pzh, φhq P Hu
h ˆ Hϕh, that is

apσh, τ hq ` bpτ h,uhq “ Fpτ hq @ τ h P Hσh ,

bpσh,vhq ´ czhpuh,vhq “ Gφh
pvhq @vh P Hu

h .
(3.46)

Equivalently, pσh,uhq P Hσh ˆ Hu
h is the unique solution of

Azh

`

pσh,uhq, pτ h,vhq
˘

“ Rφh
pτ h,vhq @ pτ h,vhq P Hσh ˆ Hu

h , (3.47)

where Azh : pHσh ˆ Hu
hq ˆ pHσh ˆ Hu

hq Ñ R and Rφh
: pHσh ˆ Hu

hq Ñ R are defined according to

(3.19), when restricted to the finite-dimensional subspaces. Additionally, we define rSd : H
u
h Ñ Hϕh by

rSdpzhq :“ ϕh, where pϕh, λhq P Hϕh ˆ Hλh is the unique solution, which will be confirmed below (cf.
Lemma 3.9), of the problem arising from the third and fourth rows of (3.45), after replacing uh by
the given zh P Hu

h , that is

azhpϕh, ψhq ` bpψh, λhq “ Fpψhq @ψh P Hϕh ,

bpϕh, ξhq “ Gpξhq @ ξh P Hλh .
(3.48)

Finally, we introduce the operator Td : H
u
h Ñ Hu

h defined by

Tdpzhq :“ Sd

`

zh, rSdpzhq
˘

@ zh P Hu
h ,

and realize that solving (3.45) is equivalent to finding a fixed point of the operator Td, that is, seeking
uh P Hu

h such that
Tdpuhq “ uh . (3.49)

As in the continuous fixed-point strategy, it remains to prove that Sd and rSd are well-defined, that is,
that the problems (3.46) and (3.48) are well-posed, thus implying that Td is well-defined as well.

14



In order to achieve the well-definedness of the operators Sd and rSd, we analyze the uncoupled
problems (3.46) and (3.48). For this purpose, we introduce in what follows several assumptions on the
finite element subspaces, all of which are assumed to be valid throughout the rest of this section. We
start with rHσh and Hu

h :

(H.0) rHσh contains the multiples of the identity tensor I.

(H.1) divpHσh q Ă Hu
h .

The hypothesis (H.0), together with the decomposition Hpdivℓ; Ωq “ H0pdivℓ; Ωq ‘ R I, allows us
to rewrite Hσh as

Hσh “

#

τ h ´

˜

1

n |Ω|

ż

Ω
trpτ hq

¸

I : τ h P rHσh

+

.

Next, to obtain the discrete analogue of Lemma 3.1, it remains to verify the assumptions of [23,
Theorem 3.5], namely, that a and czh are symmetric and positive semi-definite, and that the discrete
versions of (3.23) and (3.24) hold. The first statement clearly follows from (3.25), whereas for the
second one we first notice, thanks to (H.1), that the discrete kernel of the operator induced by
Hσh Q τ h ÞÑ bpτ h, ¨q P pHu

hq1 is given by

Vh :“
!

τ h P Hσh : divpτ hq “ 0 in Ω
)

,

which is certainly contained in the continuous kernel V (see (3.22)). Consequently, proceeding similarly
as for the continuous inf-sup condition for a (cf. (3.23)), we readily deduce the existence of a positive
constant αd, which actually coincides with α “ c21{ν1, and hence independent of h, such that

sup
0‰τhPVh

apχh, τ hq

}τ h}divℓ; Ω
ě αd }χh}divℓ; Ω @χh P Vh .

Now we introduce the third assumption concerning the finite element subspaces, namely the discrete
inf-sup condition for b:

(H.2) there exists a positive constant βd, independent of h, such that

sup
0‰τhPHσ

h

bpτ h,vhq

}τ h}divℓ; Ω
ě βd }vh}0,ρ; Ω @vh P Hu

h . (3.50)

We are now in a position to present the discrete version of Lemma 3.1.

Lemma 3.8 Given δd ą 0 and pzh, φhq P Hu
h ˆ Hϕh such that }zh}0,ρ; Ω ď δd, the problem (3.46) has

a unique solution pσh,uhq P Hσh ˆ Hu
h , and consequently, Sdpzh, φhq is well-defined. Moreover, there

exists a positive constant CSd, depending only on δd, ρ, ν0, ν1, D1, F1, βd, and |Ω|, such that

}Sdpzh, ψhq}0,ρ;Ω ď }pσh,uhq}HˆQ

ď CSd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φh}1,Ω ` }ϕr}0,s; Ω
˘

)

.
(3.51)

Proof. It suffices to see, according to the previous analysis, that the hypotheses of [23, Theorem 3.5]
are satisfied. Consequently, and analogously to Lemma 3.1, we obtain the existence and uniqueness
of the solution, along with the a priori estimate (3.51). ˝
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In order to establish the well-definedness of rSd, we shall prove that the problem (3.48) is well-posed.
To achieve this, we need to assume the following hypothesis concerning the finite element subspaces
Hϕh and Hλh:

(H.3) there exists a positive constant rβd, independent of h, such that

sup
0‰ψhPHϕ

h

bpψh, ξhq

}ψh}1,Ω
ě rβd }ξh}´1{2,Γ @ ξh P Hλh . (3.52)

Lemma 3.9 Given δ0 as in Lemma 3.2, and zh P Hu
h such that }zh}0,ρ; Ω ď δ0, the problem (3.48)

has a unique solution pϕh, λhq P Hϕh ˆ Hλh, and, consequently,
rSdpϕh, λhq is well-defined. In addition,

there exists a positive constant C
rSd
, depending only on κ, η, cP , rβd, and |Ω|, such that

}rSdpzhq}H1pΩqˆH´1{2pΓq ď C
rSd

!

}g}0,Ω ` }ϕD}1{2,Γ

)

.

Proof. Since }zh}0,ρ; Ω ď δ0 “ 1
2 }is}

´1 κ cP , the bilinear form azh is H1pΩq-elliptic (cf. (3.30)), and

hence, in particular, its restriction to HϕhˆHϕh becomes coercive. In turn, thanks to assumption (H.3),
the discrete inf-sup condition for b holds (cf. (3.52)). Therefore, by Babuška–Brezzi theory (see, for
instance, [28, Theorem 2.3]), we conclude the well-posedness of (3.48), along with the corresponding
a priori estimate. ˝

As in the continuous case (cf. Section 3.2), we now study the solvability of the fixed-point equation
(3.49). Indeed, in order to ensure the well-definedness of Td, we first set r P p0, rd0s, where

rd0 :“ mintδd, δ0u , with δd ą 0 and δ0 :“
1

2
}is}

´1 κ cP , (3.53)

satisfying Lemmas 3.8 and 3.9. We remark that δ0 is the same radius considered in Lemma 3.2. We
then introduce the discrete ball

Whprq :“
!

zh P Hu
h : }zh}0,ρ; Ω ď r

)

. (3.54)

The following result, analogous to Lemma 3.3, establishes that Td is well-defined when restricted
to Whprq, and maps it into itself.

Lemma 3.10 Let r P p0, rd0s, with rd0 as in (3.53), and assume that the data fulfill

CTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

ď r , (3.55)

where CTd :“ CSd max
␣

C
rSd
, 1
(

(cf. Lemmas 3.8 and 3.9). Then, TdpWhprqq Ă Whprq and the
restricted operator Td|Whprq : Whprq Ñ Whprq is well-defined.

Proof. The argument is analogous to that of Lemma 3.3, and the details are omitted. ˝

With the previous result established, we can now state the discrete analogues of Lemmas 3.4 and
3.5 with corresponding constants denoted by LSd and L

rSd
. However, since the discrete versions are

direct counterparts of their continuous analogues, we omit the proofs and focus instead on presenting
the Lipschitz continuity result for the discrete global fixed-point operator Td. We then conclude with
the main result of this section: the solvability of the Galerkin scheme (3.45). In other words, the
discrete versions of Lemma 3.6 and Theorem 3.7 read as follows.
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Lemma 3.11 Let r P p0, rd0s, with rd0 as in (3.53), and assume that the data satisfy (3.55). Then,
there exists a positive constant LTd, depending on LSd, CrSd

, and L
rSd
, such that

}Tdpz1,hq ´ Tdpz2,hq}0,ρ; Ω

ď LTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

}z1,h ´ z2,h}0,ρ; Ω

for all z1,h, z2,h P Whprq.

Theorem 3.12 Let r P p0, rd0s, with rd0 as in (3.53), and assume that the data satisfy (3.55) and

LTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

ă 1 .

Then, there exists a unique uh P Whprq (cf. (3.54)) such that Tdpuhq “ uh, or equivalently, the

problem (3.45) has a unique solution pσh,uh, ϕh, λhq P Hσh ˆ Hu
h ˆ Hϕh ˆ Hλh, with uh P Whprq.

Moreover, there exist positive constants C1,d and C2,d, depending only on CSd and C
rSd
, such that

}pσh,uhq}HˆQ ď C1,d
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

,

and }pϕh, λhq}H1pΩqˆH´1{2pΓq ď C2,d
!

}g}0,Ω ` }ϕD}1{2,Γ

)

.

3.4 A priori error analysis

In this section, we derive an a priori error estimate for the Galerkin scheme (3.45). To this end, we set
r P p0,mintr0, r

d
0us, with r0, r

d
0 satisfying (3.31), (3.53), and let pσ,u,ϑ, ϕq P HˆQˆH1pΩqˆH´1{2pΓq,

with u P Wprq, and pσh,uh,ϑh, ϕhq P Hσh ˆHu
h ˆHϑ

h ˆHϕh, with uh P Whprq, be the unique solutions
of the continuous problem (3.11) and the Galerkin Scheme (3.45), respectively. In what follows, given
a subspace Vh of a generic Banach space pV, } ¨ }V q, we set the distance of v P V to Vh as

dist pv, Vhq :“ inf
vhPVh

}v ´ vh}V . (3.56)

We begin our analysis by estimating the error for the Brinkman–Forchheimer unknowns, namely
}pσ,uq ´ pσh,uhq}HˆQ. To achieve this, we recall the equivalent form of the uncoupled Brinkman–
Forchheimer formulation, namely (3.19) with pz, φq “ pu, ϕq, and its discrete counterpart (3.47) with
pzh, φhq “ puh, ϕhq. Bearing in mind the well-posedness of these problems, and employing the same
arguments used to infer (3.27), we derive the existence of a constant αA,d ą 0, depending only on δd,
ρ, ν0, D1, F1, αd, βd, and |Ω|, such that for each zh P Hu

h satisfying }zh}0,ρ;Ω ď δd, there holds the
inf-sup condition for Azh , that is,

sup
0‰pτh,vhqPHσ

h ˆHu
h

Azh ppχh,whq, pτ h,vhqq

}pτ h,vhq}HˆQ
ě αA,d }pχh,whq}HˆQ @ pχh,whq P Hσh ˆ Hu

h .

In particular, since }uh}0,ρ;Ω ď r ď δd, the above holds for Auh
, and hence, employing the Strang-

type estimate provided by [15, Lemma 5.1], we arrive at

}pσ,uq ´ pσh,uhq}HˆQ ď CST, BF
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` }Rϕ ´ Rϕh}pHσ
h ˆHu

hq1

` }Au

`

pσ,uq, p¨, ¨q
˘

´ Auh

`

pσ,uq, p¨, ¨q
˘

}pHσ
h ˆHu

hq1

)

,
(3.57)
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where CST, BF is a positive constant depending only on αA,d, ν0, D1, F1, r, ρ, and |Ω|, and hence
independent of h. In order to estimate the consistency terms of the right hand side of (3.57), we first
use (3.37) to discover

}Rϕ ´ Rϕh}pHσ
h ˆHu

hq1 “ }Gϕ ´ Gϕh}pHu
hq1 ď }is} }g}0,Ω }ϕ´ ϕh}1,Ω . (3.58)

In turn, using the definition of Au and Auh
, together with the estimate (3.36), we obtain that

}Au

`

pσ,uq, p¨, ¨q
˘

´ Auh

`

pσ,uq, p¨, ¨q
˘

}pHσ
h ˆHu

hq1 “ }cuh
pu, ¨q ´ cupu, ¨q}pHu

hq1

ď Lc

`

}uh}0,ρ; Ω ` }u}0,ρ; Ω
˘ρ´3

}u}0,ρ; Ω }uh ´ u}0,ρ; Ω ,

which, since u P Wprq and uh P Whprq, implies that

}Au

`

pσ,uq, p¨, ¨q
˘

´ Auh

`

pσ,uq, p¨, ¨q
˘

}pHσ
h ˆHu

hq1 ď Lc p2rqρ´3 }u}0,ρ; Ω }u ´ uh}0,ρ; Ω . (3.59)

Then, replacing back (3.58) and (3.59) into (3.57), it follows that

}pσ,uq ´ pσh,uhq}HˆQ

ď rCST, BF
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` }ϕ´ ϕh}1,Ω ` }u}0,ρ; Ω }u ´ uh}0,ρ; Ω

)

,
(3.60)

where rCST, BF is a positive constant depending only on CST, BF, }is}, }g}0,Ω, Lc, r, and ρ.

Now, our goal is to obtain an estimate for }pϕ, λq ´pϕh, λhq}H1pΩqˆH´1{2pΓq. For this, we now employ
the Strang-type estimate from [29, Theorem 2.2], so that after using the coercivity constant of auh

(cf. (3.30)), the stability properties (3.17e)–(3.17g), and the fact that u P Wprq and uh P Whprq, we
deduce that

}pϕ, λq ´ pϕh, λhq} ď C1 dist pϕ,Hϕhq ` C2 dist pλ,Hλhq ` C3 } pau ´ auh
q pϕ, ¨q}

pHϕ
hq1 , (3.61)

where, C1, C2, and C3 are positive constants depending only on η, κ, cP , }is}, and rβd. Regarding the
third term on the right-hand side of (3.61), we proceed as in (3.39), that is, we use the definition of
the bilinear form az (cf. (3.15)), Hölder’s inequality, and the continuity of the embedding operator is.
As a consequence, estimate (3.61) becomes

}pϕ, λq ´ pϕh, λhq} ď rCST,CDR
!

dist
`

pϕ, λq,Hϕh ˆ Hλh
˘

` }ϕ}1,Ω }u ´ uh}0,ρ; Ω

)

, (3.62)

where rCST,CDR :“ max
␣

C1, C2, C3 }is}
(

. Thus, multiplying (3.60) by 1

2 rCST, BF
, summing up with (3.62),

bounding }u}0,ρ; Ω and }ϕ}1,Ω according to (3.44), and performing some algebraic arrangements, we
find that

}pσ,uq ´ pσh,uhq}HˆQ ` }pϕ, λq ´ pϕh, λhq}H1pΩqˆH´1{2pΓq

ď pC
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` dist
`

pϕ, λq,Hϕh ˆ Hλh
˘

)

` rC
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω

)

}u ´ uh}0,ρ; Ω ,

(3.63)

where pC and rC are positive constants depending only on rCST, BF, rCST, CDR, C1, C2 (cf. (3.44)), and }g}0,Ω.

We conclude this section with its main result, which is the Céa estimate associated with the Galerkin
scheme (3.45).
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Theorem 3.13 In addition to the hypotheses of Theorems 3.7 and 3.12, assume that

rC
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω

)

ď
1

2
. (3.64)

Then, there holds

}pσ,uq ´ pσh,uhq}HˆQ ` }pϕ, λq ´ pϕh, λhq}H1pΩqˆH´1{2pΓq

ď 2 pC
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` dist
`

pϕ, λhq,Hϕh ˆ Hλh
˘

)

.
(3.65)

Proof. It follows straightforwardly from (3.63) by bounding }u ´ uh}0,ρ;,Ω by }pσ,uq ´ pσh,uhq}HˆQ,
and then using assumption (3.64). We omit further details. ˝

3.5 Specific finite element subspaces and rates of convergence

Given an integer l ě 0 and a subset S of Rn, we denote by PlpSq the space of polynomials of total
degree at most l defined on S, and PlpSq its vectorial counterpart. In turn, for each integer k ě 0 and
K P Th, we define the local Raviart–Thomas spaces of order k as RTkpKq :“ PkpKq‘ rPkpKqx, where
x :“ px1, . . . , xnqt is a generic vector of Rn and rPkpKq is the space of polynomials of total degree
equal to k defined on K. Furthermore, define RTkpKq as the tensor space in which each row lies in
RTkpKq.

Under this notation, we define the following finite element subspaces for the Brinkman–Forchheimer
unknowns:

rHσh :“
!

τ h P Hpdivℓ; Ωq : τ h
ˇ

ˇ

K
P RTkpKq @K P Th

)

,

Hu
h :“

!

vh P LρpΩq : vh
ˇ

ˇ

K
P PkpKq @K P Th

)

.
(3.66)

Certainly, it is easy to see that rHσh contains the multiples of the identity and that divpHσh q Ă Hu
h ,

so that hypotheses (H.0) and (H.1) hold. Furthermore, the inf-sup condition associated with (H.2)
was established for ρ “ 4 in [21, Lemma 5.5], and its proof can be easily extended to the present range
of ρ (see also [10, Lemma 4.4] or [11, Lemma 3.3] for the vector version of it).

For the convection-diffusion-reaction part, we approximate ϕ with the classical Lagrange finite
element space of order k ` 1,

Hϕh :“
!

ψh P CpΩq : ψh|K P Pk`1pKq @K P Th
)

. (3.67)

On the other hand, in order to approximate λ, we introduce an independent triangulation of Γ (made
of straight segments in R2, or triangles in R3), namely tΓ1,Γ2, . . . ,Γmu, set rh :“ max

jPt1,...,mu
|Γj |, and

define
Hλ
rh
:“

!

ξ
rh

P L2pΓq : ξ
rh
|Γj P PkpΓjq @ j P t1, . . . ,mu

)

(3.68)

as the approximation subspace of λ. Then, under certain conditions on the mesh sizes, Hϕh and Hλ
rh

constitute a stable pair of finite element subspaces for the convection-diffusion-reaction part of our
Galerkin scheme (3.45). More precisely, one can prove (cf. [22, Lemma 4.10] or [28, Lemma 4.7]) that
there exists a positive constant C0 such that whenever h ď C0

rh, the discrete inf-sup condition (3.52),
corresponding to hypothesis (H.3), is satisfied. Therefore, when using the aforementioned subspaces,
it is necessary to assume this mesh-size restriction in order to ensure the theoretical results established
earlier.
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Now we aim to obtain the rates of convergence of our Galerkin scheme (3.45) with the specific finite
element subspaces defined previously. To this end, approximation properties of the finite element
subspaces Hσh , Hu

h , Hϕh and Hλ
rh
are presented below, which follow from interpolation estimates of

Sobolev spaces and the approximation properties of the orthogonal projectors and the interpolation
operators involved in their definitions (see, for instance, [6], [11], [21], [27], [28]).

pAPσh q there exists C ą 0, independent of h, such that for each l P p0, k ` 1s, and for each τ P

HlpΩq X H0pdivℓ; Ωq with divpτ q P Wl,ℓpΩq, there holds

dist pτ ,Hσh q ď C hl
!

}τ }l,Ω ` }divpτ q}l,ℓ;Ω

)

,

pAPu
hq there exists C ą 0, independent of h, such that for each l P r0, k`1s, and for each v P Wl,ρpΩq

there holds
dist pv,Hu

hq ď C hl }v}l,ρ;Ω ,

pAPϕ
hq there exists C ą 0, independent of h, such that for each l P p0, k`1s, and for each ψ P Hl`1pΩq,

there holds
dist pψ,Hϕhq ď C hl }ψ}l`1,Ω ,

pAPλ
rh
q there exists C ą 0, independent of rh, such that for each l P p0, k ` 1s, and for each ξ P

H´1{2`lpΓq, there holds
dist pξ,Hλ

rh
q ď C rhl }ξ}´1{2`l,Γ .

These approximation properties, together with the Céa estimate (3.65), yield the following result,
which summarizes the convergence rates of our Galerkin scheme (3.45).

Theorem 3.14 In addition to the hypotheses of Theorems 3.7, 3.12, and 3.13, assume that there
exists l P p0, k ` 1s such that σ P HlpΩq X H0pdivℓ; Ωq, divpσq P Wl,ℓpΩq, u P Wl,ρpΩq, ϕ P Hl`1pΩq

and λ P H´1{2`lpΓq. Then, there exists a positive constant C, independent of h and rh, such that for
all h ď C0

rh there holds

}pσ,uq ´ pσh,uhq}HˆQ ` }pϕ, λq ´ pϕh, λhq}H1pΩqˆH´1{2pΓq

ď C hl
!

}σ}l,Ω ` }divpσq}l,ℓ;Ω ` }u}l,ρ;Ω ` }ϕ}l`1,Ω

)

` C rhl }λ}´1{2`l,Γ .

4 The fully-mixed approach

In this section, and as an alternative to the approach presented in Section 3, we introduce and analyze
a fully-mixed method for the system (2.1). Following the same structure as in that section, we begin
by introducing the corresponding variational formulation and establishing its well-posedness through
a fixed-point strategy. Then, we prove the stability of the associated Galerkin scheme and derive a
Céa-type estimate for the discrete approximations. Finally, we provide an example of finite element
subspaces yielding a stable associated Galerkin scheme.

4.1 The continuous formulation

In what follows we basically adopt the strategy of [15], but without employing the augmentation
procedure used therein. Instead, we employ a fully Banach space framework, as in [14], [12], and
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[9]. Specifically, in addition to the pseudostress tensor σ defined in (3.1), we now introduce the
pseudodiffusion vector ϑ by

ϑ :“ κ∇ϕ´ ϕu in Ω . (4.1)

We emphasize that this new unknown does not modify the formulation of the Brinkman–Forchheimer
part (cf. (3.4) and (3.6)). Thus, we focus on deriving the mixed formulation for the convection-
diffusion-reaction component of the coupled problem. In this way, we take the divergence of ϑ in
(4.1), apply (2.1b) to the resulting equation, and then use (2.1c), obtaining

divpϑq “ κ∆ϕ´ u ¨ ∇ϕ´ divpuqϕ “ pη ´ fqϕ´ g in Ω .

The resulting equation, along with (4.1) and the Dirichlet condition for the concentration, yields an
equivalent system for the convection-diffusion-reaction equations, given by

κ´1 ϑ ´ ∇ϕ ` κ´1 ϕu “ 0 in Ω ,

div
`

ϑ
˘

´ pη ´ fqϕ “ ´ g in Ω ,

ϕ “ ϕD on Γ .

(4.2)

Seeking ϕ originally in H1pΩq, we multiply the first equation of (4.2) by a function ψ P Hpdivt; Ωq

(cf. (1.1)), where t lies in the range specified right before (1.4), and integrate by parts, to arrive at
ż

Ω
κ´1 ϑ ¨ψ `

ż

Ω
ϕ divpψq `

ż

Ω
κ´1ϕu ¨ψ “ ⟨ψ ¨ n, ϕD⟩ @ψ P Hpdivt; Ωq , (4.3)

where we use, additionally, the Dirichlet condition from (4.2), with the datum ϕD P H1{2pΓq. On the
other hand, testing the second equation of (4.2) against a scalar field ξ, we formally obtain

ż

Ω
ξ divpϑq ´

ż

Ω
pη ´ fqϕ ξ “ ´

ż

Ω
g ξ . (4.4)

Certainly, for the equations (4.3) and (4.4) to be well-defined, it is not necessary that ϕ belong to H1pΩq,
since the gradient was eliminated by introducing the pseudodiffusion vector. In this context, returning
to the Brinkman–Forchheimer equations, and more precisely to the right-hand side of (3.4), the bound
given in (3.5) reveals that it suffices for ϕ to lie in LspΩq, where we recall that s “ 2ρ{pρ´ 2q P r4, 6s.
Bearing this in mind, the second term of (4.3) is well-defined if t is chosen to be the Hölder conjugate
of s, that is, t :“ 2ρ{pρ ` 2q P r6{5, 4{3s. Note that this choice is indeed consistent with the range of
values specified in (1.4). If, additionally, we seek ϑ in L2pΩq, then every term of (4.3) is well-defined.

Next, taking ξ in the same space to which ϕ belongs, that is ξ P LspΩq, we realize from the first
term of (4.4) that, besides requiring ϑ in L2pΩq, we also need that divpϑq P LtpΩq, whence ϑ must be
sought in Hpdivt; Ωq. Additionally, the right-hand side of the same equation motivates the assumption
that the datum g belongs to LtpΩq. Regarding the second term, we apply the triangle inequality and
use the injections is,2 and is,4 (cf. (1.3)) to observe that

ˇ

ˇ

ˇ

ż

Ω
pη ´ fqϕ ξ

ˇ

ˇ

ˇ
ď

´

η |Ω|2{ρ ` }f}0,Ω |Ω|p4´ρq{p2ρq
¯

}ϕ}0,s; Ω }ξ}0,s; Ω .

We remark that the space setting depends completely on ρ P r3, 4s. More precisely, we introduce
three new parameters, which have been discussed earlier, that depend on ρ, namely,

ℓ :“
ρ

ρ´ 1
P

„

4

3
,
3

2

ȷ

, s :“
2ρ

ρ´ 2
P r4, 6s and t :“

2ρ

ρ` 2
P

„

6

5
,
4

3

ȷ

, (4.5)
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which help to define the spaces H :“ H0pdivℓ; Ωq, Q :“ LρpΩq, X :“ Hpdivt; Ωq and Y :“ LspΩq.
This, along with (3.4), (3.6), (4.3), and (4.4), leads to the fully-mixed formulation of the problem
(2.1): Find pσ,uq P H ˆ Q and pϑ, ϕq P X ˆ Y such that

apσ, τ q ` bpτ ,uq “ Fpτ q @ τ P H ,

bpσ,vq ´ cupu,vq “ Gϕpvq @v P Q ,

papϑ,ψq `pbpψ, ϕq ` dupψ, ϕq “ pFpψq @ψ P X ,

pbpϑ, ξq ´ pcf pϕ, ξq “ pGpξq @ ξ P Y ,

(4.6)

where the bilinear forms a : HˆH Ñ R, b : HˆQ Ñ R and cz : QˆQ Ñ R, for each z P Q, and the
linear functionals F : H Ñ R and Gφ : Q Ñ R, for each φ P Y, are already defined in (3.12)–(3.14). In

turn, the bilinear forms pa : XˆX Ñ R, pb : XˆY Ñ R, dz : XˆY Ñ R, for each z P Q, pcf : YˆY Ñ R,

and the linear functionals pF : X Ñ R and pG : Y Ñ R, are defined as

papζ,ψq :“

ż

Ω
κ´1 ζ ¨ ψ , pbpψ, ξq :“

ż

Ω
ξ divpψq , dzpψ, ξq :“

ż

Ω
κ´1 ξ z ¨ ψ ,

pcf pζ, ξq :“

ż

Ω
pη ´ fq ζ ξ , pFpψq :“ ⟨ψ ¨ n, ϕD⟩ , pGpξq :“ ´

ż

Ω
g ξ .

We finally remark that the only change for the Brinkman–Forchheimer mixed formulation is that
ϕ now lies in LspΩq instead of H1pΩq. This implies that the stability estimate for Gφ must be slightly
modified. More precisely, in addition to the stability properties for a, b, cz, and F (cf. (3.17a),
(3.17b), (3.17c)), we also have

|Gφpvq| ď }g}0,Ω

´

}φ}0,s; Ω ` }ϕr}0,s; Ω

¯

}v}Q, (4.7a)

|papζ,ψq| ď κ´1 }ζ}X }ψ}X, |pbpψ, ξq| ď }ψ}X }ξ}Y, (4.7b)

|dzpψ, ξq| ď κ´1 }z}0,ρ;Ω }ψ}X }ξ}Y, (4.7c)

|pcf pζ, ξq| ď

´

η |Ω|2{ρ ` }f}0,Ω |Ω|p4´ρq{p2ρq
¯

}ζ}Y }ξ}Y, (4.7d)

|pFpψq| ď maxt1, }is}u }ϕD}1{2,Γ }ψ}X, and |pGpξq| ď }g}0,t;Ω }ξ}Y. (4.7e)

4.2 Solvability analysis

To prove the well-posedness of (4.6), we proceed analogously as in Section 3.2. We keep the same
notation for the operator S defined according to (3.18), but understanding that now the space H1pΩq

becomes Y. Additionally, we define the operator pS : Q Ñ Y by pSpzq :“ ϕ, where pϑ, ϕq P XˆY is the
unique solution, to be confirmed below, of the uncoupled mixed formulation arising from (4.6) when
du is replaced by dz, that is

papϑ,ψq `pbpψ, ϕq ` dzpψ, ϕq “ pFpψq @ψ P X ,

pbpϑ, ξq ´ pcf pϕ, ξq “ pGpξq @ ξ P Y .
(4.8)

Equivalently, pϑ, ϕq P X ˆ Y is the unique solution of

pA
`

pϑ, ϕq, pψ, ξq
˘

` dzpψ, ϕq “ pFpψq ` pGpξq @ pψ, ξq P X ˆ Y, (4.9)
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where pA : pX ˆ Yq ˆ pX ˆ Yq Ñ R is the bilinear form defined by

pA
`

pϱ, ζq, pψ, ξq
˘

:“ papϱ,ψq `pbpψ, ζq `pbpϱ, ξq ´ pcf pζ, ξq, (4.10)

for all
`

pϱ, ζq, pψ, ξq
˘

P X ˆ Y. Finally, we define the operator pT : Q Ñ Q as

pTpzq :“ S
`

z, pSpzq
˘

@ z P Q .

We remark here that if S and pS are well-defined, then pT is well-defined as well. In addition, it is
clear that solving (4.6) is equivalent to finding a fixed point of the operator pT, that is, seeking u P Q
such that

pTpuq “ u . (4.11)

In the analysis presented in Section 3, we have already established that the operator S is well-
defined. It is worth noting that the constants appearing in the associated estimates may differ in the
current setting, due to the modified stability properties of the operator Gφ (cf. (4.7a)). Nevertheless,
the only change arises in the norm of the embedding is, which is specific to the mixed-primal approach.
The following result shows the slight modification of Lemma 3.1.

Lemma 4.1 Given δ ą 0 and pz, φq P Q ˆ Y such that }z}0,ρ; Ω ď δ, the problem (3.18) has a unique
solution pσ,uq P H ˆ Q and hence, Spz, φq is well-defined. Moreover, there exists a positive constant
CS, depending only on δ, ρ, ν0, ν1, D1, F1, β (cf. (3.24)) and |Ω|, such that

}Spz, φq}0,ρ;Ω ď }pσ,uq}HˆQ ď CS

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φ}0,s; Ω ` }ϕr}0,s; Ω
˘

)

. (4.12)

In addition, we also have the global inf-sup condition, given by (3.27), which we shall use later.

Our next goal is to prove that the uncoupled problem (4.8) is well-posed, and, consequently, the
operator pS is well-defined. To achieve this, we will actually prove the well-posedness of the problem
(4.9) by applying the well-known Banach–Nečas–Babuška theorem in combination with [23, Theorem
3.4]. We start with the following lemma, which establishes an inf-sup condition for pA. We remark in
advance that applying [23, Theorem 3.4] will require an additional assumption on the data, which is
not needed in the mixed-primal approach studied in Section 3, namely

fpxq ď η @x P Ω . (4.13)

In particular, note that (4.13) is trivially satisfied for incompressible fluids, that is when f “ 0. The
aforementioned result reads as follows.

Lemma 4.2 Assume that the data satisfy (4.13). Then, there exists a positive constant α
pA
, depending

on κ, η, ρ, and |Ω|, such that

sup
0‰pψ,ξqPXˆY

pAppϱ, ζq, pψ, ξqq

}pψ, ξq}XˆY
ě α

pA
}pϱ, ζq}XˆY @ pϱ, ζq P X ˆ Y . (4.14)

Proof. According to the structure of pA (cf. (4.10)), which was studied in [23], and bearing in mind
that the global inf-sup condition [23, eq. (3.33)] follows from the verification of the hypotheses of [23,
Theorem 3.1] (or of its particular case given by [23, Theorem 3.4]), we realize that in order to prove
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(4.14), it suffices to check that pa, pb, and pcf satisfy the hypotheses of [23, Theorem 3.4]. Indeed, we
start by noting that pa and pcf are symmetric. In addition, there clearly holds

papψ,ψq “ κ´1 }ψ}20,Ω ě 0 @ψ P X ,

whereas employing (4.13) we deduce that

pcf pξ, ξq “

ż

Ω
pη ´ fq |ξ|2 ě 0 @ ξ P Y ,

so that pa and pcf are both positive semi-definite. On the other hand, the kernel pV of the operator

X Q ψ ÞÑ pbpψ, ¨q P Y1 is characterized by

pV :“
!

ψ P Hpdivt; Ωq : divpψq “ 0 in Ω
)

. (4.15)

It readily follows from the definition of pa and the above characterization of pV that

sup
0‰ψPpV

pappϑ,ψq

}ψ}divt;Ω
ě κ´1 }pϑ}divt;Ω @ pϑ P pV , (4.16)

which constitutes the required inf-sup condition for pa. In turn, we know from [31, Lemma 2.9] that
there exists a positive constant C

pb
, depending only on |Ω|, such that

sup
0‰ψPHpdivt;Ωq

pbpψ, pϕq

}ψ}divt;Ω
ě C

pb
}pϕ}0,s;Ω @ pϕ P LspΩq ,

thus establishing the continuous inf-sup condition for pb. In this way, a straightforward application of
[23, Theorem 3.4] yields (4.14) with a positive constant α

pA
depending only on κ, C

pb
, and the stability

properties associated with pa, pb, and pcf (cf. (4.7b) and (4.7d)), and hence only on κ, C
pb
, η, |Ω|, ρ, and

}f}0,Ω, where the latter can be bounded by }f}0,Ω ď η |Ω|1{2 thanks to (4.13). This ends the proof. ˝

Now, as a consequence of (4.14) and the stability property for dz (cf. (4.7c)), we easily deduce that
for each z P Q such that }z}0,ρ; Ω ď pδ0 :“ κα

pA
{2, there holds

sup
0‰pψ,ξqPXˆY

pAppϱ, ζq, pψ, ξqq ` dzpψ, ζq

}pψ, ξq}XˆY
ě

α
pA

2
}pϱ, ζq}XˆY @ pϱ, ζq P X ˆ Y . (4.17)

Similarly, thanks to the symmetry of pA and (4.7c), for each z P Q such that }z}0,ρ; Ω ď pδ0, there also
holds

sup
0‰pϱ,ζqPXˆY

pAppϱ, ζq, pψ, ξqq ` dzpψ, ζq

}pϱ, ζq}XˆY
ě

α
pA

2
}pψ, ξq}XˆY @ pψ, ξq P X ˆ Y . (4.18)

Hence, we are now in a position to show the well-posedness of (4.8).

Lemma 4.3 Let z P Q such that }z}0,ρ; Ω ď pδ0 :“ κα
pA

{2, and assume that the data satisfy (4.13).

Then, the problem (4.8) has a unique solution pϑ, ϕq P X ˆ Y and, hence, pSpzq is well-defined. More-
over, there exists a positive constant C

pS
, depending only on κ, η, ρ and |Ω|, such that

}pSpzq}0,s;Ω ď }pϑ, ϕq}XˆY ď C
pS

!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

. (4.19)
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Proof. From the previous discussion we know that the assumption on z implies (4.17) and (4.18), and
hence the result follows from a straightforward application of the Banach–Nečas–Babuška theorem (cf.
[27, Theorem 2.6]) to the problem (4.9), which is equivalent to (4.8). Moreover, the bound (4.19) is
derived from the a priori bound provided by the aforementioned theorem. More precisely, using the
indicated upper bound for }z}0,ρ;Ω along with the stability properties (4.7e), we deduce that

}pSpzq}0,s;Ω ď }pϑ, ϕq}XˆY ď
2

α
pA

}ppF, pGq}X1ˆY1 ď C
pS

!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

,

with C
pS
:“ 2α´1

pA
maxt1, }is}u. ˝

Next, we aim to prove that the equation pTpuq “ u has a unique solution under certain conditions
on the data. To this end, we take r P p0, pr0s, where

pr0 :“ mintδ, pδ0u , with δ ą 0 and pδ0 :“ κα
pA

{2 . (4.20)

We remark that δ is the same radius considered in Lemma 3.1. Then, we define

Wprq :“
!

z P Q : }z}0,ρ; Ω ď r
)

,

and prove below that, under sufficiently small data, pT maps Wprq into itself.

Lemma 4.4 Let r P p0, pr0s, with pr0 as in (4.20), and assume that the data satisfy (4.13) and

C
pT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω
˘

)

ď r , (4.21)

where C
pT

:“ CS max
␣

C
pS
, 1
(

(cf. Lemmas 4.1 and 4.3). Then, pTpWprqq Ă Wprq and the restricted

operator pT
ˇ

ˇ

Wprq
: Wprq Ñ Wprq is well-defined.

Proof. Having established the well-definedness of S and pS
ˇ

ˇ

Wprq
(cf. Lemmas 4.1 and 4.3), the operator

pT
ˇ

ˇ

Wprq
is well-defined. In turn, given z P Wprq, the estimate (4.12) in combination with (4.19), yields

}pTpzq}0,ρ;Ω “ }Spz, pSpzqq}0,ρ;Ω ď CS

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}pSpzq}0,s;Ω ` }ϕr}0,s;Ω
˘

)

ď C
pT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω
˘

)

,

which, thanks to (4.21), allows us to conclude that pTpzq P Wprq, thus ending the proof. ˝

Hereafter, the restricted operator pT
ˇ

ˇ

Wprq
: Wprq Ñ Wprq is simply denoted by pT. We now aim

to prove that pT is a contraction, which will enable us to apply the well-known Banach fixed-point
theorem. We start by proving two preliminary results, which will be instrumental in showing that pT
is Lipschitz continuous.

Lemma 4.5 Let r P p0, pr0s, with pr0 as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant LS, depending only on r, ρ, F1, |Ω|, CS, and αA, such that

}Spz1, φ1q ´ Spz2, φ2q}0,ρ; Ω ď LS

!

C
`

uD, f,g, ϕr, φ2

˘

}z1 ´ z2}0,ρ;Ω ` }g}0,Ω }φ1 ´ φ2}0,s; Ω

)

, (4.22)

for all pz1, φ1q, pz2, φ2q P Wprq ˆ Y, where

C
`

uD, f,g, ϕr, φ
˘

:“ }uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φ}0,s; Ω ` }ϕr}0,s; Ω
˘

@φ P Y .
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Proof. The argument is analogous to that of Lemma 3.4, with LS “ max
␣

LcCS p2rqρ´3, 1
(

{αA. ˝

Lemma 4.6 Let r P p0, pr0s, with pr0 as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant L

pS
, depending only on κ, α

pA
, and C

pS
, such that

}pSpz1q ´ pSpz2q}0,s; Ω ď L
pS

!

}g}0,t; Ω ` }ϕD}1{2,Γ

)

}z2 ´ z1}0,ρ; Ω , (4.23)

for all z1, z2 P Wprq.

Proof. Let z1, z2 P Wprq such that pSpz1q “ ϕ1 and pSpz2q “ ϕ2, where, for each i P t1, 2u, pϑi, ϕiq P

X ˆ Y is the unique solution of the problem (4.9). Thus, it is easy to see that

pA
`

pϑ1 ´ ϑ2, ϕ1 ´ ϕ2q, pψ, ξq
˘

` dz1pψ, ϕ1q ´ dz2pψ, ϕ2q “ 0 @pψ, ξq P X ˆ Y ,

which, along with (4.14) applied to ϱ “ ϑ1 ´ ϑ2 P X and ζ “ ϕ1 ´ ϕ2 P Y, allows us to write

}ϕ1 ´ ϕ2}0,s; Ω ď
1

α
pA

sup
0‰ψPX

dz1pψ, ϕ2q ´ dz2pψ, ϕ2q

}ψ}divt; Ω
. (4.24)

In turn, given ψ P X “ Hpdivt; Ωq, a straightforward application of the Cauchy–Schwarz and Hölder
inequalities, along with the estimate (4.19), yields

ˇ

ˇdz1pψ, ϕ2q ´ dz2pψ, ϕ2q
ˇ

ˇ ď κ´1 }ϕ2}0,s; Ω }z1 ´ z2}0,ρ; Ω }ψ}divt; Ω

ď κ´1C
pS

!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

}z1 ´ z2}0,ρ; Ω }ψ}divt; Ω ,
(4.25)

so that, replacing back (4.25) into (4.24), we obtain (4.23) with L
pS
:“ κ´1 α´1

pA
C
pS
. ˝

Next, as a consequence of Lemmas 4.5 and 4.6, we are able to prove the Lipschitz continuity of pT.

Lemma 4.7 Let r P p0, pr0s, with pr0 as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant L

pT
, depending only on LS, C

pS
, and L

pS
, such that

}pTpz1q ´ pTpz2q}0,ρ; Ω

ď L
pT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t; Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

}z1 ´ z2}0,ρ; Ω ,
(4.26)

for all z1, z2 P Wprq.

Proof. Letting z1, z2 P Wprq and employing (4.22), (4.19), and (4.23), the proof follows the same
steps as in Lemma 3.6, with L

pT
:“ LSmax

␣

1, C
pS

` L
pS

(

. Further details are omitted. ˝

We conclude this section with the main result for the continuous problem, namely, the solvability
of the fixed-point equation (4.11). The proof follows analogous arguments to those used in the proof
of Theorem 3.7, and is therefore omitted.

Theorem 4.8 Let r P p0, pr0s, with pr0 as in (4.20), and assume that the data satisfy (4.13), (4.21),
and

L
pT

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t; Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω
˘

)

ă 1 .

Then, there exists a unique u P Wprq such that pTpuq “ u, or, equivalently, the problem (4.6) has a
unique solution pσ,u,ϑ, ϕq P HˆQˆXˆY, with u P Wprq. Moreover, there exist positive constants
C1 and C2, depending only on CS and C

pS
, such that

}pσ,uq}HˆQ ď C1
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω
˘

)

,

and }pϑ, ϕq}XˆY ď C2
!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

.
(4.27)
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4.3 The Galerkin scheme

In this section, we introduce and analyze a Galerkin scheme for the fully-mixed variational formulation
(4.6). To this end, we focus mainly on the discrete scheme arising from the convection-diffusion-
reaction equations since the one corresponding to the Brinkman–Forchheimer part is exactly as derived
in Section 3.3, except the space where the given discrete concentration is taken now. The above means
that in what follows we consider the same generic finite-dimensional subspaces rHσh Ă Hpdivℓ; Ωq and

Hu
h Ă LρpΩq from before, and set Hσh :“ rHσh X H0pdivℓ; Ωq, whereas for the convection-diffusion-

reaction component, we introduce finite-dimensional subspaces Hϑ
h Ă Hpdivt; Ωq and pHϕh Ă LspΩq. In

this way, the Galerkin scheme associated with (4.6) reads: Find pσh,uhq P Hσh ˆ Hu
h and pϑh, ϕhq P

Hϑ
h ˆ pHϕh such that

apσh, τ hq ` bpτ h,uhq “ Fpτ hq @ τ h P Hσh ,

bpσh,vhq ´ cuh
puh,vhq “ Gϕhpvhq @vh P Hu

h ,

papϑh,ψhq `pbpψh, ϕhq ` duh
pψh, ϕhq “ pFpψhq @ψh P Hϑ

h ,

pbpϑh, ξhq ´ pcf pϕh, ξhq “ pGpξhq @ ξh P pHϕh .

(4.28)

Then, following the discrete analogue of the approach from Section 4.2, we use here a fixed-point
strategy to address the well-posedness of (4.28). More precisely, we let Sd : Hu

h ˆ pHϕh Ñ Hu
h be

the operator defined as in the mixed-primal approach (cf. (3.46)), where we remark, as previously

announced, that the only change is the use of the space pHϕh instead of Hϕh. In turn, we define the

operator pSd : Hu
h Ñ pHϕh by pSdpzhq :“ ϕh, where pϑh, ϕhq P Hϑ

h ˆ pHϕh is the unique solution, to be
confirmed later, of the problem arising from the third and fourth equations of (4.28), after replacing
uh by the given zh P Hu

h , that is

papϑh,ψhq `pbpψh, ϕhq ` dzhpψh, ϕhq “ pFpψhq @ψh P Hϑ
h ,

pbpϑh, ξhq ´ pcf pϕh, ξhq “ pGpξhq @ ξh P pHϕh .
(4.29)

Finally, we define the operator pTd : H
u
h Ñ Hu

h as

pTdpzhq :“ Sdpzh, pSdpzhqq @ zh P Hu
h ,

and realize that solving (4.28) is equivalent to finding a fixed point of the operator pTd, that is, seeking
uh P Hu

h such that
pTdpuhq “ uh .

Next, we aim to establish the well-definedness of the discrete operators Sd and pSd. We begin with
Sd by assuming throughout the rest of this section the same hypotheses (H.0), (H.1), and (H.2) on
the subspaces rHσh and Hu

h , that were introduced in Section 3.3. In this way, and employing the same
arguments from the proof of Lemma 3.8, we are able to state the following result.

Lemma 4.9 Given δd ą 0 and pzh, φhq P Hu
h ˆ pHϕh such that }zh}0,ρ; Ω ď δd, the problem (3.46) has

a unique solution pσh,uhq P Hσh ˆ Hu
h and, consequently, Sdpz, φhq is well-defined. Moreover, there

exists a positive constant CSd, depending only on δd, ρ, ν0, ν1, D1, F1, βd (cf. (3.50)), and |Ω|, such
that

}Sdpzh, ψhq}0,ρ;Ω ď }pσh,uhq}HˆQ

ď CSd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}φh}0,s; Ω ` }ϕr}0,s; Ω
˘

)

.
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In order to deal with the well-definedness of pSd, equivalently the well-posedness of (4.29), we now

introduce two hypotheses concerning the finite element subspaces Hϑ
h and pHϕh, namely:

{(H.3) divpHϑ
h q Ă pHϕh ,

{(H.4) there exists a positive constant C
pb,d

, independent of h, such that

sup
0‰ψhPHϑ

h

pbpψh, ζhq

}ψh}divt;Ω
ě C

pb,d
}ζh}0,s;Ω @ ζh P pHϕh , (4.30)

which are also assumed to hold throughout the rest of this section.

The following result constitutes the discrete analogue of Lemma 4.2.

Lemma 4.10 Assume that the data satisfy (4.13). Then, there exists a positive constant α
pA,d

, de-

pending only on κ, η, ρ, C
pb,d

, and |Ω|, such that

sup
0‰pψh,ξhqPHϑ

h ˆpHϕ
h

pAppϱh, ζhq, pψh, ξhqq

}pψh, ξhq}XˆY
ě α

pA,d
}pϱh, ζhq}XˆY @ pϱh, ζhq P Hϑ

h ˆ pHϕh . (4.31)

Proof. We proceed as in the proof of Lemma 4.2 by applying now [23, Theorem 3.5], which is the
discrete version of [23, Theorem 3.4]. Indeed, we first recall, as established at the beginning of that

proof, that pa and pcf are symmetric and positive semi-definite. In addition, employing {(H.3), we

readily find that the kernel pVh of the discrete operator Hϑ
h Q ψh ÞÑ pbpψh, ¨q P

`

pHϕh
˘1

reduces to

pVh “

!

ψh P Hϑ
h : divpψhq “ 0 in Ω

)

,

which is certainly contained in the continuous kernel pV (cf. (4.15)). It follows that the discrete version
of (4.16) holds with the same constant, that is

sup
0‰ψhPpVh

pappϱh,ψhq

}ψh}divt;Ω
ě κ´1 }pϱh}divt;Ω @ pϱh P pVh .

In turn, the hypothesis {(H.4) (cf. (4.30)) establishes the discrete inf-sup condition for pb. Therefore,
a straightforward application of [23, Theorem 3.5] yields (4.31) with a constant α

pA,d
as announced. ˝

As a consequence of (4.31), the stability property (4.7) again, and the symmetry of pA, we easily
deduce the discrete analogues of (4.17) and (4.18). More precisely, for each zh P Hu

h such that

}zh}0,ρ;Ω ď pδd0 :“ κα
pA,d

{2, there hold

sup
0‰pψh,ξhqPHϑ

h ˆpHϕ
h

pAppϱh, ζhq, pψh, ξhqq ` dzhpψh, ζhq

}pψh, ξhq}XˆY
ě
α

pA,d

2
}pϱh, ζhq}XˆY , (4.32)

for all pϱh, ζhq P Hϑ
h ˆ pHϕh, and

sup
0‰pϱh,ζhqPHϑ

h ˆpHϕ
h

pAppϱh, ζhq, pψh, ξhqq ` dzhpψh, ζhq

}pϱh, ζhq}XˆY
ě
α

pA,d

2
}pψh, ξhq}XˆY , (4.33)

for all pψh, ξhq P Hϑ
h ˆ pHϕh.

We are now in a position to establish the discrete analogue of Lemma 4.3.
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Lemma 4.11 Let zh P Hu
h such that }zh}0,ρ;Ω ď pδd0 :“ κα

pA,d
{2, and assume that the data satisfy

(4.13). Then, the problem (4.29) has a unique solution pϑh, ϕhq P Hϑ
h ˆ pHϕh and, hence, pSdpzhq is

well-defined. Moreover, there exists a positive constant C
pSd
, depending only on κ, η, ρ, C

pb,d
, and |Ω|,

such that
}pSdpzhq}0,s;Ω ď }pϑh, ϕhq}XˆY ď C

pSd

!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

.

Proof. It follows similarly to the proof of Lemma 4.3, by applying now the discrete version of the
Banach–Nečas–Babuška theorem (cf. [27, Theorem 2.22]), that is, by taking into account either (4.32)
or (4.33). We recall that in the finite-dimensional case these discrete inf-sup conditions are equivalent,
and hence just one of them suffices to conclude. Further details are omitted. ˝

Having established the well-definedness of the operators Sd and pSd, we now proceed to show that
the equation pTdpuhq “ uh admits a unique solution under certain conditions on the data. To this end,
we take r P p0, prd0s, where

prd0 :“ mintδd, pδ
d
0u , with δd ą 0 and pδd0 :“ κα

pA,d
{2 , (4.34)

and define
Whprq :“

!

zh P Hu
h : }zh}0,ρ; Ω ď r

)

.

The following result shows that, under sufficiently small data, pTd maps Whprq into itself.

Lemma 4.12 Let r P p0, prd0s, with prd0 as in (4.34), and assume that the data satisfy (4.13) and

C
pTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,t;Ω
`

}g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω
˘

)

ď r , (4.35)

where C
pTd

:“ CSd max
␣

C
pSd
, 1
(

(cf. Lemmas 4.9 and 4.11). Then, pTdpWhprqq Ď Whprq and the

restricted operator pTd|Whprq : Whprq Ñ Whprq is well-defined.

Proof. It is analogous to the proof of Lemma 4.4. ˝

We can establish the discrete analogues of Lemmas 4.5 and 4.6, with constants denoted LSd and
L
pSd
, respectively, and subsequently derive the remaining results. However, since their proofs closely

follow those of their continuous counterparts, we omit them and restrict ourselves to stating next the
discrete analogue of Lemma 4.7 together with the well-posedness of the Galerkin scheme, without
providing detailed proofs either.

Theorem 4.13 Let r P p0, prd0s, with prd0 as in (4.34) and assume that the data satisfy (4.13) and (4.35).
Then, there exists a positive constant L

pTd
, depending only on LSd, CpSd

, and L
pSd
, such that

}pTdpz1,hq ´ pTdpz2,hq}0,ρ; Ω

ď L
pTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω

´

}g}0,t; Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω

¯)

}z1,h ´ z2,h}0,ρ; Ω

for all z1,h, z2,h P Wprq. Moreover, if

L
pTd

!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω

´

}g}0,t; Ω ` }ϕD}1{2,Γ ` }ϕr}0,s; Ω

¯)

ă 1 ,
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there exists a unique uh P Whprq such that pTdpuhq “ uh, or, equivalently, the problem (4.28) has

a unique solution pσh,uh,ϑh, ϕhq P Hσh ˆ Hu
h ˆ Hϑ

h ˆ Hϕh, with uh P Whprq. Moreover, there exist
positive constants C1,d and C2,d, depending only on CSd

and C
pSd
, such that

}pσh,uhq}HˆQ ď C1,d
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,Ω
`

}g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω
˘

)

,

and }pϑh, ϕhq}XˆY ď C2,d
!

}g}0,t;Ω ` }ϕD}1{2,Γ

)

.

4.4 A priori error analysis

We now aim to derive an a priori error estimate for the Galerkin scheme (4.28). For this purpose, we
set r P

`

0,mintpr0, pr
d
0u
‰

, with pr0, pr
d
0 satisfying (4.20), (4.34), and let pσ,u,ϑ, ϕq P HˆQˆXˆY, with

u P Wprq, and pσh,uh,ϑh, ϕhq P Hσh ˆHu
h ˆHϑ

h ˆ pHϕh, with uh P Whprq, be the unique solutions of the
continuous problem (4.6) and the Galerkin scheme (4.28), respectively. We begin with the estimate
for the Brinkman–Forchheimer part of error, that is, }pσ,uq ´ pσh,uhq}HˆQ, for which, proceeding
analogously to the analysis in Section 3.4, and using again the notation from (3.56), we derive the
existence of a positive constant pCST, BF, depending only on CST, BF (cf. (3.57)), }is}, }g}0,Ω, Lc, r, and
ρ, such that the new version of (3.60) reads

}pσ,uq ´ pσh,uhq}HˆQ

ď pCST, BF
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` }ϕ´ ϕh}0,s; Ω ` }u}0,ρ; Ω }u ´ uh}0,ρ; Ω

)

.
(4.36)

Furthermore, in order to derive the error estimate for the convection-diffusion-reaction part, that
is, }pϑ, ϕq ´ pϑh, ϕhq}XˆY, we first rewrite the last two rows of (4.6) and (4.28), respectively, as

Au

`

pϑ, ϕq, pψ, ξq
˘

“ Fpψ, ξq @ pψ, ξq P X ˆ Y,

Auh

`

pϑh, ϕhq, pψh, ξhq
˘

“ Fpψh, ξhq @ pψh, ξhq P Hϑ
h ˆ pHϕh ,

where the bilinear form Az : pXˆYqˆpXˆYq Ñ R, for each z P Q :“ LρpΩq, and the linear functional
F : X ˆ Y Ñ R, are defined, respectively, by

Az

`

pϑ, ϕq, pψ, ξq
˘

:“ pA
`

pϑ, ϕq, pψ, ξq
˘

` dzpψ, ϕq and Fpψ, ξq :“ pFpψq ` pGpξq ,

for all pϑ, ϕq, pψ, ξq P X ˆ Y. Then, knowing from (4.32) or (4.33), that Auh
satisfies the hypotheses

of the discrete version of the Banach–Nečas–Babuška theorem (cf. [27, Theorem 2.22]) with constant
α

pA,d
{2, we can apply the Strang-type estimate given by [15, Lemma 5.1] to conclude the existence of

a positive constant CST, CDR, depending only on α
pA,d

, κ, η, |Ω|, r, and ρ, such that

}pϑ, ϕq ´ pϑh, ϕhq}XˆY ď CST, CDR
!

dist
`

pϑ, ϕq,Hϑ
h ˆ pHϕh

˘

` }dup¨, ϕq ´ duh
p¨, ϕq}pHϑ

h q1

)

. (4.37)

Next, employing the estimate provided by the first row of (4.25), we get

}dup¨, ϕq ´ duh
p¨, ϕq}pHϑ

h q1 ď κ´1 }ϕ}0,s; Ω }u ´ uh}0,ρΩ ,

which, replaced back into (4.37), leads to

}pϑ, ϕq ´ pϑh, ϕhq}XˆY ď pCST, CDR
!

dist
`

pϑ, ϕq,Hϑ
h ˆ pHϕh

˘

` }ϕ}0,s; Ω }u ´ uh}0,ρΩ

)

, (4.38)
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where pCST, CDR :“ CST, CDRmaxtκ´1, 1u. Thus, multiplying now (4.36) by 1

2 pCST, BF
, adding the resulting

inequality to (4.38), and bounding }u}0,ρ; Ω and }ϕ}0,s; Ω according to (4.27), we arrive at

}pσ,uq ´ pσh,uhq}HˆQ ` }pϑ, ϕq ´ pϑh, ϕhq}XˆY

ď pC
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` dist
`

pϑ, ϕq,Hϑ
h ˆ pHϕh

˘

)

` rC
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω

)

}u ´ uh}0,ρ; Ω ,

(4.39)

where pC and rC are positive constants depending only on pCST, BF, pCST, CDR, C1, C2 (cf. (4.27)), and }g}0,Ω.

We conclude this section with the Céa estimate associated with the Galerkin scheme (4.28).

Theorem 4.14 In addition to the hypotheses of Theorems 4.8 and 4.13, assume that

rC
!

}uD}1{2,Γ ` }f}0,Ω ` }g}0,t;Ω ` }ϕD}1{2,Γ ` }ϕr}0,s;Ω

)

ď
1

2
. (4.40)

Then, there holds

}pσ,uq ´ pσh,uhq}HˆQ ` }pϑ, ϕq ´ pϑh, ϕhq}XˆY

ď 2 pC
!

dist
`

pσ,uq,Hσh ˆ Hu
h

˘

` dist
`

pϑ, ϕq,Hϑ
h ˆ pHϕh

˘

)

.
(4.41)

Proof. It suffices to bound }u´uh}0,ρ;,Ω in (4.39) by }pσ,uq´pσh,uhq}HˆQ, and then use assumption
(4.40). We omit further details. ˝

4.5 Specific finite element subspaces and rates of convergence

In this section, we present an example of finite element subspaces that satisfy the hypotheses introduced
in Section 4.3. Using the same notations as in Section 3.5, we consider the tensor Raviart–Thomas
space of order k for rHσh and the discontinuous polynomial space of order k for Hu

h to approximate σ
and u, respectively (cf. (3.66)). As we noticed in Section 3.5, these spaces satisfy hypotheses (H.0),
(H.1), and (H.2). Additionally, we introduce the subspaces

Hϑ
h :“

!

ψh P Hpdivt; Ωq : ψh
ˇ

ˇ

K
P RTkpKq @K P Th

)

,

pHϕh :“
!

ξh P LspΩq : ξh
ˇ

ˇ

K
P PkpKq @K P Th

)

,
(4.42)

which we employ to approximate the solutions ϑ and ϕ of the problem (4.6). These spaces are

stable for the Galerkin scheme (4.28), as they satisfy the hypotheses {(H.3) and {(H.4). In fact, it is

straightforward to deduce that divpHϑ
h q Ă pHϕh, thus proving

{(H.3), whereas {(H.4) has already been
established by [11, Lemma 3.3] for ρ P p3, 4s, which can be easily extended to the case ρ “ 3.

We now collect the approximation properties associated with Hϑ
h and pHϕh (see, e.g., [6], [11], [21],

[27], and [28]). Those regarding the remaining spaces are provided in Section 3.5.

pAPϑh q there exists C ą 0, independent of h, such that, for each l P p0, k` 1s, and for each ψ P HlpΩq

with divpψq P Wl, tpΩq, there holds

dist pψ,Hϑ
h q ď C hl

!

}ψ}l,Ω ` }divpψq}l,t; Ω

)

,
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pAPϕ
hq there exists C ą 0, independent of h, such that for each l P r0, k`1s, and for each ξ P Wl,spΩq,

there holds
dist pξ, pHϕhq ď C hl }ξ}l,s;Ω .

We end this section with the rates of convergence of our Galerkin scheme (4.28), which follow from
the Céa estimate (4.41) and the approximation properties of the subspaces involved.

Theorem 4.15 In addition to the hypotheses of Theorems 4.8, 4.13, and 4.14, assume that there
exists l P p0, k ` 1s such that σ P HlpΩq X H0pdivℓ; Ωq, divpσq P Wl,ℓpΩq, u P Wl,ρpΩq, ϑ P HlpΩq,
divpϑq P Wl, tpΩq, and ϕ P Wl,spΩq. Then, there exists a positive constant C, independent of h, such
that

}pσ,uq ´ pσh,uhq}HˆQ ` }pϑ, ϕq ´ pϑh, ϕhq}XˆY

ď C hl
!

}σ}l,Ω ` }divpσq}l,ℓ;Ω ` }u}l,ρ;Ω ` }ϑ}l,Ω ` }divpϑq}l,t; Ω ` }ϕ}l,s;Ω

)

.

5 Numerical tests

In this section we present three examples illustrating the performance of the mixed finite element
methods (3.45) and (4.28) on a set of quasi-uniform triangulations of the respective domains, and
considering the finite element subspaces defined by (3.66), (3.67), (3.68) and (4.42) (cf. Sections 3.5
and 4.5). In what follows, we refer to the corresponding sets of finite element subspaces generated
by k P t0, 1u in the mixed-primal and fully-mixed schemes as simply RTk ´ Pk ´ Pk`1 ´ Pk and
RTk ´ Pk ´ RTk ´ Pk, respectively. The numerical methods are implemented using FreeFEM [32]. A
Newton–Raphson algorithm with a fixed tolerance of tol “ 1E ´ 06 is used to solve both nonlinear
problems (3.45) and (4.28). As usual, the iterative process is terminated when the relative error
between two successive iterates of the full coefficient vector, namely coeffm and coeffm`1, becomes
sufficiently small, that is,

}coeffm`1 ´ coeffm}DoF

}coeffm`1}DoF
ď tol ,

where } ¨ }DoF denotes the standard Euclidean norm in RDoF, and DoF represents the total number of
degrees of freedom associated with the finite element subspaces involved.

We now introduce some additional notation. The individual errors are denoted by

epσq :“ }σ ´ σh}divℓ;Ω , epuq :“ }u ´ uh}0,ρ;Ω , epϕq :“ }ϕ´ ϕh}1,Ω ,

epλq :“ }λ´ λ
rh
}0,Γ , epϑq :“ }ϑ´ ϑh}divt;Ω , and pepϕq :“ }ϕ´ ϕh}0,s;Ω ,

where ℓ, ρ, t and s are described in (4.5), and will be specified in the examples below. We emphasize
that other physically relevant variables, such as the pressure, velocity gradient, vorticity, and shear
stress tensor, can be computed using suitable postprocessing formulae, such as those in (3.2) for the
pressure and the velocity gradient. However, to avoid overcharging this section, in the examples below
we only present plots of the pressure obtained from this formula (cf. first equation in (3.2)):

ph “ ´
1

n
trpσhq `

ν

n
f .

As usual, for each ˛ P
␣

σ,u,ϑ, ϕ
(

and for λ, we denote by rp˛q and rpλq the corresponding experimental
rates of convergence, defined by

rp˛q :“
logpep˛q{e1p˛qq

logph{h1q
and rpλq :“

logpepλq{e1pλqq

logprh{rh1q
,
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where e, e1 denote errors computed on two consecutive meshes of sizes h, h1 (rh and rh1 for λ), respectively.

The examples considered in this section are described below. In all of them, for the sake of simplicity,
we set κ “ 1, η “ 1, and ϕr “ 0, and choose the Brinkman, Darcy, and Forchheimer coefficients as
follows:

νpxq “ exp

˜

´

n
ź

i“1

xi

¸

, Dpxq “ exp

˜

´

n
ÿ

i“1

xi

¸

, and Fpxq “ exp

˜

n
ÿ

i“1

xi

¸

,

respectively, which satisfy (2.2). In addition, the mean value of trpσhq over Ω is fixed via a Lagrange
multiplier strategy, which means adding one row and one column to the matrix system that solves
(3.46) (cf. (4.6)) for σh and uh.

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test, we verify the rates of convergence in a two-dimensional domain. The domain is the square
Ω “ p0, 1q2. We choose ρ “ 3, from which the remaining parameters follow as ℓ “ 3{2, s “ 6, and
t “ 6{5 (cf. (4.5)). We then consider the potential gravitational acceleration g “ p0,´1qt and adjust
the data fpϕq (cf. (2.3)), f , and g in (2.1) so that the exact solution is given by

upxq “

ˆ

cospπx1q sinpπx2q

sinpπx1q exppx2q

˙

, ppxq “ cospπx1q sinpπx2q ,

and ϕpxq “ 0.1 ` 0.3 exppx1x2q .

The model problem is then complemented with the appropriate Dirichlet boundary condition. Tables
5.1 and 5.2 report the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations, for both the mixed-primal and fully-mixed schemes. The results
confirm that the optimal convergence ratesOphk`1q, predicted by Theorems 3.14 and 4.15, are attained
for both approaches with k P t0, 1u. The Newton method exhibits mesh-independent performance,
converging in four iterations in all cases. We remark that the data assumption (4.13), required for
the fully-mixed approach, is not satisfied in this example, since fpxq “ divpuq “ sinpπx1q

`

exppx2q ´

π sinpπx2q
˘

P r´1.5346, es and η “ 1. Nevertheless, optimal convergence rates are still achieved
for the RTk ´ Pk ´ RTk ´ Pk scheme, as previously noted, suggesting that assumption (4.13) is
merely a theoretical requirement. We note that the errors for the pseudostress and velocity are nearly
identical, as the same mixed formulation is employed in both methods. Regarding the concentration,
optimal convergence is observed from the initial mesh levels in the mixed-primal approach, whereas
in the fully-mixed case, it is attained from the second mesh refinement. This behavior is justified
by the use of higher polynomial degree approximations in the former. In Figure 5.1, we present the
computed magnitude of the velocity, the pressure and concentration fields obtained using the mixed-
primal scheme, together with the pseudodiffusion vector computed with the fully-mixed scheme, all
corresponding to approximations with k “ 1. Both mixed methods are applied on a mesh with 41, 146
triangles, resulting in 743, 263 and 989, 088 degrees of freedom for the mixed-primal and fully-mixed
schemes, respectively.

We stress that, on the one hand, the mixed-primal approach is less expensive in terms of degrees
of freedom and provides better approximations for the concentration, as it employs higher-degree
polynomial approximations. However, it requires a different mesh for the Lagrange multiplier λ,
which complicates the extension to three-dimensional problems from a computational standpoint,
even though no theoretical difficulties arise (cf. Section 3.5). In contrast, the fully-mixed scheme
uses a single mesh for all variables, which not only simplifies the computational implementation but
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also facilitates its adaptation to three-dimensional settings. This advantage will be exploited in the
next example. Moreover, the fully-mixed approach yields a direct approximation of a physically
meaningful variable, namely the pseudodiffusion vector, although at the cost of a larger number of
degrees of freedom.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example, we consider the cubic domain Ω “ p0, 1q3 and choose the parameter ρ “ 7{2,
whence ℓ “ 7{5, s “ 14{3, and t “ 14{11 (cf. (4.5)). The solution is given by

upxq “

¨

˝

sinpπx1q sinpπx2q sinpπx3q

´ cospπx1q cospπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‚, ppxq “ cospπx1q exppx2 ` x3q ,

and ϕpxq “ 0.1 ` 0.3 exppx1x2x3q .

Similarly to the first example, we consider the potential-type gravitational acceleration g “ p0, 0,´1qt,
while the data fpϕq, f , and g are computed from (2.1) using the solution above. As mentioned earlier,
for computational simplicity, in this three-dimensional example we focus on the fully-mixed scheme
(4.28). The convergence history for a set of quasi-uniform mesh refinements with k “ 0 is shown in
Table 5.3. Again, the mixed finite element method converges optimally with order Ophq, as established
by Theorem 4.15. Additionally, some components of the numerical solution are displayed in Figure
5.2, obtained using the fully-mixed RT0 ´ P0 ´ RT0 ´ P0 approximation with mesh size h “ 0.0866
and 48, 000 tetrahedral elements, representing 585, 600 degrees of freedom.

Example 3: Fluid flow through a rectangular domain with circular obstacles

In the final example, inspired by [9, Example 3], we focus on flow through a rectangular porous
medium with circular obstacles and a non-manufactured solution of the unsteady version of problem
(2.1) (cf. (3.3a)–(3.3b) and (4.2)). To that end, we consider the domain Ω “ p0, 2q ˆ p0, 0.25qzΩc,

where Ωc :“
Ť3
i“1Ω

up,i
c Y

Ť2
j“1Ω

down,j
c ,

Ωup,i
c “

!

px1, x2q : px1 ´ 0.8 i` 0.6q2 ` px2 ´ 0.15q2 ă 0.052
)

, i “ t1, 2, 3u ,

and
Ωdown,j
c “

!

px1, x2q : px1 ´ 0.8 j ` 0.2q2 ` px2 ´ 0.1q2 ă 0.052
)

, j “ t1, 2u ,

with boundary Γ “ BΩ, where the input and output parts are defined as Γin “ t0u ˆ p0, 0.25q and
Γout “ t2u ˆ p0, 0.25q, respectively. We consider the parameter ρ “ 4, and set the data as g “

p0,´9.81qt, f “ 0, and g “ 0. The initial conditions for both the velocity and concentration are taken
to be zero. Denoting uin :“ ´10x2px2 ´ 0.25q

`

1 ` 0.5 sinp2π t{T q
˘

and ϕin :“ 5 ` 0.5 sinp2π tq, the
boundary conditions are given by

u “ puin, 0q
t on Γin , u “ 0 on Γz

`

Γin Y Γout

˘

, σn “ 0 on Γout ,

ϕ “ ϕin on Γin , and ϑ ¨ n “ 0 on ΓzΓin ,

which drive the flow across the rectangular domain Ω through an oscillatory parabolic velocity profile
from left to right, with an oscillatory concentration prescribed at the left boundary. We employ a
suitable backward Euler time discretization, with time step ∆t “ 0.02 and final time T “ 2. We
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observe that at each time step we are solving a slight adaptation of the stationary fully-mixed discrete
problem (4.28). We remark that the analysis presented in the previous sections can be extended, with
minor modifications, to the case of mixed boundary conditions considered in this example (see, e.g.,
[13, Section 2.4] and [16] for details). The well-posedness analysis for the unsteady version of (2.1) can
be addressed by following similar arguments to the ones developed in [18]. This is a topic of current
research.

In Figures 5.3, 5.4, and 5.5, we show the computed velocity magnitudes, and the pressure and
concentration fields, respectively. These results were obtained using the fully-mixed RT0 ´ P0 ´

RT0 ´ P0 scheme on a mesh with h “ 0.0126 and 18, 916 triangular elements (corresponding to
143, 094 degrees of freedom). As expected, the velocity flows from left to right, exhibiting an oscillatory
behavior as time increases. In addition, due to the gravitational force g and the impermeability of
the top, bottom, and circular boundaries, a sinusoidal flow pattern develops within the domain. This
behavior is consistent with the pressure distribution, which decreases from left to right. Similarly,
the concentration is higher near the left boundary and decreases towards the right, also following an
oscillatory pattern as time progresses.

Mixed-primal RTk ´ Pk ´ Pk`1 ´ Pk scheme with k “ 0

DoF h it epσq rpσq epuq rpuq epϕq rpϕq rh epλq rpλq

914 0.196 4 1.6E+00 – 1.5E-01 – 3.3E-02 – 0.250 1.1E-01 –
2010 0.127 4 1.0E+00 0.966 1.0E-01 0.930 2.2E-02 0.896 0.167 7.0E-02 1.052
5434 0.078 4 6.2E-01 1.063 6.0E-02 1.082 1.3E-02 1.076 0.100 4.1E-02 1.050
17551 0.044 4 3.4E-01 1.064 3.3E-02 1.083 7.0E-03 1.098 0.056 2.2E-02 1.044
60936 0.024 4 1.8E-01 1.054 1.8E-02 1.044 3.7E-03 1.060 0.029 1.2E-02 1.023

227621 0.014 4 9.4E-02 1.108 9.1E-03 1.107 1.9E-03 1.096 0.015 5.9E-03 1.009

Fully-mixed RTk ´ Pk ´ RTk ´ Pk scheme with k “ 0
DoF h it epσq rpσq epuq rpuq epϑq rpϑq pepϕq prpϕq

1188 0.196 4 1.6E+00 – 1.5E-01 – 1.7E-01 – 1.8E-02 –
2652 0.127 4 1.0E+00 0.966 1.0E-01 0.930 1.2E-01 0.914 1.4E-02 0.575
7260 0.078 4 6.2E-01 1.063 6.0E-02 1.082 6.7E-02 1.086 8.6E-03 1.003
23661 0.044 4 3.4E-01 1.064 3.3E-02 1.083 3.6E-02 1.104 4.6E-03 1.121
82578 0.024 4 1.8E-01 1.054 1.8E-02 1.044 2.0E-02 1.031 2.6E-03 0.948
309387 0.014 4 9.4E-02 1.108 9.1E-03 1.107 1.0E-02 1.118 1.3E-03 1.132

Table 5.1: [Example 1, k “ 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.
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