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Abstract. This paper is devoted to the solution and stability of a one-dimensional model de-

picting Rao–Nakra sandwich beams, incorporating damping terms characterized by fractional

derivative types within the domain, specifically a generalized Caputo derivative with expo-

nential weight. To address existence, uniqueness, stability, and numerical results, fractional

derivatives are substituted by diffusion equations relative to a new independent variable, ξ,

resulting in an augmented model with a dissipative semigroup operator. Polynomial decay of

energy is achieved, with a decay rate depending on the fractional derivative parameters. Both

the polynomial decay and its dependency on the parameters of the generalized Caputo deriv-

ative are numerically validated. To this end, an energy-conserving finite difference numerical

scheme is employed.
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1. Introduction

In 1999, Liu, Trogdon and Yong [28] developed the following general three-layer laminated

beam–plate model:

ϱ1h1utt − E1h1uxx − τ = 0,

ϱ3h3vtt − E3h3uxx + τ = 0,

ϱhwtt + EIwxxxx −G1h1(wx + ϕ1)x −G3h3(wx + ϕ3)x − h2τx = 0,

ϱ1I1ϕ1tt − E1I1ϕ1xx − h1

2 τ +G1h1(wx + ϕ1) = 0,

ϱ3I3ϕ3tt − E3I3ϕ3xx − h3

2 τ +G3h3(wx + ϕ3) = 0.

(1.1)

The physical parameters hi, ϱi, Ei, Gi, Ii > 0 are the thickness, density, Young’s modulus,

shear modulus and moments of inertia of the i-th layer for i = 1, 2, 3, from bottom to top,

respectively. In addition, ϱh = ϱ1h1 + ϱ3h3 and EI = E1I1 + E3I3.

The Rao–Nakra sandwich beam model [45] is the following:

ρ1utt(x, t)− ϑuxx(x, t)− k(−u(x, t) + v(x, t) + γwx(x, t)) = 0,

ρ2vtt(x, t)− χvxx(x, t) + k(−u(x, t) + v(x, t) + γwx(x, t)) = 0,

ρ3wtt(x, t) + ζwxxxx(x, t)− k(−u(x, t) + v(x, t) + γwx(x, t))x = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(1.2)

with 0 < x < ℓ and t > 0. Here u = u(x, t) and v = v(x, t) are the longitudinal displacement.

w = w(x, t) is the transverse displacement of the beam. This system is derived from the system

(1.1) when we consider the core material to be linearly elastic, that is, τ = 2G2γ with the shear

strain

γ =
1

2h2
(−u+ v + αwx) and α = h2 =

1

2
(h1 + h3),

where k = G2

h2
, the shear modulus G2 = E2

2(1+ν) , and −1 < ν < 1
2 is the Poisson ratio.

Many authors have been working on the system (1.2) from different points of view: see [27, 39,

40, 46] and the references therein. In the past three decades there has been a growing interest

by many reserchers for the study of fractional calculus in different fields of sciences [32, 48, 49].

Several aspects of engineering, applied sciences, and mathematical physics benefitted from this

ascending wave of applications. Space sciences, fluid mechanics, porous media flows, viscoelastic

and biological processes are but a few areas in which fractional order differential equations have

become a favored tool to tread new path. To give some examples, fractional derivatives have
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been used to model frequency dependent damping behavior of many viscoelastic materials as well

modeling many chemical processes. Many problems in several scientific applied areas, including

the analysis of viscoelastic materials, heat conduction in materials with memory, electrodynamics

with memory, signal processing, among others, can be modeled by fractional differential calculus.

Indeed, many investigations have shown that models involving fractional derivatives are more

realistic to represent some natural phenomena than models involving classical derivatives. For

more information we refer to [24, 34, 47] and the references therein. For example, the wave

equation with boundary fractional damping has been treated in [34, 35] where the strong stability

and the lack of uniform stabilization were proved. Applications of this kind are also found in

[33, 36, 42, 44, 50] and the references therein.

In [50] the authors studied the Rao–Nakra system with a boundary dissipation of fractional

derivative type. They established the polynomial stability of the system. In this article we are

interested in studying the polynomial stabilization to the system (1.3) from a theoretical and

numerical point of view. In order to achieve this, we eliminate the dissipation given on the

border and place the dissipation in the domain. The main idea to reach this result is to use an

idea given in [4]. It is important to note that the imposed dissipation is of a fractional derivative

type. Our method is based on the fact that the input–output relationship in a certain diffusion

equation introduced by Mbodje in [34] is realized by a fractional derivative operator.

Numerical approximations of derivatives and fractional integrals have been extensively studied,

developed, and refined. Comprehensive reviews on this topic are available in [11, 26]. Many of

these approaches involve direct approximations of the Riemann–Liouville, Caputo [18, 31, 13,

14, 15], or Grünwald–Letnikov integral [26], using quadrature methods, finite differences, and

truncated summations [19]. While some progress has been made in enhancing the convergence

rate, such as through trapezoidal approximation [26] or spline interpolation [17], these methods

do not inherently preserve the energy conservation property of the Rao–Nakra model under

study, nor do they maintain stability in the presence of dissipative terms. In this work, we address

this challenge by employing a suitable combination of the β-Newmark method [38], coupled with

a Crank–Nicolson method for the Mbodje diffusion equation, to achieve our objective.

Without lost of generality, we will consider the following system for ρ1 = ρ2 = ρ3 = 1:

utt − ϑuxx − k(−u+ v + γwx) + ∂α, ηt u = 0, (0, ℓ)× (0,+∞),

vtt − χvxx + k(−u+ v + γwx) + ∂α, ηt v = 0, (0, ℓ)× (0,+∞),

wtt + ζwxxxx − k(−u+ v + γwx)x + ∂α, ηt w = 0, (0, ℓ)× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), (0, ℓ),

v(x, 0) = v0(x), vt(x, 0) = v1(x), (0, ℓ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), (0, ℓ),

u(0, t) = u(ℓ, t) = 0, v(0, t) = v(ℓ, t) = 0, (0,+∞),

w(0, t) = w(ℓ, t) = wx(0, t) = wx(ℓ, t) = 0, (0,+∞),

(1.3)
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with 0 < x < ℓ, t > 0, and real-valued functions u = u(x, t) and v = v(x, t), w = w(x, t).

The rest of the paper is divided into five sections. In Section 1 we show that the system (1.3) may

be replaced by an augmented system (2.10) obtained by coupling an equation with a suitable

diffusion, and we study the energy functional associated to system. In Section 3, we establish

the existence and uniqueness of solutions of the system (2.10); for this we use [5, 4]. In section

4 we prove the strong stability, the lack of uniform stabilization and the polynomial stability of

the system (2.10). In Section 5, we give a numerical study of the polynomial stability.

Throughout this paper, C is a generic constant, not necessarily the same at each occasion (it

may change from line to line) and depending on the indicated quantities.

2. Augmented Model

This section is devoted to the reformulation of the model (1.3) with boundary conditions (1.3)7, 8

as an augmented system. First we provide a brief review of fractional calculus. There are many

definitions of fractional derivatives [18], among them those of Riemann–Liouville and Caputo

are the most widely used [31]. The latter has the same Laplace transform as the integer order

derivative, so it is widely used in control theory. In this paper the fractional derivative damping

force is regarded as a control force to study the properties of free damped vibrations of the

system, hence the Caputo definition [13, 14, 15] is used here. Let 0 < α < 1. The Caputo

fractional integral of order α is defined by the formula

(2.1) Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Gamma function, f ∈ L1(0,+∞) and t > 0.

The Caputo fractional derivative operator of order α is defined by the expression

(2.2) Dαf(t) = I1−αDf(t) :=
1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds.

The Caputo definition of fractional derivative possesses a very simple but interesting interpre-

tation: if the function f(t) represents the strain history within a viscoelastic material whose

relaxation function is [Γ(1 − α)tα]−1, then the material will experience at any time t a total

stress given by the expression Dαf(t). Also, it easy to show that Dα is a left inverse of Iα, but

in general it is not a right inverse. More precisely, we have

DαIαf = f, IαDαf(t) = f(t)− f(0).

See [47] for the proof of above equalities and for more properties of fractional calculus.

In this work, we consider a slightly different version of (2.1) and (2.4). In [16], Choi and

MacCamy introduced the following definition of fractional integro-differential operators with an
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exponential weight. Given 0 < α < 1 and η ≥ 0, the exponential fractional integral of order α

is defined by

(2.3) Iα, ηf(t) =
1

Γ(α)

∫ t

0

e−η(t−s)(t− s)α−1f(s)ds,

and the exponential fractional derivative operator of order α is defined by

(2.4) ∂α, η
t f(t) =

1

Γ(1− α)

∫ t

0

e−η (t−s)(t− s)−αf ′(s)ds.

Note that ∂α, η
t f(t) = I1−α, ηf ′(t).

We will need later the following results:

Theorem 2.1. [34] Let µ be the function

µ(ξ) = |ξ|(2α−1)/2, ξ ∈ R, 0 < α < 1.(2.5)

Then the relation between the Input U and the Output O is given by the following system:

φt(t, ξ) + |ξ|2φ(t, ξ) = µ(ξ)U(t), ξ ∈ R, t > 0,(2.6)

φ(0, ξ) = 0,(2.7)

O = π−1 sin(απ)

∫
R
µ(ξ)φ(t, ξ)dξ.(2.8)

This implies that

O = I1−αU,(2.9)

where U ∈ C([0, +∞)).

Lemma 2.2. [1, Lemma 2.1] If λ ∈ D = {λ ∈ C : Reλ+ η > 0 or Imλ ̸= 0}, then

∫
R

µ2(ξ)

ξ2 + η + λ
dξ =

π

sin(απ)
(η + λ)α−1.

Our strategy requires the elimination of the fractional derivatives in time from the domain

condition in the system (1.3). To this, setting µ(ξ) = |ξ|(2α−1)/2, ξ ∈ R, C = π−1 sin(απ), and

exploiting the technique from [21], we reformulate the system (1.3) by using Theorem 2.1. This

leads to the following augmented model, where (x, t, ξ) ∈ (0, ℓ)×(0, +∞)×R and we introduce
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the constant C := π−1 sin(απ):



utt(x, t)− ϑuxx(x, t)− k(−u(x, t) + v(x, t) + γwx(x, t))

+ C
∫
R µ(ξ)φ(x, t, ξ)dξ = 0,

φt(x, t, ξ) + (ξ2 + η)φ(x, t, ξ) = µ(ξ)ut(x, t),

vtt(x, t)− χvxx(x, t) + k(−u(x, t) + v(x, t) + γwx(x, t))

+ C
∫
R µ(ξ)ϕ(x, t, ξ)dξ = 0,

ϕt(x, t, ξ) + (ξ2 + η)ϕ(x, t, ξ) = µ(ξ)vt(x, t),

wtt(x, t) + ζwxxxx(x, t)− k(−u(x, t) + v(x, t) + γwx(x, t))x

+ C
∫
R µ(ξ)ψ(x, t, ξ)dξ = 0,

ψt(x, t, ξ) + (ξ2 + η)ψ(x, t, ξ) = µ(ξ)wt(x, t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

u(0, t) = u(ℓ, t) = 0, v(0, t) = v(ℓ, t) = 0,

w(0, t) = w(ℓ, t) = wx(0, t) = wx(ℓ, t) = 0

φ(x, 0, ξ) = 0, ϕ(x, 0, ξ) = 0, ψ(x, 0, ξ) = 0.

(2.10)

3. Setting of the Semigroup

In this section, we discuss the existence and uniqueness of solutions for the coupled system (2.10)

by the semigroup theory [41, 43].

We will use the standard L2(0, ℓ) space; the scalar product and the norm are denoted by

⟨φ, ψ⟩L2(0, ℓ) =

∫ ℓ

0

φψ dx and ∥ψ∥2L2(0, ℓ) =

∫ ℓ

0

|ψ|2dx.

We introduce the Hilbert space

H = H1
0 (0, ℓ)×H1

0 (0, ℓ)×H2
0 (0, ℓ)× L2(0, ℓ)× L2(0, ℓ)× L2(0, ℓ)

×L2(R, L2(0, ℓ))× L2(R, L2(0, ℓ))× L2(R, L2(0, ℓ))(3.1)
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equipped with the following inner product:

⟨U , Ũ⟩H =

∫ ℓ

0

UŨdx+

∫ ℓ

0

V Ṽ dx+

∫ ℓ

0

WW̃dx

+ ϑ

∫ ℓ

0

uxũxdx+ χ

∫ ℓ

0

vxṽxdx+ ζ

∫ ℓ

0

wxxw̃xxdx

+ k

∫ ℓ

0

(−u+ v + γ wx)(−ũ+ ṽ + γw̃x)dx

+ C

∫
R
⟨φ, φ̃⟩L2(0, ℓ)dξ + C

∫
R
⟨ϕ, ϕ̃⟩L2(0, ℓ)dξ + C

∫
R
⟨ψ, ψ̃⟩L2(0, ℓ)dξ,(3.2)

where U = (u, v, w, U, V, W, φ, ϕ, ψ)T and Ũ = (ũ, ṽ, w̃, Ũ , Ṽ , W̃ , φ̃, ϕ̃, ψ̃)T . We wish to

transform the initial boundary value problem (2.10) into an abstract Cauchy problem in the

Hilbert space H. For this we introduce the functions ut = U, vt = V, wt = W, and we rewrite

the system (2.10) as the following initial value problem:

dU
dt

(t) = AU(t), U(0) = U0, ∀ t > 0.(3.3)

Here U is as above, U0 = (u0, v0, w0, u1, v1, w0, 0, 0, 0)
T , and the operator A : D(A) ⊂ H → H

is given by the formula

(3.4) A



u

v

w

U

V

W

φ

ϕ

ψ



=



U

V

W

ϑuxx + k(−u+ v + γwx)− C
∫
R µ(ξ)φ(x, ξ)dξ

χvxx − k(−u+ v + γwx)− C
∫
R µ(ξ)ϕ(x, ξ)dξ

−ζwxxxx + k(−u+ v + γwx)x − C
∫
R µ(ξ)ψ(x, ξ)dξ

−(ξ2 + η)φ(x, ξ) + µ(ξ)U(x)

−(ξ2 + η)ϕ(x, ξ) + µ(ξ)V (x)

−(ξ2 + η)ψ(x, ξ) + µ(ξ)W (x)



.
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with the domain

D(A) =
{
U = (u, v, w, U, V, W, φ, ϕ, ψ) ∈ H : U, V ∈ H1

0 (0, ℓ),W ∈ H2
0 (0, ℓ),

ϑuxx + k(−u+ v + γwx)− C

∫
R
µ(ξ)φ(x, ξ)dξ ∈ L2(0, ℓ),

χvxx − k(−u+ v + γwx)− C

∫
R
µ(ξ)ϕ(x, ξ)dξ ∈ L2(0, ℓ),

− ζwxxxx + kγ(−u+ v + γwx)x − C

∫
R
µ(ξ)ψ(x, ξ)dξ ∈ L2(0, ℓ),

− (ξ2 + η)φ(x, ξ) + µ(ξ)U(x) ∈ L2(R, L2(0, ℓ))

− (ξ2 + η)ϕ(x, ξ) + µ(ξ)V (x) ∈ L2(R, L2(0, ℓ))

− (ξ2 + η)ψ(x, ξ) + µ(ξ)W (x) ∈ L2(R, L2(0, ℓ))

ξφ(x, ξ), ξϕ(x, ξ), ξψ(x, ξ) ∈ L2(R, L2(0, ℓ))}.

Let the operator A : D(A) ⊂ H → H which is given by

(3.5) A


u

v

w

 =


−ϑuxx − k(−u+ v + γwx)

−χvxx + k(−u+ v + γwx)

ζwxxxx − k(−u+ v + γwx)x

 ,

with the domain D(A) =
[
H2(0, ℓ) ∩H1

0 (0, ℓ)
]
×
[
H2(0, ℓ) ∩H1

0 (0, ℓ)
]
×
[
H4(0, ℓ) ∩H2

0 (0, ℓ)
]
,

H = (L2(0, ℓ))3.

We note that the operator A is self-adjoint and strictly positive.

So, the problem (1.3) can be rewritten as following, as in [4, 5]:

(3.6)

 Ztt(t) +AZ(t) +BB∗∂α,ηt Z(t) = 0, t > 0

Z(0) = Z0, Zt(0) = Z1,

where B = B∗ = IH , Z(t) = (u(t), v(t), w(t))T and Z0 = (u0, v0, w0)
T , Z1 = (u1, v1, w1)

T .

We define

H0 = H1
0 (0, ℓ)×H1

0 (0, ℓ)×H2
0 (0, ℓ)× L2(0, ℓ)× L2(0, ℓ)× L2(0, ℓ)(3.7)

equipped with the inner product given by

⟨U , Ũ⟩H0 =

∫ ℓ

0

UŨdx+

∫ ℓ

0

V Ṽ dx+

∫ ℓ

0

WW̃dx

+ ϑ

∫ ℓ

0

uxũxdx+ χ

∫ ℓ

0

vxṽxdx+ ζ

∫ ℓ

0

wxxw̃xxdx

+ k

∫ ℓ

0

(−u+ v + γ wx)(−ũ+ ṽ + γw̃x)dx,(3.8)

where U = (u, v, w, U, V, W )T and Ũ = (ũ, ṽ, w̃, Ũ , Ṽ , W̃ )T .
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Then, the operator A0 : D(A0) ⊂ H0 → H0 given by

(3.9) A0



u

v

w

U

V

W



=



U

V

W

ϑuxx + k(−u+ v + γwx)− U

χvxx − k(−u+ v + γwx)− V

−ζwxxxx + k(−u+ v + γwx)x −W



.

with the domain

D(A0) = [H2(0, ℓ)×H1
0 (0, ℓ)]

2 × [H4(0, ℓ) ∩H2
0 (0, ℓ)]×H2

0 (0, ℓ).

We recall two propositions from [4, 5]:

Proposition 3.1. [5, Proposition 2.6.2] The operator A0 generates a C0-semigroup of contrac-

tions in the Hilbert space H0. Moreover, the following auxiliary problem:



utt(t)− ϑuxx(t)− k(−u(t) + v(t) + γwx(t)) + ut(t) = 0,

vtt(t)− χvxx(t) + k(−u(t) + v(t) + γwx(t)) + vt(t) = 0,

wtt(t) + ζwxxxx(t)− kγ(−u(t) + v(t) + γwx(t))x + wt(t) = 0,

u(0, t) = u(ℓ, t) = 0, v(0, t) = v(ℓ, t) = 0,

w(0, t) = w(ℓ, t) = wx(0, t) = wx(ℓ, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(3.10)

admits a unique solution (u(x, t), v(x, t), w(x, t)) such that if (u0, v0, w0, u1, v1, w1) ∈ D(A0),

then the solution (u(x, t), v(x, t), w(x, t)) of (3.10) verifies the following regularity property:

U = (u, v, w, ut, vt, wt) ∈ C([0, +∞) : D(A0)) ∩ C1([0, +∞), H0),

and when (u0, v0, w0, u1, v1, w1) ∈ H0, then

U = (u, v, w, ut, vt, wt) ∈ C([0, +∞), H0).
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The energy of the solution of the system (3.10) is defined as follows:

E0(t) =
1

2

[
∥ut(t)∥2L2(0, ℓ) + ∥vt(t)∥2L2(0, ℓ) + ∥wt(t)∥2L2(0, ℓ)

+ ϑ∥u(t)∥2H1
0 (0, ℓ)

+ χ∥v(t)∥2H1
0 (0, ℓ)

+ ζ∥w(t)∥2H2
0 (0, ℓ)

+ k∥ − u(t) + v(t) + γwx(t)∥2L2(0, ℓ)

]
,(3.11)

and it is decreasing function of the time t. In particular, we have

dE0(t)

dt
= −∥ut(t)∥2L2(0, ℓ) − ∥vt(t)∥2L2(0, ℓ) − ∥wt(t)∥2L2(0, ℓ).(3.12)

Proposition 3.2. [5, Theorem 2.3.1] The operator A generates a C0-semigroup of contractions

in the Hilbert space H. Hence the problem (3.10) admits a unique solution

(u(x, t), v(x, t), w(x, t), φ(x, t, ξ), ϕ(x, t, ξ), ψ(x, t, ξ))

such that if (u0, v0, w0, u1, v1, w1, 0, 0, 0) ∈ D(A), then the solution (u, v, w, φ, ϕ, ψ) of (3.10)

satisfies the following regularity property:

U = (u, v, w, ut, vt, wt, φ, ϕ, ψ) ∈ C([0, +∞), D(A)) ∩ C1([0, +∞), H),

and when (u0, v0, w0, u1, v1, w1, 0, 0, 0) ∈ H, then

U = (u, v, w, ut, vt, wt, φ, ϕ, ψ) ∈ C([0, +∞), H).

The energy of the system (3.10), defined by

E(t) :=
1

2
∥(u, v, w, ut, vt, wt, φ, ϕ, ψ)∥2H ,(3.13)

is decreasing in time t. In particular, we have

dE(t)

dt
=− C

∫
R
(|ξ|2 + η)∥φ(t, ξ)∥2L2(0, ℓ)dξ − C

∫
R
(|ξ|2 + η)∥ϕ(t, ξ)∥2L2(0, ℓ)dξ

− C

∫
R
(|ξ|2 + η)∥ψ(t, ξ)∥2L2(0, ℓ)dξ.(3.14)

4. Non-uniform stabilization

4.1. Polynomial stability for η = 0.. Assume that η = 0, then the operator A is not onto

and consequently 0 /∈ ϱ(A) the resolvent set of A.
Since the embedding H1

0 (0, ℓ)×H1
0 (0, ℓ)×H2

0 (0, ℓ) ⊂ L2(0, ℓ)×L2(0, ℓ)×L2(0, ℓ) is compact

and the only solution of the following problem:
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

utt − ϑuxx − k(−u+ v + γwx) = 0, (0, ℓ)× (0, +∞),

vtt − χvxx + k(−u+ v + γwx) = 0, (0, ℓ)× (0, +∞),

wtt + ζwxxxx − k(−u+ v + γwx)x = 0, (0, ℓ)× (0, +∞),

ut(x, t) = 0, vt(x, t) = 0, wt(x, t) = 0, (0, ℓ)× (0, +∞),

u(0, t) = u(ℓ, t) = 0, v(0, t) = v(ℓ, t) = 0, (0, +∞),

w(0, t) = w(ℓ, t) = wx(0, t) = wx(ℓ, t) = 0, (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), (0, ℓ),

v(x, 0) = v0(x), vt(x, 0) = v1(x), (0, ℓ),

w(x, 0) = w0(x), wt(x, 0) = w1(x), (0, ℓ),

(4.1)

is the trivial one.

Then according to [5, Sect. 2.4] the semigroup (etA)t≥0 is strongly stable, i.e.,

∥etAU0∥H −→ 0 as t → +∞

for all initial data U0 ∈ H.

To determine the rate of stability in this case, we need the following result [7, Theorem 8.4]:

Theorem 4.1 ([7]). Let T (t) be a bounded C0-semigroup on a Hilbert space X with generator

H. Assume that σ(H) ∩ iR = {0} and that there exist β ≥ 1, γ > 0 such that

∥∥(iλI −H)−1
∥∥
L(X)

≤

 O(|λ|−β), λ→ 0,

O(|λ|γ), λ→ ∞.

Then, there exists a constant C > 0 such that

∥T (t)z∥X ≤ C

t
1

max (β,γ)

∥z∥D(H) , ∀ t > 0, z ∈ D(H) ∩R(H),

where D(H) is the domain of H and R(H) is the range of H.

Based on Theorem 4.1, a simple adaptation of the proofs of [8, Theorems 5.8 and 5.9] (see also

[4, 5]) lead to the following stability result:

Proposition 4.2. If η = 0, then there exists a C > 0 such that

(4.2)
∥∥etAU0

∥∥
H ≤ C√

t
∥U0∥D(A) , ∀ t > 0, U0 ∈ D(A) ∩R(A),

where R(A) is the range of A.

4.2. Polynomial stability for η > 0. In this case there exists δ, C > 0, such that the auxiliary

dissipative operator satisfies the following relation:∥∥etA0
∥∥
L(H0)

≤ C e−δt, ∀ t ≥ 0.

Applying [5, Corollary 2.6.1] hence we obtain the following polynomial decay result for the

systems (1.3) and (2.10):
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Proposition 4.3. If η > 0, then the semigroup (etA)t≥0 is polynomially stable, namely there

exists a constant C > 0 such that

∥etA(u0, v0, w0, u1, v1, w1, φ0, ϕ0, ψ0)∥H

≤ C

(1 + t)
1

1−α

∥(u0, v0, w0, u1, v1, w1, φ0, ϕ0, ψ0)∥D(A), ∀ t ≥ 0,

for all initial data (u0, v0, w0, u1, v1, w1, φ0, ϕ0, ψ0) ∈ D(A). In particular, the energy of the

strong solution of (1.3) and (2.10) satisfies the following estimate:

E(t) ≤ C

(1 + t)
2

1−α

∥(u0, v0, w0, u1, v1, w1, 0, 0, 0)∥2D(A), ∀ t > 0.

5. Numerical study

In this section we will verify numerically the polynomial rate of decay obtained in the previous

section.

5.1. Linear equations of Motion. First, we approximate the longitudinal and transverse

displacement vector [u, v, w]⊤ in space using an energy-conservative finite difference method.

For J ∈ N and δx = ℓ/J , we define xj , with j = 1, . . . , J , as a uniform discretization of the

interval (0, ℓ), obtaining a vector U = [u(t),v(t),w(t)]⊤ approximation of [u, v, w]⊤ in R3J . We

obtain the linear equation of motion

(5.1) MÜ(t) +KU(t) +C
α,η

U (t) = 0

where
α,η

U (t) = Dα,ηU(t) is the generalized Caputo fractional derivative defined in (2.2). In

addition, and according to a discretization consistent with (1.3), we choose M = C = I3J

(identity matrix). The stiffness matrix is given by K = Kstress +Kcoupling, where

Kstress =


−ϑD2

−χD2

ζD4

 , Kcoupling = k


IJ −IJ γR

−IJ IJ −γR
γRT −γRT −γ2D2.


Here, D2 and D4 are the finite difference matrix approximation of ∂xx and ∂xxxx respectively

with the boundary conditions (1.3)7,8, and R is the upper triangular matrix, obtained from the

Cholesky decomposition D2 = −RTR. Using uniform finite differences we have(
D2u

)
j

=
uj−1 − 2uj + uj+1

δx2
,(

D4w
)
j

=
wj−2 − 4wj−1 + 6wj − 4wj+1 +wj+2

δx4
, J = 1, . . . , J.

According to the boundary conditions (1.3)7,8, we seek the solution of Finite Difference in

XJ :=
{
U = [u(t),v(t),w(t)]⊤ ∈ R3J

}
,

considering u0 = uJ+1 = v0 = vJ+1 = w0 = wJ+1 = v−1 = vJ+2 = 0.
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5.2. Time discretization. In order to preserve the energy with a second order scheme in time,

we choose a β-Newmark scheme for w. The method consists of updating the displacement,

velocity and acceleration vectors at the current time tn = nδt to the time tn+1 = (n + 1)δt,

a small time interval δt later. The Newmark algorithm [38] is based on a set of two relations

expressing the forward displacement Un+1 and velocity U̇n+1 in terms of their current values

and the forward and current values of the acceleration:

U̇n+1 = U̇n + (1− γ̃)δt Ün + γ̃δt Ün+1,(5.2)

Un+1 = Un + δtU̇n +

(
1

2
− β̃

)
δt2 Ün + β̃δt2 Ün+1,(5.3)

where β̃ and γ̃ are parameters of the methods that will be fixed later. Replacing (5.2)–(5.3) in

the equation of motion (5.1), we obtain

(5.4)
(
M+ β̃δt2 K

)
Ün+1 +C

α,η

U n+1 = −K

(
Un + δtU̇n +

(
1

2
− β̃

)
δt2Ün

)
.

5.3. Approximation of fractional derivatives. At this state we have two possibilities: (1)

approximate the fractional derivative using a classical finite difference method such as the trun-

cation of the Grünwald—Letnikov derivative [19], which in turn is an equivalent form of the

Riemann–Liouville derivative; or, (2) propose a conservative numerical scheme for the Mbodje

augmented model (2.10).

5.3.1. Approximation using a truncation of the Grünwald-–Letnikov derivative. In the case of

the classical Grünwald–Letnikov derivative we consider a fractional trapezoidal formula [26], in

order to approximate

(5.5)
[
CD

α,η
0,t f

]
t=tn

≈
n∑

k=0

ak,ne
−ηδt(n−k)f ′(tk),

where

(5.6) ak,n =
δt1−α

Γ(3− α)


(n− 1)2−α − (n− 2 + α)n1−α, k = 0,

(n− k + 1)2−α + (n− 1− k)2−α − 2(n− k)2−α, 1 ⩽ k ⩽ n− 1,

1, k = n.

Replacing the term
α,η

U n+1 by the numerical approximation
[
CD

α,η
0,t f

]
t=tn

given by (5.5)–(5.6),

then the equation (5.4) becomes(
M+ β̃δt2 K+

γ̃δt2−α

Γ(3− α)
C

)
Ün+1 = −K

(
Un + δtU̇n +

(
1

2
− β̃

)
δt2Ün

)
− δt1−α

Γ(3− α)
C

(
U̇n + (1− γ̃) δtÜn +

n∑
k=0

ak,n+1U̇
k

)
.(5.7)
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5.3.2. Approximation using the Mbodje augmented model. On the other hand, in case of the

Mbodje augmented model (2.10) we propose the following conservative numerical scheme:

(5.8)


(
M+ β̃δt2 K

)
Ün+1 + C

M∑
ℓ=1

µℓΦ
n+1
ℓ = −K

(
Un + δtU̇n +

(
1

2
− β̃

)
δt2Ün

)
,

Φn+1
ℓ = Φn

ℓ − δt
(
ξ2ℓ + η

)
Φ

n+ 1
2

ℓ + δtµℓU̇
n+ 1

2 ,

where Φ
n+ 1

2

ℓ =
Φn

ℓ +Φn+1
ℓ

2
, with Φn

ℓ denoting the approximation of [ϕ, φ, ψ]⊤ ∈ R3J evaluated

in ξℓ := ℓδξ and t = nδt, for ℓ = 1, . . . ,M , n = 1, . . . , N and a fixed δξ > 0. Using (5.2) again

and replacing in (5.8)2, we can rewrite (5.8) in the following more explicit and computable way:

(5.9)



(
M+ γ̃δtCaugm + β̃δt2 K

)
Ün+1 = −C

M∑
ℓ=1

µ̃ℓΦ
n
ℓ −Caugm

(
U̇n + (1− γ̃) δtÜn

)
−K

(
Un + δtU̇n +

(
1

2
− β̃

)
δt2Ün

)
,

Φn+1
ℓ =

2− δt
(
ξ2ℓ + η

)
2 + δt (ξ2ℓ + η)

Φn
ℓ +

2δtµℓ

2 + δt (ξ2ℓ + η)
U̇n+ 1

2 ,

where µℓ = ξ
(2α−1)/2
ℓ , µ̃ℓ =

2− δt
(
ξ2ℓ + η

)
2 + δt (ξ2ℓ + η)

µℓ and Caugm = δtC

(
M∑
ℓ=1

2µ̃2
ℓ

2 + δt (ξ2ℓ + η)

)
I3J . Al-

though the two approximations are consistently valid from the point of view of finite differences,

we will opt for the second approximation because it conserves the energy in the non-dissipative

case, and its decrease is consistent with the continuous case. It also involves the calculation of

Φ which is inherent to the definition of energy itself.

5.4. Decay of the discrete energy using the Mbodje augmented model. Evaluating

(5.8)1 in t = tn+ 1
2
, multiplying by Ün+ 1

2 , and summing (5.8)2 multiplied by CΦ
n+ 1

2

ℓ , we obtain

that

[
EMbodje

∆

]n+1

n
:=

[
1

2
U̇TMU̇+

1

2
UTKU+

C

2

M∑
ℓ=1

µℓ |Φℓ|2
]n+1

n

=

[
− ϑ

2
u̇TD2u̇− χ

2
v̇TD2v̇ +

ζ

2
ẇTD4ẇ +

k

2
∥ − u+ v + γRw∥2

+
C

2

M∑
ℓ=1

µℓ

(
|ϕℓ|2 + |φℓ|2 + |ψℓ|2

)]n+1

n

= − C

M∑
ℓ=1

(
ξ2ℓ + η

)(∣∣∣ϕn+ 1
2

ℓ

∣∣∣2 + ∣∣∣φn+ 1
2

ℓ

∣∣∣2 + ∣∣∣ψn+ 1
2

ℓ

∣∣∣2)(5.10)

which is consistent with the estimates (3.13)–(3.14), and constitutes a correct approximation of

the energy and its decreasing behavior.

Remark 5.1. In the case of an approximation using a truncation of theGrünwald—Letnikov

derivative, we have the following estimate of the energy. Evaluating (5.1) in t = tn+ 1
2
and
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Figure 1. Comparison between the Grünwald–Letnikov derivative approxima-

tion and the discretized Mbodje augmented model. At the top left: EGL
∆ (t) =

1

2
U̇TMU̇ +

1

2
UTKU; At the top right: EGL,Φ

∆ (t) = EGL
∆ (t) +

C

2

M∑
ℓ=1

µℓ |Φℓ|2;

At the bottom: EMbodje
∆ (t) defined in (5.10).

multiplying by Ün+ 1
2 we obtain[

EGL
∆

]n+1

n
:=

[
1

2
U̇TMU̇+

1

2
UTKU

]n+1

n

=

[
−ϑ
2
u̇TD2u̇− χ

2
v̇TD2v̇ +

ζ

2
ẇTD4ẇ +

k

2
∥ − u+ v + γRw∥2

]n+1

n

= − δt2−α

Γ(3− α)

(
U̇n+ 1

2

)T
CU̇n+ 1

2 − (21−α − 1)
δt2−α

Γ(3− α)

(
U̇n+ 1

2

)T
CU̇n

−
n−1∑
k=0

ak,n+ 1
2

(
U̇n+ 1

2

)T
CU̇k(5.11)

where ak,n+ 1
2
=

ak,n+1 + ak,n
2

. The first term on the right hand side of (5.11) is obviously

strictly negative. However, the sign of the second and third terms in (5.11) cannot be guaranteed.

In fact, it is verified numerically that the energy discretized in this way is not necessarily strictly

decreasing, unless the solution is sufficiently smooth and delta t is small enough. Figure 1 shows

a comparison of both models. It is proved that the calculation of energy using the classical
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Grünwald—Letnikov derivatives fails, either by using the derivative defined in (5.11), (in top

left graph), as well as by artificially adding the calculation of Φ as seen in the top right graph.

Therefore, the only acceptable method for all our calculations should be the discretization of the

augmented Mbodje model (bottom graph).

5.5. Numerical examples. We consider here the value of the parameters ϑ = χ = ζ = k =

γ = 1, a beam of length ℓ = 1, and the initial conditions

(5.12)



u(x, 0) = x

(
ℓ3

8
−
∣∣∣∣x− ℓ

2

∣∣∣∣3
)
, ut(x, 0) = 0,

v(x, 0) = 0, vt(x, 0) = 0,

w(x, 0) = x
(
x− ℓ

2

)(ℓ3
8

−
∣∣∣∣x− ℓ

2

∣∣∣∣3
)
, wt(x, 0) = 0.

We observe that u(0, t) = u(ℓ, t) = 0 and u(·, 0) is of class C1(0, ℓ) but its second derivative has

a discontinuity in x = ℓ/2, and in turn, w(0, t) = w(ℓ, t) = 0 with w(·, 0) of class C3(0, ℓ) and

its fourth derivative has a discontinuity at x = ℓ/2. Therefore, we have just U0 ∈ D(A), but no

greater regularity than that.

In Figure 2, we consider a fractional derivative with α = 0.5, and we do a simulation of the

numerical scheme (5.2), (5.3), (5.7) with J = 500, and δ = T/Nt with T = 100 and Nt = 1000.

The graphs in (A) of Figure 2 shows the state of the instant of the deformations for t = 10. The

beam is represented by the thick yellow graph and its deformation corresponds to the transversal

displacements. The longitudinal displacements of u(x, 10) and v(x, 10), are represented by the

blue and red lines respectively. The graph (B) of the figure 2 shows the evolution of the transverse

displacements w in term of space and time. Graphs (C) and (D) of the same figure show the

longitudinal displacements u and v (respectively), also as a function of space and time. In this

set of figures, the decay of the quantities, and therefore of the energy, is visually observed due

to the dispative terms of the fractional derivative type.

On the other hand, we show in figure 3 the graphs of the numerical variables that approximate

the auxiliary functions ϕ(x, t; ξ), φ(x, t; ξ), and ψ(x, t; ξ) of the augmented model (2.10), for the

instant t = 2 of the simulations with the same parameters and data as the example in figure 2.

We numerically observe a decay of these functions with respect to the variable ξ, although not

so evident in the case of the variable ψ associated with the term of the fractional derivative

of the transverse displacement (when truncating at ξ = 10). In this sense, we must be careful

with the numerical truncation of the variable ξ ∈ (0,+∞). For this reason we will consider a

truncation at ξ = 10, 000 for the examples that will follow, and that will show the polynomial

decay of energy for different values of α and η.

Finally, in order to numerically appreciate the polynomial decay of the energy, we do the simu-

lation with the same parameters ϑ = χ = ζ = k = γ = 1, a beam of length ℓ = 1, and the initial
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(a) State of the deformations at instant t = 10 (b) Transversal deformations w

(c) Longitudinal deformations u (d) Longitudinal deformations v

Figure 2. Simulation of the displacements. On the left: the displacements at

t = 2. On the right: the evolution in time of the transverse displacements.

conditions (5.12), but for a longer time T = 10000, and a time step δt = 0.1. Likewise, in order

to obtain better precision in the results, we truncate the variable ξ of the auxiliary functions at

ξ = 10000.

In Figure 4, various plots depict energy on a log-log scale, where curves of the form C(t + 1)p

exhibit nearly linear behavior over sufficiently long times.

The graph in Figure 4(A) illustrates energy curves for 9 different values of η and 5 values of

α, totaling 45 combinations. Similar curves with the same α are grouped into 5 distinct colors.

While there are variations in slopes p and constants C, graphical observation reveals a close

relationship between these parameters, particularly in their bounded ranges. The numerical

estimation of C and p using a least squares method is presented in Table 1.
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Figure 3. Behavior of the auxiliary variables ϕ, φ and ψ of the augmented

model (2.10)

Additionally, from the graph, it is conjectured that energy decays more rapidly to zero for

α = 0.5 (or similar values) and certain η ̸= 0. Conversely, α = 0.25 exhibits intriguing behavior,

accentuating differences across various η values. Thus, the curves corresponding to α = 0.25

are separately plotted in Figure 4(B). Here, a pattern emerges with curves lying between two

quasi-linear lines with distinct slopes. The steepest negative slope corresponds to η = 0.3, while

the smallest absolute slope corresponds to η = 0, with intermediate values approaching the

former asymptotically.

Figures 4(C) and 4(D) compare energy curves with their respective asymptotic forms resembling

straight lines in a log-log graph. These asymptotic curves, of the form C(1 + t)p, are derived

through least squares, effectively capturing the data’s behavior. In Figure 4(C), distinct η values

for the same α exhibit notably different slopes (i.e., decay rates p). Conversely, in Figure 4(D),

variations in the multiplicative constant C outweigh changes in the decay rate p across different

α values.
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Figure 4. Energy with different values of η and α in loglog scale.

Discussion and Conclusions

We have demonstrated the existence, uniqueness, and stability of a Rao–Nakra model with dis-

sipative terms of the generalized Caputo fractional derivative type within the domain, building

upon ideas from a proven case for a broader class of evolution systems [4]. While focusing on

the Rao–Nakra beam model, our treatment of the fractional term through an input–output rela-

tionship with a diffusion equation [34] has illuminated a numerical method of finite-conservative

differences type that ensures stable energy decay, unlike standard methods for approximating

fractional derivatives. This enabled us to numerically simulate energy decay, confirming its

polynomial nature.
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α

C(t+ 1)p 0.01 0.25 0.50 0.75 0.99

η

0
C = 0.0300
p = −0.6465

0.0250
−0.4136

0.0600
−0.7497

0.0186
−0.9147

0.1521
−0.7968

1.10−4 C = 0.0869
p = −0.8136

0.0408
−0.8630

0.0250
−0.9773

0.0198
−0.9255

0.1521
−0.7968

3.10−4 C = 0.1089
p = −0.8600

0.4175
−1.2750

0.0338
−1.0469

0.0198
0.9266

0.1521
−0.7968

1.10−3 C = 0.0894
p = −0.8413

0.0832
−1.1394

0.0338
−0.9985

0.0198
−0.9236

0.1521
−0.7968

3.10−3 C = 0.0822
p = −0.8317

0.0258
−1.0075

0.0159
−0.9688

0.0190
−0.9217

0.1522
−0.7968

1.10−2 C = 0.0803
p = −0.8290

0.0170
−0.9586

0.0144
−0.9569

0.0188
−0.9207

0.1525
−0.7967

3.10−2 C = 0.0801
p = −0.8283

0.0155
−0.9469

0.0141
−0.9534

0.0188
−0.9201

0.1533
−0.7964

1.10−1 C = 0.0806
p = −0.8279

0.0152
−0.9431

0.0140
−0.9514

0.0190
−0.9190

0.1562
−0.7955

3.10−1 C = 0.0823
p = −0.8269

0.0154
−0.9404

0.0143
−0.9485

0.0196
−0.9161

0.1653
−0.7925

Table 1. Constant C and rate p of polynomial decay C(t+1)p for the energy by

a least square method, for different values of the fractional derivative parameters

α and η.

One key observation from the data and interpretation of Figure 4 and Table 1 is the clear as-

ymptotic polynomial decay behavior of energy. We note that the decay rate is notably greater

in absolute value when η ̸= 0, and lower when η = 0, validating the theoretical propositions

(Proposition 4.3 and Theorem 4.2). However, we acknowledge discrepancies between the the-

oretically derived rates and the numerically estimated ones. We attribute this to factors such

as the discretization step sizes δt and δx, the order of convergence of the method introducing

additional numerical dissipation, and the limited simulation times for observing true theoretical

decay rates.

Future work should delve into numerical methods enhancing convergence order to obtain numer-

ical values closer to theoretical ones. Additionally, exploring inverse or control problems, such

as identifying parameter pairs (α, η) for quicker energy decay, merits attention. Notably, from

Table 1, we observe a minimum in the rate p near (α, η) = (0.5; 0.0003). An inverse problem

could involve minimizing this slope with respect to (α, η). Moreover, considering the importance

of the constant C, as evidenced by the curve nearest to zero at t = 10, 000 corresponding to

(α, η) = (0.5; 0.3) in Figure 4(A), remains intriguing.
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However, beyond t = 10, 000[s], maintaining a constant p to ensure optimal decay is unclear.

While minimizing energy decay speed is of interest, defining a suitable cost function charac-

terizing this decay speed requires further exploration. Thus, identifying the appropriate cost

function to minimize for solving the inverse problem remains an open task.
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[49] D. Valério, J.A.T. Machado, V. Kiryakova. Some pioneers of the applications of fractional calculus. Fract.

Calc. Appl. Anal. 17 (2014), 552–578.

[50] O. Vera, C.A., Raposo, Carlos A. Nonato, Anderson J.A. Ramos. Stability of solution for Rao-Nakra Sand-

wich beam with boundary dissipation of fractional derivative type. Journal of Fractional Calculus and Ap-

plications. Vol. 13. 2 (2022), 116–143.

[51] M. Walter. Dynamical System and evolution Equations, Theory and Applications. Plenum Press. New York.

1980.

[52] J.-M. Wang, G.-Q. Xu, S.-P. Yung. Exponential stabilization of laminated beams with structural damping

and boundary feedback controls. SIAM J. Control Optim. Vol. 44. 5 (2005), 1575–1597.

LR Analysis and Control of PDEs, LR 22ES03, Department of Mathematics, Faculty of Sciences of

Monastir, University of Monastir, 5019 Monastir, Tunisia

Email address: kais.ammari@fsm.rnu.tn
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