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Abstract

We present and analyze a hybridizable discontinuous Galerkin method for coupling Stokes and
Darcy equations, whose domains are discretized by two independent triangulations. This causes
non-conformity at the intersection of the subdomains or leaves a gap (unmeshed region) between
them. In order to properly couple the two different discretizations and obtain a high order scheme,
we propose suitable transmission conditions based on mass conservation and equilibrium of normal
forces for matching meshes. Since the meshes do not necessarily coincide, we use the Transfer Path
Method to tie them. We establish the well-posedness of the method and provide error estimates
where the influences of the non-conformity and the gap are explicit in the constants. Finally,
numerical experiments that illustrate the performance of the method are shown.

Keywords: Stokes/Darcy; non–matching meshes; dissimilar meshes; Transfer Path Method; hybrid
method; discontinuous Galerkin.
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1 Introduction

During the last decade, the development of new non-body-fitted numerical methods for partial differ-
ential equations (PDEs) has become of interest in the community, especially with focus on high order
schemes. One of the most popular is the cut finite element method (CutFEM). Roughly speaking,
the CutFEM method considers a background grid where the domain is immersed and a Nitsche’s
approach is employed to impose the transmission conditions in the elements cut by the interface. A
review can be found in [2] and recent works have also proposed conservative CutFEM schemes [16, 19].
CutFEM requires special quadrature rules to compute the integrals over the interface, in contrast with
the recently developed ϕ-FEM method [13, 14, 15]. The main idea there is to introduce an auxiliary
variable that depends on the level-set function in such a way that the homogeneous Dirichlet boundary
condition is automatically satisfied.
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A different approach to handle transmission/boundary conditions with unfitted methods is based
on a Taylor expansion of the function near the interface/boundary. In this direction, in the literature
we can find two methods: the Shifted Boundary Method (SBM) [1, 21] and the Transfer Path Method
(TPM) [11, 23, 24]. The former considers a primal formulation and the residual of the Taylor expansion
vanishes at discrete level. The TPM, on the other hand, is based on a mixed formulation where the
residual of the Taylor expansion does not vanish but it involves the mixed variable that is then
approximated by the numerical scheme. Our work focuses on the latter with the aim to demonstrate
that the TPM can be a useful technique to handle situations where two meshes of different sizes
are apart from each other. In addition, as a byproduct, our analysis also covers the case where the
interface is fitted by the two meshes, allowing the presence of hanging nodes.

In several applications, the domain of interest Ω Ă Rn, n P t2, 3u, is divided into subdomains where
different governing equations are posed. It is not uncommon to mesh each subdomains separately
using different meshsizes. For instance, in the case of solid-fluid interactions, the fluid equations are
coupled to the elasticity equations via appropriate transmission conditions across an interface, and it
is often desirable to have a finer mesh in the region occupied by the fluid compared to the meshsize
used for discretizing the solid. When the domain of a PDE is discretized by the union of different
computational subdomains, it is possible to identify two configurations. In the first one, the interface
is not fitted by the triangulations, generating dissimilar meshes with gaps and overlaps appearing
between the grids associated to each subdomains, as the one depicted in Figure 1 (left). Therefore,
the discrete interfaces of neighboring grids need to be properly connected. In the second configuration
the interface is fitted by the grids, but it presents hanging nodes as portrayed in Figure 1 (right).
This causes a non-conformity at the intersection of the subdomains in which adjacent elements do not
necessarily share a complete face or edge. This is why we prefer to consider a discontinuous Galerkin
method (DG) to discretize the PDE. In particular, we focus on the hybridizable DG (HDG) method.

The HDG method, introduced in [5], has the advantage of significantly reducing the globally coupled
degrees of freedom that were a major criticism of DG methods for elliptic problems. The only degrees
of freedom in HDG are those of the numerical traces on the boundaries between elements, while
the remaining unknowns are obtained by solving local problems in each element. Specifically, at
the continuous level, intra-element variables can be expressed in terms of inter-element unknowns by
solving local problems on each element. These problems, referred to as local solvers, can be discretized
using a DG method, leading to the family of methods known as HDG methods.

Furthermore, to the best of our knowledge, there are only two works that analyze the HDG method
for non-conforming triangulations [3, 4]. In the first approach the authors perform an analysis for the
convection-diffusion equations in non-conforming meshes. In particular, using polynomial approxima-
tions of degree k in all elements, they obtained suboptimal order of convergence hk`1{2 for the diffusive
flux and optimal convergence hk`1 for the projection of the error in the scalar variable. The second
approach is similar to the first one, but uses the so-called semimatching nonconforming meshes. Then,
both optimal convergence for the diffusive flux and superconvergence of the projection of the error in
the scalar variable is obtained.

In this work, with the aim of developing a high-order method to handle geometries with complex
interfaces, we present an HDG method for coupled problems in dissimilar and non-conforming meshes.
More precisely, we focus on the coupling of fluid and porous media flows across a discrete interface
that does not necessarily match the true interface. To this end, we rely on the TPM [8, 9, 10, 24]
originally designed for handling boundary value problems in curved domains, but recently employed
for coupling dissimilar meshes in the context of a single PDE in the entire domain [22, 25]. Thus,
following a similar scheme developed in [18], we propose and analyze a new method for Stokes/Darcy
coupling. More precisely, let Ωs and Ωd be bounded and simply connected polyhedral domains in Rn,
n P t2, 3u, with outward unit normal vectors ns and nd, respectively, such that I :“ Ωs ∩ Ωd is the
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interface that separates them, and let Γs :“ BΩszI, Γd :“ BΩdzI. The model consists of two separate
groups of equations and a set of coupling terms. In the fluid region Ωs, the governing equations are
those of the Stokes problem, which can be written as follows:

Ls ´ ∇us “ 0 in Ωs, ´∇ ¨ pνLs ´ PsIq “ f s in Ωs, ∇ ¨ us “ 0 in Ωs,

us “ 0 on Γs, and
ż

Ωs

Ps “ 0,
(1.1)

where ν ą 0 is the fluid dynamic viscosity, f s P L2pΩsq is the volumetric force acting on the fluid, us
is the fluid velocity, Ls is the velocity gradient tensor, Ps is the pressure, and I is the n ˆ n identity
matrix. In turn, in the porous medium region Ωd we consider the following Darcy model:

ud ` κ∇pd “ 0 in Ωd, ∇ ¨ ud “ fd in Ωd, and pd “ 0 on Γd, (1.2)

where κ is a tensor valued function, which describes the permeability of Ωd, satisfies κt “ κ, and
has L8pΩdq components, fd P L2pΩdq is a given source term, and ud and pd denote the velocity
and pressure, respectively. Also, we assume that there exist positive constants κ and κ such that
κ ď }κ}8,Ωd ď κ. Finally, the transmission conditions on I are given by

us ¨ ns ` ud ¨ nd “ 0 and pνLs ´ PsIqns “ pdnd on I. (1.3)

The first equation in (1.3) is based on mass conservation, whereas the second one establishes the
balance of normal forces for matching meshes. The analysis studied in this work can be extended
with minor modifications to the case when the Beavers–Joseph–Saffman law (see, e.g. [17, 20]) is
used. However, for sake of simplicity we choose to avoid this in order to focus solely on the technique
applied on the interface.

The manuscript is organized as: in Section 2, we introduce the notation related to the discretization
and transferring segments, as well as some preliminaries and definitions related to the computational
domain and the approximation spaces. Next, in Section 3, the HDG method is introduced along
with the proposed transmission conditions. In Section 4, we show the stability of the method and
present the error estimates in Section 5. Finally, several numerical experiments validating the good
performance of the method and confirming the rates of convergence are reported in Section 6.

2 Preliminaries

We begin by introducing some preliminary notations related to the geometric discretization, the ap-
proximation spaces and the HDG scheme. In turn, we introduce the main tools to address the dis-
cretization of the interface.

The computational domain. Let Ωs
hs

and Ωd
hd

be triangulations of the domains Ωs and Ωd, with
meshsizes hs, hd ą 0 and boundaries Ss,hs , Sd,hd , respectively. Without loss of generality, we suppose
hd ě hs and drop the sub-index ‹ P ts, du when there is no confusion; for example, we just write Ωs

h,
and Ωd

h henceforth. We also denote the set of all faces of the triangulation Ω‹
h by E‹

h. Furthermore,
since Ω s

h ∩ Ω d
h is not necessarily equal to I, then, for ‹ P ts, du, we define the discrete interfaces

I‹
h :“ S‹,hzΓ‹,h, where Γ‹,h denotes the discretization of Γ‹. Bearing in mind the above, we consider

outward normal vectors for the new interfaces Is
h and Id

h , which will be denoted by ns,h and nd,h,
respectively. The family of triangulations tΩ‹

huhą0 is assumed to be shape-regular, i.e., there exists
a constant κ‹ ą 0 such that for all elements K P Ω‹

h and all h ą 0, hK{ρK ď κ‹, where hK is
the diameter of K and ρK is the diameter of the largest ball contained in K. For every element K,
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we denote by nK the outward unit normal vector to K, writting n instead of nK when there is no
confusion. In this work, we consider the two configurations depicted in Figure 1. In the first one, a
uniform gap of size δ separates the two triangulations. In the second setting, the interface is piecewise
flat and both meshes are fitted to it, but with different meshsizes.

Spaces and norms. We use the standard notation for Sobolev spaces and their associated norms
and seminorms, where vector-valued functions and their corresponding spaces are denoted in bold face
font, and roman font in the tensor-valued case. In addition, let D be an open bounded region of Rn

or Rn´1. We denote by p¨, ¨qD and x¨, ¨yBD the L2pDq and L2pBDq inner products, respectively, with
induced norms }¨}D and }¨}BD. Given an integer k ě 0, we use the usual notation to denote the space
of polynomials of degree at most k as PkpDq, and set PkpDq :“ rPkpDqsn and PkpDq :“ rPkpDqsnˆn.

We introduce now the finite-dimensional spaces

Gs
h :“

!

G P L2pΩs
hq : G|K P PkpKq @ K P Ωs

h

)

,

V‹
h :“

!

v P L2pΩ‹
hq : v|K P PkpKq @ K P Ω‹

h

)

,

Q‹
h :“

!

q P L2pΩ‹
hq : q|K P PkpKq @ K P Ω‹

h

)

,

for intra-element variables, and

Md
h :“

!

µ P L2pEd
h q : µ|e P Pkpeq @ e P Ed

)

,

Ms
h :“

!

µ P L2pEs
hq : µ|e P Pkpeq @ e P Es

)

for trace variables. We denote by Nd
h and Ns

h the restrictions of Md
h and Ms

h to the discrete interfaces
Id

h and Is
h, respectively. The mesh-dependent inner products are defined as

p¨, ¨qΩ‹
h

:“
ÿ

KPΩ‹
h

p¨, ¨qK , x¨, ¨yBΩ‹
h

“
ÿ

KPΩ‹
h

x¨, ¨yBK and x¨, ¨yI‹
h

“
ÿ

ePI‹
h

x¨, ¨ye,

and their corresponding norms denoted by

} ¨ }Ω‹
h

:“

¨

˝

ÿ

KPΩ‹
h

} ¨ }2
K

˛

‚

1{2

, } ¨ }BΩ‹
h

“

¨

˝

ÿ

KPΩ‹
h

} ¨ }2
BK

˛

‚

1{2

and } ¨ }I‹
h

“

¨

˝

ÿ

ePI‹
h

} ¨ }2
e

˛

‚

1{2

.

To avoid proliferation of unimportant constants, we use the terminology a À b whenever a ď Cb and
C is a positive constant independent of h and the gap between both discrete interfaces.

Transfer paths. For ‹ P ts, du, we introduce a mapping ψ‹ : I ÝÑ I‹
h, such that for each point x P I,

we associate a point x‹ “ ψ‹pxq P I‹
h. We also define a mapping ψ : Id

h ÝÑ Is
h as ψ “ ψs ˝ψ´1

d , which
means that for each xd P Id

h , we associate a point xs “ ψpxdq P Is
h. We denote by σ‹px‹q the segment

starting at x and ending at x‹, with unit tangent vector t‹ and length |σ‹px‹q|. Then, keeping in mind
the configuration of the interfaces, i.e., piece-wise polynomial if the meshes coincide or flat interfaces
for the case with gap, it follows immediately that for each e P I‹

h, t‹ “ n‹,h “ n‹ with ‹ P ts, du,
and td “ ´ts. This means that the direction of the segment σpxdq must be parallel to the normals
computed at its ends. Therefore, from now on, we will write n‹, to refer to the vector associated to
σ‹px‹q, with ‹ P ts, du. Then, σpxdq is the segment that starts at xd and ends at xs, with unit tangent
vector nd and length |σpxdq|. The segment σpxdq is referred as the transfer path associated with xd
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and is assumed to satisfy two conditions: it does not intersect the interior of another transfer path
and its length |σpxdq| is of order at most maxths, hdu “ hd.

Is
h Id

h

Ωs
h

x s x
xd

I

Ωd
h

δΩs Ωd

Ωs
h

Ωd
h

...

I

Figure 1: Left: Example of dissimilar meshes separated by a uniform gap of size δ. Right: A piecewise
polygonal interface separating two regions discretized by diferent meshes.

Extrapolation operator. The region enclosed by Ωs
h and Ωd

h (shaded area in Figure 1) is denoted by
Ωext

h . We notice that Ωext
h is not meshed and, as a consequence, we do not have an HDG approximation

in there. That is why the HDG approximation of the velocity gradient Ls, the pressure field ps (to be
defined below), and the flux ud, will be locally extrapolated from the computational domain Ωd

h ∪ Ωs
h

to Ωext
h . More precisely, let q be a tensor, vector, or scalar-valued polynomial function defined on an

element K in Ωd
h ∪ Ωs

h such that K ∩ Ω ext
h ‰ ∅. We define its extrapolation to Ωext

h as

Eq|K
pyq :“ q|Kpyq @y P Ωext

h . (2.1)

Note that the extrapolation function Eq|K
pyq is a function whose support includes Ωext

h , and each
element K has its own extrapolation function.

The HDG projections. Let pLs, us, psq P H1pΩs
hqˆH1pΩs

hqˆH1pΩs
hq, we recall its HDG projection

ΠspLs, us, psq “ pΠs
GLs, Πs

Vus, Πs
Qpsq as the element of Gs

h ˆVs
h ˆQs

h defined as follows: on an arbitrary
element K of Ωs

h, the values of the projected function on K are determined by requiring that

pΠs
GLs, GqK “ pLs, GqK @ G P Pk´1pKq, pΠs

Vus, vqK “ pus, vqK @ v P Pk´1pKq, (2.2a)

pΠs
Qps, qqK “ pps, qqK @ q P Pk´1pKq, ptrΠs

GLs, qqK “ ptrLs, qqK @ q P PkpKq, (2.2b)

xνΠs
GLsns ´ Πs

Qpsns ´ τνΠs
Vus,µye “ xνLsns ´ psns ´ τνus,µye @µ P Pkpeq @ e Ă BK, (2.2c)

where τ ą 0 is the stabilization parameter of the HDG method. Furthermore, if pLs, us, psq P

Hlσ`1pΩs
hqˆHlus `1pΩs

hqˆH lσ`1pΩs
hq, for lus , lσ P r0, ks, the above projection satisfies (cf. [6, Theorem

2.1]) the following properties:

}us ´ Πs
Vus}K À h

lus `1
K |us|Hlus`1 pKq

` hlσ`1
K pτνq´1|∇ ¨ pνLs ´ psIq|Hlσ pKq, (2.3a)

}νpLs ´ Πs
GLsq}K ` }ps ´ Πs

Qps}K À hlσ`1
K |νLs ´ psI|Hlσ`1pKq ` hlu`1

K τν|us|Hlu`1pKq (2.3b)
` τν}us ´ Πs

Vus}K ,
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for all K P Ωs
h, where I is the identity tensor. Similarly, given pud, pdq P H1pΩd

hq ˆ H1pΩd
hq, we recall

its HDG projection Πdpud, pdq “ pΠd
Vud, Πd

Qpdq as the element of Vd
h ˆ Qd

h defined as the unique
element-wise solution of

pΠd
Vud, vqK “ pud, vqK @ v P Pk´1pKq, pΠd

Qpd, qqK “ ppd, qqK @ q P Pk´1pKq, (2.4a)
xΠd

Vud ¨ nd ` τΠd
Qpd, µye “ xud ¨ nd ` τPdpd, µye @ µ P Pkpeq, @ e Ă BK, (2.4b)

for every element K P Ωd
h, and, given constants lud , lpd P r0, ks, if pud, pdq P Hlud `1pΩd

hq ˆ H lpd `1pΩd
hq,

there hold (cf. [7])

}ud ´ Πd
Vud}K À h

lud `1
K |ud|Hlud `1

pKq
` h

lpd `1
K |pd|

Hlpd `1
pKq

, (2.5a)

}pd ´ Πd
Qpd}K À h

lpd `1
K |pd|

Hlpd `1
pKq

` h
lud `1
K |∇ ¨ ud|

Hlud pKq
, (2.5b)

for all K P Ωd
h.

3 The HDG method

3.1 The treatment of the pressure

In this section we follow a similar approach to the one developed in [26]. More precisely, since the
computational domain Ωs

h does not necessarily coincide with the physical domain Ωs, we introduce a

decomposition Ps “ αs ` ps that imposes the zero-mean of the pressure, with αs :“ 1
|Ωs

h
|

ż

Ωs
h

Ps and

ps P L2
0pΩs

hq (L2pΩs
hq-function with zero mean in Ωs

h). In turn, since Ps will be eliminated from the
system, we need to rewrite αs in terms of ps. By using the fifth equation of (1.1), we deduce that

αs “
´1
|Ωs|

ż

ΩszΩs
h

ps. (3.1)

Then, Ps can be recovered after the approximation of ps is computed.

3.2 The HDG scheme

The HDG formulation of the coupled system (1.1)-(1.2) reduces to:
Find pLs,h, us,h, ps,h, pus,h, ud,h, pd,h, ppd,hq P Gs

h ˆ Vs
h ˆ Qs

h ˆ Ms
h ˆ Vd

h ˆ Qd
h ˆ Md

h such that

pLs,h, Gs,hqΩs
h

` pus,h, ∇ ¨ Gs,hqΩs
h

´ xpus,h, Gs,hnsyBΩs
h

“ 0 , (3.2a)
pσs,h, ∇vs,hqΩs

h
´ xpσs,hns, vs,hyBΩs

h
“ pf s, vs,hqΩs

h
, (3.2b)

´pus,h, ∇qs,hqΩs
h

` xpus,h ¨ ns, qs,hyBΩs
h

“ 0 , (3.2c)
xpus,h,µs,hyΓs,h

“ 0 , (3.2d)
pps,h, 1qΩs

h
“ 0 , (3.2e)

xpσs,hns,µs,hyBΩs
h

zpΓs,h∪Is
h

q “ 0 , (3.2f)

pκ´1ud,h, vd,hqΩd
h

´ ppd,h, ∇ ¨ vd,hqΩd
h

` xvd,h ¨ nd, ppd,hyBΩd
h

“ 0 , (3.2g)

´pud,h, ∇qd,hqΩd
h

` xpud,h ¨ nd, qd,hyBΩd
h

“ pfd, qd,hqΩd
h
, (3.2h)

xppd,h, µd,hyΓd,h
“ 0 , (3.2i)

xpud,h ¨ nd, µd,hyBΩd
h

zpΓd,h∪Id
h

q “ 0 , (3.2j)
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for all pGs,h, vs,h, qs,h,µs,h, vd,h, qd,h, µd,hq P Gs
h ˆ Vs

h ˆ Qs
h ˆ Ms

h ˆ Vd
h ˆ Qd

h ˆ Md
h , where

σs,h “ νLs,h ´ ps,hI ,

pud,h ¨ nd “ ud,h ¨ nd ` τppd,h ´ ppd,hq on BΩd
h , (3.3a)

pσs,hns “ σs,hns ´ τνpus,h ´ pus,hq on BΩs
h , (3.3b)

and we recall that τ is a positive stabilization function defined in BΩs
h ∪ BΩd

h, assumed to be uniformly
bounded. For simplicity of the exposition, we assume τ is constant everywhere. The above equations
must be complemented with suitable transmission conditions across the interfaces Is

h and Id
h , which we

proceed to derive now and this constitutes the novelty of our work. Indeed, we propose the following
conditions:

´xrus,h ¨ nd, µd,hyId
h

` xrud,h ¨ nd, µd,hyId
h

“ 0 @ µd,h P Nd
h , (3.4a)

xrσs,hns,µs,hyIs
h

´ xrpd,hns,µs,hyIs
h

“ 0 @µs,h P Ns
h, (3.4b)

where rus,h, rpd,h, rσs,hns, and rud,h stand for the approximations of us|Is
h
, pd|Id

h
, pνLs ´ psIqns|Is

h
and

ud|Id
h
, respectively, based on suitable extensions (constructed below) of pus,h, ppd,h, pσs,hns and pud,h

outside their corresponding computational domains. More precisely, employing the transferring tech-
nique of [11] (see also [9, 22, 25]), the tilde variables are constructed as follows: let x‹ P I‹

h and its
corresponding point x P I. Integrating the first equation of (1.1) along the transfering path σspxsq
and using the first equation of (1.3), we obtain

uspxsq ¨ ns ` |σspxsq|

ˆ
ż 1

0
Lspysptqqnsdt

˙

¨ ns ` pud ˝ψ´1
d qpxdq ¨ nd “ 0. (3.5)

Similarly, integrating the second equation of (1.2) along the connecting segment σdpxdq and using the
second equation of (1.3), it follows that

pνLs ´ PsIq ˝ψ´1
s qpxsqns ´ pdpxdqnd ` |σdpxdq|

ˆ
ż 1

0
κ´1udpydptqq ¨ nddt

˙

nd “ 0 , (3.6)

where y‹ptq “ x‹ ` px´ x‹qt with t P r0, 1s being the parametrization of σ‹px‹q.

Hence, motivated by these expressions and based on the form of the HDG numerical fluxes (3.3a)
and (3.3b), we define

rpd,hpxsq :“ ppd,hpxdq ´ |σdpxdq|

ż 1

0
κ´1Eud,h

pydptqq ¨ nddt, (3.7a)

rus,hpxdq :“ pus,hpxsq ` |σspxsq|

ż 1

0
ELs,h

pysptqqnsdt, (3.7b)

rud,hpxdq ¨ nd :“ Eud,h
˝ψ´1

d pxdq ¨ nd ` τppd,h ´ ppd,hqpxdq, (3.7c)
rσs,hpxsqns :“ Eσs,h

˝ψ´1
s pxsqns ´ αs,hns ´ ντpus,h ´ pus,hqpxsq, (3.7d)

where αs,h :“ 1
|Ωs|

ż

ΩszΩs
h

Eps,h
, and E denotes the local extrapolation defined in (2.1).

In the particular case of matching interfaces, namely I “ Ωs
h ∩ Ωd

h “ Is
h “ Id

h , the transmission
conditions (3.4) become

xpus,h ¨ ns, µd,hyI ` xpud,h ¨ nd, µd,hyI “ 0 @ µd,h P Nd
h , (3.8a)

xpσs,hns,µs,hyI ´ xppd,hnd,µs,hyI “ 0 @µs,h P Ns
h (3.8b)

and the resulting HDG formulation is very similar to the one presented in [18].
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4 Stability analysis

In this section we show a stability estimate associated with (3.2) and (3.3). For that, we recall some
important estimates and assumptions required to carry out our analysis.

Further notation and auxiliary estimates. Let ‹ P ts, du. Given a face e P I‹
h belonging to the

element Ke P Ω‹
h, we define the extrapolation patch as Kext

e :“
!

x ` n‹t : 0 ď t ď |σ‹pxq|, x P e
)

,
and denote by hK

e (resp. δe) the largest distance of a point inside Ke (resp. Kext
e ) to the plane

determined by the face e. In other words, hK
e “ maxxPKe |distpx, eq|, δe “ maxxPe |σ‹pxq|, where

distpx, eq denotes the distance from x to the face e. We note that δe is a measure of the local size of
the gap and δ :“ maxe δe is an upper bound of the size of the gap. We define the ratio re :“ δe{hK

e and,
for e P Is

h ∪ Id
h , N k :“

!

q P PkpKext
e q, q ¨ ne ‰ 0 on each e Ă BKext

e

)

, where we denoted by ne the
interior normal vector to Kext

e along the face e, that is, the exterior normal vector to Ke pointing in
the direction of Kext

e . We can then introduce the constants

Cext
e :“ 1

?
re

sup
qPN k

}q ¨ ne}Kext
e

}q ¨ ne}Ke

, Cinv
e :“ hK

e sup
qPN k

}Bneq}Kext
e

}q ¨ ne}Ke

. (4.1)

As proved in [9, Lemma A.2], these constants are independent of the meshsize, but depend on the
polynomial degree k. The superscripts in Cext

e and Cinv
e refer to an extrapolation constant and an

inverse inequality constant.

On the other hand, proceeding as in [9], we introduce the following auxiliary functions: let e P I‹
h

that belongs to Ke and Kext
e . For a function q, we define

Λq|Ke
px‹q :“ 1

|σ‹px‹q|

ż |σ‹px‹q|

0

`

qKe
px‹ ` n‹yq ´ qKe

px‹q
˘

¨ n‹dy, (4.2)

for ‹ P ts, du, where xd P e and xs P Is
h are connected by the segment σpxdq. They satisfy (cf. [9,

Lemma 5.2]),
›

›|σ‹|1{2Λq|Ke

›

›

e
ď

1
?

3
r3{2

e Cext
e Cinv

e

›

›q
›

›

Ke
@ q P PkpKeq, (4.3)

›

›|σ‹|1{2Λq|Ke

›

›

e
ď

1
?

3
re

›

›hK
e Bnq ¨ n

›

›

Kext
e

@ q P H1pKext
e q. (4.4)

Another important tool in the analysis of this method, which is based on the Taylor series expansion
of a function defined on I around a point I‹

h, is the following lemma ([25, Lemma 2.1] or [22, Lemma
2]).

Lemma 1. Suppose that ψ‹ : I ÝÑ I‹
h is a bijection for each ‹ P ts, du. The following assertions hold

true: If ϕ‹ P H2pΩ‹q and Φ‹ :“ ∇ϕ‹, then
›

›|σ‹|´1{2pϕ‹ ´ ϕ‹ ˝ψ´1
‹ q ` |σ‹|1{2pΦ‹ ˝ψ´1

‹ qn‹

›

›

I‹
h

À δ
›

›ϕ‹

›

›

H2pΩ‹q
, (4.5)

›

›|σ‹|´1{2pϕ‹ ´ ϕ‹ ˝ψ´1
‹ q

›

›

I‹
h

À δ1{2›
›ϕ‹

›

›

H2pΩ‹q
, (4.6)

If Φ‹ P H1pΩ‹q then
›

›|σ‹|´1{2pΦ‹ ´ Φ‹ ˝ψ´1
‹ qn‹

›

›

I‹
h

À
›

›Φ‹

›

›

H1pΩ‹q
. (4.7)

Let e P I, e‹ “ ψ‹peq P I‹
h and Ke‹ the element to which e‹ belongs. If p P PkpKe‹q, then

}p ´ p ˝ψ´1
‹ }e‹ À Cext

e δeh´3{2
e }p}Ke‹

. (4.8)
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Finally, we recall the discrete trace inequality (cf. [12, Lemma 1.21]): if ϕ is a scalar, vector or
tensor-valued polynomial in Ke, then

}ϕ}e ď Ctr
e h´1{2

e }ϕ}Ke , (4.9)

where Ctr
e is independent of the meshsize but depends on the polynomial degree. We stress that

the identities and inequalities established throughout this section hold true for the tensor, vector or
scalar-valued cases as required.

Assumptions. In this section, we state the assumptions under which the the stability and error
analysis hold. Some of them are technical assumptions that allow us to simplify the analysis, whereas
the others establish the relation between the gap size δ and the mesh size h required to guarantee
convergence and optimality of the method. More precisely, we assume that

(A.1) Ωs
h ∩ Ωd

h “ ∅, that is, there is no overlap between the subdomains;
(A.2) the mappings ψ‹ : I ÝÑ I‹ for ‹ P ts, du, and ψ : Id

h ÝÑ Is
h are bijections;

(A.3) 4ν´1τ´1{2Cδ‹,h max
ePI‹

h

´

δ´10{14
e

¯

` 8 max
ePI‹

h

´

pC‹
e δ12{7

e h´3
e pCext

e q2τ´1
¯

ď
1
4 , where Cδ‹,h depends on h

and δ (cf. Lemma 2), and pC‹
e is a positive constant appearing in the proof of Lemma 4;

(A.4) Cδ,h :“ rC1CS
δ,h `

´

pCp
δ,hq2 ` rC2

¯

rCis is small enough, where CS
δ,h :“ h2 ` pCus,Ls

δ,h q2 ` pCpus,ppd
δ,h q2,

rC1 :“ max
␣

ν, 1
(

ÿ

‹Pts,du

˜

4 max
ePI‹

h

´

`

Ctr
e

˘2
δ2{7

e h´1
e τ

¯

` max
ePI‹

h

´

pCtr
e q´2h´β

e

2

¯

¸

,

rC2 :“ 8
ν

max
ePIs

h

´

pCs
eδ12{7

e h´3
e pCext

e q2τ´1
¯

` 4C2
α

ν
max
ePIs

h

´

δ´2{7
e

¯

;

Cus,Ls
δ,h :“ max

␣

ν´1, 1
(

ÿ

‹Pts,du

˜

max
ePI‹

h

´

δeh´3{2
e Cext

e

¯

` max
ePI‹

h

´

δ1{2
e C

1{2
δ‹,h

¯

¸

,

Cpus,ppd
δ,h :“ max

␣

ν´1, 1
(

ÿ

‹Pts,du

˜

max
ePI‹

h

´

δ6{7
e τ´1{2

¯

` max
ePI‹

h

´

δ5{14
e τ´1{2

¯

¸

,

Cp
δ,h :“ ν´1 max

ePIs
h

´

δeh´3{2
e Cext

e

¯

` ν´1Cα,

rCis is related to an inf-sup condition (see Lemma 6), β is a nonnegative parameter whose range
will be determined later, and Cα is positive constant, which will appear in the proof of Lemma
4.

Assumptions (A.1) and (A.2) hold true, for instance, in the illustrations of Figure 1. Note that the
purpose of (A.1) is to simplify the analysis. The Assumption (A.2) is the key to “tie” the interfaces
Is

h and Id
h that cause the gap. The remaining assumptions are smallness assumptions that relate

the meshsize and the size of the gap. For example, (A.3) is always satisfied for h small enough if
δ À h7{4. To analyze the feasibility of other assumptions, let us write δ “ Cgh1`γ with Cg ě 0
and γ ą 0 constants independent of the meshsize. Assumption (A.4) is satisfied for all γ ą 3{4 and
β P r0, 2s ∩ r0, 2γ ´ 1q, if h is small enough, as we will explain in Corollaries 2 and 3. These are the
strongest assumptions, since they indicate that our analysis holds if the gap size is at most of order
h7{4, however we will present numerical evidence suggesting that the method is still optimal when the
gap is of order h. Finally, we highlight that the remaining constants are defined in the subsequent
results presented below. In turn, in order to begin with the analysis, we establish the following result.
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Lemma 2. Suppose that Assumptions (A.1q-(A.2q hold, then it follows that
›

›|σs|
´1{2prus,h ˝ψ´1 ´ pus,hq

›

›

Is
h

ď C
1{2
δs,h

›

›Ls,h
›

›

Ωs
h
, and (4.10a)

›

›|σd|´1{2prpd,h ˝ψ ´ ppd,hq
›

›

Id
h

ď C
1{2
δd,h

›

›κ´1ud,h

›

›

Ωd
h
, (4.10b)

where Cδ‹,h “ 2 max
ePI‹

h

ˆ

δeh´1
e pCtr

e q2 `
1
3δ3

eh´3
e κ3

‹pCext
e Cinv

e q2
˙

for ‹ P ts, du.

Proof. It suffices to prove for ‹ “ d, since the proof for ‹ “ s follows almost verbatim. We begin by
stressing that xpyq “ xd ` ndy, for all y P r0, |σdpxdq|s. From (3.7a) we deduce that

rpd,hpxsq “ ppd,hpxdq ´

ż |σdpxdq|

0
κ´1

´

Eud,h
pxd ` ndyq ´ ud,hpxdq

¯

¨ nddy ´ κ´1|σdpxdq|ud,hpxdq ¨ nd

“ ppd,hpxdq ´ κ´1|σdpxdq|Λud,h
pxdq ´ κ´1|σdpxdq|ud,hpxdq ¨ nd,

where we have used (4.2). This implies that ud,hpxdq ¨ nd “ ´κ|σdpxdq|´1prpd,h ˝ψ´ ppd,hq ´ Λud,h
pxdq.

By the Cauchy–Schwarz and Young inequalities, and the estimate (4.3), we obtain

}|σd|´1{2prpd,h ˝ψ ´ ppd,hq}2
Id

h
ď 2

´

}κ´1|σd|1{2ud,h}2
Id

h
` }κ´1|σd|1{2Λud,h

}2
Id

h

¯

ď 2
´

}κ´1|σd|1{2ud,h}2
Id

h
`

1
3 max

ePId
h

`

r3
epCext

e Cinv
e q2˘ }κ´1ud,h}2

Id
h

¯

.

Finally, by the discrete trace inequality and the fact that re ď δeh´1
e κd, where we recall that κd is the

mesh regularity constant of Ωd
h, we obtain (4.10b). We omit further details.

In order to use this analysis to establish both, well-posedness and error bounds, we consider the
problem (3.2), but (3.2a) and (3.2g) are replaced by

pLs,h, Gs,hqΩs
h

` pus,h, ∇ ¨ Gs,hqΩs
h

´ xpus,h, Gs,hnsyBΩs
h

“ pJs, Gs,hqΩs
h
, (4.11a)

pκ´1ud,h, vd,hqΩd
h

´ ppd,h, ∇ ¨ vd,hqΩd
h

` xvd,h ¨ nd, ppd,hyBΩd
h

“ pJd, vd,hqΩd
h
, (4.11b)

where Js P L2pΩs
hq, Jd P L2pΩd

hq are given functions orthogonal to polynomials of degree k ´ 1 and
(3.4) is replaced by

xrus,h ¨ ns, µd,hyId
h

` xrud,h ¨ nd, µd,hyId
h

“ xjnc
d ` jδ

d, µd,hyId
h

@ µd,h P Nd
h , (4.12a)

xrσs,hns,µs,hyIs
h

´ xrpd,hnd,µs,hyIs
h

“ xjnc
s ` jδ

s ,µs,hyIs
h

@µs,h P Ns
h, (4.12b)

where jnc
d and jnc

s are given functions associated with the non-conformity that occurs at the interface,
belonging to L2pId

hq and L2pIs
hq, respectively. Similarly, jδ

d and jδ
s are associated with the gap between

the discrete interfaces Is
h and Id

h , also belonging to L2pId
hq and L2pIs

hq, respectively. In particular, to
show well-posedness, Js, Jd, jnc

d , jnc
s , jδ

d and jδ
s vanish, whereas they are related to projection errors

when proving the error bounds.

4.1 An energy argument

Before presenting the energy estimate, we proceed to deduce how the transmission conditions (3.4)
connect xpσs,hns, pus,hyIs

h
and xpud,h ¨ nd, ppd,hyId

h
. To this end, we define T “ ´xpσs,hns, pus,hyIs

h
` xpud,h ¨

nd, ppd,hyId
h

and we write it in terms associated with the mismatch between Is
h and Id

h . More precisely,
we prove the following lemma.
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Lemma 3. It holds that

T “ x
`

Eσs,h
˝ψ´1

s ´ σs,h
˘

ns, pus,hyIs
h

` x
`

ud,h ´Eud,h
˝ψ´1

d
˘

¨ nd, ppd,hyId
h

´ xαs,hns, pus,hyIs
h

xprpd,h ˝ψ ´ ppd,hqnd, pus,h ˝ψyId
h

´ xjnc
s ` jδ

s , pus,hyIs
h

` xprus,h ˝ψ´1 ´ pus,hq ¨ ns, ppd,h ˝ψ´1yIs
h

` xjnc
d ` jδ

d, ppd,hyId
h

` νxδ2{7
e τpus,h, pus,hyIs

h
` νxδ2{7

e τpus,h ´ pus,hq, pus,hyIs
h

´ νxδ2{7
e τus,h, pus,hyIs

h

` xδ2{7
e τ ppd,h, ppd,hyId

h
` xδ2{7

e τppd,h ´ ppd,hq, ppd,hyId
h

´ xδ2{7
e τpd,h, ppd,hyId

h
.

Before proving this result, we point out that in the particular case when Is
h “ Id

h , we have coincident
meshes free of hanging nodes, from which it is easily seen that T “ 0.

Proof. It follows straightforwardly from simple algebraic manipulations. Indeed, we first use the
definition of the numerical fluxes (3.3) to rewrite the two last terms in (3.7c) and (3.7d). Next, using
the conditions transmission (4.12), we obtain

T “ ´ xσs,hns, pus,hyIs
h

` xud,h ¨ nd, ppd,hyId
h

` xτppd,h ´ ppd,hq, ppd,hyId
h

` xτνpus,h ´ pus,hq, pus,hyIs
h

“ x
`

Eσs,h
˝ψ´1

s ´ σs,h
˘

ns, pus,hyIs
h

` x
`

ud,h ´Eud,h
˝ψ´1

d
˘

¨ nd, ppd,hyId
h

´ xαs,hns, pus,hyIs
h

` xjnc
d ` jδ

d, ppd,hyId
h

` xprpd,h ˝ψ ´ ppd,hqnd, pus,h ˝ψyId
h

´ xjnc
s ` jδ

s , pus,hyIs
h

` xprus,h ˝ψ´1 ´ pus,hq ¨ ns, ppd,h ˝ψ´1yIs
h
.

Finally, in order to obtain the terms ν}δ
1{7
e τ1{2

pus,h}Is
h

and }δ
1{7
e τ1{2

ppd,h}Id
h

on the left-hand side of the
stability estimate, we add

0 “ νxδ2{7
e τpus,h, pus,hyIs

h
` νxδ2{7

e τpus,h ´ pus,hq, pus,hyIs
h

´ νxδ2{7
e τus,h, pus,hyIs

h

` xδ2{7
e τ ppd,h, ppd,hyId

h
` xδ2{7

e τppd,h ´ ppd,hq, ppd,hyId
h

´ xδ2{7
e τpd,h, ppd,hyId

h
,

which finishes the proof.

In what follows, we define

Q
`

Ls,h, u‹,h, pus,h, pd,h, ppd,h

˘

:“
!

ν}Ls,h}2
Ωs

h
` }κ´1ud,h}2

Ωd
h

` ν}τ1{2pus,h ´ pus,hq}2
BΩs

h

`}δ
1{7
e τ1{2

ppd,h}2
Id

h

` }τ1{2ppd,h ´ ppd,hq}2
BΩd

h

` ν}δ
1{7
e τ1{2

pus,h}2
Is

h

)1{2
,

(4.13)

and provide an upper bound for this energy term QpLs,h, u‹,h, pus,h, pd,h, ppd,hq. This bound depends,
in addition to the sources, on the norms of the approximations of the velocity us,h, pressures ps,h, and
pd,h. Also, for a facet e of E‹

h, we consider P‹ : L2peq ÝÑ Pkpeq and P‹ : L2peq ÝÑ Pkpeq the respective
L2 and L2 orthogonal projections. In abuse of notation, the global projections will be also denoted by
P‹ and P‹.

Lemma 4. Assume that fd “ 0 and f s “ 0. If assumptions (A.1q ´ (A.3q hold and ‹ P ts, du, then

5
16QpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 ď rC1

`

}us,h}2
Ωs

h
` }pd,h}2

Ωd
h

˘

` rC2}ps,h}2
Ωs

h
` 4}κJd}2

Ωd
h

` 4ν}Js}
2
Ωs

h

` }hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

` }hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

, (4.14)

where β is a non-negative parameter whose range will be chosen later.
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Proof. Taking Gs,h “ νLs,h, vs,h “ us,h, qs,h “ ps,h, and µs,h “ pus,h in (4.11a), (3.2b), (3.2c), and
(3.2d), along with (3.3b), we easily obtain

ν}Ls,h}2
Ωs

h
` ν}τ1{2pus,h ´ pus,hq}2

BΩs
h

´ xpσs,hns, pus,hyIs
h

“ pνJs, Ls,hqΩs
h
. (4.15)

Similarly, taking vd,h “ ud,h, qd,h “ pd,h, µd,h “ ppd,h in (4.11b), (3.2h), (3.2i), and (3.2j), along
with (3.3a), we find that

pκ´1ud,h, ud,hqΩd
h

` }τ1{2ppd,h ´ ppd,hq}2
BΩd

h
` xpud,h ¨ nd, ppd,hyId

h
“ pJd, ud,hqΩd

h
. (4.16)

Next, adding (4.16) and (4.15), it follows that

ν}Ls,h}2
Ωs

h
` ν}τ1{2pus,h ´ pus,hq}2

BΩs
h

` pκ´1ud,h, ud,hqΩd
h

` }τ1{2ppd,h ´ ppd,hq}2
BΩd

h
` T

“ pνJs, Ls,hqΩs
h

` pJd, ud,hqΩd
h
.

In this way, by combining this identity with the expression for T given in Lemma 3, we obtain

QpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 “

9
ÿ

i“1
Ii ` pνJs, Ls,hqΩs

h
` pJd, ud,hqΩd

h
, (4.17)

where Q is the energy term defined in (4.13), and

I1 :“ ´xprpd,h ˝ψ ´ ppd,hqnd, pus,h ˝ψyId
h
, I2 :“ ´xprus,h ˝ψ´1 ´ pus,hq ¨ ns, ppd,h ˝ψ´1yIs

h
,

I3 :“ ´x
`

Eσs,h
˝ψ´1

s ´ σs,h
˘

ns, pus,hyIs
h
, I4 :“ ´x

`

ud,h ´Eud,h
˝ψ´1

d
˘

¨ nd, ppd,hyId
h
,

I5 :“ xjnc
s ` jδ

s , pus,hyIs
h
, I6 :“ ´xjnc

d ` jδ
d, ppd,hyId

h
,

I7 :“ xαs,hns, pus,hyIs
h
, I8 :“ ´νxδ2{7

e τpus,h ´ pus,hq, pus,hyIs
h
,

I9 :“ ´xδ2{7
e τppd,h ´ ppd,hq, ppd,hyId

h
, I10 :“ νxδ2{7

e τus,h, pus,hyIs
h
,

I11 :“ xδ2{7
e τpd,h, ppd,hyId

h
.

Now, recalling the properties of κ´1, τ and ν, we apply the Cauchy–Schwarz and Young inequalities
to bound each of these terms as follows. First,

I1 ď 4τ´1{2ν´1Cδd,h}δ´5{14
e κ´1ud,h}2

Ωd
h

`
ν

16}δ1{7
e τpus,h}2

Is
h
, and

I2 ď 4τ´1{2Cδs,h}δ´5{14
e Ls,h}2

Ωs
h

`
1
16}δ1{7

e τ ppd,h}2
Id

h
,

where we have used (4.10b), and (4.10a), respectively. For I3 and I4, it follows from the estimate
(4.8), that there exist positive constants pCe

s and pCd
e , such that

I3 ď
8
ν

max
ePIs

h

´

pCs
eδ12{7

e h´3
e pCext

e q2τ´1
¯ ´

ν2}Ls,h}2
Ωs

h
` }ps,h}2

Ωs
h

¯

`
ν

16}δ1{7
e τ1{2

pus,h}2
Is

h
, and

I4 ď 4 max
ePId

h

´

pCd
e δ12{7

e h´3
e pCext

e q2τ´1
¯

}κ´1ud,h}2
Ωd

h
`

1
16}δ1{7

e τ1{2
ppd,h}2

Id
h
.

For I5 and I6, we have

I5 ď }hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

`
1
2}hp1´βq{2

e ppus,h ´ us,hq}2
Is

h
` max

ePIs
h

ˆ

pCtr
e q´2h´β

e

2

˙

}us,h}2
Ωs

h
, and

I6 ď }hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

`
1
2}hp1´βq{2

e pppd,h ´ pd,hq}2
Id

h
` max

ePId
h

ˆ

pCtr
e q´2h´β

e

2

˙

}pd,h}2
Ωd

h
.

12



Next, noticing that I7 ď }αs,h}Is
h
}pus,h}Is

h
, and }αs,h}Is

h
ď Cα}ps,h}Ωs

h
, where

Cα :“ |Is
h|1{2 |ΩszΩs

h|1{2

|Ωs|
max
ePIs

h

´

δ1{2
e h´1{2

e Cext
e

¯

,

it follows that

I7 ď 4C2
α

ν
}δ´1{7

e ps,h}2
Ωs

h
`

ν

16}δ1{7
e τ1{2

pus,h}2
Is

h
.

For I8 and I9, we easily obtain

I8 ď 4ν}δ1{7
e τ1{2pus,h ´ pus,hq}2

Is
h

`
ν

16}δ1{7
e τ1{2

pus,h}2
Is

h
, and

I9 ď 4}δ1{7
e τ1{2ppd,h ´ ppd,hq}2

Id
h

`
1
16}δ1{7

e τ1{2
ppd,h}2

Id
h
.

In turn, using the discrete trace inequality (4.9), we find that

I10 ď 4ν max
ePIs

h

´

`

Ctr
e

˘2
δ2{7

e h´1
e τ

¯

}us,h}2
Ωs

h
`

ν

16}δ1{7
e τ1{2

pus,h}2
Is

h
,

I11 ď 4 max
ePId

h

´

`

Ctr
e

˘2
δ2{7

e h´1
e τ

¯

}pd,h}2
Ωd

h
`

1
16}δ1{7

e τ1{2
ppd,h}2

Id
h
.

Finally, rearranging terms and bearing in mind the Assumption (A.3), we obtain (4.14). We omit
further details.

Our next goal is to provide an estimate for the L2-norm of us,h, ps,h, and pd,h. To bound }us,h}Ωs
h

and }pd,h}Ωd
h

we employ a duality argument, whereas for }ps,h}Ωs
h

we use an inf-sup condition.

4.2 A duality argument

In order to estimate }us,h}Ωs
h

` }pd,h}Ωd
h
, we now proceed as in [25, 22, 18] and incorporate a suitable

auxiliary problem. More precisely, in what follows we consider the continuous problem (1.1)-(1.2)-(1.3)
with sources given by f s :“ Θs P L2pΩsq and fd :“ Θd P L2pΩdq, that is:

Φs “ ∇ϕs, ∇ ¨ pνΦs ´ rφsIq “ Θs, ∇ ¨ ϕs “ 0 in Ωs, ϕs “ 0 on Γs and
ż

Ωs

rφs “ 0, (4.18)

∇ ¨ ϕd “ Θd, ϕd ` κ∇φd “ 0 in Ωd and φd “ 0 on Γd, (4.19)

ϕs ¨ ns ` ϕd ¨ nd “ 0, pνΦs ´ rφsIqns “ φdnd on I. (4.20)

In addition, we proceed to carry the same decomposition performed for the pressure of the continuous
problem, that is rφs “ rαs ` φs, where φs P L2

0pΩs
hq, and rαs “

´1
|Ωs|

ż

ΩszΩs
h

φs, is the constant similar to

(3.1). Furthermore, suppose that elliptic regularity holds, that is,

ν}Φs}H1pΩsq ` ν}ϕs}H2pΩsq ` }φs}H1pΩsq ` }ϕd}H1pΩdq ` }φd}H2pΩdq ď Cr

!

}Θs}Ωs ` }Θd}Ωd

)

. (4.21)

Lemma 5. Suppose Assumptions (A) and (4.21) hold true. There exist h0 P p0, 1q and a positive
constant C such that, for all h ă h0,

}us,h}2
Ωs

h
` }pd,h}2

Ωd
h

ď C
!

CS
δ,hQpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 ` }jnc

s ` jδ
s}2

Is
h

` }jnc
d ` jδ

d}2
Id

h

` pCp
δ,hq2}ps,h}2

Ωs
h

` h2 mint1,ku}Jd}2
Ωd

h
` h2 mint1,ku}Js}

2
Ωs

h

)

,
(4.22)

where CS
δ,h and Cp

δ,h are constants defined in (A.4).
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Proof. We proceeded as in [18, Lemma 4.6]. First, from (4.18) and (4.19), we have

pus,h, ΘsqΩs
h

` ppd,h, ΘdqΩd
h

“ pus,h, ∇ ¨ pνΦs ´ rφsIqqΩs
h

` ppd,h, ∇ ¨ ϕdqΩd
h

` pνLs,h, Φs ´ ∇ϕsqΩs
h

´ pud,h, κ´1ϕd ` ∇φdqΩd
h
.

Now, using the properties of the HDG projectors, L2´projectors, and performing some algebraic
manipulations along with the transmission conditions given by (1.3) and (4.12), we deduce that

pus,h, ΘsqΩs
h

` ppd,h, ΘdqΩd
h

“ ´pνLs,h, Πs
GΦs ´ ΦsqΩs

h
´ pJs, νΠs

GΦsqΩs
h

` pJd, Πd
Vϕd ´ ϕdqΩd

h
´ pJd, κ∇φdqΩd

h
` xϕd ¨ nd, ppd,hyId

h

` pκ´1ud,h, Πd
Vϕd ´ ϕdqΩd

h
` xpus,h, pνΦs ´ IrφsqnsyIs

h
´ xpνpLs,h ´ Ipps,hqns,ϕsyBΩs

h
´ xpud,h ¨ nd, φdyBΩd

h

“ T1 ` T2,

where

T1 “ ´ pνLs,h, Πs
GΦs ´ ΦsqΩs

h
´ pJs, νpΠs

GΦs ´ ΦsqqΩs
h

´ pJs, νpΦs ´ P k´1pΦsqqqΩs
h

` pJd, Πd
Vϕd ´ ϕdqΩd

h

´ pJd, κp∇φd ´ Pk´1p∇φdqqqΩd
h

` pκ´1ud,h, Πd
Vϕd ´ ϕdqΩd

h
,

and

T2 “ x
`

ud,h ´Eud,h
˝ψ´1

d
˘

¨ nd, PdφdyId
h

` xPsϕs,
`

Eσs,h
˝ψ´1

s ´ σs,h
˘

nsyIs
h

´ xjnc
s ` jδ

s , PsϕsyIs
h

´ xjnc
d ` jδ

d, PdφdyId
h

` x
`

ppd,h ˝ψ´1 ´ rpd,h

˘

nd, PsϕsyIs
h

` xprus,h ´ pus,h ˝ψq ¨ ns, PdφdyId
h

` xpus,h, pPdφd ´ φdqnd ˝ψ´1yIs
h

` xpPsϕs ´ ϕsq ˝ψ ¨ ns, ppd,hyId
h

` xpus,h ˝ψ,
`

φd ˝ψ´1
d ´ φd

˘

ndyId
h

´ xppd,h ˝ψ´1,
`

ϕs ˝ψ´1
s ´ ϕs

˘

¨ nsyIs
h

` xpus,h,
`

νΦs ´ φsI ´ pνΦs ´ φsIq ˝ψ´1
s
˘

nsyIs
h

` xpus,h, rαsnsyIs
h

` xppd,h,
`

ϕd ´ ϕd ˝ψ´1
d
˘

¨ ndyId
h

´ xαs,hns, PsϕsyIs
h
.

Here P k´1|
rK

and Pk´1|K are the projections L2p rKq and L2pKq onto Pk´1p rKq and Pk´1pKq for each
rK P Ωs

h and K P Ωd
h. Hence, applying the Cauchy–Schwarz inequality, it follows that

T1 ď

!

}Ls,h}Ωs
h

` }Js}Ωs
h

` p1 ` κq}Jd}Ωd
h

` }κ´1ud,h}Ωd
h

)!

}νpΠs
GLs ´ Φsq}Ωs

h

`}νpΦs ´ P k´1pΦsqq}Ωs
h

` }Πd
Vϕd ´ ϕd}Ωd

h
` }∇φd ´ Pk´1p∇φdq}Ωd

h

)

.

Thus, invoking [12, Lemma 1.58], the approximation properties given by (2.3) and (2.5), and the
regularity assumption (cf. (4.21)) we obtain

T1 ď C1h
!

}Ls,h}Ωs
h

` }Js}Ωs
h

` p1 ` κq}Jd}Ωd
h

` }κ´1ud,h}Ωd
h

)!

}νΦs}1,Ωs
h

` }φs}1,Ωs
h

` }νϕs}2,Ωs
h

` }Θs}Ωs
h

` }ϕd}1,Ωd
h

` }φd}2,Ωd
h

)

ď 2C1Crh
!

}Ls,h}Ωs
h

` }Js}Ωs
h

` p1 ` κq}Jd}Ωd
h

` }κ´1ud,h}Ωd
h

)!

}Θs}Ωs
h

` }Θd}Ωd
h

)

. (4.23)
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In turn, for T2 we write

B1 :“ x
`

ud,h ´Eud,h
˝ψ´1

d
˘

¨ nd, PdφdyId
h
, B2 :“ xPsϕs,

`

Eσs,h
˝ψ´1

s ´ σs,h
˘

nsyIs
h
,

B3 :“ ´xjnc
s ` jδ

s , PsϕsyIs
h
, B4 :“ ´xjnc

d ` jδ
d, PdφdyId

h
,

B5 :“ x
`

ppd,h ˝ψ´1 ´ rpd,h

˘

nd, PsϕsyIs
h
, B6 :“ xprus,h ´ pus,h ˝ψq ¨ ns, PdφdyId

h
,

B7 :“ xpus,h, pPdφd ´ φdqnd ˝ψ´1yIs
h
, B8 :“ xpPsϕs ´ ϕsq ˝ψ ¨ ns, ppd,hyId

h
,

B9 :“ xpus,h ˝ψ,
`

φd ˝ψ´1
d ´ φd

˘

ndyId
h
, B10 :“ ´xppd,h ˝ψ´1,

`

ϕs ˝ψ´1
s ´ ϕs

˘

¨ nsyIs
h
,

B11 :“ xpus,h,
`

νΦs ´ φsI ´ pνΦs ´ φsIq ˝ψ´1
s
˘

nsyIs
h
, B12 :“ xppd,h,

`

ϕd ´ ϕd ˝ψ´1
d
˘

¨ nsyId
h
,

B13 :“ ´xαs,hns, PsϕsyIs
h
, B14 :“ xpus,h, rαsnsyIs

h
.

In this way, we bound each of these terms applying the Cauchy–Schwarz and trace inequalities, and
the regularity Assumption (cf. (4.21)). Indeed, note that

B3 À ν´1}jnc
s ` jδ

s}Is
h
}Θs}Ωs

h
, B4 À }jnc

d ` jδ
d}Id

h
}Θd}Ωd

h
,

B13 À ν´1Cα}ps,h}Ωs
h
}Θs}Ωs

h
, B14 À ν´1δ5{14

e }τδ1{7
e pus,h}Is

h
}Θs}Ωs .

In turn, thanks to Lemma 1, it follows that

B1 À max
ePId

h

´

δeh´3{2
e Cext

e

¯

}ud,h}Ωd
h
}Θd}Ωd

h
, B9 À δ}pus,h}Is

h
}Θd}Ωd

h
,

B2 À ν´1 max
ePIs

h

´

δeh´3{2
e Cext

e

¯

}σs,h}Ωs
h
}Θs}Ωs

h
, B10 À ν´1δ}ppd,h}Id

h
}Θs}Ωs

h
,

B11 À δ1{2}pus,h}Is
h
}Θs}Ωs

h
, B12 À δ1{2}ppd,h}Id

h
}Θd}Ωd

h
.

Next, from (4.10a) and (4.10b), we obtain

B6 À ν´1δ1{2
e C

1{2
δs,h

}νLs,h}Ωs
h
}Θd}Ωd

h
, B5 À ν´1δ1{2

e C
1{2
δd,h

}κ´1ud,h}Ωs
h
}Θs}Ωs

h
.

On the other hand, from [12, Lemma 1.59], we find that

B7 À

´

h3{2
e }pus,h ´ us,h}Is

h
` hepCtr

e q´1}us,h}Ωs
h

¯

}Θd}Ωd
h
,

B8 À

´

h3{2
e }ppd,h ´ pd,h}Id

h
` hepCtr

e q´1}pd,h}Ωd
h

¯

}Θs}Ωs
h
.

In summary, adding up all the estimates for Bi (i “ 1, ..., 14), we deduce that

T2 À

!

Cus,Ls
δ,h

´

}κ´1ud,h}Ωd
h

` }Ls,h}Ωs
h

¯

` Cpus,ppd
δ,h

´

ν}δ1{7
e τ1{2

pus,h}Is
h

` }δ1{7
e τ1{2

ppd,h}Id
h

¯

` Cp
δ,h}ps,h}Ωs

h
` }jnc

s ` jδ
s}Is

h
` }jnc

d ` jδ
d}Id

h
` h3{2

e }pus,h ´ us,h}Is
h

` hepCtr
e q´1}us,h}Ωs

h
` h3{2

e }ppd,h ´ pd,h}Id
h

` hepCtr
e q´1}pd,h}Ωd

h

)!

}Θs}Ωs
h

` }Θd}Ωd
h

)

,

(4.24)

where Cus,Ls
δ,h , Cpus,ppd

δ,h , and Cp
δ,h are the constants that have been defined in (A.4). In this way, from

(4.23) and (4.24), we find that

pus,h, ΘsqΩs
h

` ppd,h, ΘdqΩd
h

À

!´

h ` Cus,Ls
δ,h ` Cpus,ppd

δ,h

¯

QpLs,h, u‹,h, pus,h, pd,h, ppd,hq ` Cp
δ,h}ps,h}Ωs

h
` }jnc

d ` jδ
d}Id

h

` }jnc
s ` jδ

s}Is
h

` hmint1,ku
`

}Jd}Ωd
h

` }Js}Ωs
h

˘

` h
`

}pd,h}Ωd
h

` }us,h}Ωs
h

˘

)!

}Θs}Ωs
h

` }Θd}Ωd
h

)

.

Hence, taking Θs “ us,h and Θd “ pd,h leads to the required inequality (4.22).
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Lemma 6. Assume that fd “ 0 and f s “ 0. It holds that

}ps,h}Ωs
h

ď rCis

!

ν}Ls,h}Ωs
h

` ν}τ1{2 pus,h ´ pus,hq }BΩs
h

)

, (4.25)

where rCis “ rβ max
!

1, max
KPΩs

h

pτhKq1{2
)

, and rβ is a positive constant independent of h.

Proof. See [26, Lemma 2] or [22, Lemma 10].

We are now in position to establish the main result of this section.

Theorem 1. Suppose Assumptions (A) and elliptic regularity (cf. (4.21)) hold true. If τ is of order
one, k ě 1 and h ă 1, there exists h0 P p0, 1q, such that for all h ă h0,

QpLs,h, u‹,h, pus,h, pd,h, ppd,hq2

À }hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

` }hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

` }Jd}2
Ωd

h
` }νJs}

2
Ωs

h
, (4.26)

}us,h}2
Ωs

h
` }pd,h}2

Ωd
h

À

!

CS
δ,hQpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 ` }jnc

s ` jδ
s}2

Is
h

` }jnc
d ` jδ

d}2
Id

h

` pCp
δ,hq2}ps,h}2

Ωs
h

` h2 mint1,ku}Jd}2
Ωd

h
` h2 mint1,ku}Js}

2
Ωs

h

)

, and (4.27)

}ps,h}2
Ωs

h
À νQpLs,h, u‹,h, pus,h, pd,h, ppd,hq2. (4.28)

Proof. We first employ the estimate obtained in Lemma 5 to bound the first and second terms of the
right-hand side of Lemma 4. Next, using the estimate for }ps,h} (cf. (4.25)), we obtain

p1 ´ Cδ,hq QpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 À }hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

` }hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

` }Jd}2
Ωd

h
` }νJs}

2
Ωs

h
,

where Cδ,h is the constant defined in (A.4), since δ ă 1, τ is of order one, k ě 1 and h ă 1. Hence,
(4.26) follows by Assumption (A.4). Finally, making use of (4.22) and (4.25), we get (4.27) and (4.28),
which finishes the proof.

Corollary 1. The HDG scheme (3.2) has a unique solution.

Proof. We first note that the existence of the solution follows from its uniqueness. Thus, it suffices to
show that when the right-hand sides of (3.2) vanish, then Ls,h, ud,h, pd,h, us,h, ppd,h, pus,h also vanish.
Indeed, assuming that fd “ 0, f s “ 0, Jd “ 0, Js “ 0, jd “ 0, and js “ 0, we deduce from Theorem
1 that Ls,h “ 0, ud,h “ 0, pd,h “ ppd,h “ 0, us,h “ pus,h “ 0, and ps,h “ 0. In turn, we notice from
Lemma 2 that rpd,h “ 0, and rus,h “ 0, which completes the proof.

4.3 Semi-aligned discrete interfaces

With the aim of improving the estimate given in Theorem 1, in this section, we consider a specific
structure of nonconforming meshes, where the discrete interfaces satisfy the following: if vd is a vertex
in Id

h , then ψpvdq is a vertex vs in Is
h (see Fig 1). In this way, we refer to Id

h and Is
h as semi-aligned

discrete interfaces.

Under this condition and the fact that in the error analysis jnc
s :“ pPdpd ´ pdq ˝ ψ´1nd and

jnc
d :“ pPsus ´ usq ˝ ψ ¨ ns (see eqs. (5.4) in Lemma 8), it is easy to see that xjnc

d , µd,hyId
h

in
(4.12a) vanishes. In fact, since hs ď hd, the term µd,hns ˝ψ´1 belongs to Ns

h and thus xjnc
d , µd,hyId

h
“
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xpPsus ´usq, µd,hns ˝ψ´1yIs
h

“ 0. Furthermore, in what follows we show that under this configuration
xjnc

s , Pdpϕs ˝ψq ˝ψ´1yIs
h

and xjnc
d , PdφdyId

h
also vanish. Indeed,

xjnc
s , Pdpϕs ˝ψq ˝ψ´1yIs

h
“ xpPdpd, Pdpϕs ˝ψq ¨ ndyId

h
´ xpdnd, Pdpϕs ˝ψqyId

h

“ xppd, Pdpϕs ˝ψq ¨ ndyId
h

´ xpdnd, Pdpϕs ˝ψqyId
h

“ 0.

On the other hand, taking into account that hs ď hd, we have

xjnc
d , PdφdyId

h
“ xpPsus ˝ψ ¨ ns, PdφdyId

h
´ xus ˝ψ ¨ ns, PdφdyId

h

“ xpPsus, Pdφd ˝ψ´1nsyIs
h

´ xus, Pdφd ˝ψ´1nsyIs
h

“ 0,

since Pdφd ˝ψ´1ns P Ms
h. All these identities imply an improvement of the estimate of Lemma 5. In

fact, we recall that B3 “ ´xjnc
s , PsϕsyIs

h
´ xjδ

s , PsϕsyIs
h
. Then, we have

xjnc
s , PsϕsyIs

h
“ xjnc

s , Psϕs ´ ϕsyIs
h

´ xjnc
s , Pdpϕs ˝ψq ˝ψ´1 ´ ϕsyIs

h
` xjnc

s , Pdpϕs ˝ψq ˝ψ´1yIs
h

À h3{2}jnc
s }Is

h
|ϕs|H2pΩsq ` }jnc

s }Is
h
}Pdpϕs ˝ψq ´ ϕs ˝ψ}Id

h

À h3{2}jnc
s }Is

h
|ϕs|H2pΩsq ` h3{2}jnc

s }Is
h
|ϕs ˝ψ|H3{2pId

h
q

À ν´1h3{2}jnc
s }Is

h
}Θs}Ωs ,

which implies that

B3 À ν´1h3{2}jnc
s }Is

h
}Θs}Ωs ` ν´1}jδ

s}Is
h

}Θs}Ωs . (4.29)

On the other hand, we have that

B4 “ ´xjnc
d , PdφdyId

h
´ xjδ

d, PdφdyId
h

ď }jδ
d}Id

h
}Θd}Ωd . (4.30)

We now have the following result.

Lemma 7. Under the same assumptions of Lemma 5, if we have semi-aligned discrete interfaces, we
get

}us,h}2
Ωs

h
` }pd,h}2

Ωd
h

ď C
!

CS
δ,hQpLs,h, u‹,h, pus,h, pd,h, ppd,hq2 ` h3{2}jnc

s }2
Is

h
` }jδ

s}2
Is

h
` }jδ

d}2
Id

h

` pCp
δ,hq2}ps,h}2

Ωs
h

` h2 mint1,ku}Jd}2
Ωd

h
` h2 mint1,ku}Js}

2
Ωs

h

)

.
(4.31)

Proof. The proof follows almost verbatim as in Lemma 5, but now considering the estimates (4.29)
and (4.30).

5 Error Analysis

Our first goal in this section is to derive the error estimates of the proposed method. We employ
the stability estimate deduced in previous sections. In what follows, we introduce the projection of
the errors, namely εLs :“ Πs

GLs ´ Ls,h, εu‹ :“ Π‹
Vu‹ ´ u‹,h, εpu‹ :“ P‹u‹ ´ pu‹,h, εp‹ :“ Π‹

P p‹ ´ p‹,h,
εp̂d :“ Pdpd ´ ppd,h, and εαs :“ Πs

Qαs ´ αs,h. In turn, the error of the projections are given by
Is
L :“ Ls ´ Πs

GLs, I‹
u :“ u‹ ´ Π‹

Vu‹, I‹
p :“ p‹ ´ Π‹

P p‹, and Is
α :“ αs ´ Πs

Qαs, and note that Is
α “ 0.
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Lemma 8. The projection of the errors satisfies

pεLs , Gs,hqΩs
h

` pεus , ∇ ¨ Gs,hqΩs
h

´ xεpus , Gs,hnsyBΩs
h

“ ´ pIs
L, Gs,hqΩs

h
, (5.1a)

pεLs , ∇vs,hqΩs
h

´ pεps , ∇ ¨ vs,hqΩs
h

´ xpνε
pLs ´ εppsqns, vs,hyBΩs

h
“ 0 , (5.1b)

´pεus , ∇qs,hqΩs
h

` xεpus ¨ ns, qs,hyBΩs
h

“ 0 , (5.1c)

xεpus ,µs,hyΓs,h
“ 0 , (5.1d)

xpνε
pLs ´ εppsqns,µs,hyBΩs

h
zpΓs,h∪Is

h
q “ 0 , (5.1e)

pκ´1εud , vd,hqΩd
h

´ pεpd , ∇ ¨ vd,hqΩd
h

` xvd,h ¨ nd, εppdyBΩd
h

“ ´ pκ´1Id
u, vd,hqΩd

h
, (5.1f)

´pεud , ∇qd,hqΩd
h

` xεpud ¨ nd, qd,hyBΩd
h

“ 0 , (5.1g)

xεppd , µd,hyΓd,h
“ 0 , (5.1h)

xεpud ¨ nd, µd,hyBΩd
h

zpΓd,h∪Id
h

q “ 0 , (5.1i)

for all pGs,h, vs,h, qs,h,µs,h, vd,h, qd,h, µd,hq P Gs
h ˆ Vs

h ˆ Qs
h ˆ Ms

h ˆ Vd
h ˆ Qd

h ˆ Md
h , and

εpud ¨ nd “ εud ¨ nd ` τpεpd ´ εppdq on BΩd
h, (5.2a)

εpσsns “ νεLsns ´ εpsIns ´ τνpεus ´ εpusq on BΩs
h. (5.2b)

Moreover, for x‹ P I‹
h, let

εrpdpxsq :“ εppdpxdq ´ |σdpxdq|

ż 1

0
Eεud pydptqq ¨ nddt, (5.3a)

εruspxdq :“ εpuspxsq ` |σspxsq|

ż 1

0
EεLs pysptqqnsdt, (5.3b)

εrudpxdq :“ Eεud ˝ψ´1
d pxdq ¨ nd ` τpεpd ´ εppdqpxdq, (5.3c)

εrσspxsqns :“ pνEεLs ´Eεps Iq ˝ψ´1
s pxsqns ´ ντpεus ´ εpusqpxsq ´ εαsns. (5.3d)

They satisfy

xεrus ¨ ns ` εrud ¨ nd, µd,hyId
h

“ xpPsus ´ usq ˝ψ ¨ ns, µd,hyId
h

´ x|σs|ΛIs
L

˝ψ ¨ nd, µd,hyId
h

`x|σs|Is
L ˝ψnd, µd,hndyId

h
` x

´

Id
u ´ Id

u ˝ψ´1
d

¯

¨ nd, µd,hyId
h

@ µd,h P Nd
h ,

(5.4a)

xεrσsns ´ εrpdnd,µs,hyIs
h

“ ´xpPdpd ´ pdq ˝ψ´1nd ` κ´1|σd|ΛId
u
nd ˝ψ´1,µs,hyIs

h

´xκ´1|σd|Id
u ˝ψ´1 ´

`

pνIs
L ´ Is

pIq ´ pνIs
L ´ Is

pIq ˝ψ´1
s
˘

ns,µs,hyIs
h

@µs,h P Ns
h.

(5.4b)

Proof. The identities (5.1)-(5.2) are straightforwardly obtained from the definition of the projection
of the errors and (3.2) (see also [6, Lemma 3.1] and [7, Lemma 3.1]). Now, let xs P Is

h. By (3.7a) and
(2.1), we rewrite (5.3a) as

εrpdpxsq “ Pdpdpxdq ` |σdpxdq|

ż 1

0
κ´1EΠd

Vud
pydptqq ¨ nddt ´ rpd,hpxsq.

Moreover,

|σdpxdq|

ż 1

0
κ´1EΠd

Vud
pyptqq ¨ nddt “ ´|σdpxdq|

ż 1

0
κ´1Id

upyptqq ¨ nd ` |σdpxdq|

ż 1

0
κ´1udpyptqq ¨ nd,
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from which, proceeding in a similar way as in the proof of Lemma 2, we obtain

|σdpxdq|

ż 1

0
κ´1EΠd

Vud
pyptqq ¨ nddt “ κ´1|σdpxdq|ΛId

u
pxdq ´ |σdpxdq|κId

upxdq ¨ nd

` |σdpxdq|

ż 1

0
κ´1udpyptqq ¨ nd.

On the other hand, from (5.3d), (2.1), and (5.3d) we find that

εrσspxsqns :“ ´ pνrLs,h ´ rps,hIqpxsqns ` pνΠs
GLs ´ Πs

QpsIq ˝ψ´1
s pxsqns ´ ντpΠs

Vus ´ Psusqpxsq

´EΠs
Qαsns.

Hence, for µs,h P Ns
h, the above expressions together with (2.2c) and the definition of the L2-projection

Pd imply

xεrσsns ´ εrpdnd,µs,hyIs
h

“ xpνΠs
GLs ´ Πs

QpsIq ˝ψ´1
s ns ` ppνLs ´ psIqns ´ pνΠs

GLs ´ Πs
QpsIqns,µs,hyIs

h

´ xpPdpd ´ pdq ˝ψ´1nd ´ κ´1p|σd|ΛId
u
nd ` |σd|Id

uq ˝ψ´1,µs,hyIs
h

´ xαsns,µs,hyIs
h

´ xpd ˝ψ´1
s nd,µs,hyIs

h
,

from which, employing (3.6) in the third term of the right hand side of the above expression, we obtain
(5.4b). In turn, for xd P Id

h , the identity (5.4a) is proved in a completely analogous way. We omit
further details.

We observe that the above equiations are similar to those of the HDG scheme (3.2), where Is
L, Id

u,
0, and 0 play the role of Js, Jd, fd and f s, respectively. Moreover,

xjnc
d ` jδ

d, µd,hyId
h

“ xpPsus ´ usq ˝ψ ¨ ns ´ |σs|ΛIs
L

˝ψ ¨ nd, µd,hyId
h

` x|σs|Is
L ˝ψnd, µd,hndyId

h

` x

´

Id
u ´ Id

u ˝ψ´1
d

¯

¨ nd, µd,hyId
h
, (5.5)

xjnc
s ` jδ

s ,µs,hyIs
h

“ ´ xpPdpd ´ pdq ˝ψ´1nd ` κ´1|σd|ΛId
u
nd ˝ψ´1,µs,hyIs

h

´ xκ´1|σd|Id
u ˝ψ´1 ´

`

pνIs
L ´ Is

pIq ´ pνIs
L ´ Is

pIq ˝ψ´1
s
˘

ns,µs,hyIs
h
. (5.6)

Hence, we consider the result of Theorem 1 applied to this context. More precisely, we notice that

}hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

À }hpβ´1q{2
e pPsus ˝ψ ´ us ˝ψq}2

Id
h

` }hpβ´1q{2
e |σs|ΛIs

L
˝ψ}2

Id
h

` }hpβ´1q{2
e |σs|Is

L ˝ψ}2
Id

h
` }hpβ´1q{2

e

´

Id
u ´ Id

u ˝ψ´1
d

¯

}2
Id

h
,

(5.7)

and

}hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

À }hpβ´1q{2
e pPdpd ˝ψ´1 ´ pd ˝ψ´1q}2

Is
h

` }hpβ´1q{2
e κ´1|σd|ΛId

u
˝ψ´1}2

Is
h

` }hpβ´1q{2
e κ´1|σ|Id

u ˝ψ´1}2
Is

h
` }hpβ´1q{2

e pνIs
L ´ Is

pI ´ pνIs
L ´ Is

pIq ˝ψ´1
s q}2

Is
h
.

(5.8)

and observe that the first terms in (5.7) and (5.8) can be bounded using the approximation properties
of the L2-projection over Nd

h and Ns
h, respectively, that is there exist constants Cn‹ ě 0, for ‹ P ts, du,

independent of h, such that

}hpβ´1q{2
e pPsus ˝ψ ´ us ˝ψq}2

Id
h

ď Cnsh
2lus `β|us|

2
Hlus `1pΩsq

, (5.9)

}hpβ´1q{2
e pPdpd ˝ψ´1 ´ pd ˝ψ´1q}2

Is
h

ď Cndh2lpd `β|pd|2
Hlpd `1

pΩdq
, (5.10)
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where the constants Cns and Cnd take into account the nonconformity between the computational
interfaces.
On the other hand, following the proof of [25, Theorem 4.2] we deduce from (4.3), a scaling argument
to bound the L2`I‹

h

˘

´norm in terms of its L2pΩ‹
hq´norm, and Lemma 1, that

}hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

À Cnsh
2lus `β|us|

2
Hlus `1pΩsq

` hβ
´

max
ePIs

h

pδ4
eh´4

e q ` max
ePIs

h

pδeh´1
e q2

¯

}Is
L}2

Ωs
h

` hβ max
ePId

h

pδeh´1
e q|κ´1Id

u|2H1pΩd
h

q
,

and

}hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

À Cndh2lpd `β|pd|2
Hlpd `1

pΩdq
` hβ max

ePIs
h

pδeh´1
e q|νIs

L ´ Is
pI|2H1pΩs

h
q

` hβ
´

max
ePId

h

pδ4
eh´4

e q ` max
ePId

h

pδeh´1
e q

¯

}Id
u}2

Ωd
h
.

Next, by Assumptions (A), the fact that pδ4
eh´4

e hβq and pδeh´1
e hβq are bounded, with ‹ P ts, du, it

follows that

}hpβ´1q{2
e pjnc

d ` jδ
dq}2

Id
h

À Cnsh
2lus `β|us|

2
Hlus `1pΩsq

` δ4h´4`β}Is
L}2

Ωs
h

` δh´1`β|Id
u|2H1pΩd

h
q
, and

}hpβ´1q{2
e pjnc

s ` jδ
sq}2

Is
h

À Cndh2lpd `β|pd|2
Hlpd `1

pΩdq
` δh´1`β|νIs

L ´ Is
pI|2H1pΩs

h
q ` δ4h´4`β}Id

u}2
Ωd

h
.

Then, bearing in mind the above, the estimates from Theorem 1 applied to (5.1) become

QpεLs , εu‹ , εpus , εpd , εppdq2 À Cnsh
2lus `β|us|

2
Hlus `1pΩsq

` δh´1`β|Id
u|2H1pΩd

h
q

`
`

δ4h´4`β ` 1
˘

}Id
u}2

Ωd
h

` Cndh2lpd `β|pd|2
Hlpd `1

pΩdq
` δh´1`β|νIs

L ´ Is
pI|2H1pΩs

h
q `

`

ν´2δ4h´4`β ` 1
˘

}νIs
L}2

Ωs
h
,

and

}εus}2
Ωs

h
` }εpd}2

Ωd
h

À
`

CS
δ,h ` pCp

δ,hq2˘QpεLs , εu‹ , εpus , εpd , εppdq2 ` δ|νIs
L ´ Is

pI|2H1pΩs
h

q

` δ|Id
u|2H1pΩd

h
q

`
`

δ4h´3 ` h2˘ }Id
u}2

Ωd
h

`
`

δ4h´3ν´2 ` h2˘ }νIs
L}2

Ωs
h

` Cnsh
2lus `1|us|

2
Hlus `1pΩsq

` Cndh2lpd `1|pd|2
Hlpd `1

pΩdq
.

which, along with the properties of the HDG projectors (cf. (2.3)-(2.5)), we obtain the following result.

Theorem 2. Suppose that Assumption (A) and elliptic regularity hold true. If τ is of order one,
k ě 1 and pLs, u‹, p‹q P Hlσ`1pΩs

hq ˆ Hlu‹ `1pΩ‹
hq ˆ H lp‹ `1pΩ‹

hq, for lu‹, lσ and lp‹ P r0, ks, ‹ P ts, du.
There exists h0 P p0, 1q such that, for all h ă h0, it holds

}ud ´ ud,h}Ωd
h

` }νpLs ´ Ls,hq}Ωs
h

` }ps ´ ps,h}Ωs
h

À

´

C
1
2
ndhlpd `

β
2 ` hlpd`1 ` δ1{2hlpd ´

1´β
2

¯

|pd|
Hlpd `1

pΩdq
`

´

hlσ`1 ` δ1{2hlσ´
1´β

2

¯

|νLs ´ psI|Hlσ`1pΩsq

`

´

C
1
2nsh

lus `
β
2 ` hlus `1 ` δ1{2hlus ´

1´β
2

¯

|us|Hlus `1pΩsq
`

´

hlud `1 ` δ1{2hlud ´
1´β

2

¯

|ud|Hlud `1
pΩdq

,

`

}εus}2
Ωs

h
` }εpd}2

Ωd
h

˘
1
2 À

´

C
1{2
nd δh

´3`β
2 ` C

1{2
nd h1{2 ` δh´1{2 ` h2

¯

hlpd |pd|
Hlpd `1

pΩdq

`

´

δ3{2h
β´4

2 ` δ1{2 ` h2
¯

hlσ |νLs ´ psI|Hlσ`1pΩsq `

´

δ3{2h
β´4

2 ` δ1{2 ` h2
¯

hlud |ud|Hlud `1
pΩdq

`

´

C1{2
ns δh

´3`β
2 ` C1{2

ns h1{2 ` δh´1{2 ` h2
¯

hlus |us|Hlus `1pΩsq
,

}us ´ us,h}Ωs
h

` }pd ´ pd,h}Ωd
h

À

´

}εus}2
Ωs

h
` }εpd}2

Ωd
h

¯
1
2

`

´

`h
2plpd `1q

d |pd|2
Hlpd `1

pΩdq
` h2plus `1q

s |us|
2
Hlus `1pΩsq

¯1{2
.
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Corollary 2. Suppose that the assumptions of Theorem 2 hold and pLs, u‹, p‹q P Hk`1pΩs
hqˆHk`1pΩ‹

hqˆ

Hk`1pΩ‹
hq. Let δ “ Cgh1`γ with Cg ě 0 and γ P p3{4, 3s, and β P r0, 2s ∩ r0, 2γ ´ 1q, with ‹ P ts, du.

There hold

}ud ´ ud,h}Ωd
h

` }νpLs ´ Ls,hq}Ωs
h

` }ps ´ ps,h}Ωs
h

À pC1{2
ns ` C

1{2
nd qhk`

β
2 ` hk`1`1 ` C1{2

g h
γ`β´2

2
˘

,

`

}εus}2
Ωs

h
` }εpd}2

Ωd
h

˘1{2
À hk`1`h ` pC

1{2
nd ` C1{2

ns qh´1{2 ` C1{2
g h

γ´1
2 `

`

C1{2
ns ` C

1{2
nd

˘

Cghγ`
β´3

2
˘

,

}us ´ us,h}Ωs
h

` }pd ´ pd,h}Ωd
h

À hk`1`1 ` pC
1{2
nd ` C1{2

ns qh´1{2 ` C1{2
g h

γ´1
2 `

`

C1{2
ns ` C

1{2
nd

˘

Cghγ`
β´3

2
˘

.

We now explain the consequences of this corollary for some particular cases.

(C.1) No-gap and no hanging nodes. In this case, Cns “ Cnd “ Cg “ 0 and our result shows optimal
order of convergence of hk`1 for all the variables and order hk`2 for the projection of the errors
εus and εpd , as expected.

(C.2) No-gap and hanging nodes. In this case, Cg “ 0, but Cns ‰ 0 and Cnd ‰ 0. In this situation,
since Cg “ 0, we can take β “ 2. Therefore, we obtain optimal order of convergence of hk`1 for
the variables ud, Ls and ps, but suboptimal order of hk`1{2 for the projection of the errors εus

and εpd and also for the errors in us and pd.
(C.3) Gap δ of order h2 and no hanging nodes. Here γ “ 1, which implies that β “ 1 ´ ϵ for all ϵ ą 0,

whereas the nonconformity constants Cns and Cnd vanish. This yields, for all the variables, order
of convergence hk`1´ϵ for all ϵ ą 0.

(C.4) Gap δ of order h2 and hanging nodes. Again, γ “ 1 and β “ 1 ´ ϵ for all ϵ ą 0, but now Cns ‰ 0
and Cnd ‰ 0. Therefore, an order of convergence of hk`1{2´ϵ for all ϵ ą 0 is attained for the
variables ud, Ls and ps and hk`1{2 for all the other variables.

(C.5) Gap δ of order h7{4 and no hanging nodes. In this case γ “ 3{4, β “ 1{2 ´ ϵ for all ϵ ą 0, and
Cns “ Cnd “ 0. Then, the order of convergence is hk`5{8´ϵ for all ϵ ą 0 for the variables ud, Ls
and ps and hk`7{8 for the rest of the variables.

(C.6) Gap δ of order h7{4 and hanging nodes. Here γ “ 3{4 and β “ 1{2 ´ ϵ for all ϵ ą 0, whereas
Cns ‰ 0 and Cnd ‰ 0. Hence, an order of convergence of hk`1{4´ϵ for all ϵ ą 0 is attained for
the variables ud, Ls and ps and hk`1{2 for the rest of the variables.

We observe that the introduction of the constant β as exponent in the first term of the right-hand side
of the first equation of Corollary 2 slightly improves the theoretical convergence rate of the variables
involved there, despite the presence of the non-conformity constants.

We end this section by considering the particular case where the discrete interfaces Id
h and Is

h

satisfy the requirement set out in Section 4.3. In this case, Lemma 7 suggests an improvement of h3{2

in the term associated to jnc
s , whereas the term associated to jnc

d vanishes. Thus, the semi-aligned
variant of Corollary 2 is established as follows.

Corollary 3. Let us consider the same assumptions as in Corollary 2. If the discrete interfaces are
semi-aligned, then

`

}εus}2
Ωs

h
` }εpd}2

Ωd
h

˘1{2
À hk`1`h ` C

1{2
nd h ` C1{2

g h
γ´1

2 ` C
1{2
nd Cghγ`

β´3
2
˘

,

}us ´ us,h}Ωs
h

` }pd ´ pd,h}Ωd
h

À hk`1`1 ` C
1{2
nd h ` C1{2

g h
γ´1

2 ` C
1{2
nd Cghγ`

β´3
2
˘

.

Let us comment on the consequences of this result.
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(D.1) No-gap and hanging nodes. Here, Cg “ 0, but Cns ‰ 0 and Cnd ‰ 0. Therefore, optimal order of
convergence of hk`1 for all the variables and order hk`2 for the projection of the errors εus and
εpd , which improves the power result in (C.2).

(D.2) Gap δ “ h2 and hanging nodes. Here, γ “ 1 and β “ 1 ´ ϵ for all ϵ ą 0, but now Cns ‰ 0 and
Cnd ‰ 0. Therefore, we improve the order of convergence stated in (C.4) since now hk`1´ϵ for
all ϵ ą 0 is attained for the projection of the errors εus and εpd and also for the errors in us and
pd.

(D.3) Gap δ “ h7{4 and hanging nodes. In this case, there is no improvement in the order of convergence
compared to case (C.6).

6 Numerical results

We consider four numerical results we the aim of illustrating the convergence of our HDG method
presented in Section 3.2 for the two dimensional case. In all of them, we consider the computational
domain Ω “ Ωs ∪ Ωd ∪ Σ, where Ωs “ p0, 1q ˆ p1{2, 1q, Ωd “ p0, 1q ˆ p0, 1{2q, and Σ “ p0, 1q ˆ t1{2u. In
turn, we approach our numerical examples by two computational subdomains Ωs

h “ p0, 1qˆp1{2`δ, 1q,
Ωd

h “ p0, 1qˆp0, 1{2´δq, i.e., two rectangular meshed subdomains separated by a flat interface centered
at y “ 1{2. In addition, we define the manufactured exact solution:

Ps “ expp´x ´ yq ´ 2 expp´2qpexpp1{2q ´ 1q2pexpp1{2q ` 1q, us “

ˆ

sinpπxq sinpπyq

cospπxq cospπyq

˙

,

pd “ cospπxq sinpπyq, and ud “

ˆ

π sinpπxq sinpπyq

´π cospπxq cospπyq

˙

.

Also, hereafter we take κ “ I, ν “ 1 and the stabilization parameter τ ” 1. Subsequently, we define
the errors:

epLq “ ∥Ls ´ Ls,h∥Ωs
, epuq “

´

∥us ´ us,h∥2
0,Ωs

` ∥ud ´ ud,h∥2
Ωd

¯1{2
,

eppq “

´

∥Ps ´ Ps,h∥2
Ωs

` ∥pd ´ pd,h∥2
Ωd

¯1{2
, pe “

ˆ

∥Psus ´ pus,h∥2
BΩs

`

∥∥∥Pdpd ´ ppd,h

∥∥∥2

BΩd

˙1{2
,

Ps,h “ ps,h ´
1

|Ωs|

ż

ΩszΩs
h

Eps,h
,

where E denotes the local extrapolation defined in (2.1) and ps,h is the discrete pressure of our HDG
scheme that satisfies (3.2e). Next, the experimental convergence rates are set as

r “ ´2 logpre{eq

logp rN{Nq
,

where e and re denote errors computed on two consecutive meshes with N and rN elements, respectively.

6.1. No gap. In our first numerical experiment, we take δ “ 0 and consider two different scenarios:
one free of hanging nodes and one containing hanging nodes on the discrete interfaces. For the first
scenario (case (C.1) above), the results in Table 1, confirm the theoretical rate of convergence for
all variables provided by Corollary 2 (for k “ 4, the errors calculated for pe are affected by round-
off errors). For the second scenario, we take coarser meshes for Ωd such that each interface edge
corresponds to two interface edges on the meshes for Ωs, effectively introducing one hanging node per
side. This corresponds to case (D.1). Table 2 shows optimal order of convergence for all variables in
this case, observing superconvergence hk`2 in the numerical trace, which is the theoretical order of
convergence provided by Corollary 3.
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k N epLq r epuq r eppq r pe pr

1

56 8.09e-02 ˚ 8.05e-02 ˚ 4.86e-02 ˚ 3.34e-03 ˚

212 2.00e-02 2.10 2.13e-02 2.00 1.28e-02 2.00 3.57e-04 3.36
800 5.49e-03 1.94 5.62e-03 2.01 3.33e-03 2.03 5.16e-05 2.91
3216 1.35e-03 2.01 1.40e-03 2.00 8.07e-04 2.04 6.30e-06 3.02
12716 3.49e-04 1.97 3.54e-04 2.00 2.04e-04 2.00 8.39e-07 2.93

2

56 1.21e-02 ˚ 1.05e-02 ˚ 4.97e-03 ˚ 2.29e-04 ˚

212 1.29e-03 3.37 1.18e-03 3.29 6.19e-04 3.13 1.00e-05 4.70
800 1.63e-04 3.12 1.52e-04 3.09 7.93e-05 3.10 6.54e-07 4.11
3216 2.07e-05 2.97 1.89e-05 2.99 9.82e-06 3.00 4.27e-08 3.92
12716 2.73e-06 2.95 2.47e-06 2.96 1.28e-06 2.97 2.97e-09 3.88

3

56 9.50e-04 ˚ 8.42e-04 ˚ 4.11e-04 ˚ 9.09e-06 ˚

212 6.14e-05 4.11 5.47e-05 4.11 2.64e-05 4.12 2.35e-07 5.49
800 4.89e-06 3.81 4.15e-06 3.88 1.91e-06 3.96 9.93e-09 4.77
3216 2.88e-07 4.07 2.52e-07 4.03 1.13e-07 4.06 2.95e-10 5.05
12716 1.97e-08 3.90 1.65e-08 3.97 7.49e-09 3.95 1.04e-11 4.87

4

56 1.63e-04 ˚ 1.29e-04 ˚ 4.87e-05 ˚ 6.81e-07 ˚

212 3.47e-06 5.78 2.90e-06 5.70 1.28e-06 5.47 6.61e-09 6.96
800 1.04e-07 5.29 8.92e-08 5.24 4.09e-08 5.19 1.01e-10 6.30
3216 3.37e-09 4.93 2.90e-09 4.92 1.29e-09 4.97 1.73e-12 5.84
12716 1.21e-10 4.84 9.94e-11 4.91 4.51e-11 4.88 2.01e-13 3.13

Table 1: History of convergence of the HDG method for δ “ 0 and without hanging nodes

k N epLq r epuq r eppq r pe pr

1

34 9.06e-02 ˚ 2.95e-01 ˚ 1.57e-01 ˚ 1.68e-02 ˚

134 2.09e-02 2.14 6.39e-02 2.23 3.64e-02 2.13 1.99e-03 3.11
506 5.58e-03 1.99 1.62e-02 2.06 1.03e-02 1.91 2.42e-04 3.17
2000 1.36e-03 2.05 4.32e-03 1.93 2.69e-03 1.95 3.33e-05 2.89
7974 3.50e-04 1.96 1.07e-03 2.01 6.61e-04 2.03 4.15e-06 3.01

2

34 1.28e-02 ˚ 6.99e-02 ˚ 3.31e-02 ˚ 2.25e-03 ˚

134 1.34e-03 3.29 9.08e-03 2.98 3.71e-03 3.19 1.48e-04 3.97
506 1.66e-04 3.14 9.68e-04 3.37 4.86e-04 3.06 7.25e-06 4.54
2000 2.09e-05 3.02 1.22e-04 3.01 6.39e-05 2.95 4.73e-07 3.97
7974 2.74e-06 2.94 1.53e-05 3.01 7.89e-06 3.02 3.05e-08 3.97

3

34 1.06e-03 ˚ 1.51e-02 ˚ 6.58e-03 ˚ 2.33e-04 ˚

134 6.49e-05 4.07 6.90e-04 4.50 3.39e-04 4.32 5.24e-06 5.53
506 4.97e-06 3.87 4.52e-05 4.10 2.18e-05 4.13 1.75e-07 5.12
2000 2.90e-07 4.13 3.57e-06 3.69 1.51e-06 3.89 7.19e-09 4.65
7974 1.97e-08 3.89 2.16e-07 4.06 9.23e-08 4.04 2.19e-10 5.05

4

34 1.71e-04 ˚ 2.62e-03 ˚ 1.10e-03 ˚ 2.20e-05 ˚

134 3.66e-06 5.60 1.17e-04 4.53 3.81e-05 4.91 4.56e-07 5.65
506 1.07e-07 5.32 2.54e-06 5.77 9.89e-07 5.50 5.25e-09 6.72
2000 3.42e-09 5.01 7.53e-08 5.12 3.37e-08 4.92 7.69e-11 6.15
7974 1.22e-10 4.82 2.50e-09 4.93 1.07e-09 4.99 1.31e-12 5.89

Table 2: History of convergence of the HDG method for δ “ 0 and with hanging nodes

6.2. Gap of order h7{4. According to Corollary 2, γ must be larger than 3{4. In this experiment,
we want to observe the behavior of the errors when γ is equal to 3{4, which means δ of order h7{4.
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Similarly to the previous example, we divide this experiment in two different scenarios. First, we
suppose again that the meshes are free of “hanging nodes” (case (C.5)), i.e., there is a one-to-one
face bijection between the two interfaces, which means that Cns “ Cnd “ 0. The behaviour of the
errors reported in Table 3 is better than the prediction of Corollary 2. In fact, we observe optimal
rates for all the variables and superconvergence in pe. For the second scenario, we add hanging nodes

k N epLq r epuq r eppq r pe pr

1

60 1.21e-01 ˚ 9.86e-02 ˚ 4.59e-02 ˚ 1.64e-02 ˚

212 2.62e-02 2.43 2.40e-02 2.24 1.31e-02 1.98 2.52e-03 2.96
816 6.18e-03 2.15 5.57e-03 2.17 3.27e-03 2.06 3.66e-04 2.87
3228 1.45e-03 2.11 1.41e-03 2.00 8.17e-04 2.02 4.22e-05 3.14
12772 3.55e-04 2.04 3.55e-04 2.01 2.05e-04 2.01 5.86e-06 2.87

2

60 1.61e-02 ˚ 1.57e-02 ˚ 2.93e-02 ˚ 1.65e-03 ˚

212 2.24e-03 3.13 2.32e-03 3.03 2.18e-03 4.11 2.34e-04 3.10
816 2.15e-04 3.47 2.17e-04 3.52 1.61e-04 3.87 1.85e-05 3.76
3228 2.28e-05 3.27 2.10e-05 3.39 1.44e-05 3.51 1.04e-06 4.18
12772 2.82e-06 3.04 2.52e-06 3.09 1.48e-06 3.31 7.73e-08 3.79

3

60 3.14e-03 ˚ 3.56e-03 ˚ 1.19e-03 ˚ 3.29e-04 ˚

212 1.59e-04 4.72 2.27e-04 4.36 6.29e-05 4.65 1.87e-05 4.54
816 8.93e-06 4.27 5.88e-06 5.42 3.35e-06 4.35 5.41e-07 5.26
3228 3.51e-07 4.71 2.64e-07 4.52 1.46e-07 4.56 1.08e-08 5.69
12772 2.05e-08 4.13 1.68e-08 4.00 7.86e-09 4.24 3.60e-10 4.95

4

60 2.53e-04 ˚ 3.64e-04 ˚ 6.16e-04 ˚ 1.75e-05 ˚

212 9.90e-06 5.13 1.54e-05 5.01 1.08e-05 6.40 7.87e-07 4.92
816 2.25e-07 5.61 3.01e-07 5.84 1.77e-07 6.10 1.35e-08 6.03
3228 4.27e-09 5.76 3.86e-09 6.34 3.23e-09 5.82 1.27e-10 6.79
12772 1.31e-10 5.07 1.05e-10 5.24 6.69e-11 5.64 2.30e-12 5.83

Table 3: History of convergence of the HDG method for δ “ h7{4 and without hanging nodes

on the bottom mesh as before, introducing one per interface edge. This corresponds to case (D.3). In
Table 4 we show the results for this case. We again observe optimal and superconvergent rates, which
is better than what the theory predicted.

6.2. Gap of order h. We now consider the last numerical example taking a gap δ “ h and that
the meshes are free of “hanging nodes”. Since γ “ 0, this case is not covered by the analysis but we
observe that the approximations of all the variables converge with optimal order according to Table
5. However, the superconvergence of the numerical trace variables is lost.
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