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Abstract

We introduce and analyze new mixed formulations, within Banach spaces-based frameworks, for
numerically solving the model given by the coupling of the Brinkman—Forchheimer equations with a
convection-diffusion-reaction phenomenon. Specifically, for the former, we consider a pseudostress-
velocity mixed formulation, whereas for the latter we analyze both primal and mixed approaches. In
particular, for the mixed one the convection-diffusion-reaction part is reformulated by introducing
the pseudodiffusion vector as an additional unknown, thus leading to a fully-mixed formulation of
the coupling. On the other hand, in the mixed-primal setting, the Dirichlet boundary condition for
the concentration is enforced through a suitable Lagrange multiplier. In contrast, this requirement
is avoided with the fully-mixed approach, but an additional theoretical constraint on the data needs
to be assumed. We establish the well-posedness of both formulations using a fixed-point strategy
and prove the well-posedness of the uncoupled problems by relying on recently established solvability
results for perturbed saddle-point problems in Banach spaces, together with the Banach—Necas—
Babuska theorem and the Babuska—Brezzi theory. Additionally, we provide a discrete analysis
for both approaches under specific hypotheses on arbitrary finite element spaces. For instance,
for each integer k > 0, we consider tensor and vector Raviart—-Thomas subspaces of order %k for
the pseudostress and pseudodiffusion, respectively, along with piecewise polynomial subspaces of
degree < k for the velocity and concentration. This choice yields stable Galerkin schemes for the
fully-mixed approach, for which optimal theoretical convergence rates are achieved. Finally, we
illustrate the theoretical results through several numerical examples, comparing both approaches
and testing the associated data assumptions.
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1 Introduction

The transport of chemical species in a saturated porous medium often involves complex interactions
between fluid flow, pressure distribution, and reactive processes occurring within the porous structure.
These coupled phenomena play a key role in a wide range of applications, including groundwater
contamination, reactive filtration, catalytic reactors, biomedical flows, and enhanced oil recovery.
Accurate modeling and numerical simulation of such systems are essential for process optimization,
environmental protection, and risk assessment. Over the years, various mathematical models have
been developed to capture different aspects of these flows, with considerable focus placed on coupling
the Stokes (or Brinkman) model with convection-diffusion transport. However, models based on Darcy
or Stokes flow may fail to adequately represent the behavior of the fluid in highly porous media or
at moderate-to-high Reynolds numbers. To address these limitations, the Brinkman—Forchheimer
equations have been introduced as a generalization that incorporates both viscous effects and inertial
corrections (see, e.g., [19], [26], [18], and [17]). On the transport side, the evolution of chemical species
can be more accurately described by a convection-diffusion-reaction (CDR) equation (see, e.g., [20],
[8], [33]), which accounts for advective transport by the fluid, molecular diffusion, and local reaction
kinetics. Based on the preceding discussion, the present work focuses on the analysis and numerical
simulation of a coupled flow and transport system, where the Brinkman—Forchheimer equations govern
the velocity field, which in turn drives the evolution of the concentration governed by a CDR, equation.

Regarding the literature, several works address the mathematical and numerical analysis of coupled
systems involving Stokes (Brinkman or Darcy—Forchheimer) flow and transport (or CDR) equations.
To begin, [1] proposed and analyzed an augmented mixed formulation for the fluid equations combined
with a standard primal scheme for the transport equation. This approach was later extended in [2] to
strongly coupled flow and transport systems, modeled by the Brinkman problem with variable viscosity
expressed through Cauchy pseudo-stresses and the bulk velocity of the mixture, along with a nonlinear
advection-diffusion equation representing the transport of the solids volume fraction. Additionally, [7]
established the existence of solutions for a related model describing chemically reacting non-Newtonian
fluids. More recently, [3] analyzed a flow-transport interaction model in a porous-fluidic domain by
employing techniques developed in [1] and [2]. This model considers a highly permeable medium
where the flow of an incompressible viscous fluid is governed by the Brinkman equations formulated in
terms of vorticity, velocity, and pressure, alongside a porous medium where Darcy’s law describes the
fluid motion via filtration velocity and pressure. Furthermore, an augmented fully mixed variational
formulation for the model initially introduced in [1] was proposed and studied in [30], where a dual-
mixed method combined with an augmentation technique was employed for both the Stokes and
transport equations. In [33], the authors investigated the coupling of the CDR problem with Darcy—
Forchheimer flow, considering a nonlinear external force dependent on concentration. They proved
existence and uniqueness of solutions using a Galerkin method and developed a finite element numerical
scheme accompanied by optimal a priori error estimates. On the other hand, we highlight [4] and [5],
where non-augmented mixed-primal and fully mixed formulations for the coupled problems analyzed in
[1] and [30], respectively, were introduced and studied within Banach space frameworks. We conclude
by mentioning [9], where the authors analyze the convective Brinkman—Forchheimer equations coupled
with a nonlinear transport phenomenon. This approach relies on the incorporation of the fluid velocity
gradient, the incomplete nonlinear fluid pseudostress, the concentration gradient, the total (diffusive
plus advective) flux of the concentration, as well as the velocity and the concentration themselves, as
auxiliary variables, leading to a Banach spaces-based fully-mixed formulation.

The purpose of this work is to develop and analyze mixed formulations within an appropriate Ba-
nach space framework for the coupling of the Brinkman—Forchheimer and CDR equations, as well as



to study suitable numerical discretizations. Motivated by [23], [22], [15], [18], and [12], we propose and
analyze a pseudostress-velocity mixed formulation for the Brinkman—Forchheimer equations. In turn,
for the CDR equation, we consider two distinct strategies. First, we formulate the coupled problem
using a mixed-primal approach, as in [22], but without employing any augmentation procedure. Next,
similarly to [15], we reformulate the CDR equation by introducing the pseudodiffusion vector as an
additional unknown, resulting in a fully-mixed formulation of the coupled problem within a complete
Banach space framework. In the mixed-primal approach, the Dirichlet boundary condition for the con-
centration is enforced via a suitable Lagrange multiplier. The fully-mixed formulation, by contrast,
avoids this requirement but entails an additional assumption on the data. Following the ideas in [24],
[22], and [12], we combine fixed-point arguments, the abstract results from [23], the Banach-Necas—
Babugka theorem, the Babuska—Brezzi theory, small data assumptions, and the Banach fixed-point
theorem to establish existence and uniqueness of solutions for both formulations. Additionally, we
perform a discrete analysis of both approaches under specific assumptions on general finite element
spaces. In particular, for each integer k = 0, we consider tensor and vector Raviart—Thomas subspaces
of order k for the pseudostress and pseudodiffusion, respectively, along with piecewise polynomial sub-
spaces of degree < k for the velocity and concentration. This choice yields stable Galerkin schemes for
the fully-mixed approach, for which optimal theoretical convergence rates are achieved. Analogously,
optimal convergence rates are also obtained for the mixed-primal approach when using continuous
piecewise polynomial subspaces of degree k + 1 for the concentration.

This work is organized as follows. The remainder of this section introduces the standard nota-
tion and functional spaces used throughout the paper. In Section 2, we present the model problem.
Section 3 is dedicated to the derivation and analysis of the mixed-primal variational formulation in
Banach spaces. We establish the well-posedness of both the continuous problem and the correspond-
ing Galerkin scheme, applying the discrete counterpart of the continuous theory to prove existence,
uniqueness, and a priori error estimates for general discrete spaces. Convergence rates are then ob-
tained by considering specific finite element subspaces. Section 4 focuses on the fully-mixed variational
formulation and its associated Galerkin scheme. In a similar way, we prove their well-posedness and
derive convergence rates based on suitable choices of finite element spaces. Finally, Section 5 illus-
trates the performance of the proposed methods through numerical examples in both 2D and 3D,
including test cases with and without manufactured solutions, validating the accuracy and flexibility
of the Banach-space-based mixed finite element methods and comparing the numerical approaches.

Preliminary notations

Let Q < R",n € {2,3}, be a bounded domain with polyhedral boundary I', and let n be the outward
unit normal vector on I'. Standard notation will be adopted for Lebesgue spaces LP(€2) and Sobolev
spaces W*P(Q), with s € R and p > 1, whose corresponding norms, either for the scalar, vectorial, or
tensorial case, are denoted by || - |00 and | - |5 .0, respectively. In particular, given a non-negative
integer m, W™2(Q) is also denoted by H™(f2), and the notations of its norm and seminorm are
simplified to || - ||m.q and | - [;n.q, respectively. In addition, H'/?(T') is the space of traces of functions
of H'(Q), and H~Y2(T") denotes its dual. On the other hand, given any generic scalar functional space
S, we let S and S be the corresponding vectorial and tensorial counterparts, whereas | - ||, with no
subscripts, will be employed for the norm of any element or operator whenever there is no confusion
about the space to which they belong. Also, |- | denotes the Euclidean norm in both R™ and R™*"™,
and as usual, I stands for the identity tensor in R"*™. In turn, for any vector field v = (v;)i—1,n, we



set the gradient and divergence, as

Vv = <5vi> and div(v) := 2 %’
ij=1,n j

(9:(}]'

whereas for any tensor fields 7 = (73;)ij=1.n and ¢ = (ij)ij=1,n, We let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

n n
1
T8 = (Tji)ijein, tr(T) = E i, Tdi=1— Etr(T)]I’ and 7:(:= E 7ij Gij -
i=1 ij=1

Furthermore, for each t € [1, +00) we introduce the Banach spaces

H(divy; Q) := {v eL2(Q): div(v)e Lt(Q)}, and (1.1)

H(divy; Q) := {T cL2(Q): div(r)e Lt(Q)} , (1.2)

endowed with the natural norms

[V]agivi;o == V[0, + [[div(v)[ose Vv e H(divy; ), and

ITlaivese == I7loe + [div(T)ose V7 € H(divi; Q).

In addition, we consider the canonical injections i, , : LP(2) — L9(Q) for all p,q € [1,400), p = g,
and i, : HY(Q) — LP(Q) for all p € [1,+00) when n = 2, and for all p € [1,6] when n = 3, which are
continuous with norms depending on the domain. In particular, we have

lipall < |0I®~2/@D. (1.3)

In turn, we let ¢, , and %, be the corresponding vector counterparts of i, , and i,, respectively. Note
that the norm of 4, , also achieves the bound (1.3). Additionally, we recall that, proceeding as in
[28, eq. (1.43), Section 1.3.4] (see also [11, Section 4.1] and [21, Section 3.1]), one can prove that for

{ (1,+0] in R,
te

there hold
(6, +oo] in RP, OO PO

(€& -n,p) = fQ {E -V + (pdiv(f)} Y (€, ) € H(div;; Q) x HY(Q), and (1.4)

(tn, v) :L{T;VVH-div(T)} Y (7, v) € H(div; Q) x H'(Q), (1.5)

where (-,-) in (1.4) and (1.5) denotes the duality pairing between H=/2(I") and H'/2(T"), and between
H_I/Q(F) and HI/Q(F), respectively.

2 The model problem

We consider the physical process of fluid flow and reactive transport in a saturated porous medium
occupying the region 2. The fluid flow is governed by the Brinkman—Forchheimer equations (cf. [19],
[25], [18]), characterized by the velocity u and the pressure p. In addition, following the approach in



[33], the scalar field ¢ denotes the concentration of a chemical species transported by the fluid and
modeled by a convection-diffusion-reaction equation. As a result, the coupled model of interest is
described by the following system of partial differential equations:

—div(yVu) + Du + Fluf’ ?u + Vp=£(¢) in Q, (2.1a)
diviu) = f in Q, (2.1b)
—-kAp+u-Vo +n¢p=g in Q, (2.1¢)

where v > 0 is the Brinkman coefficient (or effective viscosity), D > 0 is the Darcy coefficient, F > 0 is
the Forchheimer coefficient, p € [3,4] is a given number, x > 0 is the diffusion coefficient, and n > 0
is the reaction coefficient. We assume that v, D, and F may vary spatially and are bounded in terms
of positive constants vy, v1,Dg, D1, Fg, and Fy satisfying

vo < v(x) < vy, Dp <D(kx) <Dy, and Fyp < F(x) < Fy, VxeQ. (2.2)

The source terms f and g belong to suitable function spaces to be specified later. In addition, the
external force f(¢) is defined by

£(¢) == —(¢—¢r) 8, (2.3)

where g represents the gravitational acceleration of potential type, and ¢, is the reference concentration
of the solute.

Equations (2.1) are complemented with Dirichlet boundary conditions for the velocity and concen-
tration fields, namely,
u=up and ¢ = ¢p on T, (2.4)

with given data up € HY2(I') and ¢p € H2(T'). Due to condition (2.1b) and the Dirichlet boundary
condition for u, the datum up must satisfy the compatibility condition

Juom = 1 (2.5)

Additionally, to ensure uniqueness of the pressure p in (2.1a), we seek p in the space

L3(Q) - {qeL2<n>: Lq=o}.

3 The mixed-primal approach

In this section, we derive a mixed-primal formulation for the model problem (2.1). To this end, we
introduce a pseudostress-velocity mixed formulation for the Brinkman—Forchheimer equations (2.1a)—
(2.1b), while a primal approach is employed for the convection-diffusion-reaction equation (2.1c). We
then establish the well-posedness of the coupled system using a fixed-point strategy. Next, we present
a Galerkin scheme, prove its well-posedness, and derive a Céa estimate. Finally, we introduce specific
finite element spaces and establish convergence rates.

3.1 The continuous formulation

Following the approach in [18] (see also [12, 14, 15]), we first introduce the pseudostress tensor o as
an additional unknown, defined by

o :=vVu—pl in Q. (3.1)



Thus, by taking the matrix trace and using the fact that tr(¥Vu) = vdiv(u) = vf (cf. (2.1b)), along
with the application of the deviatoric operator to o, we deduce from (3.1) that

1 1 1
p=——tr(@)+~f and -eo%=Vu- - fI. (3.2)
n mn 1% n

We note that (3.2) is equivalent to the combination of (3.1) and (2.1b). Next, by taking the divergence
of o, substituting it into (2.1a), and eliminating the unknown p, which is subsequently computed using
the identity in (3.2), we obtain a system equivalent to (2.1)-(2.4): Find u, o, and ¢ in suitable spaces
to be indicated below, such that

—div(o) + Du + Flu|’%u = f(¢) in Q, (3.3a)
1 g4 1 .
—0°—Vu=—-—fI in Q, (3.3b)
v n
—kAp+u-Vo +n¢ =g in Q (3.3¢)
u=up, ¢=¢p on I, (3.3d)
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We remark that the constraint p € L3(Q) is equivalently enforced by equation (3.3e).

We now proceed with the derivation of the variational formulation for our mixed-primal system
(3.3). We begin with the Brinkman-Forchheimer part by testing (3.3a) against a vector field v,
formally obtaining

JQV - div (o) —JQDu-V—fQF|u|p_2u~v= —sz(gb) SV (3.4)

Regarding the Forchheimer term, given by the third expression in (3.4), we observe that it can be
bounded directly by applying Holder’s inequality twice and invoking the boundedness of F (cf. (2.2)),
thereby obtaining

U Flz|"2u-v
Q

where j,¢ € (1,+00) are Holder conjugates to each other, meaning that 1/j + 1/¢ = 1. Here, we
introduced the field z, which will be used to handle the nonlinearity of this term. Further details
are provided in Section 3.2. Naturally, if z = u, we recover the original term given in (3.4). For
this reason, we assume that both fields belong to the same space. We may continue our analysis by
considering arbitrary values of j and ¢, which leads to the requirement that z,u € Le(pfl)(Q) and
v € L7(Q). However, in order to derive a formulation that yields a classical Galerkin method with
symmetry in the function spaces, we simplify our setting by assuming that ¢(p — 1) = j. In this way,
since j and /¢ are conjugates to each other, we discover that j = p € [3,4] and ¢ = p/(p—1) € [4/3,3/2].
Consequently, we require z,u,v € L?(Q2). Having established these function spaces, we observe that
the second term of (3.4) is finite due to the boundedness of D (cf. (2.2)), the Cauchy—Schwarz inequality
and the Sobolev embedding of L°(2) into L?(2) (cf. (1.3)) since p > 2. Moreover, the first term of
(3.4) is well-defined provided that div(e) € L{(Q), so we require o € H(div,; Q) (cf. (1.2)). On the
other hand, recalling the definition of f(¢) (cf. (2.3)), and applying the Cauchy-Schwarz and Hoélder

1/¢
op— ¢ -2
<F { L 202 [yl } Vlogia < F1 21552 . g Maloeoya IVlogsa




inequalities, the later with conjugate indexes p%Q and £, we find that the term on the right-hand side

of (3.4) is bounded as
< (¢ =) vioglgloa < ¢ — ol

fQ £(6) v
< (I6losa + [6elosa) le

where s := 2p/(p — 2) € [4,6]. Thus, we consider the data ¢, € L*(Q2) and g € L2(Q2). While it would
be sufficient to seek ¢ € L*(12), we shall see below that this unknown must instead be sought in H!(2).
This is consistent with (3.5), since, by invoking the continuous embedding of H!(£) into L*(£2), we

find that
' [ 1@+ < it

Now, since o € L2(Q2), we deduce from (3.3b) that Vu € L2(Q2), provided that the datum f belongs
to L2(Q) as well. Moreover, since u lies in L?(Q), which is continuously embedded into L?(2) for
p € [3,4], it follows that u € H!'(Q2). Consequently, we multiply equation (3.3b) by a test function
7 € H(divy; Q), where ¢ lies in a suitable range that allows us to integrate by parts according to (1.5),
thereby obtaining

0,2p/(p—2); Q2 (\% 0,0;Q Ig 0,0

(3.5)

02 [vlopa;

Lo+ Hqﬁr\O,s;Q) Hg 0,2 HV 0,0;2 -

14

JQ 1 ol 44 fg u-div(r) = (rn,up) — % JQ ftr(T). (3.6)

Recalling that ¢ € [4/3,3/2] is the Holder conjugate of p, it suffices to seek u in L(Q2) and set ¢t = £,
so that every term in (3.6) is well-defined. On the other hand, we now consider the decomposition
H(dive; Q) = Ho(dive; Q) @ R with

Ho(divy; Q) := {T € H(div; Q) : J tr(r) = 0},

Q
which implies, in particular, that there exist unique components oy € Hy(div,; Q) and dy € R such
that o = o + dgl. Moreover, employing the uniqueness condition for p (cf. (3.3e)), we deduce that

ds can be computed explicitly as

1 1
do = J, e = n\mfg”f ’ (3.7)

so that, in order to complete o, it would only remain to find o. In this regard, we notice that (3.4)
and (3.6) remain unaltered if o is replaced by o, and hence from now on we simply redefine o := o
and seek o € Hy(divy; 2). The original o can then be recovered through post-processing by employing
the aforementioned decomposition and (3.7). Furthermore, invoking the compatibility condition (cf.
(2.5)), we note that equation (3.6) is trivially satisfied for all 7 € RI. Therefore, we may restrict the
test space from H(divy; Q) to Hg(divy; ).

Now we aim to derive a primal formulation for the convection-diffusion-reaction equation (cf. (3.3c)).
To this end, following the approach of [22], we seek ¢ € HY (), test equation (3.3c) against ¢ € H!(Q),
integrate by parts, and introduce the additional unknown X := —x V¢ - n e H~V/2(I'), obtaining

nf V¢-V¢+J<u~w>w+nf ¢w+<A,¢>F=ng Vi e HY(Q). (3.8)
Q Q Q Q

Regarding the well-definedness of the second term, we proceed similarly as for the derivation of (3.5),
so that applying the Cauchy—Schwarz and Hdélder inequalities along with the continuous embedding
is : HY(Q) — L3(2), we arrive at

f(u-V¢>w<\u
Q

’070;9 HvﬁbHO,Q H”L/f

0,50 < |lis] [ufo,p; 2 |10ll1,0 [¥]10- (3.9)



In turn, assuming that the datum g belongs to L?(£2), and recalling that ¢, € H'(2), the remaining
terms in (3.8) are well defined. Finally, the Dirichlet condition for the concentration, given in (3.3d),
is imposed weakly via

(& ¢yr={&dpyr  VESHTVA(D). (3.10)

Therefore, denoting from now on H := Hy(divy; Q) and Q := LP(£), and suitably grouping the
equations (3.4), (3.6), (3.8) and (3.10), the aforementioned mixed-primal formulation reads: Find
(o,u) € H x Q and (¢, ) € H'(Q) x H"Y2(I") such that

a(o,7)+b(r,u) = F(1) VTeH,
b(o,v) —cu(u,v) = Gy(v) VveQ,

au(@, V) + b1, A) F(y) Ve HY(Q),
b($,€) = G  veEeHA(D),

where the bilinear formsa: H xH - R, b: Hx Q - R,and ¢, : @ x Q@ — R, for each z € Q, and
the linear functionals F : H — R and G, : @ — R, for each ¢ € H, are defined as

(3.11)

— [ 1y 74 T,v):= | v-div(r
a(x,7) = J;) S SRS b(r,v) : J;) div(T), (3.12)
Cz(W,Vv) = WV z|P 2w v .
)= [ Dwev s | Flal ey, (313)
F(r) = (r 1, up) —;Jﬁf‘cr(T), Go(v) = —L £(p) v, (3.14)

while the bilinear forms a, : H'(Q) x H'(Q) — R and b : H(Q) x H"/(T") — R, and linear functionals
F:H'(Q) - Rand G: H Y*I') — R, are given by

Gl ) 1= R L Ve Vi L(z V)t Lw, (3.15)
b, €) = (6, ¥pr s F() = LW and  G(€) := (€, dp)r. (3.16)

Now, for the stability properties of the bilinear forms and functionals associated with (3.11), we apply
again the Cauchy—Schwarz and Hoélder inequalities, the continuous embeddings (1.3), the continuity
of the canonical and normal trace operators, and the data assumptions (2.2), to deduce that

06T < o ellmhe, b(rv)l < Il vlo (3.17a)
lea(w,v)| < (D1 101727+ Fy 216 %) Wl Ve (3.17b)
Pir)l < (max(L liyl} funlor + = 1 flos) Irln (3.170)
G, (V)| < lglo.e (Iis] el + [¢:llos) [v]a, (3.17d)
|az(0, )| < (K + |is] |Zl0,,0 + 1) [el1,0 [¥]10, (3.17¢)
b, &) < [€lapor [le,  IF@)] < lgloo ¥l (3.171)
and  [G()| < [¢p|1/2,r [§]-1/2.r - (3.17g)

8



3.2 Solvability analysis

In order to establish the well-posedness of (3.11), we propose a fixed-point strategy. To this end,
we first define the operator S : @ x H(2) — Q by S(z,¢) := u, where, given (z,¢) € Q x HY(Q),
(o,u) € H x Q denotes the unique solution, as will be shown below in Lemma 3.1, to the uncoupled
Brinkman—Forchheimer component arising from the formulation (3.11) when ¢, and G are replaced
by ¢, and G, respectively, that is

a(o,7)+b(r,u) = F(r) VreH,
(3.18)
b(o,v) —c(u,v) = Gg(v) VveQ.
Equivalently, (o, u) € H x Q is the unique solution of
AZ((U,u), (T,v)) =Ry(T,v) V(T,v)eHxQ, (3.19)
where
Az((X7 W)7 (T7 V)) = a(X7 T) + b(T7 W) + b(X7 V) - CZ(W7 V)
and

R (T,v) :=F(1) + G,(v),

for all (x,w), (7,v) € H x Q. Secondly, we define S : Q — H'(Q) by S(z) := ¢, where, given z € Q,
(p,\) € H'(Q) x HV/2(I') is the unique solution, as will be confirmed below in Lemma 3.2, to the
convection-diffusion-reaction part arising from (3.11) when a,, is replaced by a,, that is

az(¢,9) + b(h, A) F(y) VyeH(Q),
b(9,€) = GE) YEeHTA).
Finally, we introduce the operator T : Q@ — Q defined by

(3.20)

T(z) := S(z,S(z)) VzeQ,

and realize that solving (3.11) is equivalent to finding a fixed point of the operator T, namely, seeking
u € Q such that

T(u) = u. (3.21)
In what follows, we prove that the operators S and S are well-defined, meaning that the problems
(3.18) and (3.20) are well-posed. As a consequence, the operator T is well-defined as well.

We begin by applying [23, Theorem 3.4] to problem (3.18). Indeed, note that the null space of the
operator 7 — b(7,-) € Q' is given by

V= {‘T eH: b(r,v)=0 Vve Q} = {T € Hyp(divy; Q) div(r) = 0}. (3.22)

In turn, from a slight modification of [28, Lemma 2.3], we have the existence of a positive constant ¢;
such that
[0, + [div(T)

060 = cTloe V7 eHy(divyQ),

which implies [x%0.0 = e1 |Xxlo.o = c1 | X div,: 0 for all x € V. This inequality and the boundedness

of v (cf. (2.2)) allow us to infer that

Jorx

a(x, T v’ X llo,0 ¢

sup M = sup Q = = =2 HXHdiVZ§Q7
0#TEV HT”dive;Q 0#£T€EV HTHdive;Q L4 HXHdivz;Q 4!
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for all x € V\{0}. Since the resulting inequality holds trivially for x = 0, we have established the
inf-sup condition for a (cf. (3.12)) required by [23, Theorem 3.4], namely,

sup a(x, )

= a|x|divise VX EV, (3.23)
0£TeV HTHdive;Q

where a := ¢2/v1. On the other hand, by extending the argument employed in [31, Lemma 2.9] to the
tensorial case (see also [10, Lemma 3.3]), we establish the inf-sup condition for b (cf. (3.12)) that is
needed by [23, Theorem 3.4], namely:

b
wp PV

> G v
ozrer [T ldive; 0

0,p;Q Vve Q, (3.24)

where [ is a positive constant depending only on €. Finally, the bilinear forms a and ¢, (cf. (3.12),
(3.13)) are certainly symmetric and satisfy

1 _
a(t,7) > o 750 >0 and c,(v,v) =Do|v[iq + Foj 2”2 [v]* = 0, (3.25)
Q
for all 7 € H and v € Q, which says that a and c, are positive semi-definite.
Consequently, the well-definedness of the operator S is stated as follows.

Lemma 3.1 Given § > 0 and (z,¢) € Q x H'(Q) such that |z]o 0 < J, the problem (3.18) has a
unique solution (o,u) € H x Q, and, consequently, S(z, ) is well-defined. Moreover, there exists a
positive constant Cs, depending on §, p, vy, v1, D1, F1, B, and |Q|, such that

00+ lgloa (I¢ha + 6:losa) . (326)

[S(z; ©)lo.p02 < (o, W) |[nxo < Cs {HuDlh/z,r +1f

Proof. Bearing in mind (3.23), (3.24), and the symmetry and positive semi-definiteness of a and c,
(see (3.25)), the existence of a unique solution for (3.18) follows from a straightforward application of
[23, Theorem 3.4]. Moreover, (3.26) is obtained from the a priori bound established in [23, eq. (3.51)
in Theorem 3.4] and the stability bounds (3.17a)—(3.17d). In particular, note that the bound for |c,||
provided by (3.17b) depends on Dy, ||, p, F1, and §. =

Having proved the well-posedness of (3.18), the analysis from [23, Theorem 3.4] also gives us the
inf-sup condition for A,. More precisely, given § > 0, there exists a constant ap > 0, depending only
on 0, p, vo, D1, F1, a, B, and [Q|, such that for each z € Q satisfying |z[o,;o < 6, there holds

sup A, (X w), (1,v))
ox(rverxa (T V)[Hxo

> aa 6 w)uxe Vo w)eH x Q. (3.27)

In order to show next the well-posedness of (3.20), we need to invoke the classical Poincaré inequality,
which establishes the existence of a positive constant cp such that

Wiq = cpv|iq Yy eHQ). (3.28)

In addition, and in contrast to Lemma 3.1, it is required that ||z[ ;o be bounded by a specific constant,
which, in turn, depends on cp.

Lemma 3.2 Given z € Q such that ||z]o p,0 < 8 = % |is| ™' kcp, the problem (3.20) has a unique
solution (¢, \) € HY(Q) x H-Y2(T), and, consequently, S(z) is well-defined. In addition, there exists a
positive constant C, depending only on k, n, cp, and ||, such that

S(z)

1o < 1@ Mm@ ez < Cs {lgloa + 6plar}- (3.29)
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Proof. While this proof is a slight adaptation of that of [22, Lemma 3.4], we include the details here for
the sake of completeness. In fact, let B : H'(Q2) — H~/2(T) be the linear and bounded operator defined
by (B(¥),§)—1/2r = b(¥,§), for all (¥,§) € HY(Q) x H_l/Q(F), where (:,-)_1/5 1 stands for the inner
product of H~V/2(I"). Tt can be readily shown that B = R /5070, where R_y5 : H-Y2(T") — HY2(TI)
denotes the Riesz operator, Ri1/2 its adjoint, and ~o : H' () — HY2(I") the trace operator. Thus,
being the composition of two surjective operators, B becomes surjective as well. Certainly, this is
equivalent (cf. [28, Lemma 2.1]) to the existence of a positive constant 5 , depending only on 2, such

that
b(1, §)

1,0

sup

> 1€l =1 /2,r veEe HTVAT).
0pet (@) ¥

We now address the ellipticity of a, in the null space of B, which is easily seen to be given by H(I) (Q).
Indeed, employing the Cauchy—Schwarz and Holder inequalities, along with (3.28) and the continuous
embedding i, : H () — L*(Q), we find that

1
ia>=skreplvlia Ve eH)(Q), (3.30)

az(, ) = (kep — lis]|2lo,0) [¥] 5

where we have used the assumption [z[op 0 < o = % |is]| ! x cp. Consequently, by applying the
Babuska—Brezzi theory in Hilbert spaces (see, for instance, [28, Theorem 2.3]), we deduce the well-
posedness of (3.20), as well as the corresponding a priori estimate (3.29), using the stability bounds
(3.17e)—(3.17g). Note, in particular, that the bound for |a,| provided by (3.17e), and hence neither
the a priori estimate (3.29), does not depend on ||is]. o

Having established the well-definedness of the operators S and §, our next goal is to prove the
well-posedness of (3.11), equivalently that (3.21) admits a unique solution, for which we aim below
to apply the Banach fixed-point theorem. In fact, given § and dy as in Lemmas 3.1 and 3.2, we now
consider r € (0,79], where

ro := min{4,d0} , (3.31)

and introduce the closed and convex subset of O given by

W(r) = {ze Q: |z

0,0, < r} .
The following lemma proves that T maps W (r) into itself.
Lemma 3.3 Let r € (0,79], with ro as in (3.31), and assume that the data satisfy
Cr {HUDHl/Q,F +f 0,3;9)} <, (3.32)

where Cp := Cs max {Cg, 1}, (c¢f. Lemmas 3.1 and 3.2). Then, T(W(r)) € W(r) and the restricted
operator T|w () : W(r) — W(r) is well-defined.

0.0+ lgloa (lglog + I¢pli2r + e

Proof. Given z € W(r), it is clear from Lemmas 3.1 and 3.2 that T(z) is well-defined. Moreover,
employing the estimate (3.26) in combination with (3.29), we deduce that

0,00 = |S(2,S(2)) 0.0 (15210 + [x

< Or{uplyzr + 1 0s0)

which, thanks to assumption (3.32), implies that T(z) € W(r), thus completing the proof. o

|'T(2)

00 < Cs {[uplyar + [floo + g 0s0) }

0.0 + Iglog (lglo.e + léplij2r + |éx

Hereafter, we simplify the notation by denoting T as the restricted operator T|W(T) :W(r) — W(r).
The two following results establish the Lipschitz continuity of the operators S and §7 respectively.
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Lemma 3.4 Letr € (0,rg], with ro as in (3.31). Then, there exists a positive constant Lg, depending
onr, p, F1, |Q|, Cs, |lis|, and aa, such that

IS(z101) = S(z2, 92)ll0 2 < s {C(un, £ 8, 6v¢2) |21 = 2200 + lglosc o1 — @2liaf,  (3.33)

for all (z1,¢1), (22, p2) € W(r) x H'(Q), where

C(up, f,8 ¢r,¢) := [upllijor + [ flog + [gloge (Iela + |é:le) VeeH(Q).

Proof. Let (z1,1), (22, p2) € W(r) x HY(Q) such that S(z1,¢1) = u; and S(z2, p2) = us, where, for
each i € {1,2}, (o;,u;) € H x Q is the unique solution of (3.18), or equivalently, the unique solution
of (3.19), with the given (z;, ¢;) instead of z and ¢ there. Thus, making use of (3.27) with z = z;
and (x,w) = (o1,u;1) — (02, u2), we obtain

A, (o1 —o2,u; —uy), (T,V))

o (01— 2w —w)frxo < sup (3.34)

0#(T,v)EHXQ H(T?V)H'HXQ

In turn, setting problem (3.19) with (z, ¢) equal to both (z1, 1) and (z2, ¢2), and then subtracting
the resulting equations, we obtain

A, (01— 02,u1 —ug), (7,V)) = ¢z, (U2, V) — €z, (u2, V) + Gy, (V) — Gy (V) (3.35)

for all (7,v) € H x Q. Next, from a slight modification of [12, Lemma 4.4], one deduces that there
exists a positive constant L¢, depending only on p, F1 and ||, such that

p—3
|cz, (12, V) — €z, (02, v)| < L {Hzl\o,p;ﬂ + [ z2 O,p;ﬂ} luzllo,p @ llz1 — 2200 [V]ope,  (3.36)

for all v e Q, whereas the definitions of G, and f (cf. (3.14), (2.3)), together with Holder’s inequality,
allow us to deduce that

Gy (v) — G, (v)] = jﬂ (E(or) — £(02)) v < Jlia] g

0.2 o1 — @2]1,0 [Vioa- (3.37)
Finally, substituting (3.35) back into (3.34), using the bounds given in (3.36) and (3.37), along with
the fact that z; € W (r) for each i € {1, 2}, and applying the a priori estimate (3.26) to S(z2, p2) = ug,

we derive (3.33) with Lg = max {Lc Cs (2r)?~3, ||is| }/aa, thus completing the proof. o

Lemma 3.5 Letr € (0,70], with ro as in (3.31). Then, there exists a positive constant Ly, depending

only on k, cp, Cy, and |is||, such that

IS(z1) — S(22) 1,0

< Ly {Hgl 0.0 + H¢DH1/2,F} |lz1 — z2]0,p;0 V21, 22 € W(r). (3.38)

Proof. Let zy,22 € W(r) such that S(z1) = ¢1 and S(z3) = ¢, where, for each i € {1,2}, (¢, \i) €
H'(Q) x H/2(I) is the unique solution of the problem (3.20), with the given z; instead of z there.
Then, subtracting both problems, we easily deduce that b(¢ — ¢2,&) = 0 for all £ € H-V/2(T), and

az1(¢1a¢) - a22(¢27¢) + b(wv/\l - )‘2) =0 Vye Hl(Q) :

Next, taking 1) = ¢1 — ¢2, we obtain the identity a,, (41, 1 — ¢2) = @z, (2, @1 — ¢2), which, combined
with the coercivity of the bilinear form a,, (cf. (3.30)), yields

%/‘GCP [61 — 2lf 0 < azy(d1 — G2, p1 — h2) = azy(d1, 91 — h2) — az, (61,1 — h2),
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and using the definition of the bilinear form a, (cf. (3.15)) and (3.9), we deduce that

fa < L {(z2 —21) - V1 }(d1 — ¢2)

lL0lz1 — 22

1
§KJCPH¢1—¢2 (3.39)

< sl 1 0.0 01 — d2f1,0-

Finally, applying the a priori estimate (3.29) (cf. Lemma 3.2) to S(z1) = ¢; in (3.39), we arrive at
(3.38), with Lg = 2 |is| Cs/(k cp), and conclude the proof. o

The following lemma establishes that the operator T is indeed Lipschitz continuous.

Lemma 3.6 Letr € (0,r¢], with ro as in (3.31). Then, there exists a positive constant L, depending

on Ls, Cg, and Lg, such that
IT(z1) — T(22)]0,p: 2
’ (3.40)
< L {Juplyor + [ flloo + Igloa(lgloe + léplizr + [¢closa)} 121 — 22000
for all z1,2z9 € W(r).
Proof. First, given z;,z2 € W(r), we observe from (3.33) that
IT(z1) = T(z2)]l0,00 = |S(21,8(21)) — S(22,S(22))[0,0:0 (3.41)
< Ls {C(U-Dyfa g, Or, §(z2)) |z1 — Zz“o,p;Q + HgHo,Q H§(22) - §(Zl) |1,Q}- '
In turn, using the estimate (3.29), we certainly have
O(up. f.8.6r.8(2) < [uplsjar + |flog + lgloa {Cs (lglog + [6plr) + éclosa
and using (3.38), the last term in (3.41) can be bounded as
I8(z2) ~ 8zl < Lg {Iglo + [éplyar } 122 — mlo e (3.42)

Thus, replacing back (3.42) into (3.41), and performing simple algebraic manipulations, we get (3.40),
with Lt := Lg max{l,C’§ + Lg} o

Theorem 3.7 Let r € (0,70, with ro as in (3.31), and assume that the data satisfy (3.32) and

o,s;g)} < 1. (3.43)

Ly {Jupfsj2r + I flo0 + lgloo (Iglog + [¢n]1/2r + 6

Then, there exists a unique u € W(r) such that T(u) = u, or equivalently, the problem (3.11) has a
unique solution (o, u, ¢, \) € H x Q@ x H'(Q) x H-V2(T'), with u e W(r). Moreover, there exist positive
constants C1 and Co, depending only on Cs and Cy, such that

(e wlhixo < € {lunlisr + £l + lgloe (lglo.e + léplysr + |62

0,s; Q) } )
(3.44)
and (6 Ml @yen-ram) < G {lg

00+ lénliar}-

Proof. By (3.32) and Lemma 3.3, we know that T : W(r) — W(r) is well-defined. Since W(r) is
a closed and convex subset of LP(£2), it is a complete metric space. Moreover, since T is Lipschitz
continuous with constant Lt (cf. Lemma 3.6), under the assumption (3.43) we conclude that T is
a contraction. Therefore, by the Banach fixed-point theorem, the operator T admits a unique fixed
point, or equivalently, the problem (3.11) has a unique solution. In addition, the a priori estimates
(3.44) follows from Lemmas 3.1 and 3.2. We omit further details. o

13



3.3 The Galerkin scheme

In this section, we analyze a Galerkin scheme associated with the mixed-primal formulation (3.11).
To do so, we first consider a regular family of triangulations {73}, of Q made up of triangles K
(when n = 2) or tetrahedra K (when n = 3) of diameter hg, and set h := max{hg : K € Tp}.
Additionally, let Iﬁg, H}, Hf, and Hﬁ be generic finite-dimensional subspaces of H(divy; Q2), L”(Q),
H'(Q) and H~V 2(T), respectively. Specific choices of these subspaces, satisfying suitable hypotheses
to be introduced later in the discussion, will be described below. Finally, to obtain a conforming
approximation setting, we also define the space HY := IF]I;{ N Hy(divy; Q).

Under this notation, we introduce the Galerkin scheme associated with (3.11): Find (o, up) €
HY x HY and (¢p, \) € HY x H) such that

a(ah,Th) +b(7’h,uh) = F(Th) V’Th EH%,
b(ah, Vh) — Cy,, (uh, Vh) = G¢h (Vh) VVh € Hz R
(3.45)
aw, ($ns ) + 0¥ An) = F() ¥y € Hy,
b(én, En) = G(&) Ve, e HY.

In order to address the solvability of (3.45), we adopt the discrete analogue of the fixed-point strategy
employed in the continuous case (cf. Section 3.2). We first define the operator Sq : H}! x Hﬁ — Hj
by Sa(zn, ¢n) := up, where (o, up) € HY x H}' is the unique solution, which will be confirmed below
(cf. Lemma 3.8), of the uncoupled problem arising from the first two rows of (3.45), after replacing
(up, ¢n) by the given (zp, ¢p) € H}} x Hﬁ, that is

a(op, ) + b(th,un) = F(7p) Vr,eH?,
(3.46)
b(on,vi) = ¢z, (un, vi) = Gy, (va)  VvyeH.
Equivalently, (o4, u;) € HY x H}! is the unique solution of
Ay, ((oh,up), (Th,vi)) = Ry, (Th, Vi) V (Th,vpy) € HY x Hy, (3.47)

where A,, : (H7 x H}}) x (Hf x H}!) - R and Ry, : (H7 x H}}) — R are defined according to
(3.19), when restricted to the finite-dimensional subspaces. Additionally, we define Sq : H} — Hi by

gd(zh) := ¢p, where (dp, \n) € Hﬁ X Hz is the unique solution, which will be confirmed below (cf.
Lemma 3.9), of the problem arising from the third and fourth rows of (3.45), after replacing uy, by
the given z, € H}}, that is

G, (GhsUn) + (W, An) = F(yn) Vb e HY
b(én,En) G(&)  VéneHy.
Finally, we introduce the operator T4 : Hy — H}! defined by

(3.48)

Ta(z1) = Sa(zn, Sa(z1)) Vazj, e HY,

and realize that solving (3.45) is equivalent to finding a fixed point of the operator Ty, that is, seeking
uy, € Hy such that
Td(uh) = Uup. (349)

As in the continuous fixed-point strategy, it remains to prove that Sq and §d are well-defined, that is,
that the problems (3.46) and (3.48) are well-posed, thus implying that Ty is well-defined as well.
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In order to achieve the well-definedness of the operators S4 and §d, we analyze the uncoupled
problems (3.46) and (3.48). For this purpose, we introduce in what follows several assumptions on the
finite element subspaces, all of which are assumed to be valid throughout the rest of this section. We
start with H7 and H}:

(H.0) ]ﬁlg contains the multiples of the identity tensor I.
(H.1) div(Hy) < H}.

The hypothesis (H.0), together with the decomposition H(divy; 2) = Hy(divy; ) @ R, allows us

o 1 o
Hh = {Th— (7‘[/|m JQtr(Th)> I: TheHh}'

to rewrite HY} as

Next, to obtain the discrete analogue of Lemma 3.1, it remains to verify the assumptions of [23,
Theorem 3.5], namely, that a and c,, are symmetric and positive semi-definite, and that the discrete
versions of (3.23) and (3.24) hold. The first statement clearly follows from (3.25), whereas for the
second one we first notice, thanks to (H.1), that the discrete kernel of the operator induced by
HY 5 74 — b(7h,-) € (H}}) is given by

Vy, = {‘rh eHy : div(rp) =0 in Q},

which is certainly contained in the continuous kernel V (see (3.22)). Consequently, proceeding similarly
as for the continuous inf-sup condition for a (cf. (3.23)), we readily deduce the existence of a positive
constant ag, which actually coincides with a = c% /v1, and hence independent of h, such that

a(Xh? Th) >

sup = 04 ”Xh”dng; Q Vxn € V.

0£THEV), HTthiqu

Now we introduce the third assumption concerning the finite element subspaces, namely the discrete
inf-sup condition for b:

(H.2) there exists a positive constant 34, independent of h, such that
b(Th, vh)

sup  ————— = fallva
0-rhely | Thldivy; o

opme  VvpeH). (3.50)

We are now in a position to present the discrete version of Lemma 3.1.

Lemma 3.8 Given 6q > 0 and (zp, pp) € H}! x Hi such that |zp 0,00 < da, the problem (3.46) has
a unique solution (op,up) € HY x HY, and consequently, Sq(zn, pn) is well-defined. Moreover, there
exists a positive constant Cs,, depending only on d4, p, Vo, V1, D1, F1, Ba, and ||, such that

1Sa(zn, n)

|0,p;Q < H(Uiu uh)HHxQ
(3.51)

05:0) }-

Proof. Tt suffices to see, according to the previous analysis, that the hypotheses of [23, Theorem 3.5]
are satisfied. Consequently, and analogously to Lemma 3.1, we obtain the existence and uniqueness
of the solution, along with the a priori estimate (3.51). =

< G {Iuplijor + Iflog + lgloa (Ienla + l¢x)
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In order to establish the well-definedness of §d, we shall prove that the problem (3.48) is well-posed.
To achieve this, we need to assume the following hypothesis concerning the finite element subspaces
HZ and Hﬁ:

(H.3) there exists a positive constant (g, independent of h, such that
b(d}ha gh)

sup Tonlho > B IRl ~1/2,0 V&, e Hy. (3.52)
0¢¢h€H;€ hl1,Q

Lemma 3.9 Given & as in Lemma 3.2, and z, € H} such that |zp]o,p,0 < 0o, the problem (3.48)
has a unique solution (¢n, Ap) € Hﬁ X H%, and, consequently, Sq(Pp, A\n) is well-defined. In addition,

there exists a positive constant C~d, depending only on k, 1, cp, Bd, and |QY|, such that

ISa(z0) s (@ xir-ver) < Cs, {Iglos + I6nljar |

lo,;0 < 60 = %Hisﬂ_l kcp, the bilinear form a,, is Hl(Q)—elliptic (cf. (3.30)), and
hence, in particular, its restriction to Hi X Hi becomes coercive. In turn, thanks to assumption (H.3),
the discrete inf-sup condition for b holds (cf. (3.52)). Therefore, by Babuska—Brezzi theory (see, for
instance, [28, Theorem 2.3]), we conclude the well-posedness of (3.48), along with the corresponding
a priori estimate. o

Proof. Since |z,

As in the continuous case (cf. Section 3.2), we now study the solvability of the fixed-point equation
(3.49). Indeed, in order to ensure the well-definedness of Ty, we first set r € (0,7§], where

1
7§ = min{dg,d0}, with 64 >0 and dp:= 3 lis| "t kep, (3.53)

satisfying Lemmas 3.8 and 3.9. We remark that §g is the same radius considered in Lemma 3.2. We
then introduce the discrete ball

W (r) := {zh eH}: |znlopn < r}. (3.54)

The following result, analogous to Lemma 3.3, establishes that T4 is well-defined when restricted
to Wy (r), and maps it into itself.

Lemma 3.10 Let r € (0,78], with rd as in (3.53), and assume that the data fulfill

Or, {luplhar +17loa + lelog (lglog + [énlzr + [6closa)} < r. (3.55)
where Cy, = Cs, max{Cg ,1} (c¢f. Lemmas 3.8 and 3.9). Then, To(Wp(r)) € Wy(r) and the

restricted operator Talw, (r) :dWh(r) — Wy (r) is well-defined.

Proof. The argument is analogous to that of Lemma 3.3, and the details are omitted. o

With the previous result established, we can now state the discrete analogues of Lemmas 3.4 and
3.5 with corresponding constants denoted by Lg, and Lg, . However, since the discrete versions are
direct counterparts of their continuous analogues, we omit the proofs and focus instead on presenting
the Lipschitz continuity result for the discrete global fixed-point operator T4q. We then conclude with
the main result of this section: the solvability of the Galerkin scheme (3.45). In other words, the
discrete versions of Lemma 3.6 and Theorem 3.7 read as follows.
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Lemma 3.11 Let r € (0,78], with r§ as in (3.53), and assume that the data satisfy (3.55). Then,

there exists a positive constant Lt,, depending on Lg,, C§d’ and Lgd, such that

ITa(z1,1) — Ta(z2,1)]0,p;0

< Lr, {luplyzr + £

o0+ lglos (Iglo. + 90121 + [9elo.:0) } 121 = 220,00

for all z1 p,22 € Wp(r).

Theorem 3.12 Let r € (0,r8], with r§ as in (3.53), and assume that the data satisfy (3.55) and

Lz, {lunlyyzx + Iflos + Igloa(lglon + [dnlzr + loclosa) } <1.
Then, there exists a unique up, € Wp(r) (c¢f. (3.54)) such that Ta(up) = uyp, or equivalently, the
problem (3.45) has a unique solution (op,un, dn, Ap) € Hf x H' x Hf x H, with u, € Wp(r).

Moreover, there exist positive constants C14 and Caq4, depending only on Cs, and C§d’ such that

0,s; Q) } ’

l(oh, un)rxo < Cra {HuDlh/z,r + [ fllo + lglog (Igloe + lépljor + |éx

and (¢ An) |1 @) xu-12(r) < Coa {HQHO,Q + H¢DH1/2,F} :

3.4 A priori error analysis

In this section, we derive an a priori error estimate for the Galerkin scheme (3.45). To this end, we set
r € (0, min{rg, r8}], with ro, 7 satisfying (3.31), (3.53), and let (o, u, 9, ¢) € H x Qx H' (Q) x H-V/2(I),
with ue W(r), and (o, up, 94, ¢p) € Hf x H! x Hg X HZ, with up € Wy (r), be the unique solutions
of the continuous problem (3.11) and the Galerkin Scheme (3.45), respectively. In what follows, given
a subspace V}, of a generic Banach space (V, | - |v), we set the distance of v € V to V}, as

dist (v, V4,) = 1161‘f/ [v—wvp|v - (3.56)
Vh h

We begin our analysis by estimating the error for the Brinkman—Forchheimer unknowns, namely
[(o,u) — (op,up)||xxo. To achieve this, we recall the equivalent form of the uncoupled Brinkman—
Forchheimer formulation, namely (3.19) with (z, ¢) = (u, ¢), and its discrete counterpart (3.47) with
(21, pn) = (up, ¢pn). Bearing in mind the well-posedness of these problems, and employing the same
arguments used to infer (3.27), we derive the existence of a constant aa ¢ > 0, depending only on dq,
p, Yo, D1, F1, a4, B, and ||, such that for each z;, € H} satisfying |zp[o,0;0 < 04, there holds the
inf-sup condition for A,, , that is,

sup Ay, (Xp>Wh), (Th, V1))
0 (7 1,V )EHE x HY (T, vi)llaxo

|(Xn> Wn)|#xa ¥ (xnWa) € Hf x Hj.

= OéA,d

In particular, since |upfop0 < 7 < dq, the above holds for Ay, , and hence, employing the Strang-
type estimate provided by [15, Lemma 5.1], we arrive at

l(,u) = (oh,up)|1xo < Cst,pr {diSt ((o,0), HY x Hy) + [Ry — Ry, [ (me xrny

(3.57)
+ [Au((ow), () = A, ((@0), () g crgy |
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where Cgr pr is a positive constant depending only on aa g4, v, D1, F1, 7, p, and ||, and hence
independent of h. In order to estimate the consistency terms of the right hand side of (3.57), we first
use (3.37) to discover

oo |¢ — on

In turn, using the definition of A, and A, , together with the estimate (3.36), we obtain that

IRy — Ry, [ (g xmny = |Gy — G, [uy < [is] g 1,0 - (3.58)

[Au((o,0), () = Ax, (0, 0), () laag <mpy = lew, (w0, ) — ealw, ) ey

-3
< Le (|up 7

0,p;9) |O,p;Q [ap, — UHO,p;Q )

0p0+ u
which, since u e W(r) and uy, € Wp,(r), implies that
HAU((U’ u), (-, )) — Ay, ((U’ u), (-, )) H(HZ xHp) S Le (QT)p_3 [u

Then, replacing back (3.58) and (3.59) into (3.57), it follows that

0,0:2 [0 —pllop; - (3.59)

[(o,u) = (oh,up)|rxo
. (3.60)
< CST,BF {dlSt ((0'711>7Hg X H;Ll) + H¢ - (bhHLQ + Hu

O,p;Q} )

lo,0, Le, 7, and p.

0,0; Q2 lu —uy

where Csr gr is a positive constant depending only on Csr gr, [is|, |g

Now, our goal is to obtain an estimate for ||(¢, A) — (én, An) |1 (@) xa-1/2(r)- For this, we now employ
the Strang-type estimate from [29, Theorem 2.2], so that after using the coercivity constant of ay,,
(cf. (3.30)), the stability properties (3.17e)—(3.17g), and the fact that ue W(r) and uy € Wy (r), we
deduce that

H(¢7 )‘) - (thv )\h)H < Cp dist (¢7 Hi) + Ca dist (A? Hé) + Cs “ (au - auh) (Qb, )H(H;ﬁ)’ ) (361)

where, Cy, Cs, and Cs are positive constants depending only on 7, &, cp, |is||, and Ba. Regarding the
third term on the right-hand side of (3.61), we proceed as in (3.39), that is, we use the definition of
the bilinear form a, (cf. (3.15)), Holder’s inequality, and the continuity of the embedding operator is.
As a consequence, estimate (3.61) becomes

16,20 = (&, M)l < Corcon {dist (6, 1), HY x H3) + [@lu0 [u—wilopma}, (362

where 5ST,CDR = maX{Cl,Cg,C'g HZSH} Thus, multiplying (3.60) by #, summing up with (3.62),
ST, BF

1,0 according to (3.44), and performing some algebraic arrangements, we

bounding |u
find that

0,00 and |4

(o, 1) = (on,un)|rxo + [(9:A) = (Sns An) 1) xm-1/2()
< @{dist (o, w), HY x HY) + dist ((¢, A), HY x Hg)} (3.63)

+ Cluplisr + 17l + lgloo + I6plor + [éclosa} ln = wiloa,

where C and C are positive constants depending only on CNST7BF, CNST7 cor; C1, C2 (cf. (3.44)), and |gllo,0-

We conclude this section with its main result, which is the Céa estimate associated with the Galerkin
scheme (3.45).
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Theorem 3.13 In addition to the hypotheses of Theorems 3.7 and 3.12, assume that

(3.64)

N =

C{lup o+ If

0a+ lgloa + [éplar + [élosa} <

Then, there holds

(o,a) = (on,up)rxg + [(@:A) = (Dn, An) 12 (@) xu-172(m)

: 3.65
<2C {dist (o, w), HY x HY) + dist (¢, \), H? x Hg)}. (3.65)

Proof. It follows straightforwardly from (3.63) by bounding |u —upo,p;,0 by [|(o, 1) — (oh, up) | x 0,
and then using assumption (3.64). We omit further details. =

3.5 Specific finite element subspaces and rates of convergence

Given an integer [ > 0 and a subset S of R", we denote by P;(S) the space of polynomials of total

degree at most ! defined on S, and P;(S) its vectorial counterpart. In turn, for each integer k£ > 0 and

K € Tp, we define the local Raviart-Thomas spaces of order k as RTy(K) := Py (K)®Py(K) x, where

x := (r1,...,7,)*% is a generic vector of R" and Py (K) is the space of polynomials of total degree

equal to k defined on K. Furthermore, define RTy(K) as the tensor space in which each row lies in

RT(K).

Under this notation, we define the following finite element subspaces for the Brinkman—Forchheimer
unknowns: R

g .= {TheH(diw;Q): Th|, € RTy(K) VKEE}, a0

3.66

H = {vac L7(Q): Vil e Pe(K) VEeThf.

Certainly, it is easy to see that ]ﬁlg contains the multiples of the identity and that div(H) < H},
so that hypotheses (H.0) and (H.1) hold. Furthermore, the inf-sup condition associated with (H.2)
was established for p = 4 in [21, Lemma 5.5], and its proof can be easily extended to the present range
of p (see also [10, Lemma 4.4] or [11, Lemma 3.3| for the vector version of it).

For the convection-diffusion-reaction part, we approximate ¢ with the classical Lagrange finite
element space of order k + 1,

HY = {wh eC@): YplxePr(K) VKe Th}. (3.67)
On the other hand, in order to approximate A, we introduce an independent triangulation of I (made
of straight segments in R?, or triangles in R?), namely {I'1,Ts,...,,,,}, set h := {max }\I‘j], and
Jef{l,....m
define
H = {5}; eI2(T): &, e Pu(ly) Vje {1,...,m}} (3.68)

as the approximation subspace of A\. Then, under certain conditions on the mesh sizes, HZ’ and H%‘
constitute a stable pair of finite element subspaces for the convection-diffusion-reaction part of our
Galerkin scheme (3.45). More precisely, one can prove (cf. [22, Lemma 4.10] or [28, Lemma 4.7]) that
there exists a positive constant Cy such that whenever h < C h, the discrete inf-sup condition (3.52),
corresponding to hypothesis (H.3), is satisfied. Therefore, when using the aforementioned subspaces,
it is necessary to assume this mesh-size restriction in order to ensure the theoretical results established
earlier.
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Now we aim to obtain the rates of convergence of our Galerkin scheme (3.45) with the specific finite
element subspaces defined previously. To this end, approximation properties of the finite element
subspaces HY, H}, Hi and H%‘ are presented below, which follow from interpolation estimates of
Sobolev spaces and the approximation properties of the orthogonal projectors and the interpolation
operators involved in their definitions (see, for instance, [6], [11], [21], [27], [28]).

(APY) there exists C' > 0, independent of h, such that for each [ € (0,%k + 1], and for each T €
HY(Q) N Hy(dive; Q) with div(T) € WH(Q), there holds

dist (7, HY) < C'h! {Hrl\m + HdiV(T)Hz,é;Q} )

(AP}) there exists C' > 0, independent of h, such that for each [ € [0,k + 1], and for each v e W ((Q)
there holds
dist (v, H}}) < O1' V100,

(APZ) there exists C' > 0, independent of h, such that for each [ € (0, k+1], and for each ) € H*1(€),
there holds
dist (v, H}) < Ch' []is10,

(AP%) there exists C > 0, independent of h, such that for each [ € (0,k + 1], and for each & €

H~Y/2+UT"), there holds R
dist (&H%) <CH 1€l =1 /2441 -

These approximation properties, together with the Céa estimate (3.65), yield the following result,
which summarizes the convergence rates of our Galerkin scheme (3.45).

Theorem 3.14 In addition to the hypotheses of Theorems 3.7, 3.12, and 3.13, assume that there
exists 1 € (0,k + 1] such that o € H (Q) n Hy(divy; Q), div(e) e WH(Q), u e Wl’p(Q), ¢ e HFL(Q)
and X\ € H_l/QH(I‘). Then, there exists a positive constant C', independent of h and h, such that for
all b < Coh there holds

I(o,0) = (on,up)rxg + [(¢:A) = (dny An) 12 () xu-172(m)
< Ch! {HU L + H¢Hl+1,9} + ORI\ —1josir -

Lo + [div(e)

Lo + u

4 The fully-mixed approach

In this section, and as an alternative to the approach presented in Section 3, we introduce and analyze
a fully-mixed method for the system (2.1). Following the same structure as in that section, we begin
by introducing the corresponding variational formulation and establishing its well-posedness through
a fixed-point strategy. Then, we prove the stability of the associated Galerkin scheme and derive a
Céa-type estimate for the discrete approximations. Finally, we provide an example of finite element
subspaces yielding a stable associated Galerkin scheme.

4.1 The continuous formulation

In what follows we basically adopt the strategy of [15], but without employing the augmentation
procedure used therein. Instead, we employ a fully Banach space framework, as in [14], [12], and
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[9]. Specifically, in addition to the pseudostress tensor o defined in (3.1), we now introduce the

pseudodiffusion vector 1 by
Y :=kVp—opu in Q. (4.1)

We emphasize that this new unknown does not modify the formulation of the Brinkman—Forchheimer
part (cf. (3.4) and (3.6)). Thus, we focus on deriving the mixed formulation for the convection-
diffusion-reaction component of the coupled problem. In this way, we take the divergence of 9 in
(4.1), apply (2.1b) to the resulting equation, and then use (2.1c), obtaining

div(d) =kAp—u-Vo—diviu)p=n—f)¢—g in Q.

The resulting equation, along with (4.1) and the Dirichlet condition for the concentration, yields an
equivalent system for the convection-diffusion-reaction equations, given by

k19 - Vo +rlou = 0 in Q,
div('ﬂ) —(n—-fe —g in Q, (4.2)
¢ = ¢p on I'.

Seeking ¢ originally in H!'(£2), we multiply the first equation of (4.2) by a function ¥ € H(div;; Q)
(cf. (1.1)), where ¢ lies in the range specified right before (1.4), and integrate by parts, to arrive at

fﬁ—lﬂ.¢+f ¢div(¢)+f K lgu- - = (- n,¢p) Vp € H(divy; Q), (4.3)
Q Q Q

where we use, additionally, the Dirichlet condition from (4.2), with the datum ¢p € HY/2(I'). On the
other hand, testing the second equation of (4.2) against a scalar field &, we formally obtain

| eaiv) = [ m-nog--| g¢. (1.4)

Certainly, for the equations (4.3) and (4.4) to be well-defined, it is not necessary that ¢ belong to H!(€2),
since the gradient was eliminated by introducing the pseudodiffusion vector. In this context, returning
to the Brinkman—Forchheimer equations, and more precisely to the right-hand side of (3.4), the bound
given in (3.5) reveals that it suffices for ¢ to lie in L*(£2), where we recall that s = 2p/(p — 2) € [4, 6].
Bearing this in mind, the second term of (4.3) is well-defined if ¢ is chosen to be the Holder conjugate
of s, that is, t := 2p/(p + 2) € [6/5,4/3]. Note that this choice is indeed consistent with the range of
values specified in (1.4). If, additionally, we seek 4 in L?(f2), then every term of (4.3) is well-defined.

Next, taking ¢ in the same space to which ¢ belongs, that is £ € L*(Q2), we realize from the first
term of (4.4) that, besides requiring 9 in L?(2), we also need that div(«9) € L!(Q2), whence 9 must be
sought in H(divy; Q). Additionally, the right-hand side of the same equation motivates the assumption
that the datum g belongs to L!(Q2). Regarding the second term, we apply the triangle inequality and
use the injections 459 and is4 (cf. (1.3)) to observe that

| 1= po€] < (n19F + 1 lo 1214-7/40) o]0 I¢

0,s; Q2 -

We remark that the space setting depends completely on p € [3,4]. More precisely, we introduce
three new parameters, which have been discussed earlier, that depend on p, namely,

p 4 3 2p 2p 6 4
b= ——c€ |-, = =——¢€[4 d t:=——¢€e|-, = 4.
p_le[m}, sim oelno] and ti= 2 oe |20 (45)

21



which help to define the spaces H := Ho(div,;Q2), Q := LP(Q2), X := H(divy; Q) and Y := L*().
This, along with (3.4), (3.6), (4.3), and (4.4), leads to the fully-mixed formulation of the problem
(2.1): Find (o,u) € H x Q and (9, ¢) € X x Y such that

a(o, )+ b(1,u) = F(71) VTeH,
(o, v) — cu(u,v) = Gy(v) VveQ,

o

(4.6)

I
)
S

a(9,9) + b(h, 9) + du(¥), ¢)

(
b(9,€) — 2(6,€) = G  veey,

where the bilinear formsa: HxH - R, b: Hx Q — Rand ¢, : @ x Q@ — R, for each z € Q, and the
linear functionals F : H — R and G, : @ — R, for each ¢ € Y, are already defined in (3.12)-(3.14). In

turn, the bilinear forms a : X x X — R,E: XxY —R,d, : XxY — R, foreachze Q,¢y: YxY — R,
and the linear functionals F: X > R and G : Y — R, are defined as

VipeX,

a(C, ) = fﬂ KUC o, B, €) = fﬂ&div(z/;), dy(1,€) := fﬂ ks,

Ef(C,f) = JQ(U—f)Cfa ]/;\‘(/ll}) = <1'b ’ Il,(Z5D> ’ é(f) ::_fﬂgg.

We finally remark that the only change for the Brinkman—Forchheimer mixed formulation is that
¢ now lies in L*(Q) instead of H!(£2). This implies that the stability estimate for G, must be slightly
modified. More precisely, in addition to the stability properties for a, b, c,, and F (cf. (3.17a),
(3.17b), (3.17c)), we also have

Gl < ligloo (Ilo.s0 + Iéxlose) Ve, (4.7a)
3¢ )l < s ek el (B, ©)] < bl L€y, (4.70)
Ao, )| < 57" [zl [l €] (4.7¢)
25(¢ E)\<(77IQ|2/” G=/@0) Yy ey, (4.7d)
[F(y)| < and  |G(¢)] < (4.7¢)

4.2 Solvability analysis

To prove the well-posedness of (4.6), we proceed analogously as in Section 3.2. We keep the same
notation for the operator S defined according to @.18), but understanding that now the space HY(Q)
becomes Y. Additionally, we define the operator S : @ — Y by S(z) := ¢, where (¥, ¢) € X x Y is the
unique solution, to be confirmed below, of the uncoupled mixed formulation arising from (4.6) when
dy is replaced by d, that is

a(9,9) + b(h, ¢) + dy(h,¢) = F(p) VepeX,

N N (4.8)
b(9,£) —¢p(9,€) = G VEeY.
Equivalently, (9, ¢) € X x Y is the unique solution of
A((9.0). (. 6) + do(vh,¢) = F(3) + G() ¥ (sh,) e X xY, (4.9)



where A : (X xY) x (X xY)— R is the bilinear form defined by

A((0,€),(1,€)) :=a(o,%) + b(1,¢) + b(e, &) — (¢, ), (4.10)

for all ((g, ), (v, f)) € X x Y. Finally, we define the operator T:0— Qas

T(z) := S(z, §(z)) Vze Q.

We remark here that if S and S are well-defined, then T is well-defined as well. In addition, it is
clear that solving (4.6) is equivalent to finding a fixed point of the operator ’i‘, that is, seeking u e Q
such that

T(u) = u. (4.11)

In the analysis presented in Section 3, we have already established that the operator S is well-
defined. It is worth noting that the constants appearing in the associated estimates may differ in the
current setting, due to the modified stability properties of the operator G, (cf. (4.7a)). Nevertheless,
the only change arises in the norm of the embedding is, which is specific to the mixed-primal approach.
The following result shows the slight modification of Lemma 3.1.

Lemma 4.1 Given 6 >0 and (z,p) € @ x Y such that |z]op,0 <, the problem (3.18) has a unique
solution (o,u) € H x Q and hence, S(z, ) is well-defined. Moreover, there exists a positive constant
Cs, depending only on ¢, p, vy, v1, D1, F1, B (cf. (3.24)) and ||, such that

IS(z, ¢)

o < I(@,Wlhixo < Cs {[unlyar + 1 floa + lelon (Ielosa + lodosa) - (412)

In addition, we also have the global inf-sup condition, given by (3.27), which we shall use later.

Our next goal is to prove that the uncoupled problem (4.8) is well-posed, and, consequently, the
operator S is well-defined. To achieve this, we will actually prove the well-posedness of the problem
(4.9) by applying the well-known Banach-Necas-Babuska theorem in combination with [23, Theorem
3.4]. We start with the following lemma, which establishes an inf-sup condition for A. We remark in
advance that applying [23, Theorem 3.4] will require an additional assumption on the data, which is
not needed in the mixed-primal approach studied in Section 3, namely

fx) <n  VYxeQ. (4.13)

In particular, note that (4.13) is trivially satisfied for incompressible fluids, that is when f = 0. The
aforementioned result reads as follows.

Lemma 4.2 Assume that the data satisfy (4.13). Then, there exists a positive constant oz, depending
on K, n, p, and |Q|, such that

wp A0, (.9)

orr® v 1@ Oy > Al Ohoy Ve e XxY. (4.14)

Proof. According to the structure of A (cf. (4.10)), which was studied in [23], and bearing in mind
that the global inf-sup condition [23, eq. (3.33)] follows from the verification of the hypotheses of [23,
Theorem 3.1] (or of its particular case given by [23, Theorem 3.4]), we realize that in order to prove
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(4.14), it suffices to check that a, g, and ¢y satisfy the hypotheses of [23, Theorem 3.4]. Indeed, we
start by noting that @ and ¢y are symmetric. In addition, there clearly holds

a(p, ) = v 9

whereas employing (4.13) we deduce that

2020 ViyeX,

2(6.6) = L(n—f)\le >0 veey,

so that @ and ¢y are both positive semi-definite. On the other hand, the kernel V of the operator
X 34 — b(v,-) € Y is characterized by

Vo= {1/1 € H(div¢; ©2) : div(yp) =0 in Q} (4.15)

It readily follows from the definition of @ and the above characterization of V that

AT

= = T g VOEV, (4.16)
O;éqpef}' H"pHdivt;Q

which constitutes the required inf-sup condition for @. In turn, we know from [31, Lemma 2.9] that
there exists a positive constant C%, depending only on |Q|, such that

wp | H.9)

T 0,s;Q2 v ¢ € LS(Q) )
0#ypeH(div;Q) W’Hdiw;ﬂ

> G lo

thus establishing the continuous inf-sup condition for b. In this way, a straightforward application of
[23, Theorem 3.4] yields (4.14) with a positive constant a ; depending only on «, Cj, and the stability
properties associated with @, 5, and ¢y (cf. (4.7b) and (4.7d)), and hence only on &, Cj, n, [2], p, and
| fllo.q, where the latter can be bounded by | fllo.o < 7|Q|'/? thanks to (4.13). This ends the proof. o

Now, as a consequence of (4.14) and the stability property for d, (cf. (4.7c)), we easily deduce that

for each z € Q such that |z]o 0 < do := Kay/2, there holds

sup A((Qa()v('lpa{))"‘dz(’(/):C) > %H(ng)”XXY V(Q,C) eXxY. (417)
0#(1h,€)eX XY (0, &) [xxy 2

Similarly, thanks to the symmetry of A and (4.7c¢), for each z € Q such that [Z]0,p:0 < 8o, there also
holds

sup A((0,0): (3,9)) + du(3h,¢)

0#(0,()eXxY (@, O)llxxy

> R, Olxey V@ HEXxY.  (415)

Hence, we are now in a position to show the well-posedness of (4.8).

Lemma 4.3 Let z € Q such that |z]o .0 < 8o = kagz /2, and assume that the data satisfy (4.13).

Then, the problem (4.8) has a unique solution (9,¢) € X x Y and, hence, S(z) is well-defined. More-
over, there erists a positive constant Cg, depending only on k, 1, p and ||, such that

S(z)

s < 10, 6)x < Cg {lalo + I6pluer} (419)
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Proof. From the previous discussion we know that the assumption on z implies (4.17) and (4.18), and
hence the result follows from a straightforward application of the Banach—Ne¢as—Babuska theorem (cf.
[27, Theorem 2.6]) to the problem (4.9), which is equivalent to (4.8). Moreover, the bound (4.19) is
derived from the a priori bound provided by the aforementioned theorem. More precisely, using the
indicated upper bound for |z|o .o along with the stability properties (4.7¢), we deduce that

1S2)]0,0 < [(9,9)|xxy < (F, Q) |xrxyr < Cs {HgHO,t;Q + H¢D\|1/2,r},

=
R
with Cg := 23" max{1, i} )

Next, we aim to prove that the equation T(u) = u has a unique solution under certain conditions
on the data. To this end, we take r € (0,7], where

ro = min{d,go}, with 6 >0 and & := Kag/2. (4.20)

We remark that ¢ is the same radius considered in Lemma 3.1. Then, we define
W(r) = {2 Q: |zlopa <1},
and prove below that, under sufficiently small data, T maps W(r) into itself.

Lemma 4.4 Let r € (0,79], with 7o as in (4.20), and assume that the data satisfy (4.13) and

Cs {lunlior + 1flog + lelos (gl + loplysr + 6:lose) } < 7, (4:21)

where Cg := Cs max {Cg, 1} (cf. Lemmas 4.1 and 4.3). Then, T(W(r)) © W(r) and the restricted
operator ’i“w(r) : W(r) — W(r) is well-defined.

Proof. Having established the well-definedness of S and §|W(T) (cf. Lemmas 4.1 and 4.3), the operator
T|W(r) is well-defined. In turn, given z € W (r), the estimate (4.12) in combination with (4.19), yields

IT(z)|

o+ [éxlose) |
O,S;Q) } ;

which, thanks to (4.21), allows us to conclude that T(z) € W(r), thus ending the proof. o

000 = 182,800 < Cs {Junlir + 1flo.0 + lglo (1)

< Cp{luplyor + 1 000+ I6plij2r + [x

0.0+ [gloq (lg

Hereafter, the restricted operator T’W(T) : W(r) — W(r) is simply denoted by T. We now aim

to prove that Tis a contraction, which will enable us to apply the well-known Banach fixed-point
theorem. We start by proving two preliminary results, which will be instrumental in showing that T
is Lipschitz continuous.

Lemma 4.5 Let r € (0,70], with 7y as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant Lg, depending only on r, p, F1, |Q|, Cs, and aa, such that

IS(z1, 1) — S(z2,92)]0,p:0 < Ls {C'(HD,fyg,%,st) |21 — z2[o,p0 + lIg]0,0 |1 — 802\|0,s;9}, (4.22)

for all (z1, 1), (z2,p2) € W(r) x Y, where

C(up, f.8,¢x.¢) = [uplijor + [ floq + Iglog (lelosa + [¢closa) YeeY.
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Proof. The argument is analogous to that of Lemma 3.4, with Ls = max {Lc Cs (2r)?~3,1} /aa. o

Lemma 4.6 Letr € (0,7], with 7o as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant Lg, depending only on k, az, and Cg, such that

S(z1) — S(z2)

0,50 < Lg {Ilgl 060+ H¢>DH1/2,F} |1z2 — 210,52 (4.23)

for all z1,z9 € W(r).

Proof. Let z1,25 € W(r) such that S(z1) = ¢1 and S(z3) = ¢, where, for each i € {1,2}, (9;,¢;) €
X x Y is the unique solution of the problem (4.9). Thus, it is easy to see that

A((191 — 02,01 — $2), (¥, €)) + dg, (¥, ¢1) — dgp (P, 02) =0 V(,€) e X x Y,
which, along with (4.14) applied to g = ¥ — 92 € X and ( = ¢1 — P2 € Y, allows us to write

0,5:0 < ai Sup dz1(1/)7¢2)_dzz('¢)7¢2) ) (4.24)

A 0#9peX |4 || div.; 0

o1 — p2

In turn, given 9 € X = H(div; ), a straightforward application of the Cauchy—Schwarz and Hoélder
inequalities, along with the estimate (4.19), yields

|dz1 ('¢'7¢2) - dzz(’lp)qSQ)’ < ﬁil “¢2
< " Cg{lg

l0,5;2 |21 — z2]0,p; 2 |9 ]aivi; 0

(4.25)

ot + Ionlar | 121 = 22lo,0 [ haivi o
so that, replacing back (4.25) into (4.24), we obtain (4.23) with Lg := £~ a: Cs- o
Next, as a consequence of Lemmas 4.5 and 4.6, we are able to prove the Lipschitz continuity of T.

Lemma 4.7 Let r € (0,7], with 7y as in (4.20), and assume that the data satisfy (4.13). Then, there
exists a positive constant L4, depending only on Lg, Cg, and Lg, such that

S’
|IT(2z1) — T(22)] 0,5,
< Ly {luplyor +If

for all zy,z9 € W(r).

S’

(4.26)

0.2+ lglog (lgloso + [épli2r + H¢r||o,s;ﬂ)} |21 = 22]0,5;02,

Proof. Letting z1,2z2 € W(r) and employing (4.22), (4.19), and (4.23), the proof follows the same
steps as in Lemma 3.6, with L4 := Lgmax {1, Cg + Lé}. Further details are omitted. o

We conclude this section with the main result for the continuous problem, namely, the solvability
of the fixed-point equation (4.11). The proof follows analogous arguments to those used in the proof
of Theorem 3.7, and is therefore omitted.

Theorem 4.8 Let r € (0,70], with 7o as in (4.20), and assume that the data satisfy (4.13), (4.21),
and

0.2 (lgloga + [¢plijor + |éx 0,3;9)} < 1.

Then, there exists a unique u € W (r) such that ’i‘(u) = u, or, equivalently, the problem (4.6) has a
unique solution (o,u, ¥, ¢) € H x Qx X xY, with ue W(r). Moreover, there exist positive constants
C1 and Co, depending only on Cs and Cg, such that

L {luplyor + 1 log + g

O,S;Q) } )

ot + [9p]1/2,r + |¢r

o0+ [ép 15,0} -

(e, wlhxe < € {luplizr + Iflo.0 + lgloa (g

(4.27)
and (9,6)Ixxy < € {lg
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4.3 The Galerkin scheme

In this section, we introduce and analyze a Galerkin scheme for the fully-mixed variational formulation
(4.6). To this end, we focus mainly on the discrete scheme arising from the convection-diffusion-
reaction equations since the one corresponding to the Brinkman—Forchheimer part is exactly as derived
in Section 3.3, except the space where the given discrete concentration is taken now. The above means
that in what follows we consider the same generic finite-dimensional subspaces ]ﬁlg c H(divy; Q) and
H} < L”(Q) from before, and set HY := ]ﬁlg N Hoy(divy; ), whereas for the convection-diffusion-
reaction component, we introduce finite-dimensional subspaces HY < H(div; ) and ICI?; c L5(Q). In
this way, the Galerkin scheme associated with (4.6) reads: Find (op,up) € Hf x H}! and (9, ¢n) €
Hﬁ X ITI‘E such that

a(op, Th) + b(Th, up) = F(rp) Vo, e HY,

b(op,vy) — fuh (ap, va) = ?% (vp) Vv, eH}, 1s)
a(On, ) + (P, dn) + du, (P, dn) = F(ehy) Vb, € H

b(9n, &n) — C¢(dn, &) = G(&) VE, € I:If

Then, following the discrete analogue of the approach from Section 4.2, we use here a fixed-point
strategy to address the well-posedness of (4.28). More precisely, we let Sq : Hj! x I/—\Iz — H} be
the operator defined as in the mixed-primal approach (cf. (3.46)), where we remark, as previously
announced, that the only change is the use of the space I/L\If instead of Hi In turn, we define the
operator §d :Hp — I/CIZ by §d(zh) := ¢p, where (O, ¢p) € H}? X ﬁ‘ﬁ is the unique solution, to be
confirmed later, of the problem arising from the third and fourth equations of (4.28), after replacing
uy, by the given z;, € Hy, that is

A(On,by) + b(Wp, d1) + day (b)) = E(py) Vb, e HY,
b(n, &) — 1 (6n, En) = G&) Ve eR?.

Finally, we define the operator ’i‘d : Hy — Hj) as

(4.29)

Ta(zn) := Sa(zn,Sa(zn))  Vzj, € HY,

and realize that solving (4.28) is equivalent to finding a fixed point of the operator Td, that is, seeking
uy, € H} such that

Td(uh) = Up .

Next, we aim to establish the well-definedness of the discrete operators S4 and §d. We begin with
S4 by assuming throughout the rest of this section the same hypotheses (H.0), (H.1), and (H.2) on
the subspaces ]ﬁlg and H}, that were introduced in Section 3.3. In this way, and employing the same
arguments from the proof of Lemma 3.8, we are able to state the following result.

Lemma 4.9 Given 64 > 0 and (zp, pp) € H}} x ﬁi such that ||zpllo,p;0 < da, the problem (3.46) has
a unique solution (op,up) € HY x H}' and, consequently, Sqa(z,pp) is well-defined. Moreover, there
exists a positive constant Cs,, depending only on d4, p, Vo, V1, D1, F1, Ba (cf- (3.50)), and |Q|, such

that
ISa(zh, ¥n)

lo,p:0 < [(on,un)|rxo

< Csg, {HUD||1/2,F + I flo0 + Iglo.e (lenlo.s o + chrHo,s;Q)} .
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In order to deal with the well-definedness of §d, equivalently the well-posedness of (4.29), we now
introduce two hypotheses concerning the finite element subspaces Hg and Hi, namely:

(H.3) div(HY) c HY,

(H.4) there exists a positive constant C; 4 independent of h, such that

(3, Ch
sup M > CZdHCh
0£4p, H? [0 dives0 :

oso V¢ eH, (4.30)

which are also assumed to hold throughout the rest of this section.
The following result constitutes the discrete analogue of Lemma 4.2.

Lemma 4.10 Assume that the data satisfy (4.13). Then, there exists a positive constant oz 4 de-

pending only on Kk, n, p, C; ., and ||, such that

ba’
A ) ) Y A~
sup ((en:Cn), (%n,€n)) = ag 4 l(en: Cr)lxxy  V(en,Ch) € HY x HY . (4.31)
O?é(ﬂ’hfh)Gfoﬁ‘ﬁ 1(%n, §n) |xxy

Proof. We proceed as in the proof of Lemma 4.2 by applying now [23, Theorem 3.5], which is the
discrete version of [23, Theorem 3.4]. Indeed, we first recall, as established at the beginning of that

proof, that a and ¢y are symmetric and positive semi-definite. In addition, employing (H.3), we
readily find that the kernel V}, of the discrete operator H}L9 Sy, — b(¢y, ) € (Hﬁ)/ reduces to

7, = {«,bheH;?: div(,) =0 in Q}

which is certainly contained in the continuous kernel V (cf. (4.15)). It follows that the discrete version
of (4.16) holds with the same constant, that is

a(en, ¢ “1ya A
Sup M =K ! HQthivt;Q W Oy € Vh .
O?Ed’he‘?h H’(ph,”divt;ﬂ

In turn, the hypothesis (?1\4) (cf. (4.30)) establishes the discrete inf-sup condition for b. Therefore,

a straightforward application of [23, Theorem 3.5] yields (4.31) with a constant a3 , as announced. o

As a consequence of (4.31), the stability property (4.7) again, and the symmetry of A, we easily
deduce the discrete analogues of (4.17) and (4.18). More precisely, for each z, € H} such that

||ZhH0,p;Q < 38 = /xaA7d/2, there hold

A((@n: 1), (1. 60)) + da, (1, G1) _ VA

P = n, Cn)|[xxv 4.32
0 (4 1) FIP [ ) lxxy 5 l(en: Gu)lx (4.32)
for all (gy,¢n) € HY x ﬁi, and
A ’ ) ) + dz s (6%
sup ((en:Ch), (¥n: &n)) w (¥, Cn) > ;,d 1(ns €0) 5y (4.33)
0¢(Qh7Ch)EH}?><IfIf H(Qha(h)HXxY

for all (¢, &,) € HY x HY.

We are now in a position to establish the discrete analogue of Lemma 4.3.
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Lemma 4.11 Let z, € H} such that ||zp]op0 < 3\8 = Kag /2, and assume that the data satisfy

(4.13). Then, the problem (4.29) has a unique solution (9, ¢n) € HY x ICI(E and, hence, §d(zh) is
well-defined. Moreover, there exists a positive constant Céd’ depending only on k, 1, p, C; 4, and €],
such that 7

1Sa(zs)

050 < @ dn)lcxy < Cg, {lglosa + [#ply2r )

Proof. It follows similarly to the proof of Lemma 4.3, by applying now the discrete version of the
Banach—Ne¢as—Babuska theorem (cf. [27, Theorem 2.22]), that is, by taking into account either (4.32)
or (4.33). We recall that in the finite-dimensional case these discrete inf-sup conditions are equivalent,
and hence just one of them suffices to conclude. Further details are omitted. o

Having established the well-definedness of the operators Sq and §d, we now proceed to show that
the equation T4(uy) = u;, admits a unique solution under certain conditions on the data. To this end,
we take r € (0,75], where

7o = min{&d,gg}, with 64 >0 and 3\8 = Kag ,/2, (4.34)

and define

Wiy (r) = {zh eHy :  |znfopa < 7“}.
The following result shows that, under sufficiently small data, T4 maps Wy (r) into itself.

Lemma 4.12 Let r € (0,73], with 73 as in (4.34), and assume that the data satisfy (4.13) and

Cz, {lupliar + Ifloe + Iglose (Iglosa + [6plisr + lodosa)} < v, (435)

where Cg, 1= Cs, max {ng,l} (cf. Lemmas 4.9 and 4.11). Then, To(Wp(r)) € Wy(r) and the
restricted operator Talw, () : Wr(r) — W (r) is well-defined.

Proof. It is analogous to the proof of Lemma 4.4. o

We can establish the discrete analogues of Lemmas 4.5 and 4.6, with constants denoted Lg, and
L§d’ respectively, and subsequently derive the remaining results. However, since their proofs closely
follow those of their continuous counterparts, we omit them and restrict ourselves to stating next the
discrete analogue of Lemma 4.7 together with the well-posedness of the Galerkin scheme, without

providing detailed proofs either.

Theorem 4.13 Letr € (0,78], with 73 as in (4.34) and assume that the data satisfy (4.13) and (4.35).

Then, there exists a positive constant L"I“d’ depending only on Lg,, C’gd, and L§d7 such that

| Ta(z1,n) — Ta(z2,4)]0,p;0

< Lg, {HU-DHl/2,F +|f

o0+ Iglo.0 (Igloso + Il ar + I6elos o) } 21 — 22400

for all z1 p, 22 € W(r). Moreover, if

|O,S;Q>} <1 3

L, {luplser + [£loo + lgloa (lslose + [énlyer + 16
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there exists a unique uy, € Wp(r) such that 'i‘d(uh) = uy, or, equivalently, the problem (4.28) has
a unique solution (op,up, 9y, ¢p) € HY x H}} x H’,? X Hz, with up € Wy (r). Moreover, there exist

positive constants C1 q and Ca q, depending only on Cs, and ng, such that

o w)lrexo < Cua{lunhyar + floa + lelos (lglosa + lénhyar + oelos0)

and |, o0y < Coa {lgloso + 16nlj2r} -

4.4 A priori error analysis

We now aim to derive an a priori error estimate for the Galerkin scheme (4.28). For this purpose, we
set r € (0, min{7y,73}|, with 7o, 7§ satisfying (4.20), (4.34), and let (o7, u,¥,¢) € H x Q x X x Y, with
ue W(r), and (op, up, 9, ¢p) € HY x HY x HY x ICIZ, with uy, € Wy(r), be the unique solutions of the
continuous problem (4.6) and the Galerkin scheme (4.28), respectively. We begin with the estimate
for the Brinkman—Forchheimer part of error, that is, |[(o,u) — (s, up)|nx 0, for which, proceeding
analogously to the analysis in Section 3.4, and using again the notation from (3.56), we derive the
existence of a positive constant Csr,gr, depending only on Csr gr (cf. (3.57)), |is|, |gllo,o, Le, 7, and
p, such that the new version of (3.60) reads

(o, 1) = (oh, un) [2x o
R (4.36)
< Cor, e {dist ((or,w), HY x HY) + |6 — @nlo.sia + [u

O:P’Q} :

Furthermore, in order to derive the error estimate for the convection-diffusion-reaction part, that
is, [|(, ¢) — (On, n)|xxv, we first rewrite the last two rows of (4.6) and (4.28), respectively, as

Au((9,9), (4,6)) = F(,§) V(¥ eXxY,
Auh ((,'-9’7,7@5}1)7 (¢ha£h)) = ‘F(¢h7£h) v(¢ha£h) € Hg X ﬁi?

where the bilinear form A, : (XxY)x (XxY) — R, for each z € Q := L”(Q2), and the linear functional
F : X x Y — R, are defined, respectively, by

A ((8,9), (1,€)) = A((9,6), (1,6)) +du(h,¢) and F(3,&) = F(p) + G(€),

for all (9, ¢), (1,€) € X x Y. Then, knowing from (4.32) or (4.33), that A, satisfies the hypotheses
of the discrete version of the Banach-Necas-Babuska theorem (cf. [27, Theorem 2.22]) with constant
ag 4/2, we can apply the Strang-type estimate given by [15, Lemma 5.1] to conclude the existence of

0,p:0u—uy

a positive constant Cgr,cpr, depending only on ag 4, %, 1, |2, 7, and p, such that

19, 9) = (9n,6n) Ixxy < Cor.oon {dlist (9, 0), HY x [7) + [du(-,0) = du, ()l py |- (437)

Next, employing the estimate provided by the first row of (4.25), we get

[du(,¢) = du, () l@py < 57" [Slosou—1unlo,q.

which, replaced back into (4.37), leads to

0,50 u—uy

18, 6) = (9, én)llxxy < Cor,con {dlist (8, 6), HY x 17) + o opa),  (438)
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1
2€ST,BF
0,p:0 and [[¢]o.s;0 according to (4.27), we arrive at

where CAST, cor = Cst,cormax{x~!, 1}. Thus, multiplying now (4.36) by , adding the resulting

inequality to (4.38), and bounding |u
[(o,0) = (on un)[xo + [(F,¢) = (Fn, ¢n)lxxy

< C{dist (o, w), HY x H}) + dist (9, 0), HY x fi7) | (4.39)

+ C{luplor +1f

00+ lglose + I@plar + [érloso ) [n—wilogo.

where C and C are positive constants depending only on é\ST,BF, 551 cor; C1, Ca (cf. (4.27)), and |g

0,0-

We conclude this section with the Céa estimate associated with the Galerkin scheme (4.28).

Theorem 4.14 In addition to the hypotheses of Theorems 4.8 and 4.13, assume that

o0 + l¢plij2r + ¢ (4.40)

DO =

¢ {lupliar + I flog + g os0} <

Then, there holds

[(o,0) = (on un)xo + [(F,¢) = (Fn, ¢n)|xxy

! R 441
< 2C {dist (o, w), HY x HY) + dist (9, ¢), HY x Hf)} ~ A

Proof. It suffices to bound [u—up|o ;0 in (4.39) by (o, 1) — (s, un)|1x 0, and then use assumption
(4.40). We omit further details. o

4.5 Specific finite element subspaces and rates of convergence

In this section, we present an example of finite element subspaces that satisfy the hypotheses introduced
in Section 4.3. Using the same notations as in Section 3.5, we consider the tensor Raviart—Thomas
space of order k for }ﬁlg and the discontinuous polynomial space of order k for H}! to approximate o
and u, respectively (cf. (3.66)). As we noticed in Section 3.5, these spaces satisfy hypotheses (H.0),
(H.1), and (H.2). Additionally, we introduce the subspaces

HY = {¢heH(divt;Q): ¥, € RT(K) \ﬂ(en},
N (4.42)
iy = {gheLS(Q); & € Pr(K) VKeﬁL},

which we employ to approximate the solutions ¥ and ¢ of the problem (4.6). These spaces are
stable for the Galerkin scheme (4.28), as they satisfy the hypotheses (H.3) and (H.4). In fact, it is

straightforward to deduce that div(HY) ﬁf, thus proving (H.3), whereas (H.4) has already been
established by [11, Lemma 3.3] for p € (3,4], which can be easily extended to the case p = 3.

We now collect the approximation properties associated with H}? and ﬁi (see, e.g., [6], [11], [21],
[27], and [28]). Those regarding the remaining spaces are provided in Section 3.5.

(APg) there exists C' > 0, independent of h, such that, for each [ € (0, k + 1], and for each ¢ € H!(Q)
with div(v) € Wht(Q), there holds
Lt; Q} )

dist (4, H7) < O {[plur + div(y)
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(AP%) there exists C' > 0, independent of h, such that for each I € [0, k + 1], and for each £ e Wh*(Q),
there holds .
dist (¢, H}) < Ch' €]z

We end this section with the rates of convergence of our Galerkin scheme (4.28), which follow from
the Céa estimate (4.41) and the approximation properties of the subspaces involved.

Theorem 4.15 In addition to the hypotheses of Theorems 4.8, 4.13, and 4.14, assume that there
exists 1 € (0,k + 1] such that o € H(Q) n Hy(div; Q), div(e) e WH(Q), ue WH(Q), 9 € H(Q),
div(9) e WhH(Q), and ¢ € WH3(Q). Then, there exists a positive constant C, independent of h, such
that
l(o,0) = (on, un)[xo + [(F,¢) = (Fn, Pn)xxvy
< {lolia + Idivio)lsa + [ulipe + [Dla + |div(9) o)

L0+ |9l

5 Numerical tests

In this section we present three examples illustrating the performance of the mixed finite element
methods (3.45) and (4.28) on a set of quasi-uniform triangulations of the respective domains, and
considering the finite element subspaces defined by (3.66), (3.67), (3.68) and (4.42) (cf. Sections 3.5
and 4.5). In what follows, we refer to the corresponding sets of finite element subspaces generated
by k € {0,1} in the mixed-primal and fully-mixed schemes as simply RTy — Py — P41 — P and
RTy — Py — RTy — Py, respectively. The numerical methods are implemented using FreeFEM [32]. A
Newton—Raphson algorithm with a fixed tolerance of tol = 1E — 06 is used to solve both nonlinear
problems (3.45) and (4.28). As usual, the iterative process is terminated when the relative error
between two successive iterates of the full coefficient vector, namely coeff™ and coeff™ !, becomes
sufficiently small, that is,

lcoeff™ ! — coeff™ |por

|coeff™ 1 |pop

where | - |por denotes the standard Euclidean norm in RP°F| and DoF represents the total number of
degrees of freedom associated with the finite element subspaces involved.

We now introduce some additional notation. The individual errors are denoted by
0,092 5 e((b) = H<f> - Qsh
or, e®):=[0—Ifav;o, and &) :=|¢— dnlosa,

where ¢, p,t and s are described in (4.5), and will be specified in the examples below. We emphasize
that other physically relevant variables, such as the pressure, velocity gradient, vorticity, and shear
stress tensor, can be computed using suitable postprocessing formulae, such as those in (3.2) for the
pressure and the velocity gradient. However, to avoid overcharging this section, in the examples below
we only present plots of the pressure obtained from this formula (cf. first equation in (3.2)):

e(0) := o — onldivie, e(w):=u—u,

e(\) == A — A

1,0,

1 v
pp = ——tr(op) + = f.
n n

As usual, for each ¢ € {a, u, 9, qb} and for \, we denote by r(¢) and r(\) the corresponding experimental
rates of convergence, defined by

A B T
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where e, e’ denote errors computed on two consecutive meshes of sizes h, h’ (7@ and 1/ for A), respectively.

The examples considered in this section are described below. In all of them, for the sake of simplicity,
we set k = 1, n = 1, and ¢, = 0, and choose the Brinkman, Darcy, and Forchheimer coefficients as
follows:

v(x) = exp <— H%) , D(x) =exp (— Z xz> , and F(x)=exp (Z :z:z> ,
i=1 i=1

i=1

respectively, which satisfy (2.2). In addition, the mean value of tr(o,) over €2 is fixed via a Lagrange
multiplier strategy, which means adding one row and one column to the matrix system that solves
(3.46) (ct. (4.6)) for o, and uy,.

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test, we verify the rates of convergence in a two-dimensional domain. The domain is the square
Q = (0,1)2. We choose p = 3, from which the remaining parameters follow as ¢ = 3/2, s = 6, and
t =6/5 (cf. (4.5)). We then consider the potential gravitational acceleration g = (0, —1)* and adjust
the data f(¢) (cf. (2.3)), f, and g in (2.1) so that the exact solution is given by

u(x) = (COS(Ml) sin(mz)

= sin(ray) exp(m2)> ,  p(x) = cos(mzy) sin(mxs),

and ¢(x) = 0.1+ 0.3 exp(zi22) .

The model problem is then complemented with the appropriate Dirichlet boundary condition. Tables
5.1 and 5.2 report the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations, for both the mixed-primal and fully-mixed schemes. The results
confirm that the optimal convergence rates O(h**1), predicted by Theorems 3.14 and 4.15, are attained
for both approaches with k£ € {0,1}. The Newton method exhibits mesh-independent performance,
converging in four iterations in all cases. We remark that the data assumption (4.13), required for
the fully-mixed approach, is not satisfied in this example, since f(x) = div(u) = sin(wz1) (exp(z2) —
WSin(?Txg)) € [—1.5346,¢] and n = 1. Nevertheless, optimal convergence rates are still achieved
for the RTy — P — RT; — Py scheme, as previously noted, suggesting that assumption (4.13) is
merely a theoretical requirement. We note that the errors for the pseudostress and velocity are nearly
identical, as the same mixed formulation is employed in both methods. Regarding the concentration,
optimal convergence is observed from the initial mesh levels in the mixed-primal approach, whereas
in the fully-mixed case, it is attained from the second mesh refinement. This behavior is justified
by the use of higher polynomial degree approximations in the former. In Figure 5.1, we present the
computed magnitude of the velocity, the pressure and concentration fields obtained using the mixed-
primal scheme, together with the pseudodiffusion vector computed with the fully-mixed scheme, all
corresponding to approximations with £ = 1. Both mixed methods are applied on a mesh with 41, 146
triangles, resulting in 743,263 and 989, 088 degrees of freedom for the mixed-primal and fully-mixed
schemes, respectively.

We stress that, on the one hand, the mixed-primal approach is less expensive in terms of degrees
of freedom and provides better approximations for the concentration, as it employs higher-degree
polynomial approximations. However, it requires a different mesh for the Lagrange multiplier A,
which complicates the extension to three-dimensional problems from a computational standpoint,
even though no theoretical difficulties arise (cf. Section 3.5). In contrast, the fully-mixed scheme
uses a single mesh for all variables, which not only simplifies the computational implementation but
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also facilitates its adaptation to three-dimensional settings. This advantage will be exploited in the
next example. Moreover, the fully-mixed approach yields a direct approximation of a physically
meaningful variable, namely the pseudodiffusion vector, although at the cost of a larger number of
degrees of freedom.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example, we consider the cubic domain € = (0,1)3 and choose the parameter p = 7/2,
whence ¢ = 7/5, s = 14/3, and t = 14/11 (cf. (4.5)). The solution is given by

sin(mzxy) sin(mwzg) sin(mwxs)
u(x) = | —cos(mxy) cos(mxe) cos(mrs) |, p(x) = cos(mxy) exp(xs + x3),
cos(mxy) cos(maa) sin(mxs)

and ¢(x) = 0.1+ 0.3 exp(z12223) .

Similarly to the first example, we consider the potential-type gravitational acceleration g = (0,0, —1)*,
while the data f(¢), f, and g are computed from (2.1) using the solution above. As mentioned earlier,
for computational simplicity, in this three-dimensional example we focus on the fully-mixed scheme
(4.28). The convergence history for a set of quasi-uniform mesh refinements with £ = 0 is shown in
Table 5.3. Again, the mixed finite element method converges optimally with order O(h), as established
by Theorem 4.15. Additionally, some components of the numerical solution are displayed in Figure
5.2, obtained using the fully-mixed RTy — Py — RTy — Py approximation with mesh size h = 0.0866
and 48,000 tetrahedral elements, representing 585,600 degrees of freedom.

Example 3: Fluid flow through a rectangular domain with circular obstacles

In the final example, inspired by [9, Example 3], we focus on flow through a rectangular porous
medium with circular obstacles and a non-manufactured solution of the unsteady version of problem
(2.1) (cf. (3.32)—(3.3b) and (4.2)). To that end, we consider the domain = (0,2) x (0,0.25)\,,

where Q. := U?:l QuP U?:1 qovng.
QuPi — {(1‘17372) (21— 0.8i +0.6)2 + (z2 — 0.15)? < 0‘052}7 P (1.2.3)

and
qown.j _ {(:cl,xg) (21— 085+ 0.2)2 + (22— 0.1)2 < 0.052} . =112,

with boundary T' = 00, where the input and output parts are defined as I';, = {0} x (0,0.25) and
Fout = {2} x (0,0.25), respectively. We consider the parameter p = 4, and set the data as g =
(0,—9.81)t, f =0, and g = 0. The initial conditions for both the velocity and concentration are taken
to be zero. Denoting uin := —10z2(zs — 0.25)(1 + 0.5sin(27¢/T)) and ¢in := 5 + 0.5sin(27t), the
boundary conditions are given by

u=(uin,0)t on Iy, u=0 on F\(Finufout), on=0 on Doy,
¢=¢m on Iy, and 9-m=0 on I'\[i,

which drive the flow across the rectangular domain 2 through an oscillatory parabolic velocity profile
from left to right, with an oscillatory concentration prescribed at the left boundary. We employ a
suitable backward Euler time discretization, with time step At = 0.02 and final time T = 2. We
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observe that at each time step we are solving a slight adaptation of the stationary fully-mixed discrete
problem (4.28). We remark that the analysis presented in the previous sections can be extended, with
minor modifications, to the case of mixed boundary conditions considered in this example (see, e.g.,
[13, Section 2.4] and [16] for details). The well-posedness analysis for the unsteady version of (2.1) can
be addressed by following similar arguments to the ones developed in [18]. This is a topic of current
research.

In Figures 5.3, 5.4, and 5.5, we show the computed velocity magnitudes, and the pressure and
concentration fields, respectively. These results were obtained using the fully-mixed RTy — Py —
RT( — Py scheme on a mesh with A = 0.0126 and 18,916 triangular elements (corresponding to
143,094 degrees of freedom). As expected, the velocity flows from left to right, exhibiting an oscillatory
behavior as time increases. In addition, due to the gravitational force g and the impermeability of
the top, bottom, and circular boundaries, a sinusoidal flow pattern develops within the domain. This
behavior is consistent with the pressure distribution, which decreases from left to right. Similarly,
the concentration is higher near the left boundary and decreases towards the right, also following an
oscillatory pattern as time progresses.

Mixed-primal RTy, — Py, — Pry1 — Py scheme with k£ =0
DoF ‘ h ‘ it H e(o) ‘ r(o) ‘ e(u) ‘ r(u) ‘ e(9) ‘ r(@) H h H e(N) ‘ r(\)
914 | 0.196 | 4 1.6E+00 - 1.5E-01 - 3.3E-02 - 0.250 || 1.1E-01 -

2010 | 0.127 | 4 1.0E400 | 0.966 | 1.0E-01 | 0.930 | 2.2E-02 | 0.896 || 0.167 || 7.0E-02 | 1.052
5434 | 0.078 | 4 6.2E-01 | 1.063 | 6.0E-02 | 1.082 | 1.3E-02 | 1.076 || 0.100 || 4.1E-02 | 1.050
17551 | 0.044 4 3.4E-01 1.064 | 3.3E-02 | 1.083 | 7.0E-03 | 1.098 0.056 2.2E-02 | 1.044
60936 | 0.024 4 1.8E-01 1.054 | 1.8E-02 | 1.044 | 3.7E-03 | 1.060 0.029 1.2E-02 | 1.023
227621 | 0.014 | 4 9.4E-02 | 1.108 | 9.1E-03 | 1.107 | 1.9E-03 | 1.096 || 0.015 || 5.9E-03 | 1.009

Fully-mixed RTy — Py — RTy — Py scheme with k£ =0
DoF\ h \it H e(o) \ r(o) \ e(u) \ r(u) \ e(9) \ r(9) \ e(o) \?(¢)

1188 | 0.196 | 4 1.6E4-00 - 1.5E-01 - 1.7E-01 - 1.8E-02 -
2652 | 0.127 | 4 1.0E+00 | 0.966 | 1.0E-01 | 0.930 | 1.2E-01 | 0.914 | 1.4E-02 | 0.575
7260 | 0.078 | 4 6.2E-01 | 1.063 | 6.0E-02 | 1.082 | 6.7E-02 | 1.086 | 8.6E-03 | 1.003
23661 | 0.044 | 4 3.4E-01 | 1.064 | 3.3E-02 | 1.083 | 3.6E-02 | 1.104 | 4.6E-03 | 1.121
82578 | 0.024 | 4 1.8E-01 | 1.054 | 1.8E-02 | 1.044 | 2.0E-02 | 1.031 | 2.6E-03 | 0.948
309387 | 0.014 | 4 9.4E-02 | 1.108 | 9.1E-03 | 1.107 | 1.0E-02 | 1.118 | 1.3E-03 | 1.132

Table 5.1: [Example 1, & = 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.

References

[1] M. ALvAREZ, G. N. GATICA, AND R. RUIZ-BAIER, An augmented mized-primal finite element
method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49 (2015), no.
5, 1399-1427.

[2] M. ALvAREZ, G. N. GATICA, AND R. RU1Z-BAIER, A mized-primal finite element approzimation
of a sedimentation-consolidation system. M3AS: Math. Models Methods Appl. Sci. 26 (2016), no.
5, 867-900.

35



Mixed-primal RTy — Py, — Pry1 — Py scheme with k£ =1

DoF | h |it] el@) [ro) | e |rw) | e [re) ][ 2 [ e [N
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DoF | h [it]] elo) [r(o) | em) [ru) | e@®) [ @) | &) [ 7o)

3744 | 0.196 | 4 9.3E-02 - 7.2E-03 - 1.1E-02 - 5.3E-04 -
8400 | 0.127 | 4 4.0E-02 | 1.927 | 3.2E-03 | 1.883 | 4.8E-03 | 1.776 | 2.8E-04 | 1.446
23088 | 0.078 | 4 1.5E-02 | 2.060 | 1.2E-03 | 1.960 | 1.7TE-03 | 2.082 | 1.1E-04 | 1.856
75456 | 0.044 | 4 4.4E-03 | 2.116 | 3.7E-04 | 2.106 | 5.3E-04 | 2.123 | 3.3E-05 | 2.227
263760 | 0.024 | 4 1.3E-03 | 2.111 | 1.0E-04 | 2.135 | 1.5E-04 | 2.097 | 1.1E-05 | 1.908
989088 | 0.014 | 4 3.4E-04 | 2.220 | 2.8E-05 | 2.238 | 4.1E-05 | 2.229 | 2.7E-06 | 2.274

Table 5.2: [Example 1, & = 1] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.

Fully-mixed RT; — P, — RT; — Py scheme with k£ =0
DoF | h [it ][ elo) [ro) | ew [r(w) [ e [ r@) [ el@) [ r(®)

672 | 0.866 1.0E+01 - 3.8E-01 - 5.1E-01 - 6.6E-02 -
4992 | 0.433 5.6E+00 | 0.887 | 2.0E-01 | 0.916 | 2.7E-01 | 0.906 | 3.6E-02 | 0.880
38400 | 0.217 2.8E400 | 0.999 | 1.0E-01 | 0.980 | 1.4E-01 | 0.974 | 1.8E-02 | 0.973

301056 | 0.108
585600 | 0.087

1.4E4-00 | 1.027 | 5.0E-02 | 1.001 | 6.9E-02 | 0.995 | 9.2E-03 | 0.994
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Table 5.3: [Example 2, & = 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the fully-mixed approximation.
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Figure 5.1: [Example 1] Computed velocity magnitude, pressure and concentration fields, and the
magnitude of the pseudodiffusion vector.

0.33

0.’35 0.67 1 0 0.67 1
|0 | e

0 -6.3 -
(W), | e e

6. 0.4 0.57 0.73 0.9
T B, m

Figure 5.2: [Example 2] Computed velocity magnitude, pressure and concentration fields, and the
magnitude of the pseudodiffusion vector.
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