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Abstract

We introduce and analyze conservative primal-mixed finite element methods for numerically solving the
coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable
porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of
the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–
Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the
ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation is posed
in suitable Banach spaces, and it exhibits the structure of a perturbed block-diagonal operator consisting
in turn of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-
point problem for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–
Planck equations. The well-posedness analysis hinges on the Banach fixed-point theorem along with small
data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract
results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is
addressed similarly, employing the Brouwer and Banach theorems to yield existence and uniqueness of
discrete solution. A priori error estimates are derived, and rates of convergence for specific finite element
subspaces satisfying the required discrete inf-sup conditions are established. Finally, several numerical
examples validating the theoretical error bounds, and illustrating the performance of the proposed family
of finite element methods, are presented.

1 Introduction

Scope. We study a mathematical model for the transport of electrolytes through an electrically charged
fully saturated and deformable porous medium. The electro-hydrostatics are described by the Nernst–Planck
relations (mass balance for the counterions) and a mixed Poisson problem (the Gauss law) while the fluid
movement of the electrolyte solution within the pores of the poroelastic structure are modeled with the
Biot equations – one of the most common models for coupled fluid flow and mechanical deformations of
porous structures – written in mixed form. Homogenization of models of ion transport in poroelastic media
can be found in [38, 44] (see also [1] for theory and application in nuclear waste disposal in argillaceous
rocks). Other applications of macroscopic models where fixed charges yield Debye layers include polymer
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gels, mechanical actuators for soft robotics, and charged proteoglycans in the solid scaffold of hydrated
biological tissues such as articular cartilage [35, 36, 46, 47, 49]. As far as we know, no mixed finite element
methods (that is, formulations that include other variables of interest in addition to solid displacement, fluid
pressure, electrostatic potential, and ionic concentrations) have been developed – including formulation and
theoretical analysis – for this particular problem.

Regarding the two sub-problems separately (Biot and Poisson–Nernst–Planck equations), let us start
mentioning that mixed methods for poromechanical equations (and solving not just for the displacement-
pressure pair) are abundant in the recent literature (see, for example, the very different formulations in
[2, 5, 9, 11, 13, 39, 31, 34, 40, 48, 50] and the references therein). We focus on formulations that main-
tain robustness with respect to the Lamé parameters of the solid phase and that are mass conservative,
which means that they satisfy locally a flux balance. From those works we refer to [33, 10], where, be-
sides displacement and pressure, one uses the total pressure and the relative fluid velocity (Darcy flux) as
unknowns.

We also stress that the coupling of Biot equations in mixed form to other physical effects (interface
contact, thermal properties, second- and fourth-order transport, etc.) can be substantially more difficult to
analyze. Again, focusing on mixed methods, we refer, for example, to [12, 30, 42, 41, 45]. Note that, in some
cases, augmented methods allow the recovery of a Hilbertian framework. Nevertheless, such an approach is
not feasible for our problem, since it is not possible to readily construct the required Hilbertian norm for
the Darcy filtration velocity, which is implied in the advective terms of the Nernst–Planck equations.

The nonlinear coupling structure of the problem we tackle here has similar components as in the aforemen-
tioned works, also including the Biot-heat equations recently analyzed in [15]. Such frameworks are based
on a Banach spaces approach, which we follow herein. In this regard, we refer as well to similar multiphysics
coupled problems addressed with generalizations of the fixed-point and saddle-point abstract framework
to Banach spaces [14, 16, 18]. On the other hand, the analysis of fully mixed methods for the Poisson–
Nernst–Planck equations coupled with Stokes and Navier–Stokes equations has been recently advanced in
[24, 23], respectively, and also using a Banach spaces framework. In contrast with these formulations for
the hydro-electro-chemical systems, in our model, the linear momentum balance of the poroelasticity prob-
lem involves the gradients of the ionic concentrations, which suggests a different type of mixed formulation
for these equations, using in particular the gradient of the ionic concentrations as additional variable, and
yielding again a first-order structure of the coupled equations, but now exhibiting a twofold saddle point
form. In general, the type of methods we propose here inherits appealing features such as more flexibility
in data assumptions and solution regularity, obtaining all variables of interest without postprocessing, and
preserving balance equations exactly.

Plan of the paper. We have organized the contents of this paper as follows. Essential notations and
fundamental definitions are gathered towards the end of this introductory section. In Section 2, we present
the Biot–Poisson–Nernst–Planck equations. In particular, the auxiliary unknowns are introduced here. In
Section 3, we establish the primal-mixed variational formulation of the problem by breaking down the anal-
ysis according to the three set of equations comprising the coupled model. Appropriate integration by parts
formulae, coupled with the Cauchy–Schwarz and Hölder inequalities, play a vital role in determining the
appropriate Lebesgue and related spaces to which the unknowns and corresponding test functions must
belong. In Section 4, we employ a fixed-point strategy to examine the solvability of the continuous formu-
lation. The Babuška–Brezzi and related theories, such as the one for perturbed saddle-point problems, all
in Banach spaces, are applied to investigate the corresponding uncoupled problems, and subsequently, the
classical Banach theorem is invoked to establish the existence of a unique solution. The Galerkin scheme is
introduced in Section 5 and a fixed-point approach analogous to that of Section 4 is employed to investigate
its well-posedness. Under appropriate stability conditions on the finite element subspaces used, the existence
and uniqueness of the solution are proven by applying the Brouwer and Banach theorems, along with the
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discrete versions of the theories employed in the continuous analysis. The error analysis is also conducted
there and a corresponding Céa estimate is derived. Next, in Section 6, we introduce specific finite element
subspaces that meet the used assumptions. Rates of convergence of the resulting discrete scheme are also
established. Finally, several numerical examples confirming these theoretical findings and illustrating the
good performance of the method are presented in Section 7.

Notation conventions and preliminaries. Throughout the paper Ω is an open and bounded Lipschitz-
continuous domain of Rd, d ∈ {2, 3}, which satisfies a uniform exterior ball condition, and whose outward
unit normal on its boundary Γ is denoted n. We remark in advance that the above geometric assumption on
Ω is rather of technical character, and will be employed only to prove the continuous and discrete versions
of a particular inf-sup condition arising from the analysis (cf. Lemmas 4.2 and 6.1). Standard notation
will be adopted for Lebesgue spaces Lt(Ω), with t ∈ [1, +∞), and Sobolev spaces Wℓ,t(Ω), with ℓ ≥ 0,
whose corresponding norms and seminorms, either for the scalar, vector, or tensorial version, are denoted
by ∥ · ∥0,t;Ω, ∥ · ∥ℓ,t;Ω, and | · |ℓ,t;Ω, respectively. Note that W0,t(Ω) = Lt(Ω), and that when t = 2, we simply
write Hℓ(Ω) instead of Wℓ,2(Ω), with its norm and seminorm denoted by ∥ · ∥ℓ,Ω and | · |ℓ,Ω, respectively.
Now, letting t, t′ ∈ (1, +∞) conjugate to each other, that is such that 1/t + 1/t′ = 1, we let W1/t′,t(Γ)
and W−1/t′,t′(Γ) be the trace space of W1,t(Ω) and its dual, respectively, and denote the duality pairing
between them by ⟨·, ·⟩. In particular, when t = t′ = 2, we simply write H1/2(Γ) and H−1/2(Γ) instead of
W1/2,2(Γ) and W−1/2,2(Γ), respectively. Also, given any generic scalar functional space M, we let M be its
vector counterparts. Furthermore, for any vector fields v = (vi)i=1,d and w = (wi)i=1,d, we set the gradient,
divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div(v) :=
d∑
j=1

∂vj
∂xj

and v ⊗w := (viwj)i,j=1,d .

In addition, for any tensor τ = (τij)i,j=1,d, we let div(τ ) denote the divergence operator div acting along

the rows of τ , and define the transpose as τ t := (τji)i,j=1,d .

2 The model problem

We consider a homogeneous porous medium constituted by a mixture of incompressible grains and charged
interstitial fluid occupying the domain Ω. In the mixture, we assume the presence of positively and negatively
charged ions (for example, binary monovalent completely dissociated electrolytes Na+ and Cl−). For a given
body force f and mass source g, neglecting convective, gravitational, and inertial terms, the steady-state
balance of linear momentum for the mixture and mass balance for the fluid content (using the modified
Darcy law) are expressed as

−div(σ) = f in Ω and c0 p + α div(u)− div

(
κ

ν
∇p
)

= g in Ω, (2.1)

where σ is the overall Cauchy stress tensor of the solid-fluid-electrochemical mixture, u is the unknown
vector of displacement of the solid particles and p is the reference bulk pressure of the fluid. The remaining
parameters are the permeability of the porous solid κ, the constrained specific storage coefficient c0, the Biot–
Willis parameter α, and the viscosity of the pore fluid ν. Following the modified Terzaghi decomposition,
the constitutive equation for σ is conformed by the effective poroelastic stress through Hooke’s law for
infinitesimal deformation and Biot’s consolidation, plus an active macroscopic stress tensor governing the
electrochemical interaction between the electrolyte solution and charged molecules as follows (the dependence
on the electric field – known as Maxwell’s stress – can be found in, e.g., [1, 38, 44], and that on the ionic

3



concentrations in [47])

σ = 2µ ε(u) + λ div(u) I − αp I + ε∇χ⊗∇χ − ε

2
|∇χ|2 I − δ(ξ1 − ξ2) I in Ω , (2.2)

where ε is the electric conductivity, δ is an osmotic parameter, ε(u) := 1
2(∇u + ∇ut) is the tensor of

infinitesimal strains, and λ, µ are the Lamé constants of the solid matrix. The fields ξ1 and ξ2 are the solute
concentrations of positive and negatively charged ions, respectively, and χ is the macroscopic dimensionless
electrostatic potential. They satisfy the following system of equations (current conservation and mass
balance of the charged species)

−div(ε∇χ) = ξ1 − ξ2 in Ω ,

ξ1 − κ

ν
∇p · ∇ξ1 − div

(
κ1(∇ξ1 + q1 ξ1∇χ)

)
= f1 in Ω ,

ξ2 − κ

ν
∇p · ∇ξ2 − div

(
κ2(∇ξ2 + q2 ξ2∇χ)

)
= f2 in Ω ,

(2.3)

where q1 = 1, q2 = −1, f1, f2 are external charge sources, and κ1, κ2 are the diffusivities of the cations
and anions, respectively. Here we have assumed that the balance equations are scaled with the porosity
(assumed constant) and the scaling is absorbed in the external sources. Note that the second term on the
left-hand sides of the second and third rows of (2.3) is the advection using the filtration (Darcy’s seepage)
flux, which indicates that the ionic particles diffuse in the mixture and are advected in the interstitial fluid.

We emphasize here that a recent study [15] delved into the poroelasticity problem when coupled with
the heat equation, which are represented by a Biot and convection-diffusion equations, respectively, with
this latter depending on the Darcy seepage velocity and the total stress. In that study, we employed a fully-
mixed formulation, meaning that for the Biot equation we utilized a mixed approach to explicitly obtain
the solution for the total stress and displacement. Therefore, a natural progression from the findings of that
study is to also incorporate a fully-mixed approach for the present Biot–Poisson–Nernst–Planck equations
presented in this work.

Now, we follow [33, 10] and, in order to maintain robustness of the formulation in the regime of nearly
incompressible solid matrix and to achieve mass conservativity of the Biot system, we adopt a four-field
formulation for the poroelasticity system (2.1) introducing the total pressure θ, and the Darcy seepage
velocity z, as the following additional unknowns

θ := −λdiv(u) + αp in Ω and z := − κ

ν
∇p in Ω . (2.4)

In turn, we notice that for a sufficiently smooth vector function w we have

div(w ⊗w) = (divw)w + (∇w)w and ∇(|w|2) = 2 (∇w)tw .

Thus, since ∇w is symmetric for w = ∇χ, a combination of the first equation of (2.1) with (2.2) and the
definition of the total pressure θ allows obtaining

−div(2µ ε(u)− θ I)− div(ε∇χ)∇χ + δ(∇ξ1 −∇ξ2) = f in Ω . (2.5)

Next, for the mass balance (cf. second equation of (2.1)) we use the definition of the total pressure θ and
of the Darcy flux z (cf. (2.4)) to have(

c0 +
α2

λ

)
p− α

λ
θ + div(z) = g in Ω .

In addition, in order to maintain the uniqueness of the solution for p, in the limiting cases when c0 = 0 and
λ→ ∞, we impose: ∫

Ω
p = 0 . (2.6)

4



Likewise, with the aim of obtaining a current and mass conservative formulation for the Poisson–Nernst–
Planck system (2.3), first we make use of the electric current φ defined as

φ := ε∇χ in Ω ,

which, jointly with the first row of (2.3), gives

−div(φ) = ξ1 − ξ2 in Ω .

In turn, for each i ∈ {1, 2}, we define the ionic concentration gradients ti, and total (diffusive plus advective)
flux of ionic species σi, which are defined as follows

ti := ∇ξi in Ω and σi := κi(ti + qiε
−1ξiφ)− ξi z in Ω .

This is a similar approach as in the mixed methods from [24], but the ti are not used there. Here we need
these chemical potentials to manage the last term on the right-hand side of the momentum balance (2.5).
Finally, for each i ∈ {1, 2} we use the identity

div(ξi z) = z · ∇ξi + ξi div(z) ,

which, in combination with the second and third rows of (2.3), yields

ξi − div(σi)− ξi div(z) = fi in Ω .

In summary, these steps lead to the following Biot–Poisson–Nernst–Planck equations in terms of the un-
knowns u, θ, z, p, φ, χ, ti, σi and ξi, i ∈ {1, 2}, as

−div(2µ ε(u)− θ I) + ε−1 (ξ1 − ξ2)φ + δ(t1 − t2) = f in Ω , (2.7a)

θ − αp + λ div(u) = 0 in Ω , (2.7b)

ν

κ
z + ∇p = 0 in Ω , (2.7c)(

c0 +
α2

λ

)
p − α

λ
θ + div(z) = g in Ω , (2.7d)

φ − ε∇χ = 0 in Ω , (2.7e)

−div(φ) = ξ1 − ξ2 in Ω , (2.7f)

ti − ∇ξi = 0 in Ω , (2.7g)

−σi + κiti + qi κi ε
−1 ξiφ − ξi z = 0 in Ω , (2.7h)

ξi − div(σi) − ξi div(z) = fi in Ω . (2.7i)

We endow (2.7a)-(2.7d) with the following boundary conditions

u = 0 and z · n = 0 on Γ , (2.8)

and pure Dirichlet boundary conditions with given data χD, ξi,D, i ∈ {1, 2}, are considered for (2.7e)-(2.7i):

χ = χD and ξi = ξi,D on Γ . (2.9)

3 The weak formulation

In this section, we derive a primal-mixed formulation of the system (2.7) - (2.9). To this end, we first provide
some preliminaries, and then split the analysis according to the respective decoupled problems, namely those
given by the poroelasticity, electrostatic potential, and ionized particles concentration equations.
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3.1 Preliminaries

We start by considering, for each t ∈ [1, +∞), the Banach spaces

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

Ht(div; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ L2(Ω)

}
,

Ht(divt; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ Lt(Ω)

}
,

which are endowed with the natural norms:

∥τ∥divt;Ω := ∥τ∥0;Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) ,

∥τ∥t,div;Ω := ∥τ∥0,t;Ω + ∥div(τ )∥0;Ω ∀ τ ∈ Ht(div; Ω) ,

∥τ∥t,divt;Ω := ∥τ∥0,t;Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ Ht(divt; Ω) .

We recall that, proceeding as in [26, eqn. (1.43), Section 1.3.4] (see also [21, Section 3.1]), one can prove

that for each t ∈

{
(1, +∞) in R2 ,

[6/5, +∞) in R3 ,
there holds

⟨τ · n, v⟩ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ H(divt; Ω)×H1(Ω) , (3.3)

where ⟨·, ·⟩ denotes the duality pairing between H1/2(Γ) and H−1/2(Γ). In turn, given t, t′ ∈ (1, +∞)
conjugate to each other, there also holds (cf. [25, Corollary B.57])

⟨τ · n, v⟩ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ Ht(divt; Ω)×W1,t′(Ω) , (3.4)

where ⟨·, ·⟩ denotes in (3.4) the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ).

Now, we notice that there are at least four key expressions in (2.7a)-(2.7i) that need to be looked at
carefully before confirming adequate Sobolev and Lebesgue exponents that will specify the trial and test
spaces. These are (ξ1 − ξ2)φ, ξiφ, ξi z, and ξi div(z). Given test functions v, si and ηi associated with u,
ti and ξi, respectively, a straightforward application of the Cauchy–Schwarz and Hölder inequalities yield∣∣∣∣∫

Ω
(ξ1 − ξ2)φ · v

∣∣∣∣ ≤ ∥ξ1 − ξ2∥0,2l;Ω ∥φ∥0,2j;Ω ∥v∥0,Ω , (3.5a)∣∣∣∣∫
Ω
ξiφ · si

∣∣∣∣ ≤ ∥ξi∥0,2l;Ω ∥φ∥0,2j;Ω ∥si∥0,Ω , (3.5b)∣∣∣∣∫
Ω
ξi z · si

∣∣∣∣ ≤ ∥ξi∥0,2l;Ω ∥z∥0,2j;Ω ∥si∥0,Ω , (3.5c)∣∣∣∣∫
Ω
ξi div(z) ηi

∣∣∣∣ ≤ ∥ξi∥0,2l;Ω ∥div(z)∥0,Ω ∥ηi∥0,2j;Ω , (3.5d)

where l, j ∈ (1, +∞) are conjugate to each other. In this way, denoting

r := 2j , s :=
2j

2j − 1
(conjugate of r) , ρ := 2l , ϱ :=

2l

2l − 1
(conjugate of ρ) , (3.6)

it follows that the above expressions are integrable for ξi ∈ Lρ(Ω), φ ∈ Lr(Ω), z ∈ Hr(div; Ω), v ∈ L2(Ω),
si ∈ L2(Ω) and, assuming that ρ > r (a condition that will be satisfied below in (3.7)), we can consider
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ηi ∈ Lρ(Ω). Moreover, since we are aiming to apply (3.3) to τ i ∈ H(divϱ; Ω) and ξi ∈ Lρ(Ω), we need
that H1(Ω) is continuously embedded in Lρ(Ω). The latter is guaranteed for ρ ∈ [1, +∞) when n = 2, and
ρ ∈ [1, 6] when n = 3.

On the other hand, in the forthcoming analysis we require a result on the W1,r(Ω)-solvability of an
auxiliary Poisson equation (in showing a continuous inf-sup condition). For this we need that 4/3 ≤ r ≤ 4
when n = 2, and 3/2 ≤ r ≤ 3 when n = 3. Thus, since r = ρ

l−1 , intersecting this with the previous
restrictions on ρ, we find the following feasible ranges for r, s, ρ and ϱ:{

r ∈ (2, 4] and s ∈ [4/3, 2) if n = 2 ,

r = 3 and s = 3/2 if n = 3 ,

{
ρ ∈ [4, +∞) and ϱ ∈ (1, 4/3] if n = 2 ,

ρ = 6 and ϱ = 6/5 if n = 3 .
(3.7)

In turn, in view of the essential boundary conditions for displacement and Darcy flux in (2.8), we consider
the following closed subspaces of Hilbert and Banach spaces

H1
0(Ω) :=

{
v ∈ H1(Ω) : v|Γ = 0

}
, (3.8a)

Hs
0(divs; Ω) :=

{
w ∈ Hs(divs; Ω) : (w · n)|Γ = 0

}
, (3.8b)

Hr
0(div; Ω) :=

{
w ∈ Hr(div; Ω) : (w · n)|Γ = 0

}
. (3.8c)

Here the boundary specification is to be understood in the sense of traces. In addition, for t ∈ [1, +∞) we
define

Lt0(Ω) :=
{
q ∈ Lt(Ω) :

∫
Ω
q = 0

}
. (3.9)

As announced at the beginning of the section, in what follows we rewrite each variational formulation of
Biot, Poisson and Nernst–Planck equations independently, ending up with three systems whose coupling is
carried out via a fixed-point iteration. We also provide preliminary properties of the bilinear forms involved
in each sub-problem.

3.2 Primal-mixed formulation of the poroelasticity equations

In this section, we follow very closely [33, Section 2] to derive the variational formulation of the poroelasticity
equations (2.7a)-(2.7d) and (2.8), which, given ξ1, ξ2, t1, and t2, consist of finding u, θ, z, and p, all the
above in suitable spaces, such that

−div(2µ ε(u)− θ I) + ε−1 (ξ1 − ξ2)φ + δ(t1 − t2) = f in Ω , (3.10a)

θ − αp + λ div(u) = 0 in Ω , (3.10b)

ν

κ
z + ∇p = 0 in Ω , (3.10c)(

c0 +
α2

λ

)
p − α

λ
θ + div(z) = g in Ω , (3.10d)

u = 0 and z · n = 0 on Γ . (3.10e)

We begin by testing (3.10a) against v ∈ H1
0(Ω) (cf. (3.8a)), which satisfies the bound given by (3.5a). In

this way, applying (3.3) with t = 2, and employing the first boundary condition in (3.10e), we obtain

2µ

∫
Ω
ε(u) : ε(v)−

∫
Ω
θ div(v) =

∫
Ω

(
f − ε−1(ξ1 − ξ2)φ − δ(t1 − t2)

)
· v ∀v ∈ H1

0(Ω) . (3.11)
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Note that, thanks to the Cauchy–Schwarz’s inequality and (3.5a), each term in (3.11) makes sense for
u ∈ H1

0(Ω), θ ∈ L2(Ω), f ∈ L2(Ω), φ ∈ Lr(Ω), ξi ∈ Lρ(Ω), and ti ∈ L2(Ω), i ∈ {1, 2}. Next, we test (3.10b)
against ϑ ∈ L2(Ω), which gives

−
∫
Ω
ϑ div(u)− 1

λ

∫
Ω
θ ϑ +

α

λ

∫
Ω
p ϑ = 0 ∀ϑ ∈ L2(Ω) . (3.12)

On the other hand, recalling from (3.5c) and (3.5d) that z ∈ Hr(div; Ω), and bearing in mind the second
boundary condition in (3.10e), we deduce that z must be sought in Hr

0(div; Ω) (cf. (3.8b)), whence (3.10c)
suggests to look originally for p ∈ W1,r(Ω). In this way, testing (3.10c) against w ∈ Hs

0(divs; Ω) (cf. (3.8c)),
and employing (3.4), we formally get

ν

κ

∫
Ω
z ·w −

∫
Ω
pdiv(w) = 0 ∀w ∈ Hs

0(divs; Ω) , (3.13)

from whose second term and (2.6), we notice that it suffices to look for the pressure p in the space Lr0(Ω)
(cf. (3.9)). In turn, since div(z) belongs to L2(Ω), we test (3.10d) against q ∈ L2

0(Ω) obtaining

α

λ

∫
Ω
θ q −

∫
Ω
q div(z)−

(
c0 +

α2

λ

)∫
Ω
p q = −

∫
Ω
g q ∀ q ∈ L2

0(Ω) , (3.14)

which requires assuming that g ∈ L2(Ω). In addition, knowing that ϑ ∈ L2(Ω), p ∈ Lr0(Ω), and q ∈ L2
0(Ω),

and recalling from (3.7) that r > 2, which certainly yields Lr(Ω) ⊂ L2(Ω), we realize that the third terms
of (3.12) and (3.14) make sense as well. According to the foregoing discussion, and aiming to conveniently
rewrite the system of equations (3.11) - (3.14), we now introduce the spaces

X := H1
0(Ω) , X2 := Hr

0(div; Ω) , X1 := Hs
0(divs; Ω) ,

Q = L2(Ω) , Q1 := Lr0(Ω) , and Q2 := L2
0(Ω) ,

which are endowed, respectively, with the norms

∥v∥X := ∥v∥1,Ω , ∥z∥X2 := ∥z∥r,div;Ω , ∥w∥X1 := ∥w∥s,divs;Ω ,
∥ϑ∥Q := ∥ϑ∥0,Ω , ∥p∥Q1 := ∥p∥0,r;Ω , and ∥q∥Q2 := ∥q∥0,Ω .

In this way, given φ ∈ Lr(Ω), ξ = (ξ1, ξ2) ∈ Lρ(Ω) × Lρ(Ω), t = (t1, t2) ∈ L2(Ω) × L2(Ω), and p ∈ Lr0(Ω),
(3.11) and (3.12) can be reformulated as: Find (u, θ) ∈ X×Q such that

as(u,v) + bs(v, θ) = Fφ,ξ,t(v) ∀v ∈ X ,

bs(u, ϑ) − cs(θ, ϑ) + es(p, ϑ) = 0 ∀ϑ ∈ Q ,
(3.15)

where the bilinear forms as : X ×X → R, bs : X ×Q → R, cs : Q ×Q → R, and es : Q1 ×Q → R, and
the functional Fφ,ξ,t : X → R, are defined, respectively, as

as(u,v) := 2µ

∫
Ω
ε(u) : ε(v) ∀ (u,v) ∈ X×Q ,

bs(v, ϑ) := −
∫
Ω
ϑ div(v) ∀ (v, ϑ) ∈ X×Q ,

cs(θ, ϑ) :=

∫
Ω
θ ϑ ∀ θ, ϑ ∈ Q ,

es(p, ϑ) :=
α

λ

∫
Ω
p ϑ ∀ (p, ϑ) ∈ Q2 ×Q , and

(3.16)

Fφ,ξ,t(v) :=

∫
Ω

(
f − ε−1(ξ1 − ξ2)φ − δ(t1 − t2)

)
· v ∀v ∈ X . (3.17)
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Similarly, given θ ∈ L2(Ω), (3.13) and (3.14) can be reformulated as: Find (z, p) ∈ X2 ×Q1 such that

af (z,w) + d1(w, p) = 0 ∀w ∈ X1 ,

d2(z, q) + ef ((θ, p), q) = G(q) ∀ q ∈ Q2 ,
(3.18)

where the bilinear forms af : X2 ×X1 → R, di : Xi ×Qi → R, i ∈ {1, 2}, and ef : (Q ×Q1) ×Q2 → R,
and the functional G : Q2 → R, are given, respectively, by

af (z,w) :=
ν

κ

∫
Ω
z ·w ∀ (z,w) ∈ X2 ×X1 ,

di(w, q) := −
∫
Ω
q div(w) ∀ (w, q) ∈ Xi ×Qi ,

ef ((θ, p), q) :=
α

λ

∫
Ω
θ q −

(
c0 +

α2

λ

)∫
Ω
p q ∀ ((θ, p), q) ∈ (Q×Q1)×Q2 , and

G(q) :=

∫
Ω
g q ∀ q ∈ Q2 .

(3.19)

Summarizing, given φ ∈ Lr(Ω), ξ = (ξ1, ξ2) ∈ Lρ(Ω)× Lρ(Ω), and t = (t1, t2) ∈ L2(Ω)×L2(Ω), the primal-
mixed formulation for the poroelasticity equations (cf. (3.10)) reduces to gathering (3.15) and (3.18), that
is: Find ((u, θ), (z, p)) ∈ (X×Q)× (X2 ×Q1) such that

as(u,v) + bs(v, θ) = Fφ,ξ,t(v) ∀v ∈ X ,

bs(u, ϑ) − cs(θ, ϑ) + es(p, ϑ) = 0 ∀ϑ ∈ Q ,

af (z,w) + d1(w, p) = 0 ∀w ∈ X1 ,

d2(z, q) + ef ((θ, p), q) = G(q) ∀ q ∈ Q2 .

(3.20)

It is important to stress here that, ignoring the bilinear forms es and ef , the left-hand side of (3.20) shows
a block-diagonal structure with perturbed and generalized saddle-point problems, respectively, as the first
and second block. We take advantage of this fact later on in Section 4.2.

We end this section by remarking that direct applications of the Hölder and Cauchy–Schwarz inequalities
allow us to conclude that the above bilinear forms and the functional G are bounded with positive constants
given by

∥as∥ := 2µ , ∥bs∥ , ∥cs∥ := 1 , ∥es∥ := Cr(Ω)
α

λ
, ∥af∥ :=

ν

κ
,

∥d1∥ , ∥d2∥ := 1 , ∥ef∥ := max

{
α

λ
, Cr(Ω)

(
c0 +

α2

λ

)}
, and ∥G∥ = ∥g∥0,Ω ,

(3.21)

where Cr(Ω) := |Ω|
r−2
2r . In addition, for each v ∈ X1 there holds

|Fφ,ξ,t(v)| ≤ ∥F∥
{
∥f∥0,Ω + ∥φ∥0,r;Ω ∥ξ1 − ξ2∥0,ρ;Ω + ∥t1 − t2∥0,Ω

}
∥v∥X1 , with

|F∥ := max
{
1, ε−1, δ

}
.

(3.22)

3.3 Mixed formulation of the electrostatic potential equations.

We first recall that the electrostatic potential equations are given by (2.7e) - (2.7f), and the Dirichlet
boundary condition for χ in (2.9), that is

φ− ε∇χ = 0 in Ω , −div(φ) = ξ1 − ξ2 in Ω , χ = χD on Γ . (3.23)
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Then, following [24, Section 3.3], we set the trial and test spaces

X1 := Hs(divs; Ω) , X2 := Hr(divr; Ω) , M1 := Lr(Ω) and M2 := Ls(Ω) ,

which are provided with the norms

∥ψ∥X1 := ∥ψ∥s,divs;Ω , ∥φ∥X2 := ∥φ∥r,divr;Ω , ∥χ∥M1 := ∥χ∥0,r;Ω and ∥γ∥M2 := ∥γ∥0,s;Ω ,

and deduce that, given ξ = (ξ1, ξ2) ∈ Lρ(Ω)×Lρ(Ω), the weak formulation of (3.23) reduces to the generalized
saddle-point problem: Find (φ, χ) ∈ X2 ×M1 such that

a(φ,ψ) + b1(ψ, χ) = G(ψ) ∀ψ ∈ X1 ,

b2(φ, γ) = Fξ(γ) ∀ γ ∈ M2 ,
(3.24)

where the bilinear forms a : X2 ×X1 → R, and bi : Xi ×Mi → R, with i ∈ {1, 2}, and the linear functionals
G : X1 → R and Fξ : M2 → R, are given, respectively, by

a(φ,ψ) :=

∫
Ω
ε−1φ ·ψ ∀ (φ,ψ) ∈ X2 ×X1 ,

bi(ψ, γ) :=

∫
Ω
γ div(ψ) ∀ (ψ, γ) ∈ Xi ×Mi , i ∈ {1, 2} ,

G(ψ) := ⟨ψ · n, χD⟩ ∀ψ ∈ X1 ,

Fξ(γ) := −
∫
Ω
(ξ1 − ξ2) γ ∀ γ ∈ M2 .

Straightforward applications of Hölder’s inequality allows us to conclude that a and bi, with i ∈ {1, 2}, are
bounded with constants given by

∥a∥ := ε−1 and ∥b1∥, ∥b2∥ := 1 . (3.25)

By similar arguments there holds

|Fξ(γ)| ≤ ∥F∥ ∥ξ1 − ξ2∥0,ρ;Ω ∥γ∥M2 ∀ γ ∈ M2 , with ∥F∥ := |Ω|
ρ−r
ρr . (3.26)

In turn, regarding the boundedness of G, we invoke [25, Lemma A.36] and the surjectivity of the trace
operator mapping W1,r(Ω) onto W1/s,r(Γ), which imply the existence of a constant cr, such that for the given
χD ∈ W1/s,r(Γ), there exists vD ∈ W1,r(Ω) satisfying vD|Γ = χD and the estimate ∥vD∥1,r;Ω ≤ cr ∥χD∥1/s,r;Γ,
which, thanks to (3.4), yields

|G(ψ)| ≤ ∥G∥ ∥ψ∥X1 ∀ψ ∈ X1 , with ∥G∥ := cr ∥χD∥1/s,r;Γ . (3.27)

3.4 Mixed formulation of the ionized particles concentration equations

In what follows we deduce the weak formulation of the Nernst–Planck equations (2.7g) - (2.7i), and the
Dirichlet boundary condition for ξi in (2.9), for i ∈ {1, 2}, which, given φ ∈ Hr(divr; Ω) and z ∈ Hr(div; Ω),
consist in finding ti ∈ L2(Ω), ξi ∈ Lρ(Ω), and σi in a suitable space to be made precise, such that

ti −∇ξi=0 in Ω , (3.28a)

−σi + κi ti + qi κi ε
−1 ξiφ− ξi z=0 in Ω , (3.28b)

ξi − div(σi)− ξi div(z)= fi in Ω . (3.28c)

ξi= ξi,D on Γ . (3.28d)
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Note that the spaces to which ti and ξi are indicated to belong, for i ∈ {1, 2}, were derived in Section
3.2 after analyzing the validity of (3.11). These belongings are confirmed next, but we need to suppose
momentarily that ξi ∈ H1(Ω), which implies assuming as well that ξi,D ∈ H1/2(Γ). Indeed, we begin by
testing (3.28a) against τ i ∈ H(divϱ; Ω), so that applying (3.3) with t = ϱ to the aforementioned τ i and
ξi ∈ H1(Ω), and using the Dirichlet boundary condition for ξi (cf. (3.28d)), we get∫

Ω
ti · τ i +

∫
Ω
ξi div(τ i) = ⟨τ i · n, ξi,D⟩ ∀ τ i ∈ H(divϱ; Ω) , (3.29)

from which it suffices to look for ξi in Lρ(Ω), as previously announced. In turn, bearing in mind (3.5b) and
(3.5c), we test (3.28b) against si ∈ L2(Ω), thus arriving at

κi

∫
Ω
ti · si −

∫
Ω
σi · si + qi ε

−1 κi

∫
Ω
ξiφ · si −

∫
Ω
ξi z · si = 0 ∀ si ∈ L2(Ω) , (3.30)

from where it only remains to observe that the second term on the left-hand side makes sense for σi ∈ L2(Ω).
Furthermore, assuming that fi belongs to Lϱ(Ω), we test (3.28c) against ηi ∈ Lρ(Ω) and obtain∫

Ω
ηi div(σi)−

∫
Ω
ξi ηi +

∫
Ω
ξi div(z) ηi = −

∫
Ω
fi ηi ∀ ηi ∈ Lρ(Ω) , (3.31)

whose first term on the left-hand side is well-defined if div(σi) belongs to Lϱ(Ω), whence we now look for σ
in H(divϱ; Ω). In addition, being ρ ≥ r > 2 (cf. (3.7)), it is easily seen, thanks to the Cauchy-Schwarz and
Hölder inequalities, that the second and third term makes sense as well. Consequently, we now introduce
the spaces

H1 := L2(Ω) , H2 := H(divϱ; Ω) , M := Lρ(Ω) ,

which are endowed, respectively, with the norms

∥s∥H1 := ∥s∥0,Ω ∀ s ∈ H1 , ∥τ∥H2 := ∥τ∥divϱ;Ω ∀ τ ∈ H2 , ∥η∥M := ∥η∥0,ρ;Ω ∀ η ∈ M ,

define
H := H1 ×H2 with product norm ∥s⃗∥H := ∥s∥H1 + ∥τ∥H2 ∀ s⃗ := (s, τ ) ∈ H ,

and set the notations
t⃗i := (ti,σi) , r⃗i := (ri, ζi) , s⃗i := (si, τ i) ∈ H .

Then, adding (3.29) and (3.30), and gathering the result with (3.31), we conclude that, given (z,φ) ∈
X2 ×X2, the mixed formulation of (3.28a) - (3.28d) reduces to: Find (⃗ti, ξi) ∈ H×M such that

A(⃗ti, s⃗i) + B(⃗si, ξi) + Ez,φ(⃗si, ξi) = G (⃗si) ∀ s⃗i ∈ H ,

B(⃗ti, ηi) − C(ξi, ηi) + Dz(ξi, ηi) = F(ηi) ∀ ηi ∈ M ,
(3.32)

where the bilinear forms A : H × H → R, B : H × M → R, C : M × M, Dz : M × M → R, and
Ez,φ : H×M → R, are defined, respectively, as

A(⃗ti, s⃗i) := κi

∫
Ω
ti · si −

∫
Ω
σi · si +

∫
Ω
τ i · ti ∀ t⃗i, s⃗i ∈ H ,

B(⃗si, ηi) :=

∫
Ω
ηi div(τ i) ∀ (⃗si, ηi) ∈ H×M ,

C(ξi, ηi) :=

∫
Ω
ξi ηi ∀ ξi, ηi ∈ M ,

Dz(ξi, ηi) :=

∫
Ω
ξi div(z) ηi ∀ ξi, ηi ∈ M , and

Ez,φ(⃗si, ηi) := −
∫
Ω
ηi z · si + qi ε

−1 κi

∫
Ω
ηiφ · si ∀ (⃗si, ηi) ∈ H×M ,

(3.33)
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whereas the functionals G : H → R and F : M → R are given, respectively, by

G (⃗si) := ⟨τ i · n, ξi,D⟩ and F(ηi) := −
∫
Ω
fi ηi .

We remark here that, ignoring the bilinear forms Ez,φ and Dz, the structure of the left-hand side of (3.32)
corresponds to that of a perturbed saddle-point problem.

Applying once again the Cauchy–Schwarz and Hölder inequalities, and using the continuous injection
iρ : H

1(Ω) → Lρ(Ω), we readily show that the bilinear forms A, B, and C, and the functionals G and F , are
all bounded with respective constants given by

∥A∥ := max
{
κi, 1

}
, ∥B∥ := 1 , ∥C∥ := |Ω|

ρ−2
ρ ,

∥G∥ :=
(
1 + ∥iρ∥

)
∥ξi,D∥1/2,Γ , and ∥F∥ := ∥fi∥0,ϱ;Ω .

(3.34)

Likewise, there hold

|Dz(ξi, ηi)| ≤ ∥D∥ ∥z∥X2 ∥ξi∥M ∥ηi∥M ∀ ξi, ηi ∈ M ,

|Ez,φ(⃗si, ηi)| ≤ ∥E∥ ∥(z,φ)∥X2×X2 ∥s⃗i∥H ∥ηi∥M ∀ (⃗si, ηi) ∈ H×M ,
(3.35)

with
∥D∥ := 1 , and ∥E∥ := max

{
ε−1 κi, 1

}
. (3.36)

3.5 Weak formulation of the full coupled problem

According to the analysis in Sections 3.2, 3.3, and 3.4, we conclude that, under the assumption that f ∈
L2(Ω), g ∈ L2(Ω), χD ∈ W1/s,r(Γ), ξi,D ∈ H1/2(Γ), and fi ∈ Lϱ(Ω), i ∈ {1, 2}, the primal-mixed formulation
of the Biot–Poisson–Nernst–Planck problem (2.7a) - (2.9) is obtained by gathering (3.20), (3.24), and (3.32),
so that it becomes: Find (u, θ) ∈ X ×Q, (z, p) ∈ X2 ×Q1, (φ, χ) ∈ X2 ×M1 and (⃗ti, ξi) ∈ H ×M such
that

as(u,v) + bs(v, θ) = Fφ,ξ,t(v) ∀v ∈ X ,

bs(u, ϑ) − cs(θ, ϑ) + es(p, ϑ) = 0 ∀ϑ ∈ Q ,

af (z,w) + d1(w, p) = 0 ∀w ∈ X1 ,

d2(z, q) + ef ((θ, p), q) = G(q) ∀ q ∈ Q2 ,

a(φ,ψ) + b1(ψ, χ) = G(ψ) ∀ψ ∈ X1 ,

b2(φ, γ) = Fξ(γ) ∀ γ ∈ M2 ,

A(⃗ti, s⃗i) + B(⃗si, ξi) + Ez,φ(⃗si, ξi) = G (⃗si) ∀ s⃗i ∈ H ,

B(⃗ti, ηi) − C(ξi, ηi) + Dz(ξi, ηi) = F(ηi) ∀ ηi ∈ M .

(3.37)

4 Continuous solvability analysis

In this section, we proceed similarly as in [24] (see also [18, 28]), and adopt a fixed-point strategy to study
the solvability of (3.37). To this end, we define operators solving the decoupled problems, and in terms of
them we set the fixed-point equation that is equivalent to (3.37). Then, we analyze the well-posedness of
the aforementioned problems and equation.
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4.1 Fixed-point approach

We begin by defining the spaces

H1 := H1 ×H1 and M := M×M ,

which are endowed with the product norms

∥r∥H1 := ∥r1∥H1 + ∥r2∥H1 ∀ r := (r1, r2) ∈ H1 and

∥η∥M := ∥η1∥M + ∥η2∥M ∀η := (η1, η2) ∈ M ,

and additionally set the notations

t := (t1, t2) ∈ H1 and ξ := (ξ1, ξ2) ∈ M .

Now, let S : X2 ×M×H1 → X2 be the operator defined for each (ϕ,η, r) ∈ X2 ×M×H1 by

S(ϕ,η, r) := z, (4.1)

where ((u, θ), (z, p)) ∈ (X × Q) × (X2 × Q1) is the unique solution (to be confirmed below) of problem
(3.20) when Fφ,ξ,t is replaced by Fϕ,η,r, that is

as(u,v) + bs(v, θ) = Fϕ,η,r(v) ∀v ∈ X ,

bs(u, ϑ)− cs(θ, ϑ) + es(p, ϑ) = 0 ∀ϑ ∈ Q ,

af (z,w) + d1(w, p) = 0 ∀w ∈ X1 ,

d2(z, q) + ef ((θ, p), q) = G(q) ∀ q ∈ Q2 .

(4.2)

In turn, let S̃ : M → X2 be the operator defined for each η ∈ M by

S̃(η) := φ ,

where (φ, χ) ∈ X2 ×M1 is the unique solution (to be confirmed below) of problem (3.24) with Fη instead
of Fξ, that is

a(φ,ψ) + b1(ψ, χ) = G(ψ) ∀ψ ∈ X1 ,

b2(φ, γ) = Fη(γ) ∀ γ ∈ M2 .
(4.3)

Furthermore, we let Ti : X2 × X2 → H1 and Ξi : X2 × X2 → M, i ∈ {1, 2}, be the operators defined for
each (w,ϕ) ∈ X2 ×X2 by

Ti(w,ϕ) := ti and Ξi(w,ϕ) := ξi ,

where (⃗ti, ξi) = ((ti,σi), ξi) ∈ H × M is the unique solution (to be confirmed below) of problem (3.32)
when Ez,φ and Dz are replaced by Ew,ϕ and Dw, respectively, that is

A(⃗ti, s⃗i) + B(⃗si, ξi) + Ew,ϕ(⃗si, ξi) = G (⃗si) ∀ s⃗i ∈ H ,

B(⃗ti, ηi) − C(ξi, ηi) + Dw(ξi, ηi) = F(ηi) ∀ ηi ∈ M .
(4.4)

As a consequence, we can set the operators Ξ : X2 ×X2 → M and T : X2 ×X2 → H1 as

Ξ(w,ϕ) := (Ξ1(w,ϕ),Ξ2(w,ϕ)) = ξ and T(w,ϕ) := (T1(w,ϕ),T2(w,ϕ)) = t,

for all (w,ϕ) ∈ X2 × X2. Finally, we introduce the operator Π : X2 × X2 → X2 × X2 defined for each
(w,ϕ) ∈ X2 ×X2 by

Π(w,ϕ) :=
(
S(ϕ,Ξ(w,ϕ),T(w,ϕ)), S̃(Ξ(w,ϕ))

)
, (4.5)

and realize that solving (3.37) is equivalent to finding a fixed point of Π, that is, (z,φ) ∈ X2×X2 such that

Π(z,φ) = (z,φ) . (4.6)
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4.2 Well-definedness of the operator S

We first apply an abstract result on perturbed saddle-point problems in Hilbert spaces (cf. [8, Theorem
4.3.1]) and the generalized Babuška–Brezzi theory (cf. [6, Theorem 2.1, Corollary 2.1, Section 2.1]) to the
bilinear form arising from (4.2) when es and ef are dropped, and then employ the Banach–Nečas–Babuška
theorem (cf. [25, Theorem 2.6]) to conclude that the whole problem (4.2) is well-posed, which is equivalent
to stating that S (cf. (4.1)) is well-defined. For this purpose, we now introduce the spaces

X := X×Q×X2 ×Q1 and Q := X×Q×X1 ×Q2 ,

which are endowed with the norms

∥u⃗∥X := ∥u∥X + ∥θ∥Q + ∥z∥X2 + ∥p∥Q1 ∀ u⃗ := (u, θ, z, p) ∈ X , and

∥v⃗∥Q := ∥v∥X + ∥ϑ∥Q + ∥w∥X1 + ∥q∥Q2 ∀ v⃗ := (v, ϑ,w, q) ∈ Q .

Then, as announced, we let A : X × Q → R be the bounded bilinear form arising from (4.2) after adding
the left-hand sides of its equations, but without including es and ef , that is

A(u⃗, v⃗) := as(u,v) + bs(v, θ) + bs(u, ϑ)− cs(θ, ϑ)

+ af (z,w) + d1(w, p) + d2(z, q)
(4.7)

for all (u⃗, v⃗) ∈ X × Q. Note that the boundedness A follows from those of as, bs, bs, cs, af , d1, and
d2 (cf. (3.21)). In addition, as noticed in advance in Section 3.2, we now stress that A shows the matrix
representation 

as bs
bs −cs

af d1

d2

 , (4.8)

whose block-diagonal structure, composed by the perturbed and generalized saddle-point matrix operators

given, respectively, by

(
as bs
bs −cs

)
and

(
af d1

d2

)
, is evident.

The above property yields an advantageous feature when showing below the corresponding global inf-sup
conditions. More precisely, introducing

S1(u⃗) := sup
v⃗∈Q
v⃗ ̸=0

A(u⃗, v⃗)

∥v⃗∥Q
∀ u⃗ ∈ X and S2(v⃗) := sup

u⃗∈X
u⃗ ̸=0

A(u⃗, v⃗)

∥u⃗∥X
∀ v⃗ ∈ Q ,

we aim to prove next the existence of a positive constant αA such that

S1(u⃗) ≥ αA∥u⃗∥X ∀ u⃗ ∈ X , and, (4.9a)

S2(v⃗) ≥ αA∥v⃗∥Q ∀ v⃗ ∈ Q . (4.9b)

To this end, and according to (4.8), we decompose A as

A(u⃗, v⃗) := As((u, θ), (v, ϑ)) +Af ((z, p), (w, q)) ∀ (u⃗, v⃗) ∈ X×Q , (4.10)

where As : (X×Q)× (X×Q) → R and Af : (X2 ×Q1)× (X1 ×Q2) → R are the bilinear forms defined,
respectively, by

As

(
(u, θ), (v, ϑ)

)
:= as(u,v) + bs(v, θ) + bs(u, ϑ)− cs(θ, ϑ),

for all (u, θ), (v, ϑ) ∈ X×Q, and

Af

(
(z, p), (w, q)

)
:= af (z,w) + d1(w, p) + d2(z, q),
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for all
(
(z, p), (w, q) ∈ (X2×Q1)× (X1×Q2. Thus, thanks to (4.10), it is straightforward to see that there

holds

S1(u⃗) ≥ 1

2

 sup
(v,ϑ)∈X×Q
(v,ϑ)̸=0

As((u, θ), (v, ϑ))

∥(v, ϑ)∥X×Q
+ sup

(w,q)∈X1×Q2

(w,q)̸=0

Af ((z, p), (w, q))

∥(w, q)∥X1×Q2

 ∀ u⃗ ∈ X , (4.11)

whence, in order to prove (4.9a), it suffices to show that there exist positive constants αs and αf such that

sup
(v,ϑ)∈X×Q
(v,ϑ)̸=0

As((u, θ), (v, ϑ))

∥(v, ϑ)∥X×Q
≥ αs ∥(u, θ)∥X×Q ∀ (u, θ) ∈ X×Q and (4.12a)

sup
(w,q)∈X1×Q2

(w,q)̸=0

Af ((z, p), (w, q))

∥(w, q)∥X1×Q2

≥ αf ∥(z, p)∥X2×Q1 ∀ (z, p) ∈ X2 ×Q1 . (4.12b)

In this regard, and because of the matrix representation of As (cf. upper block in (4.8)), we find that
establishing (4.12a) is equivalent to proving that the bilinear forms as, bs and cs satisfy the hypotheses of
the abstract result in Hilbert spaces provided by [8, Theorem 4.3.1]. Indeed, we first notice from (3.16) that
as and cs are clearly symmetric and positive semi-definite. In addition, applying the Körn and Poincaré
inequalities, which say, respectively, that ∥ε(v)∥20,Ω ≥ 1

2 |v|
2
1,Ω and |v|21,Ω ≥ CP ∥v∥21,Ω for all v ∈ H1

0(Ω),
where CP is a fixed positive constant, we readily deduce that

as(v,v) = 2µ ∥ε(v)∥20,Ω ≥ αs∥v∥2X ∀v ∈ X , (4.13)

with the constant αs = µCP , thus proving that as is X-elliptic. Furthermore, we know from [29, Chapter
I, eqn. (5.14)] that there exists a positive constant βs such that

sup
v∈X
v ̸=0

bs(v, ϑ)

∥v∥X
≥ βs ∥ϑ∥Q ∀ϑ ∈ Q . (4.14)

Therefore, under the hypotheses of [8, Theorem 4.3.1], the a priori estimates given by [8, Proposition 2.11,
eqn. (4.3.21)] imply that there exists a positive constant αs, depending on ∥as∥, ∥cs∥, αs, and βs, such that
(4.12a) holds.

In turn, due to the matrix representation of Af (cf. lower block in (4.8)), we realize that proving (4.12b)
is equivalent to verifying that the bilinear forms af , d1, and d2 satisfy the hypotheses of the generalized
Babuška-Brezzi theory (cf. [6, Theorem 2.1, Section 2.1]). In fact, we first observe that the kernels of the
bilinear forms di (cf. (3.19)), i ∈ {1, 2}, are given, respectively, by

K1 :=
{
w ∈ Hs

0(divs; Ω) : div(w) = 0 in Ω
}

and

K2 :=
{
w ∈ Hr

0(div; Ω) : div(w) = 0 in Ω
}
.

Thus, resorting to [27], we have the required continuous inf-sup conditions for af .

Lemma 4.1. There exists a positive constant αf such that

sup
w∈K1
w ̸=0

af (z,w)

∥w∥X1

≥ αf ∥z∥X2 ∀ z ∈ K2 , and (4.15a)

sup
z∈K2

af (z,w) > 0 ∀w ∈ K1 ,w ̸= 0 . (4.15b)
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Proof. It reduces to a minor modification of the proof of [27, Lemma 2.6], which first yields (4.15a) with
αf := ν

κ∥Ds∥ , where Ds is the bounded linear operator defined in [27, Lemma 2.3]. In turn, proceeding
similarly there holds

sup
z∈K2

af (z,w) ≥ ν

κ
∥w∥s0,s;Ω ∀w ∈ K1 ,

which proves (4.15b).

Furthermore, regarding the continuous inf-sup conditions to be satisfied by the bilinear forms di, i ∈
{1, 2}, we stress that the one for d1 can be found in [27, Lemma 2.7], whereas the one for d2, to be provided
next, makes use of the fact that Ω has been assumed to satisfy a uniform exterior ball condition (cf. Notation
conventions and preliminaries in Section 1). Indeed, Lemma 4.2 below, and later on Lemma 6.1, are the
only places where this hypothesis is employed.

Lemma 4.2. There exists a constant β2 > 0 such that

sup
w∈X2
w ̸=0

d2(w, q)

∥w∥X2

≥ β2 ∥q∥Q2 ∀ q ∈ Q2 . (4.16)

Proof. Thanks to the aforementioned geometric assumption on Ω, we can apply [32, Theorem 1.1] to deduce
that, given q ∈ Q2 := L2

0(Ω), there exists a unique u ∈ H2(Ω) such that

∆u = q in Ω , ∇u · ν = 0 on Γ ,

∫
Ω
u = 0 ,

and
∥u∥2,Ω ≤ C ∥q∥0,Ω,

with a constant C > 0 depending only on Ω. Thus, letting w̃ := ∇u ∈ H1(Ω), it follows that div(w̃) = q
in Ω and w̃ · ν = 0 on Γ. In addition, due to the continuous embedding ir : H

1(Ω) → Lr(Ω), which is valid
for the range of r specified in (3.7), we get

∥w̃∥0,r;Ω ≤ ∥ir∥ ∥w̃∥1,Ω ≤ ∥ir∥ ∥u∥2,Ω ≤ C ∥ir∥ ∥q∥0,Ω ,

so that we readily conclude that w̃ ∈ X2 = Hr
0(div; Ω) and

∥w̃∥X2 = ∥w̃∥0,r;Ω + ∥div(w̃)∥0,Ω ≤
(
1 + C ∥ir∥

)
∥q∥0,Ω . (4.17)

Finally, bounding the supremum by below with w̃, and using (4.17), we obtain

sup
w∈X2
w ̸=0

d2(w, q)

∥w∥X2

≥ d2(w̃, q)

∥w̃∥X2

≥ 1(
1 + C ∥ir∥

) ∥q∥0,Ω ,
which proves (4.16) with β2 :=

(
1 + C ∥ir∥

)−1
.

Consequently, thanks to the previous discussion, the required hypotheses of [6, Theorem 2.1, Section 2.1]
are satisfied, and hence the a priori estimates provided by [6, Corollary 2.1, Section 2.1] imply that there
exists a positive constant αf , depending on ∥af∥, αf , β1 (the constant of the continuous inf-sup condition
for d1 in [27, Lemma 2.7]), and β2, such that (4.12b) holds.

Thus, having proved (4.12a) and (4.12b), the required inf-sup condition (4.9a) follows straightforwardly
from (4.11), which gives the constant αA := 1

2 min
{
αs,αf

}
. Similarly, using that As is a symmetric

16



bilinear form, and that the transpose of Af , defined as At
f

(
(w, q), (z, p)

)
:= Af

(
(z, p), (w, q)

)
, also satisfies

the hypotheses of the generalized Babuška-Brezzi theory, we are able to prove (4.9b) by using analogue
arguments to those yielding (4.9a). In particular, note that the matrix representation of At

f arises from the

one of Af after exchanging d1 and d2, that is

(
af d2

d1

)
, and hence the hypotheses of [6, Theorem 2.1,

Section 2.1] are clearly attained.

Now, we set the product spaces X := (X ×Q) × (X2 ×Q1) and Q := (X ×Q) × (X1 ×Q2), so that,
given (ϕ,η, r) ∈ X2 ×M×H1, (4.2) is equivalent to finding u⃗ = ((u, θ), (z, p)) ∈ X such that

A(u⃗, v⃗) + es(p, ϑ) + ef ((θ, p), q) = Fϕ,η,r(v) + G(q) ∀ v⃗ = ((v, ϑ), (w, q)) ∈ Q . (4.18)

Hence, employing (4.9a) and the boundedness of ∥es∥ and ∥ef∥ (cf. (3.21)), we find that

sup
v⃗∈Q
v⃗ ̸=0

A(u⃗, v⃗) + es(p, ϑ) + ef ((θ, p), q)

∥v⃗∥Q
≥
{
αA − max

{
∥es∥, ∥ef∥

}}
∥u⃗∥X ∀ u⃗ ∈ X ,

from which, under the assumption that

max
{
∥es∥, ∥ef∥

}
:= Cr(Ω) max

{
c0 +

α2

λ
,
α

λ

}
≤ αA

2
, (4.19)

we deduce that

sup
v⃗∈Q
v⃗ ̸=0

A(u⃗, v⃗) + es(p, ϑ) + ef ((θ, p), q)

∥v⃗∥Q
≥ αA

2
∥u⃗∥X ∀ u⃗ ∈ X . (4.20)

Analogously, but employing (4.9b) instead of (4.9a), and assuming again (4.19), we obtain

sup
u⃗∈X
u̸⃗=0

A(u⃗, v⃗) + es(p, ϑ) + ef ((θ, p), q)

∥v⃗∥Q
≥ αA

2
∥v⃗∥Q ∀ v⃗ ∈ Q . (4.21)

Note that (4.19) becomes feasible for sufficiently small c0 and for the quasi-incompressible case (λ→ +∞).

We are now in a position to establish the well-definedness of S.

Lemma 4.3. Assume that the data satisfy (4.19). Then, for each (ϕ,η, r) ∈ X2 ×M×H1, there exists a
unique ((u, θ), (z, p)) ∈ (X×Q)×(X2×Q1) solution to (4.2), and hence we can define S(ϕ,η, r) := z ∈ X2.
Moreover, there exists a positive constant CS, depending on αA, ε, and δ, such that

∥S(ϕ,η, r)∥X2 = ∥z∥X2 ≤ ∥(u, θ)∥X×Q + ∥(z, p)∥X2×Q1

≤ CS

{
∥f∥0,Ω + ∥g∥0,Ω + ∥η∥M ∥ϕ∥0,r;Ω + ∥r∥H1

}
.

(4.22)

Proof. Thanks to the boundedness of A, es, and ef , and the global inf-sup conditions (4.20) and (4.21), a
direct application of the Banach–Nečas–Babuška theorem (cf. [25, Theorem 2.6]) provides the existence of
a unique solution ((u, θ), (z, p)) ∈ (X × Q) × (X2 × Q1) to (4.2). Moreover, the a priori estimate (4.22)
follows from [25, eqn. (2.5)] along with the boundedness of Fϕ,η,r (cf. (3.22)) and G (cf. (3.21)).

4.3 Well-definedness of the operator S̃

We now prove that (4.3) is well-posed (equivalently, that S̃ is well-defined), by resorting to the analysis
from [24, Section 4.2.2], where the same bilinear forms involved here arose. Indeed, the continuous inf-sup
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conditions for a, b1, and b2 that are required by the Babuška–Brezzi theory (cf. [6, Theorem 2.1, Corollary
2.1, Section 2.1]) for the unique solvability of (4.3), were established in [24, Lemmas 4.3 and 4.4] with
constants that here we denote α̃, β̃1, and β̃2, respectively. In particular, recall that those regarding a involve
the kernels Ki of the bilinear forms bi, i ∈

{
1, 2
}
. Thus, a simple application of the aforementioned theory

implies the following result, which, up to minor differences, coincides with [24, Theorem 4.5].

Lemma 4.4. For each η = (η1, η2) ∈ M, there exists a unique (φ, χ) ∈ X2 × M1 solution to (4.3), and
hence one can define S̃(η) := φ ∈ X2. Moreover, there exist positive constants C

S̃
and C̃

S̃
, which depend

on ε, cr (cf. (3.27)), |Ω|, ρ, r, α̃, β̃1, and β̃2, such that

∥S̃(η)∥X2 = ∥φ∥X2 ≤ C
S̃

{
∥χD∥1/s,r;Γ + ∥η∥0,ρ;Ω

}
, and (4.23a)

∥χ∥M1 ≤ C̃
S̃

{
∥χD∥1/s,r;Γ + ∥η∥0,ρ;Ω

}
. (4.23b)

Proof. We omit further details and just mention that the derivations of (4.23a) and (4.23b) make use of the
boundedness of Fη (cf. (3.26)) and G (cf. (3.27)).

4.4 Well-definedness of the operators T and Ξ

In this section, we follow the approaches from [18, Section 3.2.2] and [28, Section 3.3] to prove that the
operators T and Ξ are well-defined. More precisely, we first apply [6, Theorem 2.1] and [28, Theorem 3.2]
to the formulation arising from (4.4) when Ew,ϕ and Dw are dropped, and then employ the Banach–Nečas–
Babuška theorem (cf. [25, Theorem 2.6]) to conclude that the full system (4.4) is well-posed for each i ∈
{1, 2}. To this end, as announced above, and similarly as in Section 4.2, we let A :

(
H×M

)
×
(
H×M

)
→ R

be the bounded bilinear defined by the sum of the left-hand sides of (4.4), excluding Dw and Ew,ϕ, that is

A((r⃗i, ξi), (⃗si, ηi)) := A(r⃗i, s⃗i) + B(⃗si, ξi) + B(r⃗i, ηi) − C(ξi, ηi) (4.24)

for all (r⃗i, ξi), (⃗si, ηi) ∈ H × M, and proceed to show next that A satisfies continuous inf-sup conditions
with respect to its first and second components. Needless to say, the boundedness of A follows from those
of A, B, and C (cf. (3.34)).

It follows from (4.24) that the aforementioned property for A is equivalent to proving that the bilinear
forms A, B, and C, satisfy the hypotheses of [28, Theorem 3.2], which is actually a slight improvement of
the original result for perturbed saddle-point problems provided by [22, Theorem 3.4]. In this regard, we
first notice from (3.33) that A and C are positive semi-definite, that is

A(⃗si, s⃗i) ≥ κi∥si∥20,Ω ≥ 0 ∀ s⃗i ∈ H , and

C(ηi, ηi) = ∥ηi∥20,Ω ≥ 0 ∀ ηi ∈ M .

In turn, it is readily seen that C is symmetric, and that the null space V of B is given by

V := H1 × V0 , where V0 :=
{
τ i ∈ H(divϱ; Ω) : div(τ i) = 0 in Ω

}
. (4.25)

In addition, A shows the matrix representation

(
A B1

B2

)
, where A : H1 ×H1 → R, B1 : H1 ×H2 → R,

and B2 : H1 ×H2 → R are the bilinear forms defined as

A(ti, si) := κi

∫
Ω
ti · si ∀ ti, si ∈ H1

B1(si, τ i) := −
∫
Ω
τ i · si ∀ (si, τ i) ∈ H1 ×H2 ,

B2(si, τ i) :=

∫
Ω
τ i · si ∀ (si, τ i) ∈ H1 ×H2 .

(4.26)
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According to the above, and similarly as in Section 4.2, we deduce that in order for A to satisfy the inf-sup
conditions specified in [28, eqns. (3.31) and (3.32), Theorem 3.2], we just need to prove that A, B1, and B2

verify the hypothesis of [6, Theorem 2.1]. In particular, it is easily seen that A is H1-elliptic since

A(si, si) = κi ∥si∥20,Ω ∀ si ∈ H1 , (4.27)

and hence A satisfies the assumptions of [6, Theorem 2.1, eqns. (2.8) and (2.9)]. Note that this holds
irrespective of the conditions defining the kernels Kj of Bj |L2(Ω)×V0 , j ∈ {1, 2}, which, due to the fact that
B1 = −B2, are given by

K1 = K2 = K :=
{
si ∈ H1 :

∫
Ω
si · τ i = 0 ∀ τ i ∈ V0

}
. (4.28)

Indeed, all what is needed is that K be contained in H1. Furthermore, regarding the bilinear forms B1 and
B2, we now consider τ i ∈ V0 (cf. (4.25)), that is τ i ∈ H(divϱ; Ω) such that div(τ i) = 0 in Ω, and observe
that, bounding by below with si = −τ i (for B1) and si = τ i (for B2), there holds for each j ∈ {1, 2}

sup
si∈H1
si ̸=0

Bj(si, τ i)

∥si∥H1

= sup
si∈L2(Ω)
si ̸=0

Bj(si, τ i)

∥si∥0,Ω
≥ ∥τ i∥0,Ω = ∥τ i∥H2 ∀ τ i ∈ V0 . (4.29)

Hence, thanks to (4.27) and (4.29), we can apply [6, Theorem 2.1] to conclude that there exists a positive
α̂, depending only on κi, such that the whole bilinear form A satisfies

sup
s⃗i∈V
s⃗i ̸=0

A(r⃗i, s⃗i)

∥s⃗i∥H
≥ α̂ ∥r⃗i∥H ∀ r⃗i ∈ V . (4.30)

Moreover, exchanging the roles of B1 and B2, and applying again [6, Theorem 2.1], we conclude that

sup
r⃗i∈V
r⃗i ̸=0

A(r⃗i, s⃗i)

∥r⃗i∥H
≥ α̂ ∥s⃗i∥H ∀ s⃗i ∈ V .

On the other hand, we know from [27, Lemma 2.9] (see also [18, eqn. (3.23)]) that B (cf. (3.33)) satisfies
the required continuous inf-sup condition, which means that there exists a positive constant βB such that

sup
s⃗i∈H

(si×τ i) ̸=0

B(⃗si, ηi)
∥s⃗i∥H

≥ βB ∥ηi∥0,ρ,Ω ∀ ηi ∈ M .

Thus, having A, B, and C satisfied the hypotheses of [28, Theorem 3.2], we deduce the existence of a positive
constant αA, depending only on α̂, βB, ∥A∥, and ∥C∥, such that

sup
(s⃗i,ηi)∈H×M

(s⃗i,ηi) ̸=0

A((r⃗i, ξi), (⃗si, ηi))

∥(⃗si, ηi)∥H×M
≥ αA ∥(r⃗i, ξi)∥H×M ∀ (r⃗i, ξi) ∈ H×M , and (4.31a)

sup
(r⃗i,ξ̃i)∈H×M

(r⃗i,ξi )̸=0

A((r⃗i, ξi), (⃗si, ηi))

∥(r⃗i, ξi)∥H×M
≥ αA ∥(⃗si, ηi)∥H×M ∀ (⃗si, ηi) ∈ H×M . (4.31b)

Going back to (4.4) with the given (w,ϕ) ∈ X2 × X2, we let Aw,ϕ : (H ×M) × (H ×M) → R be the
bounded bilinear form arising after adding its left-hand sides, that is (cf. (4.24))

Aw,ϕ((r⃗i, ξi), (⃗si, ηi)) := A((r⃗i, ξi), (⃗si, ηi)) + Ew,ϕ(⃗si, ξi) + Dw(ξi, ηi), (4.32)
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for all (r⃗i, ξi), (⃗si, ηi) ∈ H×M. In this way, (4.4) can be rewritten equivalently, as: Find (⃗ti, ξi) ∈ H×M
such that

Aw,ϕ((⃗ti, ξi), (⃗si, ηi)) = G (⃗si) + F(ηi) ∀ (⃗si, ηi) ∈ H×M . (4.33)

Note that the boundedness of A, Ew,ϕ, and Dw (cf. (3.34), (3.35), and (3.36)) guarantees that Aw,ϕ is
bounded as well. In turn, bearing in mind (4.32), (4.31a), and again the boundedness of Ew,ϕ and Dw, we
readily show that for each (w,ϕ) ∈ X2 ×X2 there holds

sup
(s⃗i,ηi)∈H×M

(s⃗i,ηi) ̸=0

Aw,ϕ((r⃗i, ξi), (⃗si, ηi))

∥(⃗si, ηi)∥H×M
≥
{
αA −max

{
∥D∥, ∥E∥

}
∥(w,ϕ)∥X2×X2

}
∥(r⃗i, ξi)∥H×M ,

for all (r⃗i, ξi) ∈ H×M, from which, assuming that

∥(w,ϕ)∥X2×X2 ≤ R :=
αA

2 max
{
∥D∥, ∥E∥

} , (4.34)

we conclude that

sup
(s⃗i,ηi)∈H×M

(s⃗i,ηi )̸=0

Aw,ϕ((r⃗i, ξi), (⃗si, ηi))

∥(⃗si, ηi)∥H×M
≥ αA

2
∥(r⃗i, ξi)∥H×M ∀ (r⃗i, ξi) ∈ H×M . (4.35)

Proceeding similarly as above, but now employing (4.31b) instead of (4.31a), and under the same assumption
(4.34), we arrive at

sup
(r⃗i,ξi)∈H×M

(r⃗i,ξi )̸=0

Aw,ϕ((r⃗i, ξi), (⃗si, ηi))

∥(r⃗i, ξ̃i)∥H×M
≥ αA

2
∥(⃗si, ηi)∥H×M ∀ (⃗si, ηi) ∈ H×M . (4.36)

The well-definedness of the components of T and Ξ, and hence of themselves, can be stated now.

Lemma 4.5. For each i ∈ {1, 2}, and for each (w,ϕ) ∈ X2 × X2 satisfying (4.34), there exists a unique
(⃗ti, ξi) =

(
(ti,σi), ξi

)
∈ H × M solution of (4.4), and hence we can define Ti(w,ϕ) := ti ∈ H1 and

Ξi(w,ϕ) := ξi ∈ M. Moreover, there exists a positive constant CT, independent of (w,ϕ), such that

∥Ti(w,ϕ)∥H1 + ∥Ξi(w,ϕ)∥M = ∥ti∥H1 + ∥ξi∥M

≤ ∥(⃗ti, ξi)∥H×M ≤ CT

{
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

}
.

(4.37)

Proof. Thanks to (4.35) and (4.36), the proof reduces to a direct application of [25, Theorem 2.6], where the
derivation of the a priori estimate (4.37) makes use of the expressions for ∥G∥ and ∥F∥ given by (3.34).

4.5 Solvability analysis of the fixed-point equation

Knowing that the operators S, S̃, T, Ξ, and hence Π as well, are well-defined, we now address the solvability
of the fixed-point equation (4.5) by means of the Banach fixed-point theorem. We begin by setting the ball

W(R) :=
{
(w,ϕ) ∈ X2 ×X2 : ∥(w,ϕ)∥X2×X2 ≤ R

}
, (4.38)

where R > 0 is defined in (4.34), and provide next a condition on the data ensuring that Π maps W(R) into
itself. In fact, bearing in mind the definition of Π (cf. (4.5)), and employing the a priori estimates for S,
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S̃, T, and Ξ (cf. (4.22), (4.23a), and (4.37), we deduce the existence of a positive constant C(R), depending
only on CS, CS̃

, CT, and R, such that for each (w,ϕ) ∈ W(R) there holds

∥Π(w,ϕ)∥X2×X2 ≤ C(R)

{
∥f∥0,Ω + ∥g∥0,Ω + ∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

)}
. (4.39)

A straightforward consequence of (4.39) implies the following result.

Lemma 4.6. Assume that the data are sufficiently small so that

C(R)

{
∥f∥0,Ω + ∥g∥0,Ω + ∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

)}
≤ R . (4.40)

Then, Π
(
W(R)

)
⊆ W(R).

Our following goal is to show that Π is Lipschitz-continuous, for which it suffices to show that S, S̃, Ξ,
and T satisfy suitable continuity properties. We begin with the corresponding result for S.

Lemma 4.7. There exists a positive constant LS, depending on ε, δ, and αA, such that

∥S(φ, ξ, t)− S(ϕ,η, r)∥X2 ≤ LS

{
∥ξ∥M ∥φ− ϕ∥X2 + ∥ϕ∥X2 ∥ξ − η∥M + ∥t− r∥H1

}
, (4.41)

for all (φ, ξ, t), (ϕ,η, r) ∈ X2 ×M×H1.

Proof. Given (φ, ξ, t), (ϕ,η, r) ∈ X2 ×M ×H1, we let S(φ, ξ, t) := z ∈ X2 and S(ϕ,η, r) := z0 ∈ X2,
where u⃗ = ((u, θ), (z, p)) ∈ X and u⃗0 = ((u0, θ0), (z0, p0)) ∈ X are the respective solutions of (4.2),
equivalently (4.18), that is

A(u⃗, v⃗) + es(p, ϑ) + ef ((θ, p), q) = Fφ,ξ,t(v) + G(q) ∀ v⃗ := ((v, ϑ), (w, q)) ∈ Q ,

and
A(u⃗0, v⃗) + es(p0, ϑ) + ef ((θ0, p0), q) = Fϕ,η,r(v) + G(q) ∀ v⃗ := ((v, ϑ), (w, q)) ∈ Q .

It follows from the foregoing identities and the bilinearity of A, es, and ef , that

A(u⃗− u⃗0, v⃗) + es(p− p0, ϑ) + ef ((θ − θ0, p− p0), q) = (Fφ,ξ,t − Fϕ,η,r)(v) ∀ v⃗ ∈ Q , (4.42)

so that, applying the global inf-sup condition (4.20) to u⃗− u⃗0, and using (4.42), we find that

∥S(φ, ξ, t)− S(ϕ,η, r)∥X2 = ∥z − z0∥r,div;Ω ≤ ∥u⃗− u⃗0∥X

≤ 2

αA
sup
v⃗∈Q
v⃗ ̸=0

(Fφ,ξ,t − Fϕ,η,r)(v)

∥v⃗∥Q
, (4.43)

where, for each v⃗ := ((v, ϑ), (w, q)) ∈ Q (cf. (3.17))

(Fφ,ξ,t − Fϕ,η,r)(v) =

∫
Ω

(
− ε−1

(
(ξ1 − ξ2)φ− (η1 − η2)ϕ

)
− δ

(
(t1 − t2)− (r1 − r2)

))
· v . (4.44)

Then, adding and subtracting the expression (ξ1 − ξ2)ϕ · v , we get∫
Ω
ε−1

(
(ξ1 − ξ2)φ− (η1 − η2)ϕ

)
· v =

∫
Ω
ε−1

{
(ξ1 − ξ2)(φ− ϕ)−

(
(η1 − ξ1)− (η2 − ξ2)

)
ϕ
}
· v ,
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from which, employing the Cauchy-Schwarz and Hölder inequalities, we find that∫
Ω
ε−1

(
(ξ1−ξ2)φ−(η1−η2)ϕ

)
·v ≤ ε−1

{
∥ξ∥0,ρ;Ω ∥φ−ϕ∥r,divr;Ω + ∥ϕ∥r,divr;Ω ∥η−ξ∥0,ρ;Ω

}
∥v∥0,Ω . (4.45)

In turn, proceeding similarly, we readily obtain∫
Ω
δ
(
(t1 − t2)− (r1 − r2)

)
· v =

∫
Ω
δ
(
(t1 − r1) + (r2 − t2)

)
· v ≤ δ ∥t− r∥0,Ω ∥v∥0,Ω . (4.46)

In this way, replacing (4.45) and (4.46) back into (4.44), and then the resulting estimate in (4.43), we arrive
at (4.41) with LS := 2

αA
max

{
ε−1, δ

}
.

Next, we resort to a result from [24] to establish the continuity of S̃.

Lemma 4.8. There exists a positive constant L
S̃
, depending only on Ω, the inf-sup constants α̃ and β̃2 (cf.

Section 4.3), and ∥a∥ (cf. (3.25)), such that

∥S̃(ξ)− S̃(η)∥X2 ≤ L
S̃
∥ξ − η∥M ∀ ξ, η ∈ M . (4.47)

Proof. It reduces to the same proof of [24, Lemma 4.9].

Recalling that W(R) is the closed ball defined by (4.38), we now prove the continuity of T and Ξ.

Lemma 4.9. There exists a positive constant LT, depending only on αA, CT, ε, and κi, i ∈
{
1, 2
}
, such

that
∥T(z,φ)−T(w,ϕ)∥H1 + ∥Ξ(z,φ)−Ξ(w,ϕ)∥M

≤ LT

2∑
i=1

{
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

}
∥(z,φ)− (w,ϕ)∥X2×X2 .

(4.48)

for all (z,φ), (w,ϕ) ∈ W(R).

Proof. Given (z,φ), (w,ϕ) ∈ W(R), we let for each i ∈ {1, 2}

Ti(z,φ) := ti ∈ H1 , Ξi(z,φ) := ξi ∈ M , Ti(w,ϕ) := ri ∈ H1 , and Ξi(w,ϕ) := κi ∈ M ,

where (⃗ti, ξi) =
(
(ti,σi), ξi

)
, (r⃗i,κi) =

(
(ri, ζi),κi

)
∈ H×M are the respective solutions of (4.33), that is

Az,φ

(
(⃗ti, ξi), (⃗si, ηi)

)
= G (⃗si) + F(ηi) and Aw,ϕ((r⃗i,κi), (⃗si, ηi)) = G (⃗si) + F(ηi) ,

for all (⃗si, ηi) ∈ H × M. It follows from the foregoing identities and the definitions of the bilinear forms
Aw,ϕ (cf. (4.24), (4.32)), and Dw,ϕ and Ew (cf. (3.33)), that

Az,φ

(
(⃗ti, ξi)− (r⃗i,κi), (⃗si, ηi)

)
= Az,φ

(
(⃗ti, ξi), (⃗si, ηi)

)
−Az,φ

(
(r⃗i,κi), (⃗si, ηi)

)
= Aw,ϕ

(
(r⃗i,κi), (⃗si, ηi)

)
−Az,φ

(
(r⃗i,κi), (⃗si, ηi)

)
= Ew−z,ϕ−φ(⃗si,κi) + Dw−z(κi, ηi) .

(4.49)

Hence, applying the global inf-sup condition (4.35) to the bilinear form Az,φ and the vector (⃗ti, ξi)−(r⃗i,κi),
and employing (4.49) and the boundedness of Ew,ϕ and Dw (cf. (3.35)), we find that

∥(⃗ti, ξi)− (r⃗i,κi)∥H×M ≤ 2

αA
sup

(s⃗i,ηi)∈H×M
(s⃗i,ηi) ̸=0

Ew−z,ϕ−φ(⃗si,κi) + Dw−z(κi, ηi)
∥(⃗si, ηi)∥H×M

≤
2 max

{
∥E∥, ∥D∥

}
αA

∥κi∥0,ρ,Ω ∥(z,φ)− (w,ϕ)∥X2×X2 ,

,
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from which, along with the a priori estimate (4.37) for ∥κi∥0,ϱ,Ω, i ∈ {1, 2}, and the expressions for ∥E∥ and
∥D∥ (cf. (3.36)), we conclude (4.48) with LT as indicated.

Having derived the continuity properties of the operators S, S̃, T, and Ξ, we now look at the one of the
fixed-point operator Π. Indeed, given (z,φ), (w,ϕ) ∈ W(R), we first observe from the definition of Π (cf.
(4.5)) that

∥Π(z,φ)−Π(w,ϕ)∥

= ∥S
(
φ,Ξ(z,φ),T(z,φ)

)
− S

(
ϕ,Ξ(w,ϕ),T(w,ϕ)

)
∥ + ∥S̃

(
Ξ(z,φ)

)
− S̃

(
Ξ(w,ϕ)

)
∥ .

(4.50)

Note that here and below, for simplicity, we omit the subscripts of the norms involved. Then, employing
the respective properties of S (cf. (4.41)) and S̃ (cf. (4.47)), and performing some algebraic manipulations,
we deduce from (4.50) that

∥Π(z,φ)−Π(w,ϕ)∥
≤ LS ∥Ξ(z,φ)∥ ∥φ− ϕ∥+

(
L
S̃
+ LS ∥ϕ∥

)
∥Ξ(z,φ)−Ξ(w,ϕ)∥+ LS ∥T(z,φ)−T(w,ϕ)∥ .

In this way, the foregoing inequality along with the a priori estimate for ∥Ξ(z,φ)∥ (cf. (4.37)), the fact that
∥ϕ∥ ≤ R, and the Lipschitz-continuity of T and Ξ (cf. (4.48)), yield the existence of a positive constant LΠ,
depending only on LS, CT, LS̃

, LT, and R, such that

∥Π(z,φ)−Π(w,ϕ)∥ ≤ LΠ

2∑
i=1

{
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

}
∥(z,φ)− (w,ϕ)∥ . (4.51)

As a consequence of (4.51), we state next the main result of this section.

Theorem 4.10. Besides (4.19) and (4.40), assume that the data satisfy

LΠ

2∑
i=1

{
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

}
< 1 . (4.52)

Then, the fixed-point equation (4.6) has a unique solution (z,φ) ∈ W(R). Equivalently, the coupled problem
(3.37) has a unique solution

(
(u, θ), (z, p)

)
∈ (X × Q) × (X2 × Q1), (φ, χ) ∈ X2 × M1, and (⃗ti, ξi) ∈

H×M, i ∈ {1, 2}. Moreover, the following a priori estimates hold true

∥(u, θ)∥X×Q + ∥(z, p)∥X2×Q1 ≤ C̃S

{
∥f∥0,Ω + ∥g∥0,Ω +

2∑
i=1

(
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

)}
,

∥(φ, χ)∥X2×M1 ≤ C̃
S̃

{
∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

)}
,

∥(⃗ti, ξi)∥H×M ≤ CT

{
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

}
, i ∈ {1, 2} .

where C̃S and C̃
S̃
are positive constants depending only on CS, CS̃

, CT, and R.

Proof. Lemma 4.6 guarantees that Π maps W(R) into itself. Hence, in virtue of the equivalence between
(3.37) and (4.6), and bearing in mind the Lipschitz-continuity of Π (cf. (4.51)) and the hypothesis (4.52),
a straightforward application of the Banach fixed-point theorem implies the existence of a unique solution
(z,φ) ∈ W(R) of (4.6), and thus a unique solution ((u, θ), (z, p)) ∈ (X×Q)× (X2×Q1), (φ, χ) ∈ X2×M1,
and (⃗ti, ξi) ∈ H×M, i ∈ {1, 2}, of (3.37). In addition, the a priori estimates follow straightforwardly from
(4.22), (4.23a), (4.23b), (4.37), and bounding ∥φ∥0,r;Ω, which appears in the original version of the first
estimate above (cf. (4.22)), by R.
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5 A Galerkin scheme

In this section, we introduce a Galerkin scheme for (3.37), and analyze its well-posedness by means of
the discrete analogue of the fixed-point approach developed in Section 4. In particular, for the solvability
analysis of the Galerkin schemes associated with the decoupled problems studied in Sections 4.2, 4.3, and
4.4, we employ [8, Theorem 4.3.1], and the discrete versions of [25, Theorem 2.6], [6, Theorem 2.1, Corollary
2.1, Section 2.1], and [22, Theorem 3.4], which are given by [25, Theorem 2.22], [6, Corollary 2.2, Section
2.2], and [22, Theorem 3.5], respectively.

5.1 Preliminaries

We begin by considering arbitrary finite element subspaces of the continuous spaces indicated as follows

Xh ⊆ H1
0(Ω) , Qh ⊆ L2(Ω) , X2,h ⊆ Hr

0(div; Ω) ,

X1,h ⊆ Hs
0(divs; Ω) , Q1,h ⊆ Lr0(Ω) , Q2,h ⊆ L2

0(Ω) ,

X2,h ⊆ X2 , X1,h ⊆ X1 , M1,h ⊆ M1 , M2,h ⊆ M2 ,

H1,h ⊆ H1 , H2,h ⊆ H2 , and Mh ⊆ M .

Hereafter, h stands for both the sub-index of each foregoing subspace and the size of a regular triangulation
Th of Ω̄ made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK , that is
h := max

{
hK : K ∈ Th

}
. Specific finite element subspaces satisfying the stability conditions to be

introduced along the analysis will be provided later on in Section 6. Then, setting the notation

t⃗i,h := (ti,h,σi,h) , r⃗i,h := (ri,h, ζi,h) , and s⃗i,h := (si,h, τ i,h) ∈ Hh := H1,h ×H2,h ,

the Galerkin scheme associated with (3.37) reads: Find (uh, θh) ∈ Xh × Qh, (zh, ph) ∈ X2,h × Q1,h,
(φh, χh) ∈ X2,h ×M1,h, and (⃗ti,h, ξi,h) ∈ Hh ×Mh, i ∈ {1, 2}, such that

as(uh,vh) + bs(vh, θh) = Fφh,ξh,th(vh) ,

bs(uh, ϑh) − cs(θh, ϑh) + es(ph, ϑh) = 0 ,

af (zh,wh) + d1(wh, ph) = 0 ,

d2(zh, qh) + ef ((θh, ph), qh) = G(qh) ,

a(φh,ψh) + b1(ψh, χh) = G(ψh) ,

b2(φh, γh) = Fξh(γh) ,

A(⃗ti,h, s⃗i,h) + B(⃗si,h, ξi,h) + Ezh,φh (⃗si,h, ξi,h) = G (⃗si,h) ,

B(⃗ti,h, ηi,h) − C(ξi,h, ηi,h) + Dzh(ξi,h, ηi,h) = F(ηi,h) ,

(5.1)

for all (vh, ϑh) ∈ Xh ×Qh, (wh, qh) ∈ X1,h ×Q2,h, (ψh, γh) ∈ X1,h ×M2,h, and (⃗si,h, ηi,h) ∈ Hh ×Mh.

5.2 Discrete fixed-point approach

In order to analyze the solvability of (5.1), we introduce next the discrete version of the strategy employed
in Section 4.1. We begin by adopting the notation

th := (t1,h, t2,h) , rh := (r1,h, r2,h) ∈ H1,h := H1,h ×H1,h ,

ξh := (ξ1,h, ξ2,h) , ηh := (η1,h, η2,h) ∈ Mh := Mh ×Mh ,
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and by letting Sh : X2,h ×Mh ×H1,h → X2,h be the operator defined by

Sh(ϕh,ηh, rh) := zh ∀ (ϕh,ηh, rh) ∈ X2,h ×Mh ×H1,h ,

where (uh, θh) ∈ Xh × Qh and (zh, ph) ∈ X2,h × Q1,h constitute the unique solution (to be confirmed) of

the first four rows of (5.1) with Fϕh,ηh,rh instead of Fφh,ξh,th . Similarly, we define S̃h : Mh → X2,h as

S̃h(ηh) := φh ∀ηh ∈ Mh ,

where (φh, χh) ∈ X2,h × M1,h is the unique solution (to be confirmed) of the fifth and sixth rows of (5.1)
with Fηh instead of Fξh . Furthermore, we let Ti,h : X2,h × X2,h → H1,h and Ξi,h : X2,h × X2,h → Mh,
i ∈
{
1, 2
}
, be the operators given for each (wh,ϕh) ∈ X2,h ×X2,h by

Ti,h(wh,ϕh) := ti,h and Ξi,h(wh,ϕh) := ξi,h ,

where (⃗ti,h, ξi,h) =
(
(ti,h,σi,h), ξi,h

)
∈ Hh × Mh is the unique solution (to be confirmed) of the last two

rows of (5.1) with Ewh,ϕh and Dwh instead of Ezh,φh and Dzh , respectively. Hence, we can set the operators
Th : X2,h ×X2,h → H1,h and Ξh : X2,h ×X2,h → Mh as

Th(wh,ϕh) := (T1,h(wh,ϕh),T2,h(wh,ϕh)) = th , and

Ξh(wh,ϕh) := (Ξ1,h(wh,ϕh),Ξ2,h(wh,ϕh)) = ξh ,

for all (wh,ϕh) ∈ X2,h ×X2,h. Finally, introducing the operator Πh : X2,h ×X2,h → X2,h ×X2,h defined as

Πh(wh,ϕh) :=
(
Sh(ϕh,Ξh(wh,ϕh),Th(wh,ϕh)), S̃h(Ξh(wh,ϕh))

)
∀ (wh,ϕh) ∈ X2,h ×X2,h ,

we see that solving (5.1) is equivalent to finding a fixed-point of Πh, that is, (zh,φh) ∈ X2,h × X2,h such
that

Πh(zh,φh) = (zh,φh) . (5.2)

5.3 Well-definedness of the operator Sh

In what follows we proceed as in Section 4.2. In fact, we first observe that the properties of the bilinear
forms as and cs, namely symmetry, positive semi-definiteness, and ellipticity, remain valid as such in the
present discrete context. In particular, as is certainly Xh-elliptic with the same constant αs := µCP (cf.
(4.13)). Next, in order to continue the analysis, we need to assume the discrete version of (4.14), that is:

(H.1) there exists a positive constant βs,d, independent of h, such that

sup
vh∈Xh
vh ̸=0

bs(vh, ϑh)

∥vh∥Q
≥ βs,d ∥ϑh∥Q ∀ϑh ∈ Qh .

Thanks to the above discussion and hypothesis (H.1), we can apply again [8, Theorem 4.3.1] to deduce,
similarly to (4.12a), its discrete analogue, that is the existence of a positive constant αs,d, depending on
∥as∥, ∥cs∥, αs, and βs,d, such that

sup
(vh,ϑh)∈Xh×Qh

(vh,ϑh )̸=0

As((uh, θh), (vh, ϑh))

∥(vh, ϑh)∥X×Q
≥ αs,d ∥(uh, θh)∥X×Q ∀ (uh, θh) ∈ Xh ×Qh . (5.3)
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On the other hand, we now introduce the discrete kernels of di, i ∈
{
1, 2
}
, namely

K1,h :=
{
wh ∈ X1,h : d1(wh, qh) = 0 ∀ qh ∈ Q1,h

}
and

K2,h :=
{
wh ∈ X2,h : d2(wh, qh) = 0 ∀ qh ∈ Q2,h

}
,

and consider the following additional hypotheses:

(H.2) there exists a positive constant αf,d, independent of h, such that

sup
wh∈K1,h

wh ̸=0

af (zh,wh)

∥wh∥X1

≥ αf,d ∥zh∥X2 ∀ zh ∈ K2,h ,

sup
zh∈K2,h

af (zh,wh) > 0 ∀wh ∈ K1,h ,wh ̸= 0 , and

(H.3) for each i ∈ {1, 2} there exists a positive constant βi,d, independent of h, such that

sup
wh∈Xi,h

wh ̸=0

di(wh, qh)

∥wh∥Xi

≥ βi,d∥qh∥Qi ∀ qh ∈ Qi,h .

In this way, thanks to (H.2) and (H.3), and similarly to (4.12b), we derive its discrete analogue as
a straightforward consequence of [6, Corollary 2.2, Section 2.2], which means that there exists a positive
constant αf,d depending only on ∥af∥, αf,d, β1,d, and β2,d, such that

sup
(wh,qh)∈X1,h×Q2,h

(wh,qh) ̸=0

Af ((zh, ph), (wh, qh))

∥(wh, qh)∥X1×Q2

≥ αf,d ∥(zh, ph)∥X2×Q1 ∀ (zh, ph) ∈ X2,h ×Q1,h . (5.4)

Having established (5.3) and (5.4), a direct application of [25, Proposition 2.42], along with the discrete
version of (4.11), imply, in turn, the discrete version of (4.9a) with the constant αA,d := 1

2 min
{
αs,d,αf,d

}
.

Moreover, using again the symmetry of As and the transpose At
f of Af , as we did in the continuous analysis,

we are able to prove the discrete analogue of (4.9b) as well. Consequently, under the discrete counterpart
of (4.19), that is

max
{
∥es∥, ∥ef∥

}
:= Cr(Ω) max

{
c0 +

α2

λ
,
α

λ

}
≤
αA,d

2
, (5.5)

we arrive at the discrete versions of (4.20) and (4.21), and hence we can state the following result.

Lemma 5.1. Assume that the data satisfy (5.5). Then, for each (ϕh,ηh, rh) ∈ X2,h ×Mh ×H1,h, there
exists a unique ((uh, θh), (zh, ph)) ∈ (Xh × Qh) × (X2,h × Q1,h) solution of the first four rows of (5.1),
and hence one can define Sh(ϕh,ηh, rh) := zh ∈ X2,h. Moreover, there exists a positive constant CS,d,
depending only on αA,d, ε, and δ, such that

∥Sh(ϕh,ηh, rh)∥X2 = ∥zh∥X2 ≤ ∥(uh, θh)∥X×Q + ∥(zh, ph)∥X2×Q1

≤ CS,d

{
∥f∥0,Ω + ∥g∥0,Ω + ∥ηh∥M ∥ϕh∥0,r;Ω + ∥rh∥H1

}
.

(5.6)

Proof. Similarly to the proof of Lemma 4.3, the result follows as a direct application of the discrete Banach–
Nečas–Babuška Theorem (cf. [25, Theorem 2.22]).
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5.4 Well-definedness of the operator S̃h

We begin by letting Ki,h be the discrete kernel of bi, i ∈
{
1, 2
}
, that is

Ki,h :=
{
ψh ∈ Xi,h : bi(ψh, γh) = 0 ∀ γ ∈ Mi,h

}
,

and by assuming the following hypotheses

(H.4) there exists a positive constant α̃d, independent of h, such that

sup
ψh∈K1,h

ψh ̸=0

a(ϕh, ψh)

∥ψh∥X1

≥ α̃d ∥ϕh∥X2 ∀ϕh ∈ K2,h ,

sup
ϕh∈K2,h

a(ϕh, ψh) > 0 ∀ψh ∈ K1,h , ψh ̸= 0 , and

(H.5) for each i ∈
{
1, 2
}
there exists a positive constant β̃i,d, independent of h, such that

sup
ψh∈Xi,h

ψh ̸=0

bi(ψh, γh)

∥ψh∥Xi
≥ β̃i,d ∥γh∥Mi ∀ γh ∈ Mi,h .

As a consequence of (H.4) and (H.5) we are able to state now the discrete version of Lemma 4.4

Lemma 5.2. For each ηh = (η1,h, η2,h) ∈ Mh, there exists a unique (φh, χh) ∈ X2,h ×M1,h solution of the

fifth and sixth rows of (5.1), and hence one can define S̃h(ηh) := φh ∈ X2,h. Moreover, there exist positive

constants C
S̃,d

and C̃
S̃,d

, which depend on ε, cr (cf. (3.27)), |Ω|, ρ, r, α̃d, β̃1,d, and β̃2,d, such that

∥S̃h(ηh)∥X2 = ∥φh∥X2 ≤ C
S̃,d

{
∥χD∥1/s,r;Γ + ∥ηh∥0,ρ;Ω

}
, and (5.7a)

∥χh∥M1 ≤ C̃
S̃,d

{
∥χD∥1/s,r;Γ + ∥ηh∥0,ρ;Ω

}
. (5.7b)

Proof. It reduces to a direct application of [6, Corollary 2.2, eqns. (2.24), (2.25)].

5.5 Well-definedness of the operators Th and Ξh

In what follows we proceed similarly as in Section 4.3. We begin by noticing that the positive semi-
definiteness and symmetry properties involving the bilinear forms A and C are certainly valid at the present
discrete context as well. In turn, it is easily seen that the discrete Kernel Vh of B is given by

Vh := H1,h × V0,h , where V0,h :=
{
τ i,h ∈ H2,h :

∫
Ω
ηi,h div(τ i,h) = 0 ∀ ηi,h ∈ Mh

}
.

Thus, assuming the hypothesis

(H.6) div(H2,h) ⊆ Mh ,

we readily deduce that V0,h becomes

V0,h :=
{
τ i,h ∈ H2,h : div(τ i,h) = 0 in Ω

}
,
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which constitutes the discrete version of (4.25). Next, regarding the bilinear forms defining A (cf. (4.26)),
we first let K1,h and K2,h be the kernels of B1|H1,h×V0,h and B2|H1,h×V0,h , respectively. Then, similarly as for
the continuous case (cf. (4.28)), we find that

K1,h = K2,h = Kh :=
{
si,h ∈ H1,h :

∫
Ω
si,h · τ i,h = 0 ∀ τ i,h ∈ V0,h

}
.

In this way, since the H1-ellipticity of A (cf. (4.27)) is naturally inherited by the subspace H1,h, we conclude
that the discrete inf-sup conditions specified in [6, eqns. (2.19) and (2.20)] are clearly satisfied by A.
Analogously to the continuous case, note that the above holds irrespective of the specific conditions defining
Kh, except being a subspace of H1,h.

In order to proceed, we now assume that

(H.7) V0,h ⊆ H1,h,

which implies that B1 and B2 satisfy the discrete inf-sup condition specified in [6, eqn. (2.22)]. In fact,
given τ i,h ∈ V0,h ⊆ H1,h, and similarly as in the continuous case (cf. (4.29)), we can bound the supremum
by below with si,h = −τ i,h (for B1) and si,h = τ i,h (for B2), so that we obtain for each j ∈

{
1, 2
}

sup
si,h∈H1,h

si,h ̸=0

Bj(si,h, τ i,h)

∥si,h∥H1

= sup
si,h∈H1,h

si,h ̸=0

Bj(si,h, τ i,h)

∥si,h∥0,Ω
≥ ∥τ i,h∥0,Ω = ∥τ i,h∥H2 ∀ τ i,h ∈ V0,h .

It remains to assume the discrete inf-sup condition for B, namely

(H.8) there exists a positive constant βB,d, independent of h, such that

sup
s⃗i,h∈Hh

s⃗i,h ̸=0

B(⃗si,h, ξi,h)
∥s⃗i,h∥H

≥ βB,d ∥ξi,h∥M ∀ ξi,h ∈ Mh .

Therefore, having A, B1 and B2 satisfied the hypotheses of [6, Corollary 2.2], we conclude the discrete
analogue of the inf-sup condition (4.30) for A with the same constant α̂. This inequality, along with (H.8),
imply the discrete version of the inf-sup condition (4.24) for A with a constant αA,d, depending only on α̂,
βB,d, ∥A∥, and ∥C∥. The same property is carried over to Awh,ϕh (cf. (4.32)) for each (wh,ϕh) ∈ X2,h×X2,h

satisfying the discrete version of (4.34), that is

∥(wh,ϕh)∥X2×X2 ≤ Rd :=
αA,d

2max{∥D∥, ∥E∥}
, (5.8)

thus yielding the discrete analogue of (4.35).

Consequently, we can state the well-definedness of the components of Th and Ξh as follows.

Lemma 5.3. For each i ∈ {1, 2}, and for each (wh,ϕh) ∈ X2,h×X2,h satisfying (5.8), there exists a unique
(⃗ti,h, ξi,h) =

(
(ti,h,σi,h), ξi,h

)
∈ Hh×Mh solution of the seventh and eighth rows of (5.1), and hence we can

define Ti,h(wh,ϕh) := ti,h ∈ H1,h and Ξi,h(wh,ϕh) := ξi,h ∈ Mh. Moreover, there exists a positive constant
CT,d, independent of (wh,ϕh), such that

∥Ti,h(wh,ϕh)∥H1 + ∥Ξi,h(wh,ϕh)∥M = ∥ti,h∥H1 + ∥ξi,h∥M

≤ ∥(⃗ti,h, ξi,h)∥H×M ≤ CT,d

{
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

}
.

(5.9)

Proof. It is a straightforward application of [25, Theorem 2.22].
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5.6 Solvability analysis of the discrete fixed-point equation

Having established that the discrete operators Sh, S̃h, Th, Ξh, and hence Πh, are all well-defined, we now
proceed as in Section 4.4 to address the solvability of the discrete fixed-point equation (5.2). To this end,
we first introduce the ball

W(Rd) :=
{
(wh,ϕh) ∈ X2,h ×X2,h : ∥(wh,ϕh)∥X2×X2 ≤ Rd

}
.

Then, analogously to the derivation of Lemma 4.6, we deduce that Πh maps W(Rd) into itself under the
same assumption (4.40), except that C(R) is replaced by a constant C(Rd) depending on CS,d, CS̃,d

, CT,d

and Rd. Moreover, following analogous arguments to those employed in the proofs of Lemmas 4.7, 4.8, and
4.9, we are able to prove the continuity properties of Sh, S̃h, Th, and Ξh, with corresponding constants
denoted by LS,d, LS̃,d

, and LT,d, respectively. Hence, proceeding analogously to the derivation of (4.51),
we find that there exists a positive constant LΠ,d, depending only on LS,d, LS̃,d

, LT,d, and Rd, such that

∥Πh(zh,φh)−Πh(wh,ϕh)∥ ≤ LΠ,d

2∑
i=1

{
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

}
∥(zh,φh)− (wh,ϕh)∥ . (5.10)

for all (zh,φh), (wh,ϕh) ∈ W(Rd).

According to the above, the main result of this section is established as follows.

Theorem 5.4. Assume that the data satisfy (5.5) and the discrete version of (4.40), that is

C(Rd)

{
∥f∥0,Ω + ∥g∥0,Ω + ∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

)}
≤ Rd . (5.11)

In addition, assume that

LΠ,d

2∑
i=1

{
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

}
< 1 . (5.12)

Then, the discrete fixed point equation (5.2) has a unique solution (zh,φh) ∈ W(Rd). Equivalently, the
coupled problem (5.1) has a unique solution

(
(uh, θh), (zh, ph)

)
∈ (Xh × Qh) × (X2,h × Q1,h), (φh, ξh) ∈

X2,h ×M1,h, and (⃗ti, ξi) ∈ Hh ×Mh, i ∈ {1, 2}. Moreover, there hold the following a priori estimates

∥(uh, θh)∥X×Q + ∥(zh, ph)∥X2×Q1 ≤ C̃S,d

{
∥f∥0,Ω + ∥g∥0,Ω +

2∑
i=1

(
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

)}
,

∥(φh, ξh)∥X2×M1 ≤ C̃
S̃,d

{
∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2;Γ + ∥fi∥0,ϱ;Ω

)}
,

∥(⃗ti, ξi)∥H×M ≤ CT,d

{
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

}
, i ∈ {1, 2} ,

where C̃S,d and C̃
S̃,d

are positive constants depending only on CS,d, CS̃,d
, CT,d, and Rd.

Proof. We recall that (5.11) guarantees that Πh maps W(Rd) into itself, and knowing from (5.10) and
(5.12) that Πh : W(Rd) → W(Rd) is a contraction, a straightforward application of the Banach fixed-point
theorem yields the existence of a unique solution (zh,φh) ∈ W(Rd) of (5.2), and thus a unique solution(
(uh, θh), (zh, ph)

)
∈ (Xh×Qh)× (X2,h×Q1,h), (φh, ξh) ∈ X2,h×M1,h, and (⃗ti, ξi) ∈ Hh×Mh, i ∈ {1, 2},

of (5.1). Finally, the a priori estimates are consequence of (5.6), (5.7a), (5.7b), (5.9), and the fact that
∥φh∥0,r;Ω ≤ Rd.

We end the section by stressing that the assumption (5.12) could be dropped from the statement of
Theorem 5.4, in which case Brouwer’s fixed-point theorem (cf. [20, Theorem 9.9-2]) would imply only
existence of solution of (5.2) (and hence of (5.1)).
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5.7 A priori error analysis

In this section, we derive an a priori error estimate for the Galerkin scheme (5.1) with arbitrary finite element
subspaces satisfying the hypotheses introduced in Sections 5.3, 5.4, and 5.5. More precisely, recalling that(
(u, θ), (z, p)

)
∈ (X×Q)×(X2×Q1), (φ, χ) ∈ X2×M1, and (⃗ti, ξi) ∈ H×M, i ∈ {1, 2}, with (z,φ) ∈ W(R),

constitute the unique solution of (3.37), and that, in turn,
(
(uh, θh), (zh, ph)

)
∈ (Xh×Qh)× (X2,h×Q1,h),

(φh, ξh) ∈ X2,h ×M1,h, and (⃗ti, ξi) ∈ Hh ×Mh, i ∈ {1, 2}, with (zh,φh) ∈ W(Rd), is the unique solution of
(5.1), we establish a Céa estimate for the global error split as

E := E1 + E2 + E3 ,

where
E1 := ∥u− uh∥X + ∥θ − θh∥Q + ∥z − zh∥X2 + ∥p− ph∥Q1 ,

E2 := ∥φ−φh∥X2 + ∥χ− χh∥M1 , and

E3 :=
2∑
i=1

{
∥⃗ti − t⃗i,h∥H + ∥ξi − ξi,h∥M

}
.

In what follows, given a subspace Zh of a generic Banach space (Z, ∥ · ∥Z), we set

dist(z, Zh) := inf
zh∈Zh

∥z − zh∥Z ∀ z ∈ Z .

We begin the analysis by applying the Strang estimate from [25, Lemma 2.27] to the first four rows
of equations (3.37) and (5.1). As a consequence, we obtain that there exists a positive constant C̃1(E),
depending on αA,d, ∥A∥ (cf. (4.7)), ∥es∥, and ∥ef∥ (cf. (3.21)), such that there holds

E1 ≤ C̃1(E)
{
dist((u, θ),Xh ×Qh) + dist((z, p),X2,h ×Q1,h) + ∥Fφ,ξ,t − Fφh,ξh,th∥X′

h

}
. (5.13)

Then, bearing in mind the definition of Fϕ,η,r (cf. (3.17)), and proceeding as in (4.44), (4.45), and (4.46),
we find that

∥Fφ,ξ,t − Fφh,ξh,th∥X′
h
≤ max

{
ε−1, δ

}{
∥ξ∥M∥φ−φh∥X2 + ∥φh∥X2 ∥ξ − ξh∥M + ∥t− th∥H1

}
,

which, replaced back into (5.13), yields

E1 ≤ C1(E)
{
dist((u, θ),Xh ×Qh) + dist((z, p),X2,h ×Q1,h)

+ ∥ξ∥M ∥φ−φh∥X2 + ∥φh∥X2 ∥ξ − ξh∥M + ∥t− th∥H1

}
,

(5.14)

with C1(E) := C̃1(E) max
{
1, ε−1, δ

}
. Next, applying again [25, Lemma 2.27], but now to the fifth and sixth

rows of equations (3.37) and (5.1), and using that (cf. (3.26), see also [24, eqn. (95)])

∥Fξ − Fξh∥M′
2
= ∥Fξ−ξh∥M′

2
≤ |Ω|(ρ−r)/ρr ∥ξ − ξh∥M ,

we arrive at
E2 ≤ C2(E)

{
dist((φ, χ),X2,h ×M1,h) + ∥ξ − ξh∥M

}
, (5.15)

with a positive constant C2(E) depending only on ε, α̃d, β̃1,d, β̃2,d, |Ω|, ρ, and r. Furthermore, regarding the
last two rows of (3.37) and (5.1), we employ the same Strang estimate from [25, Lemma 2.27] to conclude
the existence of a positive constant C̃3(E), depending only on αA, ∥A∥, ∥B∥, and ∥C∥ (cf. (3.34)), such that

E3 ≤ C̃3(E)

2∑
i=1

{
dist((⃗ti, ξi),Hh ×Mh) + ∥Ez,φ(·, ξi)− Ezh,φh(·, ξi,h)∥H′

h

+ ∥Dz(ξi, ·)−Dzh(ξi,h, ·)∥M′
h

}
.

(5.16)
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In turn, from the definitions of Ez,φ and Dz (cf. (3.33)), we readily get that

∥Ez,φ(·, ξi)− Ezh,φh(·, ξi,h)∥H′
h
≤ ∥E∥

{
∥ξi,h∥0,ρ;Ω

(
∥φ−φh∥r,divr;Ω + ∥z − zh∥0,r;Ω

)
+

(
∥z∥0,r;Ω + ∥φ∥r,divr;Ω

)
∥ξi − ξi,h∥0,ρ;Ω

}
,

and

∥Dz(ξi, ·)−Dzh(ξi,h, ·)∥M′
h
≤ ∥D∥

{
∥div(z)∥0,Ω ∥ξi − ξi,h∥0,ρ;Ω + ∥ξi,h∥0,ρ;Ω ∥div(z)− div(zh)∥0,Ω

}
,

which, jointly with (5.16), imply

E3 ≤ C3(E)
2∑
i=1

{
dist((⃗ti, ξi),Hh ×Mh) + ∥ξi,h∥M

(
∥φ−φh∥X2 + ∥z − zh∥X2

)
+

(
∥z∥X2 + ∥φ∥X2

)
∥ξi − ξi,h∥M

}
,

(5.17)

with a positive constant C3(E) depending only on C̃3(E), ∥E∥, and ∥D∥. Consequently, adding the inequalities
(5.14), (5.15), and (5.17), performing basic algebraic manipulations, and employing the bounds for the terms
∥z∥X2 , ∥φ∥X2 , ∥ξ∥M, ∥φh∥X2 , and ∥ξi,h∥M provided by Theorems 4.10 and 5.4, we deduce the existence of

a positive constant C̃(E), depending only on C̃S, C̃S̃
, CT, C̃S,d, C̃S̃,d

, and CT,d, and hence independent of
h, such that

E ≤ C̃(E)
{
dist((u, θ),Xh ×Qh) + dist((z, p),X2,h ×Q1,h)

+dist((φ, χ),X2,h ×M1,h) +
2∑
i=1

dist((⃗ti, ξi),Hh ×Mh)
}

+ C̃(E)
{
∥f∥0,Ω + ∥g∥0,Ω + ∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

)}
E .

(5.18)

We summarize our findings with the next result.

Theorem 5.5. In addition to the hypotheses of Theorems 4.10 and 5.4, assume that

C̃(E)
{
∥f∥0,Ω + ∥g∥0,Ω + ∥χD∥1/s,r;Γ +

2∑
i=1

(
∥ξi,D∥1/2,Γ + ∥fi∥0,ϱ;Ω

)}
≤ 1

2
. (5.19)

Then, letting C(E) := 2 C̃(E), there holds

E ≤ C(E)
{
dist((u, θ),Xh ×Qh) + dist((z, p),X2,h ×Q1,h)

+ dist((φ, χ),X2,h ×M1,h) +
2∑
i=1

dist((⃗ti, ξi),Hh ×Mh)
}
.

(5.20)

Proof. It follows straightforwardly from (5.18) and (5.19).

6 Specific finite element subspaces

In this section, we define specific finite element subspaces satisfying the conditions (H.1) - (H.8) introduced
in Sections 5.3, 5.4, and 5.5, collect their respective approximation properties, and provide the associated
rates of convergence of the resulting method.
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6.1 Preliminaries

Given an integer ℓ ≥ 0 and K ∈ Th, we let Pℓ(K) (resp. P̃k(K)) be the space of polynomials of degree
≤ k (resp. = k) defined on K, and denote its vector version by Pℓ(K). In addition, we let RTℓ(K) =
Pℓ(K) + P̃ℓ(K)x be the local Raviart–Thomas space of order ℓ defined on K, where x stands for a generic
vector in Rd. In turn, we let Pℓ(Th), Pℓ(Th), and RTℓ(Th) be the corresponding global versions of Pℓ(K),
Pℓ(K) and RTℓ(K), respectively, that is

Pℓ(Th) :=
{
θh ∈ L2(Ω) : θh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

Pℓ(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pℓ(K) ∀K ∈ Th

}
, and

RTℓ(Th) :=
{
qh ∈ H(div; Ω) : qh|K ∈ RTℓ(K) ∀K ∈ Th

}
.

We stress that for each t ∈ (1, +∞), there hold Pℓ(Th) ⊆ Lt(Ω), Pℓ(Th) ⊆ H1(Ω), RTk(Th) ⊆ H(divt; Ω),
RTℓ(Th) ⊆ Ht(div; Ω), and RTℓ(Th) ⊆ Ht(divt; Ω), inclusions that are implicitly utilized below to introduce
specific finite element subspaces. Indeed, bearing in mind the notation from Section 5.1, and given an integer
k ≥ 0, we now define for n = 2:

Xh := Pk+2(Th) ∩H1
0(Ω) , Qh := Pk(Th) ,

X2,h := RTk(Th) ∩Hr
0(div; Ω) , X1,h := RTk(Th) ∩Hs

0(divs; Ω) ,

Q1,h := Pk(Th) ∩ Lr0(Ω) , Q2,h := Pk(Th) ∩ L2
0(Ω) ,

X2,h = X1,h := RTk(Th) , M1,h = M2,h := Pk(Th) ,

H1,h := Pk(Th) , H2,h := RTk(Th) , and Mh := Pk(Th) .

(6.1)

In turn, for n = 3, and since the pair Pk+2(Th) − Pk(Th) is not inf-sup stable in 3D, we consider the
generalized Taylor–Hood elements

Xh := Pk+2(Th) ∩H1
0(Ω), Qh := Pk+1(Th) ∩ C(Ω) , (6.2)

whereas the remaining subspaces remain as specified in (6.1).

6.2 Verification of the stability conditions

In what follows we make sure that the spaces (6.1) and (6.2) satisfy the assumptions (H.1) - (H.8). Indeed,
the fact that the pair

(
Xh,Qh

)
verifies the inf-sup condition (H.1) was already proved in [8, Section 8.4.3]

and [7] for the two and three-dimensional case, respectively. In turn, the proof of (H.2) for the 2D case was
established in [27, Lemma 4.3] thanks to the boundedness of the L2-type projector onto the discrete kernel
of the bilinear forms d1 and d2. Whether this boundedness property holds in the 3D case remains still an
open question, and hence, up to the authors’ knowledge, there is no proof yet for (H.2) in 3D. As we will
see in what follows, all other hypotheses hold in both dimensions.

Regarding (H.3), the discrete inf-sup condition for d1 is available in [27, Lemma 4.4], and that for d2 is
shown next employing some results provided in [18, Appendix A].

Lemma 6.1. There exists a positive constant β2,d, independent of h, such that

sup
zh∈X2,h

zh ̸=0

d2(zh, qh)

∥zh∥X2,h

≥ β2,d ∥qh∥Q2,h
∀ qh ∈ Q2,h . (6.3)
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Proof. Given qh ∈ Q2,h, we first proceed as in the proof of Lemma 4.2, and apply again [32, Theorem 1.1]
to deduce that there exists a unique u ∈ H2(Ω) such that

∆u = qh in Ω , ∇u · n = 0 on Γ ,

∫
Ω
u = 0 , and

∥u∥2,Ω ≤ Creg ∥qh∥0,Ω , (6.4)

where Creg is a positive constant depending only on Ω. Then, defining w := ∇u ∈ H1(Ω), it follows that
div(w) = qh in Ω and w · n = 0 on Γ, whereas using (6.4) we obtain

∥w∥1,Ω ≤ ∥u∥2,Ω ≤ Creg ∥qh∥0,Ω . (6.5)

Next, let Πkh : H1(Ω) → RTk(Th) and Pk
h : L2(Ω) → Pk(Th) be the global Raviart–Thomas interpolator

and the L2(Ω)-orthogonal projector, respectively. Then, setting wh := Πkh(w) ∈ RTk(Th), well-known
properties of Πkh guarantee that

div(wh) = Pk
h(div(w)) = Pk

h(qh) = qh in Ω and wh · n = 0 on Γ , (6.6)

so that wh ∈ X2,h. In turn, since r belongs to the range specified by (3.7), it is easy to see that t := r and
s := 2 satisfy the constraints specified in [18, Lemma A.3], whence, along with (6.5), we get

∥wh∥0,r;Ω = ∥Πkh(w)∥0,r;Ω ≤ CΠ ∥w∥1,Ω ≤ CΠCreg ∥qh∥0,Ω , (6.7)

where CΠ is the positive constant indicated in [18, Lemma A.3]. In this way, from the first identity in (6.6)
and (6.7), we conclude that

∥wh∥r,div;Ω = ∥wh∥0,r;Ω + ∥div(wh)∥0,Ω ≤
(
CΠCreg + 1

)
∥qh∥0,Ω . (6.8)

Finally, bounding from below the supremum of (6.3) with wh ∈ X2,h, and using again the first identity in

(6.6), and (6.8), we arrive at (6.3) with β2,d :=
(
CΠCreg + 1

)−1
.

Furthermore, for the proof of (H.4) we refer to [19, Lemma 5.2], which corresponds to the preprint
version of [18]. More precisely, the proof there follows analogously to the one of [27, Lemma 4.3], except
that, instead of the operator defined in [27, Lemma 2.3], one employs the slight modification of it derived
in [18, Lemma 3.3]. In turn, the proofs of the discrete inf-sup conditions required by (H.5), which adapt
the continuous analysis from [24, Lemma 4.4] to the present discrete setting, reduce basically to slight
modifications of those of [27, Lemma 4.5] (or [18, Lemma 5.3]).

On the other hand, we readily observe from (6.1) that div(H2,h) ⊆ Mh and V0,h ⊆ H1,h, which confirms
the verification of (H.6) and (H.7). Finally, we notice that (H.8) is proved in [27, Lemma 4.5].

6.3 Rates of convergence

Here we provide the rates of convergence of the Galerkin schemes (5.1) with the specific finite element
subspaces introduced in Section 6.1, for which we first collect the respective approximation properties.

(APuh ) there exists a positive constant C, independent of h, such that for each s ∈ [1, k + 1], and for each
v ∈ Hs+2(Ω), there holds

dist
(
v,Xh

)
:= inf

vh∈Xh

∥v − vh∥1,Ω ≤ C hs+1 ∥v∥s+2,Ω ,
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(APθ
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1] when n = 2

(resp. s ∈ [1, k + 1] when n = 3), and for each ϑ ∈ Hl(Ω) when n = 2 (resp. ϑ ∈ Hs+1(Ω) when n = 3),
there holds

dist(ϑ,Qh) := inf
ϑh∈Qh

∥ϑ− ϑh∥0,Ω ≤ C hl ∥ϑ∥l,Ω ,

and when n = 3
dist(ϑ,Qh) := inf

ϑh∈Qh

∥ϑ− ϑh∥0,Ω ≤ C hs+1 ∥ϑ∥s+1,Ω .

In turn, thanks to the properties of the Raviart–Thomas interpolator (see, e.g., [27, Section 4.1, eqns.
(4.6) and (4.7)] and [18, Appendix A]) and the scalar and vector versions of the L2-type projector onto
piecewise polynomials ([25, Proposition 1.135]), along with interpolation estimates of Sobolev spaces, we
have the following statements:

(APzh) there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for each
w ∈ Wl,r(Ω) ∩Hr

0(div; Ω) with div(w) ∈ Hl(Ω), there holds

dist(w,X2,h) := inf
wh∈X2,h

∥w −wh∥r,div;Ω ≤ C hl
{
∥w∥0,r;Ω + ∥div(w)∥0,Ω

}
,

(
APp

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for each

q ∈ Wl,r(Ω), there holds

dist(q,Q1,h) := inf
qh∈Q1,h

∥q − qh∥0,r;Ω ≤ C hl ∥q∥l,r;Ω ,

(
APφh

)
there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for each

ψ ∈ Wl,r(Ω) with div(ψ) ∈ Wl,r(Ω), there holds

dist(ψ,X2,h) := inf
ψh∈X2,h

∥ψ −ψh∥r,divr;Ω ≤ C hl
{
∥ψ∥0,r;Ω + ∥div(ψ)∥0,r;Ω

}
,

(
APχ

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for each

η ∈ Wl,r(Ω), there holds

dist(η,M1,h) := inf
ηh∈M1,h

∥η − ηh∥0,r;Ω ≤ C hl ∥η∥l,r;Ω .

(
APtih

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for each

si ∈ Wl,r(Ω), there holds

dist(si,H1,h) := inf
si,h∈H1,h

∥si − si,h∥0,Ω ≤ C hl ∥si∥l,Ω ,

(
APσih

)
there exists a positive constant C, independent of h, such that for each l ∈ [1, k + 1], and for each

τ i ∈ Hl(Ω) with div(τ i) ∈ Wl,ϱ(Ω), there holds

dist(τ i,H2,h) := inf
τ i,h∈H2,h

∥τ i − τ i,h∥divϱ;Ω ≤ C hl
{
∥τ i∥0,Ω + ∥div(τ i)∥0,ϱ;Ω

}
, and
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(
APξi

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for each

ηi ∈ Wl,ρ(Ω), there holds

dist(ηi,Mh) := inf
ηi,h∈Mh

∥ηi − ηi,h∥0,ρ;Ω ≤ C hl ∥ηi∥l,ρ;Ω .

Hence, we can state the following main theorem.

Theorem 6.2. Let ((u, θ), (z, p)) ∈ (X × Q) × (X2 × Q1), (φ, χ) ∈ X2 × M1, and (⃗ti, ξi) ∈ H × M, be
the unique solution of (3.37), with (z,φ) ∈ W(R), and let ((uh, θh), (zh, ph)) ∈ (Xh ×Qh)× (X2,h ×Q1,h),
(φh, ξh) ∈ X2,h ×M1,h, and (⃗ti,h, ξi,h) ∈ Hh ×Mh, be the unique solution of (5.1), with (zh,φh) ∈ W(Rd),
which is guaranteed by Theorems 4.10 and 5.4, respectively. Assume the hypotheses of Theorem 5.5, and
that there exist s, l ∈ [1, k + 1], such that u ∈ Hs+2(Ω), θ ∈ Hl(Ω) (resp. θ ∈ Hs+1(Ω) when n = 3),
z ∈ Wl,r(Ω), div(z) ∈ Hl(Ω), p ∈ Hl(Ω), φ ∈ Wl,r(Ω), div(φ) ∈ Wl,r(Ω), χ ∈ Wl,r(Ω), ti ∈ Hl(Ω),
σi ∈ Hl(Ω), div(σi) ∈ Wl,ϱ(Ω), and ξi ∈ Wl,ρ(Ω), i ∈ {1, 2}. Then, there exists a positive constant C,
independent of h, such that, when n = 2

E ≤ hmin{s+1,l}
{
∥u∥s+2,Ω + ∥θ∥l,Ω + ∥z∥l,r;Ω + ∥div(z)∥l,Ω + ∥p∥l,r;Ω + ∥φ∥l,r;Ω

+ ∥div(φ)∥l,r;Ω + ∥χ∥l,r;Ω +

2∑
i=1

(
∥ti∥l,Ω + ∥σi∥l,Ω + ∥div(σi)∥l,ϱ;Ω + ∥ξi∥l,ρ;Ω

)}
,

and when n = 3

E ≤ hmin{s+1,l}
{
∥u∥s+2,Ω + ∥θ∥s+1,Ω + ∥z∥l,r;Ω + ∥div(z)∥l,Ω + ∥p∥l,r;Ω + ∥φ∥l,r;Ω

+ ∥div(φ)∥l,r;Ω + ∥χ∥l,r;Ω +

2∑
i=1

(
∥ti∥l,Ω + ∥σi∥l,Ω + ∥div(σi)∥l,ϱ;Ω + ∥ξi∥l,ρ;Ω

)}
,

Proof. It follows directly from the Céa estimate (5.20) and the above approximation properties.

7 Numerical tests

For the computational results that verify the error estimates from Section 6 we employ the open source
finite element library GridapDistributed [4]. Rather than separating the coupled problem by fixed-point
iterations between three subproblems, we solve the nonlinear algebraic system (5.1) with Newton–Raphson’s
method with exact Jacobian. We set a tolerance of 10−8 on either the ℓ∞-norm of the nonlinear residual
or the ℓ2-norm of the incremental solution vector, and the resulting linear systems are solved with the
unsymmetric multifrontal direct method for sparse matrices UMFPACK.

Example 1. We carry out the error history associated with the family of discretizations specified in Section
6.1, using polynomial degrees k = 0, 1, 2 (additional tests conducted with Brezzi–Douglas–Marini elements
for the Darcy flux, electric field and ionic fluxes, not shown here, showed the same qualitative behavior as
the one reported here). We take the unit square and unit cube domains Ω = (0, 1)d (d = 2, 3), with unity
model parameters. The Lebesgue exponents in (3.6) are chosen as r = 3, s = 3

2 , ρ = 6, ϱ = 6
5 (and they

are valid for both 2D and 3D cases). We manufacture the right-hand side and non-homogeneous boundary
data f , g, fi, χD, ξi,D in such a way that the governing equations have the following smooth exact solutions
to the primal strong form (2.1)-(2.3)

in 2D:

uex(x, y) =

(
sin(π[x + y])

cos(π[x2 + y2])

)
, pex(x, y) = sin(πx) sin(πy), χex(x, y) = cos(πx) cos(πy),

ξ1,ex(x, y) = cos(π[x + y]), ξ2,ex(x, y) = sin(π[x + y]),
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Biot unknowns
DoF h e(u) r(u) e(θ) r(θ) e(z) r(z) e(p) r(p)

Discretization with k = 0
154 0.7071 1.42e+0 ⋆ 1.98e+0 ⋆ 6.50e+0 ⋆ 3.58e-01 ⋆
612 0.3536 6.09e-01 1.221 1.12e+0 0.820 3.48e+0 0.902 1.61e-01 1.151

2440 0.1768 2.86e-01 1.091 5.68e-01 0.980 1.76e+0 0.980 7.79e-02 1.050
9744 0.0884 1.42e-01 1.012 2.85e-01 0.995 8.85e-01 0.995 3.86e-02 1.013
38944 0.0442 7.09e-02 0.998 1.42e-01 0.999 4.43e-01 0.999 1.93e-02 1.003
155712 0.0221 3.55e-02 0.997 7.12e-02 1.000 2.22e-01 1.000 9.63e-03 1.001

Discretization with k = 1
456 0.7071 3.63e-01 ⋆ 6.74e-01 ⋆ 2.06e+0 ⋆ 9.30e-02 ⋆

1808 0.3536 8.16e-02 2.155 1.64e-01 2.035 5.46e-01 1.918 2.47e-02 1.910
7200 0.1768 2.03e-02 2.005 4.16e-02 1.984 1.39e-01 1.975 6.32e-03 1.970
28736 0.0884 5.07e-03 2.004 1.04e-02 1.994 3.49e-02 1.994 1.59e-03 1.992
114816 0.0442 1.27e-03 2.001 2.61e-03 1.998 8.73e-03 1.998 3.97e-04 1.998
459008 0.0221 3.16e-04 2.000 6.53e-04 2.000 2.18e-03 2.000 9.94e-05 2.000

Discretization with k = 2
910 0.7071 6.03e-02 ⋆ 1.15e-01 ⋆ 4.69e-01 ⋆ 2.16e-02 ⋆

3612 0.3536 9.05e-03 2.736 1.72e-02 2.734 6.09e-02 2.946 2.83e-03 2.934
14392 0.1768 1.16e-03 2.967 2.33e-03 2.889 7.73e-03 2.978 3.60e-04 2.974
57456 0.0884 1.46e-04 2.987 2.96e-04 2.974 9.70e-04 2.994 4.53e-05 2.993
229600 0.0442 1.83e-05 2.993 3.72e-05 2.994 1.21e-04 2.998 5.66e-06 2.998
917952 0.0221 2.30e-06 2.996 4.65e-06 2.998 1.52e-05 3.000 7.08e-07 3.000

Table 7.1: Example1. Error history for the primal-mixed scheme in 2D, showing here only the Biot unknowns
(while DoF refers to the total number of degrees of freedom).

in 3D:


uex(x, y, z) =

 sin(π[x + y + z])

cos(π[x2 + y2 + z2])

cos(π[x + y + z])

 , pex(x, y, z) = sin(πx) sin(πy) sin(πz),

χex(x, y, z) = cos(πx) cos(πy) cos(πz), ξ1,ex(x, y, z) = cos(π[x + y + z]),

ξ2,ex(x, y, z) = sin(π[x + y + z]),

and the exact values of the mixed variables are assigned from the primal ones as

θex = αpex − λdivuex, zex = −κ
ν
∇pex, φex = ε∇χex, ti = ∇ξi,ex,

σi,ex = κi∇ξi,ex + qi κi∇χex +
κ

ν
ξi,ex∇pex.

For the numerical tests we consider mixed boundary conditions. Therefore, and due to the properties
of the smooth manufactured solutions, the formulation requires non-homogeneous traction and Darcy flux
terms

⟨[2µ ε(uex)− θexI]n,v⟩Γp and − ⟨ν
κ
w · n, pex⟩Γp ,

that appear as right-hand side functionals in the first and third equations of (3.20), respectively. Similarly,
we require the additional non-homogeneous source term∫

Ω
(divφex + ξ1,ex − ξ2,ex)γ,

on the right-hand side of the second equation in (3.24). We construct a sequence of six successively refined
structured grids l = 0, 1, . . . of maximum mesh size hl = 2−l

√
2 (in 2D) on which we generate approximate
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Mixed Poisson unknowns
DoF h e(φ) r(φ) e(χ) r(χ)

Discretization with k = 0
154 0.7071 6.60e+0 ⋆ 2.79e-01 ⋆
612 0.3536 3.56e+0 0.890 1.51e-01 0.888

2440 0.1768 1.81e+0 0.978 7.66e-02 0.978
9744 0.0884 9.08e-01 0.994 3.85e-02 0.994
38944 0.0442 4.54e-01 0.999 1.93e-02 0.999
155712 0.0221 2.27e-01 1.000 9.63e-03 1.000

Discretization with k = 1
456 0.7071 2.08e+0 ⋆ 9.25e-02 ⋆

1808 0.3536 5.52e-01 1.914 2.47e-02 1.902
7200 0.1768 1.41e-01 1.974 6.32e-03 1.970
28736 0.0884 3.53e-02 1.993 1.59e-03 1.992
114816 0.0442 8.85e-03 1.998 3.97e-04 1.998
459008 0.0221 2.21e-03 1.999 9.94e-05 2.000

Discretization with k = 2
910 0.7071 4.72e-01 ⋆ 2.16e-02 ⋆

3612 0.3536 6.14e-02 2.941 2.83e-03 2.930
14392 0.1768 7.81e-03 2.975 3.60e-04 2.973
57456 0.0884 9.81e-04 2.993 4.53e-05 2.993
229600 0.0442 1.23e-04 2.998 5.66e-06 2.998
917952 0.0221 1.54e-05 2.999 7.08e-07 3.000

Table 7.2: Example 1. Error history for the primal-mixed scheme in 2D, showing here only the mixed
Poisson unknowns (DoF here refers to the total number of degrees of freedom).

solutions, and we compute errors for each unknown el(·) and experimental orders of convergence

rl+1(·) =
log(el+1(·)/el(·))
log(hl+1/hl)

, l = 0, 1, . . .

Tables 7.1,7.2,7.3 portray the error history in 2D (we break it into Biot, mixed Poisson, and Nernst–Planck
unknowns), from which we can readily confirm a convergence of O(hk+1) for all field variables. The symbol
⋆ in the first refinement level indicates that no convergence rate is computed.

For every mesh refinement and polynomial degree, the Newton–Raphson algorithm has taken no more
than four iterations to achieve the desired converge criterion. We can also observe that the error asso-
ciated with the Raviart–Thomas vector fields of Darcy flux, electric field, and ionic fluxes (z,φ,σi) are
slightly higher than that in the remaining unknowns. Convergence results are also optimal in the 3D case,
which we report in Figure 7.1 for the second-order method (using, in particular, Taylor–Hood elements for
displacement-total pressure pair), where we see agreement with Theorem 6.2. Sample approximate solutions
are depicted in Figure 7.2.

Example 2. After the numerical verification of optimal convergence rates we address the simulation of
electrochemically coupled poroelasticity in radially unconfined compression. This type of tests are typical
in poromechanics [3, 17, 39], and have also been used for coupling with PNP equations in [36, 43, 47]
(where that model includes additional mechanical nonlinearities). The domain is the 2D cut of a disk of
cartilage tissue confined between two impermeable rigid plates, giving Ω = (0, 1.5) × (0, 0.5) mm2. On the
radial surface (the right edge of the 2D domain) we set zero fluid pressure, zero electrostatic potential,
prescribe the potential and ionic concentrations, as well as zero normal total stress. This allows free flow
of fluid and current along that boundary. On the left edge we impose zero normal displacement, zero
tangential total stress, and zero ionic fluxes and electric field. On the bottom plate we set zero normal
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Nernst–Planck unknowns
DoF h e(t1) r(t1) e(t2) r(t2) e(σ1) r(σ1) e(σ2) r(σ2) e(ξ1) r(ξ1) e(ξ2) r(ξ2)

Discretization with k = 0
154 0.707 1.54e+0 ⋆ 1.38e+0 ⋆ 1.17e+1 ⋆ 1.03e+1 ⋆ 4.18e-01 ⋆ 3.57e-01 ⋆
612 0.353 7.65e-01 1.00 7.84e-01 0.81 5.33e+0 1.13 6.53e+0 0.65 2.18e-01 0.93 2.13e-01 0.74
2440 0.176 3.84e-01 0.99 3.91e-01 1.00 2.65e+0 1.00 3.24e+0 1.01 1.09e-01 0.99 1.09e-01 0.96
9744 0.088 1.92e-01 0.99 1.95e-01 1.00 1.32e+0 1.00 1.63e+0 0.99 5.48e-02 0.99 5.47e-02 0.99
38944 0.044 9.62e-02 0.99 9.77e-02 1.00 6.62e-01 1.00 8.16e-01 1.00 2.74e-02 0.99 2.74e-02 0.99

155712 0.022 4.81e-02 1.00 4.88e-02 1.00 3.31e-01 1.00 4.08e-01 1.00 1.37e-02 1.00 1.37e-02 0.99
Discretization with k = 1

456 0.707 2.43e-01 ⋆ 3.68e-01 ⋆ 1.84e+0 ⋆ 4.83e+0 ⋆ 9.74e-02 ⋆ 9.07e-02 ⋆
1808 0.353 6.66e-02 1.86 8.57e-02 2.10 6.93e-01 1.41 1.03e+00 2.22 2.75e-02 1.82 2.74e-02 1.76
7200 0.176 1.70e-02 1.96 2.13e-02 2.00 1.74e-01 1.99 2.52e-01 2.03 6.96e-03 1.98 6.95e-03 1.97
28736 0.088 4.29e-03 1.98 5.32e-03 2.00 4.38e-02 1.99 6.29e-02 2.00 1.74e-03 1.99 1.74e-03 1.95

114816 0.044 1.08e-03 1.99 1.33e-03 2.00 1.10e-02 1.99 1.57e-02 1.99 4.36e-04 1.99 4.36e-04 1.99
459008 0.022 2.69e-04 1.99 3.32e-04 2.00 2.74e-03 2.00 3.93e-03 2.00 1.09e-04 2.00 1.09e-04 2.00

Discretization with k = 2
910 0.707 4.08e-02 ⋆ 6.06e-02 ⋆ 8.26e-01 ⋆ 4.92e-01 ⋆ 1.34e-02 ⋆ 1.63e-02 ⋆
3612 0.353 6.23e-03 2.71 7.25e-03 3.06 8.88e-02 3.21 1.25e-01 1.97 2.13e-03 2.65 2.16e-03 2.91
14392 0.176 8.02e-04 2.95 9.09e-04 2.99 1.11e-02 3.00 1.51e-02 3.04 2.69e-04 2.98 2.70e-04 3.00
57456 0.088 1.01e-04 2.98 1.14e-04 2.99 1.39e-03 2.99 1.88e-03 3.00 3.37e-05 2.97 3.38e-05 2.99

229600 0.044 1.27e-05 2.99 1.43e-05 2.99 1.74e-04 2.99 2.35e-04 3.00 4.22e-06 2.99 4.22e-06 3.00
917952 0.022 1.59e-06 2.99 1.78e-06 2.99 2.17e-05 3.00 2.94e-05 2.99 5.28e-07 3.00 5.28e-07 3.00

Table 7.3: Example 1. Error history for the primal-mixed scheme in 2D, showing here only the mixed
Nernst–Planck unknowns (DoF here refers to the total number of degrees of freedom).

Figure 7.1: Error history for the primal-mixed scheme in 3D, showing the convergence of all individual errors
for the Biot, mixed Poisson, and Nernst–Planck sub-systems (left, center, and right panels, respectively).

displacement, zero tangential stress, and zero fluxes, whereas on the top plate we prescribe a given normal
traction σn = (0,−M)t with M = 0.1N/mm2, together with zero fluxes. The model parameters are as
follows EY = 0.5N/mm2, νP = 0.1 (Young modulus and Poisson ratio), κ = 10−9mm2 (permeability),
κ1 = 1.28 × 10−2mm2/s, κ1 = 1.77 × 10−2mm2/s (ionic diffusivities), α = 0.8 (Biot–Willis coefficient),
c0 = 4 × 10−4 1/(N/mm2) (storativity), ν = 10−4N/mm2 s (fluid viscosity). As outputs, in Figure 7.3 we
report on the total stress tensor magnitude, cation and anion fluxes, and electric field. All quantities are
plotted on the deformed domain. We see the typical deformation of the rightmost part of the domain and
the Darcy flux moving in the horizontal direction. For this test we have used the second-order scheme
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Figure 7.2: Example 1. Sample of approximate solutions for the convergence test in 3D.

Figure 7.3: Example 2. Unconfined compression of poroelastic material between impermeable plates. Sample
of approximate solutions (displacement, Darcy flux, fluid pressure, electrostatic potential, cation and anion
fluxes, and cation and anion concentration shown on the deformed configuration).

(setting k = 1).

Example 3. Finally, we simulate the ion spreading and the poromechanical response of a fully saturated
deformable porous structure. For this we adapt the configuration in [23] and [37, Section 5.2] to the
poroelastic regime and use the domain Ω = (0, 1) × (0, 2), which we discretize into a structured mesh of
10’000 triangles. The boundary conditions are as follows: for the solid phase we set clamped conditions
u = 0 on the left boundary (x = 0) for the fluid phase we impose slip conditions z ·n = 0 everywhere on the
boundary. For the chemical species we assume that the normal trace of the total fluxes is zero everywhere
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Figure 7.4: Example 3. Ion spreading in a charged deformable cell. Sample of approximate solutions at
times t = 0.1, 0.4, 0.8, 2 (from left to right). We display the Darcy flux, electrostatic potential, and relative
concentration on the deformed configuration.

on the boundary σi · n = 0 (that is, the boundary is considered impenetrable for the ionic quantities),
which is imposed essentially. For the electrostatic sub-system we consider two separate sub-boundaries:
on the top segment (y = 2) we prescribe a given potential χ0 (representing a ground condition, imposed
naturally), on the vertical walls of the reservoir we set zero normal trace of the electric field φ · n = 0,
and the bottom segment is regarded as a positively charged surface φ · n = sE (the two last conditions are
imposed essentially).

Note that just for this test, the drag due to electric field and concentration difference is considered as
a right-hand side of the Darcy momentum equation. Also, for this test we consider the time-dependent
version of the equations and so we include the term 1

∆t
α
λ (θ

m+1 − θm) − 1
∆t(c0 + α2

λ )(cm+1 − cm) in the
mass conservation equation and the terms − 1

∆t(ξ
m+1
1 − ξm1 )− 1

∆t(ξ
m+1
2 − ξm2 ) in the two ion conservation

equations, where the superscriptsm,m+ 1 denote approximations at time instants tm, tm+1 using backward
Euler’s method. For this we take a constant time step ∆t = 0.01 and run the system until the final time
t = 2. The initial pressure and total pressure are zero and the initial concentrations of positively and

40



negatively charged particles are as follows

ξi,0(x) =
ξ̂0

2πR2
exp

{
−
(x− 1

2 + qi
8 )

2 + (y − 1 + qi
2 )

2

2R2

}
,

and the remaining parameters adopt the values (all adimensional) c0 = 0.01, α = 0.9, µ = 10, λ = 1000,
ε = 0.5, ν = 0.08, κ1 = κ2 = 0.01, sE = 1, χ0 = 0, ξ̂0 = 3, R = 1

4 .

Snapshots of the approximate solutions, computed using the lowest order method with k = 0, and taken
at four time instants are shown in Figure 7.4. We plot the net charge (difference between concentrations
of ionic concentrations), the line integral convolution of the relative fluid velocity, and the electrostatic
potential.
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Mart́ı, Yolanda Vásquez: A degenerating convection-diffusion model of a flotation
column: theory, numerics and applications

2024-09 Fernando Betancourt, Raimund Bürger, Julio Careaga, Lucas Romero:
Coupled finite volume methods for settling in inclined vessels with natural convection
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