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Abstract

In this paper we introduce and analyze a Banach spaces-based approach yielding a fully-mixed
finite element method for numerically solving the coupled poroelasticity and heat equations, which
describe the interaction between the fields of deformation and temperature. A non-symmetric
pseudostress tensor is utilized to redefine the constitutive equation for the total stress, which is
an extension of Hooke’s law to account for thermal effects. The resulting continuous formulation,
posed in suitable Banach spaces, consists of a coupled system of three saddle point-type problems,
each with right-hand terms that depend on data and the unknowns of the other two. The well-
posedness of it is analyzed by means of a fixed-point strategy, so that the classical Banach theorem,
along with the Babuška–Brezzi theory in Banach spaces, allow to conclude, under a smallness
assumption on the data, the existence of a unique solution. The discrete analysis is conducted in
a similar manner, utilizing the Brouwer and Banach theorems to demonstrate both the existence
and uniqueness of the discrete solution. The rates of convergence of the resulting Galerkin method
are then presented. Finally, a number of numerical tests are shown to validate the aforementioned
statement and demonstrate the good performance of the method.

Key words: Thermo-poroelasticity, porous media, mixed finite element methods, analysis in Banach
spaces.
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1 Introduction

Scope. The relationship between the flow of a viscous fluid and the deformation of an elastic solid
within a porous medium is described by the poroelasticity equations, which were initially introduced
in the early works [34] and [7, 8]. While porous materials are commonly associated with objects such
as rocks and clays, they also encompass a broader range of materials, including biological tissues,
foams, and even paper products. Moreover, in applications such as the underground disposal of
radioactive waste, geothermal energy production, and oil extraction from deep, high-temperature,
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high-pressure reservoirs, temperature plays a crucial role. Therefore, to study these phenomena, we
focus on the coupling between poroelasticity and heat equations. The resulting system, a slightly
modified version of the thermo-poroelastic problem [11, 12, 13], is non-linear and strongly coupled.
The set of equations consists of the steady-state balance of linear momentum for the mixture and
mass balance for the fluid content (using the modified Darcy law) and a convection-diffusion equation
depending on the Darcy seepage velocity and the total stress. In terms of numerical solvability,
a wide variety of techniques have been developed to simulate the poroelasticity problem, both by
itself [10] and when coupled with other equations. These include couplings with chemotaxis [4],
elasticity [2], Stokes [9, 33] and diffusion [31]. The thermo-poroelasticity problem has also been recently
addressed in [11, 12, 13, 35, 36, 37]. These references include primal formulations [35], a combination of
primal and mixed formulations [11, 37], discontinuous Galerkin methods [3], a fully-mixed formulation
[12], and a mixed-primal-characteristics finite element method [37]. The introduction of additional
variables of physical relevance is a common approach to solving problems that involve couplings and
nonlinearities. Consequently, mixed methods are strongly justified in such a scenario. A recent
approach to this method consists of defining the corresponding variational formulation in terms of
Banach spaces instead of the usual Hilbertian framework without augmentation. It is important to
note that, although augmented methods allow the recovery of a Hilbertian framework, they increase
the cost of the computational implementation of the Galerkin scheme. Therefore, an analysis based
on Banach spaces has the advantage of studying the problem in its purest form. Another advantage of
this method lies in the relaxation of assumptions that must be made about the data, source terms, and
eventual solutions of the system. Consequently, the unknowns are now associated with the natural
spaces that result from the testing and integration by parts procedures; formulations of the models
become simpler and more faithful to the original physical models; momentum-conservative schemes
can be acquired; and additional unknowns can be calculated through postprocessing formulas. As a
non-exhaustive list of contributions taking advantage of the use of Banach frameworks for solving the
aforementioned kinds of problems, we refer to [14, 16, 17, 20, 23], and among the different models
considered there, we find elasticity, Brinkman–Forchheimer, Poisson–Nernst–Planck, Navier-Stokes,
chemotaxis/Navier–Stokes, Boussinesq, coupled flow-transport, and fluidized beds. For the coupled
poroelasticity and heat equations, however, no mixed methods with the aforementioned benefits have,
up to our knowledge, been developed yet. As motivated by the preceding discussion, the goal of this
paper is to develop a Banach spaces-based formulation leading to new mixed finite element methods
for the poroelasticity-heat model.

The manuscript is organized as follows. The rest of this section collects some preliminary notations,
definitions, and results to be utilized throughout the paper. In Section 2, we describe the model of
interest. In particular, we reformulate it in terms of the non-symmetric pseudostress tensor. In Section
3 we derive the fully-mixed variational formulation of the problem by splitting the analysis according
to the three equations forming the coupled model. Suitable integration by parts formulae jointly with
the Cauchy–Schwarz and Hölder inequalities are crucial for determining the right Lebesgue and related
spaces to which the unknowns and corresponding test functions are required to belong. In Section
4, a fixed-point strategy is adopted to analyze the solvability of the continuous formulation. The
Babuška–Brezzi theory in Banach spaces is employed to study the corresponding uncoupled problems,
and then the classical Banach theorem is applied to conclude the existence of a unique solution. An
analog fixed-point approach to that of Section 4 is utilized in Section 5 to study the well-posedness of
the associated Galerkin scheme. Finally, numerical results showing how well the method works and
confirming the theoretical rates of convergence given in Section 5, are presented in Section 6.

Preliminaries. Throughout the paper Ω is a bounded Lipschitz-continuous domain of Rn, n P t2, 3u,
which is star-shaped with respect to a ball, and whose outward unit normal at its boundary Γ is denoted
ν. Standard notation will be adopted for Lebesgue spaces LtpΩq, with t P r1,`8q, and Sobolev spaces

2



Wℓ,tpΩq and Wℓ,t
0 pΩq, with ℓ ě 0, whose corresponding norms and seminorms, either for the scalar,

vector, or tensorial version, are denoted by } ¨ }0,t;Ω, } ¨ }ℓ,t;Ω, and | ¨ |ℓ,t;Ω, respectively. Note that
W0,tpΩq “ LtpΩq, and that when t “ 2, we simply write HℓpΩq instead of Wℓ,2pΩq, with its norm and
seminorm denoted by } ¨ }ℓ;Ω and | ¨ |ℓ;Ω, respectively. Now, letting t, t1 P p1,`8q conjugate to each
other, that is such that 1{t` 1{t1 “ 1, we let W1{t1,tpΓq and W´1{t1,t1

pΓq be the trace space of W1,tpΩq

and its dual, respectively, and denote the duality pairing between them by x¨, ¨y. In particular, when
t “ t1 “ 2, we simply write H1{2pΓq and H´1{2pΓq instead of W1{2,2pΓq and W´1{2,2pΓq, respectively.

Given any generic scalar functional space M, we let M and M be its vector and tensorial counter-
parts. Furthermore, for any vector fields v “ pviqi“1,n and w “ pwiqi“1,n, we set the gradient and
divergence operators as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj
Bxj

.

In addition, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t :“ pτjiqi,j“1,n , trpτ q :“
n
ÿ

i“1

τii , τ : ζ :“
n
ÿ

i,j“1

τijζij , τ d :“ τ ´
1

n
trpτ qI , (1.1)

where I stands for the identity tensor of R :“ Rnˆn. On the other hand, for each t P r1,`8q, we
introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

,

Htpdivt; Ωq :“
!

τ P LtpΩq : divpτ q P LtpΩq

)

,

and
Htpdivt; Ωq :“

!

τ P LtpΩq : divpτ q P LtpΩq

)

,

which are endowed with the natural norms

}τ }divt;Ω :“ }τ }0;Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq ,

}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Htpdivt; Ωq ,

and
}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Htpdivt; Ωq .

Then, we recall that, proceeding as in [25, eq. (1.43), Section 1.3.4] (see also [15, Section 4.1] and [21,

Section 3.1]), one can prove that for each t P

#

p1,`8s in R2 ,

r65 ,`8s in R3 ,
there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.2)

where x¨, ¨y denotes the duality pairing between H1{2pΓq and H´1{2pΓq. In turn, given t, t1 P p1,`8q

conjugate to each other, there also holds (cf. [24, Corollary B.57])

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Htpdivt; Ωq ˆ W1,t1

pΩq , (1.3)

and analogously

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Htpdivt; Ωq ˆ W1,t1

pΩq , (1.4)

where x¨, ¨y denotes in (1.3) (resp. (1.4)) the duality pairing between W´1{t,tpΓq (resp. W´1{t,tpΓq)
and W1{t,t1

pΓq (resp. W1{t,t1

pΓq).
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2 Governing equations and boundary conditions

We consider a homogeneous porous medium constituted by a mixture of incompressible grains and
interstitial fluid. The domain of interest Ω Ă Rn, n “ 2, 3, is assumed bounded. For a given body
force f and given source terms f and g neglecting convective, gravitational, and inertial terms, we
will concentrate the discussion on the following Biot’s equations coupled with a stationary convection-
diffusion equation modeling the heat of the mixture:

σ “ 2µ epuq ` λdivpuq I ´ pαp ` β θq I, ´divpσq “ f in Ω , (2.1a)

χp ` α divpuq ´ divpwq “ f , w “
κ

η
∇p in Ω , (2.1b)

θ ` w ¨ ∇θ ´ divpDpσq∇θq “ g in Ω , (2.1c)

u “ uD , p “ pD and θ “ 0 on Γ , (2.1d)

where the tensor σ is a generalized Hooke’s law, extended to include thermal effects, u is the unknown
vector of displacement of the solid particles, p is the bulk pressure of the fluid, w is the Darcy’s seepage
velocity and θ is the temperature distribution. The remaining terms are the infinitesimal strain tensor
epuq :“ 1

2p∇u`∇utq, the permeability of the porous solid κ, the Lamé constants of the solid (moduli
of dilation and shear, respectively) λ and µ, the constrained specific storage coefficient χ ą 0, the
Biot-Willis parameter α P p0, 1s, the scaling of active stress that indicates a two-way coupling between
diffusion and motion β, the viscosity of the pore fluid η, and the stress-dependent diffusivity accounting
for an altered diffusion acting in the poroelastic domain D : R Ñ R.

Observe that tensor σ is symmetric since epuq and I are both symmetric. In order to avoid the weak
imposition of the symmetry of σ, we reformulate (2.1) in terms of the pseudostress ρ (non-symmetric
stress), defined by

ρ :“ µ∇u ` pµ ` λq divpuq I ´ pαp ` β θq I in Ω . (2.2)

Now, by applying trace to (2.2), we can express divpuq in terms of ρ, p and θ, namely

divpuq “ γpλq ptrpρq ` n pαp ` βθqq , (2.3)

with the parameter-dependent coefficient

γpλq :“ pnλ ` pn ` 1qµq´1 . (2.4)

While this coefficient depends also on µ and n, only its dependence on λ and its relation with other
model parameters will be important when we analyze the formulation in the quasi-incompressibility
limit. Replacing the obtained expression for divpuq into (2.2) and using (1.1), we can equivalently
rewrite the equations in (2.1a) in terms of ρ as follows

1

µ
ρd `

γpλq

n
trpρqI ´ ∇u “ ´γpλq pαp ` β θq I , ´divpρq “ f in Ω .

Note that for the second equation above, we have used the fact that divpσq “ divpρq, which can be
corroborated by taking divergence to the first equation of (2.1a) and to (2.2), respectively. Moreover,
replacing (2.3) into the first equation of (2.1b), we obtain

c1pλq p ´ divpwq “ f ´ c2pλq trpρq ´ c3pλq θ ,

where we have used the following parameter-dependent coefficients

c1pλq :“ χ ` nα2 γpλq , c2pλq :“ αγpλq , and c3pλq :“ nαβ γpλq . (2.5)
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Again, we stress here the dependence on λ only. Next we reformulate (2.1c) in terms of ρ within the
diffusivity function D, it is necessary to establish the function that maps σ to the triple pρ, p, θq. In
this regard, from (2.1a), we have

2µ epuq “ ρ ` ρt ´ 2pµ ` λqdivpuq I ` 2pαp ` β θq I , (2.6)

and thus, we deduce from (2.2), along with (2.3) and (2.6), that the original stress tensor σ can be
expressed in terms of the pseudostress ρ, pressure p and temperature θ, through the linear mapping

Cpρ, p, θq :“ ρ ` ρt ´ γpλq

´

p2µ ` λq trpρq ` p2n ´ 1 pαp ` β θq

¯

I “ σ . (2.7)

Consequently, we can recast the original stress-dependent diffusivity D by a function K depending on
ρ, p and θ defined by

Kpρ, p, θq :“ DpCpρ, p, θqq . (2.8)

Finally, the model equations in (2.1) are restated, equivalently, on the unknowns ρ, p and θ by the
coupled system:

1

µ
ρd `

γpλq

n
trpρq I ´ ∇u “ ´γpλq pαp ` β θq I , ´divpρq “ f in Ω , (2.9a)

c1pλq p ´ divpwq “ f ´ c2pλq trpρq ´ c3pλq θ ,
η

κ
w ´ ∇p “ 0 in Ω , (2.9b)

θ ` w ¨ ∇θ ´ div
`

Kpρ, p, θq∇θ
˘

“ g in Ω , (2.9c)

u “ uD , p “ pD and θ “ 0 on Γ . (2.9d)

Throughout this work, we suppose that, K : R ˆ R ˆ R Ñ R is a function of class C1 and uniformly
positive definite, meaning the latter that there exists κ0 ą 0 such that

Kpτ , q, ξqs ¨ s ą κ0 |s|2, @ pτ , q, ξq P R ˆ R ˆ R . (2.10)

We also require uniform boundedness and Lipschitz continuity of K, that is that there exist positive
constants κ1, κ2 and LK, such that

κ1 ď Kpτ , q, ξq ď κ2 and |Kpτ , q, ξq ´ Kpτ 0, q0, ξ0q| ď LK |pτ , q, ξq ´ pτ 0, q0, ξ0q| , (2.11)

for all pτ , q, ξq, pτ 0, q0, ξ0q P RˆRˆR . It is pertinent to mention here that one of the main consequences
of introducing the new variable ρ is that (2.9c) becomes nonlinear with respect to θ unlike (2.1c).
Furthermore, it is easily seen from (2.7) and (2.8) that sufficient conditions for (2.11) are given by
analogue conditions for D, that is by the existence of positive constants δ1, δ2, and LD, such that

δ1 ď Dpτ q ď δ2 and |Dpζq ´ Dpτ q| ď LD |ζ ´ τ | @ ζ, τ P R .

3 Mixed weak formulation

In this section, we derive a mixed formulation of the system (2.9). To this end, we treat each variational
formulation of (2.9a), (2.9b) and (2.9c) independently, ending up with three systems whose coupling
is carried out via a fixed-point iteration strategy.
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3.1 Mixed formulation of the poroelasticity equations

In what follows, we are going to address the mixed formulation for the poroelasticity equations in
(2.9a) for a given pressure p and temperature θ, which are going to be determined by (2.9b) and
(2.9c), respectively. The poroelasticity equations defined for the non-symmetric pseudostress ρ and
velocity u unknowns are given by

1

µ
ρd `

1

n
γpλq trpρq I ´ ∇u “ ´ γpλq pαp ` β θq I in Ω ,

´divpρq “ f in Ω , and u “ uD on Γ .

(3.1)

We notice that in order to properly couple the equations (2.9), we need to be able to control the
following expression associated with the heat equation

ż

Ω

`

Kpζ, rp, ϑq ´ Kpζ0, rp0, ϑ0q
˘

t ¨ s ,

where pζ, rp, ϑq and pζ0, rp0, ϑ0q belong to the same space in which we will seek the unknowns pρ, p, θq,
and the functions t and s are generic vectors that belong to the same space than ∇θ. In this regard,
and employing the Lipschitz-continuity property of K (cf. (2.11)), straightforward applications of
Cauchy–Schwarz and Hölder inequalities yield

ˇ

ˇ

ˇ

ˇ

ż

Ω

`

Kpζ, rp, ϑq ´ Kpζ0, rp0, ϑ0q
˘

t ¨ s

ˇ

ˇ

ˇ

ˇ

ď LK

´

}ζ ´ ζ0}0,2j;Ω ` }rp ´ rp0}0,2j;Ω ` }ϑ ´ ϑ0}0,2j;Ω

¯

}t}0,2k;Ω }s}0;Ω ,

(3.2)

where j, k P p1,`8q are conjugate to each other. The latter inequality makes sense for ζ, ζ0 P L2jpΩq,
rp, rp0, ϑ and ϑ0 P L2jpΩq, and t P L2kpΩq. In this way, the above leads us to initially look for ρ in the
space LrpΩq, p P LrpΩq and θ initially in LrpΩq, with r :“ 2j. The specific choice of r will be discussed
later on, so that meanwhile we consider a generic r and let s P p1, 2q be its respective conjugate. In
turn, a suitable bounding of }t}0,2k;Ω in (3.2) for a particular t will also be explained subsequently by
means of a regularity argument.

With the preliminary choice of the space to which ρ belongs established above, it follows now from
the first equation of (3.1) that u should be initially sought in W1,rpΩq. Thus, in order to derive the
variational formulation for the poroelasticity equations, we need to invoke a suitable integration by
parts formula. Indeed, applying (1.4) with t “ s and t1 “ r to u P W1,rpΩq, for which we assume from
now on that uD belongs to W1{s,rpΓq, we find that

ż

Ω
∇u ¨ τ “ ´

ż

Ω
u ¨ divpτ q ` xτν,uDyΓ ,

so that, the testing of the first equation of (3.1) against τ P Hspdivs; Ωq gives

1

µ

ż

Ω
ρd : τ d `

γpλq

n

ż

Ω
trpρq trpτ q `

ż

Ω
u ¨ divpτ q “ xτν,uDyΓ ´ γpλq

ż

Ω
pαp ` β θq trpτ q . (3.3)

Here, we notice that the second term on the right-hand side of (3.3) does indeed make sense for p and
θ initially in LrpΩq. In fact, thanks to Hölder’s inequality we have

ż

Ω
p trpτ q ď n1{r }p}0,r;Ω }τ }0,s;Ω ,

ż

Ω
θ trpτ q ď n1{r }θ}0,r;Ω }τ }0,s;Ω . (3.4)
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As a result, the third term on the left-hand side of (3.3) implies that it is sufficient to consider u in
LrpΩq. Additionally, when testing the second equation of (3.1) against v P LspΩq, we obtain

ż

Ω
v ¨ divpρq “ ´

ż

Ω
f ¨ v , (3.5)

which makes sense when divpρq P LrpΩq and f P LrpΩq, the latter being assumed in what follows, and
thus from now on we seek ρ in Hrpdivr; Ωq. In addition, we notice that for each t P p1,`8q there
holds the decomposition

Htpdivt; Ωq “ Ht
0pdivt; Ωq ‘ RI, with Ht

0pdivt; Ωq :“
!

τ P Htpdivt; Ωq :

ż

Ω
trpτ q “ 0

)

. (3.6)

Note that replacing τ by the identity tensor I in (3.3) and using that the deviator of I is the null
tensor, we get an expression for the integral of the trace of ρ, this is

ż

Ω
trpρq “

1

γpλq

ż

Γ
u ¨ ν ´ n

ż

Ω
pαp ` βθq . (3.7)

Now, using the decomposition (3.6) with t “ r, we have that ρ “ ρ0 `cI with unique ρ0 P Hr
0pdivt; Ωq

and constant c P R, which thanks to (3.7), can be computed by

c :“
1

n|Ω|

ż

Ω
trpρq “

1

nγpλq|Ω|

ż

Γ
uD ¨ ν ´

1

|Ω|

ż

Ω
pαp ` β θq . (3.8)

Hence, c can be obtained once the pressure and temperature are known, and in order to fully attain
the explicit knowledge of the unknown ρ, it only remains to find its Hr

0pdivr; Ωq-component ρ0. On
the other hand, (3.6) also applies to each τ in Hspdivs; Ωq with unique decomposition τ “ τ 0 ` dI,
for τ 0 P Hs

0pdivs; Ωq and respective constant d P R.

Therefore, we reformulate our problem in terms of ρ0 instead. To do so, we replace ρ “ ρ0 ` cI
into (3.3) and (2.9b), denote ρ0 simply by ρ and substitute Kpρ, p, θq by Kpρ ` cI, p, θq in the heat
equation (2.9c). Furthermore, we observe that testing (3.3) against τ P Hspdivs; Ωq is equivalent to
doing it against τ P Hs

0pdivs; Ωq, which together with the above, leads us to consider the following
Banach spaces

X2 :“ Hr
0pdivr; Ωq , M1 :“ LrpΩq , X1 :“ Hs

0pdivs; Ωq , M2 :“ LspΩq ,

so that, given p, θ P LrpΩq, and gathering (3.3) and (3.5), we arrive at the following mixed formulation
for the poroelasticity equations (2.9a): Find pρ,uq P X2 ˆ M1 such that

apρ, τ q ` b1pτ ,uq “ Fp,θpτ q @ τ P X1 ,

b2pρ,vq “ Gpvq @v P M2 ,
(3.9)

where the bilinear forms a : X2 ˆ X1 Ñ R and bi : Xi ˆ Mi Ñ R, with i P t1, 2u, are defined by

apρ, τ q :“
1

µ

ż

Ω
ρd : τ d `

γpλq

n

ż

Ω
trpρq trpτ q @ pρ, τ q P X2 ˆ X1 ,

bipτ ,vq :“

ż

Ω
v ¨ divpτ q @ pτ ,vq P Xi ˆ Mi .

In turn, given q, ϑ in LrpΩq, the linear functionals Fq,ϑ : X1 Ñ R and G : M2 Ñ R, are defined by

Fq,ϑpτ q :“ xτν,uDyΓ ´ γpλq

ż

Ω
pα q ` β ϑq trpτ q @ τ P X1 , (3.10a)

Gpvq :“ ´

ż

Ω
f ¨ v @v P M2 . (3.10b)
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Next, it is easily seen that a, b1, b2 and G are bounded. In fact, applying Hölder’s inequality, we find
that there exist positive constants, denoted and given by

}a} :“
2

µ
, }bi} :“ 1 and }G} “ }f}0,r;Ω , (3.11)

such that
|apρ, τ q| ď }a} }ρ}X2 }τ }X1 @ pρ, τ q P X2 ˆ X1 ,

|bipτ ,vq| ď }b} }τ }Xi }v}Mi @ pτ ,vq P Xi ˆ Mi ,

|Gpvq| ď }G} }v}M2 @v P M2 .

Regarding the boundedness of the functional Fp,θ, where p and θ are initially in LrpΩq, we will establish
this in the forthcoming Section 3.3, where the range of r will be determined for each unknown.

3.2 Mixed formulation of the perturbed Darcy problem

Continuing with the weak formulation of (2.9), we are going to focus now on the perturbed Darcy
equation (2.9b) including the boundary condition of the pressure, for a given ρ P X2 and p, θ P LrpΩq.
Following the derivation done in Section 3.1, we use decomposition (3.6) together with the definition
of c (cf. (3.8)), and replace trpρq by trpρ ` cIq into (2.9b), so that the perturbed Darcy problem
describing the velocity w and pressure p is then given by

η

κ
w ´ ∇p “ 0 in Ω ,

divpwq ´ c1pλq p “ c2pλq trpρ ` cIq ` c3pλq θ ´ f in Ω ,

p “ pD on Γ ,

(3.12)

where the constant c multiplying I on the right-hand side of the second equation is defined by (3.8),
and depends on p and θ. Next, given t P p1,8q, we consider the zero mean mappingm : LtpΩq Ñ Lt

0pΩq

defined by

mpqq :“ q ´
1

|Ω|

ż

Ω
q @ q P LtpΩq . (3.13)

Then, replacing (3.8) and using the notation q0 :“ mpqq P Lt
0pΩq, the second equation of (3.12) can

be written as

divpwq ´ χ p ´ nα2 γpλq p0 “ c2pλq trpρq ` c3pλq θ0 `
α

|Ω|

ż

Γ
uD ¨ ν ´ f . (3.14)

Prior to addressing the weak formulation of (3.12), we notice that in order to properly couple (3.14)
to equation (2.9c), we need to be able to control the expression

ż

Ω
pw ¨ ∇θqϑ ,

which arises later on (cf. (3.25)) when dealing with the variational formulation of the heat equation.
Here ϑ is a function belonging to the same space in which we will seek the temperature θ. Applying
generalized Hölder’s inequality to the triple product present in the above integral, we get

ˇ

ˇ

ˇ

ˇ

ż

Ω
pw ¨ ∇θqϑ

ˇ

ˇ

ˇ

ˇ

ď }w}0,2j;Ω }∇θ}0;Ω }ϑ}0,2k;Ω , (3.15)

where j, k P p1,`8q are conjugate to each other, and the inequality holds true for w P LrpΩq,
∇θ P L2pΩq, and ϑ P LρpΩq, with pr, ρq :“ p2j, 2kq. Considering that θ is initially taken from LrpΩq,
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we have to require that r ď ρ, a condition that will be satisfied when determining the range for ρ, so
that for now we consider ρ P p2,`8q, and let ϱ be its respective conjugate.

Having chosen LrpΩq as the preliminary space for w, (3.12) tentatively suggests to look for p in
W1,rpΩq. In this way, testing the first equation of (3.12) against z P Hspdivs; Ωq, and applying (1.3)
together with the Dirichlet boundary condition for p, we obtain

η

κ

ż

Ω
w ¨ z `

ż

Ω
p divpzq “ xz ¨ ν, pDyΓ @ z P Hspdivs; Ωq , (3.16)

which requires to assume that pD P W1{s,rpΓq. Then, a straightforward application of Hölder’s in-
equality in the second term on the left-hand side of (3.16) shows that it suffices to seek the pressure
p in the space LrpΩq, which coincides with the space obtained in (3.4). On the other hand, testing
(3.14) against an arbitrary function q belonging to a space to be determined, we formally get

ż

Ω
q divpwq ´ χ

ż

Ω
p q ´ nα2γpλq

ż

Ω
p0 q

“ c2pλq

ż

Ω
q trpρq ` c3pλq

ż

Ω
θ0 q `

α

n|Ω|

ż

Γ
uD ¨ ν

ż

Ω
q ´

ż

Ω
f q .

(3.17)

Since we will look for p in LrpΩq, a direct application of the Hölder’s inequality implies that the
second term on the left-hand side of (3.17) makes sense if q is considered in LspΩq. Consequently, the
remaining terms of (3.17) make sense if divpwq and f belong to LrpΩq, and then w must be sought
in Hrpdivr; Ωq. In this way, we define the following spaces

X2 :“ Hrpdivr; Ωq , X1 :“ Hspdivs; Ωq , M1 :“ LrpΩq and M2 :“ LspΩq . (3.18)

Then, given pρ, θq P X2 ˆ LρpΩq, the mixed formulation for the perturbed Darcy equation reduces to:
Find pw, pq P X2 ˆ M1 such that

cpw, zq ` d1pz, pq “ Fpzq @z P X1 ,

d2pw, qq ´ epp, qq “ Gρ,θpqq @ q P M2 ,
(3.19)

where the bilinear forms c : X2 ˆ X1 Ñ R, di : Xi ˆ Mi Ñ R, i P t1, 2u, and e : M1 ˆ M2 Ñ R, which
are independent of ρ and θ, are defined by

cpw, zq :“
η

κ

ż

Ω
w ¨ z @ pw, zq P X2 ˆ X1 , (3.20a)

dipz, qq :“

ż

Ω
q divpzq @ pz, qq P Xi ˆ Mi , (3.20b)

and

epp, qq :“ χ

ż

Ω
p q ` nα2 γpλq

ż

Ω
p0 q @ pp, qq P M1 ˆ M2 . (3.20c)

Furthermore, the functionals F : X1 Ñ R and Gζ,ϑ : M2 Ñ R, for each pζ, ϑq P X2 ˆ LρpΩq, are
defined by

Fpzq :“ xz ¨ ν, pDyΓ @ z P X1 , and (3.21a)

Gζ,ϑpqq :“ c2pλq

ż

Ω
q trpζq ` c3pλq

ż

Ω
ϑ0 q `

α

n|Ω|

ż

Γ
uD ¨ ν

ż

Ω
q ´

ż

Ω
fq @q P M2 . (3.21b)

In addition, the bilinear forms c, di, i P t1, 2u and e are all bounded. Finally, applying Cauchy–
Schwarz and Hölder inequalities, we find that there exist positive constants, given by

}c} :“
η

κ
, }di} :“ 1 , }e} :“ max

␣

χ , nα2 γpλq
(

, (3.22)
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such that

|cpw, zq| ď }c} }w}X2 }z}X1 @ pw, zq P X2 ˆ X1 ,

|dipz, qq| ď }di} }z}Xi }q}Mi @ pz, qq P Xi ˆ Mi , i P t1, 2u,

|epp, qq| ď }e} }p}M1 }q}M2 @ pp, qq P M1 ˆ M2 .

The boundedness of F and Gζ,ϑ will be proven later in the next section.

3.3 Mixed formulation of the heat equation

We treat now the mixed formulation of (2.9c) for a given ρ P X2 and w P X2. For this purpose,
we define two auxiliary unknowns, the gradient of the temperature and the term contained in the
argument of the divergence operator in (2.9c), this is

rt :“ ∇θ and rσ :“ Kpρ, p, θqrt . (3.23)

Then, replacing these variables, the heat equation (2.9c) describing the temperature θ can be written
as

rt “ ∇θ, rσ “ Kpρ, p, θqrt and θ ` w ¨rt ´ divprσq “ g in Ω ,

θ “ 0 on Γ .
(3.24)

Now, testing the third equation of (3.24) against an arbitrary function ϑ belonging to a space to be
determined, we formally get

ż

Ω
θ ϑ `

ż

Ω
w ¨rtϑ ´

ż

Ω
ϑ divprσq “

ż

Ω
g ϑ . (3.25)

Next, proceeding as in (3.15), we notice that applying generalized Hölder’s inequality to the triple
product in the second term on the left-hand side of (3.25) we get

ˇ

ˇ

ˇ

ˇ

ż

Ω
w ¨rtϑ

ˇ

ˇ

ˇ

ˇ

ď }w}0,r;Ω }rt}0;Ω }ϑ}0,ρ;Ω ,

whence we can look for rt P L2pΩq and ϑ P LρpΩq. In addition, performing similar calculations as
before but over the first term on the left-hand side of (3.25), for ρ “ 2k ą 2, we obtain

ˇ

ˇ

ˇ

ˇ

ż

Ω
θ ϑ

ˇ

ˇ

ˇ

ˇ

ď }θ}0;Ω }ϑ}0;Ω ď |Ω|
ρ´2
ρ }θ}0,ρ;Ω }ϑ}0,ρ;Ω ,

and in consequence θ can be sought in the same space as ϑ, its associated test function, which is
LρpΩq. In light of this, the data g will be considered in LϱpΩq. Furthermore, a direct application of
Hölder’s inequality yields the third term on the left-hand side of (3.25) to be bounded as follows

ˇ

ˇ

ˇ

ˇ

ż

Ω
ϑ divprσq

ˇ

ˇ

ˇ

ˇ

ď }ϑ}0,ρ;Ω }divprσq}0,ϱ;Ω ,

where, recalling that ϱ is the conjugate of ρ, we observe that this term makes sense as long as
divprσq P LϱpΩq. Moreover, since rt P L2pΩq and K is bounded (cf. (2.11)), we can test the second
equation of (3.23) against rs in L2pΩq, that is

´

ż

Ω

rσ ¨ rs `

ż

Ω
Kpρ, p, θqrt ¨ rs “ 0 @rs P L2pΩq , (3.26)
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where, from the first term, we obtain that rσ must be searched in L2pΩq, and more specifically in
Hpdivϱ; Ωq according to the preceding discussion.

Now, we observe that from the first equation of (3.24) we need θ P H1pΩq, but since θ P LρpΩq

this condition will be valid if H1pΩq is continuously embedded in LρpΩq. The latter is guaranteed for
ρ P r1,`8q when n “ 2, which is always satisfied in the two-dimensional case, and for ρ P r1, 6s when
n “ 3. Furthermore, in order to prove an inf-sup condition associated to w we are going to apply,
e.g. [27, Theorem 3.2], which requires that r P r4{3, 4s when n “ 2 and r P r3{2, 3s when n “ 3. On
the other hand, since r ą 2 (see Section 3.1), the respective lower bounds are already satisfied, and we
only need to verify the upper ones. We readily observe that since r “ 2ρ{pρ ´ 2q, for n “ 2, r ď 4 if
only if ρ ě 4, whereas for n “ 3, r ď 3 if only if ρ ě 6. Thus, intersecting the above with the previous
restrictions on ρ, we find that when n “ 2 we require ρ ě 4, and when n “ 3 the only possible choice
is ρ “ 6. Therefore, we conclude that the feasible ranges for pr, ρq and their respective conjugates,
ps, ϱq, are given by

#

r P p2, 4s and s P r4{3, 2q if n “ 2 ,

r “ 3 and s “ 3{2 if n “ 3 ,

#

ρ P r4,`8q and ϱ P p1, 4{3s if n “ 2 ,

ρ “ 6 and ϱ “ 6{5 if n “ 3 .
(3.27)

Then, bearing in mind that rt and θ belong to L2pΩq and LρpΩq, respectively, we test the first equation
of (3.23) against a rτ P Hpdivϱ; Ωq and applying (1.2), we formally get

ż

Ω

rt ¨ rτ `

ż

Ω
θ divprτ q “ 0 @ rτ P Hpdivϱ; Ωq . (3.28)

Consequently, taking into account the foregoing discussion, we introduce the following spaces and
notation to be used in our formulation:

H1 :“ LρpΩq , H2 :“ L2pΩq , H :“ H1 ˆ H2 , Q :“ Hpdivϱ; Ωq ,

θ⃗ :“ pθ,rtq , ϑ⃗ :“ pϑ,rsq P H .

Finally, suitably gathering (3.25), (3.26) and (3.28), for a given p⃗ :“ pρ,w, pq P X2 ˆ X2 ˆ M1, we
arrive at the following mixed formulation for the heat equation: Find pθ⃗, rσq :“

`

pθ,rtq, rσ
˘

P H ˆ Q
such that

ap⃗,θpθ⃗, ϑ⃗q ` bpϑ⃗, rσq “ F pϑ⃗q @ ϑ⃗ :“ pϑ,rsq P H ,

bpθ⃗, rτ q “ 0 @ rτ P Q ,
(3.29)

where, given q⃗ “ pζ, z, qq P X2 ˆ X2 ˆ M1 and ξ P H1, aq⃗,ξ : H ˆ H Ñ R and b : H ˆ Q Ñ R are the
bilinear forms defined by

aq⃗,ξpθ⃗, ϑ⃗q :“

ż

Ω
θ ϑ `

ż

Ω
K
`

ζ, q, ξ
˘

rt ¨ rs `

ż

Ω
z ¨rtϑ @ θ⃗, ϑ⃗ P H , (3.30a)

bpϑ⃗, rτ q :“ ´

ż

Ω

rτ ¨ rs ´

ż

Ω
ϑ divprτ q @ pϑ⃗, rτ q P H ˆ Q . (3.30b)

It is important to notice that, since ap⃗,θ involves the function K in its definition, which in turn depends

on θ, the term ap⃗,θpθ⃗, ϑ⃗q is nonlinear. Additionally, the functional F : H Ñ R is given by

F pϑ⃗ q :“

ż

Ω
gϑ @ ϑ⃗ “ pϑ,rsq P H .

Next, it is easily seen that, given q⃗ P X2 ˆ X2 ˆ M1 and ξ P H1, aq⃗,ξ, b, and F are bounded. In fact,
endowing H and Q with the norms

}ϑ⃗}H :“ }ϑ}0,ρ;Ω ` }rs}0;Ω @ ϑ⃗ P H , }rτ }Q :“ }rτ }divϱ;Ω @ rτ P Q ,
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and applying the Cauchy–Schwarz and Hölder inequalities, we find that there exist positive constants,
denoted and given by

}a} :“ maxt|Ω|pρ´2q{2ρ,κ2u , }b} :“ 1 , and }F } “ }g}0,ϱ;Ω , (3.31)

such that
|aq⃗,ξpθ⃗, ϑ⃗q| ď

`

}a} ` }z}0,r;Ω
˘

}θ⃗ }H}ϑ⃗ }H @ θ⃗, ϑ⃗ P H ,

|bpϑ⃗, rσq| ď }b} }ϑ⃗ }H }rτ }Q @ pϑ⃗, rτ q P H ˆ Q ,

|F pϑ⃗ q| ď }F } }ϑ⃗ }H @ ϑ⃗ P H .

(3.32)

Regarding the boundedness of Fq,ϑ, F and Gζ,ϑ (cf. (3.10a),(3.21a) and (3.21b), respectively), we
observe that knowing already that pq, ϑq P LrpΩq ˆ LρpΩq, with r and ρ within the ranges stipulated
by (3.27), invoking the identity (1.3), the continuous injections ir : H

1pΩq Ñ LrpΩq and iρ : H1pΩq Ñ

LρpΩq, the definitions of the constants c2pλq and c3pλq (cf. (2.5)), and employing the Cauchy–Schwarz
and Hölder inequalities, we can conclude that there exist positive constants CF, CF , and CG , depending
on n, r, ρ, }ir}, }iρ}, |Ω|, α and β, so that letting

}Fq,ϑ} :“ CF

!

}uD}1{s,r;Γ ` γpλq

´

}q}0,r;Ω ` }ϑ}0,ρ;Ω

¯)

,

}F} :“ CF }pD}1{s,r;Γ , and

}Gζ,ϑ} :“ CG

!

}f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq

´

}ζ}X2 ` }ϑ}0,ρ;Ω

¯)

,

there holds
|Fq,ϑpτ q| ď }Fq,ϑ} }τ }X1 @ τ P X1 ,

|Fpzq| ď }F} }z}X1 @ z P X1 , and

|Gζ,ϑpqq| ď }Gζ,ϑ} }q}M2 @ q P M2 .

(3.33)

3.4 The coupled fully-mixed formulation

Following the derivations presented in the previous sections, the fully-mixed formulation for (2.9)
reduces to gathering (3.9), (3.19) and (3.29), that is: Find pρ,uq P X2 ˆ M1, pw, pq P X2 ˆ M1 and
pθ⃗, rσq :“

`

pθ,rtq, rσ
˘

P H ˆ Q such that

apρ, τ q ` b1pτ ,uq “ Fp,θpτ q @ τ P X1 ,

b2pρ,vq “ Gpvq @v P M2 ,

cpw, zq ` d1pz, pq “ Fpzq @z P X1 ,

d2pw, qq ´ epp, qq “ Gρ,θpqq @ q P M2 ,

ap⃗,θpθ⃗, ϑ⃗q ` bpϑ⃗, rσq “ F pϑ⃗q @ ϑ⃗ P H ,

bpθ⃗, rτ q “ 0 @ rτ P Q ,

(3.34)

where p⃗ “ pρ,w, pq P X2 ˆ X2 ˆ M1.

4 The continuous solvability analysis

In this section, we will first use the Babuška–Brezzi theory in Banach spaces (cf. [6, Theorem 2.1,
Corollary 2.1, Section 2.1] for the general case, and [24, Theorem 2.34] for a particular one) to address
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the well-posedness of each one of the decoupled problems arising from (3.9), (3.19), and (3.29). Then,
we proceed similarly as in [21] and [29] (see also [15], [30], and some references therein), and adopt a
fixed-point strategy to analyze the solvability of the fully coupled system (3.34).

4.1 The decoupled poroelasticity equations

We begin by introducing the operator S : M1 ˆ H1 Ñ X2 defined by

Spq, ϑq :“ ρ @ pq, ϑq P M1 ˆ H1 ,

where pρ,uq P X2ˆM1 is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.9) after replacing pp, θq by pq, ϑq, that is

apρ, τ q ` b1pτ ,uq “ Fq,ϑpτ q @ τ P X1 ,

b2pρ,vq “ Gpvq @v P M2 .
(4.1)

In order to prove that (4.1) is well-posed (equivalently, that S is well-defined), we notice that (4.1) has
the same bilinear forms of [28, eq. (3.15)]. Then, assuming that the Lamé parameter is sufficiently
large, namely λ ą M , where M is specified in [28, Lemma 3.4], we can establish that the operator
S is well defined. Indeed, letting αA, β1, and β2 be the constants yielding the continuous inf-sup
conditions for a, b1, and b2 (cf. [28, Lemmas 3.4 and 3.5]), we have the following result.

Lemma 4.1. Let r and s be within the range of values stipulated by (3.27), and assume that λ ą M .
Then, for each pq, ϑq P M1 ˆ H1 there exists a unique pρ,uq P X2 ˆ M1 solution of (4.1), and hence
one can define Spq, ϑq :“ ρ. Moreover, there exists a positive constant CS, depending on αA, β1, β2,
CF, and µ, such that

}Spq, ϑq} “ }ρ}X2 ď CS

"

}uD}1{s,r;Γ ` }f}0,r;Ω ` γpλq

´

}q}0,r;Ω ` }ϑ}0,ρ;Ω

¯

*

. (4.2)

Proof. Thanks to the fact that Xi and Mi, with i “ t1, 2u, are reflexive Banach spaces, along with
the boundedness of all the forms and functionals involved, and the inf-sup conditions provided by [28,
Lemmas 3.4 and 3.5], the proof reduces to a direct application of [6, Theorem 2.1, Corollary 2.1].
In particular, the a priori estimate (4.2) follows from [6, Corollary 2.1, eq. (2.15)]. Note that the
dependence of the constant CS on µ is due to }a} (cf. (3.11)).

Regarding the a priori estimate for the component u P M1 of the unique solution of (4.1), we recall
that, given pq, ϑq P M1 ˆ H1, the second inequality in [6, Corollary 2.1] yields

}u}M1 ď C̄S

"

}uD}1{s,r;Γ ` }f}0,r;Ω ` γpλq

´

}q}0,r;Ω ` }ϑ}0,ρ;Ω

¯

*

,

where C̄S is a positive constant which depends principally on CF, αA, β1 and β2.

4.2 The decoupled perturbed Darcy problem

As in Section 4.1, we now introduce the operator Ξ : X2 ˆ H1 Ñ X2 ˆ M1 defined by

Ξpζ, ϑq “
`

Ξ1pζ, ϑq,Ξ2pζ, ϑq
˘

:“ pw, pq @ pζ, ϑq P X2 ˆ LρpΩq ,
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where pw, pq P X2ˆM1 is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.19) after replacing pρ, θq by pζ, ϑq, that is

cpw, zq ` d1pz, pq “ Fpzq @z P X1 ,

d2pw, qq ´ epp, qq “ Gζ,ϑpqq @ q P M2 .
(4.3)

We observe that (4.3) has a perturbed saddle point structure over Banach spaces, but the fact that
the trial and test spaces are different prevent us from using, e.g. [22, Theorem 3.1], and therefore
an additional treatment is needed. Then, proceeding as in [20, Section 3.2.3], we first employ the
Babška–Brezzi theory in Banach spaces (cf. [6, Theorem 2.1, Corollary 2.1, Section 2.1]) to analyze
part of (4.3), and then apply the Banach–Nečas–Babuška theorem (cf. [24, Theorem 2.6]) to conclude
the well-posedness of the whole problem. According to this, we now let rA : pX2ˆM1qˆpX1ˆM2q Ñ R
be the bounded bilinear form arising from (4.3) after adding the left-hand sides of its equations, but
without including e, that is

rAppw, pq, pz, qqq :“ cpw, zq ` d1pz, pq ` d2pw, qq @ pw, pq P X2 ˆ M1 @ pz, qq P X1 ˆ M2 , (4.4)

and aim to prove next that rA satisfies global continuous inf-sup conditions with respect to both its first
and second component. Note that the boundedness of rA follows from those of c, d1 and d2 (cf.(3.20a)
and (3.20b)). The verification of the aforementioned properties of rA is equivalent to establishing that
the bilinear forms c, d1 and d2 verify the hypotheses of [6, Theorem 2.1], which we address in what
follows. Firstly, according to the definitions of Xi and Mi (cf. (3.18)), the kernel of the operators di,
i P t1, 2u, are given by

V1 :“
!

z P Hspdivs; Ωq : divpzq “ 0
)

and V2 :“
!

z P Hrpdivr; Ωq : divpzq “ 0
)

.

The two subsequent lemmas, akin to those previously stated and demonstrated in [20] and [29],
establish the inf-sup conditions required by [6, Theorem 2.1] for the bilinear forms c (cf. (3.20a)), and
d1,d2 (cf. (3.20b)), respectively.

Lemma 4.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists
a positive constant αc such that

sup
zPV1
z‰0

cpw, zq

}z}X1

ě αc }w}X2 @w P V2 ,

and
sup
wPV2

cpw, zq ą 0 @ z P X1, z ‰ 0 .

Proof. The proof follows a similar approach as in [20, Lemma 3.4], leading to αc “
η

κ}Ds}
, with Ds

being the bounded linear operator introduced in [20, Lemma 3.3].

The continuous inf-sup conditions for the bilinear forms di, i P t1, 2u are presented next.

Lemma 4.3. For each i P t1, 2u there exists a positive constant rβi such that

sup
zPXi
z‰0

dipz, qq

}z}Xi

ě rβi }q}Mi @ q P Mi .
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Proof. A proof of this lemma can be done by slightly modifying that of [29, Lemma 2.7], considering
Dirichlet boundary conditions of the auxiliary problems instead.

According to Lemmas 4.2 and 4.3, the required hypotheses of [6, Theorem 2.1, Section 2.1] are
satisfied, and hence the a priori estimation provided by [6, Corollary 2.1, Section 2.1] imply the
existence of a positive constant αA, depending only on αc, rβ1,

rβ2 and }c}, such that

sup
pz,qqPX1ˆM2

pz,qq‰0

rAppw, pq, pz, qqq

}pz, qq}X1ˆM2

ě αA }pw, pq}X2ˆM1 @ pw, pq P X2 ˆ M1 , (4.5a)

sup
pw,pqPX2ˆM1

pw,pq‰0

rAppw, pq, pz, qqq

}pw, pq}X2ˆM1

ě αA }pz, qq}X1ˆM2 @ pz, qq P X1 ˆ M2 . (4.5b)

Therefore, we let A : pX2 ˆ M1q ˆ pX1 ˆ M2q Ñ R be the bounded and linear operator arising from
(4.3) after adding the full left-hand sides of its equations, that is

Appw, pq, pz, qqq “ cpw, zq ` d1pz, pq ` d2pw, qq ´ epp, qq

@ pw, pq P X2 ˆ M1 , @ pz, qq P X1 ˆ M2 .
(4.6)

Having introduced this operator, we realize that solving (4.3) for a given pair pζ, ϑq P X2 ˆ H1, is
equivalent to: Find pw, pq P X2 ˆ M1 such that

Appw, pq, pz, qqq “ Fpzq ` Gζ,ϑpqq @ pz, qq P X1 ˆ M2 .

We notice that, thanks to the boundedness of rA and e, the operator A is bounded as well. Thus
bearing in mind (4.6), employing (4.5a) and the boundedness of e (cf. (3.22)), we have

sup
pz,qqPX1ˆM2

pz,qq‰0

Appw, pq, pz, qqq

}pz, qq}X1ˆM2

ě

!

αA ´ }e}

)

}pw, pq}X2ˆM1 @ pw, pq P X2 ˆ M1 .

Then, assuming that the data satisfy

}e} :“ max
␣

χ , nα2γpλq
(

ď
αA

2
, (4.7)

we arrive at the global inf-sup condition for the perturbed Darcy problem

sup
pz,qqPX1ˆM2

pz,qq‰0

Appw, pq, pz, qqq

}pz, qq}X1ˆM2

ě
αA

2
}pw, pq}X2ˆM1 @ pw, pq P X2 ˆ M1 . (4.8)

Similarly, but employing now (4.5b) instead of (4.5a), and under the same assumption (4.7), we obtain
the second desired inf-sup condition for A, this is

sup
pw,pqPX2ˆM1

pw,pq‰0

Appw, pq, pz, qqq

}pw, pq}X2ˆM1

ě
αA

2
}pz, qq}X1ˆM2 @ pz, qq P X1 ˆ M2 . (4.9)

We are now in position to establish the well-posedness of the operator Ξ, equivalently the existence
and uniqueness of solution of (4.3).

15



Lemma 4.4. Let r and s be within the range of values stipulated by (3.27), and assume that the data
fulfill condition (4.7). Then, for each pζ, ϑq P X2 ˆH1 there exists a unique pw, pq P X2 ˆM1 solution
of (4.3), and hence one can define Ξpζ, ϑq :“ pw, pq P X2 ˆ M1. Moreover, there exists a positive
constant CΞ, depending on αA, CF , and CG, such that

}Ξpζ, ϑq}X2ˆM1 “ }w}X2 ` }p}M1

ď CΞ

"

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq

´

}ζ}X2 ` }ϑ}0,ρ;Ω

¯

*

.
(4.10)

Proof. Given pζ, ϑq P X2 ˆ H1, thanks to the boundedness of A, and the global inf-sup conditions
(4.8) and (4.9), a direct application of [24, Theorem 2.6] provides the existence of a unique solution
pw, pq P X2 ˆ M1 to (4.3). The a priori estimate (cf. [24, Theorem 2.6, eq. (2.5)]) yields

}Ξpζ, ϑq}X2ˆM1 “ }w}X2 ` }p}M1 ď
2

αA

!

}F} ` }Gζ,ϑ}

)

,

which, together with the expressions for }F}, }Gζ,ϑ} given in (3.33) imply (4.10).

4.3 The decoupled heat equation

We now introduce the operator Π : X2 ˆ pX2 ˆ M1q ˆ H1 Ñ H defined by

Πpζ, z⃗, ξq “
`

Π1pζ, z⃗, ξq,Π2pζ, z⃗, ξq
˘

:“ θ⃗ “ pθ,rtq,

for all pζ, z⃗, ξq “
`

ζ, pz, qq, ξ
˘

P X2 ˆ pX2 ˆ M1q ˆ H1, where pθ⃗, rσq “
`

pθ,rtq, rσ
˘

P H ˆ Q is the
unique solution (to be confirmed below) of the problem arising from (3.29) after replacing ap⃗,θ, with
p⃗ “ pρ,ω, pq, by aq⃗,ξ, with q⃗ “ pζ, z, qq, that is

aq⃗,ξpθ⃗, ϑ⃗q ` bpϑ⃗, rσq “ F pϑ⃗q @ ϑ⃗ :“ pϑ,rsq P H ,

bpθ⃗, rτ q “ 0 @ rτ P Q .
(4.11)

We recall from (3.32) that the bilinear form aq⃗,ξ (cf. (3.30a)) is bounded with constant }a} ` }z}0,r;Ω,
which is independent of ζ, q and ξ. Furthermore, it is easy to see that the null space associated with
the bilinear form b is given by (see, e.g. [21, eq. (3.35)] for the case pρ, ϱq “ p4, 4{3q)

Vb :“

"

pϑ,rsq P H :

ż

Ω

rτ ¨ rs `

ż

Ω
ϑ divprτ q “ 0 @ rτ P Q

*

“

!

pϑ,rsq P H : rs “ ∇ϑ and ϑ P H1
0pΩq

)

.

Then, following the same ideas as in [21, Lemma 3.6], we have to prove that aq⃗,ξ is Vb-elliptic plus an
inf-sup condition on b. To show the property of aq⃗,ξ, we use the above characterization along with

(2.10) and the continuous injection iρ : H1pΩq Ñ LρpΩq. In this way, for each ϑ⃗ “ pϑ,rsq P Vb, we get

aq⃗,ξpϑ⃗, ϑ⃗q ě }ϑ}20;Ω ` κ0 }rs}20;Ω `

ż

Ω
z ¨ rsϑ ě rκ0 }ϑ}21;Ω ` pκ0{2q}rs}20;Ω `

ż

Ω
z ¨ rsϑ

ě rκ0 }iρ}´2 }ϑ}20,ρ;Ω ` pκ0{2q }rs}20;Ω ´ }z}0,r;Ω }rs}0;Ω}ϑ}0,ρ;Ω

ě 1
2 p2κ ´ }z}0,r;Ωq }ϑ⃗}2 ,

(4.12)

where the constants rκ0 and κ are given by

rκ0 :“ min
!κ0

2
, 1
)

and κ :“ min
!

rκ0 }iρ}´2,
κ0

2

)

.
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Thus, under the assumption }z}X2 ď αA :“ 2
3 κ, the inequality (4.12) implies

aq⃗,ξpϑ⃗, ϑ⃗q ě αA }ϑ⃗}2 @ ϑ⃗ :“ pϑ,rsq P Vb , (4.13)

which establishes the Vb-ellipticity of aq⃗,ξ with constant αA.

The inf-sup condition for the bilinear form b states that there exists a constant rβ ą 0 such that

sup
ϑ⃗PH
ϑ⃗‰0

bpϑ⃗, rτ q

}ϑ⃗}H
ě rβ }rτ }divϱ;Ω @ rτ P Q , (4.14)

which can be proved analogously to the case pρ, ϱq “ p4, 4{3q provided in [21, Lemma 3.3, eq. (3.45)]
since the present indexes ρ and ϱ are conjugate to each other as well.

The previous discussion allows us to establish the following lemma on the existence and uniqueness
of solution of the decoupled system (4.11).

Lemma 4.5. Let ρ and ϱ be within the range of values stipulated by (3.27). Then, for each pζ, z⃗, ξq “
`

ζ, pz, qq, ξ
˘

P X2ˆpX2ˆM1qˆH1 such that }z} ď αA, there exists a unique pθ⃗, rσq “
`

pθ,rtq, rσ
˘

P HˆQ

solution of (4.11), and hence one can define Πpζ, z⃗, ξq :“ θ⃗. Moreover, there exist positive constants
CΠ and C̄Π, depending on αA, rβ, |Ω|, ρ, and κ2, such that the following a priori estimates hold

}Πpζ, z⃗, ξq} “ }θ⃗}H ď CΠ }g}0,ϱ;Ω , }rσ}Q ď C̄Π }g}0,ϱ;Ω . (4.15)

Proof. The proof is a consequence of the Vb-ellipticity of aq⃗,ξ (cf. (4.13)), the inf-sup condition (4.14),
and a direct application of [6, Theorem 2.1, Corollary 2.1]. Note that the dependence of the constants
CΠ and C̄Π on |Ω|, ρ, and κ2, is due to }a} (cf. (3.31)) since }aq⃗,ξ}, which is required by the abstract
a priori estimates from [6, Corollary 2.1, eqs. (2.15) and (2.16)], is bounded above by }a} ` }z}.

4.4 Solvability of the fully-mixed formulation

In order to solve the fully-mixed coupled problem (3.34) we propose a fixed-point strategy based
on the operators S, Ξ and Π, which correspond to the decoupled problems (4.1), (4.3) and (4.11),
respectively. The coupling of the three problems can be analyzed in terms of the compose operator
T : X2 ˆ H1 Ñ X2 ˆ H1 given by

Tpζ, ϑq :“
´

S
`

Ξ2pζ, ϑq, ϑ
˘

, Π1

`

SpΞ2pζ, ϑq, ϑq,Ξpζ, ϑq, ϑ
˘

¯

@ pζ, ϑq P X2 ˆ H1 . (4.16)

The well-definedness of S, Ξ and Π, which was obtained from Lemmas 4.1, 4.4 and 4.5, respectively,
implies the same property for the operator T. Furthermore, due to the nonlinear character of Π, the
operator T becomes nonlinear as well. Then, we observe that solving (3.34) is equivalent to seeking a
fixed-point of T, that is: Find pρ, θq P X2 ˆ H1 such that

Tpρ, θq “ pρ, θq . (4.17)

In what follows, we address the solvability of the nonlinear equation (4.17), equivalently of (3.34),
by means of the Banach fixed-point theorem. For this purpose, given δ ą 0, we first introduce the ball

Wpδq :“
!

pζ, ϑq P X2 ˆ H1 : }pζ, ϑq} :“ }ζ}X2 ` }ϑ}0,ρ;Ω ď δ
)

.

Now, given pζ, ϑq P Wpδq, the definition of T yields

}Tpζ, ϑq} “
›

›S
`

Ξ2pζ, ϑq, ϑ
˘›

›

X2
`
›

›Π1

`

SpΞ2pζ, ϑq, ϑq,Ξpζ, ϑq, ϑ
˘›

›

0,ρ;Ω
,
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from which, assuming (4.7) and the upper bound

}Ξ1pζ, ϑq}X2 ď αA , (4.18)

and bearing in mind the a priori estimates for S, Ξ and Π (cf. (4.2), (4.10) and (4.15), respectively),
we find that

}Tpζ, ϑq} ď CT

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω

` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq
`

}ζ}X2 ` }ϑ}0,ρ;Ω
˘

)

,
(4.19)

where CT is a positive constant depending on CS, CΞ and CΠ. In turn, we deduce from the estimate
for }Ξpζ, ϑq} (cf. (4.10)) that a sufficient condition for the assumption (4.18) is given by

CΞ

!

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq
`

}ζ}X2 ` }ϑ}0,ρ;Ω
˘

)

ď αA .

In this way, noting that certainly }ζ}X2 ` }ϑ}0,ρ;Ω ď δ we conclude the following result.

Lemma 4.6. Let ρ, ϱ, r and s be the real numbers within the range specified in (3.27), and λ ą M .
Assume that the data are sufficiently small so that (4.7) and the conditions

CΞ

!

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq δ
)

ď αA , and (4.20a)

CT

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

ď δ , (4.20b)

are satisfied. Then, the operator T maps the ball Wpδq into itself, that is TpWpδqq Ď Wpδq.

We now aim to prove that the operator T is Lipschitz-continuous, for which, according to its
definition (cf. (4.16)), it suffices to show that S, Ξ and Π satisfy the same property. We begin with
the corresponding result for S.

Lemma 4.7. Let r and s be within the range of values stipulated by (3.27), and λ ą M . Then, with
the same constant CS from the a priori estimate (4.2) for S (cf. Lemma 4.1), there holds

}Spq1, ϑ1q ´ Spq2, ϑ2q}X2 ď CS γpλq }pq1, ϑ1q ´ pq2, ϑ2q}M1ˆH1 , (4.21)

for all pq1, ϑ1q, pq2, ϑ2q P M1 ˆ H1.

Proof. Given pq1, ϑ1q, pq2, ϑ2q P M1 ˆ H1, we let Spq1, ϑ1q “ ρ1 P X2 and Spq2, ϑ2q “ ρ2 P X2, where
pρ1,u1q and pρ2,u2q in X2 ˆ M1 are the respective unique solutions of (4.1). Then, thanks to the
linearity of this problem, it is straightforward to see that pρ1 ´ ρ2,u1 ´ u2q P X2 ˆ M1 is the unique
solution of (4.1) with Fq1,ϑ1 ´ Fq2,ϑ2 and the null functional instead of Fq,ϑ and G, respectively.
Consequently, noting from (3.10a) that

`

Fq1,ϑ1 ´ Fq2,ϑ2

˘

pτ q “ ´γpλq

ż

Ω

`

αpq1 ´ q2q ` βpϑ1 ´ ϑ2q
˘

trpτ q @ τ P X1 ,

the a priori estimate (4.2) yields

}Spq1, ϑ1q ´ Spq2, ϑ2q}X2 “ }ρ1 ´ ρ2}X2 ď CS γpλq
`

}q1 ´ q2}0,r;Ω ` }ϑ1 ´ ϑ2}0,ρ;Ω
˘

,

which ends the proof.

The Lipschitz continuity of the operator Ξ is addressed next.
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Lemma 4.8. Let r and s be within the range of values stipulated by (3.27), and assume that the data
fulfills condition (4.7). Then, with the same constant CΞ from the a priori estimate (4.10) for Ξ (cf.
Lemma 4.4), there holds

}Ξpζ1, ϑ1q ´ Ξpζ2, ϑ2q}X2ˆM1 ď CΞ γpλq }pζ1, ϑ1q ´ pζ2, ϑ2q}X2ˆH1 , (4.22)

for all pζ1, ϑ1q, pζ2, ϑ2q P X2 ˆ H1.

Proof. The proof follows in a similar fashion as the previous lemma. Given the two pairs of functions
pζ1, ϑ1q, pζ2, ϑ2q P X2ˆH1, we let Ξpζ1, ϑ1q “ pw1, p1q P X2ˆM1 and Ξpζ2, ϑ2q “ pw2, p2q P X2ˆM1

in X2 ˆ M1, where pw1, p1q and pw2, p2q are the respective solutions of (4.3). Then, thanks to the
linearity of (4.3), we realize that pw1 ´ w2, p1 ´ p2q P X2 ˆ M1 is the unique solution of this problem
when Gζ,ϑ and F are replaced by Gζ1,ϑ1 ´ Gζ2,ϑ2 and the null functional, respectively. In this way,
noting from (3.21b) that

`

Gζ1,ϑ1 ´ Gζ2,ϑ2

˘

pqq “ c2pλq

ż

Ω
trpζ1 ´ ζ2q q ` c3pλq

ż

Ω
pϑ1,0 ´ ϑ2,0q q

where ϑi,0 “ mpϑiq (cf. (3.13)), i P t1, 2u, the a priori estimate (4.10) gives

}Ξpζ1, ϑ1q ´ Ξpζ2, ϑ2q} “ }w1 ´ w2}X2 ` }p1 ´ p2}M1

ď CΞ γpλq

´

}ζ1 ´ ζ2}X2 ` }ϑ1 ´ ϑ2}0,ρ;Ω

¯

,

which concludes the proof.

It remains to establish the continuity of Π, for which, following the approach from several previous
works (see, e.g [26, 28, 29]), we assume from now on a regularity assumption on the solution of the
problem defining this operator, namely

pH.1q there exists ε ě n
r and a positive constant rCε, such that for each pζ, z⃗, ξq P X2ˆpX2ˆM1qˆH1,

there hold Πpζ, z⃗, ξq :“ θ⃗ “ pθ,rtq P Wε,ρpΩq ˆ HεpΩq, and

}θ⃗} :“ }θ}ε,ρ;Ω ` }rt}ε;Ω ď rCε }g}0,ϱ;Ω . (4.23)

The aforementioned lower bound of ε is explained within the proof of Lemma 4.9 below, which
provides the Lipschitz-continuity of Π. In this regard, we recall here that for each ε ă n

2 there holds

HεpΩq Ă Lε˚

pΩq with continuous injection

iε : H
εpΩq Ñ Lε˚

pΩq, where ε˚ “
2n

n ´ 2ε
.

Note that the indicated lower and upper bounds for the additional regularity ε, which turn out to
require that ε P rnr ,

n
2 q, are compatible if and only if r ą 2, which is coherent with the range stipulated

in (3.27). Thus, we have the following result.

Lemma 4.9. Let ρ and ϱ be within the range of values stipulated by (3.27), and assume that the
regularity condition pH.1q pcf. (4.23)q holds. Then, there exists a positive constant LΠ, depending on
LK, αA, iε, rCε, |Ω|, r, n, and ε, such that

}Πpζ1, z⃗1, ξ1q ´ Πpζ2, z⃗2, ξ2q}H ď LΠ }g}0,ϱ;Ω }pζ1, z⃗1, ξ1q ´ pζ2, z⃗2, ξ2q} , (4.24)

for all pζ1, z⃗1, ξ1q “
`

ζ1, pz1, q1q, ξ1
˘

, pζ2, z⃗2, ξ2q “
`

ζ2, pz2, q2q, ξ2
˘

P X2 ˆ pX2 ˆ M1q ˆ H1, such that
}z1}X2 , }z2}X2 ď αA.
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Proof. Given pζ1, z⃗1, ξ1q, pζ2, z⃗2, ξ2q P X2ˆpX2ˆM1qˆH1 as indicated, we let θ⃗1 :“ Πpρ1, z⃗1, ξ1q P H
and θ⃗2 :“ Πpρ2, z⃗2, ξ2q P H, where pθ⃗1, rσ1q “

`

pθ1,rt1q, rσ1

˘

P H ˆ Q and pθ⃗2, rσ2q “
`

pθ2,rt2q, rσ2

˘

P

HˆQ are the respective solutions of (4.11). Defining q⃗1 :“ pζ1, z⃗1, q1q and q⃗2 :“ pζ2, z⃗2, q2q, it follows
from the corresponding second equation of (4.11) that θ⃗1 ´ θ⃗2 P Vb, and then the Vb-ellipticity of aq⃗1,ξ1

(cf. (4.13)) gives

}θ⃗1 ´ θ⃗2}2H ď
1

αA
aq⃗1,ξ1

pθ⃗1 ´ θ⃗2, θ⃗1 ´ θ⃗2q . (4.25)

In turn, the evaluation at θ⃗1 ´ θ⃗2 of the two systems arising from (4.11) for the pairs pq⃗1, ξ1q and
pq⃗2, ξ2q, lead to

aq⃗1,ξ1
pθ⃗1, θ⃗1 ´ θ⃗2q “ F pθ⃗1 ´ θ⃗2q and aq⃗2,ξ2

pθ⃗2, θ⃗1 ´ θ⃗2q “ F pθ⃗1 ´ θ⃗2q ,

from which we find that

aq⃗1,ξ1
pθ⃗1 ´ θ⃗2, θ⃗1 ´ ϑ⃗2q “ aq⃗1,ξ1

pθ⃗1, θ⃗1 ´ θ⃗2q ´ aq⃗1,ξ1
pθ⃗2, θ⃗1 ´ θ⃗2q

“ aq⃗2,ξ2
pθ⃗2, θ⃗1 ´ θ⃗2q ´ aq⃗1,ξ1

pθ⃗2, θ⃗1 ´ θ⃗2q

“

ż

Ω
pKpζ2, q2, ξ2q ´ Kpζ1, q1, ξ1qqrt2 ¨ prt1 ´rt2q `

ż

Ω
pz2 ´ z1q ¨rt2pθ1 ´ θ2q .

(4.26)

Next, invoking the Lipschitz-continuity of K (cf. (2.11)), and making use of the Cauchy–Schwarz and
Hölder inequalities, we obtain

ż

Ω
pKpζ2, q2, ξ2q ´ Kpζ1, q1, ξ1qqrt2 ¨ prt1 ´rt2q

ď LK

´

}ζ2 ´ ζ1}0,2t1;Ω ` }q1 ´ q2}0,2t1;Ω ` }θ1 ´ θ2}0,2t1;Ω

¯

}rt2}0,2t;Ω }rt1 ´rt2}0;Ω ,

(4.27)

where t, t1 P p1,`8q are conjugate to each other. Now, choosing t such that 2t “ ε˚, we get 2t1 “ n
ε ,

which, according to the range stipulated for ε, yields 2t1 ď r, and certainly r ď ρ, so that the

norm of the embedding of the respective Lebesgue spaces is given by Cr,ε :“ |Ω|
rε´n
rn . In this way,

using additionally the continuity of iε along with the regularity assumption (4.23), the estimate (4.27)
becomes

ż

Ω
pKpζ2, q2, ξ2q ´ Kpζ1, q1, ξ1qqrt2 ¨ prt1 ´rt2q

ď rLΠ }g}0,ϱ;Ω

!

}ζ1 ´ ζ2}X2 ` }q1 ´ q2}M1 ` }ξ1 ´ ξ2}0,ρ;Ω

)

}θ⃗1 ´ θ⃗2}H ,

(4.28)

where rLΠ depends on LK, Cr,ε, rCε, }iε} and |Ω|. In turn, bearing in mind the a priori estimation of
rt2 (cf. (4.15)), the Cauchy–Schwarz and Hölder inequalities yield

ż

Ω
pz2 ´ z1q ¨rt2pϑ1 ´ ϑ2q ď CΠ }g}0,ϱ;Ω }z2 ´ z1}X2 }θ⃗1 ´ θ⃗2}H . (4.29)

Finally, replacing (4.28) and (4.29) back into (4.26), we deduce, along with (4.25), the required in-
equality (4.24) with LΠ :“ 1

αA
max

␣

rLΠ, CΠ

(

, which ends the proof.

Now, we conclude that, under the hypotheses of Lemmas 4.7, 4.8 and 4.9, the compose operator
T (cf. (4.16)) becomes Lipschitz-continuous within the ball Wpδq of the space X2 ˆ LρpΩq. This is
summarized in the next lemma.
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Lemma 4.10. Let ρ, ϱ, r and s be the real numbers within the range specified in (3.27), and λ ą M .
In addition, assume that the regularity condition pH.1q (cf. (4.23)) holds, and that the data are
sufficiently small so that (4.7), (4.20a), and (4.20b) are satisfied, that is

}e} :“ max
␣

χ , nα2 γpλq
(

ď
αA

2
,

CΞ

!

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq δ
)

ď αA , and

CT

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

ď δ .

Then, there exists a positive constant LT, depending on CS, CΞ, and LΠ, such that

}Tpζ1, ϑ1q ´ Tpζ2, ϑ2q}

ď LT

´

γpλq
`

γpλq ` }g}0,ϱ;Ω
˘

` }g}0,ϱ;Ω

¯

}pζ1, ϑ1q ´ pζ2, ϑ2q}X2ˆLρpΩq ,
(4.30)

for all pζ1, ϑ1q , pζ2, ϑ2q P Wpδq.

Proof. It readily follows from the definition of the operator T (cf. (4.16)), and the estimates (4.21),
(4.22), and (4.24).

We are now in position to formulate the main result of this section, which establishes the existence
of a unique fixed-point of T (cf. (4.17)), equivalently, the existence and uniqueness of solution of the
coupled system (3.34).

Theorem 4.11. Let ρ, ϱ, r and s be the real numbers within the range specified in (3.27), and
λ ą M . In addition, assume that the regularity condition (H.1) (cf. (4.23)) holds, and that the data
are sufficiently small so that (4.7), (4.20a), and (4.20b) are satisfied. Besides, suppose that

LT

´

γpλq
`

γpλq ` }g}0,ϱ;Ω
˘

` }g}0,ϱ;Ω

¯

ă 1 , (4.31)

where LT is the positive constant from Lemma 4.10. Then, the operator T has a unique fixed-point
pρ, θq P Wpδq. Equivalently, the coupled problem (3.34) has a unique solution pρ,uq P X2 ˆ M1,
pw, pq P X2 ˆ M1 and pθ⃗, rσq P H ˆ Q, with pρ, θq P Wpδq. Moreover, there hold

}pρ,uq}X2ˆM1 ď rCS

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

,

}pw, pq}X2ˆM1 ď rCΞ

!

}uD}1{s,r;Γ ` }pD}1{2,Γ ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

,

}pθ⃗, rσq}HˆQ ď rCΠ p1 ` δq }g}0,ϱ;Ω ,

where rCS, rCΞ, and rCΠ are positive constants depending on CS, CΞ and CΠ.

Proof. Recall, from Lemma 4.6, that (4.20a) and (4.20b) guarantee that T maps Wpδq into itself.
Hence, in virtue of the equivalence between (3.34) and (4.17), and bearing in mind the Lipschitz-
continuity of (4.30) (cf. Lemma 4.10) and the hypothesis (4.31), a straightforward application of the
Banach fixed point Theorem implies the existence of a unique solution pρ, θq P Wpδq of (3.34), and
hence, the existence of a unique pρ,uq P X2 ˆ M1, pw, pq P X2 ˆ M1 and pθ⃗, rσq P H ˆ Q solution of
(3.34). In addition, the a priori estimates follow straightforwardly from (4.2), (4.10) and (4.15), and
bounding }ρ}X2 and }θ}X2 by δ.
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We would like to end this section by emphasizing that the hypothesis λ ą M (as used in Sections
4.1 and 4.4) naturally hold true in the context of the nearly incompressible scenario. Consequently,
we proceed by assuming that λ is sufficiently large, which, in turn, makes γpλq to become sufficiently
small (cf. (2.4)). In this way, considering diminutive values for χ , we ensure the feasibility of (4.7).
A similar remark arises later on in the discrete analysis.

5 The discrete analysis

5.1 Preliminaries

Let tThuhą0 be a regular family of triangulations Th of the domain Ω made of triangles K in 2D (resp.
tetrahedra K in 3D) with corresponding diameter hK ą 0. The meshsize h, which also stands for the
sub-index, is defined by the largest diameter of the triangulation Th, that is h :“ max

␣

hK : K P Th
(

.
Furthermore, we let PℓpSq (resp. P̄ℓpSq) be the space of polynomials defined on S Ă Ω of degree
ď ℓ P N (resp. “ ℓ). The vector counterpart of PℓpSq is denoted by PℓpSq :“ rPℓpSqsn. In turn, for a
generic vector x P Rn, we define the local Raviart–Thomas finite element space of order ℓ over K P Th
as RTℓpKq :“ PℓpKq ‘ P̄ℓpKqx. Then, based on the above, we introduce the following global spaces

PℓpΩq :“
!

wh P L2pΩq : wh|K P PℓpKq, @K P Th
)

,

PℓpΩq :“
!

wh P L2pΩq : wh|K P PℓpKq, @K P Th
)

,

RTℓpΩq :“
!

τ h P Hpdiv; Ωq : τ h|K P RTℓpKq, @K P Th
)

,

RTℓpΩq :“
!

τ h P Hpdiv; Ωq : τ h,i|K P RTℓpKq, @ i P t1, ..., nu, @K P Th
)

,

where τ h,i stands for the ith-row of a tensor τ h. It is easy to see that for each t P r1,`8s there hold

PℓpΩq Ď LtpΩq , PℓpΩq Ď LtpΩq , RTℓpΩq Ď Hpdivt; Ωq X Htpdivt; Ωq ,

and RTℓpΩq Ď Hpdivt; Ωq X Htpdivt; Ωq .

5.2 The discrete coupled system

In order to set the discrete version of (3.34), we now resort to the definitions from Section 5.1 to
introduce the following sets of finite element subspaces, one for each decoupled problem:

X2,h :“ Hr
0pdivr; Ωq X RTℓpΩq, X1,h :“ Hs

0pdivs; Ωq X RTℓpΩq, M1,h :“ PℓpΩq “: M2,h, (5.1a)

X2,h :“ RTℓpΩq , X1,h :“ RTℓpΩq , M1,h :“ PℓpΩq “: M2,h, (5.1b)

H1,h :“ PℓpΩq , H2,h :“ PℓpΩq , Hh :“ H1,h ˆ H2,h , Qh :“ RTℓpΩq . (5.1c)

Then, the Galerkin scheme associated with (3.34) reads: Find pρh,uhq P X2,h ˆ M1,h, pwh, phq P

X2,h ˆ M1,h and pθ⃗h, rσhq :“
`

pθh,rthq, rσh

˘

P Hh ˆ Qh such that

apρh, τ hq ` b1pτ h,uhq “ Fph,θhpτ hq @ τ h P X1,h ,

b2pρh,vhq “ Gpvhq @vh P M2,h ,

cpwh, zhq ` d1pzh, phq “ Fpzhq @zh P X1,h ,

d2pwh, qhq ´ epph, qhq “ Gρh,θhpqhq @ qh P M2,h ,

ap⃗h,θh
pθ⃗h, ϑ⃗hq ` bpϑ⃗h, rσhq “ F pϑ⃗hq @ ϑ⃗h P Hh ,

bpθ⃗h, rτ hq “ 0 @ rτ h P Qh ,

(5.2)
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where p⃗h :“ pρh,wh, phq P X2,h ˆ X2,h ˆ M1,h.

For the solvability analysis of (5.2) we will adopt a discrete version of the fixed-point strategy
developed in Section 4.4. To this end, we first use the analogues of the operators S, Ξ, and Π to
introduce in the following section the corresponding discrete decoupled problems, and establish their
well-posedness.

5.3 The discrete decoupled problems

We begin by letting Sh : M1,h ˆ H1,h Ñ Xh be the operator defined by

Shpqh, ϑhq :“ ρh @ pqh, ϑhq P M1,h ˆ H1,h ,

where pρh,uhq P X2,hˆM1,h is the unique solution (to be confirmed below) of the discrete formulation
arising from the first and second rows of (5.2) after replacing pph, θhq by pqh, ϑhq, that is

apρh, τ hq ` b1pτ h,uhq “ Fqh,ϑh
pτ hq @ τ h P X1,h ,

b2pρh,vhq “ Gpvhq @vh P M2,h .
(5.3)

For the solvability analysis of (5.3), we first observe from (5.1a) that

divpXi,hq Ď Hi,h @i P t1, 2u ,

whence the discrete kernels of b1 and b2 coincide, and are given by

Kℓ
h :“

!

τ h P RTℓpΩq : divpτ hq “ 0 and

ż

Ω
trpτ hq “ 0

)

.

Furthermore, since the bilinear forms involved in the mixed formulation of the poroelasticity equations
coincide with those of [28, eq. (3.15)], and additionally the same finite element subspaces (cf. (5.1a))
are employed here, in what follows we proceed to simply use the results from [28]. In this way, given
t P p1,`8q, we consider the mesh size hℓt for which the usual L2pΩq-orthogonal projector satisfies the
property stated in [28, eq. (5.21)]. Then, thanks to [28, Lemma 5.3], there exist positive constants
Md and αA,d such that for each λ ą Md and for each h ď h0 :“ minthℓr, h

ℓ
su there hold

sup
τhPKℓ

h
τh‰0

apζh, τ hq

}τ h}X1

ě αA,d }ζh}X2 @ ζh P X2,h ,

sup
ζhPKℓ

h

apζh, τ hq ą 0 @ τ h P Kℓ
h , τ h ‰ 0 .

(5.4)

In addition, the inf-sup conditions for the bilinear forms b1 and b2, proved in [28, Lemma 5.4], provide
the existence of positive constants β1,d and β2,d, independent of h, such that

sup
τhPXi,h
τh‰0

bipτ h,vhq

}τ h}Xi

ě βi,d }vh}Mi @v P Mi,h , @i P t1, 2u . (5.5)

Thus, thanks to (5.4) and (5.5), we are in position to show next the discrete version of Lemma 4.1.

Lemma 5.1. Let r and s be within the range of values stipulated by (3.27), and λ ą Md. Then, for
each pqh, ϑhq P M1,h ˆ H1,h there exists a unique pρh,uhq P X2,h ˆ M1,h solution of (5.3), and hence
one can define Shpqh, ϑhq :“ ρh. Moreover, there exists a positive constant CS,d, depending on αA,d,
β1,d, β2,d, CF, and µ, and hence independent of h, such that for each h ď h0 :“ minthℓr, h

ℓ
su there

holds

}Shpqh, ϑhq} “ }ρh}X2 ď CS,d

"

}uD}1{s,r;Γ ` }f}0,r;Ω ` γpλq

´

}qh}0,r;Ω ` }ϑh}0,ρ;Ω

¯

*

. (5.6)
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Proof. It follows from a direct application of the discrete Babuška–Brezzi theory in Banach spaces (cf.
[6, Theorem 2.1, Corollary 2.1,]). Note that the dependence of the constant CS,d on µ is due to }a}

(cf. (3.11)).

We now let Ξh : X2,h ˆ H1,h Ñ M1,h be the operator defined by

Ξhpζh, ϑhq “
`

Ξ1,hpζh, ϑhq,Ξ2,hpζh, ϑhq
˘

:“ pwh, phq @ pζh, ϑhq P X2,h ˆ H1,h ,

where pwh, phq P X2,hˆM1,h is the unique solution (to be confirmed below) of the discrete formulation
arising from the third and fourth rows of (5.2) after replacing pρh, θhq by pζh, ϑhq, that is

cpwh, zhq ` d1pzh, phq “ Fpzhq @ zh P X1,h ,

d2pwh, qhq ´epph, qhq “ Gζh,ϑh
pqhq @ qh P M2,h .

(5.7)

Then, similarly as for (5.3), we first notice that

divpXi,hq Ď Mi,h @ i P t1, 2u ,

which yields the discrete kernels of d1 and d2 to become

Vℓ
h :“

!

zh P RTℓpΩq : divpzhq “ 0
)

.

Knowing the above, the discrete version of Lemma 4.2 is now recalled from [20, Lemma 5.2].

Lemma 5.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists
a positive constant αc,d such that

sup
zhPVℓ

h
zh‰0

cpwh, zhq

}zh}X1

ě αc,d }wh}X2 @wh P Vℓ
h ,

and
sup
wPVℓ

h

cpwh, zhq ą 0 @ zh P X1,h , zh ‰ 0 .

Proof. It proceeds analogously to the proof of [29, Lemma 4.3]. However, for full details we refer to
[19, Lemma 5.2], which is the preprint version of [20].

On the other hand, the discrete inf-sup conditions for the bilinear forms d1 and d2, which can be
found in [29, Lemma 5.3], state that for each i P t1, 2u, there exists a positive constant rβi,d such that

sup
zhPXi,h
zh‰0

dipzh, qhq

}zh}Xi,h

ě rβi,d }qh}Mi @ qh P Mi,h . (5.8)

Then, analogously to the continuous case, Lemma 5.2 and (5.8) imply that the bilinear form rA (cf.
(4.4)) satisfies the global inf-sup conditions given by the discrete versions of (4.5a) and (4.5b), both
with a positive constant αA,d depending on αc,d, rβ1,d,

rβ2,d, and }c}, and hence independent of h.
Moreover, using these inequalities, and proceeding analogously to the derivation of (4.8) and (4.9),
which means assuming now the discrete version of (4.7), this is

}e} “ max
␣

χ, nα2 γpλq
(

ď
αA,d

2
, (5.9)
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we arrive at the discrete global inf-sup conditions for the global operator A (cf. (4.6)), namely

sup
pzh,qhqPX1,hˆM2,h

pzh,qhq‰0

Appwh, phq, pzh, qhqq

}pzh, qhq}X1ˆM2

ě
αA,d

2
}pwh, phq}X2ˆM1 @ pwh, phq P X2,h ˆ M1,h ,

(5.10a)

sup
pwh,phqPX2,hˆM1,h

pwh,phq‰0

Appwh, phq, pzh, qhqq

}pwh, phq}X2ˆM1

ě
αA,d

2
}pzh, qhq}X1,hˆM2,h

@ pzh, qhq P X1,h ˆ M2,h .

(5.10b)

Similarly as for the continuous analysis, we stress here that the fact that γpλq approaches 0 as λ
increases (cf. (2.4)), ensures the feasibility of (5.9) for sufficiently large λ and sufficiently small χ.

Having established (5.10a) and (5.10b), a straightforward application of the discrete version of the
Banach–Nečas–Babuška theorem (cf. [24, Theorem 2.22]) allows to conclude the following result.

Lemma 5.3. Let r and s be within the range of values specified by (3.27), and assume that the data
satisfy (5.9). Then, for each pζh, ϑhq P X2,h ˆ H1,h there exists a unique pwh, phq P X2,h ˆ M1,h

solution of (5.7), and hence one can define Ξhpζh, ϑhq “
`

Ξ1,hpζh, ϑhq,Ξ2,hpζh, ϑhq
˘

:“ pwh, phq P

X2,h ˆ M1,h. Moreover, there exists a positive constant CΞ,d, depending on αA,d, CF , and CG, and
hence independent of h, such that

}Ξhpζh, ϑhq}X2ˆM1 “ }wh}X2 ` }ph}M1

ď CΞ,d

"

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq

´

}ζh}X2 ` }ϑh}0,ρ;Ω

¯

*

.
(5.11)

Finally, we let Πh : X2,h ˆ pX2,h ˆ M1,hq ˆ H1,h Ñ Hh be the operator defined by

Πhpζh, z⃗h, ξhq “
`

Π1,hpζh, z⃗h, ξhq,Π2,hpζh, z⃗h, ξhq
˘

:“ θ⃗h “ pθh,rthq ,

for all pζh, z⃗h, ξhq “
`

ζh, pzh, qhq, ξh
˘

P X2,h ˆ pX2,h ˆ M1,hq ˆ H1,h, where pθ⃗h, rσhq P Hh ˆ Qh is the
unique solution (to be confirmed below) of the discrete formulation arising from the fifth and sixth
rows of (5.2) after replacing ap⃗h,θh

, with p⃗h :“ pρh,ωh, phq, by aq⃗h,ξh
, with q⃗h :“ pζh, zh, qhq, that is

aq⃗h,ξh
pθ⃗h, ϑ⃗hq ` bpϑ⃗h, rσhq “ F pϑ⃗hq @ ϑ⃗h :“ pϑh,rshq P Hh ,

bpθ⃗h, rτ hq “ 0 @ rτ h P Qh .
(5.12)

For the analysis of the Galerkin scheme (5.12), we proceed as in [21, Section 5.5] (see also [5, Section
4.3, Lemma 4.2] or [17, Section 5.3, eqs. (5.19), (5.20)]). More precisely, since the required results
are already available in those references, in what follows we just describe the main aspects of the
corresponding discussion, for which we first introduce the discrete kernel Vℓ

b,h of b (cf. (3.30b)), that
is

Vℓ
b,h :“

!

ϑ⃗h :“ pϑh,rshq P Hh : bpϑ⃗h, rτ hq “ 0 @ rτ h P Qh

)

,

and the subspace of Qh given by

Zℓ
b,h :“

!

rτ h P Qh : divprτ hq “ 0 in Ω
)

.

Then, applying the abstract result provided in [21, Lemma 5.1], one deduces that the existence of
positive constants β1,d and β2,d, independent of h, such that

sup
rτhPQh
rτh ­“0

ż

Ω
ϑh divprτ hq

}rτ h}divϱ;Ω
ě β1,d }ϑh}0,ρ;Ω @ϑh P H1,h , and (5.13)
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sup
rshPH2,h

rsh ­“0

ż

Ω

rsh ¨ rτ h

}rsh}0,Ω
ě β2,d }rτ h}divϱ;Ω @ rτ h P Zℓ

b,h , (5.14)

is equivalent to the existence of positive constants rβd and rCd, independent of h, such that

sup
ϑ⃗hPHh

ϑ⃗h ­“0

bpϑ⃗h, rτ hq

}ϑ⃗h}H
ě rβd }rτ h}divϱ;Ω @ rτ h P Qh , and (5.15a)

}rsh}0,Ω ě rCd }ϑh}0,ρ;Ω @ ϑ⃗h :“ pϑh,rshq P Vℓ
b,h . (5.15b)

The proof of (5.13) is basically provided at the last part of [21, Section 5.5] by noticing that it reduces
to the vector version of [21, Lemma 5.5]. Actually, while the proof there is for pρ, ϱq “ p4, 4{3q, it
can be extended almost verbatim to an arbitrary conjugate pair pρ, ϱq satisfying (3.27). In turn, it
is readily seen that (5.14) follows from the fact that Zℓ

b,h Ď H2,h (cf. [17, eq. (5.18)]). In this way,
having already the discrete inf-sup condition (5.15a) for b, it only remains to employ (5.15b) to show
the Vℓ

b,h-ellipticity of aq⃗h,ξh
for given q⃗h “ pζh, zh, qhq P X2,h ˆ X2,h ˆ M1,h and ξh P H1,h. Indeed,

proceeding similarly to the first part of the derivation of (4.12), we have for each ϑ⃗h :“ pϑh,rshq P Vℓ
b,h

aq⃗h,ξh
pϑ⃗h, ϑ⃗hq ě pκ0{2q rC2

d }ϑh}20,ρ;Ω ` pκ0{2q }rsh}20;Ω ´ }zh}0,r;Ω }rsh}0;Ω }ϑh}0,ρ;Ω

ě
1

2

!

κ0 min
␣

1, rC2
d

(

´ }zh}0,r;Ω

)

}ϑ⃗h}2 ,

so that, under the constraint }zh}0,r;Ω ď αA,d :“
1

3
κ0 min

␣

1, rC2
d

(

, there holds

aq⃗h,ξh
pϑ⃗h, ϑ⃗hq ě αA,d }ϑ⃗h}2 @ ϑ⃗h :“ pϑh,rshq P Vℓ

b,h , (5.16)

thus confirming the announced property of aq⃗h,ξh
.

Hence, the solvability of (5.12) and therefore the well-posedness of Πh can be established in the
following lemma.

Lemma 5.4. Let ρ and ϱ be within the range of values stipulated by (3.27). Then, for each pζh, z⃗h, ξhq

“
`

ζh, pzh, qhq, ξh
˘

P X2,h ˆ pX2,h ˆ M1,hq ˆ H1,h such that }zh} ď αA,d, there exists a unique

pθ⃗h, rσhq “
`

pθh,rthq, rσh

˘

P Hh ˆ Qh solution of (5.12), and hence one can define Πhpζh, z⃗h, ξhq “ θ⃗h.

Moreover, there exist positive constants CΠ,d and C̄Π,d, depending on αA,d, rβd, |Ω|, ρ, and κ2, and
hence independent of h, such that the following a priori estimates hold

}Πhpζh, z⃗h, ξhq} “ }θ⃗h}H ď CΠ,d }g}0,ϱ;Ω , }rσh}Q ď C̄Π,d }g}0,ϱ;Ω . (5.17)

Proof. The result is a consequence of the Vℓ
b,h-ellipticity of aq⃗h,ξh

(cf. (5.16)), the inf-sup condition
(5.15a), and a direct application of, for instance, [24, Theorem 2.34, Proposition 2.42]. Note that
the dependence of the constants CΠ,d and C̄Π,d on |Ω|, ρ, and κ2, is due to }a} (cf. (3.31)) since
}aq⃗h,ξh

}, which is required by the theoretical estimates from [6, Corollary 2.2, eqs. (2.24) and (2.25)],
is bounded above by }a} ` }zh}.

5.4 Solvability analysis of the discrete coupled system

The solvability analysis of the fully coupled discrete system (5.2) is performed in a similar fashion as
in the continuous case by using a fixed-point strategy, but now applying the Brouwer theorem instead
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of the classical Banach one. Therefore, the structure and reasoning followed in this part, are going to
resemble partially the ones of Section 4.4. We begin this analysis by defining the discrete fixed-point
operator Th : X2,h ˆ H1,h Ñ X2,h ˆ H1,h given by

Thpζh, ϑhq :“
´

Sh

`

Ξ2,hpζh, ϑhq, ϑh

˘

, Π1,h

`

ShpΞ2,hpζh, ϑhq, ϑhq,Ξhpζh, ϑhq, ϑh

˘

¯

, (5.18)

for all pζh, ϑhq P X2,h ˆH1,h. Then, showing existence of solution is equivalent to seeking a fixed-point
to the operator Th, that is: Find pζh, ϑhq P X2,h ˆ H1,h such that

Thpζh, ϑhq “ pζh, ϑhq . (5.19)

Now, given δ ą 0, we define the δ-ball in the finite-dimensional subspace X2,h ˆ H1,h by

Whpδq :“
!

pζh, ϑhq P X2,h ˆ H1,h : }pζh, ϑhq} :“ }ζh}X2 ` }ϑh}0,ρ;Ω ď δ
)

,

where we conveniently choose δ :“ αA,d. Furthermore, assumption (5.9) applies to the discrete operator
Ξ1,h in the same way as (4.18) applies to Ξ1, this is

}Ξ1,hpζh, ϑhq}X2 ď αA,d @ pζh, ϑhq P Whpδq . (5.20)

Combining the estimates (5.6), (5.11), and (5.17), we obtain the discrete version of (4.19) as an priori
bound for the operator Th, that is

}Thpζh, ϑhq} ď CT,d

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω

` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq
`

}ζh}X2 ` }ϑh}0,ρ;Ω
˘

)

,

where CT,d is a positive constant depending on CS,d, CΞ,d and CΠ,d, and hence independent of h.
In addition, taking into account the a priori estimate (5.11) with pζh, ϑhq P Whpδq, we conclude that
operator Ξ1,h will satisfy assumption (5.20) if there holds

CΞ,d

!

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq δ
)

ď αA,d .

Hence, the following lemma establishes the conditions under which the operator Th maps the ball
Whpδq into itself, thus yielding the discrete analogue of Lemma 4.6.

Lemma 5.5. Let ρ, ϱ, r and s be as specified in (3.27), and λ ą M . Moreover, assume that h ď

h0 :“ minthℓr, h
ℓ
su, and that the data are sufficiently small so that (5.9) and the conditions

CΞ,d

!

}pD}1{s,r;Γ ` }f}0,r;Ω ` }uD}1{s,r;Γ ` γpλq δ
)

ď αA,d , and (5.21a)

CT,d

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

ď δ , (5.21b)

are satisfied. Then, ThpWhpδqq Ď Whpδq.

The next two lemmas show, respectively, that the operators Sh and Ξh are Lipschitz-continuous.

Lemma 5.6. Let r and s be within the range of values stipulated by (3.27), and λ ą M . Then, with
the same constant CS,d from the a priori estimate (5.6) (cf. Lemma 5.1), for h ď h0 :“ minthℓr, h

ℓ
su

there holds

}Shpq1,h, ϑ1,hq ´ Shpq2,h, ϑ2,hq}X2 ď CS,d γpλq }pq1,h, ϑ1,hq ´ pq2,h, ϑ2,hq}M1ˆH1 , (5.22)

for all pq1,h, ϑ1,hq, pq2,h, ϑ2,hq P M1 ˆ H1,h.
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Proof. It proceeds analogously to the proof of Lemma 4.7. We omit further details.

Lemma 5.7. Let r and s be within the range of values stipulated by (3.27), and assume that the
data fulfills condition (5.9). Then, with the same constant CΞ,d from the a priori estimate (5.11) (cf.
Lemma 5.3), there holds

}Ξhpζ1,h, ϑ1,hq ´ Ξhpζ2,h, ϑ2,hq}X2ˆM1 ď CΞ,d γpλq }pζ1,h, ϑ1,hq ´ pζ2,h, ϑ2,hq}X2ˆH1 , (5.23)

for all pζ1,h, ϑ1,hq, pζ2,h, ϑ2,hq P X2,h ˆ H1,h.

Proof. It proceeds analogously to the proof of Lemma 4.8. Further details are omitted.

The next result shows the continuity of Πh. In this regard, we stress in advance that the obvious
absence of a regularity assumption in the present discrete setting, stops us of proving a Lipschitz-
continuity property of Πh.

Lemma 5.8. Let ρ and ϱ be within the range of values stipulated by (3.27). Then, there exists a
positive constant LΠ,d, depending on LK, αA,d, |Ω|, r, and ρ, and hence independent of h, such that

}Πhpζ1,h, ω⃗1,h, ξ1,hq ´ Πhpζ2,h, ω⃗2,h, ξ2,hq}H

ď LΠ,d }Π2,hpζ2,h, ω⃗2,h, ξ2,hq}0,ρ;Ω }pζ1,h, ω⃗1,h, ξ1,hq ´ pζ2,h, ω⃗2,h, ξ2,hq} ,
(5.24)

for all pζ1,h, z⃗1,h, ξ1,hq “
`

ζ1,h, pz1,h, q1,hq, ξ1,h
˘

, pζ2,h, z⃗2,h, ξ2,hq “
`

ζ2,h, pz2,h, q2,hq, ξ2,h
˘

P X2,h ˆ

pX2,h ˆ M1,hq ˆ H1,h, such that }z1,h}X2 , }z2,h}X2 ď αA,d.

Proof. The proof follows similarly to the one of Lemma 4.9, except for the fact, as already announced,
that no regularity result can be applied. Indeed, given pζ1,h, z⃗1,h, ξ1,hq and pζ2,h, z⃗2,h, ξ2,hq as indicated,

we let ϑ⃗1,h :“ Πhpζ1,h, z⃗1,h, ξ1,hq P Hh and ϑ⃗2,h :“ Πhpζ2,h, z⃗2,h, ξ2,hq P Hh, where pϑ⃗1,h, rσ1,hq P Hh ˆ

Qh and pϑ⃗2,h, rσ2,hq P Hh ˆ Qh are the respective solutions of (5.12). Defining q⃗1,h :“ pζ1,h, z⃗1,h, q1,hq

and q⃗2,h :“ pζ2,h, z⃗2,h, q2,hq, it follows from the corresponding second equation of (5.12) that ϑ⃗1,h ´

ϑ⃗2,h P Vℓ
b,h, and then the Vℓ

b,h-ellipticity of aq⃗1,h,ξ1,h
(cf. (5.16)) yields

}ϑ⃗1,h ´ ϑ⃗2,h}2H ď
1

αA,d
aq⃗1,h,ξ1,h

pϑ⃗1,h ´ ϑ⃗2,h, ϑ⃗1,h ´ ϑ⃗2,hq . (5.25)

Then, proceeding analogously as for the derivation of (4.26), but now certainly employing pq⃗1,h, ξ1,hq,
pq⃗2,h, ξ2,hq, and (5.12), we obtain

aq⃗1,h,ξ1,h
pϑ⃗1,h ´ ϑ⃗2,h, ϑ⃗1,h ´ ϑ⃗2,hq “

ż

Ω
pz2,h ´ z1,hq ¨rt2,hpϑ1,h ´ ϑ2,hq

`

ż

Ω
pKpζ2,h, q2,h, ξ2,hq ´ Kpζ1,h, q1,h, ξ1,hqqrt2,h ¨ prt1,h ´rt2,hq .

(5.26)

Next, using the Lipschitz-continuity of K as in the estimate (3.2), recalling that r “ 2j, ρ “ 2k, and
r ď ρ, and noting that }rt1,h ´rt2,h}0;Ω ď }ϑ⃗1,h ´ ϑ⃗2,h}H, we find that

ż

Ω
pKpζ2,h, q2,h, ξ2,hq ´ Kpζ1,h, q1,h, ξ1,hqqrt2,h ¨ prt1,h ´rt2,hq ď rLK

´

}ζ1,h ´ ζ2,h}0,r;Ω

` }q1,h ´ q2,h}0,r;Ω ` }ξ1,h ´ ξ2,h}0,ρ;Ω

¯

}rt2,h}0,ρ;Ω }ϑ⃗1,h ´ ϑ⃗2,h}H ,

(5.27)
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where rLK depends on LK, |Ω|, r, and ρ. In turn, the Cauchy–Schwarz and Hölder inequalities, and
the fact that

}ϑ1,h ´ ϑ2,h}0,Ω ď |Ω|pρ´2q{ρ }ϑ1,h ´ ϑ2,h}0,ρ;Ω ď |Ω|pρ´2q{ρ }ϑ⃗1,h ´ ϑ⃗2,h}H ,

yield
ż

Ω
pz2,h ´ z1,hq ¨rt2,h pϑ1,h ´ ϑ2,hq ď |Ω|pρ´2q{ρ }z2,h ´ z1,h}0,r;Ω }rt2,h}0,ρ;Ω }ϑ⃗1,h ´ ϑ⃗2,h}H . (5.28)

Finally, using (5.28) and (5.27) we can bound (5.26), so that the resulting estimate along with (5.25)
and the fact that Π2,hpζ2,h, z⃗2,h, ξ2,hq “ rt2,h, imply (5.24) and conclude the proof.

Combining Lemmas 5.6, 5.7, and 5.9, we prove next that the operator Th is continuous in the
closed ball Whpδq of the space X2,h ˆ H1,h. In order to simplify the corresponding statement and

proof, we let rSh and rΠh :“
`

rΠ1,h, rΠ2,h

˘

be the operators defined for each pζh, ϑhq P X2,h ˆ H1,h by

rShpζh, ϑhq :“ Sh

`

Ξ2,hpζh, ϑhq, ϑh

˘

and (5.29a)

rΠhpζh, ϑhq :“ Πh

`

rShpζh, ϑhq,Ξhpζh, ϑhq, ϑh

˘

, (5.29b)

so that rΠ1,h and rΠ2,h are obtained from (5.29b) by using, respectively, Π1,h and Π2,h instead of Πh.

Lemma 5.9. Let ρ, ϱ, r and s be the real numbers within the range specified in (3.27), and λ ą M .
Moreover, assume that h ď h0 :“ minthℓr, h

ℓ
su, and that the data are sufficiently small so that there

hold (5.9), (5.21a) and (5.21b). Then, there exists a positive constant LT,d, depending on CS,d, CΞ,d,
and γpλq, and hence independent of h, such that

}Thpζ1,h, ϑ1,hq ´ Thpζ2,h, ϑ2,hq}

ď LT,d

`

1 ` LΠ,d } rΠ2,hpζ2,h, ϑ2,hq}0,ρ;Ω
˘

}pζ1,h, ϑ1,hq ´ pζ2,h, ϑ2,hq} ,
(5.30)

for all pζ1,h, ϑ1,hq, pζ2,h, ϑ2,hq P Whpδq.

Proof. Given pζ1,h, ϑ1,hq, pζ2,h, ϑ2,hq P Whpδq, we first observe from (5.18), (5.29a), and (5.29b) that

Thpζi,h, ϑi,hq “
`

rShpζi,h, ϑi,hq, rΠ1,hpζi,h, ϑi,hq
˘

@ i P
␣

1, 2
(

,

which yields

}Thpζ1,h, ϑ1,hq ´ Thpζ2,h, ϑ2,hq}

ď }rShpζ1,h, ϑ1,hq ´ rShpζ2,h, ϑ2,hq} ` } rΠhpζ1,h, ϑ1,hq
˘

´ rΠhpζ2,h, ϑ2,hq
˘

} .
(5.31)

Then, employing (5.29b) and (5.24), we find that

} rΠhpζ1,h, ϑ1,hq
˘

´ rΠhpζ2,h, ϑ2,hq
˘

}

ď LΠ,d } rΠ2,hpζ2,h, ϑ2,hq}0,ρ;Ω

!

}rShpζ1,h, ϑ1,hq ´ rShpζ2,h, ϑ2,hq}

` }Ξhpζ1,h, ϑ1,hq ´ Ξhpζ2,h, ϑ2,hq} ` }ϑ1,h ´ ϑ2,h}

)

,

(5.32)

whereas (5.29a) and (5.22) imply

}rShpζ1,h, ϑ1,hq ´ rShpζ2,h, ϑ2,hq}

ď CS,d γpλq

!

}Ξhpζ1,h, ϑ1,hq ´ Ξhpζ2,h, ϑ2,hq} ` }ϑ1,h ´ ϑ2,h}

)

.
(5.33)
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In this way, replacing (5.33) back into (5.32) and (5.31), and the resulting (5.32) back into (5.31) as
well, and performing minor algebraic manipulations, we arrive at

}Thpζ1,h, ϑ1,hq ´ Thpζ2,h, ϑ2,hq} ď
`

1 ` LΠ,d | rΠ2,hpζ2,h, ϑ2,hq}0,ρ;Ω
˘ `

1 ` CS,d γpλq
˘

ˆ

!

}Ξhpζ1,h, ϑ1,hq ´ Ξhpζ2,h, ϑ2,hq} ` }ϑ1,h ´ ϑ2,h}

)

.
(5.34)

Finally, (5.34) and (5.23) give (5.30) with LT,d :“
`

1`CS,d γpλq
˘ `

1`CΞ,d γpλq
˘

, and end the proof.

The main result of this section, which establishes the existence of solution of the discrete fixed-point
equation (5.19), or equivalently of the discrete coupled system (5.2), is presented now.

Theorem 5.10. Let ρ, ϱ, r and s be the real numbers within the range specified in (3.27), and
λ ą M . Moreover, assume that h ď h0 :“ minthℓr, h

ℓ
su, and that the data are sufficiently small so

that there hold (5.9), (5.21a) and (5.21b). Then, the operator Th has a fixed-point pρh, θhq P Whpδq.
Equivalently, the coupled problem (5.2) has a solution pρh,uhq P X2,h ˆ M1,h, pwh, phq P X2,h ˆ M1,h,

and pθ⃗h, rσhq P Hh ˆ Qh, with pρh, θhq P Whpδq. Moreover, there hold

}pρh,uhq}X2ˆM1 ď rCS,d

!

}uD}1{s,r;Γ ` }f}0,r;Ω ` }pD}1{s,r;Ω ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

,

}pwh, phq}X2ˆM1 ď rCΞ,d

!

}uD}1{s,r;Γ ` }pD}1{2,Γ ` }f}0,r;Ω ` }g}0,ϱ;Ω ` γpλq δ
)

,

}pθ⃗h, rσhq}HˆQ ď rCΠ,dp1 ` δq}g}0,ϱ;Ω ,

where rCS,d, rCΞ,d and rCΠ,d are constants depending on CS,d, CΞ,d and CΠ,d.

Proof. From the assumptions (5.21a) and (5.21b), and Lemma 5.5 we have that Th maps Whpδq

into itself. Furthermore, bearing in mind the continuity of Th (cf. Lemma 5.9), a straightforward
application of the Brouwer Theorem implies the existence of a solution pρh, θhq P Whpδq of (5.19), and
hence, the existence of pρh,uhq P X2,h ˆM1,h, pwh, phq P X2,h ˆM1,h and pθ⃗h, rσhq P Hh ˆQh solution
of (5.2). Finally, the a priori estimates follows straightforwardly from (5.6), (5.11), and (5.17), and
bounding }ρh}X2 and }θh}X2 by δ.

5.5 A priori error analysis

The goal of this section is to establish an a priori error estimate for the Galerkin scheme (5.2). More
precisely, we are interested in deriving the usual Céa estimate for the global error

E :“ }pρ,uq ´ pρh,uhq}X2ˆM1 ` }pω, pq ´ pωh, phq}X2ˆM1 ` }pθ⃗, rσq ´ pθ⃗h, rσhq}HˆQ ,

where
`

pρ,uq, pw, pq, pθ⃗, rσq
˘

P pX2 ˆ M1q ˆ pX2 ˆ M1q ˆ pH ˆ Qq, with pρ, θq P Wpδq, is the unique

solution of (3.34), which is guaranteed by Theorem 4.11, and
`

pρh,uhq, pwh, phq, pθ⃗h, rσhq
˘

P pX2,h ˆ

M1,hq ˆ pX2,h ˆ M1,hq ˆ pHh ˆ Qhq, with pρh, θhq P Whpδq, is a solution of (5.2), which is guaranteed
by Theorem 5.10. To this end, we proceed as in [20, Section 4.3] and apply suitable Strang estimates
to each one of the three pairs of associated continuous and discrete formulations forming (3.34) and
(5.2). Throughout the rest of this section, given a subspace Zh of a generic Banach space pZ, } ¨ }Zq,
we set for each z P Z

distpz, Zhq :“ inf
zhPZh

}z ´ zh}Z .

We begin the analysis by applying the Strang estimate provided by [6, Proposition 2.1, Corollary
2.3, Theorem 2.3] to the context given by the first and second rows of (3.34) and (5.2). In this way,
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we deduce the existence of a positive constant pCS, depending on αA,d, β1,d, β2,d, }a}, }b1}, and }b2}

(cf. (3.11), Section 5.3), such that there holds

}pρ,uq ´ pρh,uhq}X2ˆM1 ď pCS

!

dist
`

pρ,uq,X2,h ˆ M1,h

˘

` }Fp,θ ´ Fph,θh}X1
1,h

)

. (5.35)

Then, according to the definition of Fq,ϑ (cf. (3.10a)), we have that

`

Fp,θ ´ Fph,θh

˘

pτ hq “ ´γpλq

ż

Ω

`

α pp ´ phq ` β pθ ´ θhq
˘

trpτ hq @ τ h P X1,h ,

from which, applying Hölder’s inequality, and using that r ď ρ, we find that there exists a positive
constant sCF, depending on n, r, ρ, |Ω|, α, and β, such that

}Fp,θ ´ Fph,θh}X1
1,h

ď sCF γpλq

!

}p ´ ph}0,r;Ω ` }θ ´ θh}0,ρ;Ω

)

. (5.36)

Next, we apply the classical first Strang’s Lemma (cf. [24, Lemma 2.27]) to the context given by
the third and fourth rows of (3.34) and (5.2). As a consequence, we obtain a positive constant pCΞ,
depending on αA,d, }c}, }d1}, }d2}, and }e} (cf. (3.22), Section 5.3), such that there holds

}pω, pq ´ pωh, phq}X2ˆM1 ď pCΞ

!

dist
`

pω, pq,X2,h ˆ M1,h

˘

` }Gρ,θ ´ Gρh,θh}M1
2,h

)

. (5.37)

In this case, the definition of Gζ,ϑ (cf. (3.21b)) yields

`

Gρ,θ ´ Gρh,θh

˘

pqhq “ c2pλq

ż

Ω
trpρ ´ ρhq qh ` c3pλq

ż

Ω
pθ0 ´ θh,0q qh @ qh P M2,h ,

so that, employing again Hölder’s inequality and the inequality r ď ρ, and bearing in mind the
definitions of the constants c2pλq and c3pλq (cf. (2.5)), we deduce that

}Gρ,θ ´ Gρh,θh}M1
2,h

ď sCG γpλq

!

}ρ ´ ρh}0,r;Ω ` }θ ´ θh}0,ρ;Ω

)

, (5.38)

where sCG is a positive constant depending on n, r, ρ, |Ω|, α, and β.

Furthermore, we apply the Strang estimate provided by [21, Lemma 6.1] to the context given by
the fifth and sixth rows of (3.34) and (5.2). As a result, we get a positive constant pCΠ, depending on
αA,d, rβd, }ap⃗,θ}, }ap⃗h,θh}, and }b} (cf. (3.31), (3.32), Section 5.3), such that there holds

}pθ⃗, rσq ´ pθ⃗h, rσhq}HˆQ ď pCΠ

!

dist
`

pθ⃗, rσq,Hh ˆ Qh

˘

` }ap⃗,θpθ⃗, ¨q ´ ap⃗h,θh
pθ⃗, ¨q}H1

h

)

, (5.39)

where p⃗ “ pρ,ω, pq and p⃗h “ pρh,ωh, phq. Note that, being }ω} and }ωh} bounded by αA and αA,d,
it turns out that }ap⃗,θ} and }ap⃗h,θh} are bounded by }a} ` αA and }a} ` αA,d, respectively. Now,

according to the definition of aq⃗,ξ (cf. (3.30a)), we have for all ϑ⃗h “ pϑh,rshq

ap⃗,θpθ⃗, ϑ⃗hq ´ ap⃗h,θh
pθ⃗, ϑ⃗hq “

ż

Ω

!

Kpρ, p, θq ´ Kpρh, ph, θhq

)

rt ¨ rsh `

ż

Ω

`

ω ´ ωh

˘

¨rtϑh . (5.40)

Regarding the first term on the right hand side of (5.40), we proceed exactly as for the derivation of
(4.28), so that, employing again the Lipschitz-continuity of K (cf. (2.11)), the Cauchy–Schwarz and
Hölder inequalities, the fact that r ď ρ, and the regularity assumption pH.1q (cf. (4.23)), we obtain
with the same constant rLΠ from (4.28) that

ˇ

ˇ

ˇ

ˇ

ż

Ω

!

Kpρ, p, θq ´ Kpρh, ph, θhq

)

rt ¨ rsh

ˇ

ˇ

ˇ

ˇ

ď rLΠ }g}0,ϱ;Ω

!

}ρ ´ ρh}0,r;Ω ` }p ´ ph}0,r;Ω ` }θ ´ θh}0,ρ;Ω

)

}rsh}0,Ω .

(5.41)
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In turn, proceeding similarly to the deduction of (4.29), which means using the above mentioned
classical inequalities, along with the a priori estimate (4.15), we can write with the same constant CΠ

from (4.15) that
ˇ

ˇ

ˇ

ˇ

ż

Ω

`

ω ´ ωh

˘

¨rtϑh

ˇ

ˇ

ˇ

ˇ

ď CΠ }g}0,ϱ;Ω }ω ´ ωh}0,r;Ω }ϑh}0,ρ;Ω . (5.42)

Hence, utilizing the bounds provided by (5.42) and (5.41), we readily conclude from (5.40) that

}ap⃗,θpθ⃗, ¨q ´ ap⃗h,θh
pθ⃗, ¨q}H1

h

ď sCa }g}0,ϱ;Ω

!

}ρ ´ ρh}0,r;Ω ` }ω ´ ωh}0,r;Ω ` }p ´ ph}0,r;Ω ` }θ ´ θh}0,ρ;Ω

)

,
(5.43)

where sCa :“ max
␣

rLΠ, CΠ

(

. In this way, replacing (5.43) back into (5.39), (5.38) back into (5.37),
and (5.36) back into (5.35), and then adding the resulting inequalities, we arrive at

E ď pC1

!

dist
`

pρ,uq,X2,h ˆ M1,h

˘

` dist
`

pω, pq,X2,h ˆ M1,h

˘

`dist
`

pθ⃗, rσq,Hh ˆ Qh

˘

)

`

!

pC2 γpλq ` pC3 }g}0,ϱ;Ω

)

E ,
(5.44)

where pC1 :“ max
␣

pCS, pCΞ, pCΠ

(

, pC2 :“ max
␣

pCS
sCF, pCΞ

sCG
(

, and pC3 :“ pCΠ
sCa.

The announced Céa estimate can be stated now.

Theorem 5.11. In addition to the hypotheses of Theorems 4.11 and 5.10, assume that

pC2 γpλq ` pC3 }g}0,ϱ;Ω ď
1

2
. (5.45)

Then, denoting pC “ 2 pC1, there holds

}pρ,uq ´ pρh,uhq}X2ˆM1 ` }pω, pq ´ pωh, phq}X2ˆM1 ` }pθ⃗, rσq ´ pθ⃗h, rσhq}HˆQ

ď pC
!

dist
`

pρ,uq,X2,h ˆ M1,h

˘

` dist
`

pω, pq,X2,h ˆ M1,h

˘

` dist
`

pθ⃗, rσq,Hh ˆ Qh

˘

)

.

Proof. It readily follows after employing the assumption (5.45) in (5.44).

We now aim to establish the associated rates of convergence of the Galerkin scheme (5.2), for which
we collect approximation properties of the finite element subspaces that were introduced in Section
5.2. Indeed, thanks to the error estimates of the vector and tensor versions of the Raviart–Thomas
interpolator (see, e.g. [29, Section 4.1, eq. (4.6)]), as well as of the scalar and vector versions of the
L2-type projector onto piecewise polynomial spaces (see, e.g. [24, Proposition 1.135]), and due to
interpolation estimates of Sobolev spaces, there hold the following:

pAPρ
hq there exists a positive constant C, independent of h, such that for each k P r1, ℓ ` 1s, and for

each τ P Wk,rpΩq X Hr
0pdivr; Ωq, with divpτ q P Wk,rpΩq, there holds

distpτ ,X2,hq :“ inf
τhPX2,h

}τ ´ τ h}r,divr;Ω ď C hk
!

}τ }k,r;Ω ` }divpτ q}k,r;Ω

)

,

pAPu
h q there exists a positive constant C, independent of h, such that for each k P r0, ℓ ` 1s, and for

each v P Wk,rpΩq, there holds

distpv,M1,hq :“ inf
vhPM1,h

}v ´ vh}0,r;Ω ď C hk }v}k,r;Ω ,
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pAPw
h q there exists a positive constant C, independent of h, such that for each k P r1, ℓ ` 1s, and for

each z P Wk,rpΩq, with divpzq P Wk,rpΩq, there holds

distpz,X2,hq :“ inf
zhPX2,h

}z ´ zh}r,divr;Ω ď C hk
!

}z}k,r;Ω ` }divpzq}k,r;Ω

)

,

pAPp
hq there exists a positive constant C, independent of h, such that for each k P r0, ℓ ` 1s, and for

each q P Wk,rpΩq, there holds

distpq,M1,hq :“ inf
qhPM1,h

}q ´ qh}0,r;Ω ď C hk }q}k,r;Ω ,

pAPθ
hq there exists a positive constant C, independent of h, such that for each k P r0, ℓ ` 1s, and for

each ϑ P Wk,ρpΩq, there holds

distpϑ,H1,hq :“ inf
ϑhPH1,h

}ϑ ´ ϑh}0,ρ;Ω ď C hk }ϑ}k,ρ;Ω ,

pAP
rt
hq there exists a positive constant C, independent of h, such that for each k P r0, ℓ ` 1s, and for

each rs P HkpΩq, there holds

distprs,H2,hq :“ inf
rshPH2,h

}rs ´ rsh}0,Ω ď C hk }rs}k,Ω ,

pAPrσ
h q there exists a positive constant C, independent of h, such that for each k P r1, ℓ ` 1s, and for

each rτ P HkpΩq, with divprτ q P Wk,ϱpΩq, there holds

distprτ ,Qhq :“ inf
rτhPQh

}rτ ´ rτ h}divϱ;Ω ď C hk
!

}rτ }k,Ω ` }divprτ q}k,ϱ;Ω

)

.

The rates of convergence of (5.2) are then stated as follows.

Theorem 5.12. Let
`

pρ,uq, pw, pq, pθ⃗, rσq
˘

P pX2 ˆM1qˆpX2 ˆM1qˆpHˆQq, with pρ, θq P Wpδq, be

the unique solution of (3.34), and let
`

pρh,uhq, pwh, phq, pθ⃗h, rσhq
˘

P pX2,h ˆ M1,hq ˆ pX2,h ˆ M1,hq ˆ

pHh ˆ Qhq, with pρh, θhq P Whpδq, be a solution of (5.2), which is guaranteed by Theorems 4.11 and
5.10, respectively. Assume the hypotheses of Theorem 5.11 and that there exists k P r1, ℓ ` 1s, such
that ρ P Wk,rpΩq X Hr

0pdivr; Ωq, divpρq P Wk,rpΩq, u P Wk,rpΩq, w P Wk,rpΩq, divpwq P Wk,rpΩq,
p P Wk,rpΩq, θ P Wk,ρpΩq, rt P HkpΩq, rσ P HkpΩq, and divprσq P Wk,ϱpΩq. Then, there exists a positive
constant C, independent of h, such that

}pρ,uq ´ pρh,uhq}X2ˆM1 ` }pω, pq ´ pωh, phq}X2ˆM1 ` }pθ⃗, rσq ´ pθ⃗h, rσhq}HˆQ

ď C hk
!

}ρ}k,r;Ω ` }divpρq}k,r;Ω ` }u}k,r;Ω ` }w}k,r;Ω ` }divpwq}k,r;Ω

` }p}k,r;Ω ` }θ}k,ρ;Ω ` }rt}k,Ω ` }rσ}k,Ω ` }divprσq}k,ϱ;Ω

)

.

(5.46)

Proof. It follows straightforwardly from Theorem 5.11 and the above approximation properties.

6 Numerical examples

In this final section we present two sets of computational tests, first the verification of convergence
with respect to manufactured solutions in 2D and 3D, and an application example pertaining to the
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flow through a deformable porous channel with obstacles and temperature gradient. In all cases we
take the following indexes (according to (3.27), valid for both 2D and 3D) r “ 3, s “ 3

2 , ρ “ 6, and
ϱ “ 6

5 . The numerical realization has been done using the finite element library FEniCS [1], selecting
Newton–Raphson as nonlinear solver, with an incremental relative tolerance of 10´8. The linear solves
are done with the direct method MUMPS.

6.1 Example 1: convergence verification

The error history (investigating the error decay with respect to mesh refinement – in a sequence of
successively refined regular grids) is done comparing approximate and closed-form exact solutions
defined on the unit square domain Ω “ p0, 1q2. The mixed variables, forcing and source terms for the
balance equations, and non-homogenous boundary data are taken in such a way that the manufactured
primal unknowns are

upx, yq “
1

10

ˆ

sinpπxyq

cospπxq cospπyq

˙

, ppx, yq “ sinpπxq sinpπyq, θpx, yq “ cospxq expp´x ´ yq.

The model constants assume the following simple values: µ “ 1, λ “ 1, κ “ 1, α “ 1, β “ 1,
χ “ 1, η “ 1, whereas the stress-assisted diffusion coefficient is

Dpσq “ D0 ` D1 expp´trpσ2qq , with D0 “ 0.1 and D1 “ 0.01 . (6.1)

The error history associated with the proposed mixed finite element method on a sequence of
successively refined partitions of the domain, are collected in Table 6.1. Absolute errors are computed
for each variable in the following way

epuq “ }u ´ uh}0,r;Ω, eppq “ }p ´ ph}0,r;Ω, epθq “ }θ ´ θh}0,ρ;Ω, epρq “ }ρ ´ ρh}r,divr;Ω,

epwq “ }w ´ wh}r,divr;Ω, eprtq “ }rt ´rth}0,Ω, eprσq “ }rσ ´ rσh}divϱ;Ω,

and we also tabulate rates of error decay computed as rp¨q “ logpep¨q{ẽp¨qqrlogph{h̃qs´1, where e, ẽ
denote errors generated on two consecutive meshes of sizes h and h̃, respectively. All results indicate
optimal convergence of Ophk`1q in all fields and for the two tested polynomial degrees, which coincides
with the theoretical result proposed in Theorem 5.12. For this test we have also tabulated the loss
of momentum and mass conservation by taking the ℓ8 norm of the corresponding residuals projected
into the discrete spaces for displacement and pressure. More precisely, letting Pk and Pk be the
L2pΩq-type and L2pΩq-type orthogonal projectors, respectively, onto the scalar and vector piecewise
polynomials of degree ď k, we set

momh :“ }Pkrdivpσhq ` f s}ℓ8 , massh :“ }Pkrc1pλq ph ´ divpwhq ` c3pλq θh ` c2pλq trpρhq ´ f s}ℓ8 ,

which, according to the second and fourth equations of (5.2), are essentially zero at machine precision.
The table also reports that a maximum of three iterations are needed by the Newton–Raphson method
to reach a tolerance (either absolute or relative) of 10´8 on the residual. Sample approximate solutions
for all fields, obtained with the method using k “ 0, are plotted in Figure 6.1.

The convergence tests are also done in 3D, taking Ω “ p0, 1q3, the same model parameters as in
the 2D case, and using the following manufactured primal solutions

upx, y, zq “
1

10

¨

˝

sinpπxyzq

cospπxq cospπyq cospπzq

sinpπxq sinpπyq sinpπzq

˛

‚, ppx, y, zq “ sinpπxq sinpπyq sinpπzq,

θpx, y, zq “ cospxyq expp´x ´ y ´ zq.

We report on the lowest-order case in Table 6.2 and Figure 6.2, allowing us to draw the same conclusions
as in the 2D case.
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Primal unknowns and discrete conservation
DoFs h epuq rpuq eppq rppq epθq rpθq momh massh

Errors and convergence rates for k “ 0

113 0.707 4.79e-02 ‹ 2.78e-01 ‹ 1.59e-01 ‹ 4.44e-16 2.11e-15
417 0.354 2.23e-02 1.11 1.50e-01 0.89 8.15e-02 0.96 1.52e-15 4.77e-15

1601 0.177 1.04e-02 1.10 7.65e-02 0.98 4.11e-02 0.99 5.12e-15 9.21e-15
6273 0.088 5.05e-03 1.04 3.84e-02 0.99 2.06e-02 1.00 1.48e-13 2.09e-14
24833 0.044 2.50e-03 1.01 1.92e-02 1.00 1.03e-02 1.00 2.14e-12 5.94e-13
98817 0.022 1.25e-03 1.00 9.61e-03 1.00 5.16e-03 1.00 1.26e-12 2.38e-13

Errors and convergence rates for k “ 1

337 0.707 1.22e-02 ‹ 8.91e-02 ‹ 1.48e-02 ‹ 6.46e-15 7.49e-15
1281 0.354 3.02e-03 2.02 2.29e-02 1.96 3.64e-03 2.02 1.17e-14 3.50e-14
4993 0.177 7.48e-04 2.01 5.83e-03 1.98 9.13e-04 1.99 3.08e-14 5.20e-14
19713 0.088 1.86e-04 2.01 1.46e-03 1.99 2.29e-04 2.00 7.41e-14 1.51e-13
78337 0.044 4.65e-05 2.00 3.66e-04 2.00 5.72e-05 2.00 1.49e-13 3.46e-13

312321 0.022 1.16e-05 2.00 9.16e-05 2.00 1.43e-05 2.00 1.66e-12 1.02e-12

Mixed unknowns and iteration count

DoFs h epρq rpρq epwq rpwq eprtq rprtq eprσq rprσq iter

Errors and convergence rates for k “ 0

113 0.707 2.14e+00 ‹ 6.50e+00 ‹ 1.50e-01 ‹ 1.08e-01 ‹ 3
417 0.354 1.16e+00 0.88 3.55e+00 0.87 7.38e-02 1.02 5.06e-02 1.09 3
1601 0.177 5.98e-01 0.96 1.81e+00 0.98 3.70e-02 1.00 2.81e-02 0.85 3
6273 0.088 3.01e-01 0.99 9.07e-01 0.99 1.86e-02 0.99 1.48e-02 0.93 3

24833 0.044 1.51e-01 1.00 4.54e-01 1.00 9.31e-03 1.00 7.48e-03 0.98 3
98817 0.022 7.54e-02 1.00 2.27e-01 1.00 4.65e-03 1.00 3.75e-03 1.00 3

Errors and convergence rates for k “ 1

337 0.707 6.93e-01 ‹ 1.99e+00 ‹ 3.31e-02 ‹ 6.14e-02 ‹ 3
1281 0.354 2.00e-01 1.79 5.12e-01 1.96 4.77e-03 2.79 1.44e-02 2.10 3
4993 0.177 5.21e-02 1.94 1.30e-01 1.98 1.27e-03 1.91 4.65e-03 1.63 3

19713 0.088 1.32e-02 1.98 3.26e-02 1.99 3.39e-04 1.91 1.33e-03 1.80 3
78337 0.044 3.31e-03 1.99 8.16e-03 2.00 8.82e-05 1.94 3.31e-04 2.01 3
312321 0.022 8.29e-04 2.00 2.04e-03 2.00 2.23e-05 1.98 8.33e-05 1.99 3

Table 6.1: Example 1 (2D). Error history for the primal unknowns together with discrete approxima-
tion of momentum and mass conservation (top table) and convergence of mixed unknowns together
with Newton–Raphson iteration count with respect to mesh refinement (bottom table). The symbol
‹ indicates that no convergence rate is computed at that refinement level.

6.2 Example 2: injection of fluid in a deformable porous channel

To conclude this section, we investigate the flow patterns of infiltration of a poroelastic channel having
an irregular array of eight circular cylinders that are maintained at a low temperature. The problem
setup mimics the behaviour of sponge-like materials or soils in the presence of macro-pores, for example
[18, 32]. The undeformed body occupies the rectangular domain Ω “ p0, 1.6q ˆ p0, 1q (in m2), which
we discretize into an unstructured mesh of 55450 triangles.

We consider a simple time-dependent version of the model (2.1), where only the energy balance
equation (2.1c) is modified to have Btθ. We use a backward Euler discretization in time, with constant
time step ∆t “ 1 (in s) and an initial temperature of 10 degrees. In addition, the boundary conditions
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Figure 6.1: Example 1 (2D). Verification of convergence with respect to manufactured solutions.
Approximate primal (top) and mixed (bottom) unknowns computed using the lowest-order scheme,
and portrayed in the deformed configuration (the outline of the undeformed domain is also shown for
reference).

Primal unknowns and discrete conservation
DoFs h epuq rpuq eppq rppq epθq rpθq momh massh
139 1.732 7.10e-02 ‹ 3.27e-01 ‹ 2.18e-01 ‹ 6.45e-16 4.00e-15
985 0.866 3.82e-02 0.89 2.23e-01 0.55 1.33e-01 0.71 1.16e-15 6.41e-15

7393 0.433 1.91e-02 1.00 1.17e-01 0.94 7.12e-02 0.90 2.72e-15 1.08e-14
57217 0.217 9.35e-03 1.03 5.96e-02 0.97 3.63e-02 0.97 7.76e-15 2.07e-14

450049 0.108 4.63e-03 1.01 3.00e-02 0.99 1.82e-02 0.99 1.99e-14 3.79e-14

Mixed unknowns and iteration count

DoFs h epρq rpρq epwq rpwq eprtq rprtq eprσq rprσq iter

139 1.732 3.76e+00 ‹ 1.06e+01 ‹ 2.65e-01 ‹ 7.99e-02 ‹ 3
985 0.866 2.17e+00 0.79 7.55e+00 0.49 1.29e-01 1.04 4.67e-02 0.78 3
7393 0.433 1.16e+00 0.90 4.01e+00 0.91 6.56e-02 0.98 2.90e-02 0.69 3

57217 0.217 5.90e-01 0.97 2.05e+00 0.97 3.27e-02 1.00 1.65e-02 0.81 3
450049 0.108 2.96e-01 0.99 1.03e+00 0.99 1.63e-02 1.00 8.64e-03 0.94 3

Table 6.2: Example 1 (3D). Error history for the primal unknowns together with discrete approxima-
tion of momentum and mass conservation (top table) and convergence of mixed unknowns together
with Newton–Raphson iteration count with respect to mesh refinement (bottom table). The symbol
‹ indicates that no convergence rate is computed at that refinement level.

are of mixed type and do not coincide exactly with those analyzed in the manuscript. The left segment
is considered an inflow boundary where we set zero displacements (as a natural boundary condition),
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Figure 6.2: Example 1 (3D). Verification of convergence with respect to manufactured solutions.
Approximate primal (top) and mixed (bottom) unknowns computed using the lowest-order scheme,
and portrayed in the deformed configuration (the outline of the undeformed domain is also shown for
reference).

a time-dependent parabolic profile as inflow of filtration flux (as an essential boundary condition), and
a quadratic temperature profile (natural boundary condition)

u “ 0, w ¨ ν “
t

20
atanpyr1 ´ ysqm/s, θ “ ´74y2 ` 91y ` 3 pin ˝Cq on Γin;

on the horizontal walls we approximate a zero-traction boundary condition with a zero normal pseu-
dostress condition (imposed essentially), zero normal flux (essential), and a hot temperature on the
top of the channel and cold on the bottom (natural boundary conditions)

ρν “ 0, w ¨ ν “ 0, θ “ θD, on Γwall,

(where θD is 3 degrees on the bottom and 20 degrees on the top); on the holes we impose

u “ 0, w ¨ ν “ 0, θ “ 3 ˝C, on Γcyl;

and the boundary conditions are completed by prescribing zero traction (approximated by a zero
normal pseudostress), a vanishing pressure (natural boundary condition), and a zero thermal flux on
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∥u∥ p θ

∥w∥ ∥t̃∥ ∥σ̃∥

Figure 6.3: Example 2. Fluid injection using Biot–heat equations on a deformable channel with an
array of cylinders, plotted on the undeformed configuration at time t “ 50 s. Approximate solutions
computed with a second-order method.

the outlet region (essentially imposed)

ρν “ 0, p “ 0, rσ ¨ ν “ 0, on Γout.

We do not consider external volume forces nor fluid sources, therefore f “ 0, f “ g “ 0, the stress-
assisted diffusion term is as in Example 1 (cf. (6.1)) with D0 “ 10´3 and D1 “ 10´4, and the
remaining physical parameters are all constant and assuming the values

µ “ 210Pa, λ “ 1800Pa, η “ 10´3 Pa s, κ “ 10´5m2, α “ 0.9, β “ 1.5, χ “ 10´2 Pa.

The simulation runs until t “ 50 s. The numerical solutions obtained with a second-order scheme
(setting k “ 1, for which the method consists of 667928 DoFs) are portrayed in Figure 6.3, showing
snapshots of the deformed poroelastic region, filtration flux, and all other field variables at the final
time. The expected injection patterns are seen in the flux plot, as well as the progressive heating of
the fluid near the top plate.
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