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Abstract

We introduce and analyze two Banach spaces-based new mixed finite element methods for a flow
and transport model commonly encountered in sedimentation-consolidation processes, whose gover-
ning equations are given by the Brinkman flow with variable viscosity, coupled with a nonlinear
advection—diffusion equation. The first variational formulation is based on a mixed approach for
the Brinkman problem (written in terms of Cauchy stress and bulk velocity of the mixture) and
the usual primal weak form for the transport equation. In turn, the second variational formulation
arises from the introduction of the gradient of the solids volume fraction and the total (diffusive
plus advective) flux for the concentration as new unknowns, which yields a momentum-conserving
fully-mixed approach as the resulting system of equations. The respective continuous and discrete
formulations are equivalently reformulated as fixed-point operator equations, whose solvability is
established by combining the Schauder, Banach, and Brouwer theorems, with, among others, the
Babuska—Brezzi theory and a recently introduced theory for perturbed saddle-point problems, both
in Banach spaces, along with suitable regularity assumptions, Sobolev embeddings, and Rellich—
Kondrachov compactness theorems. The mixed—primal and fully-mixed Galerkin schemes employ
the classical Raviart—Thomas, piecewise continuous, and piecewise discontinuous polynomial ap-
proximations, for their corresponding unknowns. Next, Strang-type inequalities are utilized to
rigorously derive optimal error estimates in the natural norms, which, combined with the approxi-
mation properties of the chosen finite element spaces yield optimal rates of convergence with respect
to the mesh size. Finally, several numerical results illustrating the performance of both schemes
and confirming the theoretical convergence rates are presented.
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1 Introduction

Our interest in this paper is the development of new numerical methods for the steady state of a class
of sedimentation-consolidation processes. More precisely, in order to introduce the model problem, we
let @ < R", n = {2,3}, be a bounded domain with polyhedral boundary I" and respective outward unit
normal vector v, which contains a solid phase suspended and subject to transport into an immiscible
incompressible fluid. The flow of the fluid is influenced by gravity and by the local fluctuations of the
volume fraction solids. The overall process is determined by the coupling of the Brinkman flow with
variable viscosity and a nonlinear advection-diffusion equation, whose system of partial differential
equations reads as

o= u(@)Vu — pl, K 'u—div(e) = ¢f, div(u) =0, in

JP—O,
Q

subject to the Dirichlet boundary conditions

u=up on I'), ¢ =0 on T.

The quantities of interest are the Cauchy fluid pseudo-stress o, the average velocity of the mixture
u, the fluid pressure p, and the volumetric fraction of the solids ¢ (which, for simplicity, will be simply
called “concentration”). Here f € L2(Q), g € L2(Q) and up € HY2(I') are given functions, with the
latter, due to the incompressibility of the flow, satisfying the compatibility condition SF up - v = 0.
Notice that the driving force per unit volume of the mixture is assumed to depend linearly on the local
fluctuations of the concentration ¢. The parameter p is a positive constant representing the porosity
of the medium, the permeability tensor K € C(Q) := [C(€Q)]™*" and its inverse are symmetric and
assumed to be uniformly positive definite, and k is a constant vector pointing in the direction of
gravity. We assume that the kinematic effective viscosity u, the one-directional Kynch batch flux
density function f,x describing hindered settling, and the diffusion or sediment compressibility 7,
are nonlinear scalar functions of the concentration ¢. Furthermore, we restrict ourselves to suitably
bounded Lipschitz functions u, 9, and f,x. More precisely, we suppose that there exist positive

constants p1, p2, 1, U2, and vy, such that
pr < p(s) < po, 91 < U(s) < VY2, and 0 < fix(s) < ¢ VseR; (1.2)
and positive constants L, Ly, and Ly, such that for each s, t € R there hold
lu(s) —p(®)] < Luls—t|, |9(s) =d(t)] < Ly|s—t|, and

| fok(s) — fox(t)] < Ly|s—t].

(1.3)

The study of system (1.1) is of paramount importance as it models a great variety of natural
processes arising in engineering applications, including fluidized beds, solid-liquid separation, purifica-
tion in wastewater treatment, clot formation within the blood, macroscopic biofilm characterization,
etcetera. Understanding and predicting the behavior of this problem is not an easy task due to the
strong interaction of velocity and solids volume fraction via the Cauchy stress tensor and forcing term,
the nonlinear structure of the overall coupled Brinkman flow and transport problem, and the saddle-
point structure of the flow problem (to be seen later on), among others. These challenges are not only



reflected within the solvability analysis of the governing equations but also during the development of
appropriate schemes for numerical approximation and the derivation of corresponding stability results
and error bounds.

Our problem of interest and related ones have received considerable attention during the past
years. The solvability of the (time-dependent) sedimentation-consolidation problem was addressed
in [12] for the case of large fluid viscosity. Since then, different mixed variational formulations and
their associated Galerkin schemes have been introduced and studied, including [3, 4, 5, 7, 8, 21, 22].
The majority (if not all) of them rely on a fixed-point strategy to establish the well-posedness of
both the continuous and discrete formulation. In each of these cases the corresponding fixed-point
operator is comprised by a suitable composition of operators, each one of them defined by a subset of
equations of the overall full system, thus allowing for the analysis of decoupled problems based upon
Babuska—Brezzi or Lax—Milgram-type theorems. The solvability of the continuous and discrete fixed-
point equations is addressed by a combination of further regularity assumptions, Sobolev embeddings,
Rellich-Kondrachov compactness theorems, and the Schauder and Brouwer fixed-point theorems.

In particular, a modified formulation of (1.1) based on Stokes flow, in which the Brinkman term
K~!u is not considered and the kinematic effective viscosity is assumed to depend explicitly on the
gradient of the concentration, was studied in [3, 7, 8, 28]. An augmented dual-mixed formulation
for the flow (in which the pressure is eliminated) and the usual primal formulation for the transport
equation were studied in [3], whose unknowns given by the Cauchy stress tensor, the velocity of the
fluid and the concentration were looked for in suitable Hilbert spaces. The need for augmentation
was later circumvented in [7], resulting in the Cauchy stress tensor and velocity being now sought
in the (non-Hilbert) Banach spaces H(divy3;€2) (the space of tensors in [L*(Q2)]"*" whose row-wise
distributional divergence lies in [L43(€2)]") and L*(€2), respectively; whereas the concentration is kept
in the usual space H'(Q). The fully-mixed approach has been studied in both its augmented [28]
and non-augmented forms [7], in which the gradient of the concentration and the total (diffusive plus
advective) flux for the concentration are introduced, thus leading to an overall six-field formulation.

The approach presented in [3] was expanded in [4] to address our model of interest, again by
considering an augmented dual-mixed formulation for the flow and the usual primal formulation for
the transport equation, which, due to the nonlinear diffusivity depending on the concentration and
not on its gradient, made the analysis require one more further regularity assumption than its prede-
cessor. In [22], a non-augmented four-field formulation was introduced upon enriching the dual-mixed
formulation for the flow by introducing the gradient of the velocity as an unknown, which, due to the
incompressibility condition, needs to be sought in L2, () (the space of trace-free tensors in [L2(£2)]"*")
in order to yield an overall stable system.

It is worth noting that models of sedimentation-consolidation share structural similarities with
the Boussinesq, Navier—Stokes Brinkman, and related models. Several mixed formulations have been
proposed for them, such as those found in [14, 15, 16, 17, 20, 29]. For instance, the mixed finite element
method for the Boussinesq problem developed in [20] introduces the gradient of velocity as an auxiliary
unknown in L2 (Q). In this reference, novel (and certainly non-trivial) continuous discrete and inf-sup
conditions were proved, which were instrumental in [7, 8] to prove the stability of the stress-velocity
pair coming from the flow equations, and in [8] for the concentration-gradient of concentration-total
flux triple stability coming from the transport equation.

According to the bibliographic discussion above, the objective of this paper is to continue the de-
velopment of non-augmented Banach spaces-based numerical methods by introducing two new mixed
finite element methods for problem (1.1): a mixed-primal formulation, and a fully-mixed formula-
tion. The analysis of each of them hinges on an only-recently-available Babuska—Brezzi-type theory
for perturbed saddle-point problems in Banach spaces [23]. As in [7], the mixed-primal variational



formulation secks stresses in H(div,/s; (), velocity in L*(2), and solids volume fraction in H'(£2),
while the fully—mixed formulation look for the stress and velocity in the same spaces, but the solids
volume in L*(€), the concentration gradient in L*(Q2), and the total flux in H(divy/s;€). The re-
sulting mixed—primal Galerkin scheme employs Raviart-Thomas approximations of order k for the
stress, piecewise discontinuous polynomials of degree < k for the velocity and piecewise continuous
polynomials of degree k + 1 for the volume fraction; the resulting fully-mixed Galerkin scheme, which
yields momentum conservation properties in an approximate sense, employs the same approximation
spaces for the stress and velocity as in the mixed-primal scheme, Raviart-Thomas approximations of
order k for the total flux, and piecewise discontinuous polynomials of degree < k for the solids volume
fraction and its gradient. In turn and along the lines of the already cited references, the solvability
analyses of the continuous formulations are based upon classical fixed-point theorems, suitable further
regularity assumptions, the Lax—Milgram theorem, the new Babuska—Brezzi-type theory [23], Sobolev
embeddings, and Rellich-Kondrachov compactness theorems. Under sufficiently small data, we are
also able to prove uniqueness of solutions. The well-posedness of the discrete problem relies on the
Brouwer’s fixed-point theorem and similar arguments to those employed in the continuous analysis.
Next, the combination of Strang-type estimates for the transport equations and the fluid flow equa-
tions yield the corresponding Céa estimate for the total error. Optimal a priori error bounds for the
Galerkin solution are provided.

The rest of this paper is organized as follows. Section 1.1 introduces some standard notation for
functional spaces and differential operators that will be used throughout the paper. In Section 1.2
we rewrite system (1.1) by eliminating the pressure, and setting it up for the subsequent deriva-
tion of the mixed-primal and fully-mixed variational formulations. Next, in Section 2 we derive the
aforementioned mixed-primal and fully-mixed variational formulations. Section 3 is devoted to the
solvability analysis of the continuous variational formulations via a fixed-point strategy and a classi-
cal fixed-point theorem. The corresponding Galerkin schemes are introduced in Section 4, which are
analyzed by means of the discrete analogue of the theory used in Section 2. In Section, 5, we derive
the corresponding a priori error estimates and the associated rates of convergence. Finally, in Section
6, we test the performance of our methods with numerical examples in 2D and 3D, which confirm the
theoretical rates and the approximate momentum conservation properties.

1.1 Preliminaries

We recall the standard notation for Lebesgue spaces L!(Q), ¢ € (1, +00), with norm | - [jo.1.0, and
for Sobolev spaces H*((2), s > 0, endowed with the norm |-, , and seminorm | - [; . In particular,

H'2(I") stands for the space of traces of functions of H'(Q) and H~/2(I") denotes its dual. By M
and M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and | - |, with no subscripts, will stand for the natural norm of either an element
or an operator in any functional space. In what follows I stands for the identity tensor in R := R"*™
and | - | denotes the Euclidean norm in R := R"™. In turn, for any vector field v = (v;)i=1, we set the
gradient and divergence operators as

ov; > Ovj
Vv = ( l> and div(v) := -
0x; ij=1n jzl 0z

In addition, for any tensor fields 7 = (74;)i j=1,n and ¢ = (Gij)ij=1,n, We let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,



and the deviatoric tensor, respectively, as

n n
1
= (Tji)ij=1,n, tr(T) = Zm, 7:( = Z Tij Gij, and L - tr(7) 1.
i=1 ij=1

Furthermore, given ¢ € (1, +00), we introduce the Banach space

H(divy; Q) := {T eL2(Q): div(r) e Lt(Q)}, (1.4)
and its tensor version

H(div,; Q) = {’T eL2(Q): div(r) e Lt(Q)},

equipped, respectively, with the usual norms

) /
ITlavin = {I7l3g + laiv(P)E.e} . and

. 1/
I7lavee = {Irl3a + Idivir) B}

In the remainder of the paper we will consider the above definition for ¢ = 4/3. Finally, for any pair
of normed spaces, (X, | - |x) and (Y,|| - |y) we provide the product space X x Y with the natural
norm [ (z,y)|xxy = |z[x + [yly V(z,y)e X xY.

1.2 System rewrite

We start by observing that the first and third equations in the first row of (1.1) can be equivalently
written as

1
o = pu(¢)Vu — pl and p = - tr(o) in Q, (1.5)

which allow us to eliminate the pressure p from the first equation of the first row of (1.1). As a
consequence, we arrive at the following coupled system equivalent to (1.1):

M(lgb)a'd=Vu in @, K'lu-div(e) = ¢f in Q,
06 — div(0($) Vo — pu — fu(@)k) = g i 9, (1.6)
u=up on I', ¢=0 on I, Jtr(o-)zo.

Q

We stress that the incompressibility condition is implicitly present in the first equation of (1.6), relating
o and u. In addition, the uniqueness condition for p, originally given by SQ p = 0, is now stated as
SQ tr(o) = 0, which certainly follows from the postprocessed formula for p provided by the second
equation in (1.5).

In turn, in order to obtain a fully-mixed formulation, we introduce the unknowns t = V¢ and
the total (diffusive plus advective) flux for concentration 1, which is explicitly defined below, thus
obtaining the following coupled system:

1

(@)
t=Ve in Q, n=00)t—-du- fix(e)k in Q, o¢—div(n) =g in Q, (1.7

u=up on I'y ¢=0 on T, ftr(a’)zo.
Q

o =Vu in Q, K'lu-div(e)=¢f in Q,



2 The weak formulations

The purpose of this section is to introduce the announced weak formulations of our original model (1.1).
More precisely, in Section 2.1 we proceed similarly as in [7] to derive the mixed-primal variational
formulation arising from (1.6), whereas in Section 2.2, partially inspired by [8], we derive the fully—
mixed variational formulation that emerges from (1.7).

2.1 The mixed—primal approach

We begin by considering the transport equation (cf. first row of (1.6)), whose Dirichlet boundary
condition for ¢ motivates the introduction of the space

HL(Q) = {¢eH1(Q): ¥ =0 on r}.

Recall that, thanks to the Poincaré inequality, there exists a positive constant cp, depending only on
Q, such that

[¥l0 < epltho Vi eH(Q). (2.1)
Moreover, the continuous injection is of H!(Q) into L*(£2) (cf. [1, Theorem 4.12], [30, Theorem 1.3.4])
yields

[¥lose < il [vlie Vv eHY(Q). (2.2)

We now look at the equilibrium equation o¢ — div(ﬁ(gf)) Vo — dpu — fix(od) k:) = ¢ in the second
row of (1.6). In fact, given u living in a suitable space to be specified later, we multiply by ¢ € H}()
and integrate by parts to deduce that the primal formulation for the concentration becomes: Find
¢ € H(Q) such that

Au(d,9) = Go(v) Vo eHy(Q), (2.3)
where A, : H3(Q2) x H}(Q) — R is the semilinear form given by

A1) = f ($) V- Vip — f bu-V + f 06% Vo, e HYQ), (2.4)
Q Q Q
and Gy : H}(Q2) — R is the functional defined as
Gyl) = f @) -V + f g Ve HYQ). (2.5)
Q Q

Regarding Ay, and in order to address later on the analysis of (2.3), we note that using (1.2), Cauchy—
Schwarz’s inequality, and (2.2), we find that

] LQW’ < olehialvlhe Ve weH(R), (2.6)
| ww@w\ < Dlhaltha Yo veH(Q), and @.7)

Q
Ugsov-vw]<|i4r|so|m|v vsalbha Ve peHU(Q), YveLi(Q). (2.8)

In particular, (2.8) shows that considering u € L*(Q) ensures that A, is well-defined, and hence from
now on we look for this unknown in that space. In turn, it is easy to see from (2.5) and (1.2) that the
functional G4 is bounded independently of ¢ with a norm satisfying

IGoll < v U2 K| + |g

0,02 -



On the other hand, testing the first equation of (1.6) by 7 € H(divy/3;(2), integrating by parts, and

using the Dirichlet boundary condition for u (cf. third row of (1.6)) and the identity o : 7 = ¢ : 79,

we obtain )
j S f u-div(r) = (rv,up)r, V7 e H(divys; Q) , (2.9)
o 1(9) 0

where (-, -)r stands for the duality pairing between H='/2(T") and H'/?(T). Note that the continuous
injection iz : H'(Q) — L*(Q) guarantees that 7 v belongs to H~2(T') when 7 € H(divy/3; 2), and
that there exists a positive constant ¢(€2), depending only on £, such that (see [20, Section 3.1])

ITvl—1j2r < e(Q) 7 ]divys0 - (2.10)

Therefore, looking for the unknown o in H(div,/s;(2) as well, we realize that the momentum equation
K 'u — div(e) = ¢ f can be weakly imposed as

— LK—lu-v + Lv-div(a) = - Lw-v VveLi(Q). (2.11)

Moreover, the null mean value of tr(o) stated in the last equation of (1.6) suggests that o must be
actually sought in Ho(div,/s;€2), where

Ho(divys; Q) = {TGH(div4/3;Q): Ltr(r) - 0}.

In this way, given ¢ € H}(Q), we collect (2.9) and (2.11) to arrive at first glance at the following mixed
formulation of the Brinkman flow: Find (o, u) € Ho(divy/s; Q) x L*(Q) such that

asg(o,7) + b(t,u) = F(1) VT1e H(div4/3;Q),

2.12
b(o,v) — c(u,v) = Gg(v) Vv eL4(Q), (2.12)

where the bilinear forms a4 : H(divys; Q) x H(divy/s; Q) — R, b : H(divys; Q) x L4(Q) — R, and
c: LY(Q) x L*(Q) — R, and the linear functionals F : H(divy/3; Q) — R and G, : L*(Q) — R are
defined as

= L d, rd 7,v) = | v-div(T c(w,v) = w.v
as(C,7) = Jﬂw)c 9 b(rv) JQ div(r),  c(w,v): LK (2.13)

F(7r) := {(tv,up)r and Gy(v) == — ,[ngf -V (2.14)

for ¢, 7 € H(divy3; Q) and v, w € L4(Q2). Moreover, using (1.2), the Cauchy-Schwarz and Hélder
inequalities, and the continuous injection iy of L*(€2) into LY3(Q), with a3l = 1Q|'/2, it follows
that

1
|a¢(C7T)‘ < Z HCHdiV4/3;Q HT||div4/3;Qa

b(¢. V)| < [€ldivye VI, (2.15)

le(w, V)| < Jiasl 1K oo [Wloa [V]oan

which establishes the boundedness of a, b, and ¢, with constants

1 : -
lagl = o bl =1, and | := [iys] K™ o0 (2.16)



In turn, employing the duality between H~/2(T") and H'Y?(T") along with the estimate (2.10), and
then applying Cauchy—Schwarz’s inequality and the estimate from (2.2), we deduce that

F(T)] < (@) |uplipr Tlaivyse,  1Ge(W)] < ][ Floqlelielvioae (2.17)
which says that F and G are also bounded, with
IF| < (@) |uplior  and Gyl < [ia] [flog [ol1e- (2.18)

Furthermore, thanks to the compatibility condition SF up - v = 0 and the decomposition
H(divy/3; Q) = Ho(divy/s; Q) ®RI,

it is easily shown that imposing the first equation of (2.12) against T € H(divy3;(2) is equivalent
to doing so against 7 € Ho(divy/s; ). In this way, (2.12) reduces equivalently to: Find (o,u) €
Ho(divy/3; Q) x L*(Q) such that

&

)

d
+
o

)

E
Il

F(7) V7 e Ho(divys; Q) ,

Gy(v) Vveli(Q). (2.19)

=
!
o
E
=
I

Finally, gathering (2.19) and (2.3), we arrive at the following mixed—primal formulation for the
coupled problem (1.6): Find (o, u, ¢) € Ho(divy/s; Q) x L*(Q) x H§(Q) such that

ag(o,7) + b(t,u) = F(1) V7 € Ho(divys; Q) ,
b(o,v) — c(u,v) = Gg(v) VveL4(Q), (2.20)

Go(v) Ve Hy(Q).

'
£
&
£
I

2.2 The fully-mixed approach

In order to establish a variational formulation for the system (1.7), we start by noting that the
variational formulation associated with the Brinkman flow equation (cf. first row of (1.7)) will remain
essentially the same as in Section 2.1 (cf. (2.19)), the only difference being, as we explain below, that
the given ¢ will belong now to L*(2) instead of the stronger space H}(Q) as in Section 2.1. Indeed,
proceeding as in [8, Section 3.1], we begin by testing the second equation of the second row of (1.7)
against a suitable vector function s, which yields

[ o@es [ ous— [ ns= | fu@kes. (2.21)

Then, knowing from (2.19) that we are looking for u in L*(£2), we readily see that the second term on
the left hand-side of (2.21) makes sense for ¢ € L*(Q) and s € L?(2). In turn, the remaining terms
of this equation are well-defined if both t and n belong to L?(2) as well. Furthermore, in order to
handle the Dirichlet boundary condition for ¢ we assume originally that ¢ € H*($2), which is certainly
contained in L4(£2), and multiply the first equation of the second row of (1.7) against x € H(div; )
(cf. (1.4)), with t € (1,+00) to be chosen. In this way, integrating by parts the term involving V¢,
and using that ¢ = 0 on I', we obtain

_ Lt.x - LMW(X) 0. (2.22)



It is clear that the first term of (2.22) is well-defined, whereas the second one makes sense even if
we look for ¢ in L*(2), and choose t = 4/3 so that div(x) € L¥3(Q), and hence x € H(divy/3; Q).
Moreover, seeking 77 in this very same space, and assuming here that g € LY 3(Q), we can test the
momentum equation (cf. third equation of the second row of (1.7)) against ¢ € L*(£2), thus yielding

ng - Lwdivm) _ fﬂgv (2.23)

Consequently, given u € L*(Q2), and gathering (2.21), (2.22), and (2.23) we arrive at the following
mixed formulation for the concentration: Find (¢,t,n) € L*(Q) x L*(Q) x H(divy/3; Q) such that

n) = Fs((¥,s)) V(¥,s)eL1(Q) x LA(Q),
(2.24)
x) = 0 V x € H(divy3;Q),

Apu((9:t), (¥,8)) + B((¢,8),m
B((¢,t),x

where A, w @ (L) x L?(Q)) x (L*(Q) x L?(Q)) — R, for each (¢, w) € L*(Q) x L*(Q), and
B : (L4(Q) x L*(Q)) x H(divy/3;Q2) — R, are the bilinear forms defined by

ow((0.), (¥ fz? )t - s—fqbw s+f 0dY, (2.25)

B((¢,s),x) = — JQX ‘s — fgwdiv(x), (2.26)

for all (¢,t), (1,s) € (L*(€) x L*(2)) and for all x € H(divys; ), whereas, given ¢ € L*(Q), we let
F,: L4(Q) x L2(2) — R be the linear functional given by

Fol(1h,s)) = Lfbk(wk's + ng V (1h,s) € LY(Q) x L*(Q). (2.27)

Bearing in mind the range of ¥ (cf. (1.2)), and applying the continuous injection of L*(€2) into L2(f2)
(with boundedness constant |Q2|'/4) and the Cauchy-Schwarz and Hélder inequalities, we deduce that

[Apw ((0,8), (,9)| < (02 + Iwlowe + 121V 0) (6, 6)] [(v,s)], and

(2.28)
B((,8),x)| < 1(@,8)] |xaivss0
which says that A, w and B are bounded with
A, 20 and |B| < 1. (2.29)

In turn, considering the upper bound of fyy (cf. (1.2)), and applying the Cauchy—Schwarz and Holder
inequalities, we have that

| Foll < vr I (2.30)

In addition, it is important to note that the change in the space chosen for ¢ slightly modifies the
bound of the operator G (cf. (2.17) and (2.18)). In fact, in this case we simply obtain that

1Gsl < |

(2.31)



Summarizing, the fully-mixed formulation for the coupled system (1.7) reduces to (2.19) and (2.24),
that is: Find (o, u) € Ho(divy3; Q) x L*(Q) and (¢, t,n) € L*(Q) x L*(Q) x H(divy3; Q) such that

ag(o,7) + b(r,u) = F(7) V7 e Hy(divys; ),
b(o,v) —c(u,v) = Gy(v) VveLi(Q),
Asu((91), (¥,8)) + B((¥,8),m Fo((,8))  V(¥,8) e LY Q) x L (Q),
B((¢,t),x Vx € H(divy3; Q).

(2.32)

m)
x)

Il
o

3 The continuous analysis

In this section we prove the well-posedness of the primal-mixed and fully-mixed formulations derived
in Section 2.

3.1 The mixed—primal approach

In what follows we proceed similarly as in [4] (see also [3, 5, 7]), and employ a fixed-point strategy
to analyze the solvability of the mixed-primal formulation (2.20). To this end, we first introduce the
operator S : H{(€) — Ho(divy3; Q) x L*(2) given by

S(¢) = (Si(e).82(p) = (@,8)  VeeHy(Q), (3.1)

where (&, 1) € Ho(divys; Q) x L*(Q) is the unique solution (to be confirmed below) of the problem
arising from (2.19) when ¢ is replaced by the given ¢, that is

a,(o,7) + b(r,u) = F(7) V7 e Hy(divys; ), 32)
b(7,v) — c(@,v) = Gu(v) VveLiQ). '
In turn, we let S : H () x L4(Q) — H}(Q) be the operator defined by
S(p.w) == ¢ ¥(pw) € H}(Q) x LY(Q), (3.3)

where ¢ € H{(Q) is the unique solution (to be confirmed below) of the problem obtained from (2.3)
when u, ¥(¢), and G4 are replaced by w, ¥(y), and G, respectively, that is

A%W(%a QZ) = GW(J) V’J € H(l)(Q) ) (34)
where A, w : H)(2) x H{(Q) — R is the bilinear form

w@0) = | 9V VI~ [ Gwevi s | 080 VEIemi®). (9
and G, is the functional defined in (2.5), that is
Gold) o= | Mol Vi+ | g0 Viem®), (3.6)
Q Q

Then, we define the operator S : H}(Q2) — H}(Q) by

~

S(p) = S(p,S2(v)) Vo € Hy(Q), (3.7)
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and realize that solving (2.20) is equivalent to seeking a fixed point of S, that is, ¢ € H}(Q2) such that

S(9) = ¢. (3.8)

We find it important to emphasize here that, unlike (3.4), the approach in [3, egs. (3.11)-(3.12)] and
[4, eq. (3.12)] considered . N N

Aw(@¥) = Go() Ve Hy(Q),
where Ay, is defined in (2.4), thus keeping the diffusivity as part of the nonlinearity. However, in the

present setting, and for sake of simplicity of the subsequent analysis, we restrict ourselves to the linear
problem (3.4).

Our next aim is to show that the operators S and S are well-defined, which is equivalent to proving
that the uncoupled problems (3.2) and (3.4), respectively, are well-posed. We begin with the linear
problem (3.2), for which we apply the abstract result [23, Theorem 3.4], which establishes sufficient
conditions for the well-posedness of perturbed saddle-point problems. Indeed, we first recall from
(2.15) and (2.16) that the bilinear forms a,, b, and c (cf. (2.13)) are all bounded, and that a, and c
are both symmetric and positive semi-definite, thus accomplishing assumption i) of [23, Theorem 3.4].
In turn, denoting by V the kernel of the bilinear form b, and using that L*(2) is isomorphic to the
dual space of L*3(Q), we readily find that

V= {TeHo(div4/3;Q): div(t) = 0 in Q} (3.9)

Then, we recall from [7, Lemma 3.1] that there exists a positive constant «, depending only on  and
p2, such that for each ¢ € H}(€2) there holds

ag(T,7) = a|t]aiv, 0 VTEV, (3.10)

which, in particular, yields assumption ii) of [23, Theorem 3.4]. We stress that actually (3.10) is
satisfied independently of the space where ¢ belongs, so that it also holds for ¢ € L4(2) (see [8, eq.
(3.23)]). Now, regarding the inf-sup condition for b, we refer to [13, Lemma 3.3], which states in fact
the existence of a positive constant 3, depending on n, cp (cf. (2.1)) and ||ig| (cf. (2.2)), such that

b(T,v
ek (divy)3:9) HTHdiV4/3§Q
T#0

thus confirming assumption iii) of [23, Theorem 3.4].

Summarizing, we are now able to prove the well-definedness of the operator S.

Lemma 3.1 For each ¢ € Hy(Q) problem (3.2) has a unique solution (&, 1) € Ho(divy3; Q) x L(Q),
and hence we can define S(p) := (o,u). Moreover, there exists a positive constant Cg, depending on
pas lial; e(92), [liasll, K*IHOOQ, a, and B, and hence independent of @, such that

8o = &, 0] < Cs {lupler + Ifloalela} ¥oeH@). (3.12)

Proof. According to the previous discussion, the proof follows from a straightforward application of
[23, Theorem 3.4]. In particular, there exists a positive constant C, depending only on |ag], |lc||, e,
and [, such that

@@ < C{IF| + |Gl }. (3.13)
Thus, the above inequality, along with (2.18), lead to (3.12), which finishes the proof. ]

We now state the well-posedness of (3.4), or equivalently, the well-definedness of operator S. In
fact, we recall from [4, Lemma 3.4] the following result.
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Lemma 3.2 Let p € H}(Q) and w € L4(Q) U (ef. (1.2), (2.1), (2.8)).
Then, problem (3.4) has a unique solution ¢ € H(), whence we can define S(p, w) := ¢. Moreover,

2
letting Cy := 21%1’”, which is independent of (¢, w), there holds

IS0, w)

< Cg{rr1el? 0o} (3.14)

At this point we highlight that within the proof of the previous lemma (cf. [4, Lemma 3.4]) it is
shown that

w(®,¥) = Ve e HY(Q), (3.15)
1 9

with aq := &= = 74, inequality that will prove useful for the subsequent discussion.
] P

Having established that S and S are well-defined, the operator S is as well, and hence we address
next the solvability of the fixed-point equation (3.8). To this end, we will apply the Schauder fixed-
point theorem (see, e.g. [19, Theorem 9.12-1(b)]), and the classical Banach theorem.

We begin by letting B be the closed ball of H}(Q2) with a given radius r, that is

B = {pemy@: loha <r}. (3.16)
Then, we have the following result.

Lemma 3.3 Assume that the data satisfy

a1

Cs {luplijor + vl floe} < senli (3.17)

Cs {rr 1912 ] + lglo} < 7. (3.18)
Then S(B) < B.

Proof. The proof is carried out by mimicking the steps of the proof of [7, Lemma 3.7]. Indeed, it
basically follows from the definition of S (cf. (3.7)), the a priori estimates (3.12) and (3.14), and the
assumptions (3.17) and (3.18). Further details are omitted. ]

Our objective now is to prove that the fixed-point operator S is continuous, for which, according to
its definition (3.7), it suffices to prove that S and S are. We begin with the corresponding result for S,
which will require a further regularity assumption. This kind of hypotheses were originally introduced
in [3, eq. (3.22)] and have been since utilized frequently, in its original or slightly modified forms,
in subsequent works (see, e.g. [4, 7, 8]). More precisely, we suppose that up € HY/2¢(T) for some

€ (0,1) (when n = 2) or € € (3,1) (when n = 3), and that for each ¢ € H}(Q) with |¢|1,0 < 7,
r > 0 given, there holds S(¢) := (7, 1) € (Ho(divy/3; Q) n H*(Q)) x W=*(Q), and

7 } : (3.19)

with a constant Cg(r) > 0, independent of ¢, but depending on the upper bound r of its H!-norm.

50 + l8laa < Cs(r) {

Having introduced the above assumption, and for further use along the paper, we now need to
consider the continuous injections i. : H'(Q) — L™#(Q) and iz : H*(Q) — L#(£2), where

2 .

- = ifn=2,

R i (3.20)
3959 1fn—3

Then, the continuity of S is established as follows.
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Lemma 3.4 There ezists a positive constant Lg, depending on p1, Ly, | K w0, [assls liall, el
lizl, o, and B, (cf. (1.2), (1.3), (2.16), (3.10), and (3.11)), such that for all ¢, 1 € H}(Q) there holds

I5(¢) ~ 8w < Ls {IS1W)leolle — Wlonea + Ifloole — vlosa}. (321

Proof. The proof is an adaptation of the one of [7, Lemma 3.7] to the present context of the perturbed
saddle-point problem (3.2). First note that, letting X := Ho(divy/3; 2) x L*4(£2), the a priori estimate
(3.13) for the solution of (3.2) with a given ¢ € H}(f2), is equivalent to the existence of a positive
constant C, depending only on [a,| = i, Ie] = [ias] | K0, @, and 3, and hence independent
of ¢, such that there holds the global inf-sup condition (cf. [23, eq. (3.33)])

i(p.2)| < C sup a,(p,7) + b(7,z) + b(p,v) — c(z,v)

(r,v)eX H(T7 V)”
(T,v)#0

V(p,z) e X, (3.22)

Next, given ¢, ¢ € HA(Q), we let (7,1u) = S(p) and ({,w) = S(v), so that, according to the
definition of S (cf. Section (3.7)), they satisfy

a,(o,7) + b(r,u) = F(7) V7 e Ho(divys; Q) ,
(3.23)
b(o,v) — c(u,v) = Gg(v) VveLYQ),

and _
ay(¢,7) + b(r,w) = F(7) V7 e Ho(divys;Q),
(3.24)
b({,v) — c(w,v) = Gy(v) VveLQ).

(3
Then, applying (3.22) to (p,z) = S(p) — S(v)) = (& — ¢, u— W), and then employing (3.23), (3.24),
and the definitions of a,, ay, Gy, and Gy, (cf. (2.13), (2.14)), we arrive at

8(0) - 8()] < C sup 2@ =CT) b U-W) +b(E (V) —c(u-wv)

(r.v)eH (7, v)]
(7,v)#0
= C sup ay(¢, ) —a,(¢,7) +b(d — ¢, v) —c(a—w,v)
(r,v)eH H(T,V)H (3.25)
(T,v)#0
IEETEN PR
= O sup L( ) )T LW’ Vv
(rve e ,
(1,v)#0

whose right-hand side coincides precisely with the one of [7, eq. (3.44)]. For the rest of the proof we
refer to [7, Lemma 3.7], in which the further regularity assumption (3.19) and the continuous injections
iy HY(Q) — L4(Q), i : HY(Q) — LY5(Q), and iz : H*(Q) — L5(Q), are used. O

Next, for the continuity of the operator S, and slightly adapting [4, eq. (3.24)], we also require
further regularity. More precisely, we assume that g € H*(Q2), for the same € € (0,1) (when n = 2) or
e€(3,1) (whenn = 3)asin (3.19), and that for each (¢, w) € H{(Q)xL4(Q), with [¢]1.0 + [W]os0 <
r, 7 > 0 given, there holds S(p, w) 1= ¢ € H; (), and

~

90 < Ca(r) {77121 K] + lgla} (3.26)
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with a constant C~'§(r) > 0, independent of (¢, w), but depending on the upper bound r.

At this point we find it important to mention that, unlike [4, Lemma 3.7] and the lemma to be
stated next, the proof of the continuity of a similar operator S in [3, 7, 8] does not require any extra
regularity assumption. The reason is that in those works the diffusivity 1 depends on the magnitude
of the concentration gradient, which allows to handle the whole nonlinear term involved by using tools
from the monotone operators theory, whereas in our present context the dependence is only on the
concentration, which makes the proof much more intricate.

The continuity of the operator S is then given by the following lemma.

Lemma 3.5 There exists a positive constant Ly, depending on Cg, [i4l, iz|, Ly, and Ly (cf. Lemma
3.2, (2.8), (1.3), (3.26)), such that for all (o, w), (1,z) € H5(Q) x L*(Q) satisfying |w
there holds

0,4;82> HZHOA;Q <

1.
2¢p [ia]”

0.0 + [S(W,2) 10w - 2

8, w) = 8@ 20 < Lg{IKl e — | o0

N (3.27)
+ ||S(¢’Z)”1+E,Q HSO - ¢

|0,n/5;§2} .

Proof. The proof of this lemma is analogous to the one of [4, Lemma 3.7]. It relies on the ellipticity of
the bilinear form Ay with constant as (cf. (3.15)), the Lipschitz-continuity of f and ¥ (cf. (1.3)),
the further regularity assumption on the operator S (cf. (3.26)), and the Sobolev embeddings of H!(£2)
in L2(Q) and L™¢(); the only difference being that the term |w — z]o.4.0 is kept as it is instead of
bounding it by |w — z|; o (and hence (2.2) is not used). ]

Having established the continuity of S and g, we are in position to prove next the continuity of the

operator S and the compactness of S(B), where B is the ball defined by (3.16).

Lemma 3.6 Assume that the data satisfy the hypothesses of Lemma 3.3, that is (3.17) and (3.18).
Then, there exists a positive constant Cg, depending only on Lg (cf. Lemma 3.4) and Ly (¢f. Lemma
3.5), such that

0.2 SW)liale — ¢
ca + S@hiea) lp = vl

IS(¢) = S@)lha < Cs {Ikllp —vloe + £ 0.0

B (3.28)
+ (I8@)h181()|

O,n/E;Q}

for all v, ¢ € B, and hence the operator S : B — B is continuous and S(B) is compact.

Proof. The proof follows similarly to those of [7, Lemma 3.9], [4, Lemma 3.9], and [3, Lemma 3.12]. We
begin by recalling that the assumptions (3.17) and (3.18) guarantee that S(B) < B. Then, bearing
in mind the definition of S (cf. (3.7)), straightforward applications of the estimates provided by
Lemmas 3.5 (cf. (3.27)) and 3.4 (cf. (3.21)) yield (3.28). In turn, thanks to the Rellich-Kondrachov
compactness Theorem (cf. [1, Theorem 6.3], [30, Theorem 1.3.5]) and the ranges for € specified by
the regularity hypotheses (3.19) and (3.26), we know, as already used in the proofs of Lemmas 3.4
and 3.5, that H'(Q) is compactly embedded in L*(€), L2(Q2), and L"/¢(Q2). These compact (and hence
continuous) injections together with (3.28) imply the remaining properties of S. O

Now, bounding [S(¢)[10 by 7, and [S1(¢)[0 and [S(¢)[1+=0 = [S(#,S2(¢))[1:20 by the esti-
mates provided by (3.19) and (3.26), respectively, and using the aforementioned compact embeddings,
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we deduce from (3.28) the existence of a positive constant Lg, depending on Cfg, C'g (r), C~’§ (r), r, v,
€2, [lia, and [ic|, such that

IS(¢) — S(¥)
for all o, ¥ € B.

o < Ls {Ik|+ | f

ca}le = vl

02+ [uplijzser + g 1.9 (3.29)

With the analysis already done, the solvability of (3.8) is addressed by the following theorem.

Theorem 3.7 Assume that the data satisfy the hypotheses of Lemma 3.3, that is (3.17) and (3.18).
Then, the fized-point equation (3.8) has at least one solution ¢ € B, which means, equivalently, that the
mized-primal formulation (2.20) has at least one solution (o, u, ¢) € Ho(divys; Q) x L4(Q) x HA (),
with ¢ € B. Moreover, there hold

6.0 < Cg {ar 19072 k] + lg

|0,Q} and (3.30)

(o, w)l < Cs {luplijar + [Floldlie}- (3.31)
In turn, if the data k, f, up, and g are sufficiently small so that

Ls {|kl + |

then the above solution of (3.8), and hence that of (2.20), is unique.

00+ [uplyzeer + lglea} < 1, (3.32)

Proof. Similarly to the proof of [7, Theorem 3.10] (see, also [3, Theorem 3.13]), and thanks to Lemmas
3.3 and 3.6, we apply the Schauder fixed-point theorem to conclude the existence of solution of (3.8),
and hence of (2.20). In addition, the estimates (3.30) and (3.31) follow directly from (3.14) and (3.12),
respectively. Furthermore, (3.29) and the assumption (3.32) guarantee that S is a contraction, so that
a straightforward application of Banach’s fixed-point theorem completes the proof. OJ

3.2 The fully-mixed approach

Here we proceed inspired on [8, 28] to analyze the solvability of (2.32) by means also of a fixed-point
strategy. In this regard, and given that the main difference between the mixed-primal formulation
(2.20) and the fully-mixed formulation (2.32) lies on the way the transport equation is tackled, and
hence on the space where the concentration ¢ is sought, the operator associated to the Brinkman flow
(analogue of (3.1)) needs only its domain of definition to be modified. More precisely, we now let
T : L*(Q) — Ho(divys; Q) x L*(Q) be the operator defined by

T(¢) = (Ti(p), Ta(y)) := (o,0) Veeli(Q), (3.33)

where (&, 1) € Ho(divys; Q) x L*(Q) is the unique solution (to be confirmed below) of the problem
arising from (2.19) when ¢ is replaced by the given ¢, that is (3.2). In turn, as the analogue of (3.3),
we let T : L*(Q) x LY(Q) — LY(Q) x L*(Q) x H(divy/3; Q) be the operator defined by

T(SD’W) = (Tl((pvw)vTQ((va)v’i‘i%((va)) = (57%7;}) V(QO’W) € L4(Q) X L4(Q)7

where (5, t, ) € LY(Q) x L*(Q2) x H(divy/3;2) is the unique solution (to be confirmed below) of the
problem arising from (2.24) when Ay, and Fy are replaced by A, w and F,, respectively, that is

Ao ((8,2), (0,8)) + B((¢,8).7) = Fo((1,8)) V(¥,s)eLiQ) x L}(Q),

- (3.34)
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Then, we set the operator T : L*(Q2) — L*(Q) by

T(p) == Tilp, Talp))  VeeLi(Q), (3.35)
and realize that solving (2.32) is equivalent to seeking a fixed point of T, that is, ¢ € L*(2) such that
T(¢) = ¢. (3.36)

Similarly as in Section 3.1, we now show that the operators T and T are well-defined, or equivalently,
that the uncoupled problems (3.2) and (3.34) are well-posed. We start by presenting the corresponding
result associated with T, which, given the already mentioned minor difference with S, turns out to be
a small modification of Lemma 3.1.

Lemma 3.8 For each ¢ € L*(Q) problem (3.2) has a unique solution (&, 1) € Ho(divys; Q) x L*(Q),
and hence we can define T(p) := (,u). Moreover, there exists a positive constant Cq, depending on
p1s c(82), [l K*IHOO qs @, and 3, and hence independent of ¢, such that

TPl = (g, )] < CT{||UD||1/2,F + [ Floalel

0,4;9} Ve LYQ). (3.37)

Proof. The proof follows almost verbatim from the one of Lemma 3.1, the main difference being the
bounding of the functional G, which in this case is given by (2.31) instead of (2.18). This explains
the fact that the constant Cq does not depend on |i4]. O

In order to show that (3.34) is well-posed, equivalently, that the operator T is well-defined, we
apply the generalized Babuska—Brezzi theory (cf. [9, Theorem 2.1, Corollary 2.1]). Indeed, we begin
by recalling from (2.29) and (2.30) that A, w, B, and F, are bounded. Next, proceeding similarly to
[20, eq. (3.35)], we readily find that the null space of the bilinear form B (cf. (2.26)) reduces to

V= {(w,s) LY xL2(Q): V¢ =s in Q and zpeH(l](Q)}. (3.38)
Having the above, we now prove that for a suitable range of w € L*(Q), Ay w becomes @—elliptic.

Lemma 3.9 There exists a positive constant a4, depending only on 91, cp, and |lig| (¢f. (1.2), (2.1),
(2.2)), such that for each (p,w) € L1(Q) x LY(Q) satisfying |[Wlos0 < 2a.4, there holds

Ao ((1:5), (10,5)) = aal(W,s)*  V(¥,8)eV. (3.39)

Proof. Given (o, w) € L4(Q) x L4(Q) and (¢, s) € V, we obtain from the definition of Agw (cf. (2.25)),
along with the lower bound of ¥ (cf. (1.2)), the Cauchy—Schwarz inequality twice, and the fact that

|s 0,0 = |¢|1’Q (cf. (3.38)), that
Ao ((1,5), (1,8)) = Lﬁw) s - fgw-s T olélZa
> 91 IslBa — Iloase [wloae Islog (3.40)
al oAl
= — s + 5 W30 = [¢loae Iwloae lsloq-

2
Next, applying Poincaré’s inequality (cf. (2.1)), the continuity of iy : H(Q) — L*(Q2) (cf. (2.2)), and
Young’s inequality, it readily follows from (3.40) that

Ap((,),,9)) = 5 (9 min {1, (ep lial) 2} — [wlo.i0) 9]
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. o
from which, defining a4 := g1 min {1’(46}3 Jial) }, we arrive at (3.39) and conclude the proof. OJ

In order to apply [9, Theorem 2.1, Corollary 2.1] it only remains to verify that the bilinear form B
satisfies the continuous inf-sup condition. Indeed, this result was already established in [20] and reads
as follows.

Lemma 3.10 Letting Op := %, there holds

B((v,s), x .
oup BN e Vxe H(divg9). (3.41)
ws)eli)x12@)  I(@;s)]
(4:5)#0
Proof. See [20, Lemma 3.3, ineq. (3.45)]. 0

We now establish that the linear problem (3.34) is well-posed, equivalently that T is well-defined.

Lemma 3.11 For each (¢, w) € L*(Q) x L*(Q) such that |wlosqo < 2, problem (3.34) has a
unique solution (¢, t,7) € L4(Q) x L2(Q) x H(divy/s;Q2), and hence we can define T(p,w) := (6, t, 7).
Moreover, there exists a positive constant Cg., depending on a4, BB, ¥2, and o, such that

1T, W)l = 1@, < Cr {77 12172 k] + lglosa (3.42)

Proof. Bearing in mind the aforementioned boundedness of A, w, B, and F,, as well as Lemmas
3.9 and 3.10, the proof follows from a straightforward application of the generalized Babuska—Brezzi
theory (cf. [9, Theorem 2.1, Corollary 2.1]). In particular, the indicated upper bound of w and the
first inequality of (2.29) yield

[Apwl < 02 + 204 + 1020 =: A (3.43)

which, along with the upper bounds of ||B| (cf. second inequality of (2.29)) and |F,| (cf. (2.30)), and
employing [9, egs. (2.15) and (2.16), Corollary 2.1], imply (3.42) and finish the proof. O

We remark that the well-posedness of the uncoupled problems (3.2), with ¢ € L*(Q) given, and
(3.34), with (p,w) € L*(Q) x L*(Q) given, confirm the well-definedness of the operators T and T,
respectively, and hence of T (cf. Section 3.2) as well. Therefore, we now address the solvability
analysis of the fixed-point equation (3.36).

We begin by providing conditions under which T maps a ball into itself. To this end, given r > 0,
we let W be the closed ball of L4(€2) with radius r, that is

W= {pe @) lplose < r}.

Then, we have the following result.

Lemma 3.12 Assume that the data satisfy

Cr{luplijor + 7 flon} < 204,  and (3.44)

Ca {17 1912 K| + gloysaf < 7. (3.45)

Then T(W) < W.
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Proof. Knowing from (3.35) and Lemma 3.11 that T(¢) := Ty (¢, Ta(p)) is well-defined for ¢ € L4(Q)
if [T2(¢)| < 2ay, we deduce, thanks to the bound (3.37) (cf. Lemma 3.8) and the assumption (3.44),
that the aforementioned well-definidness is accomplished for ¢ € W. Then, the a priori estimate (3.42)
(cf. Lemma 3.11) and the hypothesis (3.45) complete the proof. O

In what follows we aim to prove that the operator T is continuous, for ‘which, similarly to what was
done in Section 3.1, we first show that its constitutive operators T and T satisfy that property.

We begin with the corresponding result for T by assuming, as for its counterpart S (cf. Section
3.1), a further regularity assumption. In this regard, and even though these two aforementioned
operators only differ in their domain of definition, the fact that the mixed approach (3.34) looks for
the concentration in L4(Q) instead of H}(f2) as in the primal formulation (3.4), leads to a similar,
but a bit more restrictive hypothesis. Indeed, we now need to assume that up € H1/2+9 (T") for some
§€[1/2,1) (whenn = 2)ord € [3/4,1) (whenn = 3), and that for each ¢ € L*(Q) with |p[os.0 < 7,
r > 0 given, there holds T(p) := (7,1) € (Ho(divy/z; ) N HO () x W4(Q), and

s < Cp) {luplpisr + I

|50 + 0ot (3.46)
with a constant Cq(r) > 0, independent of ¢, but depending on the upper bound r of its L*(Q)-
norm. As compared with the assumption for S (cf. (3.19)), the only difference lies on the more
demanding range for the present regularity index § (which was denoted e there). The need of it will
become apparent next in the proof of Lemma 3.13, which establishes the continuity of T. In fact, the
aforementioned range stipulates, equivalently, that n/d < 4, thus yielding a continuous injection iz of
L4(Q) into L™9(Q).

Lemma 3.13 There exists a positive constant L, depending on Lg (cf. Lemma 3.4) and |is|, such
that

IT(e) — TW) < Lz {ITi@lse + [floa}le — vlose Ve well@).  (347)

Proof. Tt is easily seen that the proof of Lemma 3.4 still holds for ¢, ¥ € L4(), instead of ¢, 1 € H(€2),
whence we obtain again (3.21) as is, that is, using the present notation,

A

Ls {IT1(v)

IT(p) ~ T salle = Ylowse + Ifloale = losaf-

Then, bounding [l — ¥[on/s5:0 by [is] ¢ — ¥[o40 in the foregoing inequality, we arrive at (3.47)
with Lg = Lg max{l, ||15H} ]

We find it important to remark here that, differently from S (cf. Lemma 3.4), whose domain H} ()
is compactly embedded in L*(£2), and thus in L™/%(Q), in the present case of T, which acts on L*(Q),
we lack those compactness properties, whence later on we will not be able to apply Schauder theorem,
as in Theorem 3.7, but just the classical Banach fixed-point theorem.

Furthermore, similarly to the operator S from Section 3.1, we also require further regularity for T.
More precisely, we assume that g € Wo#3((Q), for the same § € [1/2,1) (when n = 2) or § € [3,1)
(when n = 3), and that for each (p,w) € L4(Q) x L(Q), with |[¢|oa0 + [Wloso < r, 7 > 0 given,
there holds T(p,w) := (¢,t,7) € L) x HY(Q) x H(divy/3; Q), and

1/2

k| + llg|

loase + [

% 50+ liilavyge < Ca) {rr19) S0l (3.48)
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with a constant CN'T(T) > 0, independent of (¢, w), but depending on the upper bound r. Note here

that, while we could have also considered further regularity for 5 and 177, it suffices to assume it only
for the second component of the operator T.

The continuity of the operator T is stated as follows.

Lemma 3.14 There exists a positive constant L., depending on [, |is|, 6, Ly and Ly (cf. (1.3)),
[A| (cf. (3.43)), aa, and Bg, such that for all (p,w), (,z) € L4(Q) x L4(Q) satisfying |wl|o.40,
”Z”OA;Q < 2ay, there holds

[T, w) = T(6,2)| < La { (k] + | Ta(w,2)

50) e — ¥

0,4;Q2
(3.49)

+ | T1(,2)

o450 [w — ZH0,4;Q} ‘

Proof. The proof follows similarly to that of [8, Lemma 3.9], which, in turn, makes use of some ideas
employed in that of [4, Lemma 3.7]. We begin by letting (o, w), (¥,2z) € L*(Q) x L*(Q) such that
IWloaq, [zloaa < 2au, and defining T(o, w) := (¢,t,7) and T(¢,2) := (4,F,&). According to
their respective problems (3.34), and using in particular from the second equations of them that (qz, t)
and (6, F) belong to V (cf. (3.38)), we deduce, thanks to the V-ellipticity of Agw (cf. (3.39) in Lemma
3.9), and after introducing the null expression vaz((g, %), (6,%) — (0, ) — ]:w((gz, ) — (@, T)), that

~,

aal(@,8) = 0. %) < (Fo = Fu) (6,8) = (0,9) = (Apw — Ay) ((0,9), (6,F) — (6,7)) . (3.50)

Next, bearing in mind the definitions of the functionals and bilinear forms appearing in the foregoing
equation (cf. (2.27), (2.25)), and employing the Cauchy—Schwarz and Holder inequalities, as well as
the Lipschitz-continuity of f,x and ¢ (cf. (1.3)), we find that

(7 = F) G - 09) = || {ato) - fut)} k- E-7)

(3.51)
< Ly k| le — ¢log [t —Flogo,
and that for each (¢, s) € L*(Q) x L2(Q) there holds
(Ao~ Ao (@0, (0.5) = | [ fo0) = 000} 5 [ Fw )5 .

o0} Isloo

< {Lolle = loea [Flozie + 1Ploaq Iw — 2
where £, j € (1,+0), conjugate to each other, will be fixed later on. In this way, replacing (3.51),
and (3.52) with (¢,s) = (¢,t) — (0,T), into (3.50), and performing minor algebraic manipulations, we
arrive at

025:0 + 0040 W — 2

L 1 N
(o, t) — (0,7)] < ox {Lf k| ¢ — Yo+ Lo [ — Y0200 [T 0,4;9} . (3.53)

Furthermore, relying on the inf-sup condition of B (cf. (3.41)) and the respective first equations of
(3.34), we infer

. Fo— Fu) ((¢,8)) = { Apw ((6,%), (¢, 8)) — Ay 2 ((0,%), (1), 5)
il e ap T { Ao ) — Ay i

(,5)eLA(Q) x L2 () I(2, )|l
(,8)#0
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The first term in the numerator can be bound analogously to (3.51), obtaining
|[(Fo = Fu) (¥,9))] <

whereas the second one is bounded upon adding and substracting A, w ((5, T), (¢, s)), and then using
the boundedness of A v with constant |A| (cf. (3.43)), and the estimate (3.52), all of which gives

\‘A‘P,W ((5’ E)v (7/% S)) - Aw,z ((5, ?)7 (¢v S))|
< [ ((6,8) = (0.), (,9)) | + [ (Apw = Ap2) ((0,5), (1,9))| (3.55)
< {1135 - 3.9 sa bS]

(3.54)

In this way, employing (3.54) and (3.55) within the preliminary estimate for |7 — €|, we get

B it — & < Ly |kl lo — ¢loq + |A](6,%) — (6.7)]
(3.56)

- Z”OA;Q :

Next, given the further regularity assumption (3.48), we proceed as in [4, Lemma 3.7] (see, also, proof
of Lemma 3.4) by setting, as in (3.20),

2 .

’\'. T(S’ lfn:2,

0= . (3.57)
3-957 1fn—3,

and recalling the continuous embedding i3 : H’(Q) — LS(Q). Then, noting that for the range of §
specified in (3.48), that is § > n/4, there holds 5 > 4, we can choose j = 5/2, thus yielding

liz = iz 1T2(v, 2)

(3.58)

= [Flly0 <

In turn, it follows that

. 2 .
2@2,2] _ g, ?fn=2,:ﬁ7
5, ifn=3 o

so that, using again the continuous injection is : L*(2) — L™%(), we obtain

< sl e = ¥loa0 - (3.59)

Finally, employing the inequalities (3.58) and (3.59) in both (3.53) and (3.56), performing several
algebraic manipulations, in particular replacing the resulting estimate from (3. 33) into (3.56), and
then adding them, recalling that § = Ty (1), z), and using that || - loq < QY4 - we readily get
(3.49) and finish the proof. O

As a consequence of Lemmas 3.13 and 3.14, we now provide the continuity of T.

Lemma 3.15 Assume that the data satisfy the hypotheses of Lemma 3.12, that is (3.44) and (3.45).
Then, there exists a positive constant Ct, depending only on Lz (cf. Lemma 3.13) and L (¢f. Lemma
3.14), such that

IT(p) = T(4)
+ | T()

< cT{yky + [ T2 (e, To(¥)) 5.0
(1T (@) a)}lle = v

(3.60)

for all p, e W.
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Proof. We begin by noting that, given ¢, 1 in W, the estimate (3.37) and the assumption (3.44)
on the data ensure that (o, To()) and (1, T2(v))) satisfy the hypotheses of Lemma 3.14, and hence
T(p) and T() are well-defined (cf. (3.35)). Needless to say here, we also stress that (3.44) and (3.45)
guarantee that T(W) < W. Having said the above, the deduction of (3.60) follows by straightforward
applications of Lemmas 3.14 and 3.13. O

Similarly as for the derivation of (3.29), we now bound |T(¥)|o40 by 7, and |Ti(¢)|sq and
T2 (¥, T2(1)) |50 by the estimates given by (3.46) and (3.48), respectively. In this way, we infer from

(3.60) the existence of a positive constant Ly, depending on Cr, Cy(r), O

T(’I”), r, Vf, and |Q‘> such
that

IT(p) = T()|

for all p, Y e W.

0,40 < Lt {|k| + [ Floq + luplij24sr + HQH5,4/3;Q} le — o0, (3.61)

We are now in position to state the unique solvability of (3.36).

Theorem 3.16 Assume that, in addition to the hypotheses of Lemma 3.12, that is (3.44) and (3.45),
the data satisfy

Lr {kl + [ Flo + [plyerar + lolsasa} < 1. (362)
Then, the fized-point equation (3.36) has a unique solution ¢ € W, which means, equivalently, that the

Jully-mized formulation (2.32) has a unique solution (o, u) € Ho(divy3; Q) x L(Q) and (¢,t,n) €
L4(Q) x L*(Q) x H(divys;Q), with ¢ € W. Moreover, there hold

6, t.m)l < C {rs 121" |K| + glose}  and (3.63)

(oWl < Oz {Juplyer + [Flonlélon} (3.64)

Proof. It was already established by Lemma 3.12 that T maps the ball W into itself. Then, knowing
from (3.61) and the assumption (3.62) that T is a contraction, the unique solvability of (3.36), and
hence of (2.32), follows from the Banach fixed-point theorem (see, e.g. [19, Theorem 3.7-1]). In turn,
estimates (3.63) and (3.64) arise from (3.42) and (3.37), respectively. ]

4 The Galerkin schemes

In this section we introduce Galerkin schemes for the mixed-primal and fully-mixed formulations given
by (2.20) and (2.32), respectively, and address their well-posedness by employing discrete analogues
of the fixed-point strategies developed in Sections 3.1 and 3.2.

4.1 Preliminaries

Let {’771} o Pe a family of regular triangulations of 2 made up of triangles K (resp. tetrahedra K
in R3) of diameter hx. Note that h stands for both the index of 7; and its corresponding meshsize

h := max {hK : Ke 7},} Now, given an integer ¢ > 0, for each K € T}, we let Py(K) be the space of

polynomial functions on K of degree < ¢, and define the corresponding local Raviart—Thomas space
of order ¢ as
RT(K) := Py(K) @ Py(K)x,
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where, according to the notations described in Section 1.1, Py(K) = [Py(K)]", and x is the generic
vector in R". In addition, we let RTy(K') be the tensor version of RTy(K), that is, denoting by 7; the
i-th row of a tensor 7, we set

RT,(K) = {TeILP(K): i € RTy(K) Vie{l,...,n}}.

4.2 The mixed—primal method

Given an integer k > 0, we introduce the finite element subspaces:

HY = {TheHo(div4/3;Q): Tl € RT4(K) \ﬂ(en}, (4.1)
HY = {vheL4(Q): Valk € Pu(K) VKeTh}, and (4.2)
Hp = {¢ne CO) AHHQ):  vnlk € Pra(K) VK EThf, (4.3)

so that the Galerkin scheme associated with (2.20) reads: Find (o, up, ¢p) € Hf x H}! x H;f such that
Agy, (O-hv Th) + b('rh7 uh) = F(’Th) VT, € Hz’ ,

b(on,va) — c(up,vi) = Gg,(vn)  VvyeHj, (4.4)
Aw, (D0, ¥n) = G, (Yn) YV, € Hfz

We emphasize that the definitions of the bilinear forms ay, , b, ¢, and Ay, , and the linear functionals
F, Gy, , and Gy, , are given in (2.13), (2.4), (2.14), and (2.5), respectively, with ¢ = ¢5, and u = uy,.

Next, as previously announced, we adopt the discrete version of the ﬁxed—pg)int strategy used in
Section 3.1 to analyze the solvability of (4.4). We first introduce the operator Sy, : H‘,f — Hf x H}
defined by

Sn(n) = (Sin(en),Sanlen)) = (Fn up) € HY x Hy, (4.5)

where (&, 1y) is the unique solution (to be confirmed below) of the first and second rows of (4.4)
with the given ¢y, that is

ay, (&h, Th) + b(Th, ﬁh) = F(Th) V1€ Hg, (4 6)
b(p,vy) — c(Up,vy) = Gy, (vy)  Vv,eH}.

In turn, we let S : Hz x H — Hz be the discrete version of S (cf. (3.3)), which is defined by

~

Sh(‘PhaWh) = <Eh \ (@h,wh) € Hﬁ X Hg,

where ¢y, € Hﬁ is the unique solution (to be confirmed below) of the discrete analogue of (3.4), that is

Aaph,wh (Qghv TZh) = G‘Ph (Jh) V?Zh € H¢7 (47)

and the bilinear form A, w, and the linear functional G, are given by (3.5) and (3.6), respectively,
with ¢ = ¢ and w = wy,. Then, we define the operator Sy, : Hfz — Hﬁ by

Sh(¢n) := Sn(en,Sanlen))  VneHS, (4.8)
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and realize that solving (4.4) is equivalent to seeking a fixed point of Sy, that is ¢y, € Hf such that

Sh(én) = ¢n. (4.9)

Analogously to the continuous case, the well-definedness of the discrete operators S, and §h, and
hence of Sy, hinges on the discrete problems (4.6) and (4.7) being well-posed, which we address in
what follows. We begin with (4.6) by resorting to [23, Theorem 3.5], discrete analogue of [23, Theorem
3.4], which was applied to derive the well-posedness of (3.2). Indeed, we recall again from (2.15) and
(2.16) that the bilinear forms ay, , b, and c are all bounded, and that a,, and c are both symmetric
and positive semi-definite, whence assumption i) of [23, Theorem 3.5] is accomplished. Next, the
discrete kernel of b is given by

v, = {rh €HY: b(rvi)=0 Vv,e Hg} ,
which, using from (4.1) and (4.2) that div(H7) < H}, reduces to
VvV, = {‘Th eHy : div(ry) =0 in Q},
thus showing that Vi, < V (cf. (3.9)). It follows from (3.10) that

ay, (Th, Th) = aq ||Th||div4/3;Q V1n,eVy, (4.10)

with ag := «a, which proves assumption ii) of [23, Theorem 3.5]. In turn, we recall from [20, Lemma
5.5, Section 5.4] that there exists a positive constant 4, independent of h, such that

b(Ty, vy
sup g = Ballviloa0 Vv, e Hy, (4.11)
by [ Thldivy 550
Tr#0

which verifies assumption iii) of [23, Theorem 3.5]. Hereafter, we use the subscript “d” to identify
constants that arise in the discrete analyses and that are independent of the mesh size h.

According to the previous discussion, we are now able to prove the well-definedness of Sj,, which
constitutes the discrete analogue of Lemma 3.1.

Lemma 4.1 For each ¢, € Hi problem (4.6) has a unique solution (op,uy) € HY x H}', and hence
we can define Sy(pn) 1= (0n,Up). Moreover, there exists a positive constant Cg 4, depending on juiy,
[ia], c(§2), [iass], HK_1HOO s 0a, and B4, and hence independent of ¢, such that

ISu(en)l = 1@n @)l < Cgg {lunlior + Ifloglenlie)  ¥eneHi.  (412)
Proof. The proof, being analogous to the one of Lemma 3.1, follows from the previous analysis
and a straightforward application of [23, Theorem 3.5]. In particular, the boundedness of the linear
functionals F and G, , as stated in (2.16) and (2.18), along with the a priori estimates provided by
[23, Theorem 3.5, eq. (3.67)], imply (4.12). Further details are omitted. OJ

The following result, taken from [4, Lemma 4.2], states that the operator §h is well-defined, thus
yielding the discrete analogue of Lemma 3.2.
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Lemma 4.2 Let ¢, € Hi and wy, € H}' such that |wp|o4.0 < %1”14” (cf (1.2), (2.1), (2.8)). Then,

problem (4.7) has a unique solution gzh € HZ, whence we can define §h(<ph,wh) = gz~5h. Moreover,
2

letting Cg 4 = Cg = (¢f. Lemma 3.2), which is independent of (¢n, W), there holds

1,0 = |on

18500, W) Lo < Cgo {11902 |kl + lgloa}. (4.13)

In what follows we address the well-posedness of the discrete mixed—primal formulation (4.4) by
using the Brouwer fixed-point theorem (cf. [18, cf. Theorem 9.9-2]) to study the solvability of the
equivalent fixed-point equation (4.9). To this end, we now introduce the ball

By, = {SOhEH(ﬁi lenlio < 7‘}7
and establish next the discrete version of Lemma 3.3.

Lemma 4.3 Assume that the data satisfy the discrete analogues of (3.17) and (3.18) (c¢f. Lemma
3.3), that is

Ut
< —, d 4.14
|07Q} 2¢p ”14H an ( )

Csa{luplisr + r1f
Csa {WIQII/QI’CI + Hgllo,a} <. (4.15)

Then Sh(Bh) C By.
Proof. 1t is a direct consequence of Lemmas 4.1 and 4.2. Needless to say, note that actually (3.18)
and (4.15) coincide since Cy = Cy . OJ

We now present the discrete analogue of Lemma 3.4, for which, knowing in advance that no regu-
larity assumption could be applied in this case, we simply resort to a L* — L* — L? argument in the
corresponding bounding process.

Lemma 4.4 There exists a positive constant Lg 4, depending on 1, Ly, |lig/s, IK Y., aa, and
Ba, such that for all @y, Yy € Hf there holds

ISu(n) = Sn(un)| < Lsa{IS1a(n)

0,9} lon — ¥n

040 + |If 042 - (4.16)
Proof. 1t follows analogously to the proof of Lemma 3.4. In fact, by means of the corresponding
discrete global inf-sup condition satisfied by the operator S (cf. [23, eq. (3.42)]), which holds with
a constant Cyq depending only on |a,,| = i, Ief = [iasll |Kwq, aq, and Bs, we obtain the
discrete analogue of (3.25), from which we continue as in the proof of [7, Lemma 4.6]. More precisely,
employing the Cauchy—Schwarz inequality twice in the resulting first term of that analogue, which

constitutes the aforementioned L* — L* — L? argument, we arrive, similarly as [7, eq. (4.17)], to

o0 Von, YpeHY,

ISn(pn) = Su(wn)l| < Ce {Luni? [Sta@nlloaa + | Flog} lon —

which yields (4.16) and finishes the proof. ]

For the continuity of §h we state the discrete analogue of Lemma 3.5 as follows.
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Lemma 4.5 There exists a positive constant Lg ,, depending on Cg (= C§,d)’ lial, L¢, and Ly, such

that for all (o, wy), (Vn,2p) € Hf x H}! satisfying ||wy,

lo.4:0, |Znlloa0 < ﬂfjﬁ there holds

0,0 + IS (¥n, z1) 1,0 [wWr — zp

|0,4;Q} .

Proof. The proof follows almost identically to that of [4, Lemma 4.5], except that, as in the proof
of Lemma 3.5, we do not bound |w — z|o4.0 by |Ww — z|1,o. Note that, being VS (13, z5) piecewise

IS (on, Wr) — Sh(¥n, z1)

Lo < Lg {Ikllon —vn

+ [VSh(ns2z0) 040 | on — Un

0,4;Q2

polynomial, vah(z/)h, zp)|0,4;0 is finite and hence well-defined. O

We are now in position to state the continuity of the discrete fixed-point operator Sy.

Lemma 4.6 Assume that the data satisfy the hypotheses of Lemma 4.3, that is (4.14) and (4.15).
Then, there exists a positive constant Lsq, depending only on [, Lg4 (cf. Lemma 4.4), and Lg 4
(¢f. Lemma 4.5), such that

ISh(¢n) — Sn(¥n)

1o < Lsa { Ikl + [Sa(vn)

12 (IS1A(¥n)

+ IV Su@nloasnl len —vnl

lo,:0 + || f] O,Q)

(4.17)

0,4;92
for all on, ¥, € By, and hence the operator Sy, : By, — By, is continuous.

Proof. We first recall from Lemma 4.3 that (4.14) and (4.15) guarantee that S; maps By, into itself.
Then, bearing in mind the definition of S;, (cf. (4.8)), inequality (4.17) follows after applying Lemmas
4.5 and 4.4, and taking into account the continuous injection of L*(2) into L?(Q) (with boundedness

constant |Q2|'/4). Thus, the continuity of Sy, : B, — By, is a consequence of (4.17) and the embedding
iy of HY(Q) into L4(2) (cf. (2.2)). ]

Consequently, thanks to Brouwer’s fixed-point theorem (cf. [18, c¢f. Theorem 9.9-2]) and Lemmas
4.3, 4.6, 4.1, and 4.2, we now establish the main result of this section.

Theorem 4.7 Assume that the data satisfy the hypotheses of Lemma 4.3, that is (4.14) and (4.15).
Then, the fized-point equation (4.9) has at least one solution ¢ € Bp, which means, equivalently,
that the Galerkin scheme (4.4) has at least one solution (op,up, ¢p) € HY x H}! x HZ), with ¢y, € By,
Moreover, there hold

|én

Lo < Cgo {1 19172 K| + g

yo,g} and (4.18)

l(nun)| < Csa{luplisr + 1floa lonlief- (4.19)

We remark that the lack of an appropriate, uniform in h, upper bound for |V Sy (¢n)[o,4:0 prevents
us from using (4.17) to derive a contraction estimate that would let the Banach fixed-point theorem
to ensure uniqueness of the discrete solution for small enough data.

4.3 The fully-mixed method

Given an integer k > 0, we now introduce the finite element subspaces:

HY = {TheHo(div4/3;Q): Tl € RT4(K) VKGE}, (4.20)
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U {vheL4 Valk € Py(K) VKeTh} (4.21)
HY = {u)h eL4(Q) : nlx e Pu(K) VKe Th} (4.22)
H = {sheL2 (Q) :  sulx € Pr(K) VKGE} and (4.23)
H = {XheH(d1v4/3;Q) . xulx € RTL(K) VKeTh}, (4.24)

so that the Galerkin scheme associated with (2.32) reads: Find (o, up) € Hf x H}! and (¢p, th,ny,) €
Hi x H} x H}! such that

a¢h(ah7 Tn) + b(Tp,up) = F(1p) YT1,eHT,
b(on,vi) — c(up,vy) = Gg,(vh) Vv, e HY,
(4.25)
Agy oy, (D, t8); (Ynysn)) + B((¥nssn),mn) Fon ((n,88)) V (¢p,sp) € Hfz x HE

B((¢h7th)7Xh) = 0 thEHZ

Note that the bilinear forms ag,, b, ¢, Ag, u,, and B, and the linear functionals F, Gg,, and Fy,,
are defined in (2.13), (2.25), (2.26), (2.14), and (2.27), respectively, with ¢ = ¢, and u = uy,.

We find it important to stress here that (4.25) yields momentum conservation properties in an
approximate sense. In order to explain this, we first let P}’f LY Q) — Hi be the projector defined for
each v € L}(2) as the unique element PF(v) € Hi such that

f Pr(v) vy = J v, Vi e HY.
Q Q

Analogously, we set the projector ’Pfl :LY(Q) — H}!, or simply say that ’PfL is the vector version of
PF. Then, according to the definitions of b, ¢, and Gy, (cf. (2.13), (2.14)), the second equation of
(4.25) can be rewritten as

[0+ divion ~ K w) v =0 vvieny,
Q
which says, equivalently, that
Ph(on f + div(es) — K'uy) =0 in Q. (4.26)
In turn, bearing in mind the definitions of Ay, u,, B, and Fy, (cf. (2.25), (2.26), (2.27)), and taking

sy, = 0 in the third row of (4.25), we obtain

L (g + div(my) — 0dn)n = 0 Ve € HY,

that is

Pr(g + div(n,) — o¢n) =0 in Q. (4.27)
The identities (4.26) and (4.27) constitute approximate verification of the continuous momentum
equations given by (cf. (1.7)) K~'u — div(e) = ¢ f and 0¢ — div(n) = g, respectively.

The solvability of (4.25) is addressed in what follows by applying the discrete version of the fixed-
point strategy employed in Section 3.2. To this end, we first let T}, : Hi — Hf x H}} be the operator
defined by

Th(en) = (Tinlen), Tonlen) = (Gn.0y)  VepeHp, (4.28)
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where (o, 1;) € Hf x H}! is the unique solution (to be confirmed below) of the system formed by the
first and second rows of (4.25) with the given ¢y, that is

aaph(a'haTh)+b(Th7ﬁh) = F(Th) VThGHg,

_ _ 4.29
b(o‘h,Vh) — c(uh,vh) = G¢h(Vh) Vvh € H}; ( )

Analogously to S (cf. (3.1)) and T (cf. (3.33)), we stress here that S, (cf. (4.5)) and T}, (cf. (4.28))
differ only in their domains of definition, both denoted Hz, which are given by subspaces of Htl)(Q)
and L*(Q), respectively. In this way, and as noticed below, the corresponding well-definedness results
practically coincide. In turn, we let ’f‘h : Hi x H}} — Hi X H}L X HZ be the operator given by

~ ~

Th(on, wa) = (Ton(en, Wa)s Ton(on, Wi) Tan(on, Wh) i= (G, th, 7ip) (4.30)

for all (¢p, wp) € Hfz x H}!, where (ih,Eh, m,) € Hz x HE x H! is the unique solution of the system
formed by the third and fourth rows of (4.25) with the given (¢p, wp,), that is

Ay von (D1, 80)s Wnssn)) + B((nosn)fn) = Fou ((nosn)) ¥ (n,sp) € HY x HE |

o (4.31)
B((¢h>th)7Xh) =0 thEHZ
Then, we define the operator T}, : Hﬁ — Hi by
Th(en) == Tinlen Taplen)  YoneH, (4.32)

and realize that solving (4.25) is equivalent to seeking a fixed point of T}, that is ¢y € HZ such that

Th(dn) = én- (4.33)

In order to ensure that all of the above makes sense, we now show that operators T}, and ’T‘h are
well-defined, which reduces to establishing the discrete analogues of Lemmas 3.8 and 3.11. The first
of them reads as follows.

Lemma 4.8 For each ¢p, € Hfz problem (4.29) has a unique solution (op,uy) € HY x H}, and hence
we can define Tr(pp) := (p,ap). Moreover, there exists a positive constant CT,d? depending on 1,
(), [iassl, HKAHOOQ, ag (cf. (4.10)), and B (cf. (4.11)), and hence independent of pp, such that

ITaen)l = 1@n 8] < Opg {luplier + [Flonlenlose)  YeneHp. (434
Proof. The proof is essentially identical to that of Lemma 4.1, the only difference being that the bound
for G, in the present context is given by (2.31) and not by (2.18), whence Cg 4 does not depend on
Jiall O

Next, we turn to prove that T}, is well-defined, equivalently that (4.31) is well-posed, for which we
now apply the generalized discrete Babuska—Brezzi theory (cf. [9, Corollary 2.2]). In this regard, we
first recall that, given (¢p, wp) € Hz x Hj!, the bilinear forms A, w, and B, and the functional F,,
are bounded (cf. (2.29), (2.30)). Then, we let V}, be the discrete null space of the bilinear form B,
that is

Qh = {(¢hash) € Hi X H;l : B((whvsh)7Xh)) =0 th € HZ} . (435)
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In order to verify the hypotheses of [9, Corollary 2.2], we first resort to a result proved in [8], which
makes use of the abstract equivalence provided by [20, Lemma 5.1] as well as of the inequalities given
in [20, egs. (5.64) and (5.65)]. More precisely, we have the following lemma (cf. [8, Lemma 4.2]).

Lemma 4.9 There exist positive constants Bga and C 44, independent of h, such that

B((¥n,sn), xn))

sup > Bpalxnldivgo  Vx,eHY, (4.36)
(w}L,Sh)EHﬁXHz H(sz)hash)H ' 3 h
(tn,sK)#0
and N
Isnlloe = Caallvnlose VY (¥n,sn) € Vi (4.37)

Having (4.36) provided the discrete inf-sup condition for B, thus yielding the discrete analogue of
Lemma 3.10, we now employ (4.37) to prove next the \N/h—ellipticity of Ay, w,- Indeed, we notice
in advance that, not being able to deduce from (4.35) that Vj is contained in V (cf. (3.38)), the
aforementioned property for A,, w, does not follow from the one provided by Lemma 3.9, but from a
suitable modification of its proof, which makes use of (4.37) instead of Poincaré’s inequality (cf. (2.1))
along with the continuity of iy (cf. (2.2)).

Lemma 4.10 There exists a positive constant o 44, depending only on 91 and C a4 (cf. (1.2), (4.37)),
such that for each (opn, wp,) € Hf x H}} satisfying |[wWhlo40 < 2044, there holds

Agpwon (Wn, 1), (nysn)) = anal@nosu)> ¥ Wn,sn) € Vi, (4.38)

Proof. Given (pp,wp,) € Hi x H}' and (¢n,sn) € Vy, and similarly as for the derivation of (3.40) (cf.
proof of Lemma 3.9), we now employ the lower bound of ¢ (cf. (1.2)), the Cauchy—Schwarz inequality
twice, and the estimate (4.37), to deduce that

Agy, v (Un,sn), (Wnysp)) = L Den) Isnl® — L R T [N

> U1 [sn

60 — [¥nloas [Whlowa lsklos (4.39)

) .
> ?1 mm{l,Ci,d} H(T/’hash)HZ — |[¢n

l0.4:0 [Wro.4:0 [skloq -

Then, applying Young’s inequality to the last term of (4.39), it readily follows that
1 .
Appn (rss0), (Wnsn)) > 5 (V1 min{1,C3a} = W) (6,912,

91 min§1,C%
from which, defining a 44 := %’A‘d}, we arrive at (4.38) and conclude the proof. OJ

We are now in position to establish that problem (4.31) is well-posed, equivalently that T), is
well-defined. In other words, the discrete analogue of Lemma 3.11 reads as follows.

Lemma 4.11 For each (pp, wy) € Hf xH}! such that |[wplo.4:0 < 24,4, problem (4.31) has a unique
solution (¢n, th, 7)€ Hﬁ x Ht x H}!, and hence we can define Ty (op, wp) = (én,th, 7). Moreover,

there exists a positive constant Cx ,, depending on aaq4, B4, U2, and o, such that

T Wil = 1Gn B i)l < Cag {77 191V K] + Igllogima} (4.40)
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Proof. Let (pp,wp) € Hi x H}' be as stated. Bearing in mind the boundedness of the bilinear
forms and the functional involved in (4.31), and thanks to Lemmas 4.9 and 4.10, the proof follows,
as previously announced, from a direct application of the generalized discrete Babuska—Brezzi theory
(cf. ]9, Corollary 2.2]). In particular, and analogously to the derivation of (3.43), the first inequality
of (2.29) yields

[Apywill < 02 + 2040 + QY20 = |Ala, (4.41)
so that, employing now [9, Corollary 2.2, eqs. (2.24) and (2.25)] along with (4.41) and the upper
bound of |Fy, || (cf. (2.30)), we arrive at (4.40) and conclude the proof O

Similarly as done for the discrete mixed-primal scheme (cf. Section 4.2), we now aim to employ
Brouwer’s fixed-point theorem (cf. [18, cf. Theorem 9.9-2]) to address the well-posedness of (4.25) by
means of the solvability analysis of the equivalent fixed-point equation (4.33). For this purpose, we
introduce the ball

Wy, = {wh eH):  |on

and prove next the discrete version of Lemma 3.12.

|0,4;Q < T‘},

Lemma 4.12 Assume that the data satisfy the discrete analogues of (3.44) and (3.45) (cf. Lemma
3.12), that is
Craf{lunlior + rfloo} < 2044, and (4.42)

CT,d {7f |Q’1/2 k| + H9H0,4/3;Q} <. (4.43)
Then Tp(Wy) € Wy,

Proof. Tt follows analogously to the proof of Lemma 3.12, by recalling now the definition of T}, (cf.
(4.32)), and bearing in mind the assumptions required, as well as the a priori estimates provided, by
Lemmas 4.8 and 4.11. Further details are omitted. ]

The continuity of T} and ’T‘h, and hence of T}, is our following goal. We begin with T}, by
establishing next the discrete analogue of Lemma 3.13.

Lemma 4.13 There exists a positive constant L 4, depending on p1, Ly, [ia], 1K wq, as, and
Ba, such that for all pp, Yy € Hi there holds

ITuleon) — Tuln)| < Lea {ITun@nlose + 1Flo} lon — vulosa (1.44)
Proof. Since S;, and T}, differ only in their domains of definitions, which are given by suitable
subspaces of H}(Q2) and L*4(Q), respectively, the present proof is basically the same of Lemma 4.4. We
omit further details and just stress that the respective constants, namely Lg 4 and L 4, coincide. []

In turn, the continuity of 'i‘h, that is the discrete analogue of Lemma 3.14, is stated below.

Lemma 4.14 There exists a positive constant Lg ,, depending on |Q|, Ly and Ly (cf. (1.3)), |Ala
(cf. (4.41)), ana, and Bpa, such that for all (¢p,wn), (Vn,2h) € Hi x H} satisfying |wy,

|znllo,4:0 < 2aq, there holds

0,4;Q2;

I T3 (o, Wa) — To(¥n,21)| < L, {(|’<5| + | Ton (b, z0) o,as0) on — Ynloan

|0,4;Q} .

N (4.45)
+ | Ty 4 (Yn, 24)

0,4;9 HWh — Zp
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Proof. Being the proof analogous to that of Lemma 3.14, we provide in what follows the main steps
of it. Indeed, given (¢n, W), (¥n,2zh) € Hz x H}! such that |wp[o4:0, |zn]o40 < 2044, we first
define ’i‘h(goh,wh) = (ggh,fh,ﬁh) and ’i‘h(d)h,zh) = (§h,?h,éh). Then, employing the gfh—ellipticity
of Ay, w,, we obtain the discrete analogue of (3.53) (with ¢ = j = 2), namely

- L 1 N
1(dn,tr) — (O, Th)| < ona {Lf |kl [on — Ynllog + Lo [on — Pnlloaa [Trloae
d

0,4;9} .

Similarly, by means of the discrete inf-sup condition of B (cf. (4.36)) and the boundedness of Ay, w,
with constant ||Alq (cf. inequality (4.41) in proof of Lemma 4.11), we obtain the discrete analogue of
(3.56) (with £ = j = 2), that is

B.alTin — &nl < Ly |kl on — Ynloo + | Ala | (Bn, th) — (Bn, Ta)|

- (4.46)
+  [0n

0,4:0 [Wn — 23,

~ (4.47)

+ Ly [on — Ynlloe [Taloan + 10k ]o40 [Wh — 21040 -
Thus, using the continuous injection of L*(Q) into L2(Q) (with boundedness constant |2[*/4), and
combining (4.46) and (4.47), we arrive at the desired estimate (4.45), thus ending the proof. O

The continuity of the discrete fixed-point operator T}, is given by the following lemma.

Lemma 4.15 Assume that the data satisfy the hypotheses of Lemma 4.12, that is (4.42) and (4.43).
Then, there exists a positive constant Cr g, depending only on Ly 4 (cf. Lemma 4.13) and L 4 (cf.
Lemma 4.14), such that

ITh(er) = Tu(w)lose < COra {lkl + | T2 (n, Ton(vn))
+ T oo (ITua@nlose + 1floa) Hlien = enlose
for all pp, Yn € Wy,

Proof. Tt proceeds analogously to the proof of Lemma 3.15. In fact, we first observe that, given
©n, Yy in Wp, the a priori bound given by (4.34) and the assumption (4.42) guarantee that both
(¢n, To.n(pn)) and (¢, Top(1n)) accomplish the hypotheses of Lemma 4.14, thus yielding Ty ()
and Tp(¢p) to be well-defined (cf. (4.32)). In this regard, we also notice that (4.42) and (4.43)
ensure that Tj(W},) < Wj. Finally, it is easily seen that (4.48) follows from the continuity estimates
provided by Lemmas 4.14 and 4.13. H

0,4;Q2
(4.48)

Similarly as observed for the operator Sj in Lemma 4.6 (cf. Section 4.2), we stress here that the
lack of appropriate, uniform in A, upper bounds for H'f‘gh (1/Jh,'i'2,h(1/1h))”0,4;9 and HTLh(q/Jh) 0,4:2,
stops us of concluding from (4.48) that T} is a contraction, and hence applying the Banach fixed-
point theorem becomes unfeasible. The above considerations suggest to employ, instead, the Brouwer
fixed-point theorem (cf. [18, cf. Theorem 9.9-2]). More precisely, thanks to this abstract result and
Lemmas 4.12, 4.15, 4.8, and 4.11, we are able to establish the following result.

Theorem 4.16 Assume that the data satisfy the hypotheses of Lemma 4.12, that is (4.42) and (4.43).
Then, the fized-point equation (4.33) has at least one solution ¢ € Wp,, which means, equivalently,
that the Galerkin scheme (4.25) has at least one solution (op,uy) € HY x HY and (¢n,th,my) €

H?; X H;‘l X HZ, with ¢p, € Wy. Moreover, there hold

[(6n b mi)l < g {7 19172 K1 + g

0,4/3;9} , and (4.49)

0,4;9} : (4.50)

l(onun)l < Cpg {lunlisr + 1o lon
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5 A priori error analysis

In this section we derive a priori error estimates for the discrete mixed—primal and fully—mixed schemes
given by (4.4) and (4.25), respectively, and then use the approximation properties of the finite element
subspaces involved to derive the corresponding rates of convergence. In what follows, given a subspace
Zy, of an arbitrary Banach space (Z, | - ||z), we set

dist(z,Zp) := zlg% Iz — 23z VzeZ.
h<4h

5.1 The mixed—primal method

Let (o, u,¢) € Ho(divys; Q) x L4(Q) x H{(Q), with ¢ € B, be the unique solution of (2.20), which is
guaranteed by the second part of Theorem 3.7, and let (o, up, ¢p) € HY x Hj' x Hi, with ¢y € By, a
solution of (4.4), whose existence was established by Theorem 4.7. We are interested in deriving the
Céa estimate for the global error

H(Ua u, ¢) - (U}H Uh, ¢h)“ :
To this end, and similarly as in the proof of Lemma 3.4, we let X := Ho(divy3;(2) x L4(Q) with

discrete counterpart X, := Hf x Hj, and introduce the bilinear form arising from the adding of the
two equations forming (2.19), that is, given ¢ € H} (1),
A@((pv Z),(T,V)) = a@(pa T) ~|—b(7’,Z) —I—b(p,V) —C(u,v) V(p,Z), (T,V) EX' (51)
It follows that the first two rows of (2.20) and (4.4) can be rewritten, respectively, as
A¢((0',u), ('r,v)) = F(1) + Gy(v) V(r,v)eH, (5.2)
and
A¢)h ((O'h, uh), (Th, Vh)) = F(Th) + G¢h (Vh) Y (Th, Vh) € Xy, . (53)

It is clear from (2.15) that for each ¢ € H}(R2), A, is bounded with respective constant, denoted |A/,
depending only on [la,| = #—11, bl =1, and |c| = [[is/s] [K w0 (cf. (2.16)), and hence independent
of ¢. Furthermore, we recall from (3.22) (cf. proof of Lemma 3.4) that A, satisfies the continuous
inf-sup condition

A@(<p7 Z)? (Tv V))

aa |[(p,z)| < sup V(p,z) € X, (5.4)
rvex (V)]
(7,v)#0
where ap := 1/C depends only on |a,| = i, le| = liasl IK w0, @ and 8. In turn, as stated

in the proof of Lemma 4.4, we also have the discrete analogue of (5.4), which means that for each
©p € Hﬁ there holds

A, ((pn>21), (Th,vh))

aaal(pp,zn)| < sup Y (pn.zn) € X, (5.5)
(V) EXn (7 h, Vi)l
(Thuvh);‘éo
where aaq 1= 1/Cq depends only on [a,, | = 7, [c] = lias] [K |0, ag, and Sa.

Having established the above, we now apply a slight variant of the first Strang’s Lemma (cf. [25,
Lemma 2.27]) to the context given by the continuous and discrete schemes (5.2) and (5.3), respectively,
thus obtaining the existence of a positive constant C'a, depending only on |A|| and aa 4, such that

l(o,u) = (op,up)|| < Ca {diSt((Uau)7Xh) + [Gs—Go, @y + | (A¢—A¢h)((07u)a')||x;1}, (5.6)
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where the consistency terms are given by

G, -G
|G — G, llray = sup (Ge=Ca)vi) g (5.7)

vers | valloae
v, +0

(a¢—‘a¢)(077h)
1(Ap — Ay,) ((0.0),)Ix, = (2 —ag,)(@. )], v = sup "
( ¢ ¢h)( )Xh ¢ 2 (Hh) T eHY HTthiV4/3§Q

ThE0
We stress here that the aforementioned variant arises when the first component of the discrete bilinear
form can be evaluated in the exact solution. In this case, and after subtracting and adding the latter
in the first component of both forms, the consistency term regarding them (cf. last expression in [25,
Lemma 2.27, eq. (2.21)]) becomes separated from the respective infimum, and hence can be handled
independently from it. This is precisely the situation with Ay and Ay, , which explains the way (5.6)
has been derived.

(5.8)

Now, according to the definition of G (cf. (2.14)), and proceding as for the boundedness of this
functional (cf. second inequality in (2.17)), we readily find that

(Go=Ga) () = | (6n=0) £ v < lial | flo 6= o

1.0 [Valo.40 Vv, e Hy,

which yields

lo.0 |6 — ¢nl

|Gy — G, llmyy < il lf 10 (5.9)

In turn, recalling the definition of a, (cf. (2.13)), we get

W) i@\ 4.4 o oo
(/A@u@@)a ‘Tho o VTh EHp, (5.10)

so that, using the lower bound and the Lipschitz-continuity of p (cf. (1.2), (1.3)), the Cauchy—
Schwarz and Hoélder inequalities, the regularity assumption (3.19), and the continuous injections given
by iz : H5(Q) — Lf(Q) and i. : H'(Q) — L™/*(Q), exactly as in the proof of [7, Lemma 3.7] (see, also,
the last part of the proof of Lemma 3.4), we find from (5.10) that

(@~ a0, 7) = |

Q

(ag —ag,)(0,71) < Ly izl licl lofen ¢ = énlig Thloe  ¥YrneHT, (5.11)

from which, along with the upper bound of || q provided by (3.19), we arrive at

(a6 = ,)(@ ) oy < Lusir” I lic] Cs(r) {lplipier + 1floa}lo = onlio.  (5.12)

Hg)'

In this way, replacing (5.9) and (5.12) back into (5.6), we deduce the existence of a positive constant
Ca, depending only on Ca, Ly, p1, |[ial], [iz], [ic|, and Cg(r), such that

I(or,w) = (oo un)| < Cadist((o,w), Xn) + Ca{lupljpecr + |Flog) 6= dnlio.  (5.13)

On the other hand, regarding the third rows of (2.20) and (4.4), which read

Au(d,9) = Gy(¥) Ve Hy(Q),

) (5.14)
fhm(¢h7¢%) = G%h(wh) vd%EEHﬁ7
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we resort to the closely related result given by [4, Lemma 5.3]. More precisely, proceeding almost
verbatim to its proof, we are able to show that there exist positive constants D4 (depending on
Cs, Cg, U2, 0, |li4], and 7), Da (depending on Cy, Cy(r), Ly, Ly, vy, |ic], [lizl, and [2]), and D4
(depending on Cg, ||i4], and r), such that

[0 = dnli < Da {1+ [uplior + |flos | dist(o,Hp) 515)
+ Dy {lkl + g !a,ﬂ} |6 = énlio + Dalu—unfosn. '
Then, assuming that there holds
Da {Ikl + Hgls,g} < % : (5.16)
we obtain from (5.15) that
| —énli,0 < 2Dy {1 + [upllijor + Hf||0,9} diSt(éf),Hﬁ) +2D4 [u—wfou0- (5.17)

Next, replacing (5.17) in (5.13), we deduce the existence of positive constants Ea (= Ca), Ea (de-
pending on Ca, D4, [uplijo,r, [uplij24er, and || fllo,e), and Ea (= 2Ca D4), such that

|(o,u) — (o, up)| < Eadist((o,u),Xy) + Ea dist(¢, HY) 1)
5.18

+ Ea {HUDH1/2+5,F + |If 0,9} lu—upfoa0-

We are now in position to establish the final a priori error estimate for the mixed-primal method.

Theorem 5.1 In addition to the hypotheses required by Theorems 3.7 and 4.7, assume that the data
are sufficiently small so that (5.16) and

~ 1
Ea{luplijsser + IFloaf < 5. (5.19)
are satisfied. Then, there exists a constant C' > 0, independent of h, but depending on data, such that

I(o,w, &) — (on, un, 6| < c{dist(a,Hg) + dist(u, H}Y) + dist(gb,Hi)}. (5.20)

Proof. It follows employing (5.19) in (5.18), combining the resulting estimate with (5.17), and finally
noticing that dist((o',u),Xh) = dist(a,Hg) + dist(u, Hz) O
5.2 The fully-mixed method

Let (o, u) € Ho(divys; Q) x L4() and (¢,t,m) € L*(Q) x L2(Q) x H(divy/3;Q), with ¢ € W, be the
unique solution of (2.32), which is guaranteed by Theorem 3.16, and let (o, u;) € Hf x H}! and
(én,th,mp,) € HY x HE x HY', with ¢, € Wy, be a solution of (4.25), whose existence was established
by Theorem 4.16. We are interested now in deriving the Céa estimate for the global error

||(0',11, ¢7tan) - (o-hvuhagbhathanh)H-

We begin with the estimate regarding [(o,u) — (o, up)|, whose derivation is, except some minor
differences, basically the same one provided in the previous section. The reason for it is that the first
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two rows of (2.20) (resp. (4.4)) and (2.32) (resp. (4.25)) differ only on the space where ¢ (resp. ¢p,)
is taken, which is H}(£2) (resp. a subspace of it) for the former, and L*(Q) (resp. a subspace of it) for
the latter. As a consequence, instead of (5.9) we obtain

|Gy — G, ey < [floald — dnloaa, (5.21)

whereas, using once again the lower bound and the Lipschitz-continuity of u (cf. (1.2), (1.3)), the
Cauchy—Schwarz and Hoélder inequalities, the regularity assumption (3.46), and the continuous injec-
tions given by iz : H(Q) — LY(Q) and is : L*() — L™%(Q), similarly as for the derivation of (5.11),
we find now from (5.10) that

(ag — ag,) (0, 74) < Lupy? i3] [is] o5 |6 — dnloae [Talo0 VT, eH7.

In this way, employing the upper bound of |o|sq provided by (3.46), we arrive at

O,Q} lp — ¢n

[(ay —ag,)(a,-)] () < Lo w12 il is| Cop(r) {||UD||1/2+5,F +|f o, (5:22)
h

and hence, replacing (5.21) and (5.22) back into (5.6), being this latter inequality still valid here, we

deduce the existence of a positive constant Ca, depending only on Ca, Ly, u1, |izll, [is], and Cx(r),

such that

00} 16— on

H(O’,u) — (o-h,uh)H < Ca diSt((O’,u),Xh) + C_'A {HuDHl/QJ’,(S,F + Hf ’074;9. (5.23)

Note that, while the present constant C'a does not necessarily coincide with the one from (5.13) (cf.
Section 4.2), we use the same notation just for simplicity.

On the other hand, regarding |(¢,t,m) — (¢n, tr,m})|, which has to do with the third and fourth
rows of (2.32) and (4.25), we simply apply the general Strang estimate provided in [26, Theorem 2.2,
egs. (2.26) and (2.27)]. Thus, denoting Y}, := H;f x Hf, we find that there exists a positive constant
D 4, depending only on a44 (cf. Lemma 4.10), g4 (cf. Lemma 4.9), and ||Allq (cf. (4.41)), which in
turn, depends on ¥s, @44, |2|, and g, such that

H(Cbatﬂ’l) - (gbhvthanh)u < D.A {dlSt((¢at)7Yh) +dISt(naH2)

(5.24)
+ 1Fe = Fallyy + 1(Asn — A ) (6,6, y, |
where the consistency terms are given by
(Fo — Fon) (nsn))
Fi— F r = ) d 9.25
o= Tl = o sl " (5:29)
(¥n,8n)+0
(‘Ad) u ‘A¢>h Uh) ((qbv t)’ (¢ha Sh))
Apu—As u ), )|~ = su d . . 5.26
H ( P, Dhs h) ((¢ ) ) ‘ Y, (wh’shiYh H (¢ha Sh) H ( )
(¥n,8h)+0

Hence, proceeding as we did in (3.51), and using that | - [o.o < |2"*] - [lo.4:0, We readily obtain

|Fs = Foulyy, < Ly |92V || |6 — ¢n

0,4 - (5.27)
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Similarly, following the same steps yielding (3.52), and then employing the continuous injections
is : LY(Q) - L"°(Q) and iz : H(Q) — L(Q), we find that

(Apu = Agy ) (6 8), (¥n,50))
< {Lo lisl izl 16 — o

0,40 [ltlso + |Alosa lu— Uhllo,m} Istflo,

from which, invoking the upper bound of |t|sq provided by (3.48), using that |¢
replacing the resulting estimate in (5.26), we arrive at

H (A¢7u - A¢h,uh) ((gb’ t)a ) | Y/,
< Lo lial i3] Cr) {s 1902 k] + lalsasna} 16— ol

lo,4:0 < 7, and

(5.28)

040t 7T lu — up| 0,4;82 -

Thus, replacing (5.27) and (5.28) in (5.24), we deduce the existence of positive constants D 4 (depend-
ing on Dy, Ly, Ly, vy, s, ||i5Hv Ci(r), and |Q[), and D4 (= D4r), such that

H<¢7t7”7) - (¢h7th7nh)" < D.A {dlSt((¢7t)7Yh) +d1st(777HZ)}

_ (5.29)
+ Daf{ Ikl + lglsamof 6~ on

o0 + Dalu—upfoso-

Then, assuming now that

= 1
Da{lkl + lglsyse} < 5 (5.30)

we get from (5.29)
[(#,t,m) — (n,th,mp)| < 2D4 {diSt((@t)aYh) +diSt(77,HZ)} + 2D u—wplosn. (5.31)

Next, bounding |¢ — ¢pll0,4;0 in (5.23) by the right hand side of (5.31), we find positive constants E 4
(: CA)a EA (depending on CAa DA? ”uDHI/Q—i-d,F’ and ”f”(),Q)a and E.A (: 2C’A -D.A), such that

l(o,u) — (op,wp)| < Eadist((o,u),X,) + Ea {dist((gb,t),Yh) +dist(n,H’,3)}

N (5.32)
+ Eaf{lunlypior + 1f

O,Q} Jlu—upfoa0-

The final a priori error estimate for the fully-mixed method is then stated as follows.

Theorem 5.2 In addition to the hypotheses required by Theorems 3.16 and 4.16, assume that the data
are sufficiently small so that (5.30) and

~ 1
EA{HUDHl/2+5,F + Hf“o,Q} <35 (5.33)
are satisfied. Then, there exists a constant C > 0, independent of h, but depending on data, such that

H(U7ua ¢7t777> - (a-hauh’d)hathanh)u < C{diSt(G7Hg) + diSt(ua HE)

(5.34)
T dist(@, 1Y) + dist(t, H) + dist(n, HJ) |

Proof. Similarly as for the proof of Theorem 5.1, it suffices to employ (5.33) in (5.32), combine the
resulting estimate with (5.31), and then decompose dist((a, u), Xh) and dist((é,t),Yh) in terms of
their respective components. O
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5.3 The rates of convergence

In this section we establish the rates of convergence of (4.4) and (4.25). We begin with the former by
recalling the approximation properties of the respective finite elements subspaces Hf, H}', and Hfb)
As usual, those properties are derived by suitable projection and interpolation operators, along with
interpolation estimates in Sobolev spaces (see e.g. [10, 11, 20, 27]). The ones for (4.4) read as follows:

(APY) there exists C' > 0, independent of h, such that for each I € (0,k + 1], and for each 7 €
HY(Q) N Ho(divys; Q), with div(r) € WH#3(Q), there holds

dist(r,HY) == _inf |7 — Talagyn < Ch {7l + Jdiv(r)lase)
ThGHZ

(AP}) there exists C > 0, independent of h, such that for each [ € [0, k + 1], and for each v e W4((Q),
there holds
040 < Chl|v

dist(v, Hj)) := v,gllflu v = val 1,40 5
h

and

(AP%) there exists C' > 0, independent of h, such that for each I € [0, k + 1], and for each ) € H*1(€),
there holds
10 < Ch Ylis1a-

dist(w,HZ) = infd) v — vl

¢}LEH}L

Then, the rates of convergence of the Galerkin scheme (4.4) are given by the following theorem.

Theorem 5.3 In addition to the hypotheses of Theorems 3.7, 4.7, and 5.1, assume that there exists
L€ (0,k + 1] such that o € H/(Q) n Ho(divy3; ), div(e) e WH3(Q), ue WH(Q), and ¢ € H1(Q).

Then, there exists a positive constant C, independent of h, such that

0,40 T H¢ - ¢h

< CH {Ha“l,Q + |div(e) Lo + H¢Hl+1,ﬂ} .

lo = ohldivy s + v — 1,0

lLa/30 + [

Proof. 1t follows from Theorem 5.1 along with the above properties (APY), (AP}), and (AP%). ]

We now add the a approximation properties of the remaining finite element subspaces, besides HY
and H}!, employed in (4.25), namely Hi, H!, and H}:

(APZ) there exists C > 0, independent of h, such that for each [ € [0, k + 1], and for each 1) € Wh4(€),
there holds
dist(y, HY)) == inf [ — Ynloae < Oh' 4

’LﬁhEHh

’l,4;Q )

(AP}) there exists C > 0, independent of &, such that for each I € [0,k + 1], and for each s € H'(Q),
there holds

dist(s,H}) := inf ||s — sploq < Ch'|s|
ShEHZ

1O

and
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(APZ) there exists C' > 0, independent of h, such that for each [ € (0,k + 1], and for each x €
H'(Q) n H(divys; ), with div(x) € W'4/3(Q), there holds

dist (x, Hy) := inf | Ix = Xnldaivyz0 < CH {HX Lot ||diV(X)|l,4/3;Q}-

Xn&H,
The rates of convergence of the Galerkin scheme (4.25) are then stated in the following theorem.

Theorem 5.4 In addition to the hypotheses of Theorems 3.16, 4.16, and 5.2, assume that there exists
L€ (0,k + 1] such that o € H/(Q) n Ho(divys;Q), div(e) € WH3(Q), u e WH(Q), ¢ e WHA(Q),
te H/(Q), ne H(Q) n H(divy/3;§2), and div(n) € WhY3(Q). Then, there exists a positive constant
C, independent of h, such that

H(0-7u7 ¢7tan> - (O-h7uh7¢h7thvrlh)u
< Chl{ua

Lo + [div(e)]

vase + [ulae + 18luea + [the + Inle + [divin)lyso -
Proof. 1t follows from Theorem 5.2 along with (AP7), (AP}), and the three foregoing approximation

properties. O

6 Numerical tests

In this section we consider four examples to illustrate the performance of our mixed finite element
methods on sets of quasi-uniform triangulations of their domains. As previously indicated, we use the
finite element subspaces given by (4.1), (4.2), and (4.3), for the mixed—primal scheme (4.4), whereas
those defined by (4.20), (4.21), (4.22), (4.23), and (4.24), are considered for the fully—mixed one (4.25).
In what follows, we refer to the corresponding sets of finite element subpaces generated by £ = 0 and
k = 1, simply as RTy — Py — Py for the mixed—primal case, and RT, — P — P, — P, — RT}, for
the fully—mixed one. The set of computational tests collected in this section have been implemented
using the open source finite element library FEniCS [2]. The nonlinear algebraic systems arising
from the discrete schemes are solved via Newton’s method with a residual tolerance of 107, and the
linear systems of the respective iterations are solved with the UMFPACK solver [24]. The zero-mean
condition for the trace of the pseudostress is enforced using a real Lagrange multiplier.

We now introduce some additional notation. The individual errors are denoted by:

o0, e() = |p — pa

oo, em) = [n — myldiv, 50, and

e(0) = |o = onlaivy 0, e(w) = [u—uy,

e(t) := [t — tp

0,92 5

@) l¢ — onlio  for the mixed-primal approach,
e =
l¢ — onlloa;0 for the fully-mixed approach.

We stress that py, corresponds to the post-processed pressure p, suggested by (1.5), that is

1
= ——t
bhn n I'(O'h) )

whose error e(p) is certainly of the same order of ||o — o4/0.q, and hence is controlled by e(o). In
addition, while we do not include it in the numerical experiments to be reported in this section, we
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DoF A efc) r(o) e(w) rm e@) r(¢) el xlp |it
58 0.707 | 9.42e+01 -  7.03e-01 -  1.33e+00 -  8.40e-01 -
202 0.354 | 6.82e+01 047 4.26e-01 0.72  7.99e-01 0.73 8.74e-01 -0.06
754 0.177 | 3.7le+01  0.88 2.28¢-01 0.90 4.34e-01 0.88 5.40e-01 0.70
2914 0.088 | 1.78e+01  1.06 1.16e-01 0.97 2.24e-01 0.96 1.94e-01 1.48
11458 0.044 | 8.34e+00 1.09 5.84e-02 0.99 1.13¢-01 0.99 5.13e-02 1.92
45442 0.022 | 3.96e+00 1.07 2.92¢-02 1.00 5.65¢-02 1.00 1.27e-02 2.02
180994 0.011 | 1.91e400  1.05 1.46e-02 1.00 2.82¢-02 1.00 3.21e-03 1.98

N N N

Table 6.1: Example 1, number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the mixed—primal RTg — Py — P .

highlight that the first equation in (1.6) (or (1.7)) suggests a post-processed approximation as well for

the velocity gradient, namely
L

w(on) 7

Next, for each » € {0, u, ¢, p, t,n}, the convergence rates r(x) are computed as

r(x) = log(e(*)/§(*)>
log(h/h)

(Vu), =

where e and € denote errors produced on two consecutive meshes associated with mesh sizes A and ?L,
respectively. In turn, we refer to DoF as the number of degrees of freedom and it as the number of
Newton iterations.

6.1 Example 1: 2D smooth exact solution for the mixed—primal scheme

In the first computational experiment, we aim to demonstrate the precision of the mixed—primal
scheme in two dimensions. To achieve this, we use a manufactured exact solution defined within the
unit square Q := (0,1)%. We let

p() = (1-05¢)7%, 9(¢) = exp(—¢?), fox(¢) = 0.56(1—0.5¢)*,
K = 0011, o=10, and k = (0,—1)",

and adjust the source terms f and g in (1.6) to ensure that o, u, and ¢ are given by the smooth
functions

7 T ] AL ) = () i)

and  ¢(z1,22) = 15 — 15 exp(—z1 (21 — 1) 22 (22 — 1)).

Note that ¢ vanishes in I' and up is imposed according to the exact solution. Tables 6.1-6.2 show
the convergence history for a sequence of quasi-uniform mesh refinements, including the number of
Newton iterations for the approximations. The experiments confirm the theoretical convergences rates
O(h¥*1) for k = 0,1, provided by Theorem 5.3. The Newton method converges in four iterations for
all cases, the convergence being therefore independent of the mesh size.
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Dok h ef) r(o) em) rm el¢) r(¢) elp) x(p|it
170 0.707 | 5.23e+-01 - 3.09e-01 - 3.65e-01 - 1.28e-+00 -
626 0.354 | 1.87e+01 1.48 1.41e-01 1.14 1.10e-01 1.74 3.51e-01 1.87

2402 0.177 | 4.94e4+00 1.92 3.56e-02 1.98 2.96e-02 1.89 1.05e-01 1.74

9410 0.088 | 1.26e4+00 1.97 9.06e-03 1.97 7.66e-03 1.95 2.87e-02 1.88

37250 0.044 | 3.16e-01  2.00 2.27e-03 1.99 1.95e-03 1.98 7.36e-03 1.96
148226 0.022 | 7.88e-02  2.00 5.69e-04 2.00 4.91e-04 1.99 1.85e-03 1.99

=R e e e

Table 6.2: Example 1, number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the mixed—primal RT; — P; — Ps .

6.2 Example 2: 2D smooth exact solution for the fully-mixed scheme

In this second example, we demonstrate the accuracy of the fully-mixed scheme in two dimensions by
examining a manufactured exact solution defined on Q := (0,1)2. We set u, 9, fix, K, 0, and k as in
Example 1. Then, the source terms f and g in (1.7) are adjusted in such a manner that the resulting
smooth functions o, u, ¢, t, and 1 are given by

—cos(2mzy) sin(2mxa)

o = ,u(d)) Vu — (x% _ ZL’%)H, u(xl’x2) _ ( Sin(27‘l’$1) COS(27‘rx2) > ’

d(r1,22) = 15 — 15 exp(—x1 (1 — 1) 22 (2 — 1)),

t =V¢, and n =19(@)t — du — fix(¢) k.

It should be noted that ¢ vanishes at I', and up is imposed in accordance with the exact solution.
Tables 6.3-6.4 display the convergence history for a sequence of quasi-uniform mesh refinements,
including the number of Newton iterations required for each approximation. The experimental results
confirm the theoretical convergence rates of O(h**1) with & = 0,1, as provided by Theorem 5.4.
Notably, the Newton method converges in four iterations for all cases, indicating that the convergence
was independent of the mesh size. In Figure 6.1, we present the solution obtained with the fully—
mixed RT; — P; — P; — P; — RT; approximation, utilizing a mesh size h = 0.022 and 32, 768
triangle elements (equivalent to 312,065 DoF'). Furthermore, we confirm that the Galerkin scheme
associated with the fully-mixed formulation provides conservation of momentum in the approximate
sense established by (4.26) and (4.27). This fact is illustrated in Table 6.5, which displays the computed
I“-norm for both P} (¢p, f + div(ey) — K1 uy) and PJ (g + div(ny,) — 0 ¢n).

6.3 Example 3: Three dimensional smooth exact solution

In this third example, we examine the cube domain Q = (0,1)3, with the same functions u, 9, and
fok from Example 1. In addition, we define

K = 0.011, o=10, and k = (0,—1,-1),
and adjust the source terms on the right-hand side to obtain exact solutions given by

sin(mzxy) cos(mxg) cos(mxs)

o = u(@)Vu — pl, u(zy,ze,23) = | —2 cos(mwzy) sin(mxy) cos(mxs) |,
cos(mxy) cos(mxe) sin(mxs)
¢({L‘1,{L‘2,$3) = — Sin(fL‘l + x9 + 1‘3), t =Vo,

4 4 4
and  p(z1,22,73) = @] — Ty — 3.
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DoF h e(o) r (o) e(u) r(u) e(9) r(¢) | it
89 0.707 | 1.02e+402 - 9.71e-01 - 2.74e-01 - 4
329 0.354 | 8.96e+01 0.19 4.67e-01 1.06 1.66e-01 0.73 | 4
1265 0.177 | 5.63e+01  0.67 2.46e-01 0.92 8.66e-02 0.94 | 4
4961 0.088 | 3.30e4+01 0.77 1.22e-01 1.02 4.38¢-02 0.98 | 4
4

4

4

19649 0.044 | 1.91e+01  0.79  5.95e-02 1.03 2.20e-02 1.00
78209 0.022 | 1.10e4+01 0.80 2.94e-02 1.02 1.10e-02 1.00
312065 0.011 | 6.33e4+00 0.80 1.46e-02 1.01 5.50e-03 1.00
Dok h e(t) r(t) e@) =r(m) elp)  x(p) |it
89 0.707 | 1.23e+400 - 3.30e+00 - 5.34e-01 - 4

329 0.354 | 7.38e-01 0.74 2.10e+00 0.65 4.83e+00 -3.18 | 4
1265 0.177 | 4.10e-01 0.85 1.25e+00 0.75 2.79e+00 0.79 | 4
4961 0.088 | 2.10e-01 0.97 6.41e-01 0.96 1.09e+00 1.36 | 4
4

4

4

19649 0.044 | 1.06e-01 0.99 3.23e-01 0.99 3.65e-01  1.58
78209 0.022 | 5.29e-02 1.00 1.62e-01 1.00 1.25e-01 1.55
312065 0.011 | 2.64e-02 1.00 8.09e-02 1.00 4.83e-02 1.37

Table 6.3: Example 2, number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed RTy — Py — Py — Py — RTy .

DoF h e(o) r (o) e(u) r (u) e(o) r(¢) | it
265 0.707 | 5.70e+01 - 3.16e-01 - 1.03e-01 - 4
1009 0.354 | 2.32e+01 1.30 1.41e-01 1.17 2.66e-02 1.96 | 4
3937 0.177 | 6.77e+00 1.78 3.57e-02 1.98 6.81e-03 1.97 | 4
15553 0.088 | 1.96e+00 1.79 9.07e-03 1.98 1.71e-03 1.99 | 4
4

4

61825 0.044 | 5.60e-01 1.81 2.28e-03 1.99 4.29¢-04 2.00
246529 0.022 | 1.59e-01 1.82 5.69¢-04 2.00 1.07e-04 2.00
DoF _h | e(t) t(t) e(m xm) () ()it

265 0.707 | 4.74e-01 - 1.76e+00 - 2.11e+00 - 4

1009 0.354 | 1.51e-01 1.65 7.75e-01 1.18 6.36e-01 1.73 | 4

3937 0.177 | 4.19e-02 1.85 2.29e-01 1.76 1.13¢e-01 2.49 | 4
4

4

4

15553 0.088 | 1.10e-02 1.93 5.84e-02 1.97 2.44e-02 2.21
61825 0.044 | 2.79e-03 1.98 1.47e-02 1.99 5.81le-03 2.07
246529 0.022 | 7.01e-04 1.99 3.68e-03 1.99 1.43e-03 2.02

Table 6.4: Example 2, number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed RTy — P; — P; — P; — RT; method.

h 0.354  0.177  0.088  0.044 0.022  0.011
H’P% (¢h f +div(op) — K uh) 10 | 5.7e-14  6.3e-14 1.4e-13 2.4e-10 2.1e-10 1.1e-09
PP (g + div(ny,) — 0 n) 1= 4.6e-15 7.2e-15 1.4e-13 6.9e-11 3.le-11 5.7e-11

Table 6.5: Example 2, conservation of momentum for the fully-mixed RTy — Py — Py — Py — RTy
approximation.

The numerical approximation for the fully-mixed RTy — Py — Pg — P9 — RT( method is illustrated
in Figure 6.2, employing a mesh size of h = 0.108 and 12,288 tetrahedral elements (totaling 374,785
DoF). In turn, Table 6.6 presents the convergence behavior for a series of quasi-uniform mesh refine-
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N1,h
3.7 0.0 3.7 -3, ) .
L | L |

Figure 6.1: Example 2, RT; — P; — P; — P; — RT; approximation of pressure field, magnitude of
the velocity, and concentration field (first row); magnitude of the concentration gradient and Cauchy
stress components (second row); Cauchy stress component and total flux components (third row).

ments using k& = 0, which confirms that in this 3D example the fully—mixed finite element method
also attains the optimal convergence rate of O(h) guaranteed by Theorem 5.4.

6.4 Example 4: Settling in a vessel with downward facing inclined walls

We close this section with an application of the proposed numerical schemes in the simulation of
sedimentation-compression of a suspension of particles within a porous medium with relatively high
but heterogeneous permeability. The problem configuration is adapted from [6] and [31]. The do-
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DoF h e(o) r (o) e(u) r(u) e(9) r(¢) | it

817 0.866 | 1.43e+01 - 9.66e-01 - 1.57e-01 - 4
6145 0.433 | 8.53e+00 0.75 3.02e-01 0.91 8.52e-02 0.88 | 4
47617 0.217 | 4.48e+00 0.93 1.55e-01 0.96 4.34e-02 097 | 4

374785 0.108 | 2.27e+00 0.98 7.80e-02 0.99 2.18e-02 0.99 | 4
DoF _h | et) =t(t) em) xm) e t(p) it
817 0.866 | 4.27e-01 - 1.25e+01 - 6.77e-01 -
6145 0.433 | 2.19e-01 0.97 7.69e+00 0.70 4.12e-01 0.72
47617 0.217 | 1.10e-01  0.99 4.05e+00 0.92 2.33e-01 0.82
374785 0.108 | 5.51e-02 1.00 2.05e+00 0.98 1.21e-01 0.95

NN SO

Table 6.6: Example 3, number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed RTy — Py — Py — Pg — RT( scheme.

main consists of an isosceles trapezoid of height 3 [m], base of 2.82 [m] and basal angles of 80°. An
unstructured triangular mesh with 27728 elements is used to discretize the domain, resulting in a
formulation with 264059 degrees of freedom (in this subsection the numerical tests are run with the
fully—mixed formulation and taking the lowest-order polynomial degree). This test considers two main
modifications with respect to (1.6) and (1.7): 1) we include the time derivative of the volume fraction
¢ in the transport equation (second equation in (1.6)), which is discretized using the backward Euler
scheme with fixed time step of At = 0.025 [s] and the system is evolved until ¢t = t¢,q = 10s]; and 2)
we use flux-based boundary conditions for the sedimentation equation, corresponding to the case of
batch settling. On the whole boundary (inclined walls plus the top and bottom segments) we impose
(naturally in the formulation) no-slip boundary conditions u = 0, while we set a no-flux condition
using the total flux n-v = 0 (essentially imposed). In this way, the analysis developed in the previous
sections can be easily extended, up to minor modifications, to the present case. The initial volume
fraction is prescribed as high near the top of the domain (0.75) and a uniform random perturbation
of amplitude 0.05 around the value 0.15. The volume fraction-dependent functions (fluid effective
viscosity, Kynch batch flux density, and sediment compressibility) and dimensional parameters (taken
from [6, 31]) assume the following specifications
g0 fik (¢)

B ¢ —5/2 B ¢ 2 B
1(¢) = ko <1 - quax) , fx(9) = Uoo¢<1 - ¢max> , U(p) = WA g + Ugp,

k= (Oa _1)t7 = (Oa _g)t7 ap =95, §g=938 [m/SZ]a po=2- 10 [Pa ’ S])
Up = 2.2-1072[m/s], dmax = 0.95, ¢ = 0.07, Ap=1562[Kg/m?], o¢ = 5.5 x 1072 [Pal.

The permeability is considered isotropic but heterogeneous: K = K(x)I, where

B 10Kmin
Kmin ¢ gmax max{ K (x),0}

25
K(x) 2], K6 = Y exp (= 1w — i) + (4 — ),

and where (¢; 2, ¢i,y) are 25 randomly located points in €2, and r = 0.0015 [m].

The top panels of Figure 6.3 present snapshots of the numerically computed volume fraction at
different times (and we recall that this is a P field). These plots show the expected behavior in batch
settling of particles (higher concentration zones start to accumulate at the bottom of the enclosure).
One can clearly notice that the high contrast in permeability induces that part of the solid particles
stick for a longer time to the zones of low permeability before settling to the bottom of the vessel. The
second row shows fewer snapshots of the total flux (we plot line integral convolutions that indicate the
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Figure 6.2: Example 3, RTy — Py — Pg — Py — RT( approximation of pressure field, magnitude of
the velocity, and concentration field (first row); magnitude of the concentration gradient, and Cauchy
stress components (second row); Cauchy stress component and total flux components (third row).

directions and magnitude of the vector field). In the velocity plots (third row of Figure 6.3) we can
observe how the fluid prefers to flow in the zones of higher permeability, and we also see a boundary
layer of higher magnitude forming on the donward facing walls as a result of recirculation effects.
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Figure 6.3: Example 4, snapshots of volume fraction profiles and pseudo-stress magnitude (in log-scale)
at times ¢ = 0.25,1,2.5,5,10[s] (top and bottom rows, respectively). The centre rows show magnitude
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44



2]

[15]

[16]

(17]

M.S ALN&S, J. BLECHTA, J. HAKE, A. JOHANSSON, B. KEHLET, A. LoGaG, C. RICHARDSON, J. RING,
M.E. RoceNEs AND G.N. WELLS, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015), no.
100, 9-23.

M. ALVAREZ, G.N. GaTicA AND R. RUIZ-BAIER, An augmented mized—primal finite element method for
a coupled flow—transport problem. ESAIM Math. Model. Numer. Anal. 49 (2015), no. 5, 1399-1427.

M. ALVAREZ, G.N. GaTicAa AND R. Ruiz-BAIER, A mized-primal finite element approximation of a
sedimentation—consolidation system. Math. Models Methods Appl. Sci. 26 (2016), no. 5, 867-900.

M. ALVAREZ, G.N. GaTica AND R. RuU1Z-BAIER, A mized—primal finite element method for the coupling
of Brinkman-Darcy flow and nonlinear transport. IMA J. Numer. Anal. 41 (2021), no. 1, 381-411.

M. ALVAREZ, G.N. GaTicA AND R. RU1Z-BAIER, A posteriori error estimation for an augmented mized-
primal method applied to sedimentation-consolidation systems. J. Comput. Phys. 367 (2018), 332-346.

G. BENAVIDES, S. CAucAO, G.N. GATICA AND A. HOPPER, A Banach spaces-based analysis of a new
mized-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech.
Engrg. 371 (2020), 113285.

G. BENAVIDES, S. CAUuCcAO, G.N. GATICA AND A. HOPPER, A new non-augmented and momentum-

conserving fully-mized finite element method for a coupled flow-transport problem. Calcolo 59 (2022), no.
1, Paper No. 6.

C. BERNARDI, C. CANUTO AND Y. MADAY, Generalized inf-sup conditions for Chebyshev spectral ap-
prozimation of the Stokes problem. STAM J. Numer. Anal. 25 (1988), no. 6, 1237-1271.

D. BoFrri, F. BREZz1 AND M. FORTIN, Mixed Finite Element Methods and Applications. Springer-Verlag,
2013.

F. BrEZzI AND M. FORTIN, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.

R. BURGER, C. Liu AND W.L. WENDLAND, FEuzistence and stability for mathematical models of

sedimentation—consolidation processes in several space dimensions. J. Math. Anal. Appl. 264 (2001), no.
2, 288-310.

J. CamaNoO, C. GARciA AND R. OYARZUA, Analysis of a momentum conservative mized-FEM for the
stationary Navier—Stokes problem. Numer. Methods Partial Differential Equations 37 (2021), no. 5, 2895—
2923.

J. CAREAGA AND G.N. GATIiCcA, Coupled mized finite element and finite volume methods for a solid
velocity-based model of multidimensional sedimentation. ESAIM Math. Model. Numer. Anal. 57 (2023),
no. 4, 2529-2556.

J. CAREAGA, G.N. GATtIicA, C. INzZUNZA AND R. RUIZ-BAIER, New Banach spaces-based mized finite
element methods for the coupled poroelasticity and heat equations. IMA J. Numer. Anal., to appear.

S. Caucao, G.N. GaTicA AND L.F. GATICA, A Banach spaces-based mized finite element method for
the stationary convective Brinkman-Forchheimer problem. Calcolo 60 (2023), no. 4, Paper No. 51.

S. Caucao, R. OYARzUA, S. VILLA-FUENTES AND 1. YoTov, A three-field Banach spaces-based mized
formulation for the unsteady Brinkman-Forchheimer equations. Comput. Methods Appl. Mech. Engrg. 394
(2022), Paper No. 114895.

P. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, 1978.

P. CIARLET, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2013.

45



[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

E. COLMENARES, G.N. GATICA AND S. MORAGA, A Banach spaces-based analysis of a new fully-mized
finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54 (2020), no. 5,
1525-1568.

E. COLMENARES, G.N. GATICA AND R. OYARZUA, Analysis of an augmented mized-primal formulation
for the stationary Boussinesq problem. Numer. Methods Partial Differential Equations 32 (2016), no. 2,
445-478.

E. CoLMENARES, G.N. GATICA AND J. ROJAS, A Banach spaces-based mized-primal finite element
method for the coupling of Brinkman flow and nonlinear transport. Calcolo 59 (2022), no. 4, Paper No. 51.

C.I. CORREA AND G.N. GATICA, On the continuous and discrete well-posedness of perturbed saddle-point
formulations in Banach spaces. Comput. Math. Appl. 117 (2022), 14-23.

T.A. Davis, Algorithm 832: UMFPACK Vj4.3-an unsymmetric-pattern multifrontal method. ACM Trans.
Math. Software 30 (2004), no. 2, 196-199.

A. ERN AND J.-L GUERMOND, Theory and Practice of Finite Elements. Applied Mathematical Sciences,
159. Springer-Verlag, New York, 2004.

G.N. GATICA, A note on the generalized Babuska—Brezzi theory: revisiting the proof of the associated
Strang error estimates. Appl. Math. Lett. 157 (2024), Paper No. 109197.

G.N. GaTIica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications.
SpringerBriefs Math. Springer, Cham, 2014.

G.N. Gatica AND C. INZUNZA, An augmented fully-mized finite element method for a coupled flow-
transport problem. Calcolo 57 (2020), no. 1, Paper No. 8.

G.N. GATIiCcA, N. NUNEZ AND R. RU1Z-BAIER, New non-augmented mized finite element methods for the
Navier-Stokes-Brinkman equations using Banach spaces. J. Numer. Math. 31 (2023), no. 4, 343-373.

A. QUARTERONI AND A. VALLI, Numerical Approximation of Partial Differential Equations. Springer Ser.
Comput. Math., 23, Springer-Verlag, Berlin, 1994.

R. Ruiz-BAIER AND H. TORRES, Numerical solution of a multidimensional sedimentation problem using
finite volume-element methods. Appl. Numer. Math. 95 (2015), 280-291.

46



Centro de Investigacidn en Ingenieria Matematica (CI'MA)

PRE-PUBLICACIONES 2024

2024-05 IsAAC BERMUDEZ, JAIME MANRIQUEZ, MANUEL SOLANO: A hybridizable discon-
tinuous Galerkin method for Stokes/Darcy coupling in dissimilar meshes

2024-06 THOMAS FUHRER, DIEGO PAREDES: Robust hybrid finite element methods for reaction-
dominated diffusion problems

2024-07 RAIMUND BURGER, ENRIQUE D. FERNANDEZ NIETO, JORGE MOYA: A multilayer
shallow water model for tsunamis and coastal forest interaction

2024-08 FERNANDO BETANCOURT, RAIMUND BURGER, STEFAN DIEHL, MARfA CARMEN
MARTI, YOLANDA VASQUEZ: A degenerating convection-diffusion model of a flotation
column: theory, numerics and applications

2024-09 FERNANDO BETANCOURT, RAIMUND BURGER, JULIO CAREAGA, LUCAS ROMERO:
Coupled finite volume methods for settling in inclined vessels with natural convection

2024-10 KAIS AMMARI, VILMOS KOMORNIK, MAURICIO SEPULVEDA, OCTAVIO VERA: Sta-
bility of the Rao-Nakra sandwich beam with a dissipation of fractional derivative type:
theoretical and numerical study

2024-11 LADY ANGELO, JESSIKA CAMANO, SERGIO CAUCAO: A skew-symmetric-based mized
FEM for stationary MHD ows in highly porous media

2024-12 GABRIEL N. GATICA: A note on the generalized Babuska-Brezzi theory: revisiting the
proof of the associated Strang error estimates

2024-13 CARLOS D. AcosTA, RAIMUND BURGER, JULIO CAREAGA, STEFAN DIEHL, ROMEL
PINEDA, DANIEL TAMARA: A semi-implicit method for a degenerating convection-
diffusion-reaction problem modeling secondary settling tanks

2024-14 GABRIEL N. GATICA, CRISTIAN INZUNZA, RICARDO RUIZ-BAIER: Primal-mized
finite element methods for the coupled Biot and Poisson-Nernst-Planck equations

2024-15 IsaAAc BERMUDEZ, VIiCTOR BURGOS, JESSIKA CAMANO, FERNANDO GAJARDO,
RICARDO OYARZUA, MANUEL SOLANO: Mized finite element methods for coupled
fluid flow problems arising from reverse osmosis modeling

2024-16 MARIO ALVAREZ, GONZALO A. BENAVIDES, GABRIEL N. GATICA, ESTEBAN HEN-
RIQUEZ, RICARDO RuUIZ-BAIER: Banach spaces-based mixed finite element methods
for a steady sedimentation-consolidation system

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: DIRECTOR, CENTRO DE
INVESTIGACION EN INGENIERfA MATEMATICA, UNIVERSIDAD DE CONCEPCION, CASILLA
160-C, CONCEPCION, CHILE, TEL.: 41-2661324, o bien, visitar la pagina web del centro:
http://www.ci2ma.udec.cl



CENTRO DE INVESTIGACION EN
INGENIERfA MATEMATICA (CI2MA)
Universidad de Concepcién

Casilla 160-C, Concepcién, Chile
Tel.: 56-41-2661324 /2661554 /2661316
http://www.ci2ma.udec.cl




	Introduction
	Preliminaries
	System rewrite

	The weak formulations
	The mixed–primal approach
	The fully–mixed approach

	The continuous analysis
	The mixed–primal approach
	The fully–mixed approach

	The Galerkin schemes
	Preliminaries
	The mixed–primal method
	The fully–mixed method

	A priori error analysis
	The mixed–primal method
	The fully–mixed method
	The rates of convergence

	Numerical tests
	Example 1: 2D smooth exact solution for the mixed–primal scheme
	Example 2: 2D smooth exact solution for the fully–mixed scheme
	Example 3: Three dimensional smooth exact solution
	Example 4: Settling in a vessel with downward facing inclined walls


