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Abstract

We present and analyze a hybridizable discontinuous Galerkin method for coupling Stokes and
Darcy equations, whose domains are discretized by two independent triangulations. This causes
non-conformity at the intersection of the subdomains or leaves a gap (unmeshed region) between
them. In order to properly couple the two different discretizations and obtain a high order scheme,
we propose suitable transmission conditions based on mass conservation and equilibrium of normal
forces for matching meshes. Since the meshes do not necessarily coincide, we use the Transfer Path
Method to tie them. We establish the well-posedness of the method and provide error estimates
where the influences of the non-conformity and the gap are explicit in the constants. Finally,
numerical experiments that illustrate the performance of the method are shown.

Keywords: Stokes/Darcy; non—matching meshes; dissimilar meshes; Transfer Path Method; hybrid
method; discontinuous Galerkin.

Mathematics Subject Classification (2020): 65N08, 65N15, 65N30, 65N85.

1 Introduction

During the last decade, the development of new non-body-fitted numerical methods for partial differ-
ential equations (PDEs) has become of interest in the community, especially with focus on high order
schemes. One of the most popular is the cut finite element method (CutFEM). Roughly speaking,
the CutFEM method considers a background grid where the domain is immersed and a Nitsche’s
approach is employed to impose the transmission conditions in the elements cut by the interface. A
review can be found in [2] and recent works have also proposed conservative CutFEM schemes [16, 19].
CutFEM requires special quadrature rules to compute the integrals over the interface, in contrast with
the recently developed ¢-FEM method [13, 14, 15]. The main idea there is to introduce an auxiliary
variable that depends on the level-set function in such a way that the homogeneous Dirichlet boundary
condition is automatically satisfied.
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A different approach to handle transmission/boundary conditions with unfitted methods is based
on a Taylor expansion of the function near the interface/boundary. In this direction, in the literature
we can find two methods: the Shifted Boundary Method (SBM) [1, 21] and the Transfer Path Method
(TPM) [11, 23, 24]. The former considers a primal formulation and the residual of the Taylor expansion
vanishes at discrete level. The TPM, on the other hand, is based on a mixed formulation where the
residual of the Taylor expansion does not vanish but it involves the mixed variable that is then
approximated by the numerical scheme. Our work focuses on the latter with the aim to demonstrate
that the TPM can be a useful technique to handle situations where two meshes of different sizes
are apart from each other. In addition, as a byproduct, our analysis also covers the case where the
interface is fitted by the two meshes, allowing the presence of hanging nodes.

In several applications, the domain of interest Q < R™, n € {2, 3}, is divided into subdomains where
different governing equations are posed. It is not uncommon to mesh each subdomains separately
using different meshsizes. For instance, in the case of solid-fluid interactions, the fluid equations are
coupled to the elasticity equations via appropriate transmission conditions across an interface, and it
is often desirable to have a finer mesh in the region occupied by the fluid compared to the meshsize
used for discretizing the solid. When the domain of a PDE is discretized by the union of different
computational subdomains, it is possible to identify two configurations. In the first one, the interface
is not fitted by the triangulations, generating dissimilar meshes with gaps and overlaps appearing
between the grids associated to each subdomains, as the one depicted in Figure 1 (left). Therefore,
the discrete interfaces of neighboring grids need to be properly connected. In the second configuration
the interface is fitted by the grids, but it presents hanging nodes as portrayed in Figure 1 (right).
This causes a non-conformity at the intersection of the subdomains in which adjacent elements do not
necessarily share a complete face or edge. This is why we prefer to consider a discontinuous Galerkin
method (DG) to discretize the PDE. In particular, we focus on the hybridizable DG (HDG) method.

The HDG method, introduced in [5], has the advantage of significantly reducing the globally coupled
degrees of freedom that were a major criticism of DG methods for elliptic problems. The only degrees
of freedom in HDG are those of the numerical traces on the boundaries between elements, while
the remaining unknowns are obtained by solving local problems in each element. Specifically, at
the continuous level, intra-element variables can be expressed in terms of inter-element unknowns by
solving local problems on each element. These problems, referred to as local solvers, can be discretized
using a DG method, leading to the family of methods known as HDG methods.

Furthermore, to the best of our knowledge, there are only two works that analyze the HDG method
for non-conforming triangulations [3, 4]. In the first approach the authors perform an analysis for the
convection-diffusion equations in non-conforming meshes. In particular, using polynomial approxima-
tions of degree k in all elements, they obtained suboptimal order of convergence h*¥*1/2 for the diffusive
flux and optimal convergence h¥*1 for the projection of the error in the scalar variable. The second
approach is similar to the first one, but uses the so-called semimatching nonconforming meshes. Then,
both optimal convergence for the diffusive flux and superconvergence of the projection of the error in
the scalar variable is obtained.

In this work, with the aim of developing a high-order method to handle geometries with complex
interfaces, we present an HDG method for coupled problems in dissimilar and non-conforming meshes.
More precisely, we focus on the coupling of fluid and porous media flows across a discrete interface
that does not necessarily match the true interface. To this end, we rely on the TPM [8, 9, 10, 24]
originally designed for handling boundary value problems in curved domains, but recently employed
for coupling dissimilar meshes in the context of a single PDE in the entire domain [22, 25]. Thus,
following a similar scheme developed in [18], we propose and analyze a new method for Stokes/Darcy
coupling. More precisely, let {25 and €2q be bounded and simply connected polyhedral domains in R",
n € {2,3}, with outward unit normal vectors ng and ng, respectively, such that Z := Qg N Qq is the



interface that separates them, and let T's := 0Q\Z, T'q := 0Q4\Z. The model consists of two separate
groups of equations and a set of coupling terms. In the fluid region ), the governing equations are
those of the Stokes problem, which can be written as follows:

Ls—Vus =0 in Qi -V -(vLg—FI) =f£f; in Qp, V-us=0 in €,

(1.1)
us = 0 on Iy, and f P, =0,
Qs

where v > 0 is the fluid dynamic viscosity, fs € L2(€s) is the volumetric force acting on the fluid, ug
is the fluid velocity, Lg is the velocity gradient tensor, Py is the pressure, and I is the n x n identity
matrix. In turn, in the porous medium region 24 we consider the following Darcy model:

ug+xVpg =0 in Qy, V-ug =13 in Q and pg =0 on Iy, (1.2)

where k is a tensor valued function, which describes the permeability of €4, satisfies k* = &, and
has L*(€q) components, fy € L?(Qq) is a given source term, and ugq and pgq denote the velocity
and pressure, respectively. Also, we assume that there exist positive constants £ and & such that
K < |k|o,04 < R. Finally, the transmission conditions on Z are given by

us-ng+ug-ng=0 and (vLs— PIl)ng =pgnqg on Z. (1.3)

The first equation in (1.3) is based on mass conservation, whereas the second one establishes the
balance of normal forces for matching meshes. The analysis studied in this work can be extended
with minor modifications to the case when the Beavers—Joseph—Saffman law (see, e.g. [17, 20]) is
used. However, for sake of simplicity we choose to avoid this in order to focus solely on the technique
applied on the interface.

The manuscript is organized as: in Section 2, we introduce the notation related to the discretization
and transferring segments, as well as some preliminaries and definitions related to the computational
domain and the approximation spaces. Next, in Section 3, the HDG method is introduced along
with the proposed transmission conditions. In Section 4, we show the stability of the method and
present the error estimates in Section 5. Finally, several numerical experiments validating the good
performance of the method and confirming the rates of convergence are reported in Section 6.

2 Preliminaries

We begin by introducing some preliminary notations related to the geometric discretization, the ap-
proximation spaces and the HDG scheme. In turn, we introduce the main tools to address the dis-
cretization of the interface.

The computational domain. Let (2} and bed be triangulations of the domains )5 and 24, with
meshsizes hg, hq > 0 and boundaries S; j,_, Sq n,, respectively. Without loss of generality, we suppose
ha = hs and drop the sub-index € {s,d} when there is no confusion; for example, we just write 3,
and Qf henceforth. We also denote the set of all faces of the triangulation 2} by &;. Furthermore,

since ﬁ,j N ﬁ,? is not necessarily equal to Z, then, for » € {s,d}, we define the discrete interfaces
Ty = S« n\I'x h, where I', j, denotes the discretization of I'y. Bearing in mind the above, we consider
outward normal vectors for the new interfaces Z7 and I,‘f, which will be denoted by ng; and ng ,
respectively. The family of triangulations {€2}},_, is assumed to be shape-regular, i.e., there exists
a constant k, > 0 such that for all elements K € QF and all h > 0, hi/px < K., where hg is
the diameter of K and pg is the diameter of the largest ball contained in K. For every element K,



we denote by ng the outward unit normal vector to K, writting n instead of ng when there is no
confusion. In this work, we consider the two configurations depicted in Figure 1. In the first one, a
uniform gap of size ¢ separates the two triangulations. In the second setting, the interface is piecewise
flat and both meshes are fitted to it, but with different meshsizes.

Spaces and norms. We use the standard notation for Sobolev spaces and their associated norms
and seminorms, where vector-valued functions and their corresponding spaces are denoted in bold face
font, and roman font in the tensor-valued case. In addition, let D be an open bounded region of R"
or R"~1. We denote by (-,-)p and {-,-Yap the L?(D) and L?(0D) inner products, respectively, with
induced norms ||-|p and |- |sp. Given an integer k£ > 0, we use the usual notation to denote the space
of polynomials of degree at most k as Py (D), and set Py (D) = [Py(D)]" and Pr(D) = [Pp(D)]™*".

We introduce now the finite-dimensional spaces
Qs = {G eL2((5) : Gl € Pu(K) VK € Qh}
V= {v e LX) : vk e Po(K) VK e Q;L},
Qi = {ae LX@4) s dl € Pu(K) YK e0;},
for intra-element variables, and
M = {u € L2(EN) : ple € Pule) Vee sd},

M = {,u e L2(&) : ple e Pr(e) VYee c‘fs}

for trace variables. We denote by N ,Cll and Nj the restrictions of M, ,‘3 and Mj to the discrete interfaces
Ig and 77, respectively. The mesh-dependent inner products are defined as

(o = Z (s Caar = Z (oo and (g = Z<"'>€’

KeQy KeQy eeLy
and their corresponding norms denoted by

1/2 1/2 1/2

log = 2 IR |+ laoy =1 X 113k and |-z = | X012

KeQy KeQy eeZy

To avoid proliferation of unimportant constants, we use the terminology a < b whenever a < Cb and
C is a positive constant independent of h and the gap between both discrete interfaces.

Transfer paths. For * € {s,d}, we introduce a mapping v, : Z — Z;, such that for each point « € Z,
we associate a point &, = 1, (x) € Z;. We also define a mapping 9 : Ifll — 1y as P = 1Py o¢51, which
means that for each x4 € I, we associate a point x5 = 9(zq) € Z;;. We denote by o, (z.) the segment
starting at « and ending at x,, with unit tangent vector ¢, and length |o,(x.)|. Then, keeping in mind
the configuration of the interfaces, i.e., piece-wise polynomial if the meshes coincide or flat interfaces
for the case with gap, it follows immediately that for each e € Z;, t. = n. ) = n, with x € {s,d},
and tq = —ts. This means that the direction of the segment o(xq) must be parallel to the normals
computed at its ends. Therefore, from now on, we will write n,, to refer to the vector associated to
o«(x4), with x € {s,d}. Then, o(xq) is the segment that starts at x4 and ends at x5, with unit tangent
vector ng and length |o(xq)|. The segment o(xq) is referred as the transfer path associated with xq



and is assumed to satisfy two conditions: it does not intersect the interior of another transfer path
and its length |o(xq)| is of order at most max{hs, hq} = hq.

Ts

Figure 1: Left: Example of dissimilar meshes separated by a uniform gap of size . Right: A piecewise
polygonal interface separating two regions discretized by diferent meshes.

Extrapolation operator. The region enclosed by €2} and Q‘,il (shaded area in Figure 1) is denoted by
Qf**. We notice that Q§** is not meshed and, as a consequence, we do not have an HDG approximation
in there. That is why the HDG approximation of the velocity gradient Lg, the pressure field ps (to be
defined below), and the flux ug, will be locally extrapolated from the computational domain Q% UR9;4
to Q£**. More precisely, let ¢ be a tensor, vector, or scalar-valued polynomial function defined on an

~ext

element K in Qf U Q5 such that KN Q" # 0. We define its extrapolation to Q8** as

E . (y) = dlx(y) Yye Q. (2.1)

Note that the extrapolation function E,, (y) is a function whose support includes Q$**, and each

element K has its own extrapolation function.

The HDG projections. Let (Ls, us,ps) € HL(Q5) x HY(Q5) x H(£25)), we recall its HDG projection
IIs(Ls, us, ps) = (II4 Lg, 113, ug, HSQpS) as the element of G} x V3§ x @} defined as follows: on an arbitrary
element K of €2}, the values of the projected function on K are determined by requiring that

(IT4Ls, G)g = (Ls, G)xg VG e Pr_q(K), (MIyus, v)g = (us,v)g VvePr 1(K), (2.2a)
(Iops; )k = (ps, Q) Vg€ Pr1(K), (trllgLs, )k = (trls, @) Vg€ Pr(K), (2.2b)
(W Lsng — I psns — 7vIIjus, pye = (vLhshs — psns — 7vus, pye Vp € Pr(e) Ve < 0K, (2.2¢)

where 7 > 0 is the stabilization parameter of the HDG method. Furthermore, if (Lg, ug,ps) €
HloH1(Q5) x HlusH1(Q5) x HloHL(08), for Ly, I, € [0, k], the above projection satisfies (cf. [6, Theorem
2.1]) the following properties:

lus — Ijus|x < hlzl(ls+1‘u8|Hlus+1(K) + hl}%+1(TV)_1|v - (vLs — psD)|gio (K)» (2.3a)

|lv(Ls — TG Ls) [ + [Ips — HZQPSHK S hl}?H’VLs - psI’HlaH(K) + hl[?+lTV|us,Hlu+1(K) (2.3b)

+ 1v||us — I us| &,



for all K € €, where I is the identity tensor. Similarly, given (ug4,pq) € Hl(Qg) X Hl(Qﬂ), we recall
its HDG projection Ig(uq,pq) = (H%ud,H%pd) as the element of V% X Q% defined as the unique
element-wise solution of

(MYug, v)x = (ua,vV)xg VveP, (K), (IHpa,a)x = (pa, )k Vaq€ Pp1(K), (2.4a)
<H%ud ‘ng + TH%pd, e = {uq-nq + P4, e Ywpe Pyle),Vec dK, (2.4b)

for every element K € Qf and, given constants ly,, lp, € [0, k], if (uq, pa) € H=aT1(Qd) x HPat1(Qf),
there hold (cf. [7])

luy+1 lpy+1

lua =T ualx < hg'™ [Walgiag e gy + PR [Pal gng 1 gy (2.5a)
d Ipg+1 lug+1

Ipa = pallc < gt [pal g+ gy + BRIV - Wal g g (2.5b)

for all K € Q?L.

3 The HDG method

3.1 The treatment of the pressure

In this section we follow a similar approach to the one developed in [26]. More precisely, since the
computational domain €25 does not necessarily coincide with the physical domain ), we introduce a

decomposition P, = ag + ps that imposes the zero-mean of the pressure, with ag = IQISIJ P, and
h Qs
h
ps € L&) (L?(Q5)-function with zero mean in ©5). In turn, since P will be eliminated from the
system, we need to rewrite oy in terms of ps. By using the fifth equation of (1.1), we deduce that
-1

B |QS| Q\ 25,

Ds- (31)

Qg
Then, P, can be recovered after the approximation of ps is computed.

3.2 The HDG scheme

The HDG formulation of the coupled system (1.1)-(1.2) reduces to:
Find (Ls,haus,haps,hvﬁs,haud,hapd,haﬁd,h) S GZ X V?L X Qz X MZ X V% X Q% X Mfcll such that

(Ls,ns Gsp)ag + (s p, V- Gsp)as — (Ush, Gsphis)on; =0, (3.2a)
(Oshy VVsn)s —{(Gsnns, Vsnyoo: = (fs,Ven)as (3.2b)

—(Usn, Vs n)os + Usp - D, gs proa; =0, (3.2¢)

(s p, s )1 =0, (3.2d)

(Ps,ns Doy =0, (3.2¢)

(Gs,nMs, Mg )00z \(Ts uz;) =0, (3.2f)

(ﬁ_lud,havd,h)gﬁ — (pa,n, V- Vd,h)Q;iL + (Van - nd7ﬁd,h>agi =0, (3.2g)
—(ud,n, Vaan)og + U - 0d, danans = (fa, gan)og, (3.2h)

(Pa,hs Hd,p)ryq, =0, (3.2i)

(Ugq,p - ng, Nd,h>an\(rd,huz]§) =0, (3.25)



d d d
for all (Gg n, Vs,hs Gs b Bs,iy Vd,hs Qd ks Bd,k) € G X V3 x Q5 x My x Vi x Q x My, where

Osh = VLs,h - ps,hI ’
G4 Dd = Uap - Da+ 7(Pap — Pap) on 00, (3.3a)
Ospg = Ogpg — TV(Ugp —Usp) on 09, (3.3b)
and we recall that 7 is a positive stabilization function defined in 0€2} U 692, assumed to be uniformly
bounded. For simplicity of the exposition, we assume 7 is constant everywhere. The above equations
must be complemented with suitable transmission conditions across the interfaces Zj and I,‘li, which we

proceed to derive now and this constitutes the novelty of our work. Indeed, we propose the following
conditions:

—(Ug,p, - nd,ﬂd,h>12 + Wqp - ndn“«d,h>12 =0 VYupane Ny, (3.4a)
<&s,hn57 “’s,h>IZ - <ﬁd,hn57 :U’s,h>IZ =0 VlJ’s,h € Nza (3'4b)

where Us p, Ddn, Ospls, and Ugp stand for the approximations of uS|IZ’ pd‘l—g, (vLg — pSI)ns|IZ and
ud|Ig, respectively, based on suitable extensions (constructed below) of Usp, Pan, Osphs and Uqp
outside their corresponding computational domains. More precisely, employing the transferring tech-
nique of [11] (see also [9, 22, 25]), the tilde variables are constructed as follows: let x. € Z; and its
corresponding point € Z. Integrating the first equation of (1.1) along the transfering path og(xs)
and using the first equation of (1.3), we obtain

1
us () - 1 + |os ()| <L Ls(ys(t))nsdt> ‘0. + (ug o3l (zq) -ng = 0. (3.5)

Similarly, integrating the second equation of (1.2) along the connecting segment oq(x4) and using the
second equation of (1.3), it follows that

1
<uLsPsl>o¢;1><ms>nspd<md>nd+|od<xd>|( | m-lud<yd<t>>-nddt> ng=0, (36

where y,(t) = . + (x — x.)t with ¢ € [0, 1] being the parametrization of o, (x.).

Hence, motivated by these expressions and based on the form of the HDG numerical fluxes (3.3a)
and (3.3b), we define

1
Pan(Ts) = Pan(Ta) — |0d($d)|J K By, (ya(t)) - nadt, (3.7a)

0

1
Usp(Ta) = Usp(@s) + |os(xs)| J Ev,, (ys(t))nsdt, (3.7b)

0
Uap(xa) g = By, o9y (xa) nda + 7(pan — Dap)(@a), (3.7¢)
Gsn(xs)ns == Egy 0 P (xg)ng — ag g — vT(Ug p, — Us ) (Ts), (3.7d)

1
where agp = m’f \ E,, ,,and E denotes the local extrapolation defined in (2.1).
sl JQ\QS

In the particular case of matching interfaces, namely Z = Q) N ﬁi = I; = Ij!, the transmission
conditions (3.4) become

(Ug - Mg, pra,p)7 + Oap - Dds pa,p)z = 0 Vg € Nﬁia (3.8a)
(Osn0s, fs )7 — {Dd,p0ds P )T = 0 Vpg, € Ny (3.8b)

and the resulting HDG formulation is very similar to the one presented in [18].



4 Stability analysis

In this section we show a stability estimate associated with (3.2) and (3.3). For that, we recall some
important estimates and assumptions required to carry out our analysis.

Further notation and auxiliary estimates. Let x € {s,d}. Given a face e € Z; belonging to the
element K. € Qj, we define the eztrapolation patch as K&** := {ac +m,t 0 <t <o), xe e},

and denote by ht (resp. &) the largest distance of a point inside K. (resp. KS**) to the plane
determined by the face e. In other words, ht = maxgex, |dist(x,e)|, . = maxee. |ox(x)|, where
dist(x, ) denotes the distance from x to the face e. We note that . is a measure of the local size of
the gap and d := max, . is an upper bound of the size of the gap. We define the ratio 7. := d./htand,

for e € I UTY, NF = {q e Pi(KS*), q-n.# 0oneachec 6K§Xt}, where we denoted by n. the

interior normal vector to K&** along the face e, that is, the exterior normal vector to K. pointing in
the direction of K&**. We can then introduce the constants

Cext . ”q ) ne”K?{t

. Han qHKext
_ Ccinv . hJ_ su e e
‘ Ve gens lamelx, = ¢

‘ qeN* la-nefr,

(4.1)

As proved in [9, Lemma A.2|, these constants are independent of the meshsize, but depend on the
polynomial degree k. The superscripts in C®** and C*®V refer to an extrapolation constant and an
inverse inequality constant.

On the other hand, proceeding as in [9], we introduce the following auxiliary functions: let e € 7
that belongs to K, and K&**. For a function q, we define

1 o ()|
Aqj, (@) = @)l L (ax. (@« + n.y) — qg, (x.)) - n.dy, (4.2)

for x € {s,d}, where x4 € e and x5 € Z} are connected by the segment o(xq). They satisfy (cf. [9,
Lemma 5.2]),

L. ex inv
llow 2 Mg [, < %rgﬂce *C|al Vqe Py(Ke.), (4.3)
1 ex
llow 2 Mg [, < %Te”hé‘&nq-nHKSxt Vqe H (K. (4.4)

Another important tool in the analysis of this method, which is based on the Taylor series expansion
of a function defined on Z around a point Zj, is the following lemma ([25, Lemma 2.1] or [22, Lemma

2).

Lemma 1. Suppose that 4, : T — I} is a bijection for each % € {s,d}. The following assertions hold
true: If ¢, € H2() and @, := V¢,, then

T G R L Y P LN e (45)
H’O—*’_l/z(d)* - d)* o ¢:1) I;L S 51/2”‘1&”]{2(907 (46>
If @, € HY(Q,) then
lloe| 7@ — @ 0 p; M S Hq)*“Hl(Q*)' (4.7)
LeteeZ, e, =,(e) € I} and K., the element to which e, belongs. If p € Py(K.,), then
lp=potpi e, < CT¥6h 2 p|k.. - (4.8)



Finally, we recall the discrete trace inequality (cf. [12, Lemma 1.21]): if ¢ is a scalar, vector or
tensor-valued polynomial in K, then

[¢lle < CIR2 1] K. (4.9)

where C!' is independent of the meshsize but depends on the polynomial degree. We stress that
the identities and inequalities established throughout this section hold true for the tensor, vector or
scalar-valued cases as required.

Assumptions. In this section, we state the assumptions under which the the stability and error
analysis hold. Some of them are technical assumptions that allow us to simplify the analysis, whereas
the others establish the relation between the gap size § and the mesh size h required to guarantee
convergence and optimality of the method. More precisely, we assume that

(A1) 95N Q¢ = (), that is, there is no overlap between the subdomains;
(A.2) the mappings v, : Z — Z, for » € {s,d}, and 9 : Z{! — T are bijections;

1
(A.3) dv—1r712C5, 4, m%x ((5 10/14) + 8 max <C’*512/7h (C:Xt)ZTA) < 7 where Cj, j, depends on h

eEIh

and 0 (cf. Lemma 2), and Ce is a positive constant appearing in the proof of Lemma 4;

(A.4) Csp, = éngh + ((Cf{h)Q + 5’2) Cis is small enough, where Cgh = h? + (CUMLS) (Cub’pd) ;

r / (Cgr)_Qhe_B
C’1 = max{u 1}*6{25(1} <4161ég%x( Ct ) 52 7h T) + reré%x (72 ) ,

Cy = §max (05512/711 (C:Xt)QT_l) + 4002‘ max (6 2/7> ;

vV e€Zy v ey

Cub, s . maX{V 1 1} Z (max (5 ho 3/ZCext) +né%f ((51/201/2>>7

xe{s,d} I N
Cumpd — max {1y~ 1 1} Z (max (56/7 1/2) + max (53/14771/2> )7
ve{s.d} e€Ly

Cg”h = 1 ' max ((5 h, 3/209’“) +vic,,

eEI

CN'is is related to an inf-sup condition (see Lemma 6), 8 is a nonnegative parameter whose range
will be determined later, and C,, is positive constant, which will appear in the proof of Lemma
4.

Assumptions (A.1) and (A.2) hold true, for instance, in the illustrations of Figure 1. Note that the
purpose of (A.1) is to simplify the analysis. The Assumption (A.2) is the key to “tie” the interfaces
7y and I}dL that cause the gap. The remaining assumptions are smallness assumptions that relate
the meshsize and the size of the gap. For example, (A.3) is always satisfied for h small enough if
8 < h"* To analyze the feasibility of other assumptions, let us write § = Cgh'™ with Cy = 0
and v > 0 constants independent of the meshsize. Assumption (A.4) is satisfied for all v > 3/4 and
B €0,2]N[0,2y — 1), if h is small enough, as we will explain in Corollaries 2 and 3. These are the
strongest assumptions, since they indicate that our analysis holds if the gap size is at most of order
h7/* however we will present numerical evidence suggesting that the method is still optimal when the
gap is of order h. Finally, we highlight that the remaining constants are defined in the subsequent
results presented below. In turn, in order to begin with the analysis, we establish the following result.



Lemma 2. Suppose that Assumptions (A.1)-(A.2) hold, then it follows that

H’Us‘_lﬂ(ﬁs,h o ¢_1 - l/f\ls,h)

lloal ™ @an 0% ~Panllzy < G55 |5 uan]gg. (4.10b)

5 < O Ll

a5 and (4.10a)

1 .
where Cs, j, = 2max <5eh61(c;f)2 + 5%%3(0:“0;“)2) for « € {s,d}.
€.

eeZ? 3¢°
Proof. 1t suffices to prove for » = d, since the proof for » = s follows almost verbatim. We begin by
stressing that x(y) = xq + nqy, for all y € [0, |oq(xq)|]. From (3.7a) we deduce that

loa(za)l

Pan(®s) = Pan(xa) — J K (Eud,h(iﬂd +nqy) — ud,h(wd)) ‘nqdy — £~ |oa(xa)[ug p(2a) - na

0
= Pan(®a) — £ oa(za)| Ay, (£d) — £ |oa(za)|uan(®a) - 04,
where we have used (4.2). This implies that ugq p(xq) -ng = —#|oa(za)| " (Pan oY —DPan) — Auy ,, (z4a)-

By the Cauchy—Schwarz and Young inequalities, and the estimate (4.3), we obtain

ol ™2 Ban 0 % = an)lZe <2 (15 loal2uanZy + 15 oa 2 Ay 1 24)

_ 1 ; _
< 2(|l5 " oal Puanlds + 5 max (rH(CECE)?) |x gl ).
ho 3 eeTd h

Finally, by the discrete trace inequality and the fact that r. < d.h_ k4, where we recall that 4 is the
mesh regularity constant of Q%, we obtain (4.10b). We omit further details. O

In order to use this analysis to establish both, well-posedness and error bounds, we consider the
problem (3.2), but (3.2a) and (3.2g) are replaced by

(Ls,ns Gsp)as + (s n, V- Gsp)as — (Usny Gspis)oas = (Js, Gsn)as (4.11a)

(5 "uan, van)ad — (Pan: V- Van)ad + (Van - nd,Papans = (Jd. Van)ad, (4.11b)

where Js € L2(Q5), Jq € L2(Qf) are given functions orthogonal to polynomials of degree k — 1 and
(3.4) is replaced by

(s D, pa )z + @ap-0as pap)zg = Ga°+ 35 pandzy YV Han € N, (4.12a)

(Fonts, o pyzs — Papta, o pyzs = Go°+ 30 s Vs, € N3, (4.12b)

where j3¢ and ji¢ are given functions associated with the non-conformity that occurs at the interface,
belonging to L? (I,‘}) and LQ(I,SL), respectively. Similarly, jg and jg are associated with the gap between
the discrete interfaces Zj and I,‘li, also belonging to L? (I,Cll) and L?(Z}), respectively. In particular, to
show well-posedness, Js, Jq, j3° Js<, jg and jg vanish, whereas they are related to projection errors
when proving the error bounds.

4.1 An energy argument

Before presenting the energy estimate, we proceed to deduce how the transmission conditions (3.4)
connect (G png, ﬁs,h>IZ and (Uq p, - nd,ﬁd,hh}%. To this end, we define T = —(&'s 1, ﬁs,h>I; + (Uq,p -
ny, ﬁd,h>Ig and we write it in terms associated with the mismatch between Zj and Z,Cll. More precisely,
we prove the following lemma.

10



Lemma 3. It holds that

T ={(Eo,, o%; " — 0sn) 05, Us )7z + {(uan — Eu,, 097") - N4, Pan)zs — (QspMs; Us p)T;
{(Pan ot —Pan)na, s p o p)za — (s +30, 8y + ((Usp 0¥ = Bgp) - ng, Pap o s
+ G+ 58 Panyza + v T, Doz + v T (g — Us), Bondzy — w462 U, Bz
+ <5z/77ﬁd,h,ﬁd,h>zg + (02T (pa — Pan)sPan)za — <5§/7Tpd,h7ﬁd,h>zg-

Before proving this result, we point out that in the particular case when Z7 = Z,(Li, we have coincident
meshes free of hanging nodes, from which it is easily seen that T = 0.

Proof. 1t follows straightforwardly from simple algebraic manipulations. Indeed, we first use the
definition of the numerical fluxes (3.3) to rewrite the two last terms in (3.7c) and (3.7d). Next, using
the conditions transmission (4.12), we obtain
T = —{osnns, Usp)z; + (Wap - 0a, Pan)zs + <T(Pan = Pan)sPanyzs + (Tv(Usp — s p), Us p)zy
= ((Eq,, © P! — o) ng, Usp)zs + {(ugp — Eugy,, © Il)gl) : ndaﬁd,h>zg — (a5 pNs, Us )13

+Ua+ jg,ﬁd,hhg +{(Pap 0¥ = DPap)ng, Usp 0 P)ra — (5 + 3%, s )z

+{(Usp o™ —Tgp) - ng, Pap o s
Finally, in order to obtain the terms 1/“6;/77'1/2{\13&“12 and ||6;/77'1/21’5d7h||22 on the left-hand side of the
stability estimate, we add

0 =02 Tl p, T ) + (62 (s — s ), G p)zs — V(02 TTug p, s )1

+ <5g/77ﬁd,h,ﬁd,h>zg + 0¥ (pan — ﬁd,h),ﬁd,hhg - <52/7Tpd,h,ﬁd,h>zg7

which finishes the proof. O
In what follows, we define

Q(Ls s Wah, Us s Pd o, Dd,p) = {VHLs,hH?); + Hfﬂ_lud,hHéi + |2 (ug ), — ﬁs,h)H%Q; (4.13)
4.13
17 _1/2~ ~ 17 _1/24 1/
66 T2 nl20 + 1TV (an = Pan) gy + V18 T 20003 L

and provide an upper bound for this energy term Q(Lgp, Ui, Usp, Pd,hs Dd,p)- This bound depends,
in addition to the sources, on the norms of the approximations of the velocity u p, pressures ps 5, and
pan- Also, for a facet e of &, we consider P* : L?(e) — Py(e) and P* : L?(e) — Py(e) the respective
L? and L? orthogonal projections. In abuse of notation, the global projections will be also denoted by
P* and P*.

Lemma 4. Assume that £ = 0 and fs = 0. If assumptions (A.1) — (A.3) hold and x € {s,d}, then
5

TGQ(Ls,h; Wep, Us s Pas Pan)? < Ci(Jusyl ?z; + [pa,n ?22) + Ca|psnl ?22 + 4HHJd||ég + 4V|\JSH%Z
+ [RPIR(jre + jé;)H_?zg + |2 (jue +jg)H%; ; (4.14)

where B is a non-negative parameter whose range will be chosen later.
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Proof. Taking Gy, = vLgp, Vs = Ush, @sh = Pshy and prg ), = Ugp in (4.11a), (3.2b), (3.2¢), and
(3.2d), along with (3.3b), we easily obtain

vILsnlds + vIT 2 (usn — Gan) [3e; — (Gonns, Doz = (Vs Lan)as - (4.15)

Similarly, taking vap = Wapn, gan = Pdhs Hdh = Dan in (4.11b), (3.2h), (3.2i), and (3.2j), along
with (3.3a), we find that

(K Maap, Ugn)od + |72 (pan — ﬁd,h)H(ng + (Uap - 0d, Pap)zs = (Ja, uan)og- (4.16)
Next, adding (4.16) and (4.15), it follows that

V[ Lsnlity + v (sn — G [30; + (5~ uan, wan)ag + 172 an —Ban)l3ge + T
= (W, Lsn)as + (Ja,uan)o-

In this way, by combining this identity with the expression for T given in Lemma 3, we obtain

9
Q(Ls s Wa o, Us 1, P hy D) =Z (Js; Lsn)es, + (Ja, udn)a (4.17)

where Q is the energy term defined in (4.13), and

I = —{(Pan © ¥ — Pap)nd, Us © ), I = —((Ugpop™" —Usp) 1, Ppap o 1,
I = _<(E0's,h o ¢S—1 _ Us,h) ng, ﬁs,h>IZv Iy = —<(ud7h —FEy,, 0 @bgl) : nd,ﬁd,h>zga

Is = G+ 30 Qe Is = —(jd® + b Dawzys

I = {aspns, Usp)1s Iy == =82 (us = Us ), Us )75

Iy = —(62 "7 (pan — Pa,n)sPan)za, Lo = (8 Trugp, Bep)zs,

I = <5§/7Tpd,h,ﬁd,h>zg-

Now, recalling the properties of k=1, 7 and v, we apply the Cauchy-Schwarz and Young inequalities
to bound each of these terms as follows. First,

2

L < 47'_1/21/_105(]7}1“56_5/14 -1 and

Vo7

1
I < AT 205 077 M Ly, + 610 7P

where we have used (4.10b), and (4.10a), respectively. For I3 and Iy, it follows from the estimate
(4.8), that there exist positive constants C¢ and C¢, such that

8 S ex —
Iy < max (c S12TR=3(Coxe )2 1) <u2\|L7 ZV) ||51/7 V203, and
I <4max (CI2Th3Cer )2 ) | N e
eeI

For I5 and Ig, we have

1 B R (Ctr) h B
< [WPD2 (e 4 )2 + thma%ﬁ_%m%+%%(2 6 and
eeLy,

I < [RB=D/2(ine 4 s0y|2 h(1=5)/2 B (SN 2
6 < [he (44" + Ja)lza + H (Pa,n — Pa h)HId +mEI%X 5 ) Ipanlog-
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s, where

)

= ‘IZ|1/2M max <51/2h—1/20ext>
Q| e ’
it follows that
C: _1m o 17_1/2
I < 47a\|5§/17s,h”9; Hé/ /Ush”Is-

For Is and Iy, we easily obtain

R v ~
Iy < )5l 72 (ugp — Gun) 3 + *\\51/ Y 2us,h”%z’ and

Iy < 46772 (pay _ﬁd,h)H%g + — H51/7 2p,

In turn, using the discrete trace inequality (4.9), we find that

H51/7 V207

tr\2 ¢2/77—1
Iy < 4V161é%%(<(ce) 0 h, 7)\
hn < dmax ()"0 Th:'r) Ipaslly + 5 5T 25 2.
ee.

Finally, rearranging terms and bearing in mind the Assumption (A.3), we obtain (4.14). We omit
further details. O

Our next goal is to provide an estimate for the L?-norm of ug , Ds,h, and pq . To bound Hu&hHQ?L
and de,hHQg we employ a duality argument, whereas for ||pso; we use an inf-sup condition.

4.2 A duality argument

in [25, 22, 18] and incorporate a suitable

auxiliary problem. More precisely, in what follows we consider the continuous problem (1.1)-(1.2)-(1.3)
with sources given by fs := O3 € L2(€)) and fq := ©4 € L?()4), that is:

O, =Vo, V- (00— 1) =05, V-p,=0 in Qy ¢,=0 on Iy and J Ps =0, (4.18)
V-¢pg = 04, ¢Pq+rkVeqs =0 in Q4 and ¢q =0 on Iy, (4.19)
¢s s+ Py -ng =0, (V(I)s - &sl)ns =panq on Z. (4'20)

In addition, we proceed to carry the same decomposition performed for the pressure of the continuous

~ o~ . ~ -1 . ..
problem, that is 35 = &s + s, where g € L3 (€27), and a = |Q|J s, i the constant similar to
AYsS

(3.1). Furthermore, suppose that elliptic regularity holds, that is,

V19l o) + Vislme,) + ool i@, + [@allm oy + I9aliz@y < Ce{lO4lo. + [€ala, }. (4.21)

Lemma 5. Suppose Assumptions (A) and (4.21) hold true. There exist hg € (0,1) and a positive
constant C such that, for all h < hg,

2h <C{Céth(Ls,hau*,h»ﬁs,hapd,haﬁd,h)Q + 3+ 303 + (a8 +j3||§g
+ (O(;;h)2 Q;L + h2min{1’k}”JdHS22}dl + thm{l’k}HJSHQZ}?

where Cgh and Cgh are constants defined in (A.4).

(4.22)
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Proof. We proceeded as in [18, Lemma 4.6]. First, from (4.18) and (4.19), we have

(us,ha @S)QZ + (pd,h7 @d)Qi
= (s, V- (v®s = &), + (Pan, V- ba)as + (WL, Bs = Vo )ag — (Uan, 57 ¢a + Vipa)ga-

Now, using the properties of the HDG projectors, L?—projectors, and performing some algebraic
manipulations along with the transmission conditions given by (1.3) and (4.12), we deduce that

(us 1y Os)as + (Pa.n, Od)og
= — (VLo @5 — Do)y — (Js, I Rs) 5 + (Ja, TV dg — Da)ag — (Ja, kV@a)qa + (a - 1a, Pap)zs
+ (5, TV 6 — Pa)ag + By (V8 = 13)ng)7 — (VLon — 1 p)ms, dden; — (Bap - D, Padany
= Ty + Ty,

where

Tl = - (VLs,ha H?;(I)s - (I)s)Q; - (JSa V(H?}q)s - (I)s))QZ - (Jsa V((I)s - Pk—l(q)s)))Qz + (Jd7H%¢d - (bd)Qi
= (Ja, 5s(Vea = Pe1(Vepa)))qa + (K "ugp, TG ¢y — ba)ag

and

Ty ={(uap — Buy, c¥7"') - na, Pd(ﬂd>zg + (P, (Eo,, otpy " — osp) noyzs — (i +32, P b )13
— (G5 + 45, Pd¢d>zg +{(Pan o™ = Pan) na, PPpyrs + {(Usp — Usp 0 9) - g, Pd(ﬁdh}g
+ (g, (PYpa — pa)na o™ s + (PP — ) 0 - ng, Pan)za + (s 0P, (0a 0 Y1 —¢a) n4)7d
—Papop ™t (P ot — ) - ng)7e + (Us p, (v®s — sl — (vPs — psl) © ¢;1)HS>I;
+ (i, Bsng)rs + Paps (ba — dacpy') - n4)7a — Qs p0s, PPhy)1s -

Here Py_1|p and Py 1|k are the projections L2(K) and L2(K) onto Pj_1(K) and Py_;(K) for each
Ke 2 and K € Q‘,il. Hence, applying the Cauchy—Schwarz inequality, it follows that

T, < {HLs,hHQ; + sl + (1 +F)Jallgs + 5~ uan
v (@s = Pro1(Ds)) o5, + [T Ba — Ballag +

o HIw (T L — @) oy
[Vpa — Pk—l(VSOd)|\Qg}~

Thus, invoking [12, Lemma 1.58], the approximation properties given by (2.3) and (2.5), and the
regularity assumption (cf. (4.21)) we obtain

T, < Clh{HLs,hHQ; + slles, + (1 +7)|Jalga + [+ uapn

d
o)

< QClcrh{HLs,hHQ; + slles, + (1 +7)|Jalgg + [ uapn

Q;}}{HV%HLQZ + [psllr,0g

+ vdsla; + 1Oslay + [Palli oz + e

ai HIOdlos + [Oalgs . (4.23)
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In turn, for Ty we write

Bi = ((uan — Bu,, 09q"') - na, Ploa)zs, By i= (P, (Eo,, 09" = osp) 013,

By im —( + 0, PP, By = —(d° + jd Pleay,

Bs = ((Dapot ™" —Pan) na, Pod)zs Be = ((Usn — Usp 0 9) - m, Pd@dhﬁ’

Br = (Ugp, (PYa — pa)na o ¥~ zz, By = ((P°¢s — &) 0¥~ s, Panyzy,

By := (G 0%, (pa 0¥ — pa) na)gg, Bio i= —Pano ", (b0 — @) ‘noz;,
Biy = (G, (10 — gsl = (@ — @) 0T )n)zs, Bio = Pans (b — ba09y’) - o)ps,
By = —(asnns, P )13, Bia = (Op, Gstis)z;

In this way, we bound each of these terms applying the Cauchy—Schwarz and trace inequalities, and
the regularity Assumption (cf. (4.21)). Indeed, note that

Bs < v it + 3z 150y, By < |38 + jdllzg 19allag,
Bis S v Calpspllas [Os]as , Bis < v 6076 T b2 | Os -

In turn, thanks to Lemma 1, it follows that

B; < max <5 hy 3/2CeXt) | By < s [©adllqa
eeTd g
B, < v max (3uhc 3/206“) uas,huﬂiu@suﬂz, Bio < v
Bi1 < 87|87 1Os]ay Biz < 6"2Panlza[©allg-
Next, from (4.10a) and (4.10b), we obtain
B < 16120, |vLanllos |©allos. Bs < v '6/2C; ) | ACATS
On the other hand, from [12, Lemma 1.59], we find that
Br < (h921Gun — unlzg + he(CE) sl ) 1€l
Bs < (12 1pan — panlzy +he(CE) " Ipanlag ) 101y

In summary, adding up all the estimates for B; (i = 1,...,14), we deduce that

< {om(

+C§h\

s h“QS> + C“S’pdl (V\]52/771/2ﬁs,h|\12 + Héi/?q’l/%d,huzg)
s + HJ + 3z + 45° + J'deg + B2t — usplz (4.24)

+h3? (C) M panlag {100 + [Oalgg }-

where C’“"L‘ Cu*’p 4, and Cg ,, are the constants that have been defined in (A.4). In this way, from
(4.23) and (4 24) we find that

(usn, Os)ag + (Pdhy Od)oa
s;Ls S, o A~ . .
< { (h + C’“ C’“ pd) Q (L ps W oy Ug oy P 1y Dd,h) + C§h||ps,h||Q; + [7a° + Jg”fg
) Hl0dlo; + 1©alag

Hence, taking ©¢ = us and O4 = pqp, leads to the required inequality (4.22). ]

+he(Ce')™

|Pa,n —

+ 152 + 32z + W (13l ge + 35l ) + h(
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Lemma 6. Assume that fy = 0 and f5 = 0. It holds that

Q5 < 5’7;S{VHLS,}I|

Ips 5, + VT2 (e — Bon) oo, | (4.25)

where @S = Bmax {1, Ir(n%x(ThK)l/z}, and 5 s a positive constant independent of h.
ey,

Proof. See [26, Lemma 2] or [22, Lemma 10]. O

We are now in position to establish the main result of this section.

Theorem 1. Suppose Assumptions (A) and elliptic reqularity (cf. (4.21)) hold true. If T is of order
one, k=1 and h < 1, there exists hg € (0,1), such that for all h < hy,

~ ~ 2
Q(Lg h, Wy, Us 1, Dd > Pd,h)

_ ) .5 _ . .5

S IRETIRGE + 0I5 + IREDPGE 4 5DIE; + 1 aliga + (w6l (4.26)
|us !?)h + lpa,n ?22 < {C'(‘;S,hQ(Ls,h, W p, s iy Papy Pan)? + [35€ +jg”%; + [ 74 + ng%}g

+ (Cgh)zﬂps,ﬂ gz;‘ + hzmm{l’k}”JdHég + h2min{1’k}HJsHs2)§ }7 and (4.27)
|ps,n 52]h < vQ(Lspy Uy, Us iy Py Pap) > (4.28)

Proof. We first employ the estimate obtained in Lemma 5 to bound the first and second terms of the
right-hand side of Lemma 4. Next, using the estimate for ||ps | (cf. (4.25)), we obtain

(1= Cs.1) Qs s sy Gsr Py Pan)” S WP D2 (5 + Ja)lze + |hP IR (G2 +30) %

+[Taly + [v3s]3,

where Cj, is the constant defined in (A.4), since § < 1, 7 is of order one, k > 1 and h < 1. Hence,
(4.26) follows by Assumption (A.4). Finally, making use of (4.22) and (4.25), we get (4.27) and (4.28),
which finishes the proof. O

Corollary 1. The HDG scheme (3.2) has a unique solution.

Proof. We first note that the existence of the solution follows from its uniqueness. Thus, it suffices to
show that when the right-hand sides of (3.2) vanish, then Lgp, uq n, Pd .k, Ush, Ddh, Us,p also vanish.
Indeed, assuming that fy =0, fs =0,J4 = 0, Js = 0, jqg = 0, and j; = 0, we deduce from Theorem
1 that Lgp, = 0, ugp, = 0, pap, = Pap = 0, Usp, = Usp, = 0, and psp, = 0. In turn, we notice from
Lemma 2 that pg, = 0, and ts;, = 0, which completes the proof. O

4.3 Semi-aligned discrete interfaces

With the aim of improving the estimate given in Theorem 1, in this section, we consider a specific
structure of nonconforming meshes, where the discrete interfaces satisfy the following: if vq is a vertex
in I,‘Zi, then v (vq) is a vertex vg in Zj, (see Fig 1). In this way, we refer to I,? and 7} as semi-aligned
discrete interfaces.

Under this condition and the fact that in the error analysis j2¢ := (Ppq — pq) o ¥ 'ng and
Ja¢ == (P°us — ug) o ¥ - ng (see eqs. (5.4) in Lemma 8), it is easy to see that <jgc,,ud7h>12 in
(4.12a) vanishes. In fact, since hs < hq, the term pq png o 1! belongs to N3 and thus (53¢, Md,h>zg =
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((PPus—uy), p1q, pns O¢_1>IZ = 0. Furthermore, in what follows we show that under this configuration
s, Pd(¢s o) o ¢_1>I;j and (53¢, Pdgod>12 also vanish. Indeed,

<j;16’ Pd(¢s © ’(,b) © ¢71>IZ = <(Pdpda Pd(¢s © ’(p) : nd>I,‘L1 - <pdnd7 Pd(¢s o w)>12
= <(pd7 Pd(¢s © ¢) ’ nd>22 - <pdnd> Pd(d)s © ¢)>Ig = 0.

On the other hand, taking into account that hg < hgq, we have

(8¢, Ploa)zs = (PPus 0 - 0, Ploa)za — (us 09 - g, Ploa)za
= {(P*u, Plpa 09 ")z — (us, Plpa o 'ngyzs =0,

since Plpqoep~Ing € M;j . All these identities imply an improvement of the estimate of Lemma 5. In
fact, we recall that By = —(ji¢, P ps)zs — (j2, P s )7: . Then, we have

U8 Pz = G PPy — dozy — QoS PUSs o) o™ — domy + G2 PU@s 0 9p) 0y Doy

. . d

< BRI ez, + 151z 1P (9 0 %) — b 0 Bl
< W25z |dslez ) + Y130z by © Wl

< u‘1h3/2HJ'§cHI; (ISHfo

which implies that
By < v A2 O], + v iz [1©s] e, (4.29)
On the other hand, we have that
By, = —<jgcapd¢d>zg - <jga73d<ﬂd>zg < nguzg 1©alg- (4.30)
We now have the following result.

Lemma 7. Under the same assumptions of Lemma 5, if we have semi-aligned discrete interfaces, we
get

lusulEs + Ipanl ?22 < C{CghQ(Ls,h, We s Oy P s Dap)” + W22 150 13 + 1322 + ng\\%g

4.31)

+(CF ) [psnliBy + B2 [T [[Ba + h2min{1v’“}quu?z;}.

Proof. The proof follows almost verbatim as in Lemma 5, but now considering the estimates (4.29)
and (4.30). O

5 Error Analysis

Our first goal in this section is to derive the error estimates of the proposed method. We employ
the stability estimate deduced in previous sections. In what follows, we introduce the projection of
the errors, namely els := ITg, L — Lg pp, €™ == IIjus — Uy p, gl 1= Pru, — U, p, P == IIpps — Duhs
gPa = Plpy — Dd,h, and €* = IHas — asp. In turn, the error of the projections are given by
I} = Ls — I Lg, I}, == u, — II5u,, 1 P« — pps, and I, i= o — HsQas, and note that I}, = 0.

L
Sy fu p’_
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Lemma 8. The projection of the errors satisfies

(e, Gan)as + (€™, V- Gen)ag — (€™, Genngyans = — (Ii, G )es | (5.1a)
(ELS, VVSJz)Qz — (Eps, V- Vs7h)QZ — <(V€Ls — €ﬁs)ns, Vs7h>aQ; =0, (5.1b)
—(£™, Vasp)as + <™ 0y, gspyos =0, (5.1c)
<8usv I‘I’S,h>rs,h =0 s (5].d)
{(ve's — eP)n,, s 0o \(Ta puz;) =0, (5.1e)
(e, vau)ga — (€74, V - vap)ad + (Van  nd, e ons = — (k7' Ig, van)ag (5.1f)
—(e", Vaan)ag + <€ na, qandaqy =0, (5.1g)
<6ﬁd ) Md,h>Fd’h =0, (51h)
€™ - n, pan)oad\(ry uzd) =0, (5.1i)
Jor all (G p, Ve s Gs,hs B > Vd,hr Qb k) € G5, X V5, x Q5 x M5 x Vi x Q5 x My, and
g% .ng = % .ng 4+ 7(P —P) on 00, (5.2a)
e%ng = velsng — ePIng — (™ —e®) on Q5. (5.2b)
Moreover, for x. € 1}, let
. . 1
Pi(zy) = P (2g) — |oa(xa)l f Eova (yq(t)) - nadt, (5.30)
0
1
% (zq) = 2% (zy) + |os(s)] f B (y.(1))nodt, (5.3D)
0
e(zq) = Boug oyl (zq) -ng + 7(eP4 — £P) (), (5.3¢)
s (xs)ns = (VE.s — Ecpsl) 0 P (x)ng — vr(e™ — 565)(1:5) — e%ng. (5.3d)
They satisfy
<€ﬁs ‘- Ng + 5ﬁd -nyg, Md7h>Zg — <('PSuS — us) o 1’b g, ,UJd,h>I2 — <|O'S|A1i o 11b ‘g, ,Ll,d7h>12 ( )
5.4a
+(|os[If, © ¢png, papma)za + <(Iﬂ ~Tyo 1#51) ‘nd, papyzs ¥ pan € Ni,
(% ng — Ping, pg ) = —(Ppa — pa) 0¥ 'na + £ |oalAgna o, gz (5.4b)

~(Hoallg o™t — (VI = BI) = (v}, = LD oyl t) ng, gz Vg € NG
Proof. The identities (5.1)-(5.2) are straightforwardly obtained from the definition of the projection

of the errors and (3.2) (see also [6, Lemma 3.1] and [7, Lemma 3.1]). Now, let x5 € Z}. By (3.7a) and
(2.1), we rewrite (5.3a) as

1
e (x5) = Plpa(wa) + |oa(wa)] J K By o, (a(t)) - nadt — pap(s)-
0

Moreover,

- ) _ ' . b ]
(ra(wa)| | 5 Bgu, (9(0) -t = ~loa(wa)] | 5 TE(0) - na -+ oa(@a)] | 5 aly(r) - o

18



from which, proceeding in a similar way as in the proof of Lemma 2, we obtain

1
|Uc1(96d)|f0 K By o, (y(8) - nadt =k |oq(@a)|Arg (za) — |oa(za) |KIG (@a) - ng

1

+ loa(@a) f kMua(y () - na.

On the other hand, from (5.3d), (2.1), and (5.3d) we find that

g7 (xs)ns = — (ViS,h — Pspl)(@s)ns + (Vg Ls — HSQPSI) © v,bs_l(azs)ns —vr(Iljus — Pous)(ws)

- EHSQaS ng.
Hence, for pg ;, € N}, the above expressions together with (2.2c) and the definition of the L?-projection
P4 imply
<5&Sns - 55dnda ﬂs,h>I}sl = ((VIIgLs — SQPSI) © ¢§1ns + ((vLs — psD)ns — (VI Ls — HSQPSI)nm Ns,h>IZ
—{(PYpa —pa) o ¥~ "ng — & (|oaAana + [oallg) 0¥, pg )1
— aans, pig o7 — (pa o Yy 'na, g 1

from which, employing (3.6) in the third term of the right hand side of the above expression, we obtain
(5.4b). In turn, for x4 € I;li, the identity (5.4a) is proved in a completely analogous way. We omit
further details. O

We observe that the above equiations are similar to those of the HDG scheme (3.2), where I§ | I,
0, and O play the role of Js, Jq, fg and fg, respectively. Moreover,

G+ s pamzy ={(P°us —w5) 0 -y — |og| Ay 09 0, pazg + {Jos|, 0 ¥na, papna)ze

+ <(Iﬂ —Igo ¢§1> * g, fid,h )79 (5.5)
G2+ 30 sz = = ((Ppa — pa) o ™ 'ng + k7 oa|Agna 0 7 pg oz
— (T Hoallg o™t = (W, = 5D — (v, = LD o9 ) ng, g )7 - (5.6)

Hence, we consider the result of Theorem 1 applied to this context. More precisely, we notice that

2G5 + 3 < I (Pug 09 — s o 9) [y + [P o Asy 02,

_ _ B (5.7)
+ RS20y 13 0 gy + AP (1 - T 097 Iy,
and
IR+ ), < NPl 0w = w I + W ol 097

+ (R o T o Y3 + [RETVRWR, ~ T - (), — 1) o9 )|

and observe that the first terms in (5.7) and (5.8) can be bounded using the approximation properties
of the L?-projection over N, g and N3, respectively, that is there exist constants Cp. > 0, for » € {s, d},
independent of A, such that

(5.9)
(5.10)

Hhc(aﬁ_l)/Q(’PSuS oY —ugo ¢)H%§ < Cnsthus +B’us‘%_[lus+1

|hP 2 (Plpg o™ —paodp™")[F: < Cuah™ra*F|py]

(Qs)’

2
Hlpd +1(Qd)7
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where the constants Cjs and C,q take into account the nonconformity between the computational
interfaces.

On the other hand, following the proof of [25, Theorem 4.2] we deduce from (4.3), a scaling argument
to bound the L? (I,’;)—norm in terms of its L*(Q})—norm, and Lemma 1, that

[R5 + JDIZa S Cush™ P luglfpu ooy + 17 (Ieré%g(5§h24)+gé%%<(5eh§ ) I I3

—11d |2
+ hﬂ 2%2{(6 h, )|I€ Iu|H1(Q%)’
and

IRED2G5¢ + 5018 < Cuah®ra P lpalfa, or g, + 1 max(Behe VR, = BT o)
h

(f2a)

B 4 -1 d 2
+h (rergx(é hg )+1gé%§((5ehe ))HIuHQg‘

Next, by Assumptions (A), the fact that (62h;4h?) and (6,h;'h%) are bounded, with % € {s,d}, it
follows that

Hhéﬁ_l)p(] +Jd)HId S Cnshzlus—i_ﬁ’us‘%[lusﬂ
[PV G2 + 307 < Caah®7a ™ |pa?

+ 8 TR & + ohT O IG I (qi): and

—1 S S 4 4 d 2
+ 0P — Ipl\Hl(QZ) +6h™ wHI“HQi'

(©s)
H'Pat(0q)
Then, bearing in mind the above, the estimates from Theorem 1 applied to (5.1) become

Q(el e, e, e, &) < Cush™ Pl w1 o, + 00~ Pl gy + (3*A77 + 1) T4

+C dh2lm+ﬁypd|de+1( an t Sh™P I — 1;I|2H1(QZ) + (V2T 1) oL, I3

and
He“SH%Z + H&?deég < (Cgh + (C’gh)Z) Q(ELS,eu*,Eﬁs,apd,aﬁd)Z + 0|vIf, — ISI|%11 )
+ 5|13;§I1(92) + (6*h73 + 1?) uldugd + (67 4+ 0?) oI B

2lug+1 2 2 1
+ Onsh l b+ |us|Hlus+1( ) + C dh lPd"" |pd|de+1(Qd).

which, along with the properties of the HDG projectors (cf. (2.3)-(2.5)), we obtain the following result.

Theorem 2. Suppose that Assumption (A) and elliptic reqularity hold true. If T is of order one,
k > 1 and (Ls, s, pe) € Hot1(Q5) x Huet1(QF) x HleeT1(Q3), for ly,, I and 1, € [0,k], * € {s,d}.
There exists hg € (0,1) such that, for all h < hg, it holds

[ug =g nlos + [v(Ls = Lsn) s + lps —
1 _ _
$(CQ hlderg + hlpa+t 4 51/2hlpd*¥) |pd|HlPdH(Qd) + <hlg+1 4 51/2hla*¥> |vLs —pSI|ng+1(Q‘)

+ (Gl 4 Bl g 5Y2h =5 g1 gy + (R0 4+ 625 P g

‘ L 1/2
(I3 + Ie720)* < (O )

+ (53/2;1% Ly h2> B vLy — pellggio 1 (o) + (53/2;1% L2y h2) B[] gty o1

B n Cr11é2h1/2 +6hT2 4 h2)hlpd |pd|HlPdJrl

(f2a)

3+6

(01/26h + CY2pM2 4 5hm 12 hz)hl“s [0 g 1.0

s + [pa —

lus
1

. 2 201 I 1/2

< <H€u H?)Z + H«Sde?Z%) + (+hd rat |pd|H pd+1( Q) + hg( S+1)|us|%_1lus+l(gs)) .
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Corollary 2. Suppose that the assumptions of Theorem 2 hold and (Ls, u., ps) € HkH(QZ) kaH(QZ) X
HFY(Qr). Let § = Cgh'™7 with Cg = 0 and v € (3/4,3], and B € [0,2] N [0,2y — 1), with * € {s,d}.
There hold

1/2 B8 y+B8-2
[ua = wanlag + Jv(Ls = Lon)log + Ips = ponlley < (Ca® + Cat )W 2 + WFH (14 C2h 5,

(HEuSH%Z + HEPdHéi)l/Z < hk+1 (h + (Crlu/i2 + C&éQ)h_l/Q + Cgl/Qthi1 + (Cif + CIIIQQ)Cgh%?)’

o, + [P0 — panlas < WL+ (O + CYHRTY2 4+ CYPR'T + (CI2 + CUY) G2,

Hus — Ush
We now explain the consequences of this corollary for some particular cases.

(C.1) No-gap and no hanging nodes. In this case, Chs = Cpg = Cy = 0 and our result shows optimal
order of convergence of h**1 for all the variables and order h**2 for the projection of the errors
e" and P4, as expected.

(C.2) No-gap and hanging nodes. In this case, Cy = 0, but Cps # 0 and Cpq # 0. In this situation,
since Cy = 0, we can take 8 = 2. Therefore, we obtain optimal order of convergence of hE+1 for
the variables ug, Ls and ps, but suboptimal order of h*+1/2 for the projection of the errors g
and eP4 and also for the errors in ug and pq.

(C.3) Gap d of order h? and no hanging nodes. Here v = 1, which implies that 3 = 1 — ¢ for all € > 0,
whereas the nonconformity constants Cys and Cq vanish. This yields, for all the variables, order
of convergence hFT17¢ for all € > 0.

(C.4) Gap § of order h? and hanging nodes. Again, v = 1 and 8 = 1 — € for all € > 0, but now Cys # 0
and Chq # 0. Therefore, an order of convergence of hE+1/2=¢ for all € > 0 is attained for the
variables ug, Ls and ps and RE+1/2 for all the other variables.

(C.5) Gap & of order h"/* and no hanging nodes. In this case v = 3/4, f = 1/2 — ¢ for all € > 0, and
Cps = Chq = 0. Then, the order of convergence is RE+5/8=¢ for all € > 0 for the variables ug, Lg
and ps and RFT7/® for the rest of the variables.

(C.6) Gap § of order h"/* and hanging nodes. Here v = 3/4 and 8 = 1/2 — € for all € > 0, whereas
Cns # 0 and Cphq # 0. Hence, an order of convergence of hE+1/4=¢ for all € > 0 is attained for
the variables ug, Lg and ps and h*t1/2 for the rest of the variables.

We observe that the introduction of the constant 3 as exponent in the first term of the right-hand side
of the first equation of Corollary 2 slightly improves the theoretical convergence rate of the variables
involved there, despite the presence of the non-conformity constants.

We end this section by considering the particular case where the discrete interfaces I,(Li and 7
satisfy the requirement set out in Section 4.3. In this case, Lemma 7 suggests an improvement of h%/?2

in the term associated to jg¢, whereas the term associated to jj¢ vanishes. Thus, the semi-aligned

variant of Corollary 2 is established as follows.

Corollary 3. Let us consider the same assumptions as in Corollary 2. If the discrete interfaces are
semi-aligned, then

. 1/2 1/2 -1 1/2 B=3
(™13 + £720)* < B5*1 (h+ Col’h + CYPR*T + G C 5,
-1 5—3
[us — usnloy + [pa = panlos < B (1 + Cleh + CPh*T 4 ClPe, 7).
Let us comment on the consequences of this result.
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(D.1) No-gap and hanging nodes. Here, Cy = 0, but Cys # 0 and Cypq # 0. Therefore, optimal order of
convergence of h¥*1 for all the variables and order h**2 for the projection of the errors e and
ePd | which improves the power result in (C.2).

(D.2) Gap 6 = h? and hanging nodes. Here, v = 1 and 3 = 1 — ¢ for all € > 0, but now Cps # 0 and
Cua # 0. Therefore, we improve the order of convergence stated in (C.4) since now h**+1=¢ for
all € > 0 is attained for the projection of the errors e and P4 and also for the errors in ug and
Pa.

(D.3) Gapé = h7/* and hanging nodes. In this case, there is no improvement in the order of convergence
compared to case (C.6).

6 Numerical results

We consider four numerical results we the aim of illustrating the convergence of our HDG method
presented in Section 3.2 for the two dimensional case. In all of them, we consider the computational
domain = Q;UQqUX, where Qg = (0,1) x (1/2,1), Q4 = (0,1) x (0,1/2), and X = (0,1) x {1/2}. In
turn, we approach our numerical examples by two computational subdomains 3 = (0,1) x (1/2+4, 1),
Q= (0,1)x(0,1/2—6), i.e., two rectangular meshed subdomains separated by a flat interface centered
at y = 1/2. In addition, we define the manufactured exact solution:

P exp(os ) 20p(Desp(2) = Fesp/2)+ ), = (GETRE),
7 sin(mx) sin(my) ) .

pq = cos(mz)sin(my), and ug = <7T cos(mx) cos(ry)

Also, hereafter we take k = I, v = 1 and the stabilization parameter 7 = 1. Subsequently, we define
the errors:

9 9 1/2
o, » () = Iy = wonlld o, + fua = wanl,)

9 1/2
0Q4q ’

e(L) = ||Ls — Lg n

1/2 N N N
e(p) = <||Ps — Puplls, + Ipa —pd,h||522d) , €= <||7’Sus — G50, + depd _pd,h’

1
Ps,h = DPs,h — m Eps,hv
sl JON\Q}
where E denotes the local extrapolation defined in (2.1) and pg p, is the discrete pressure of our HDG
scheme that satisfies (3.2e). Next, the experimental convergence rates are set as

_ _o log(&/e)
log(N/N)’

where e and € denote errors computed on two consecutive meshes with N and N elements, respectively.

6.1. No gap. In our first numerical experiment, we take § = 0 and consider two different scenarios:
one free of hanging nodes and one containing hanging nodes on the discrete interfaces. For the first
scenario (case (C.1) above), the results in Table 1, confirm the theoretical rate of convergence for
all variables provided by Corollary 2 (for k = 4, the errors calculated for ¢ are affected by round-
off errors). For the second scenario, we take coarser meshes for Qg such that each interface edge
corresponds to two interface edges on the meshes for ), effectively introducing one hanging node per
side. This corresponds to case (DD.1). Table 2 shows optimal order of convergence for all variables in
this case, observing superconvergence h**2 in the numerical trace, which is the theoretical order of
convergence provided by Corollary 3.
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k ‘ N H e(L) ‘ r H e(u) ‘ r H e(p) ‘ r H e 7
56 8.09e-02 * 8.05e-02 * 4.86e-02 * 3.34e-03 *
212 2.00e-02 | 2.10 || 2.13e-02 | 2.00 || 1.28e-02 | 2.00 || 3.57e-04 | 3.36
1 800 5.49e-03 | 1.94 || 5.62e-03 | 2.01 || 3.33e-03 | 2.03 || 5.16e-05 | 2.91
3216 1.35e-03 | 2.01 || 1.40e-03 | 2.00 || 8.07e-04 | 2.04 || 6.30e-06 | 3.02
12716 || 3.49e-04 | 1.97 || 3.54e-04 | 2.00 || 2.04e-04 | 2.00 || 8.39e-07 | 2.93
56 1.21e-02 * 1.05e-02 * 4.97e-03 * 2.29e-04 *
212 1.29e-03 | 3.37 || 1.18e-03 | 3.29 || 6.19e-04 | 3.13 || 1.00e-05 | 4.70
2 800 1.63e-04 | 3.12 || 1.52e-04 | 3.09 || 7.93e-05 | 3.10 || 6.54e-07 | 4.11
3216 2.07e-05 | 2.97 || 1.89e-05 | 2.99 || 9.82e-06 | 3.00 || 4.27e-08 | 3.92
12716 || 2.73e-06 | 2.95 || 2.47e-06 | 2.96 || 1.28e-06 | 2.97 || 2.97e-09 | 3.88
56 9.50e-04 * 8.42e-04 * 4.11e-04 ® 9.09e-06 *
212 6.14e-05 | 4.11 || 5.47e-05 | 4.11 || 2.64e-05 | 4.12 || 2.35e-07 | 5.49
3 800 4.89e-06 | 3.81 || 4.15e-06 | 3.88 || 1.91e-06 | 3.96 || 9.93e-09 | 4.77
3216 2.88e-07 | 4.07 || 2.52e-07 | 4.03 || 1.13e-07 | 4.06 || 2.95e-10 | 5.05
12716 || 1.97¢-08 | 3.90 || 1.65e-08 | 3.97 || 7.49e-09 | 3.95 || 1.04e-11 | 4.87
56 1.63e-04 * 1.29e-04 * 4.87e-05 * 6.81e-07 *
212 3.47e-06 | 5.78 || 2.90e-06 | 5.70 || 1.28e-06 | 5.47 || 6.61e-09 | 6.96
4 800 1.04e-07 | 5.29 || 8.92¢-08 | 5.24 || 4.09¢-08 | 5.19 || 1.01e-10 | 6.30
3216 3.37e-09 | 4.93 || 2.90e-09 | 4.92 || 1.29e-09 | 4.97 || 1.73e-12 | 5.84
12716 || 1.21e-10 | 4.84 || 9.94e-11 | 4.91 || 4.51e-11 | 4.88 || 2.01e-13 | 3.13

Table 1: History of convergence of the HDG method for § = 0 and without hanging nodes

k:‘ N ‘ e(L) ‘ r ‘ e(u) ‘ r ‘ e(p) ‘ r ‘ e r
34 | 9.06e-02 * 2.95e-01 * 1.57e-01 * 1.68e-02 *
134 | 2.09e-02 | 2.14 | 6.39e-02 | 2.23 | 3.64e-02 | 2.13 | 1.99¢-03 | 3.11
1| 506 | 5.58e-03 | 1.99 | 1.62e-02 | 2.06 | 1.03e-02 | 1.91 | 2.42e-04 | 3.17
2000 | 1.36e-03 | 2.05 | 4.32e-03 | 1.93 | 2.69e-03 | 1.95 | 3.33e-05 | 2.89
7974 | 3.50e-04 | 1.96 | 1.07e-03 | 2.01 | 6.61e-04 | 2.03 | 4.15e-06 | 3.01
34 | 1.28e-02 * 6.99e-02 * 3.31e-02 * 2.25e-03 *
134 | 1.34e-03 | 3.29 | 9.08e-03 | 2.98 | 3.71e-03 | 3.19 | 1.48e-04 | 3.97
2| 506 | 1.66e-04 | 3.14 | 9.68e-04 | 3.37 | 4.86e-04 | 3.06 | 7.25e-06 | 4.54
2000 | 2.09e-05 | 3.02 | 1.22e-04 | 3.01 | 6.39e-05 | 2.95 | 4.73e-07 | 3.97
7974 | 2.74e-06 | 2.94 | 1.53e-05 | 3.01 | 7.89e-06 | 3.02 | 3.05e-08 | 3.97
34 | 1.06e-03 * 1.51e-02 * 6.58e-03 s 2.33e-04 *
134 | 6.49e-05 | 4.07 | 6.90e-04 | 4.50 | 3.39e-04 | 4.32 | 5.24e-06 | 5.53
3| 506 | 4.97e-06 | 3.87 | 4.52e-05 | 4.10 | 2.18e-05 | 4.13 | 1.75e-07 | 5.12
2000 | 2.90e-07 | 4.13 | 3.57e-06 | 3.69 | 1.51e-06 | 3.89 | 7.19e-09 | 4.65
7974 | 1.97e-08 | 3.89 | 2.16e-07 | 4.06 | 9.23e-08 | 4.04 | 2.19e-10 | 5.05
34 1.71e-04 * 2.62e-03 * 1.10e-03 * 2.20e-05 *
134 | 3.66e-06 | 5.60 | 1.17e-04 | 4.53 | 3.81e-05 | 4.91 | 4.56e-07 | 5.65
4| 506 | 1.07e-07 | 5.32 | 2.54e-06 | 5.77 | 9.89e-07 | 5.50 | 5.25e-09 | 6.72
2000 | 3.42e-09 | 5.01 | 7.53e-08 | 5.12 | 3.37e-08 | 4.92 | 7.69e-11 | 6.15
7974 | 1.22e-10 | 4.82 | 2.50e-09 | 4.93 | 1.07e-09 | 4.99 | 1.31e-12 | 5.89

Table 2: History of convergence of the HDG method for § = 0 and with hanging nodes

6.2. Gap of order h7/4. According to Corollary 2, v must be larger than 3/4. In this experiment,
we want to observe the behavior of the errors when v is equal to 3/4, which means & of order h7/4.

23



Similarly to the previous example, we divide this experiment in two different scenarios. First, we
suppose again that the meshes are free of “hanging nodes” (case (C.5)), i.e., there is a one-to-one
face bijection between the two interfaces, which means that C,s = Chq = 0. The behaviour of the
errors reported in Table 3 is better than the prediction of Corollary 2. In fact, we observe optimal
rates for all the variables and superconvergence in €. For the second scenario, we add hanging nodes

k ‘ N ‘ e(L) ‘ r ‘ e(u) ‘ r ‘ e(p) ‘ r ‘ e 7
60 1.21e-01 * 9.86e-02 * 4.59e-02 * 1.64e-02 *
212 2.62e-02 | 2.43 | 2.40e-02 | 2.24 | 1.31e-02 | 1.98 | 2.52e-03 | 2.96
1| 816 | 6.18e-03 | 2.15 | 5.57e-03 | 2.17 | 3.27e-03 | 2.06 | 3.66e-04 | 2.87
3228 | 1.45e-03 | 2.11 | 1.41e-03 | 2.00 | 8.17e-04 | 2.02 | 4.22e-05 | 3.14
12772 | 3.55e-04 | 2.04 | 3.55e-04 | 2.01 | 2.05e-04 | 2.01 | 5.86e-06 | 2.87
60 1.61e-02 * 1.57e-02 * 2.93e-02 * 1.65e-03 #
212 2.24e-03 | 3.13 | 2.32e-03 | 3.03 | 2.18e-03 | 4.11 | 2.34e-04 | 3.10
2| 816 | 2.15e-04 | 3.47 | 2.17e-04 | 3.52 | 1.61e-04 | 3.87 | 1.85e-05 | 3.76
3228 | 2.28e-05 | 3.27 | 2.10e-05 | 3.39 | 1.44e-05 | 3.51 | 1.04e-06 | 4.18
12772 | 2.82e-06 | 3.04 | 2.52e-06 | 3.09 | 1.48e-06 | 3.31 | 7.73e-08 | 3.79
60 3.14e-03 # 3.56e-03 * 1.19e-03 * 3.29e-04 #
212 | 1.59¢-04 | 4.72 | 2.27e-04 | 4.36 | 6.29¢-05 | 4.65 | 1.87e-05 | 4.54
3| 816 | 8.93e-06 | 4.27 | 5.88e-06 | 5.42 | 3.35e-06 | 4.35 | 5.41e-07 | 5.26
3228 | 3.51e-07 | 4.71 | 2.64e-07 | 4.52 | 1.46e-07 | 4.56 | 1.08¢-08 | 5.69
12772 | 2.05e-08 | 4.13 | 1.68e-08 | 4.00 | 7.86e-09 | 4.24 | 3.60e-10 | 4.95
60 2.53e-04 * 3.64e-04 * 6.16e-04 * 1.75e-05 *
212 | 9.90e-06 | 5.13 | 1.54e-05 | 5.01 | 1.08e-05 | 6.40 | 7.87e-07 | 4.92
4| 816 | 2.25e-07 | 5.61 | 3.01e-07 | 5.84 | 1.77e-07 | 6.10 | 1.35e-08 | 6.03
3228 | 4.27e-09 | 5.76 | 3.86e-09 | 6.34 | 3.23e-09 | 5.82 | 1.27e-10 | 6.79
12772 | 1.31e-10 | 5.07 | 1.05e-10 | 5.24 | 6.69e-11 | 5.64 | 2.30e-12 | 5.83

Table 3: History of convergence of the HDG method for § = h7/* and without hanging nodes

on the bottom mesh as before, introducing one per interface edge. This corresponds to case (D.3). In
Table 4 we show the results for this case. We again observe optimal and superconvergent rates, which
is better than what the theory predicted.

6.2. Gap of order h. We now consider the last numerical example taking a gap § = h and that
the meshes are free of “hanging nodes”. Since v = 0, this case is not covered by the analysis but we
observe that the approximations of all the variables converge with optimal order according to Table
5. However, the superconvergence of the numerical trace variables is lost.
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Table 4: History of convergence of the HDG method for § = h7/* and with hanging nodes
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60 9.13e-02 * 8.36e-02 * 4.54e-02 * 9.34e-03 *
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Table 5: History of convergence of the HDG method for § = h and without hanging nodes
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