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Abstract

We consider a Banach spaces-based mixed variational formulation recently proposed for the station-
ary µpIq-rheology model of granular materials, and develop the first reliable and efficient residual-
based a posteriori error estimator for its associated mixed finite element scheme in both 2D and
3D, considering PEERS and AFW-based discretizations. For the reliability analysis, and due to
the nonlinear nature of the problem, we employ the first-order Gâteaux derivative of the global
operator involved in the problem, combined with appropriate small-data assumptions, a stable
Helmholtz decomposition in nonstandard Banach spaces, and local approximation properties of the
Raviart–Thomas and Clément interpolants. In turn, inverse inequalities, the localization technique
based on bubble functions in local Lp-spaces, and known results from previous works are the main
tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical
properties of the estimator and illustrating the performance of the associated adaptive algorithms
are reported. In particular, the case of fluid flow through a 2D cavity with two circular obstacles
is considered.

Keywords: granular flows, nonlinear viscosity, mixed finite elements, Banach spaces, a posteriori
error analysis, reliability, efficiency.
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1 Introduction

We recently introduced and analyzed in [12] a Banach spaces-based mixed variational formulation
for the regularized µpIq-rheology model of granular flows, which is described by a Navier–Stokes-like
equation where the equivalent viscosity depends nonlinearly on both the pressure and the Euclidean
norm of the symmetric part of the velocity gradient in Rn, with n P t2, 3u. In that work, in addition

∗This research was supported by ANID-Chile through the projects Centro de Modelamiento Matemático
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to the velocity, pressure, and strain rate tensor, a modified stress tensor that includes the convective
term, and the skew-symmetric vorticity were introduced as additional unknowns, leading to a nonlinear
twofold saddle point-based mixed variational formulation in a Banach space framework. The pressure
is determined through an iterative postprocess suggested by the incompressibility condition of the
fluid, which allows us to express this unknown in terms of the aforementioned stress and velocity. A
fixed-point strategy, combined with a solvability result for a class of nonlinear twofold saddle point
operator equations in Banach spaces, is employed to show, along with the classical Banach fixed-point
theorem and suitable small data assumptions, the well-posedness of both the continuous and discrete
formulations. In particular, PEERS (resp. AFW) elements of order ℓ ě 0 for the stress, velocity, and
skew-symmetric vorticity, along with piecewise polynomials of degree ď ℓ ` n (resp. ď ℓ ` 1) for the
strain rate, yield stable Galerkin schemes. Stability, convergence, and optimal a priori error estimates
were also derived in [12].

It is well known that adaptive algorithms based on a posteriori error estimates are particularly
effective in recovering the loss of convergence orders often observed in standard Galerkin procedures,
such as finite element and mixed finite element methods. This is especially true when these methods are
applied to nonlinear problems, where singularities or high gradients in the exact solutions are present.
In this context, the study of a posteriori error estimators for saddle-point problems has been widely
developed in the literature by various authors (see, e.g., [2], [10], [11], [34], [37], and references therein).
In particular, this powerful approach has been successfully applied to the Navier–Stokes equations,
both with constant and nonlinear viscosity, as well as to related models. We refer to pioneering works
such as [35], [40], and [38], as well as to [3, Section 9.3], where the first contributions to derive an a
posteriori error analysis for the incompressible Navier–Stokes problem in its classical velocity-pressure
formulation were introduced. Later, the a priori and a posteriori error analysis for the dual mixed
finite element method of the Navier–Stokes problem were proposed and developed in [23]. Additionally,
we mention [4], where the authors extend these contributions to the case of Dirac measures, and [33],
which provides an a posteriori error analysis for a Discontinuous Galerkin scheme that offers exactly
divergence-free approximations of the velocity. Meanwhile, adaptive methods for augmented-mixed
formulations for the Navier–Stokes problem with constant and variable viscosity were developed in [30]
and [9], respectively. We also refer to [14], where the authors developed an a posteriori error analysis for
a fully-mixed formulation of the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. In this
work, a suitable first-order Gâteaux derivative of the global operator involved is employed to derive the
corresponding reliability of the estimator. Furthermore, [8] is particularly notable for its a posteriori
error analysis of a momentum-conservative Banach spaces-based mixed finite element method for
the Navier–Stokes problem. In this work, standard duality-based arguments, a suitable Helmholtz
decomposition within Banach frameworks, and classical approximation properties are combined with
small data assumptions to establish the reliability of the estimators. Similar techniques have been
employed in [18] and [28] to develop reliable and efficient residual-based a posteriori error estimators
in both 2D and 3D for Banach spaces-based mixed finite element methods applied to the stationary
Boussinesq and Oberbeck-Boussinesq systems. Lastly, we refer to [13] for a recent a posteriori error
analysis of a Banach spaces-based mixed formulation for the coupled Brinkman–Forchheimer and
double-diffusion equations.

Building upon the previous discussion and extending the study initiated in [12] on a regularized
µpIq-rheology model for granular materials described by a Navier–Stokes-like equation, this paper
employs and adapts the a posteriori error analysis techniques developed in [14], [8], [28], and [13] for
mixed formulations in Hilbert and Banach spaces to the current µpIq-rheology model. We construct
a reliable and efficient residual-based a posteriori error estimator for the 2D and 3D versions of the
mixed finite element methods introduced in [12]. Specifically, we derive a global quantity Θ that is
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formulated in terms of computable local indicators ΘK , each associated with an element K of a given
triangulation Th. This allows for the identification of error sources and the design of an adaptive
meshing algorithm to enhance computational efficiency. In this setting, the estimator Θ is considered
efficient (resp. reliable) if there exist positive constants Ceff (resp. Crel), independent of the mesh
sizes, such that

CeffΘ ` h.o.t. ď }error} ď CrelΘ ` h.o.t. ,

where h.o.t. represents one or more higher-order terms. To the best of the authors’ knowledge,
this work presents the first a posteriori error analysis of Banach spaces-based mixed finite element
methods for the stationary µpIq-rheology equations governing granular materials.

This paper is organized as follows. The remainder of this section introduces some standard notations
and functional spaces. In Section 2, we revisit the model problem from [12] along with its continuous
and discrete mixed variational formulations. Next, in Section 3, we provide a detailed derivation of a
reliable and efficient residual-based a posteriori error estimator for the 2D version of the problem. In
particular, the reliability analysis considers a suitable Helmholtz decomposition in a Banach spaces
setting, with its discrete version employing PEERS and AFW-based elements. Several numerical
results illustrating the reliability and efficiency of the estimator, the effectiveness of the associated
adaptive algorithm, and the recovery of optimal convergence rates are reported in Section 4. Finally,
additional properties required for the derivation of the reliability and efficiency estimates are provided
in Appendices A and B, respectively. In turn, the 3D version of the a posteriori error estimator,
building upon the results in Section 3, is established in Appendix C.

Preliminary notations

In what follows, Ω Ă Rn, with n P t2, 3u, denotes a bounded domain with Lipschitz-continuous
boundary Γ and outward unit normal vector ν. Then, we adopt the usual notation for Lebesgue spaces
LtpΩq and Sobolev spaces Wl,tpΩq and Wl,t

0 pΩq, with l ě 0 and t P r1,`8q, whose corresponding
norms, either for the scalar or vectorial case, are denoted by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively. In
particular, W0,tpΩq “ LtpΩq, and when t “ 2 we write HlpΩq instead of Wl,2pΩq, with the corresponding
norm and seminorm denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In addition, given any generic scalar
function space M, we let M and M be its vectorial and tensorial counterparts, respectively, whereas

M1 represents its dual space, whose norm is defined by }f}M1 :“ sup
0‰vPM

|fpvq|

}v}M
. Also, I stands for the

identity tensor in Rnˆn, and, besides denoting the absolute value in R, | ¨ | stands for the Euclidean
norms in Rn and Rnˆn. In turn, for any vector fields v “ pviqi“ 1,n and w “ pwiqi“ 1,n, we set the
gradient, divergence, and tensor product operators, respectively, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j “ 1,n

, divpvq :“

n
ÿ

j “ 1

Bvj
Bxj

, and v b w :“ pviwjqi,j “ 1,n .

On the other hand, for any tensor fields τ “ pτijqi,j “ 1,n and ζ “ pζijqi,j “ 1,n, we let divpτ q be the
divergence operator div acting along the rows of τ , and define the transpose, the matrix trace, the
tensor inner product operators, and the deviatoric tensor, respectively, as

τ t “ pτjiqi,j “ 1,n, trpτ q “

n
ÿ

i“ 1

τ ii, τ : ζ :“

n
ÿ

i,j “ 1

τijζij , and τ d :“ τ ´
1

n
trpτ q I . (1.1)

Furthermore, given t P p1,`8q, we introduce the Banach space

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.2)
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which is endowed with the natural norm defined by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .

Then, following [24, eq. (1.43), Section 1.3.4], one can easily verify that the following holds for each

t P

"

p1,`8q if n “ 2
r6{5,`8q if n “ 3

,

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.3)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq.

2 The mathematical model and its variational formulation

In this section, we recall from [12] the model problem, its mixed variational formulation, and the
associated mixed finite element methods.

2.1 The µpIq-rheology model of granular materials

In what follows, we consider the model analyzed in [12] (see also [32]), which describes the steady-state
flow of a granular material based on the µpIq-rheology approach. More precisely, given a source term
f , we focus on solving an incompressible Navier–Stokes-like equation, which requires determining a
velocity field u and a pressure field p such that

ρp∇uqu “ divpηpp, |D|qDq ´ ∇p ` f in Ω , divpuq “ 0 in Ω ,

u “ uD on Γ , and

ż

Ω
p “ κ ,

(2.1)

where ρ denotes the density, D :“ 1
2

´

∇u ` p∇uqt
¯

represents the symmetric part of the velocity

gradient, satisfying
|D| “

?
D : D and trpDq “ divpuq “ 0 , (2.2)

κ is a positive constant, and given 0 ă ε ! 1, η : R` ˆ R` Ñ R` is a regularized function (see [12,
eqs. (2.9)–(2.11) for details]) defined as

ηpϱ, ωq :“
a1 ϱ

ω ` ε
`

a2 ϱ

a3
?
ϱ` a4 ω ` ε

@ pϱ, ωq P R` ˆ R` , (2.3)

with positive coefficients ai, i P
␣

1, 2, 3, 4
(

, given by

a1 :“
?
2µs , a2 :“ 2 dpµd ´ µsq , a3 :“ ρ´1{2 I0 , and a4 :“

?
2 d ,

where the coefficients µs and µd correspond, respectively, to the static and dynamic friction limits,
and I0 is a positive reference (experimental) constant. Owing to the incompressibility of the fluid, the
datum uD P H1{2pΓq must satisfy the compatibility condition

ż

Γ
uD ¨ ν “ 0 . (2.4)
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We observe that the internal friction coefficient of the granular continuum µ (cf. [12, eq. (2.7)]) can
be computed by using the formula

µpIq :“ µs `

ˆ

µd ´ µs
I ` I0

˙

I with I “

?
2 d |D|
a

p{ρ
.

Next, in order to derive a mixed formulation for (2.1), in which the Dirichlet boundary condition
for the velocity becomes a natural one, we now proceed as in [12, Section 2] and introduce as a further
unknown a modified stress tensor σ, which is defined by

σ :“ ηpp, |D|qD ´ p I ´ ρ pu b uq , (2.5)

so that recalling that the overall density is constant, and noting that the incompressibility condition
allows us to show that div

`

ubu
˘

“ p∇uqu, we deduce that the momentum equation can be rewritten
as

divpσq ` f “ 0 in Ω .

Moreover, applying deviatoric operator (cf. (1.1)) to (2.5), and using the last equation in (2.2), which
obviously yields Dd “ D, we find that

σd :“ ηpp, |D|qD ´ ρ pu b uqd in Ω . (2.6)

In turn, applying now matrix trace to (2.5), we obtain an explicit formula for the pressure p in terms
of σ and u, namely

p “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

. (2.7)

We remark here that (2.5) and the incompressibility condition given by the second equation in (2.1)
are jointly equivalent to (2.6)–(2.7). On the other hand, in order to perform the usual integration
by parts procedure required by a mixed formulation, which reduces to be able to test ∇u, we now
decompose D as

D “ ∇u ´ γ , with γ :“
1

2

´

∇u ´ p∇uqt
¯

,

where γ is an auxiliary known whose diagonal entries are all zero, while the off-diagonal ones contain
the components of the vorticity ∇ˆu. Summarizing, (2.1) can be equivalently reformulated as: Find
D, σ, u, γ, and p in suitable spaces to be indicated below such that

D ´ ∇u ` γ “ 0 in Ω ,

ηpp, |D|qD ´ σd ´ ρ pu b uqd “ 0 in Ω ,

divpσq ` f “ 0 in Ω ,

p “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

in Ω , u “ uD on Γ , and

ż

Ω
p “ κ .

(2.8)

2.2 The mixed variational formulation

We first recall the following scalar and tensorial functional spaces from [12, Section 3] (cf. (1.2)):

L2
κpΩq :“

!

q P L2pΩq :

ż

Ω
q “ κ , κ ą 0

)

,
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L2
trpΩq :“

!

E P L2pΩq : trpEq “ 0
)

,

L2
skpΩq :“

!

ξ P L2pΩq : ξt “ ´ξ
)

,

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

)

,

and observe that the following decomposition holds:

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I . (2.9)

Next, for sake of clarity, we introduce the spaces

H1 :“ L2
trpΩq , H2 :“ H0pdiv4{3; Ωq , and Q :“ L4pΩq ˆ L2

skpΩq , (2.10)

set the notations
u⃗ :“ pu,γq , v⃗ :“ pv, ξq P Q ,

and endow H1, H2, and Q, respectively, with the norms:

}E}H1 :“ }E}0,Ω , }τ }H2 :“ }τ }div4{3;Ω , and }v⃗}Q :“ }v}0,4;Ω ` }ξ}0,Ω .

Hence, proceeding as in [12, eq. (3.15)], that is, by multiplying the first three equations of (2.8) by
suitable test functions, using the integrating by parts formula (1.3), (2.4) and the Dirichlet boundary
condition for u, we arrive at the following mixed variational formulation of (2.8): Given p P L2

κpΩq,
find pD,σ, u⃗q P H1 ˆ H2 ˆ Q such that:

rAppDq,Es `B1pE,σq “ FupEq @E P H1 ,

B1pD, τ q ` Bpτ , u⃗q “ Gpτ q @ τ P H2 ,

Bpσ, v⃗q “ Fpv⃗q @ v⃗ P Q ,

(2.11)

where the nonlinear operator Ap : H1 Ñ H1
1, the bilinear forms B1 : H1ˆH2 Ñ R and B : H2ˆQ Ñ R,

and the functionals Fz : H1 Ñ R, for each z P L4pΩq, G : H2 Ñ R, and F : Q Ñ R, are defined by

rAppDq,Es :“

ż

Ω
ηpp, |D|qD : E @D, E P H1 , (2.12)

B1pE, τ q :“ ´

ż

Ω
τ : E @ pE, τ q P H1 ˆ H2 , (2.13)

Bpτ , v⃗q :“ ´

ż

Ω
v ¨ divpτ q ´

ż

Ω
τ : ξ @ pτ , v⃗q P H2 ˆ Q , (2.14)

FzpEq :“ ρ

ż

Ω
pz b zq : E @E P H1 , (2.15)

Gpτ q :“ ´ xτ ν,uDy @ τ P H2 , (2.16)

and

Fpv⃗q :“

ż

Ω
f ¨ v @ v⃗ P Q . (2.17)

We recall from [12, Section 3] that, once the twofold saddle point-type problem (2.11) with the
nonlinear operator Ap is solved, the dependence on the given p requires updating the unknown pressure
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according to the expression provided in the last row of (2.8). More precisely, noting that p P L2
κpΩq

and that the stress tensor in that equation is given by σ` c0, I (cf. (2.9)), where σ P H0pdiv4{3; Ωq is
part of the solution of (2.11), and c0 is defined as

c0 :“
1

n |Ω|

ż

Ω
trpσq “ ´

κ

|Ω|
´

ρ

n |Ω|

ż

Ω
trpu b uq ,

we find that the pressure needs to be updated as follows (see [12, eq. (4.3)] for details)

p “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpu b uq . (2.18)

The well-posedness of (2.11) is established in [12, Theorem 4.8], relying on a fixed-point strategy
and a recent result for a class of twofold saddle-point operator equations in Banach spaces (cf. [16,
Theorem 3.4]). More precisely, for a given δ ą 0, setting

Wpδq :“
!

z P L4pΩq : }z}0,4;Ω ď δ
)

and Spδq :“ Wpδq ˆ L2
κpΩq ,

and using suitable assumptions on η (cf. [12, eqs. (3.4), (4.7), and (4.8)]) along with smallness
conditions on the data, specifically those detailed in [12, eqs. (4.17) and (4.33)], it is proved that an
operator mapping Spδq into itself has a unique fixed point pu, pq. Equivalently, given this p P L2

κpΩq,
the system (2.11) has a unique solution pD,σ, u⃗q :“ pD,σ, pu,γqq P H1 ˆH2 ˆQ, with u P Wpδq and
p satisfying (2.18).

2.3 The finite element methods

We let
␣

Th
(

hą0
be a regular family of triangulations of sΩ, which is made up of trianglesK (when n “ 2)

or tetrahedra (when n “ 3) of diameter hK , and define the meshsize h :“ maxthK : K P Thu. In turn,
given an integer ℓ ě 0 and K P Th, we let PℓpKq and rPℓpKq be the spaces of polynomials of degree ď ℓ
and “ ℓ, respectively, defined on K, and denote its vector and tensor versions by PℓpKq :“ rPℓpKqsn

and PℓpKq “ rPℓpKqsnˆn, respectively. In addition, we let RTℓpKq :“ PℓpKq ‘ rPℓpKqx be the local
Raviart–Thomas space of order ℓ defined on K, where x stands for a generic vector in Rn. Also, we let
bK be the bubble function on K, which is defined as the product of its n` 1 barycentric coordinates.
Then, we define the local bubble spaces of order ℓ as

BℓpKq :“ curl
`

bK PℓpKq
˘

if n “ 2 , and BℓpKq :“ curl
`

bK PℓpKq
˘

if n “ 3 ,

where curlpvq :“
`

Bv
Bx2

,´ Bv
Bx1

˘

if n “ 2 and v : K Ñ R, and curlpvq :“ ∇ˆv if n “ 3 and v : K Ñ R3.
The following global spaces are also needed

PℓpΩq :“
!

vh P L2pΩq : vh|K P PℓpKq @K P Th
)

,

PℓpΩq :“
!

ξh P L2pΩq : ξh|K P PℓpKq @K P Th
)

,

RTℓpΩq :“
!

τ h P Hpdiv; Ωq : τ h,i|K P RTℓpKq @ i P
␣

1, ..., n
(

, @K P Th
)

,

and
BℓpΩq :“

!

τ h P Hpdiv; Ωq : τ h,i|K P BℓpKq @ i P
␣

1, ..., n
(

, @K P Th
)

,

where τ h,i stands for the ith-row of τ h.
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Now, we recall from [12, Section 6.3] two examples of stable finite element spaces H1,h, rH2,h,Q1,h,
and Q2,h satisfying the hypotheses required by the corresponding discrete analysis in [12, Section 5.2].
Indeed, the first example is based on the plane elasticity element with reduced symmetry (PEERS) of
order ℓ ě 0, which, denoting CpΩ̄q :“ rCpΩ̄qsnˆn, is given by

H1,h :“ Pℓ`npΩq X L2
trpΩq , rH2,h :“ RTℓpΩq ‘ BℓpΩq , Q1,h :“ PℓpΩq ,

Q2,h :“ CpΩ̄q X Pℓ`1pΩq X L2
skpΩq , and Ph :“ rPh ‘

"

κ

|Ω|

*

,
(2.19)

where rPh :“ Pℓ̄pΩqXL2
0pΩq and ℓ̄ :“ max

␣

ℓ`n, 2 ℓ
(

. The second example is the Arnold–Falk–Winther
(AFW)-based element of order ℓ ě 0, defined as

H1,h :“ Pℓ`1pΩq X L2
trpΩq , rH2,h :“ Pℓ`1pΩq X Hpdiv; Ωq , Q1,h :“ PℓpΩq ,

Q2,h :“ PℓpΩq X L2
skpΩq , and Ph :“ rPh ‘

"

κ

|Ω|

*

,
(2.20)

where rPh :“ P2ℓpΩq X L2
0pΩq.

Thus, defining
H2,h :“ H0pdiv4{3; Ωq X rH2,h and Qh :“ Q1,h ˆ Q2,h ,

and letting ph P Ph be a given discrete approximation of the pressure p, the Galerking scheme for
(2.11) reads: Find pDh,σh, u⃗hq :“

`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh such that

rAphpDhq,Ehs `B1pEh,σhq “ Fuh
pEhq @Eh P H1,h ,

B1pDh, τ hq ` Bpτ h, u⃗hq “ Gpτ hq @ τ h P H2,h ,

Bpσh, v⃗hq “ Fpv⃗hq @ v⃗h P Qh .

(2.21)

We observe that, analogously to its continuous counterpart, the discrete pressure ph is updated by
following the discrete version of (2.18), that is:

ph :“ ´
1

n
tr
`

σh ` ρ puh b uhq
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpuh b uhq . (2.22)

The solvability analysis and a priori error bounds for (2.21) are established in [12, Theorems 5.2,
5.3, and 6.2], respectively, considering both discrete approaches, (2.19) and (2.20). Indeed, similarly
as remarked at the end of Section 2.2, and under the discrete analogues of the assumptions [12, eqs.
(4.17) and (4.33)], which are detailed in [12, eqs. (5.15) and (5.17)], given δd ą 0, and setting

Wpδdq :“
!

zh P Q1,h : }zh}0,4;Ω ď δd

)

and Spδdq :“ Wpδdq ˆ Ph ,

it is proved that a suitable discrete operator mapping Spδdq into itself, has a unique fixed point puh, phq

in it, which yields the unique solution pDh,σh, u⃗hq :“
`

Dh,σh, puh,γhq
˘

P H1,h ˆH2,h ˆQh of (2.21),
with uh P Wpδdq and p satisfying (2.22).

3 A residual-based a posteriori error estimator

In this section, we derive a reliable and efficient residual-based a posteriori error estimator for the
two-dimensional version of the Galerkin scheme (2.21). The corresponding a posteriori error analysis
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for the three-dimensional case, which follows from minor modifications of the analysis presented here,
will be addressed in Appendix C. Throughout this section, we employ the notations and results from
Appendix A.

Recalling that
`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh is the unique solution of the discrete problem
(2.21), and that ph is computed from (2.22), we define the global a posteriori error estimator Θ as

Θ “

#

ÿ

KPTh

Θ
4{3
1,K

+3{4

`

#

ÿ

KPTh

Θ2
2,K

+1{2

`

#

ÿ

KPTh

Θ4
3,K

+1{4

, (3.1)

where, for each K P Th, the local error indicators Θ
4{3
1,K , Θ2

2,K and Θ4
3,K are defined as

Θ
4{3
1,K :“

›

›f ` divpσhq
›

›

4{3

0,4{3;K
, (3.2)

Θ2
2,K :“

›

›η
`

ph, |Dh|
˘

Dh ´ σd
h ´ ρpuh b uhqd

›

›

2

0,K
`

›

›σh ´ σt
h

›

›

2

0,K

` h2K
›

›rotpDh ` γhq
›

›

2

0,K
`

ÿ

ePEhpKqXEpΩq

he
›

›rr
`

Dh ` γh

˘

sss
›

›

2

0,e

`
ÿ

ePEhpKqXEpΓq

he
›

›∇uD s ´
`

Dh ` γh

˘

s
›

›

2

0,e
,

(3.3)

and
Θ4

3,K :“ h4K
›

›∇uh ´
`

Dh ` γh

˘›

›

4

0,4;K
`

ÿ

ePEhpKqXEpΓq

he }uD ´ uh}40,4;e . (3.4)

Notice that the last term defining Θ2
2,K (cf. (3.3)) requires that p∇uD sq|e P L2peq for all e P EhpΓq,

which is guaranteed by simply assuming that uD P H1pΓq. Nevertheless, to be more precise, it suffices
to assume that ∇uD|Γ P L2pΓq, which holds if ∇uD|Γ coincides with the trace of the gradient of a
function in HtpΩq for some t ą 4{3. In any case, the Dirichlet data used in the numerical results
reported below in Section 4 satisfy the first-mentioned assumptions on uD.

From now on, we define

}D⃗ ´ D⃗h}H :“ }D ´ Dh}H1 ` }σ ´ σh}H2 ` }u⃗ ´ u⃗h}Q ,

where D⃗ :“
`

D,σ, u⃗
˘

P H :“ H1 ˆ H2 ˆ Q and D⃗h :“
`

Dh,σh, u⃗h

˘

P Hh :“ H1,h ˆ H2,h ˆ Qh denote
the unique solutions of (2.11) and (2.21), respectively. The main goal of this section is to establish,
under suitable assumptions, the existence of positive constants Ceff and Crel, independent of the
mesh sizes and the continuous and discrete solutions, such that

CeffΘ ` h.o.t ď }D⃗ ´ D⃗h}H ` }p´ ph}0,Ω ď CrelΘ , (3.5)

where h.o.t is a generic expression denoting one or several terms of higher order, whereas p and ph are
computed according to (2.18) and (2.22), respectively. The upper and lower bounds in (3.5), which
are known as the reliability and efficiency of Θ, are derived below in Sections 3.1 and 3.2, respectively.

3.1 Reliability

The main result of this section is stated in the following theorem. To this end, and as done in [12, eq.
(5.19)], given r P L2

κpΩq, we first note that we can define the operator Ξr : H Ñ H1, which arises from
the left-hand side of the variational formulation (2.11) after summing all its rows, that is,

rΞrpC⃗q, E⃗s :“ rArpCq,Es ` B1pE, ζq ` B1pC, τ q ` Bpτ , w⃗q ` Bpζ, v⃗q , (3.6)

9



for all C⃗ :“ pC, ζ, w⃗q, E⃗ :“ pE, τ , v⃗q P H, so that (2.11) can be rewritten as

rΞppD⃗q, E⃗s “ FupEq ` Gpτ q ` Fpv⃗q @ E⃗ P H . (3.7)

Thus, the smoothness of the regularized function η (cf. (2.3)) allows to show that for each r P L2
κpΩq,

the operator Ar (cf. (2.12)), and hence Ξr as well, have first order Gâteaux derivatives DpArq P

L
`

H1,LpH1,H1
1q
˘

and DpΞrq P L
`

H,LpH,H1q
˘

, respectively. Moreover, using [12, eqs. (4.9) and
(4.10) in Lemma 4.2], one is able to prove (see, e.g. [27, Lemma 3.1]) that for each C P H1, the
operator DpArqpCq P LpH1,H1

1q can be identified as a bounded and H1-elliptic bilinear form with
constants LA and αA, respectively. It follows that for each r P L2

κpΩq, and for each C⃗ P H, the
operator DpΞrqpC⃗q P LpH,H1q satisfies the hypotheses of the linear version of [12, Theorem 4.1], and
hence, there exists a positive constant αΞ, depending only on LA, αA, and the inf-sup constants of B
and B1, namely rβ and rβ1 (cf. [12, eqs. (4.12), (4.13)]), such that the following global inf-sup condition
holds:

αΞ }F⃗}H ď sup
0‰E⃗PH

DpΞrqpC⃗qpF⃗, E⃗q

}E⃗}H
@ F⃗ P H . (3.8)

In addition, we let

C1,Ξ :“ α´1
Ξ n´1{2 and C2,Ξ :“ α´1

Ξ ρ
`

2n´1{2 Lη ` 1
˘

, (3.9)

where αΞ satisfies (3.8), and Lη denotes the Lipschitz continuity constant of η (cf. [12, eq. (4.8)]).

The aforementioned result is stated now.

Theorem 3.1. Assume that Lη and the radii δ and δd are sufficiently small so that

C1,Ξ Lη ď
1

2
and C2,Ξ n

1{2
`

δ ` δd
˘

ď
1

2
. (3.10)

Then, there exists a constant Crel ą 0, such that

}D⃗ ´ D⃗h}H ` }p´ ph}0,Ω ď CrelΘ . (3.11)

We begin the proof of Theorem 3.1 with a preliminary lemma. Specifically, proceeding analogously
to [13, Section 3.1] (see also [20, Section 1]), we first introduce the residual functional R : H Ñ R,
given by

RpE⃗q :“ R1pEq ` R2pτ q ` R3pv⃗q @ E⃗ “ pE, τ , v⃗q P H , (3.12)

where R1 : H1 Ñ R, R2 : H2 Ñ R, and R3 : Q Ñ R are given by

R1pEq :“ Fuh
pEq ´ rAphpDhq,Es ´ B1pE,σhq @E P H1 , (3.13)

R2pτ q :“ Gpτ q ´ B1pDh, τ q ´ Bpτ , u⃗hq @ τ P H2 , (3.14)

and
R3pv⃗q :“ Fpv⃗q ´ Bpσh, v⃗q @ v⃗ P Q , (3.15)

respectively, which according to the discrete problem (2.21) satisfy

R1pEhq “ 0 @Eh P H1,h , R2pτ hq “ 0 @ τ h P H2,h , and R3pv⃗hq “ 0 @ v⃗h P Qh . (3.16)

We are now in a position to establish the following aforementioned preliminary a posteriori error
estimate.
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Lemma 3.2. Assume that Lη and the radii δ and δd satisfy (3.10). Then, there exists a positive
constant C, independent of h, such that

}D⃗ ´ D⃗h}H ` }p´ ph}0,Ω ď C
!

}R1}H1
1

` }R2}H1
2

` }R3}Q1

)

. (3.17)

Proof. We begin by proceeding analogously to the proof of [27, Theorem 3.3]. In fact, given p P L2
κpΩq

satisfying (2.18) and since D⃗ and D⃗h belong to H, a straightforward application of the mean value
theorem yields the existence of a convex combination of D⃗ and D⃗h, say C⃗h P H, such that

DpΞpqpC⃗hqpD⃗ ´ D⃗h, E⃗q “ rΞppD⃗q, E⃗s ´ rΞppD⃗hq, E⃗s @ E⃗ P H . (3.18)

Then, by adding and subtracting rΞphpD⃗hq, E⃗s and Fuh
pEq on the right-hand side of (3.18), using (3.7),

and the definitions of Ξp and R (cf. (3.6), (3.12)), along with straightforward algebraic manipulations,
we deduce that

DpΞpqpC⃗hqpD⃗ ´ D⃗h, E⃗q “ RpE⃗q `
`

Fu ´ Fuh

˘

pEq ´ rAppDhq ´ AphpDhq,Es @ E⃗ P H . (3.19)

In turn, applying (3.8) with r “ p, C⃗ “ C⃗h, and F⃗ “ D⃗ ´ D⃗h, using (3.19) and the continuity of the
operator Ap (cf. [12, eq. (4.11) in Lemma 4.2]), with the positive continuity constant Lη, we get

αΞ }D⃗ ´ D⃗h}H ď }R}H1 ` }Fu ´ Fuh
}H1

1
` Lη}p´ ph}0,Ω . (3.20)

Next, we focus on bounding the last two terms on the right-hand side of (3.20). First, using the
definition of Fz (cf. (2.15)) and applying the Cauchy–Schwarz inequality, we obtain

}Fu ´ Fuh
}H1

1
ď ρ }u b u ´ uh b uh}0,Ω , (3.21)

whereas, according to the expressions provided by (2.18) and (2.22), and proceeding similarly to [12,
eq. (5.31)], the last term in (3.20) can be bounded by

}p´ ph}0,Ω ď n´1{2
!

}σ ´ σh}0,Ω ` 2 ρ }u b u ´ uh b uh}0,Ω

)

. (3.22)

Furthermore, subtracting and adding the term pu b uhq, using Cauchy–Schwarz’s inequality and the
fact that u P Wpδq and uh P Wpδdq, there holds

}ubu´uh buh}0,Ω ď n1{2
`

}u}0,4;Ω ` }uh}0,4;Ω
˘

}u´uh}0,4;Ω ď n1{2
`

δ` δd
˘

}u´uh}0,4;Ω , (3.23)

whence, combining (3.20) with (3.21), (3.22), and (3.23), and using the definition of the constants
C1,Ξ, C2,Ξ (cf. (3.9)), we obtain

}D⃗ ´ D⃗h}H ď
1

αΞ
}R}H1 ` C1,Ξ Lη }σ ´ σh}0,Ω ` C2,Ξ n

1{2pδ ` δdq }u ´ uh}0,4;Ω . (3.24)

Thus, by employing (3.10) in (3.24) and the definition of the residual R (cf. (3.12)) in terms of R1,
R2, and R3 (cf. (3.13), (3.14), (3.15)), we find that

}D⃗ ´ D⃗h}H ď
2

αΞ

!

}R1}H1
1

` }R2}H1
2

` }R3}Q1

)

, (3.25)

so that the corresponding estimate for }p´ph}0,Ω follows from (3.22), (3.23), and (3.25), thus yielding
(3.17), which concludes the proof.
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Throughout the rest of this section, we provide suitable upper bounds for each one of the terms on
the right-hand side of (3.17). We begin by establishing the corresponding estimates for }R1}H1

1
and

}R3}Q1 (cf. (3.13) and (3.15)).

Lemma 3.3. There hold

}R1}H1
1

ď
›

›ηpph, |Dh|qDh ´ σd
h ´ ρ puh b uhqd

›

›

0;Ω
(3.26)

and

}R3}Q1 ď
›

›f ` divpσhq
›

›

0,4{3;Ω
`

1

2

›

›σh ´ σt
h

›

›

0,Ω
. (3.27)

Proof. First, using the definition of the functionals and operators R1, Fuh
, Aph , and B1 (cf. (3.13),

(2.15), (2.12), (2.13)), along with the fact that τ d : E “ τ : E, for all E P H1 (cf. (2.10)), and
Cauchy–Schwarz’s inequality, we deduce that

|R1pEq| “

ˇ

ˇ

ˇ

ˇ

´

ż

Ω

´

ηpph, |Dh|qDh ´ σd
h ´ ρ puh b uhqd

¯

: E

ˇ

ˇ

ˇ

ˇ

ď
›

›ηpph, |Dh|qDh ´ σd
h ´ ρ puh b uhqd

›

›

0,Ω
}E}0,Ω ,

which yields (3.26). On the other hand, employing the definition of the functionals and bilinear form
R3, F , and B (cf. (3.15), (2.17), (2.14)), in conjunction with the decomposition of the tensor σh into

σh “
1

2

`

σh ` σt
h

˘

`
1

2

`

σh ´ σt
h

˘

,

the fact that
`

σh ` σt
h

˘

: ξ “ 0, for all ξ P L2
skpΩq, and the Cauchy–Schwarz and Hölder inequalities,

we obtain

|R3pv⃗q| “

ˇ

ˇ

ˇ

ˇ

ż

Ω

`

f ` divpσhq
˘

¨ v `
1

2

ż

Ω

`

σh ´ σt
h

˘

: ξ

ˇ

ˇ

ˇ

ˇ

ď
›

›f ` divpσhq
›

›

0,4{3;Ω
}v}0,4;Ω `

1

2

›

›σh ´ σt
h

›

›

0,Ω
}ξ}0,Ω ,

which implies (3.27) and ends the proof.

We now turn to the derivation of the corresponding estimate for }R2}H1
2
. To that end, we first

recall from (3.16) that R2pτ hq “ 0 for all τ h P H2,h, whence in the computation of

}R2}H1
2
:“ sup

0‰τPH2

R2pτ q

}τ }H2

, (3.28)

we can replace each term R2pτ q by R2pτ´τ hq, with a suitable τ h P H2,h (cf. (2.19), (2.20)) depending
on the given τ P H2. Indeed, we first consider the Helmholtz decomposition (A.10) provided by Lemma
A.2, with p “ 4{3, which says that for each τ P H2 there exist ζ P W1,4{3pΩq and ξ P H1pΩq, such
that

τ “ ζ ` curlpξq in Ω and }ζ}1,4{3;Ω ` }ξ}1,Ω ď C4{3}τ }div4{3;Ω , (3.29)

with a positive constant C4{3 independent of τ . Next, for simplicity of presentation, we focus on the
discrete approach (2.19), which relies on PEERS-based elements of order ℓ ě 0. The AFW-based
discretization (2.20) can be handled analogously, using the BDM interpolation operator instead of the
Raviart–Thomas one. In fact, setting

τ h :“ Πk
hpζq ` curlpIhpξqq ` c I , (3.30)
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where Πk
h and Ih denote the tensor and vector versions of the Raviart–Thomas (or BDM, in the case

of the AFW-based approach) and Clément interpolation operators, respectively (cf. Appendix A).
The constant c is chosen so that trpτ hq has zero mean value, and hence τ h belongs to H2,h. Note

that Πk
hpζq lies in RTℓpΩq Ď rH2,h (cf. (2.19)). Also observe that τ h can be interpreted as a discrete

Helmholtz decomposition of τ . In this way, using the second equation of the Galerkin scheme (2.21),
together with the compatibility condition (2.4), we deduce that R2pc Iq “ 0, so that denoting

pζ :“ ζ ´ Πk
hpζq and pξ :“ ξ ´ Ihpξq ,

it follows from (3.29) and (3.30), that

R2pτ q “ R2pτ ´ τ hq “ R2ppζq ` R2pcurlppξqq , (3.31)

where, bearing in mind the definition of R2 (cf. (3.14), (2.16)), we find that

R2ppζq :“

ż

Ω

`

Dh ` γh

˘

: pζ `

ż

Ω
uh ¨ divppζq ´ xpζ ν,uDy (3.32)

and

R2pcurlppξqq :“

ż

Ω

`

Dh ` γh

˘

: curlppξq ´ xcurlppξqν,uDy . (3.33)

The following lemma establishes the residual upper bound for }R2}H1
2
.

Lemma 3.4. Assume that uD P H1pΓq. Then, there exists a positive constant C, independent of h,
such that

}R2}H1
2

ď C

$

&

%

˜

ÿ

KPTh

rΘ2
K

¸1{2

`

˜

ÿ

KPTh

Θ4
3,K

¸1{4
,

.

-

. (3.34)

where Θ3,K is defined in (3.4), and

rΘ2
K :“ h2K

›

›rotpDh ` γhq
›

›

2

0,K
`

ÿ

ePEhpKq

he
›

›rr
`

Dh ` γh

˘

sss
›

›

2

0,e

`
ÿ

ePEhpKqXEhpΓq

he
›

›∇uD s ´
`

Dh ` γh

˘

s
›

›

2

0,e
.

Proof. We proceed as in [13, Lemma 3.6]. In fact, according to (3.31), we begin by estimating R2ppζq.
Let us first observe that, for each e P Eh, the identity (A.3) and the fact that uh|e P Pkpeq, yield
ż

e

pζν ¨ uh “ 0. Hence, locally integrating by parts the second term in (3.32), we readily obtain

R2ppζq “ ´
ÿ

KPTh

ż

K

!

∇uh ´
`

Dh ` γh

˘

)

: pζ ´
ÿ

ePEhpΓq

ż

e

`

uD ´ uh

˘

¨ pζν .

Thus, applying the Hölder inequality along with the approximation properties of Πk
h (cf. (A.8)–(A.9)

in Lemma A.1) with p “ 4{3 and l “ 0, and the stability estimate from (3.29), we get

ˇ

ˇR2ppζq
ˇ

ˇ ď pC1

$

&

%

ÿ

KPTh

h4K
›

›∇uh ´
`

Dh ` γh

˘›

›

4

0,4;K
`

ÿ

ePEhpΓq

he }uD ´ uh}40,4;e

,

.

-

1{4

}τ }div4{3;Ω . (3.35)
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Next, we estimate R2pcurlppξqq (cf. (3.33)). In fact, regarding its second term, a suitable boundary
integration by parts formula (cf. [21, eq. (3.35) in Lemma 3.5]) yields

xcurlppξqν,uDyΓ “ ´ x∇uD s,pξyΓ . (3.36)

In turn, locally integrating by parts the first term of R2pcurlppξqq, we get

ż

Ω

`

Dh ` γh

˘

: curlppξq

“
ÿ

KPTh

ż

K
rotpDh ` γhq ¨ pξ ´

ÿ

ePEhpΩq

ż

e
rr
`

Dh ` γh

˘

sss ¨ pξ ´
ÿ

ePEhpΓq

ż

e

`

Dh ` γh

˘

s ¨ pξ ,

which together with (3.36), the Cauchy–Schwarz inequality, the approximation properties of Ih (cf.
Lemma A.3), and again the stability estimate from (3.29), implies

ˇ

ˇR2pcurlppξqq
ˇ

ˇ ď pC2

#

ÿ

KPTh

h2K
›

›rotpDh ` γhq
›

›

2

0,K
`

ÿ

ePEhpΩq

he
›

›rr
`

Dh ` γh

˘

sss
›

›

2

0,e

`
ř

ePEhpΓq he
›

›∇uD s ´
`

Dh ` γh

˘

s
›

›

2

0,e

+1{2

}τ }div4{3;Ω .

(3.37)

Finally, it is easy to see that (3.28), (3.29), (3.35), and (3.37) give (3.34), which ends the proof.

We end this section by stressing that the reliability estimate (3.11) (cf. Theorem 3.1) follows by
bounding each one of the terms }R1}H1

1
, }R2}H1

2
, and }R3}Q1 , in Lemma 3.2 by the corresponding

upper bounds derived in Lemmas 3.3 and 3.4, and considering the definition of the global estimator
Θ (cf. (3.1)).

3.2 Efficiency

We now aim to establish the efficiency estimate of Θ (cf. (3.1)). For this purpose, we will make
extensive use of the notations and results from Appendix B, and the original system of equations
given by (2.8), which is recovered from the mixed continuous formulation (2.11) by choosing suitable
test functions and integrating by parts backwardly the corresponding equations. The following theorem
is the main result of this section.

Theorem 3.5. There exists a positive constant Ceff, independent of h, such that

CeffΘ ` h.o.t ď }D⃗ ´ D⃗h}H ` }p´ ph}0,Ω , (3.38)

where h.o.t stands eventually for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that uD is piecewise polynomial.
Otherwise, if it is not, but it is sufficiently smooth, one proceeds similarly to [17, Section 6.2], so
that higher order terms given by the error arising from a suitable polynomial approximation of this
function appear in (3.38). This possibility explains the expression h.o.t. in (3.38).

We begin deriving the efficiency estimate (3.38) by first addressing Θ1,K and the first two terms of
Θ2,K (cf. (3.2), (3.3)).
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Lemma 3.6. For each K P Th there hold

}f ` divpσhq}0,4{3;K ď }divpσ ´ σhq}0,4{3;K (3.39)

and }σh ´ σt
h}0,K ď 2 }σ ´ σh}0,K . (3.40)

In addition, there exists a positive constant C, independent of h, such that
›

›η
`

ph, |Dh|
˘

Dh ´ σd
h ´ ρpuh b uhqd

›

›

0,K

ď C
!

}D ´ Dh}0,K ` }σ ´ σh}0,K ` }u ´ uh}0,4;K ` }p´ ph}0,K

)

.
(3.41)

Proof. First, in order to show (3.39) and (3.40), it suffices to recall that f “ ´divpσq and σ “ σt in
Ω (cf. (2.8)). In turn, for the proof of (3.41), we first use the identity ηpp, |D|qD´σd ´ρ pubuqd “ 0
in Ω (cf. (2.8)) and triangle inequality, to deduce

›

›η
`

ph, |Dh|
˘

Dh ´ σd
h ´ ρpuh b uhqd

›

›

0,K

ď
›

›η
`

p, |D|
˘

D ´ η
`

ph, |Dh|
˘

Dh

›

›

0,K
` }σ ´ σh}0,K ` ρ }u b u ´ uh b uh}0,K ,

(3.42)

where, adding and subtracting η
`

p, |Dh|
˘

Dh in the first term on the right-hand side of (3.42), and
using the Lipschitz continuity estimates [12, eqs. (4.8) and (4.11)], we find that there exists positive
constants LA, Lη, such that

›

›η
`

p, |D|
˘

D ´ η
`

ph, |Dh|
˘

Dh

›

›

0,K

ď
›

›η
`

p, |D|
˘

D ´ η
`

p, |Dh|
˘

Dh

›

›

0,K
`

›

›

␣

η
`

p, |Dh|
˘

´ η
`

ph, |Dh|
˘(

Dh

›

›

0,K

ď LA }D ´ Dh}0,K ` Lη }p´ ph}0,K .

(3.43)

In turn, proceeding as in (3.23) in combination with the fact that }u}0,4;K and }uh}0,4;K are bounded
by }u}0,4;Ω and }uh}0,4;Ω, respectively, with u P Wpδq and uh P Wpδdq, there holds

}u b u ´ uh b uh}0,K ď n1{2
`

}u}0,4;K ` }uh}0,4;K
˘

}u ´ uh}0,4;K

ď n1{2
`

}u}0,4;Ω ` }uh}0,4;Ω
˘

}u ´ uh}0,4;K ď n1{2
`

δ ` δd
˘

}u ´ uh}0,4;K .
(3.44)

Finally, replacing back (3.43) and (3.44) into (3.42) we obtain (3.41) and conclude the proof.

We remark that the local efficiency estimates for the remaining terms in the definition of Θ (cf.
(3.1)) have already been established in the literature. These estimates are derived using the local-
ization technique based on triangle-bubble and edge-bubble functions (cf. (B.1) and Lemma B.1),
together with the local inverse inequality (cf. (B.2)) and the discrete trace inequality (cf. (B.3)). For
completeness, we state the following result.

Lemma 3.7. There exist positive constants Ci, i P t1, . . . , 5u, all independent of h, such that

aq h4K
›

›∇uh´
`

Dh`γh

˘
›

›

4

0,4;K
ď C1

!

}u ´ uh}40,4;K ` h2K}D ´ Dh}40,K ` h2K}γ ´ γh}40,K

)

@K P Th ,

bq he }uD ´ uh}40,4;e ď C2

!

}u ´ uh}40,4;Ke
` h2Ke

}D ´ Dh}40,Ke
` h2Ke

}γ ´ γh}40,Ke

)

@ e P EhpΓq ,

cq h2K
›

›rotpDh ` γhq
›

›

2

0,K
ď C3

!

}D ´ Dh}20,K ` }γ ´ γh}20,K

)

@K P Th ,
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dq he
›

›rrpDh ` γhqsss
›

›

2

0,e
ď C4

␣

}D ´ Dh}20,ωe
` }γ ´ γh}20,ωe

(

@ e P EhpΩq ,

eq he
›

›∇uD s ´
`

Dh ` γh

˘

s
›

›

2

0,e
ď C5

!

}D ´ Dh}20,Ke
` }γ ´ γh}20,Ke

)

@ e P EhpΓq ,

where Ke is the triangle of Th having e as an edge, whereas ωe denotes the union of the two elements
of Th sharing the edge e .

Proof. The estimate aq follows directly from the proof of [28, Lemma 3.15], replacing th therein with
Dh ` γh, while bq is given in [28, Lemma 3.16]. For cq and dq, we refer to [6, Lemmas 4.3 and 4.4].
Finally, the proof of eq follows the same arguments as those in [29, Lemma 4.15].

We conclude this section by noting that the proof of (3.38) (cf. Theorem 3.5) follows directly from
Lemmas 3.6 and 3.7 and summing the local efficiency estimates over all K P Th. Further details are
omitted.

4 Numerical results

This section serves to illustrate the performance and accurancy of the proposed mixed finite element
scheme (2.21) along with the reliability and efficiency properties of the a posteriori error estimator Θ
(cf. (3.1)) derived in Section 3. In what follows, we refer to the corresponding sets of finite element
subspaces generated by ℓ “ t0, 1u as simply PEERSℓ and AFWℓ based discretizations (cf. (2.19),
(2.20)). The numerical methods have been implemented using the open source finite element library
FEniCS [5]. Regarding the implementation of the Newton-type iterative method associated with (2.21)
(see [12, steps (1)-(3) in Section 7] for details), the iterations are terminated once the relative error
of the entire coefficient vectors between two consecutive iterates, namely coeffm and coeffm`1, is
sufficiently small, that is,

}coeffm`1 ´ coeffm}DoF

}coeffm`1}DoF
ď tol ,

where } ¨ }DoF stands for the usual Euclidean norm in RDoF with DoF denoting the total number of
degrees of freedom defining the finite element subspaces H1,h, rH2,h, Q1,h, and Q2,h (cf. (2.19), (2.20)),
and tol is a fixed tolerance chosen as tol “ 1E ´ 06.

The global error and the effectivity index associated to the global estimator Θ (cf. (3.1)) are
denoted, respectively, by

ep⃗tq :“ epDq ` epσq ` epuq ` epγq ` eppq and effpΘq :“
ep⃗tq

Θ
,

where
epDq :“ }D ´ Dh}0,Ω , epσq :“ }σ ´ σh}div4{3;Ω , epuq :“ }u ´ uh}0,4;Ω ,

epγq :“ }γ ´ γh}0,Ω , and eppq :“ }p´ ph}0,Ω .

Moreover, using the fact that DoF´1{n – h, the respective experimental rates of convergence are
computed as

rp˛q :“ ´n
logpep˛q{pep˛qq

logpDoF{yDoFq
for each ˛ P

␣

D,σ,u,γ, p, t⃗
(

,

where DoF and yDoF denote the total degrees of freedom associated to two consecutive triangulations
with errors ep˛q and pep˛q, respectively. We stress that, for the sake of simplicity and clarity of
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presentation, in the examples considered below we only report errors and rates of convergence for the
most physically relevant unknowns, namely σ, u, p, and t⃗ “ pD⃗, pq. We recall that the reliability
and efficiency of the global estimator Θ (cf. (3.11), (3.38)) are with respect to the full error in t⃗, and
therefore we are particularly interested in the behavior of this error.

The examples to be considered in this section are described next, for which we consider the regular-
ized viscosity ηpϱ, ωq defined by (2.3). In the first three examples, for the sake of simplicity, we take
µs “ 0.1, µd “ 1, I0 “ 1, d “ 1 and ρ “ 1. In addition, it is easy to see for these examples that the
boundary data uD :“ u|Γ satisfy the required regularity uD P H1pΓq since the given exact solutions
u are sufficiently regular. In turn, the null mean value of trpσhq over Ω is fixed via a real Lagrange
multiplier strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator
Θ, whereas Examples 2, 3 and 4 are utilized to illustrate the behavior of the associated adaptive
algorithm in 2D and 3D domains with and without manufactured solution, respectively, which applies
the following procedure from [39]:

(1) Start with a coarse mesh Th of Ω.

(2) Solve the Newton iterative method associated with (2.21) on the current mesh.

(3) Compute the local indicator ΘK for each K P Th, where

ΘK :“ Θ1,K ` Θ2,K ` Θ3,K (cf. (3.2), (3.3), (3.4)) .

(4) Check the stopping criterion and decide whether to finish or go to the next step.

(5) Use Plaza and Carey’s algorithm [36] to refine each K 1 P Th satisfying

ΘK1 ě CPC max
!

ΘK : K P Th
)

for some CPC P p0, 1q .

(6) Define the resulting mesh as the current mesh, and go to step (2).

In particular, in the 2D Examples 2 and 4 below, we set CPC “ t0.25, 0.1u for ℓ “ t0, 1u, respectively,
while in the 3D Example 3, we set CPC “ 0.5.

Example 1: Accuracy assessment with a smooth solution in a square domain

We first focus on the accuracy of the mixed methods and the properties of the a posteriori error
estimator through the effectivity index effpΘq under a quasi-uniform refinement strategy. We consider
the square domain Ω :“ p0, 1q2 and set the regularization parameter to ε “ 1E ´ 08. The data f and
uD are adjusted so that a manufactured solution of (2.8) is given by the following smooth functions

upxq “

ˆ

sinpx1q cospx2q

´ cospx1q sinpx2q

˙

and ppxq “ exppx1 ` x2q,

where p P L2
κpΩq, with κ “ pexpp1q ´ 1q2. Tables 4.1 and 4.2 shows the convergence history for

a sequence of quasi-uniform mesh refinements for both PEERSℓ and AFWℓ-based discretizations,
corresponding to ℓ “ 0 and ℓ “ 1, respectively. The results are consistent with the theoretical bounds
established in [12, Theorem 6.2]. In addition, we compute the global a posteriori error indicator Θ
(cf. (3.1)) and assess its reliability and efficiency through the effectivity index. We observe that the
estimator remains uniformly bounded throughout the refinement process.
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PEERSℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

3314 0.177 14 5.5e-01 – 3.7e-02 – 2.0e-01 – 1.0e-00 – 1.1e-00 0.911
16634 0.079 12 2.4e-01 1.05 1.6e-02 1.06 7.8e-02 1.13 4.3e-01 1.06 5.3e-01 0.827
29522 0.059 12 1.8e-01 1.03 1.2e-02 1.03 5.8e-02 1.08 3.2e-01 1.04 4.0e-01 0.812
73874 0.037 11 1.1e-01 1.02 7.4e-03 1.01 3.6e-02 1.05 2.0e-01 1.03 2.5e-01 0.797
209282 0.022 9 6.5e-02 1.01 4.4e-03 1.01 2.1e-02 1.02 1.2e-01 1.02 1.5e-01 0.787
510602 0.014 8 4.2e-02 1.01 2.8e-03 1.00 1.3e-02 1.01 7.5e-02 1.01 9.6e-02 0.782

AFWℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

2369 0.177 14 2.8e-01 – 3.5e-02 – 1.6e-01 – 5.4e-01 – 5.4e-01 0.995
11809 0.079 11 1.2e-01 1.01 1.6e-02 1.01 7.3e-02 1.01 2.4e-01 1.01 2.4e-01 1.003
20929 0.059 10 9.3e-02 1.01 1.2e-02 1.01 5.5e-02 1.01 1.8e-01 1.01 1.8e-01 1.004
52289 0.037 9 5.9e-02 1.00 7.3e-03 1.00 3.4e-02 1.00 1.1e-01 1.00 1.1e-01 1.005
147969 0.022 7 3.5e-02 1.00 4.4e-03 1.00 2.0e-02 1.00 6.7e-02 1.00 6.7e-02 1.005
360801 0.014 6 2.2e-02 1.00 2.8e-03 1.00 1.3e-02 1.00 4.3e-02 1.00 4.3e-02 1.005

Table 4.1: [ Example 1, ℓ “ 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, rates of convergence, global estimator, and effectivity index for the mixed approximations.

PEERSℓ-based discretization with ℓ “ 1 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

7010 0.177 10 1.2e-02 – 1.2e-03 – 4.5e-03 – 2.6e-02 – 4.6e-02 0.559
35210 0.079 7 2.4e-03 1.99 2.3e-04 2.01 8.9e-04 2.02 5.5e-03 1.93 9.5e-03 0.572
62498 0.059 7 1.3e-03 1.99 1.3e-04 2.01 5.0e-04 2.00 3.1e-03 1.96 5.4e-03 0.575

156410 0.037 6 5.4e-04 1.99 5.1e-05 2.00 2.0e-05 2.00 1.3e-03 1.97 2.2e-03 0.579
443138 0.022 4 1.9e-04 1.99 1.8e-05 2.00 7.0e-05 2.00 4.5e-04 1.98 7.7e-04 0.581
1081202 0.014 4 7.8e-05 2.00 7.3e-06 2.00 2.9e-05 2.00 1.9e-04 1.99 3.2e-04 0.583

AFWℓ-based discretization with ℓ “ 1 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

5473 0.177 7 6.1e-03 – 1.2e-03 – 4.3e-03 – 1.3e-02 – 2.1e-02 0.600
27433 0.079 5 1.2e-03 2.02 2.3e-04 2.01 8.6e-04 2.01 2.5e-03 2.02 4.3e-03 0.591
48673 0.059 5 6.7e-04 2.01 1.3e-04 2.01 4.8e-04 2.01 1.4e-03 2.01 2.4e-03 0.590
121753 0.037 4 2.7e-04 2.01 5.1e-05 2.01 1.9e-04 2.01 5.7e-04 2.01 9.6e-04 0.587
344833 0.022 3 9.4e-05 2.01 1.8e-05 2.00 6.8e-05 2.00 2.0e-04 2.01 3.4e-04 0.585
841201 0.014 3 3.8e-05 2.00 7.3e-06 2.00 2.8e-05 2.00 8.2e-05 2.00 1.4e-04 0.585

Table 4.2: [Example 1, ℓ “ 1] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, rates of convergence, global estimator, and effectivity index for the mixed approximations.

Example 2: Adaptivity in a 2D L-shaped domain

The second example is aimed at testing the features of adaptive mesh refinement after the a posteriori
error estimator Θ (cf. (3.1)). We consider a 2D L-shaped domain Ω :“ p0, 1q2zp0.5, 1q2 and the
regularization parameter as ε “ 1E ´ 08. The data f and uD are chosen so that the exact solution is
given by

upxq “

ˆ

sinpπ x1q cospπ x2q ` x2
´ cospπ x1q sinpπ x2q ` x1

˙

and ppxq “ 18 ´ 10 exp

ˆ

´0.001

rpxq

˙

,
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with rpxq :“ px1 ´0.51q2 ` px2 ´0.51q2. Notice that the pressure field exhibits high gradients near the
vertex p0.5, 0.5q. Tables 4.3 and 4.4, together with Figure 4.1, summarize the convergence behavior
of the mixed methods applied to a sequence of quasi-uniform and adaptively refined triangulations
of the domain. Suboptimal convergence rates are observed in the quasi-uniform case. In contrast,
adaptive refinement guided by the a posteriori error indicator Θ leads to optimal rates and stable
effectivity indices for both PEERSℓ and AFWℓ-based discretizations with ℓ “ t0, 1u. The adaptive
strategy significantly enhances the efficiency of the method, enabling high-quality approximations at
reduced computational cost. For ℓ “ 0, solutions with improved accuracy in terms of ep⃗tq are obtained
using approximately 60% of the degrees of freedom required by the final quasi-uniform mesh. This
reduction is significant, especially considering the challenges posed by the nonlinearities involved in the
model. This efficiency is further enhanced for ℓ “ 1, where accurate solutions are obtained using only
approximately 10% of the degrees of freedom, highlighting the substantial advantage of the adaptive
approach in this case. Figure 4.2 displays the initial mesh and some approximate solutions computed
with the adaptive PEERS1-based method, using Θ, on a mesh with 706, 301 degrees of freedom and
13, 061 triangles. These results confirm that the pressure exhibits strong variations in the contraction
region. Additionally, Figure 4.3 shows examples of adapted meshes for the mixed methods when ℓ “ 1.
As expected, the refinement is concentrated near the reentrant corner of the 2D L-shaped domain,
revealing the indicator’s ability to effectively localize the singularity.

Figure 4.1: [Example 2] Log-log plot of ep⃗tq vs. DoF for quasi-uniform/adaptive refinements for
PEERSℓ and AFWℓ-based discretizations with ℓ “ t0, 1u (top and bottom plots, respectively).
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PEERSℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

1028 0.280 15 8.0e-00 – 1.9e-01 – 7.0e-01 – 9.9e-00 – 9.8e-00 1.009
4601 0.141 18 4.9e-00 0.64 9.0e-02 0.97 3.4e-01 0.97 5.8e-00 0.72 5.7e-00 1.016
18491 0.071 15 2.7e-00 0.86 4.4e-02 1.04 1.8e-01 0.94 3.1e-00 0.89 3.1e-00 1.022
67811 0.038 13 1.7e-00 0.71 2.3e-02 0.99 9.8e-02 0.91 1.9e-00 0.74 1.9e-00 1.023
267785 0.019 12 9.2e-01 0.91 1.1e-02 1.01 5.0e-02 0.96 1.0e-00 0.92 1.0e-00 1.020
752408 0.011 11 5.2e-01 1.12 6.8e-03 1.00 2.9e-02 1.06 5.8e-01 1.11 5.7e-01 1.018

PEERSℓ-based discretization with ℓ “ 0 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

1028 15 8.0e-00 – 1.9e-01 – 7.0e-01 – 9.9e-00 – 9.8e-00 1.009
3857 17 5.1e-00 0.68 1.0e-01 0.90 3.6e-01 1.02 6.0e-00 0.77 6.0e-00 0.999
5189 17 3.7e-00 2.11 8.9e-02 0.92 2.7e-01 1.92 4.5e-00 1.98 4.5e-00 0.979
16997 14 2.2e-00 0.90 5.0e-02 0.98 1.4e-01 1.15 2.6e-00 0.94 2.6e-00 0.967
47183 14 1.3e-00 1.03 3.3e-02 0.82 8.6e-02 0.91 1.5e-00 1.00 1.6e-00 0.967
184580 13 6.6e-01 0.98 1.6e-02 1.03 4.2e-02 1.05 7.8e-01 1.00 8.1e-01 0.962
710489 12 3.5e-01 0.94 8.1e-03 1.03 2.2e-02 0.96 4.1e-01 0.95 4.2e-01 0.966

AFWℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

745 0.280 19 7.9e-00 – 1.8e-01 – 8.0e-01 – 9.6e-00 – 8.7e-00 1.106
3285 0.141 19 4.7e-00 0.69 9.0e-02 0.96 3.3e-01 1.18 5.5e-00 0.75 5.2e-00 1.061
13117 0.071 18 2.5e-00 0.90 4.4e-02 1.04 1.5e-01 1.16 2.9e-00 0.93 2.8e-00 1.039
47997 0.038 17 1.6e-00 0.70 2.3e-02 0.99 8.1e-02 0.93 1.8e-00 0.73 1.8e-00 1.032
189285 0.019 17 8.7e-01 0.91 1.1e-02 1.01 4.2e-02 0.94 9.7e-01 0.92 9.4e-01 1.030
531593 0.011 16 4.9e-01 1.12 6.8e-03 1.00 2.4e-02 1.09 5.4e-01 1.11 5.3e-01 1.028

AFWℓ-based discretization with ℓ “ 0 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

745 19 7.9e-00 – 1.8e-01 – 8.0e-01 – 9.6e-00 – 8.7e-00 1.106
2685 19 4.9e-00 0.74 9.9e-02 0.95 3.6e-01 1.25 5.8e-00 0.80 5.4e-00 1.064
3517 19 3.6e-00 2.32 9.1e-02 0.63 2.4e-01 2.83 4.3e-00 2.16 4.1e-00 1.052
11729 18 2.1e-00 0.91 4.8e-02 1.07 1.0e-01 1.46 2.4e-00 0.96 2.4e-00 1.026
30457 18 1.3e-00 0.98 3.3e-02 0.76 5.7e-02 1.20 1.5e-00 0.96 1.5e-00 1.015
118453 17 6.8e-01 0.96 1.7e-02 1.03 2.9e-02 1.02 7.9e-01 0.97 7.8e-01 1.016
462749 15 3.5e-01 0.96 8.3e-03 1.02 1.5e-02 0.98 4.1e-01 0.97 4.0e-01 1.017

Table 4.3: [Example 2, ℓ “ 0] Comparison of the mixed approximations with quasi-uniform and
adaptive refinements for the µpIq-rheology model.

Example 3: Adaptivity in a 3D L-shaped domain

Here, we replicate the Example 2 in a three-dimensional setting but now considering the 3D L-
shaped domain Ω “ p0, 1q ˆ p0, 0.5q ˆ p0, 1qzp0.5, 1q ˆ p0, 0.5q ˆ p0.5, 1q, the regularization parameter
as ε “ 1E ´ 06, and the manufactured exact solutions given by

upxq “

¨

˝

sinpx1q cospx2q cospx3q

´2 cospx1q sinpx2q cospx3q

cospx1q cospx2q sinpx3q

˛

‚ and ppxq “ 80 ´ 40 exp

ˆ

´0.0001

rpxq

˙

,
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PEERSℓ-based discretization with ℓ “ 1 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

2171 0.280 16 3.4e-00 – 2.4e-02 – 2.4e-01 – 3.8e-00 – 3.9e-00 0.979
9734 0.141 14 1.9e-00 0.75 5.6e-03 1.95 9.1e-02 1.28 2.1e-00 0.80 2.1e-00 1.021
39143 0.071 12 1.1e-00 0.77 1.3e-03 2.13 3.2e-02 1.50 1.2e-00 0.82 1.2e-00 1.028

143573 0.038 9 3.5e-01 1.80 3.5e-04 1.99 1.3e-02 1.39 3.7e-01 1.78 3.6e-01 1.032
567023 0.019 7 1.2e-01 1.53 8.8e-05 2.00 4.1e-03 1.66 1.3e-01 1.54 1.3e-01 1.034
1593242 0.011 5 3.9e-02 2.22 3.1e-05 2.00 1.3e-03 2.28 4.1e-02 2.22 4.0e-02 1.029

PEERSℓ-based discretization with ℓ “ 1 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

2171 16 3.4e-00 – 2.4e-02 – 2.4e-01 – 3.8e-00 – 3.9e-00 0.979
8267 14 1.9e-00 0.90 6.3e-03 2.00 9.7e-02 1.32 2.0e-00 0.95 2.0e-00 1.024
10547 14 1.2e-00 4.04 6.2e-03 0.08 3.9e-02 7.56 1.2e-00 4.17 1.3e-00 0.965
14948 13 4.6e-01 5.25 5.4e-03 0.83 1.9e-02 4.17 5.1e-01 4.98 5.8e-01 0.880
57371 11 1.3e-01 1.87 1.4e-03 2.05 5.4e-03 1.85 1.5e-01 1.87 1.6e-01 0.891
179354 9 4.7e-02 1.80 3.6e-04 2.33 1.9e-03 1.87 5.2e-02 1.82 5.6e-02 0.918
706301 7 1.2e-02 2.00 9.1e-05 2.02 4.7e-04 2.01 1.3e-02 2.00 1.4e-02 0.916

AFWℓ-based discretization with ℓ “ 1 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

1702 0.280 15 3.3e-00 – 2.4e-02 – 2.3e-01 – 3.6e-00 – 3.5e-00 1.027
7597 0.141 13 1.9e-00 0.76 5.5e-03 1.95 9.0e-02 1.27 2.0e-00 0.81 1.9e-00 1.035
30490 0.071 11 1.1e-00 0.73 1.3e-03 2.12 3.1e-02 1.56 1.2e-00 0.77 1.1e-00 1.033

111760 0.038 8 3.5e-01 1.82 3.5e-04 1.99 1.3e-02 1.37 3.6e-01 1.80 3.5e-01 1.033
441202 0.019 6 1.2e-01 1.54 8.8e-05 2.01 4.0e-03 1.66 1.3e-01 1.54 1.2e-01 1.028
1239529 0.011 5 3.8e-02 2.23 3.1e-05 2.00 1.2e-03 2.30 3.9e-02 2.24 3.9e-02 1.020

AFWℓ-based discretization with ℓ “ 1 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

1702 15 3.3e-00 – 2.4e-02 – 2.3e-01 – 3.6e-00 – 3.5e-00 1.027
5893 14 1.8e-00 0.96 7.4e-03 1.88 9.5e-02 1.45 1.9e-00 1.01 1.9e-00 1.020
7456 13 1.1e-00 3.98 7.3e-03 0.04 3.4e-02 8.73 1.2e-00 4.10 1.2e-00 0.967
12022 13 4.7e-01 3.72 5.6e-03 1.19 1.3e-02 4.06 5.0e-01 3.65 5.4e-01 0.931
43087 11 1.4e-01 1.91 1.5e-03 2.09 4.1e-03 1.81 1.5e-01 1.91 1.6e-01 0.934
137791 9 4.7e-02 1.84 3.9e-04 2.28 1.5e-03 1.69 5.1e-02 1.84 5.3e-02 0.951
534541 6 1.2e-02 1.98 9.7e-05 2.04 4.1e-04 1.96 1.3e-02 1.98 1.4e-02 0.954

Table 4.4: [Example 2, ℓ “ 1] Comparison of the mixed approximations with quasi-uniform and
adaptive refinements for the µpIq-rheology model.

with rpxq :“ px1 ´ 0.505q2 ` px3 ´ 0.505q2. The convergence history for a set of quasi-uniform and
adaptive mesh refinements using both PEERS0 and AFW0-based discretizations is shown in Table
4.5, along with Figure 4.4. We observe a considerable increase in the number of degrees of freedom in
the PEERS0-based scheme compared to the AFW0 one. For this reason, and due to computational
limitations, we report results for only four meshes in the case of the PEERS0-based discretization.
This is mainly explained by the fact that the symmetric part of the velocity gradient is approximated
using P3pΩq and P1pΩq, respectively. Nevertheless, in both cases we observe disturbed convergence
under quasi-uniform refinement and optimal convergence rates when using adaptive refinement guided
by the a posteriori error estimator Θ (cf. (3.1)). The initial mesh and some approximate solutions
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Figure 4.2: [Example 2] Initial mesh, computed magnitude of the velocity and symmetric part of the
velocity gradient, and pressure field.

computed using the adaptive AFW0-based scheme (driven by Θ), with 775, 808 degrees of freedom
and 13, 724 tetrahedra, are displayed in Figure 4.5. Snapshots of three meshes generated via Θ are
shown in Figure 4.6, where an incipient clustering of elements around the contraction region can be
observed.

Example 4: Fluid flow through a 2D cavity with two circular obstacles

Inspired by [12, Example 3 in Section 7], we finally focus on studying the behavior of the regularized
µpIq-rheology model for granular materials in fluid flow through a 2D cavity with two circular obstacles,
without employing a manufactured solution. More precisely, we consider the domain Ω “ p0, 1q2 zΩc,
where

Ωc “

!

px1, x2q : px1 ´ 1{2q2 ` px2 ´ 1{3q2 ă 0.12
)

Y

!

px1, x2q : px1 ´ 1{2q2 ` px2 ´ 2{3q2 ă 0.12
)

,

with boundary Γ, whose part around the circles is given by Γc “ BΩc. The model parameters are chosen
as µs “ 0.36, µd “ 0.91, I0 “ 0.73, d “ 0.05, ρ “ 2500, and the regularization factor is ε “ 1E ´ 03.
Notice that the relation between the diameter of the particles d and the width of the cavity is 1 : 20,
whereas the radius of both circular obstacles is double that of d. The mean value of p is fixed as
κ “ 100, no presence of gravity is assumed, that is, f “ 0, and the boundaries conditions are

u “ p0.2x2 ´ 0.1, 0qt on Γ zΓc and u “ 0 on Γc .

In particular, we impose that flows cannot go in nor out through Γc, whereas at the top and bottom
of the domain flows are faster in opposite direction. In Figure 4.7, we display the initial mesh, the
computed magnitude of the velocity and symmetric part of the velocity gradient, and pressure field,
which were built using the mixed PEERS0-based scheme on a mesh with 23, 390 triangle elements
(actually representing 597, 375 DoF) obtained via Θ (cf. (3.1)). Similarly to [12, Example 3 in Section
7], we observe higher velocities along the top and bottom boundaries, moving rightward and leftward,
respectively, as anticipated. Additionally, a circulation phenomenon emerges near the lateral bound-
aries, driven by the fact that the fluid cannot enter or exit through the circular obstacles. Most of
the variations in both the pressure field and the magnitude of the symmetric part of the velocity
gradient tensor are concentrated around the circular obstacles. Notably, between the obstacles and in
some central regions of the domain, the magnitude of the symmetric part of the velocity gradient is
either zero or nearly so, indicating zones where the original viscosity η (cf. [12, eq. (2.9)]) becomes
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Figure 4.3: [Example 2] Three snapshots of adapted meshes according to the indicator Θ for PEERS1
and AFW1-based discretizations (top and bottom plots, respectively).

singular and the granular flow remains static. This behavior is consistent with the velocity field and
is properly handled by the mixed formulations using the regularized viscosity (2.3). The results align
with those reported in [12], now incorporating an adaptive mesh refinement strategy driven by the a
posteriori error indicator Θ. Snapshots of some of the adapted meshes are shown in Figure 4.8, where
we can clearly observe refinement concentrated around the obstacles and in regions where the velocity
gradient vanishes or is nearly zero. This confirms that the indicator Θ successfully identifies both the
singular zones and the areas with large solution variations, as intended.

A Preliminaries for reliability

We begin by introducing useful notations to describe local information on elements and edges. For each
K P Th, let EpKq denote its set of edges, and let Eh be the set of all edges in Th, with corresponding
diameters he. We further decompose Eh as Eh “ EhpΩq Y EhpΓq, where EhpΩq :“ te P Eh : e Ď Ωu and
EhpΓq :“ te P Eh : e Ď Γu. For each e P Eh, we fix unit normal and tangential vectors, denoted by
νe :“ pν1, ν2qt and se :“ p´ν2, ν1qt, respectively. When no ambiguity arises, we will simply write ν and
s. The usual jump operator rr¨ss across an internal edge e P EhpΩq is defined for a piecewise continuous
tensor valued function ζ as rrζss :“ ζ|K ´ ζ|K1 , where K and K 1 are the elements of Th sharing e.
Finally, for a scalar field ϕ, a vector field v :“ pv1, v2qt, and a matrix-valued field τ :“ pτijq2ˆ2, we
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PEERSℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

32744 0.522 18 1.3e+01 – 9.8e-02 – 2.1e-00 – 1.6e+01 – 1.2e+01 1.271
296142 0.207 16 6.5e-00 0.97 4.1e-02 1.18 8.7e-01 1.19 7.5e-00 1.00 6.4e-00 1.181
605245 0.164 16 5.8e-00 0.49 3.2e-02 1.03 6.9e-01 0.98 6.6e-00 0.55 5.6e-00 1.168

1651385 0.114 16 5.2e-00 0.31 2.3e-02 1.03 4.9e-01 1.03 5.8e-00 0.39 5.0e-00 1.149

PEERSℓ-based discretization with ℓ “ 0 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

32744 18 1.3e+01 – 9.8e-02 – 2.1e-00 – 1.6e+01 – 1.2e+01 1.271
106606 17 7.2e-00 1.55 7.4e-02 0.70 9.8e-01 1.90 8.4e-00 1.59 7.2e-00 1.157
374390 17 5.2e-00 0.78 6.2e-02 0.43 4.7e-01 1.78 5.8e-00 0.88 5.3e-00 1.084
935833 17 3.8e-00 1.05 4.1e-02 1.36 2.5e-01 2.08 4.1e-00 1.12 3.9e-00 1.061

AFWℓ-based discretization with ℓ “ 0 and quasi-uniform refinement

DoF h it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

10911 0.522 11 1.3e+01 – 9.8e-02 – 2.0e-00 – 1.5e+01 – 1.2e+01 1.267
94997 0.207 10 6.4e-00 1.00 4.1e-02 1.20 8.6e-01 1.20 7.3e-00 1.03 6.3e-00 1.173

193678 0.164 10 5.7e-00 0.51 3.2e-02 1.04 6.8e-01 1.00 6.4e-00 0.57 5.5e-00 1.154
525096 0.114 10 5.1e-00 0.34 2.3e-02 1.04 4.8e-01 1.03 5.6e-00 0.41 5.0e-00 1.126
1595337 0.079 10 4.4e-00 0.39 1.6e-02 1.04 3.3e-01 1.05 4.7e-00 0.44 4.3e-00 1.105

AFWℓ-based discretization with ℓ “ 0 and adaptive refinement via Θ

DoF it epσq rpσq epuq rpuq eppq rppq ep⃗tq rp⃗tq Θ effpΘq

10911 11 1.3e+01 – 9.8e-02 – 2.0e-00 – 1.5e+01 – 1.2e+01 1.267
34300 11 7.0e-00 1.64 7.4e-02 0.72 9.7e-01 1.93 8.2e-00 1.66 7.2e-00 1.140
114721 11 5.0e-00 0.86 6.2e-02 0.44 4.6e-01 1.88 5.6e-00 0.96 5.3e-00 1.043
314569 10 3.6e-00 1.01 3.9e-02 1.41 2.3e-01 2.02 3.9e-00 1.09 3.8e-00 1.013
775808 10 2.6e-00 1.08 2.8e-02 1.14 1.5e-01 1.40 2.8e-00 1.10 2.8e-00 1.002

Table 4.5: [Example 3, ℓ “ 0] Comparison of the mixed approximations with quasi-uniform and
adaptive refinements for the µpIq-rheology model.

define:

curlpϕq :“

ˆ

Bϕ

Bx2
,´

Bϕ

Bx1

˙t

, curlpvq :“

ˆ

curlpv1qt

curlpv2qt

˙

,

rotpvq :“
Bv1
Bx2

´
Bv2
Bx1

, and rotpτ q :“

ˆ

rotpτ11, τ12q

rotpτ21, τ22q

˙

,

where the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart–Thomas and Clément interpolation operators
(cf. [22], [19]). We begin by defining, for each p ě 2n{pn` 2q, the spaces

WppΩq :“
!

τ P Hpdivp; Ωq : τ |K P W1,ppKq , @K P Th
)

, (A.1)

and

RTℓpΩq :“
!

τ P Hpdivp; Ωq : τ |K P RTℓpKq , @K P Th
)

. (A.2)

In addition, we let Πℓ
h : WppΩq Ñ RTℓpΩq be the Raviart–Thomas interpolation operator, which is
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Figure 4.4: [Example 3] Log-log plot of ep⃗tq vs. DoF for quasi-uniform/adaptive refinements for
PEERS0 and AFW0-based discretizations (left and right plots, respectively).

Figure 4.5: [Example 3] Initial mesh, computed magnitude of the velocity and symmetric part of the
velocity gradient, and pressure field.

characterized for each τ P WppΩq by the identities (see, e.g. [22, Section 1.2.7])
ż

e

´

Πℓ
hpτ q ¨ ν

¯

ξ “

ż

e
pτ ¨ νq ξ @ ξ P Pkpeq , @ edge or face e of Th , (A.3)

when k ě 0, and
ż

K
Πℓ

hpτ q ¨ψ “

ż

K
τ ¨ψ @ψ P Pℓ´1pKq , @K P Th , (A.4)

when k ě 1. In turn, given q ą 1 such that 1{p` 1{q “ 1, we let

PℓpΩq :“
!

v P LqpΩq : v|K P PℓpKq , @K P Th
)

, (A.5)

and recall from [22, Lemma 1.41] that there holds

divpΠℓ
hpτ qq “ Pℓ

hpdivpτ qq , @ τ P WppΩq , (A.6)

where Pℓ
h : L2pΩq Ñ PℓpΩq denotes the standard orthogonal projector with respect to the L2pΩq-inner

product. This operator satisfies the following error estimate (see [22, Proposition 1.135]): there exists
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Figure 4.6: [Example 3] Three snapshots of adapted meshes according to the indicator Θ for the
AFW0-based discretization.

Figure 4.7: [Example 4] Initial mesh, computed magnitude of the velocity and symmetric part of the
velocity gradient, and pressure field.

a positive constant C0, independent of h, such that for 0 ď l ď ℓ ` 1 and 1 ď p ď 8, the following
holds

}w ´ Pℓ
hpwq}0,p;Ω ď C0 h

l }w}l,p;Ω @w P Wl,ppΩq . (A.7)

We stress that Pℓ
hpwq|K “ Pℓ

Kpw|Kq @w P LppΩq, where Pℓ
K : LppKq Ñ PℓpKq is the corresponding

local orthogonal projector. In addition, denoting by PℓpΩq the vector version of PℓpΩq (cf. (A.5)), we
let Pℓ

h : L2pΩq Ñ PℓpΩq be the vector version of Pℓ
h.

Next, we collect some approximation proprieties of Πℓ
h.

Lemma A.1. Given p ą 1, there exist positive constants C1, C2, independent of h, such that for
0 ď l ď ℓ, and for each K P Th, there holds

}τ ´ Πℓ
hpτ q}0,p;K ď C1 h

l`1
K |τ |l`1,p;K @ τ P Wl`1,ppKq (A.8)

and
}τ ¨ ν ´ Πℓ

hpτ q ¨ ν}0,p;e ď C2 h
1´1{p
e |τ |1,p;K @ τ P W1,ppKq , @ e P EhpKq . (A.9)
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Figure 4.8: [Example 4] Three snapshots of adapted meshes according to the indicator Θ for PEERS0
and AFW0-based discretizations (top and bottom plots, respectively).

Proof. For the estimate (A.8) we refer to [28, Lemma 3.1], whereas the proof of (A.9) can be found
in [8, Lemma 4.2].

At this point, we emphasize that, since the Brezzi–Douglas–Marini (BDM) interpolation operator
satisfies properties analogous to (A.3), (A.4), and (A.6) (cf. [7, Sections III.3]), it is also possible to
prove the approximation estimates (A.8) and (A.9) in Lemma A.1 for this operator. Consequently,
Lemma 3.4 can also be derived for the AFW-based approach (2.20).

Furthermore, denoting by WppΩq and RTℓpΩq the tensorial versions of WppΩq (cf. (A.1)) and
RTℓpΩq (cf. (A.2)), respectively, we let Πℓ

h : WppΩq Ñ RTℓpΩq be the operator Πℓ
h acting row-wise.

Then, and similarly to decomposition (2.9), for each τ P WppΩq there holds

Πℓ
hpτ q :“ Πℓ

h,0pτ q ` c0 I, with c0 :“
1

n|Ω|

ż

Ω
tr
´

Πℓ
hpτ q

¯

P R

and Πℓ
h,0pτ q :“ Πℓ

hpτ q ´ c0 I P RTℓpΩq X H0pdivp; Ωq ,

where H0pdivp; Ωq :“
!

τ P Hpdivp; Ωq :

ż

Ω
trpτ q “ 0

)

. Additional approximation properties of Πℓ
h

and Πℓ
h, particularly those involving the div and div operators, can also be established using (A.6)
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and (A.7), along with their tensorial counterparts for Πℓ
h and Pℓ

h.

We now recall from [8, Lemma 4.4] a stable Helmholtz decomposition for the nonstandard Banach
space Hpdivp; Ωq, which will be used in the forthcoming analysis for the particular case p “ 4{3. More
precisely, we state the following result:

Lemma A.2. Given p P p1, 2q, there exists a positive constant Cp such that for each τ P Hpdivp; Ωq

there exist ζ P W1,ppΩq and ξ P H1pΩq satisfying

τ “ ζ ` curlpξq in Ω and }ζ}1,p;Ω ` }ξ}1,Ω ď Cp }τ }divp;Ω . (A.10)

On the other hand, let us define Xh :“
␣

vh P CpΩq : vh|K P P1pKq @K P Th
(

and denote byXh its
vector-valued counterpart. We consider the Clément interpolation operator Ih : H1pΩq Ñ Xh and its
vector version Ih : H1pΩq Ñ Xh. Some local properties of Ih, and consequently of Ih, corresponding
to the particular case of [22, Lemma 1.127] with m “ 2, p “ 2, and ℓ “ 1, are established in the
following lemma (cf. [19]).

Lemma A.3. There exist positive constants C1 and C2, such that for each v P H1pΩq there hold

}v ´ Ihpvq}0,K ď C1 hK }v}1,∆pKq @K P Th

and
}v ´ Ihpvq}0,e ď C2 h

1{2
e }v}1,∆peq @K P Eh ,

where ∆pKq :“ Y
␣

K 1 P Th : K 1 XK ‰ ∅
(

and ∆peq :“ Y
␣

K 1 P Th : K 1 X e ‰ ∅
(

.

B Preliminaries for efficiency

For the efficiency analysis of Θ (cf. (3.1)), we proceed as in [6, 29, 26, 15, 28, 8, 13], and apply the
localization technique based on bubble functions, along with inverse and discrete trace inequalities.
For the former, given K P Th, we let ψK be the usual element-bubble function (cf. [39, eq. (1.5)]),
satisfying

ψK P P3pKq, suppψKq Ď K, ψK “ 0 on BK and 0 ď ψK ď 1 in K . (B.1)

The specific properties of ψK are collected in the following lemma, for whose proof we refer to [39,
Lemma 3.3].

Lemma B.1. Let ℓ be a non-negative integer, and p, q P p1,`8q conjugate to each other, that is, such
that 1{p` 1{q “ 1, and let K P Th. Then, there exist positive constants c1, c2, and c3, independent of
h and K, but depending on the shape-regularity of the triangulations (minimum angle condition) and
ℓ, such that for each u P PℓpKq there hold

c1}u}0,p,K ď sup
0‰vPPℓpKq

ż

K
uψK v

}v}0,q,K
ď }u}0,p;K

and
c2h

´1
K }ψK u}0,q;K ď }∇pψK uq}0,q;K ď c3h

´1
K }ψK u}0,q;K .

In turn, the aforementioned inverse inequality is stated as follows (cf. [22, Lemma 1.138]).
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Lemma B.2. Let ℓ, l and m be non-negative integers such that m ď l, and let r, s P r1,`8s, and
K P Th. Then, there exists c ą 0, independent of h, K, r and s, but depending on ℓ, l, m and the
shape-regularity of the triangulations, such that

}v}l,r;K ď ch
m´l`np1{r´1{sq

K }v}m,s;K @ v P PℓpKq . (B.2)

Finally, proceeding as in [1, Theorema 3.10], that is employing the usual scaling estimates with
respect to a fixed reference element pK, and applying the trace inequality in W1,pp pKq, for a given
p P p1,`8q, one is able to establish the following discrete trace inequality.

Lemma B.3. Let p P p1,`8q. Then, there exists c ą 0, depending only on the shape regularity of the
triangulations, such that for each K P Th and e P EhpKq, there holds

}v}
p
0,p;e ď c

!

h´1
K }v}

p
0,p;K ` hp´1

K |v|
p
1,p;K

)

@ v P W1,ppKq . (B.3)

C A posteriori error analysis: the 3D case

In this appendix, we extend the results from Section 3 to the three-dimensional version of (2.21).
Similarly to the previous section, given a tetrahedron K P Th, we denote by EK the set of its faces
and by E the set of all faces in the triangulation Th. We then define Eh “ EhpΩq Y EhpΓq, where
EhpΩq :“ te P Eh : e Ď Ωu and EhpΓq :“ te P Eh : e Ď Γu. For each face e P Eh, we fix a unit normal
vector νe. Given τ “ pτijq3ˆ3 P L2pΩq such that τ |K P CpKq for each K P Th, we define rrτ ˆ νess as
the corresponding jump of the tangential trace across e. In other words, rrτˆνess :“ pτ |K ´τ |K1qˆνe,
where K and K 1 are the tetrahedra in Th sharing e as a common face and

τ ˆ νe :“

¨

˝

pτ11, τ12, τ13q ˆ νe
pτ21, τ22, τ23q ˆ νe
pτ31, τ32, τ33q ˆ νe

˛

‚ .

From now on, when no confusion arises, we simply write ν instead of νe. In the sequel we will also
make use of the following differential operators

curlpvq “ ∇ ˆ v :“

ˆ

Bv3
Bx2

´
Bv2
Bx3

,
Bv1
Bx3

´
Bv3
Bx1

,
Bv2
Bx1

´
Bv1
Bx2

˙t

,

and

curlpτ q :“

¨

˝

curlpτ11, τ12, τ13qt

curlpτ21, τ22, τ23qt

curlpτ31, τ32, τ33qt

˛

‚ .

In turn, we will also use the tensor version of the tangential curl operator curls, denoted by curls,
which is defined component-wise by curls (see [14, Section 3] for details).

We now set for each K P Th the local estimator

Θ2
2,K :“

›

›η
`

ph, |Dh|
˘

Dh ´ σd
h ´ ρ puh b uhqd

›

›

2

0,K
`

›

›σh ´ σt
h

›

›

2

0,K

` h2K
›

›curlpDh ` γhq
›

›

2

0,K
`

ÿ

ePEhpKqXEpΩq

he
›

›rrpDh ` γhq ˆ νss
›

›

2

0,e

`
ÿ

ePEhpKqXEpΓq

he
›

›curlspuDq ´ pDh ` γhq ˆ ν
›

›

2

0,e
,
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and the global a posteriori error estimator is defined as

Θ “

#

ÿ

KPTh

Θ
4{3
1,K

+3{4

`

#

ÿ

KPTh

Θ2
2,K

+1{2

`

#

ÿ

KPTh

Θ4
3,K

+1{4

,

where Θ
4{3
1,K and Θ4

3,K are defined in (3.2) and (3.4), respectively. Accordingly, the corresponding
reliability and efficiency estimates, which represent the analogues of Theorems 3.1 and 3.5, are stated
as follows.

Theorem C.1. Assume that Lη and the radii δ and δd satisfy (3.10). Then, there exist positive
constants Ceff and Crel, independent of h, such that

CeffΘ ` h.o.t ď }D⃗ ´ D⃗h}H ` }p´ ph}0,Ω ď CrelΘ .

The proof of Theorem C.1 follows closely the analysis in Section 3, except for a few aspects that
will be discussed below. Specifically, we first observe that the general a posteriori error estimate given
in Lemma 3.2, as well as the upper bounds for }R1}H1

1
and }R3}Q1 (cf. (3.26), (3.27)), remain valid

in 3D. Next, we follow [25, Theorem 3.2] to derive a 3D version of the Helmholtz decomposition for
arbitrary polyhedral domains, as provided by Lemma A.2, with p P r6{5, 2q (cf. [8, Lemma 3.4]).
The corresponding discrete Helmholtz decomposition and the functional R2 are then established and
rewritten exactly as in (3.30) and (3.31). Furthermore, to derive the new upper bounds for }R2}H1

2

(cf. Lemma 3.4), we require the 3D analogue of the integration by parts formula on the boundary
given in (3.36). In fact, using the identities from [31, Chapter I, eq. (2.17), and Theorem 2.11], we
deduce that in this case, the following holds

xcurlpξqν,θyΓ “ ´ xcurlspθq, ξyΓ , @ ξ P H1pΩq , @θ P H1{2pΓq .

In addition, the integration by parts formula on each tetrahedron K P Th, which is used in the proof
of the 3D analogues of Lemma 3.4, becomes (cf. [31, Chapter I, Theorem 2.11])

ż

K
curlpqq : ξ ´

ż

K
q : curlpξq “ xq ˆ ν, ξyBK , @q P Hpcurl; Ωq , @ ξ P H1pΩq ,

where x¨, ¨yBK denotes the duality pairing between H´1{2pBKq and H1{2pBKq. As usual, Hpcurl; Ωq is
the space of tensor fields in L2pΩq whose curl belongs to L2pΩq. We observe that, unlike the 2D case,
assuming uD P H1pΓq is not necessary for the reliability analysis, since curls is defined in H1{2pΓq.
Nevertheless, for computational purposes, in Section 4, we assume that uD is sufficiently smooth, in
which case curlspuDq coincides with ∇uD ˆ ν.

Finally, to prove the efficiency of Θ, we first observe that the term defining Θ
4{3
1,K (cf. (3.2)) and

the first two terms defining Θ2
2,K (cf. (3.3)) are estimated exactly as in the 2D case, following Lemma

3.6. For the remaining terms, we establish the following lemma.

Lemma C.2. There exist positive constants Ci, i P t1, . . . , 5u, all independent of h, such that

aq h4K
›

›∇uh´
`

Dh`γh

˘›

›

4

0,4;K
ď C1

!

}u ´ uh}40,4;K ` h2K}D ´ Dh}40,K ` h2K}γ ´ γh}40,K

)

@K P Th ,

bq he }uD ´ uh}40,4;e ď C2

!

}u ´ uh}40,4;Ke
` h2Ke

}D ´ Dh}40,Ke
` h2Ke

}γ ´ γh}40,Ke

)

@ e P EhpΓq ,

cq h2K
›

›curlpDh ` γhq
›

›

2

0,K
ď C3

!

}D ´ Dh}20,K ` }γ ´ γh}20,K

)

@K P Th ,
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dq he
›

›rrpDh ` γhq ˆ νss
›

›

2

0,e
ď C4

!

}D ´ Dh}20,ωe
` }γ ´ γh}20,ωe

)

@ e P EhpΩq ,

eq he
›

›curlspuDq ´
`

Dh ` γh

˘

ˆ ν
›

›

2

0,e
ď C5

!

}D ´ Dh}20,Ke
` }γ ´ γh}20,Ke

)

, @ e P EhpΓq ,

where Ke is the tetrahedron in Th having e as a face, whereas ωe denotes the union of the two elements
in Th that share the face e.

Proof. For a), we refer again to [28, Lemma 3.15] by using now the local inverse inequality (B.2) with
n “ 3, whereas b) follows from [28, Lemma 3.16], (B.3) and the estimate in a). In addition, for the
proof of c), we refer to [6, Lemma 4.3], while the proof of d) follows from [6, Lemma 4.4]. Finally, e)
can be derived after a slight modification of the proof of [29, Lemma 4.15], along with the definition
of curls.
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2024-27 Raimund Bürger, Claudio Muñoz, Sebastián Tapia: Interaction of jamitons
in second-order macroscopic traffic models

2025-01 Boumediene Chentouf, Sabeur Mansouri, Mauricio Sepúlveda, Rodrigo
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