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Abstract

In this paper we introduce and analyze a Banach spaces-based approach yielding a fully-mixed
finite element method for numerically solving the coupled poroelasticity and heat equations, which
describe the interaction between the fields of deformation and temperature. A non-symmetric
pseudostress tensor is utilized to redefine the constitutive equation for the total stress, which is
an extension of Hooke’s law to account for thermal effects. The resulting continuous formulation,
posed in suitable Banach spaces, consists of a coupled system of three saddle point-type problems,
each with right-hand terms that depend on data and the unknowns of the other two. The well-
posedness of it is analyzed by means of a fixed-point strategy, so that the classical Banach theorem,
along with the Babuska—Brezzi theory in Banach spaces, allow to conclude, under a smallness
assumption on the data, the existence of a unique solution. The discrete analysis is conducted in
a similar manner, utilizing the Brouwer and Banach theorems to demonstrate both the existence
and uniqueness of the discrete solution. The rates of convergence of the resulting Galerkin method
are then presented. Finally, a number of numerical tests are shown to validate the aforementioned
statement and demonstrate the good performance of the method.

Key words: Thermo-poroelasticity, porous media, mixed finite element methods, analysis in Banach
spaces.
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1 Introduction

Scope. The relationship between the flow of a viscous fluid and the deformation of an elastic solid
within a porous medium is described by the poroelasticity equations, which were initially introduced
in the early works [34] and [7, 8]. While porous materials are commonly associated with objects such
as rocks and clays, they also encompass a broader range of materials, including biological tissues,
foams, and even paper products. Moreover, in applications such as the underground disposal of
radioactive waste, geothermal energy production, and oil extraction from deep, high-temperature,
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high-pressure reservoirs, temperature plays a crucial role. Therefore, to study these phenomena, we
focus on the coupling between poroelasticity and heat equations. The resulting system, a slightly
modified version of the thermo-poroelastic problem [11, 12, 13], is non-linear and strongly coupled.
The set of equations consists of the steady-state balance of linear momentum for the mixture and
mass balance for the fluid content (using the modified Darcy law) and a convection-diffusion equation
depending on the Darcy seepage velocity and the total stress. In terms of numerical solvability,
a wide variety of techniques have been developed to simulate the poroelasticity problem, both by
itself [10] and when coupled with other equations. These include couplings with chemotaxis [4],
elasticity [2], Stokes [9, 33] and diffusion [31]. The thermo-poroelasticity problem has also been recently
addressed in [11, 12, 13, 35, 36, 37]. These references include primal formulations [35], a combination of
primal and mixed formulations [11, 37], discontinuous Galerkin methods [3], a fully-mixed formulation
[12], and a mixed-primal-characteristics finite element method [37]. The introduction of additional
variables of physical relevance is a common approach to solving problems that involve couplings and
nonlinearities. Consequently, mixed methods are strongly justified in such a scenario. A recent
approach to this method consists of defining the corresponding variational formulation in terms of
Banach spaces instead of the usual Hilbertian framework without augmentation. It is important to
note that, although augmented methods allow the recovery of a Hilbertian framework, they increase
the cost of the computational implementation of the Galerkin scheme. Therefore, an analysis based
on Banach spaces has the advantage of studying the problem in its purest form. Another advantage of
this method lies in the relaxation of assumptions that must be made about the data, source terms, and
eventual solutions of the system. Consequently, the unknowns are now associated with the natural
spaces that result from the testing and integration by parts procedures; formulations of the models
become simpler and more faithful to the original physical models; momentum-conservative schemes
can be acquired; and additional unknowns can be calculated through postprocessing formulas. As a
non-exhaustive list of contributions taking advantage of the use of Banach frameworks for solving the
aforementioned kinds of problems, we refer to [14, 16, 17, 20, 23], and among the different models
considered there, we find elasticity, Brinkman—Forchheimer, Poisson—Nernst—Planck, Navier-Stokes,
chemotaxis/Navier—Stokes, Boussinesq, coupled flow-transport, and fluidized beds. For the coupled
poroelasticity and heat equations, however, no mixed methods with the aforementioned benefits have,
up to our knowledge, been developed yet. As motivated by the preceding discussion, the goal of this
paper is to develop a Banach spaces-based formulation leading to new mixed finite element methods
for the poroelasticity-heat model.

The manuscript is organized as follows. The rest of this section collects some preliminary notations,
definitions, and results to be utilized throughout the paper. In Section 2, we describe the model of
interest. In particular, we reformulate it in terms of the non-symmetric pseudostress tensor. In Section
3 we derive the fully-mixed variational formulation of the problem by splitting the analysis according
to the three equations forming the coupled model. Suitable integration by parts formulae jointly with
the Cauchy—Schwarz and Holder inequalities are crucial for determining the right Lebesgue and related
spaces to which the unknowns and corresponding test functions are required to belong. In Section
4, a fixed-point strategy is adopted to analyze the solvability of the continuous formulation. The
Babuska—Brezzi theory in Banach spaces is employed to study the corresponding uncoupled problems,
and then the classical Banach theorem is applied to conclude the existence of a unique solution. An
analog fixed-point approach to that of Section 4 is utilized in Section 5 to study the well-posedness of
the associated Galerkin scheme. Finally, numerical results showing how well the method works and
confirming the theoretical rates of convergence given in Section 5, are presented in Section 6.

Preliminaries. Throughout the paper 2 is a bounded Lipschitz-continuous domain of R", n € {2, 3},
which is star-shaped with respect to a ball, and whose outward unit normal at its boundary I'" is denoted
v. Standard notation will be adopted for Lebesgue spaces L!(Q), with ¢ € [1, +o0), and Sobolev spaces



WEHH(Q) and Wg’t(Q), with ¢ > 0, whose corresponding norms and seminorms, either for the scalar,
vector, or tensorial version, are denoted by | - |00, || - [es0, and |- |¢4.q, respectively. Note that
Wo(Q) = LY(Q), and that when t = 2, we simply write H*(Q) instead of W52(), with its norm and
seminorm denoted by | - [le.o and | - |50, respectively. Now, letting ¢, ¢’ € (1, 400) conjugate to each
other, that is such that 1/t + 1/t' = 1, we let WY/*"{(T") and W—/**(T) be the trace space of W(Q)
and its dual, respectively, and denote the duality pairing between them by (-, -). In particular, when
t =t' = 2, we simply write HY?(T") and H~"/?(T") instead of W¥22(T") and W~/22(I"), respectively.

Given any generic scalar functional space M, we let M and M be its vector and tensorial counter-
parts. Furthermore, for any vector fields v = (v;),_,,, and w = (w;) , we set the gradient and
divergence operators as

i=1n

jS))

Vv = (0%) and div(v) := Z 0vj .
O ij=1n =1 9%

In addition, for any tensor fields 7 = (Tij)l-jzl , and ¢ = <<ij)ij:1 ., we let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

n n
1
Tt = (Tji)i,jzl,n’ tr(7) = Zm, 7:( := Z 725G, T = T — ﬁtr(T)L (1.1)
i=1 ij=1

where I stands for the identity tensor of R := R™*™. On the other hand, for each ¢ € [1,+00), we
introduce the Banach spaces

H(divy; Q) = {Terﬂ(m; div(T)eLt(Q)},
H (divy; Q) = {TeLt(Q); div(T)eLt(Q)},

and
H (dive; Q) = {7- e Q) div(r) e Lt(Q)},

which are endowed with the natural norms
;0 + [div(T)]ose V7 e H(divi; Q),
ot + [div(T)fose V7T e H(divi; Q),

[l O

[7ledivi = 7]

and

I7ledivie = [Tlose + Idiv(T)lose V7 eH (divy Q).
Then, we recall that, proceeding as in [25, eq. (1.43), Section 1.3.4] (see also [15, Section 4.1] and [21,
(1, 4+0o0] in RZ,

[6 ool i R3 there holds
B 1m y

Section 3.1]), one can prove that for each ¢ €

(T v,v) = f {T -Vou + vdiv(r)} VY (7,v) € H(divy; Q) x H(Q), (1.2)

Q

where (-, -) denotes the duality pairing between H'/2(I") and H-V/2(I'). In turn, given ¢, t' € (1, 4+0)
conjugate to each other, there also holds (cf. [24, Corollary B.57])

(r-v,v) = fﬂ {’T Vv + UdiV(T)} YV (7,0) € H (divy; Q) x WH'(Q), (1.3)
and analogously
(rv,v) = L {T Vo + v div(T)} ¥ (r,v) € Hi(divy; Q) x WH' (Q), (1.4)

where (-,-) denotes in (1.3) (resp. (1.4)) the duality pairing between W—V44(I') (resp. W—VHH(T))
and WY (T) (resp. W/HY(T)).



2 Governing equations and boundary conditions

We consider a homogeneous porous medium constituted by a mixture of incompressible grains and
interstitial fluid. The domain of interest 2 < R™, n = 2,3, is assumed bounded. For a given body
force f and given source terms f and g neglecting convective, gravitational, and inertial terms, we
will concentrate the discussion on the following Biot’s equations coupled with a stationary convection-
diffusion equation modeling the heat of the mixture:

o =2ue(u) +Adiv(u)l — (ap+p6)I, —div(e) =f in Q, (2.1a)
xp+ adiv(u) —div(w) = f, w= %Vp in Q, (2.1b)
0+w-VO—div(D(e)Vh) =g in Q, (2.1c)

u=up, p=pp and #=0 on I, (2.1d)

where the tensor o is a generalized Hooke’s law, extended to include thermal effects, u is the unknown
vector of displacement of the solid particles, p is the bulk pressure of the fluid, w is the Darcy’s seepage
velocity and 6 is the temperature distribution. The remaining terms are the infinitesimal strain tensor
e(u) := £(Vu+ Vub), the permeability of the porous solid x, the Lamé constants of the solid (moduli
of dilation and shear, respectively) A and p, the constrained specific storage coefficient x > 0, the
Biot-Willis parameter « € (0, 1], the scaling of active stress that indicates a two-way coupling between
diffusion and motion S, the viscosity of the pore fluid 7, and the stress-dependent diffusivity accounting
for an altered diffusion acting in the poroelastic domain D : R — R.

Observe that tensor o is symmetric since e(u) and I are both symmetric. In order to avoid the weak
imposition of the symmetry of o, we reformulate (2.1) in terms of the pseudostress p (non-symmetric
stress), defined by

p:=puVu+ (p+N)div(u)I— (ap+B60)T in Q. (2.2)

Now, by applying trace to (2.2), we can express div(u) in terms of p, p and €, namely
div(u) = y(A) (tr(p) + n(ap + 50)) , (2.3)
with the parameter-dependent coeflicient
Y(A) == (RA+ (n+ D)t (2.4)

While this coefficient depends also on p and n, only its dependence on A and its relation with other
model parameters will be important when we analyze the formulation in the quasi-incompressibility
limit. Replacing the obtained expression for div(w) into (2.2) and using (1.1), we can equivalently
rewrite the equations in (2.1a) in terms of p as follows

1
by Y(A)
n

L

tr(p)l — Vu = —y(\) (ap+ p6)I, —div(p)=f in Q.

Note that for the second equation above, we have used the fact that div(e) = div(p), which can be
corroborated by taking divergence to the first equation of (2.1a) and to (2.2), respectively. Moreover,
replacing (2.3) into the first equation of (2.1b), we obtain

c1(A)p — div(w) = f — c2(A) tr(p) — c3(A) 0,
where we have used the following parameter-dependent coefficients

ca(\) = x + na?y(\), ) = ay()), and c3()\) = nafy(N). (2.5)



Again, we stress here the dependence on A only. Next we reformulate (2.1c) in terms of p within the
diffusivity function D, it is necessary to establish the function that maps o to the triple (p,p,0). In
this regard, from (2.1a), we have

2ue(u) =p+p*—2(p+ N div(u) I+ 2(ap+ 80)1, (2.6)

and thus, we deduce from (2.2), along with (2.3) and (2.6), that the original stress tensor o can be
expressed in terms of the pseudostress p, pressure p and temperature 6, through the linear mapping

Clp,p,0) == p+p* —~(\) ((2u F A tr(p) + (2n — 1(ap + 59)) I—0o. (2.7)

Consequently, we can recast the original stress-dependent diffusivity D by a function K depending on
p, p and 6 defined by

K(p,p,0) := D(C(p,p,0)) . (2.8)

Finally, the model equations in (2.1) are restated, equivalently, on the unknowns p, p and € by the
coupled system:

;pd + VS) tr(p) I — Vu = —y(\) (ap+ BO)I, —div(p)=f in Q, (2.9a)
c1(\) p — div(w) = f — ea(\) tr(p) — e3(\) 6, g'w ~Vp=0 in Q, (2.9b)
0 +w-V0—div(K(p,p,0) V) =g in Q, (2.9¢)

u=up, p=pp and 6=0 on T. (2.9d)

Throughout this work, we suppose that, K : R x R x R — R is a function of class C'! and uniformly
positive definite, meaning the latter that there exists sy > 0 such that

K(t,q,&)s-s > %0\3]2, V(T,¢,§) e R xR xR. (2.10)

We also require uniform boundedness and Lipschitz continuity of IC, that is that there exist positive
constants sr1, 75 and Ly, such that

) < IC(Ta(Iag) < and |’C(T’Q7£) —K(TOaQO,§0)| < L’C|(77Qa£) - (7-07q03£0)|7 (211)

for all (7,4,£), (T0,90,&) € RxRxR. It is pertinent to mention here that one of the main consequences
of introducing the new variable p is that (2.9c¢) becomes nonlinear with respect to 6 unlike (2.1c).
Furthermore, it is easily seen from (2.7) and (2.8) that sufficient conditions for (2.11) are given by
analogue conditions for D, that is by the existence of positive constants 41, ds, and Lp, such that

0 <D(r) €6 and |D()—D(7)|] < Lp|¢—T] V¢, TeR.

3 Mixed weak formulation

In this section, we derive a mixed formulation of the system (2.9). To this end, we treat each variational
formulation of (2.9a), (2.9b) and (2.9¢) independently, ending up with three systems whose coupling
is carried out via a fixed-point iteration strategy.



3.1 Mixed formulation of the poroelasticity equations

In what follows, we are going to address the mixed formulation for the poroelasticity equations in
(2.9a) for a given pressure p and temperature 6, which are going to be determined by (2.9b) and
(2.9¢), respectively. The poroelasticity equations defined for the non-symmetric pseudostress p and
velocity u unknowns are given by

Lyl (N tr(p)I — V (AN (ap+B6)I in Q
- P -7 rip)l — vVu = —v ap n ;
L n (3.1)
—div(p)=f in Q, and w=wup on TI.

We notice that in order to properly couple the equations (2.9), we need to be able to control the
following expression associated with the heat equation

JQ(’C(CJ?, V) — K(CO’ﬁOv’lgO)) t-s,

where (¢, p, ) and (g, Po, o) belong to the same space in which we will seek the unknowns (p, p, 6),
and the functions t and s are generic vectors that belong to the same space than V. In this regard,
and employing the Lipschitz-continuity property of K (cf. (2.11)), straightforward applications of
Cauchy—Schwarz and Holder inequalities yield

[ (kte.0) Koo £
< Lic(Jl¢ - ¢

(3.2)

0.2j:2 + [¥ — o

0252 [Hlo e 5o

0.25:2 + [P — Po
where j, k € (1, +00) are conjugate to each other. The latter inequality makes sense for ¢, ¢, € L2 (Q),
P, Do, ¥ and 9y € L% (Q), and t € L2*(Q). In this way, the above leads us to initially look for p in the
space L"(Q2), p € L"(Q2) and @ initially in L"(2), with r := 2j. The specific choice of r will be discussed
later on, so that meanwhile we consider a generic r and let s € (1,2) be its respective conjugate. In
turn, a suitable bounding of |t[o 2x:0 in (3.2) for a particular ¢ will also be explained subsequently by
means of a regularity argument.

With the preliminary choice of the space to which p belongs established above, it follows now from
the first equation of (3.1) that u should be initially sought in W17 (€2). Thus, in order to derive the
variational formulation for the poroelasticity equations, we need to invoke a suitable integration by
parts formula. Indeed, applying (1.4) with ¢t = s and t' = r to u € W (Q), for which we assume from
now on that up belongs to W/7(T'), we find that

f Vu-1 = —J uw-div(T) + {(tv,up)r,
Q Q
so that, the testing of the first equation of (3.1) against 7 € H*(div,; Q) gives
1 a. a4, 7 . di — _
p T+ tr(p)tr(7T) + | w-div(r) ={tv,up)r —v(\) | (ap+80)tr(7). (3.3)
K Ja noJo Q Q

Here, we notice that the second term on the right-hand side of (3.3) does indeed make sense for p and
6 initially in L"(£2). In fact, thanks to Holder’s inequality we have

j ptr(r) < 0" plosa o, j Otr(r) < 0" [6ore |Tlose- (3.4)
Q Q



As a result, the third term on the left-hand side of (3.3) implies that it is sufficient to consider w in
L"(Q2). Additionally, when testing the second equation of (3.1) against v € L*(Q2), we obtain

JQ v-div(p) = — JQ f v, (3.5)

which makes sense when div(p) € L"(Q2) and f € L"(Q2), the latter being assumed in what follows, and
thus from now on we seek p in H"(div,; ). In addition, we notice that for each ¢ € (1, +00) there
holds the decomposition

H (divy; Q) = HY(dive; Q) ®RL with  HY (divy; Q) = {Tth(divt;Q): J tr(T) =o}. (3.6)
Q

Note that replacing 7 by the identity tensor I in (3.3) and using that the deviator of I is the null
tensor, we get an expression for the integral of the trace of p, this is

1

tr(p):fu-v—nf(ap+59). (3.7)
JQ Y(A) Jr Q

Now, using the decomposition (3.6) with ¢t = r, we have that p = p, + ¢l with unique py € Hj(divy; Q)

and constant ¢ € R, which thanks to (3.7), can be computed by

1 1 1
c = ngtr(p) = WLUD'V—’Q‘JQ(OZP‘FBO)~ (3.8)

Hence, ¢ can be obtained once the pressure and temperature are known, and in order to fully attain
the explicit knowledge of the unknown p, it only remains to find its Hj(div,; Q2)-component p,. On
the other hand, (3.6) also applies to each 7 in H*(div,; Q) with unique decomposition 7 = 7¢ + dI,
for 7o € Hj(div,;2) and respective constant d € R.

Therefore, we reformulate our problem in terms of p, instead. To do so, we replace p = py + cl
into (3.3) and (2.9b), denote p, simply by p and substitute (p,p,8) by K(p + cL,p,0) in the heat
equation (2.9c). Furthermore, we observe that testing (3.3) against 7 € H*(divs; ) is equivalent to
doing it against 7 € Hg(divy; ), which together with the above, leads us to consider the following
Banach spaces

Xy := Hj(div,;Q), M;:=L"(Q), Xj:=Hj(divs;Q), Msy:=L°(Q),

so that, given p, § € L"(Q2), and gathering (3.3) and (3.5), we arrive at the following mixed formulation
for the poroelasticity equations (2.9a): Find (p,u) € X2 x M; such that
a(paT) +b1(77u) = Fp,@(T) VT eXy,
(3.9)
ba(p, v) = G(v) VveMs,,

where the bilinear forms a : Xy x X; — R and b; : X; x M; — R, with ¢ € {1, 2}, are defined by

1 A
apr) = [ ptirt+ T [ o) Vo) e x i,
HoJao n Q
bi(T,v) := f v -div(T) V(T,v)eX; x M;.
Q
In turn, given ¢, ¥ in L"(£2), the linear functionals F; : X; — R and G : My — R, are defined by
Fou(7) = {tv,up)r —7(A) j (ag+poI)tr(r) VTeXy, (3.10a)
Q
G(v) := —f f-v VveM,. (3.10b)
Q



Next, it is easily seen that a, by, by and G are bounded. In fact, applying Holder’s inequality, we find
that there exist positive constants, denoted and given by

2
laf := PR Ibi| ;=1 and |G| =|flomrq, (3.11)
such that
alp. Tl < lallple, Irle  V(poT) € Xa x Xy,
bi(r,v)| < |b]|7rlx; [vlm,  V(7,v) e Xi x My,
IG(v)| < [G][vlm, VveM,.

Regarding the boundedness of the functional F,, g, where p and 6 are initially in L"(€2), we will establish
this in the forthcoming Section 3.3, where the range of r will be determined for each unknown.

3.2 Mixed formulation of the perturbed Darcy problem

Continuing with the weak formulation of (2.9), we are going to focus now on the perturbed Darcy
equation (2.9b) including the boundary condition of the pressure, for a given p € Xy and p, 6 € L"(Q).
Following the derivation done in Section 3.1, we use decomposition (3.6) together with the definition
of ¢ (cf. (3.8)), and replace tr(p) by tr(p + cl) into (2.9b), so that the perturbed Darcy problem
describing the velocity w and pressure p is then given by

Qw—szo in Q,
K

div(w) —c1(N)p=coA)tr(p+cl) + ec3s(N)0— f in Q, (3.12)
p=pp on T,

where the constant ¢ multiplying I on the right-hand side of the second equation is defined by (3.8),
and depends on p and . Next, given ¢ € (1, o0), we consider the zero mean mapping m : L{(Q2) — L ()
defined by

1 t
m(q) :=q—@ JQq VqeL(Q). (3.13)

Then, replacing (3.8) and using the notation g := m(q) € L§(£2), the second equation of (3.12) can
be written as

div(w) — x p — na?y(\) po = ca(N) tr(p) + c3(N) by + < f up-v—f. (3.14)
2 Jr

Prior to addressing the weak formulation of (3.12), we notice that in order to properly couple (3.14)
to equation (2.9¢), we need to be able to control the expression

f (w-Veo)J,
Q
which arises later on (cf. (3.25)) when dealing with the variational formulation of the heat equation.

Here 1 is a function belonging to the same space in which we will seek the temperature 6. Applying
generalized Holder’s inequality to the triple product present in the above integral, we get

0,2k:2 » (3.15)

0;Q2 ||79

\ [ - vew\ < Jwlossa V0

where j,k € (1,+00) are conjugate to each other, and the inequality holds true for w € L"(Q),
Vo e L2(), and 9 € LP(Q2), with (r, p) := (2j,2k). Considering that @ is initially taken from L"(f2),



we have to require that r < p, a condition that will be satisfied when determining the range for p, so
that for now we consider p € (2,40), and let g be its respective conjugate.

Having chosen L"(Q2) as the preliminary space for w, (3.12) tentatively suggests to look for p in
WT(Q). In this way, testing the first equation of (3.12) against z € H*(divy; ), and applying (1.3)
together with the Dirichlet boundary condition for p, we obtain

UJ 'w-z—i—f pdiv(z) = (z-v,pp)r Vz e H(divy; Q) (3.16)
K Jao Q

which requires to assume that pp € WY $T(T"). Then, a straightforward application of Holder’s in-
equality in the second term on the left-hand side of (3.16) shows that it suffices to seek the pressure
p in the space L"(£2), which coincides with the space obtained in (3.4). On the other hand, testing
(3.14) against an arbitrary function ¢ belonging to a space to be determined, we formally get

L qdiv(w) — x qu — na’y(A) L Podq
:cQ(A)thr(p)+C3<A>J990q+Tlf‘mLuD-uJQq_qu.

Since we will look for p in L"(2), a direct application of the Holder’s inequality implies that the
second term on the left-hand side of (3.17) makes sense if ¢ is considered in L*(€2). Consequently, the
remaining terms of (3.17) make sense if div(w) and f belong to L"(€2), and then w must be sought
in H"(div,; ). In this way, we define the following spaces

(3.17)

X :=H"(div,;Q), X;:=H*(divs;Q), M;:=L"(2) and My :=L1%(Q). (3.18)

Then, given (p, ) € Xy x L”(Q), the mixed formulation for the perturbed Darcy equation reduces to:
Find (w,p) € X2 x M; such that

c(w,z) + di(z,p) = F(z) Vze Xy,
da(w, q) —e(p,q) = Gpolq) VgeMs,

where the bilinear forms ¢ : X9 x X7 — R, d; : X; x M; — R, i € {1,2}, and e : M; x My — R, which
are independent of p and 6, are defined by

(3.19)

c(w, z) := g ng -z V(w, z) e Xy x Xy, (3.20a)
di(z,q) := jquiV(Z) V(z,q) € X; x My, (3.20b)

and
e(p,q) :=x qu +na®y(N\) JQ Poq V(p,q) € M1 x My (3.20c)

Furthermore, the functionals F : X; — R and G¢y : My — R, for each ({,?9) € Xy x L?(Q), are
defined by

F(z) :={z-v,pp)r VzeX;, and (3.21a)
Geolq) == ca(N) L qtr(¢) + c3(N) L Joq + ﬁ LUD : VL q-— L fq YgeMs. (3.21b)

In addition, the bilinear forms ¢, d;, @ € {1,2} and e are all bounded. Finally, applying Cauchy—
Schwarz and Holder inequalities, we find that there exist positive constants, given by

n
le| = e Ids| := 1, Je| := max{x,na?y(\)}, (3.22)



such that
lc(w, 2)| < [cfwlx, [z]x,  V(w,2z)eXsxXy,
|di(z7q)| < Hle HZHX7, HqHMz V(z,q) eX; xM;, ie€ {172}7
le(p, @)l < [ell|plv, [alm, V(p,q) € My x M.

The boundedness of F and G¢ ¢ will be proven later in the next section.

3.3 Mixed formulation of the heat equation

We treat now the mixed formulation of (2.9¢) for a given p € X9 and w € Xsy. For this purpose,
we define two auxiliary unknowns, the gradient of the temperature and the term contained in the
argument of the divergence operator in (2.9¢), this is

t:=V0 and &:=K(p,p,0)t. (3.23)

Then, replacing these variables, the heat equation (2.9¢) describing the temperature 6 can be written

as
t=V0, o=K(p,p,0)t and f+w-t—div(ec)=g¢g in Q,
(3.24)
=0 on TI.

Now, testing the third equation of (3.24) against an arbitrary function ¥ belonging to a space to be
determined, we formally get

fQGQS‘Jer-Zz?—Lz?div(&)=Lg19. (3.25)

Next, proceeding as in (3.15), we notice that applying generalized Holder’s inequality to the triple
product in the second term on the left-hand side of (3.25) we get

=

whence we can look for £ € L?(Q) and ¥ € LP(Q). In addition, performing similar calculations as
before but over the first term on the left-hand side of (3.25), for p = 2k > 2, we obtain

U 919‘ < ol
Q

and in consequence f can be sought in the same space as 1, its associated test function, which is
LP(Q2). In light of this, the data g will be considered in L2(€2). Furthermore, a direct application of
Holder’s inequality yields the third term on the left-hand side of (3.25) to be bounded as follows

< Jwlogse [Eloe 90,0,

p—2
o < |9 7 [0

0;Q2 Hﬁ

l0,0:2 [P0, p562 5

‘ Lﬂdiv(&)‘ < 1llo,p0 [div(&) o0,

where, recalling that p is the conjugate of p, we observe that this term makes sense as long as
div(&) € Le(Q). Moreover, since t € L?(Q2) and K is bounded (cf. (2.11)), we can test the second
equation of (3.23) against 3 in L2(Q2), that is

J&-:§+j/C(p,p,0)~~§=0 V3 e L2(Q), (3.26)
Q Q
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where, from the first term, we obtain that & must be searched in L?(f2), and more specifically in
H(div,; Q) according to the preceding discussion.

Now, we observe that from the first equation of (3.24) we need § € H'(f2), but since 8 € L°(Q)
this condition will be valid if H!(Q2) is continuously embedded in L*(£2). The latter is guaranteed for
p € [1,400) when n = 2, which is always satisfied in the two-dimensional case, and for p € [1, 6] when
n = 3. Furthermore, in order to prove an inf-sup condition associated to w we are going to apply,
e.g. [27, Theorem 3.2], which requires that r € [4/3,4] when n = 2 and r € [3/2,3] when n = 3. On
the other hand, since r > 2 (see Section 3.1), the respective lower bounds are already satisfied, and we
only need to verify the upper ones. We readily observe that since r = 2p/(p — 2), for n = 2, r < 4 if
only if p > 4, whereas for n = 3, r < 3 if only if p > 6. Thus, intersecting the above with the previous
restrictions on p, we find that when n = 2 we require p > 4, and when n = 3 the only possible choice
is p = 6. Therefore, we conclude that the feasible ranges for (r,p) and their respective conjugates,
(s, 0), are given by

{re(2,4] and se[4/3,2) ifn=2, {pe[4,+oo) and pe (1,4/3] ifn=2, (327
. .

=3 and s =3/2 ifn=3, p =06 and o =6/5 ifn=3.

Then, bearing in mind that ¢ and 6 belong to L2(Q2) and L”(9), respectively, we test the first equation
of (3.23) against a 7 € H(div,;2) and applying (1.2), we formally get

J T54 f Odiv(¥) =0 V7 eH(divy Q). (3.28)
Q Q

Consequently, taking into account the foregoing discussion, we introduce the following spaces and
notation to be used in our formulation:

H; := 1°(Q), Hy:=L*Q), H:=H; xHy, Q:=H(div,;),
0:=(0,1), J:=(0,3) e H.

)EXQXXQXMl,We

Finally, suitably gathering (3.25), (3.26) and (3.28), for a given p := (p, w,
0 5') = ((6,t),6) e Hx Q

arrive at the following mixed formulation for the heat equation: Find
such that

- = -, —

age(0,0) +b(0,&) = F@) VJ:=(9,3)eH,
b(0,7) =0 VFeQq,

where, given ¢ = (¢, 2,q) € Xo x Xo x My and { e Hy, a5 : HxH — R and b: H x Q — R are the
bilinear forms defined by

(3.29)

ag.e (0,

\_/l
[

J019+J (¢.q. )t 3+ fz-%ﬁ Vo, JeH, (3.30a)
Q

‘l?

b(0,7) :

f J 9 div(F) vV, F) eHx Q. (3.30b)
Q Q

It is important to notice that, since ap ¢ involves the function K in its definition, which in turn depends
on 6, the term aﬁ,g(e_), 5) is nonlinear. Additionally, the functional F' : H — R is given by

P = Jﬂgﬁ vi— (9,3) cH

Next, it is easily seen that, given G € Xy x X3 x My and £ € Hy, ag¢, b, and F' are bounded. In fact,
endowing H and Q with the norms

19 == [0 + [Bloe V9 e H, ITlq == ITlav,,e YT€eQ,
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and applying the Cauchy—Schwarz and Hoélder inequalities, we find that there exist positive constants,
denoted and given by

laf :== max{[Q|®~2/* 50}, b := 1, and |F| = [glo.e0 (3.31)
such that o - . L
lage(0,9)] < (lal + |zlor) 10]uld e V6, 9eH,
b, &) < (87 |uFq V(J,7) e HxQ, (3.32)
F@)| < |F[7u Ve H.

Regarding the boundedness of F y, F and G¢ 9 (cf. (3.10a),(3.21a) and (3.21b), respectively), we
observe that knowing already that (¢, ) € L"(Q) x L?(Q2), with r and p within the ranges stipulated
by (3.27), invoking the identity (1.3), the continuous injections i, : H}(Q) — L"(Q2) and i, : H'(Q) —
LP(2), the definitions of the constants ca2(A) and ¢3(A) (cf. (2.5)), and employing the Cauchy—Schwarz
and Holder inequalities, we can conclude that there exist positive constants Cg, Cr, and Cg, depending
on n, r, p, |[ir|, [i,ll, 2], o and 8, so that letting

Fool = Cr{Junlysrr +70) (lalosa + 9lop0)
HJ:H = Cr ”pDul/s,r;F’ and
IScol = Co{Iflore + lunlymmr + 7O (¢ + [Vop0) }
there holds
Foo(ml < [Foollrle,  ¥reXu,
FEI < |1Fllzlx,  YzeXi, and (3.33)

Gew(@] < [Geollalm, VaeM,.

3.4 The coupled fully-mixed formulation

Following the derivations presented in the previous sections, the fully-mixed formulation for (2.9)
reduces to gathering (3.9), (3.19) and (3.29), that is: Find (p,u) € Xo x M, (w,p) € Xo x M; and
(6,6) := ((0,t),6) € H x Q such that

a(p,7) + bi(T,u) =Fpo(T) V7reXy,
ba(p,v) = G(v) VoveM,,
c(w,z) + di(z,p) =F(z) Vze Xy,
(3.34)
da(w, q) —e(p,q) =Gp0(q) VqeM,,
ag.o(0,9) + b(J, &) = F(J) vieH,
b(G_; 7-) =0 V7~' € Q,

where p = (p, w,p) € Xg x Xg x M.

4 The continuous solvability analysis

In this section, we will first use the Babuska—Brezzi theory in Banach spaces (cf. [6, Theorem 2.1,
Corollary 2.1, Section 2.1] for the general case, and [24, Theorem 2.34] for a particular one) to address
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the well-posedness of each one of the decoupled problems arising from (3.9), (3.19), and (3.29). Then,
we proceed similarly as in [21] and [29] (see also [15], [30], and some references therein), and adopt a
fixed-point strategy to analyze the solvability of the fully coupled system (3.34).

4.1 The decoupled poroelasticity equations

We begin by introducing the operator S : M; x H; — X5 defined by
S(q,9) :=p V(q,9) e My x Hy

where (p, u) € Xg x M is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.9) after replacing (p, 6) by (q,9), that is

a(p,7)+bi(r,u) = Fgy(1) VreXy,
(4.1)
ba(p, v) = G(v) VveMs.

In order to prove that (4.1) is well-posed (equivalently, that S is well-defined), we notice that (4.1) has
the same bilinear forms of [28, eq. (3.15)]. Then, assuming that the Lamé parameter is sufficiently
large, namely A > M, where M is specified in [28, Lemma 3.4], we can establish that the operator
S is well defined. Indeed, letting a4, 81, and B, be the constants yielding the continuous inf-sup
conditions for a, by, and bg (cf. [28, Lemmas 3.4 and 3.5]), we have the following result.

Lemma 4.1. Let r and s be within the range of values stipulated by (3.27), and assume that X\ > M.
Then, for each (q,9) € My x H; there exists a unique (p,u) € Xo x My solution of (4.1), and hence
one can define S(q,9) := p. Moreover, there exists a positive constant Cs, depending on aa, By, Bs,
Cr, and u, such that

18(0.0)1 = lolis < Cs {lunljorir + IFlore + 900 (lalone + Wlose) | (42

Proof. Thanks to the fact that X; and M;, with i = {1,2}, are reflexive Banach spaces, along with
the boundedness of all the forms and functionals involved, and the inf-sup conditions provided by [28,
Lemmas 3.4 and 3.5], the proof reduces to a direct application of [6, Theorem 2.1, Corollary 2.1].
In particular, the a priori estimate (4.2) follows from [6, Corollary 2.1, eq. (2.15)]. Note that the
dependence of the constant Cg on p is due to ||al| (cf. (3.11)). O

Regarding the a priori estimate for the component u € M; of the unique solution of (4.1), we recall
that, given (q,9) € M1 x Hj, the second inequality in [6, Corollary 2.1] yields

v, < Cs{ unlysrr + [Elor + 1) (lalore + 19lap) .

where Cg is a positive constant which depends principally on Cp, a4, 8, and B5.

4.2 The decoupled perturbed Darcy problem

As in Section 4.1, we now introduce the operator 2 : Xo x H; — Xo x M; defined by

E(¢,0) = (B1(¢,9).Ba(C,9)) == (w,p)  V((0) € Xy x LA(Q),

13



where (w, p) € X x M is the unique solution (to be confirmed below) of the mixed formulation arising
from (3.19) after replacing (p, 6) by (¢, 9), that is

clw,z) +di(z,p) = F(2) VzeXy,

da(w, q) —e(p,q) = Gewle) VgeMs.

(4.3)

We observe that (4.3) has a perturbed saddle point structure over Banach spaces, but the fact that
the trial and test spaces are different prevent us from using, e.g. [22, Theorem 3.1], and therefore
an additional treatment is needed. Then, proceeding as in [20, Section 3.2.3], we first employ the
Babska—Brezzi theory in Banach spaces (cf. [6, Theorem 2.1, Corollary 2.1, Section 2.1]) to analyze
part of (4.3), and then apply the Banach-Necas-Babuska theorem (cf. [24, Theorem 2.6]) to conclude
the well-posedness of the whole problem. According to this, we now let A : (XgxM;j) x (X3 xMz) -» R
be the bounded bilinear form arising from (4.3) after adding the left-hand sides of its equations, but
without including e, that is

~

A((w,p),(z,q)) == c(w,z) +di(z,p) + da(w,q) V(w,p)eXexM; V(z,9) € X; x My, (4.4)

and aim to prove next that A satisfies global continuous inf-sup conditions with respect to both its first
and second component. Note that the boundedness of A follows from those of ¢, d; and ds (cf.(3.20a)
and (3.20b)). The verification of the aforementioned properties of A is equivalent to establishing that
the bilinear forms ¢, d; and dg verify the hypotheses of [6, Theorem 2.1], which we address in what
follows. Firstly, according to the definitions of X; and M; (cf. (3.18)), the kernel of the operators d;,
i€ {1,2}, are given by

V) i= {z e H°(divg; Q)+ div(z) = 0} and Vo := {z e H (div,; Q) :  div(z) = O}.

The two subsequent lemmas, akin to those previously stated and demonstrated in [20] and [29],
establish the inf-sup conditions required by [6, Theorem 2.1] for the bilinear forms ¢ (cf. (3.20a)), and
dy,ds (cf. (3.20b)), respectively.

Lemma 4.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists
a positive constant ac such that

c(w, z
sup ( ) > o |w|x, Vwe Vs,
zev; 2],
z2#0
and
sup c(w, z) >0 VzeX;, z#0.
’wEVQ
Proof. The proof follows a similar approach as in [20, Lemma 3.4], leading to a¢c = —-—, with Dy

being the bounded linear operator introduced in [20, Lemma 3.3].

The continuous inf-sup conditions for the bilinear forms d;, i € {1,2} are presented next.

Lemma 4.3. For each i € {1,2} there exists a positive constant & such that

d; Z,q 2
sup (9 Bilahy — YgeM;.
zex, [z[x,
z#0
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Proof. A proof of this lemma can be done by slightly modifying that of [29, Lemma 2.7], considering
Dirichlet boundary conditions of the auxiliary problems instead. O

According to Lemmas 4.2 and 4.3, the required hypotheses of [6, Theorem 2.1, Section 2.1] are
satisfied, and hence the a priori estimation provided by [(i, Corollary 2.1, Section 2.1] imply the
existence of a positive constant a4, depending only on ac, 3, 3, and |c||, such that

~

A
sup ((w7p)7 (Z,Q)) > aa H(w,p)ngle Y (w,p) = X2 X Ml , (45&)

(Z7q)€X1 XMQ “(Z, q>HX1 XMQ
(z,9)#0

~

ap  Alw.p).(z.0)

(w,p)eXa x M H (w7 p) ”X2 x M1
(w,p)#0

> aa|(za)lxixm  V(z,¢) € X x My, (4.5b)

Therefore, we let A : (X3 x Mj) x (X7 x M2) — R be the bounded and linear operator arising from
(4.3) after adding the full left-hand sides of its equations, that is

A((w,p), (2,9)) = c(w, z) + di(2,p) + d2(w, q) — e(p, q)

V(w,p)e Xoax My, V(z,q9) €X;x M.

(4.6)
Having introduced this operator, we realize that solving (4.3) for a given pair ({,9) € Xy x Hy, is
equivalent to: Find (w,p) € X2 x Mj such that
A((wap)v(zv(J)) ::F.(Z)—i_gc,ﬁ(q) V(ZaQ) € X1 x Ma.

We notice that, thanks to the boundedness of A and e, the operator A is bounded as well. Thus
bearing in mind (4.6), employing (4.5a) and the boundedness of e (cf. (3.22)), we have

A((w,p), (=,
sp  ALODLED) o o, il fw,plx, ¥ (w.p) € X x My
(z,9)€X1 xM2 (2, @)% xMs
(z,9)#0

Then, assuming that the data satisfy

A
lef = max {x,na* ()} < 2 (4.7)

we arrive at the global inf-sup condition for the perturbed Darcy problem

sup A((w,p),(2,9) > @A | (w, p) %, xM, V(w,p) e Xg x My . (4.8)

(2,9)eX1 x M2 H(zaQ)HX1><M2 2
(z,9)#0

Similarly, but employing now (4.5b) instead of (4.5a), and under the same assumption (4.7), we obtain
the second desired inf-sup condition for A, this is

sup A((w,p), (2,9)) > @A (2, @)%, x My V(z,q) € X1 x Ma. (4.9)

(w,p)eXaoxM; H(w’p)HXQ x M1 2
(w,p)#0

We are now in position to establish the well-posedness of the operator 2, equivalently the existence
and uniqueness of solution of (4.3).
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Lemma 4.4. Let r and s be within the range of values stipulated by (3.27), and assume that the data
fulfill condition (4.7). Then, for each ({,V) € Xo x Hy there exists a unique (w,p) € Xo x My solution
of (4.3), and hence one can define E((, V) = (w,p) € Xo x Mj. Moreover, there exists a positive
constant Cz, depending on ap, Cr, and Cg, such that

IE(C D xaxm = [wlx, + [Pl

(4.10)
om0+ [l + 7 (1€ + 19l0,00) |

< ca{|pD||1/s,r;r f

Proof. Given (¢,9) € Xy x Hj, thanks to the boundedness of A, and the global inf-sup conditions
(4.8) and (4.9), a direct application of [24, Theorem 2.6] provides the existence of a unique solution
(w,p) € Xa x Mj to (4.3). The a priori estimate (cf. [24, Theorem 2.6, eq. (2.5)]) yields

HE(Caﬁ)HX2XM1 = “w“X2 + HpHNh <

2
= {F b,
Z {171+ 160!
which, together with the expressions for |F|, |G¢ | given in (3.33) imply (4.10). O

4.3 The decoupled heat equation
We now introduce the operator IT : Xo x (X9 x M) x Hy — H defined by
(¢, 7,8) = (Th(¢,7,6), T2(C, 7,6)) = 0 = (6,2),

for all (¢,Zz,&) = (C,(z,q),f) € Xy x (X2 x M) x Hy, where (5,5') = ((9,?),5) € H x Q is the
unique solution (to be confirmed below) of the problem arising from (3.29) after replacing ap g, with
P = (p,w,p), by age, with § = (¢,2,¢), that is

=, —.

aaf(ﬁ,ﬁ)—irb(ﬁ,&) - FW) VI )
b(d, %) -0 v

We recall from (3.32) that the bilinear form ag¢ (cf. (3.30a)) is bounded with constant |lal| + ||z[|o,q,
which is independent of ¢, ¢ and £. Furthermore, it is easy to see that the null space associated with
the bilinear form b is given by (see, e.g. [21, eq. (3.35)] for the case (p, 0) = (4,4/3))

Vy 1= {w,g)eH; f%-mfﬁdiv(%):o \ﬁeQ}
Q Q
={(19,§)GH: 3=V and ﬁeHé(Q)}.

Then, following the same ideas as in [21, Lemma 3.6], we have to prove that ag¢ is Vj-elliptic plus an
inf-sup condition on b. To show the property of ag¢, we use the above characterization along with

(2.10) and the continuous injection i, : H! () — L?(2). In this way, for each J = (9,3) € Vy, we get

—.

age(9,9) = 913 + 50 35,0 + LZ'W > 0|0

Ra+ Ga/2I3lEa + | 2050

~ . o 4.12
> 3 i 729 (4.12)

0.0+ (50/2) [35.0 = I2lo.ra [3loal?]oe
lo.rs0) 19,

where the constants > and ¢ are given by

> 1 (20— |2

o= min {221} and o= min {35 Jip) 2 22}
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Thus, under the assumption |z|x, < aa = 2 5, the inequality (4.12) implies
age(,0) = aa |9 VI :=(9,3) €V, (4.13)
which establishes the Vj-ellipticity of ag¢ with constant a 4.

The inf-sup condition for the bilinear form b states that there exists a constant 5 > 0 such that

up POF)

Jern [Vlm
J#0

> B |Fav,0  YVTEQ, (4.14)

which can be proved analogously to the case (p, 0) = (4,4/3) provided in [21, Lemma 3.3, eq. (3.45)]
since the present indexes p and p are conjugate to each other as well.

The previous discussion allows us to establish the following lemma on the existence and uniqueness
of solution of the decoupled system (4.11).

Lemma 4.5. Let p and o be within the range of values stipulated by (3.27). Then, for each ({,Z,§) =
(¢, (2, ), &) € Xox (XoxM;)xHy such that |z|| < aa, there exists a unique 0,5) = ((8, t), o) e HxQ

solution of (4.11), and hence one can define I1((, Z,§) := 6. Moreover, there exist positive constants
Cr and Cry, depending on aa, ﬁ, |Q|, p, and s, such that the following a priori estimates hold

ITL(¢, 2,€)] = | < Cr (4.15)

,0;82 5

Proof. The proof is a consequence of the Vy-ellipticity of ag¢ (cf. (4.13)), the inf-sup condition (4.14),
and a direct application of [6, Theorem 2.1, Corollary 2.1]. Note that the dependence of the constants
Cr and Cry on |Q, p, and 3z, is due to [al| (cf. (3.31)) since |lag ||, which is required by the abstract
a priori estimates from [6, Corollary 2.1, egs. (2.15) and (2.16)], is bounded above by |a| + |z]. O

4.4 Solvability of the fully-mixed formulation

In order to solve the fully-mixed coupled problem (3.34) we propose a fixed-point strategy based
on the operators S, & and II, which correspond to the decoupled problems (4.1), (4.3) and (4.11),
respectively. The coupling of the three problems can be analyzed in terms of the compose operator
T:Xg XH1—>X2 XH1 givenby

T((,0) = (3(52(4',19),19), L (S(B2(¢,9), ), B(C,9), )) ¥ (¢, 0) € Xo x Hj . (4.16)

The well-definedness of S, 2 and II, which was obtained from Lemmas 4.1, 4.4 and 4.5, respectively,
implies the same property for the operator T. Furthermore, due to the nonlinear character of I, the
operator T becomes nonlinear as well. Then, we observe that solving (3.34) is equivalent to seeking a
fixed-point of T, that is: Find (p, #) € Xo x H; such that

T(p.6) = (p,0). (4.17)

In what follows, we address the solvability of the nonlinear equation (4.17), equivalently of (3.34),
by means of the Banach fixed-point theorem. For this purpose, given é > 0, we first introduce the ball

W) = {(¢9) e Xa x Hys |(¢0)] = ¢, + 1900 < 6
Now, given (¢,¥) € W(9), the definition of T yields

IT(C, 9] = [S(E2(¢,9),9) |, + [T (S(E2(C, ), 9), B(C.9),9) g »
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from which, assuming (4.7) and the upper bound

I121(¢,D)lIx, < aa, (4.18)

and bearing in mind the a priori estimates for S, 2 and IT (cf. (4.2), (4.10) and (4.15), respectively),
we find that

T D) < Cr {HUDlh/s,r;r +[Elor0 + lppliysme

+IIf 0,/);9)}7

where C't is a positive constant depending on Cg, C=z and Cfy. In turn, we deduce from the estimate
for |2(¢, )| (cf. (4.10)) that a sufficient condition for the assumption (4.18) is given by

(4.19)

o + lgloga + v(A) (IS, + 9

C= {HPDHVS,T;F + [ flloge + lupli/sr +v(A) (I¢]x, + [0 O,p;Q)} <aa.

In this way, noting that certainly [(|x, + [|¢

0,00 < 0 we conclude the following result.

Lemma 4.6. Let p, o, 7 and s be the real numbers within the range specified in (3.27), and A > M.
Assume that the data are sufficiently small so that (4.7) and the conditions

Ca {Ipplarr + Iflos0 + [uplijsrr +7(0) 6} < aa,  and (4.20a)

02+ [P0 lyjs0 + [Florg + 9oz + 7N 3} <4, (4.20b)

are satisfied. Then, the operator T maps the ball W(0) into itself, that is T(W(d)) < W(0).

Cr{lunly/srr + If

We now aim to prove that the operator T is Lipschitz-continuous, for which, according to its
definition (cf. (4.16)), it suffices to show that S, E and IT satisfy the same property. We begin with
the corresponding result for S.

Lemma 4.7. Let r and s be within the range of values stipulated by (3.27), and A\ > M. Then, with
the same constant Cs from the a priori estimate (4.2) for S (c¢f. Lemma 4.1), there holds

IS(q1,91) — S(g2,V2)lx, < Csy(N) [(q1,91) — (g2, 92) M, xH, (4.21)

fO?“ all (Q1,191), (q2,192) € M1 X Hl.

Proof. Given (q1,71), (g2,92) € My x Hy, we let S(q1,91) = p; € Xo and S(g2,92) = py € Xo, where
(p1,u1) and (py, uz) in Xg x M are the respective unique solutions of (4.1). Then, thanks to the
linearity of this problem, it is straightforward to see that (p; — po, u1 — u2) € Xo x My is the unique

solution of (4.1) with Fg, 9, — Fg, 9, and the null functional instead of F,y and G, respectively.
Consequently, noting from (3.10a) that

(Foro0 — Fop0,) (1) = —v(N) L (alqr — g2) + B(W1 — D)) tr(T) VT eXq,

the a priori estimate (4.2) yields

I1S(q1,91) — S(g2,92) %, = |1 — P2llx, < Csv(N) (|ar — @2llo0 + 191 — P2llo.p0)

which ends the proof. O

The Lipschitz continuity of the operator E is addressed next.
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Lemma 4.8. Let r and s be within the range of values stipulated by (3.27), and assume that the data
fulfills condition (4.7). Then, with the same constant Cz from the a priori estimate (4.10) for & (cf.
Lemma 4.4), there holds

[E(¢1,91) = (G2 V2) [0 xm; < C2y(A) [(€1,91) = (Ca, Vo) 5ty w1, (4.22)

for all (¢, 91), (Ca,92) € Xo x H.

Proof. The proof follows in a similar fashion as the previous lemma. Given the two pairs of functions
(¢1,71), (€9,02) € Xo x Hy, we let B(¢q,01) = (w1, p1) € Xo xM; and E(y, J2) = (w2, p2) € Xo x My
in Xy x Mj, where (w1, p1) and (ws,p2) are the respective solutions of (4.3). Then, thanks to the
linearity of (4.3), we realize that (wq — wa, p1 — p2) € Xo x My is the unique solution of this problem
when G¢ g and F are replaced by G¢ 9, — G¢, 9, and the null functional, respectively. In this way,
noting from (3.21b) that

(Gerwr = Gepa) (@) = c2a(N) J

tr(¢1 — €2) q + c3(N) f (V1,0 —¥20) q
Q Q

where ¥; 9 = m(v;) (cf. (3.13)), i € {1, 2}, the a priori estimate (4.10) gives

IE(C1,01) — E(C2, V2)|| = [lw1 — wax, + |p1 — p2/hwy
< =290 (I¢1 = Callza + 191 = B2l )

which concludes the proof. O

It remains to establish the continuity of II, for which, following the approach from several previous
works (see, e.g [26, 28, 29]), we assume from now on a regularity assumption on the solution of the
problem defining this operator, namely

(H.1) there exists ¢ > 2 and a positive constant CN'E, such that for each (¢, Z, §) € X x (XoxM;j)x Hy,

there hold II(¢,Z,&) := 0 = (0,t) € WoP(Q2) x H?(Q?), and

101 == 10llc.p:0 + [l < Cellglog- (4.23)

The aforementioned lower bound of ¢ is explained within the proof of Lemma 4.9 below, which
provides the Lipschitz-continuity of II. In this regard, we recall here that for each ¢ < § there holds
H°(Q) ¢ L (Q) with continuous injection

2n

ic : H°(Q) - L (Q), where &* = o

Note that the indicated lower and upper bounds for the additional regularity ¢, which turn out to
require that € € [, §), are compatible if and only if » > 2, which is coherent with the range stipulated

in (3.27). Thus, we have the following result.

Lemma 4.9. Let p and ¢ be within the range of values stipulated by (3.27), and assume that the
reqularity condition (H.1) (cf. (4.23)) holds. Then, there exists a positive constant Ly, depending on
Lk, aga, ie, Ce, |, r, n, and e, such that

ITX(Cy, 21, 61) — T(Ca, 22, §2)lm < Lx [9llo,g0 (€15 21, &1) — (€25 22, &2) (4.24)

for all (¢1,71, &) = (&1, (21,01),&), (€2.Z2,&2) = (o, (22, 42), &2) € Xo x (Xg x My) x Hy, such that
|z1]x,, [Z2lx, < aa.
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P’I’OOf. Given (Cl’ Zl, 51), (C2a ZQ, 52) € Xo x (X2 X Ml) x H; as indicated, we let 51 = H(pl, Zl, 51) eH
and 02 = H(pQ,Zg,fg) € H7 where (91,5’1) = ((91,t1),&1) e H x Q and (02,5’2) = ((92,122),6’2) €
H x Q are the respective solutions of (4.11). Defining g, := ({;,Z1,q1) and gy := (5, Z2, ¢2), it follows
from the corresponding second equation of (4.11) that 6; — 02 € V,, and then the Vy-ellipticity of ag, &

(cf. (4.13)) gives

L. 1 oL L
H91 — 92”%{ < a ag, & (01 — 02,01 —03) . (4.25)

In turn, the evaluation at 6, — 6 of the two systems arising from (4.11) for the pairs (§;,&1) and
(g2, &2), lead to

CL[I’D& (51, 51 — 52) = F(gl — 52) and 062752 (52, 51 — 52) = F(§1 — 92) s
from which we find that
ag, & (01 — 02,01 — 02) = ag, ¢, (01,01 — 02) — ag, ¢, (02,0, — 02)
= Agy.6,(02,01 — b2) — ag, ¢, (02,01 — 02) (4.26)

_ f (K(Car 2. &2) — K(Croan, &) - (B — o) + f (22— 21) - Fo (01 — 0)
Q Q

Next, invoking the Lipschitz-continuity of K (cf. (2.11)), and making use of the Cauchy—Schwarz and
Holder inequalities, we obtain

L(/mz,qg,m K 6) s (B )

(4.27)
< Lic (I¢2 = ¢

0260 [t — E2lo0 s

lo.2t:0 + a1 — @2]0,20:0 + 01 — 62 0,2t’;Q) £

where ¢,1’ € (1, +00) are conjugate to each other. Now, choosing ¢ such that 2t = €*, we get 2t = %,
which, according to the range stipulated for e, yields 2t/ < r, and certainly r < p, so that the
norm of the embedding of the respective Lebesgue spaces is given by (. := |Q|T5r7 . In this way,
using additionally the continuity of i. along with the regularity assumption (4.23), the estimate (4.27)

becomes

L(’C(Cm%,&) — K&, q1,6)E2 - (1 — 1)

(4.28)
< L1 llglo,e0 {”Cl — Callxo + llar — @2lm, + (161 — 52”0,/);9} |61 — 028,

where Ly depends on Ly, Cy.c, C., ||ic| and |Q. In turn, bearing in mind the a priori estimation of
to (cf. (4.15)), the Cauchy—Schwarz and Holder inequalities yield

J (22 —21) - Ea(91 — B2) < Crr[lglon |22 — 21]x, |61 — O m (4.29)
Q

Finally, replacing (4.28) and (4.29) back into (4.26), we deduce, along with (4.25), the required in-
equality (4.24) with Ly := i maX{LH, CH}, which ends the proof. O

Now, we conclude that, under the hypotheses of Lemmas 4.7, 4.8 and 4.9, the compose operator
T (cf. (4.16)) becomes Lipschitz-continuous within the ball W(J) of the space Xg x LP(€2). This is
summarized in the next lemma.
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Lemma 4.10. Let p, o, r and s be the real numbers within the range specified in (3.27), and X > M.
In addition, assume that the reqularity condition (H.1) (cf. (4.23)) holds, and that the data are
sufficiently small so that (4.7), (4.20a), and (4.20b) are satisfied, that is

aA

lel := max {x,na?7(0) } < A,

Oz {Ipolhsr + 1)

0,79 + HuDHl/s,r;F + 7(/\) 5} < o4, and

Cr {lunlijsrr + [floro + IpDli/era + Iflome + lglogo + 1N 6} < 6.

Then, there exists a positive constant L, depending on Cs, Cg

HT(CM 791) - T(C27 192)”
< Lt (YO (YO + lg

and Ly, such that

(4.30)

’0,9;9) + HQHO,Q;Q) 1(¢1, 1) — (C2a192)HX2xLP(Q) )
fOT all (Claﬁl) ) (C2’192) € W(é)

Proof. Tt readily follows from the definition of the operator T (cf. (4.16)), and the estimates (4.21),
(4.22), and (4.24). O

We are now in position to formulate the main result of this section, which establishes the existence
of a unique fixed-point of T (cf. (4.17)), equivalently, the existence and uniqueness of solution of the
coupled system (3.34).

Theorem 4.11. Let p, o, v and s be the real numbers within the range specified in (3.27), and
A > M. In addition, assume that the regularity condition (H.1) (cf. (4.23)) holds, and that the data
are sufficiently small so that (4.7), (4.20a), and (4.20b) are satisfied. Besides, suppose that

Lr () (v + lglog) + lgloge) < 1. (4.31)
where Lt is the positive constant from Lemma 4.10. Then, the operator T has a unique fixed-point
(p,0) € W(9). FEquivalently, the coupled problem (3.34) has a unique solution (p,u) € Xa x My,
(w,p) € Xa x M and (0,5) € H x Q, with (p,0) € W(5). Moreover, there hold

(s w)lraxnty < Cs {[unllyyor + IElore + Ip0lyjs e + [ Flora + Iglogn +7(0) 3}

[, p)lxarrts < Cx {[upllysrr + Ipplijor + 1flore + lglo.gn +7(X) 6}

1(0,8) [rxq < Cr(1+9) g

|0,Q;Q )

where CNJ'S, Cs, and CN'H are positive constants depending on Cs, Cz and Cry.

Proof. Recall, from Lemma 4.6, that (4.20a) and (4.20b) guarantee that T maps W(d) into itself.
Hence, in virtue of the equivalence between (3.34) and (4.17), and bearing in mind the Lipschitz-
continuity of (4.30) (cf. Lemma 4.10) and the hypothesis (4.31), a straightforward application of the
Banach fixed point Theorem implies the existence of a unique solution (p,8) € W(J) of (3.34), and
hence, the existence of a unique (p,u) € Xo x M, (w,p) € X9 x My and (5, o) € H x Q solution of
(3.34). In addition, the a priori estimates follow straightforwardly from (4.2), (4.10) and (4.15), and
bounding ||p|x, and |#]x, by 9. O
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We would like to end this section by emphasizing that the hypothesis A > M (as used in Sections
4.1 and 4.4) naturally hold true in the context of the nearly incompressible scenario. Consequently,
we proceed by assuming that A is sufficiently large, which, in turn, makes () to become sufficiently
small (cf. (2.4)). In this way, considering diminutive values for x, we ensure the feasibility of (4.7).
A similar remark arises later on in the discrete analysis.

5 The discrete analysis

5.1 Preliminaries

Let {7Th},~( be a regular family of triangulations 7} of the domain €2 made of triangles K in 2D (resp.
tetrahedra K in 3D) with corresponding diameter hx > 0. The meshsize h, which also stands for the
sub-index, is defined by the largest diameter of the triangulation 7y, that is A := max {h xk: Ke 7}1} .
Furthermore, we let Py(S) (resp. P¢(S)) be the space of polynomials defined on S < Q of degree
< e N (resp. = {). The vector counterpart of P(S) is denoted by P(S) := [P¢(S)]”. In turn, for a
generic vector € R", we define the local Raviart—Thomas finite element space of order £ over K € T,
as RTy(K) := Py(K) ® Py(K) x. Then, based on the above, we introduce the following global spaces

Pe() = {uncl®(Q): wilx ePu(K), YKeTi},

P(Q) = {wyeL}Q): wilxePK), YKeT},

RT,(Q) := {rheH(div;Q): Tl € RTy(K), VKeTh},

RT,(Q) := {TheH(div;Q): Thilk € RTY(K), Yie{l,..,n}, VKen},

where 7, ; stands for the ith-row of a tensor 7. It is easy to see that for each ¢ € [1, 400] there hold
Py(Q) S LYQ), Py(Q)<cLYQ), RT,((Q) < H(divy; Q) n H (div; Q),
and RT,(Q) < H(dive; Q) n H (divy; Q).

5.2 The discrete coupled system
In order to set the discrete version of (3.34), we now resort to the definitions from Section 5.1 to
introduce the following sets of finite element subspaces, one for each decoupled problem:
Xop = Hy(div,; Q) n RTe(Q), Xip = Hy(dive; Q) n RTe(Q), My :=Py(Q) =: My, (5.1a)
Xop:=RT(Q), Xip:=RTy(Q), My :=Pi(Q) =:May, (5.1b)
H;j, = Pe(Q), Hyjp :=Py(Q), Hp :=H;,xHy;, Qp:=RT(Q). (5.1c)

Then, the Galerkin scheme associated with (3.34) reads: Find (py,,us) € Xo, X My p, (wn,pp) €
X27h X Ml,h and (gh,&h) = ((Gh,zh),&h) € Hh X Qh such that

a(py, Th) + bi(Th, up) =Fp, 0,(Th) VTpeXiy,

ba(py, 1) = G(vp) Vo, e My,

c(wp, zp) + di(2zn, pn) = F(zn) VzpeXyn, (5:2)
do(wp, qn) —e(pn,an) = Gp, 0,(an) Y aqn € Moy, '
ag, o, (On, 9n) + b(Ty, &) = F(Jy) V3, € Hy,

b(0h, F1) =0 VT eQn,
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where py, := (py,, W, n) € Xop X Xop X My p.

For the solvability analysis of (5.2) we will adopt a discrete version of the fixed-point strategy
developed in Section 4.4. To this end, we first use the analogues of the operators S, =, and II to
introduce in the following section the corresponding discrete decoupled problems, and establish their
well-posedness.

5.3 The discrete decoupled problems

We begin by letting Sy, : My 5 x Hy, — X, be the operator defined by

Su(qn:Un) == P Y(qn,9n) € Myp x Hyp,
where (py, up) € Xg, X My 5, is the unique solution (to be confirmed below) of the discrete formulation
arising from the first and second rows of (5.2) after replacing (pn, 0p) by (gn, V1), that is

a(py, Tn) +bi(th,un) = Fg,(thn)  VrreXyp,

(5.3)
ba(py, vn) = G(vp) Vo, e Myy,.
For the solvability analysis of (5.3), we first observe from (5.1a) that
diV(Xi’h) - Hi,h Vi e {1, 2} ,

whence the discrete kernels of by and bs coincide, and are given by
Kf = {The]RTg(Q): div(r) = 0 and JQ tr(rp) = o}.

Furthermore, since the bilinear forms involved in the mixed formulation of the poroelasticity equations
coincide with those of [28, eq. (3.15)], and additionally the same finite element subspaces (cf. (5.1a))
are employed here, in what follows we proceed to simply use the results from [28]. In this way, given
t e (1,+w), we consider the mesh size h{ for which the usual L?(Q)-orthogonal projector satisfies the
property stated in [28, eq. (5.21)]. Then, thanks to [28, Lemma 5.3], there exist positive constants
My and 44 such that for each A > My and for each h < hg := min{h%, h%} there hold

a(Ciw Th)

sup > asalChlxs V¢, eXon,

ekt |Thlx,

Tr#0 (54)
sup a(Cp,Th) > 0 VrherL, T, #0.

¢rek?

In addition, the inf-sup conditions for the bilinear forms b; and bg, proved in [28, Lemma 5.4], provide
the existence of positive constants 3; 4 and 3, 4, independent of h, such that

b.
sup PUTRUR) S g b Vee M, Vie (1,2} (5.5)
meXo, TRl
Tr#0

Thus, thanks to (5.4) and (5.5), we are in position to show next the discrete version of Lemma 4.1.

Lemma 5.1. Let r and s be within the range of values stipulated by (3.27), and A > My. Then, for
each (qn,Vn) € My, x Hyy, there exists a unique (pp,,un) € Xop x My, solution of (5.3), and hence
one can define Sp(qn,Vn) 1= py,. Moreover, there exists a positive constant Cs q, depending on oA 4,
B1a> Baas CF, and p, and hence independent of h, such that for each h < hg := min{hfi,hﬁ} there

holds
0.00) } . (56

ISk(qn, 9n)| = lenlx, < Csa {uDl/s,r;F + [£llo,rs0 + (A (H%| 0.0 + I

23



Proof. Tt follows from a direct application of the discrete Babuska—Brezzi theory in Banach spaces (cf.
[6, Theorem 2.1, Corollary 2.1,]). Note that the dependence of the constant Cg 4 on p is due to ||a
(cf. (3.11)). O

We now let &, : Xo, x Hy j, — My, be the operator defined by

En(ChnrOn) = (BErn(CnrPn), Bon(Chan)) = (wiopn) Y (ChyUn) € X x Hypy,

where (wp, pp) € Xaj, x My, is the unique solution (to be confirmed below) of the discrete formulation
arising from the third and fourth rows of (5.2) after replacing (py,, 0) by ({1, 9), that is

c(wp, zp) + di(zn,pn) = F(zn) VzpeXiy, -
da(wp, qn) —e(pn, qn) = Ge¢,0,(an) Y an € Mo, o7
Then, similarly as for (5.3), we first notice that
div(X;n) < My, Vie{l,2},
which yields the discrete kernels of d; and ds to become

V= {zh ERTY(Q):  div(zp) = o},

Knowing the above, the discrete version of Lemma 4.2 is now recalled from [20, Lemma 5.2].

Lemma 5.2. Assume that r and s satisfy the particular range specified by (3.27). Then, there exists
a positive constant ocq such that

sup M > Qcgq |whlx, Yawy, € Vﬁ,
zevt Znlx,
zh7é0

and

sup c(wp, zp) > 0 VzpeXipn, 2znp#0.
wEVf;

Proof. Tt proceeds analogously to the proof of [29, Lemma 4.3]. However, for full details we refer to
[19, Lemma 5.2], which is the preprint version of [20]. O

On the other hand, the discrete inf-sup conditions for the bilinear forms d; and ds, which can be
found in [29, Lemma 5.3], state that for each i € {1, 2}, there exists a positive constant 3, 4 such that

d; Zhs4h 3
sup dilzn, 4n) > Bialanlh,  YaneMip. (5.8)
zheXM “zhHXz’,h
zh7é0

Then, analogously to the continuous case, Lemma 5.2 and (5.8) imply that the bilinear form A (cf.
(4.4)) satisfies the global inf-sup conditions given by the discrete versions of (4.5a) and (4.5b), both
with a positive constant a4 4 depending on o g, ,[Nilyd, ,[~327d, and ||c|, and hence independent of h.
Moreover, using these inequalities, and proceeding analogously to the derivation of (4.8) and (4.9),
which means assuming now the discrete version of (4.7), this is

aAq
2 )

le|| = max {x,na*y(\) } < (5.9)
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we arrive at the discrete global inf-sup conditions for the global operator A (cf. (4.6)), namely

A((wn,pn), (20, an)) _ @A I

sup > Wh, ph)|xoxvy Y (Whypr) € Xop x My,
(2n,qn)eX1,nx M2, |Gz an) ey vz 2
(zhth)7$0
(5.10a)
A((wp, pr), (Zhs qn aa
sup ( ) { ), @A |(Zhyan) %10 xMyy ¥ (20, Gn) € Xap x Mo

=
('whyph)EXZ,h ><M1’h H(wh’ph)‘|x2 x My 2
(wh7ph)7/:0

(5.10Db)

Similarly as for the continuous analysis, we stress here that the fact that y(\) approaches 0 as A
increases (cf. (2.4)), ensures the feasibility of (5.9) for sufficiently large A and sufficiently small x.

Having established (5.10a) and (5.10b), a straightforward application of the discrete version of the
Banach—Necas—Babuska theorem (cf. [24, Theorem 2.22]) allows to conclude the following result.

Lemma 5.3. Let r and s be within the range of values specified by (3.27), and assume that the data
satisfy (5.9). Then, for each (C,Vn) € Xop x Hy there exists a unique (wp,pp) € Xop X My
solution of (5.7), and hence one can define (¢}, V) = (El,h(chaﬁh),EZ,h(Chaﬁh)) = (wp,pn) €
Xon x My p. Moreover, there exists a positive constant C= g4, depending on aupq, CF, and Cg, and
hence independent of h, such that

IER(Chs In)lIxoxny = |wrlx, + [prly

(5.11)
< CE,d HpDHI/s,T;F + Hf

orat funlyjope + 1) (16 + [9nlogn)

Finally, we let ITj, : Xo 3, x (X2, x My ) x Hy ,, = Hj, be the operator defined by
I, (Chs Zny €n) = (X0 (Chs s €0)s Do (Cis 20y €)= On = (On, )

for all (CpyZn,&n) = (Chy (Zhan),En) € Xop x (Xop x My p) x Hyp,, where (6,84) € Hy, x Q is the
unique solution (to be confirmed below) of the discrete formulation arising from the fifth and sixth

rows of (5.2) after replacing ag, g, , With B, := (pp, wn,pn), by ag, ¢,, With G, := (Cp, Zn, qn), that is
ag, & (67}“ 5!1) + b(gh, &h) = F(@h) Vﬁh = (ﬂh,gh) e H;,, (5 12)
b(gh,$h) = 0 V;hEQh. ‘

For the analysis of the Galerkin scheme (5.12), we proceed as in [21, Section 5.5] (see also [5, Section
4.3, Lemma 4.2] or [17, Section 5.3, eqgs. (5.19), (5.20)]). More precisely, since the required results
are already available in those references, in what follows we just describe the main aspects of the
corresponding discussion, for which we first introduce the discrete kernel Vf’ p, of b (cf. (3.30b)), that
is

Vi = {Jh = (U, 3p) € Hy o b(U),72) =0 Ve Qh},
and the subspace of Qp, given by

Zlf,h = {;h € Qh : le(’?’h) =0 in Q} .

Then, applying the abstract result provided in [21, Lemma 5.1], one deduces that the existence of
positive constants 51 4 and 2 4, independent of h, such that

f Iy div(Fs)
sup & > BrallUnlopo VI, eH;,, and (5.13)
speqn | Thlldiv,e
P40
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f%h-?h
CAY

A > Boa |Fnldaivye YT E 2, (5.14)

sup
EheHQﬁ

3,40

is equivalent to the existence of positive constants Ed and é’d, independent of h, such that

b0, Fn) _ 5 on N
sup Q > fBa|Thlldiv,;o YThEQp, and (5.15a)
yen,  [|[On]H
Ip+0

[3nlloo = Caln

lop2 VU= (9n,3) € Viy . (5.15b)

The proof of (5.13) is basically provided at the last part of [21, Section 5.5] by noticing that it reduces
to the vector version of [21, Lemma 5.5]. Actually, while the proof there is for (p,0) = (4,4/3), it
can be extended almost verbatim to an arbitrary conjugate pair (p, 0) satisfying (3.27). In turn, it
is readily seen that (5.14) follows from the fact that 2/, < Hay (cf. [17, eq. (5.18)]). In this way,
having already the discrete inf-sup condition (5.15a) forjb, it only remains to employ (5.15b) to show
the Vlf’h—ellipticity of ag, ¢, for given G, = (Cp,zn,qn) € Xop x Xop x My, and &, € Hyp,. Indeed,
proceeding similarly to the first part of the derivation of (4.12), we have for each 5‘h = (Op,8p) € Vlf’h

ag, e (On,On) = (500/2) C3 |90

600 + G20/2) [BnlG0 — lznllore I3kl [9hl0,p0

>

=

{0 min {1,628} ~ Jznllore} 197

1
2

1 ~
so that, under the constraint |zp[o,0 < aaq = 3 0 min {1, Cg}, there holds

ag, & (0. 0n) = analdpl®> VO, = (0h,3) € Vi, (5.16)

thus confirming the announced property of ag, ¢, -

Hence, the solvability of (5.12) and therefore the well-posedness of II;, can be established in the
following lemma.

Lemma 5.4. Let p and o be within the range of values stipulated by (3.27). Then, for each ({1, Zn, &)
= (Ch,(zh,qh),fh) e Xop x (Xopn x Myp) x Hyp such that |zp|| < aaq, there exists a unique
(gh,&h) = ((eh,ih),&h) € Hy, x Qp solution of (5.12), and hence one can define I (¢}, Zp, &p) = 0.
Moreover, there exist positive constants Crra and Crra, depending on aaq, ﬁd, |, p, and 2, and
hence independent of h, such that the following a priori estimates hold

1L (C s 20y €0)]| = [10n]r < Crrallg

o0y |onlq < Cralgloen- (5.17)
Proof. The result is a consequence of the V£7h—ellipticity of ag, ¢, (cf. (5.16)), the inf-sup condition
(5.15a), and a direct application of, for instance, [24, Theorem 2.34, Proposition 2.42]. Note that
the dependence of the constants Crrgq and Crg on ||, p, and e, is due to |la| (cf. (3.31)) since
lag, &, |, which is required by the theoretical estimates from [6, Corollary 2.2, eqs. (2.24) and (2.25)],
is bounded above by |a|l + |z O

5.4 Solvability analysis of the discrete coupled system

The solvability analysis of the fully coupled discrete system (5.2) is performed in a similar fashion as
in the continuous case by using a fixed-point strategy, but now applying the Brouwer theorem instead
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of the classical Banach one. Therefore, the structure and reasoning followed in this part, are going to
resemble partially the ones of Section 4.4. We begin this analysis by defining the discrete fixed-point
operator Tp, : X, x Hy ), — Xy, x Hyy, given by

Th(CpyUn) = (Sh(Ez,h(Chﬂh),ﬁh), Hl,h(sh(azh((fh,ﬂh),ﬂh)ﬁh(chaﬁh),ﬁh)), (5.18)

for all ({;,, V) € Xa, x Hy j,. Then, showing existence of solution is equivalent to seeking a fixed-point
to the operator T}, that is: Find ({,,9p) € Xo, x Hy p, such that

Th(Ch,Un) = (Chs V). (5.19)

Now, given 6 > 0, we define the J-ball in the finite-dimensional subspace X, x H; , by

Wa(0) = {(Chrin) € Ko x Hin s [(Cas )l i= [Chllms + 9

|(Lp;Q < 5} )

where we conveniently choose § := a4 4. Furthermore, assumption (5.9) applies to the discrete operator
Ei 4 in the same way as (4.18) applies to Zq, this is

1210 (Chy ) xs S aa YV (Ep,On) € Wi(9). (5.20)

Combining the estimates (5.6), (5.11), and (5.17), we obtain the discrete version of (4.19) as an priori
bound for the operator T}, that is

ITh(Chy )| < Cra {HUDHl/s,r;r + [£llo.s0 + [PD 15,0502

+[f |0,p;9)}7

where Ct 4 is a positive constant depending on Csgq4, C=q and Crrg, and hence independent of h.
In addition, taking into account the a priori estimate (5.11) with ({j,,7,) € Wi(9), we conclude that
operator 2 j, will satisfy assumption (5.20) if there holds

0,02 + YN (IICh %2 + 98

0,79 + Hg

Cza{ ol /s + 1 Flosa + [uplysmr + (V) 8} < aaq-
Hence, the following lemma establishes the conditions under which the operator T}, maps the ball
Wi (0) into itself, thus yielding the discrete analogue of Lemma 4.6.

Lemma 5.5. Let p, o, r and s be as specified in (3.27), and X > M. Moreover, assume that h <
ho := min{h’, '}, and that the data are sufficiently small so that (5.9) and the conditions

TS

CE,d {HPD Hl/s,r;I‘ + Hf‘ 0, + HuDHl/s,r;F + 7(/\) 5} < A4, and (5.21&)

CT,d {HU’D ”1/5,7";F + HfHO,T;Q + HpDHl/s,r;Q + ”f”oﬂ‘;Q + Hg 0,00 T ’7()‘) 5} < 57 (521b)

are satisfied. Then, Tp(Wh(8)) € Wi(0).

The next two lemmas show, respectively, that the operators S;, and Ej are Lipschitz-continuous.

Lemma 5.6. Let r and s be within the range of values stipulated by (3.27), and A > M. Then, with
the same constant Cs 4 from the a priori estimate (5.6) (c¢f. Lemma 5.1), for h < hg := min{h%, '}
there holds

1S (g1, P1,0) — Sk, V2.0) %0 < Csav(N) [(q1,n:P1,0) — (@2,0, P2.0) M, xH; » (5.22)

for all (qi.n,Y1.0), (q2,n,V2,h) € M1 x Hy .
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Proof. 1t proceeds analogously to the proof of Lemma 4.7. We omit further details. O

Lemma 5.7. Let r and s be within the range of values stipulated by (3.27), and assume that the
data fulfills condition (5.9). Then, with the same constant Czq from the a priori estimate (5.11) (cf.
Lemma 5.3), there holds

IEn(C1psF1,0) — Bn(Copn Vo) [xoxmy < Czav(A) (€1 ns I1,0) — (€2 Vo,0) 5o xHy (5.23)

for all (C1 1, V1.n)s (ConsV2,n) € Xop X Hyp.
Proof. Tt proceeds analogously to the proof of Lemma 4.8. Further details are omitted. O

The next result shows the continuity of II;. In this regard, we stress in advance that the obvious
absence of a regularity assumption in the present discrete setting, stops us of proving a Lipschitz-
continuity property of Ilj.

Lemma 5.8. Let p and o be within the range of values stipulated by (3.27). Then, there exists a
positive constant Ly g4, depending on Li, aagq, ||, r, and p, and hence independent of h, such that

X, (€1 ps @10 §1,0) — TIn(Co s Bops E2.0) [H

< Lina [T2,0(Co s @2,n, E2,0) 0,059 1€ 1,00 D10 E1,0) — (Co s @2.n, E2.0) | 5

(5.24)

for all (Cyp,Zin&1n) = (S (Zrnaun),€un)s (ConsZon,Con) = (Cops (Zon, q2n),E2n) € Xop X
(X27h X Ml,h) X Hl,iu such that ||Z17h||x2, HZQﬁ |X2 < apg-

Proof. The proof follows similarly to the one of Lemma 4.9, except for the fact, as already announced,
that no regularity result can be applied. Indeed, given ((y 5, 1,4, &1,0) and (Ca,p, Z2,0, §2,1) as indicated,

we let 51@ i= T13,(Cy s Zus €10) € Hy and Joy = (8o gy Zo s E2.) € Hy, where (97 5,, &15) € Hy, x
Qp and (J2,4,02,,) € Hy x Qp, are the respective solutions of (5.12). Defining g j, := (1 5, Z1,0, q1,1)
and Gy, = (G2, Z2,h, G2,1), it follows from the corresponding second equation of (5.12) that 15'1,h —
52,h € Vlf,hv and then the Vﬁh—ellipticity of ag, , &, (cf. (5.16)) yields

1

QA d

Hﬁl,h - 52,h”%{ < aquh,gl,h(gl,h - 52,h, 51,h - 52,h) . (5.25)

Then, proceeding analogously as for the derivation of (4.26), but now certainly employing (g p,&1,1),
(G2,n,62,1), and (5.12), we obtain

aﬁl,h,&,h(ﬁl,h — o, U1 — Vo p) = fQ(ZQ,h —213) tap (91 — Vo)
(5.26)
+ L(’C(CQ,ha Q2,h E2,n) — K(C1p> 1,0 §1,0)) ton - (B — t2n) -

Next, using the Lipschitz-continuity of K as in the estimate (3.2), recalling that r = 2j, p = 2k, and
r < p, and noting that [t 5 — tapllo;0 < |91, — V2.n]m, we find that

JQ(’C(CZhv Q2,1 §2,0) — K(Cq s Qs 1) tan - (Brp —ton) < Lic (HCLh —Canlora

(5.27)
0,00 |91 h —V2nlH,

+lai,n — a2nllomo + & — 52,h||0,p;9) [E2.n]
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where EK depends on Ly, ||, r, and p. In turn, the Cauchy—Schwarz and Holder inequalities, and
the fact that

[91,n — D2 nllo,0 < |Q|(P=2)/p 91,0 — V2nlopmn < |Q|(P=2)/p Hﬁl,h - 52,h|\H,

yield

0,0;2 Hﬁl,h — 52,h H- (5.28)

0,79 HEQ,h

j (20 — z10) - Fon (910 — Dan) < 20200 |2y, — 2
Q

Finally, using (5.28) and (5.27) we can bound (5.26), so that the resulting estimate along with (5.25)
and the fact that I3 ,(Co s Z2,hs €2,n) = ton, imply (5.24) and conclude the proof. O

Combining Lemmas 5.6, 5.7, and 5.9, we prove next that the operator T} is continuous in the
closed ball W;,(9) of the space Xgp x Hjp. In order to simplify the corresponding statement and
proof, we let Sy, and ITj, := (Hl,h, Hgyh) be the operators defined for each (¢}, V) € Xop x Hyj, by

Sh(Chr9n) = Sh(Bon(ChoVn),9s) and (5.29a)
0, (Chy ) 1= T4 (S(Ch V) Bn(Cs ), ) (5.29b)
so that ﬁl,h and ﬁ27h are obtained from (5.29b) by using, respectively, IT; j, and Iy}, instead of ITj,.

Lemma 5.9. Let p, 0,  and s be the real numbers within the range specified in (3.27), and A > M.
Moreover, assume that h < hg := min{h%, h’}, and that the data are sufficiently small so that there

R

hold (5.9), (5.21a) and (5.21b). Then, there exists a positive constant Lt q, depending on Csq, C=q,
and v(\), and hence independent of h, such that

ITH(C1.nsV1,0) — Tr(Cops V2,n)|
< Lra (1+ Lira [Top(Copy 92.0) lo,00) 1(C1ms 01.0) — (Cops 92.0)
for all (€14, V1,0), (ConsP2,n) € Wi(9).

(5.30)

Proof. Given (¢y p,,V1,1), (Cops V2,n) € Wh(9), we first observe from (5.18), (5.29a), and (5.29b) that

Th(CipsVin) = (gh(Ci,h,79i,h),ﬁ1,h(cz‘,h,ﬁi,h)) Vie{l,2},
which yields

ITH(C1  V1,0) — Tr(Cops D2.n)l

< [Sh(Cin 910) = Sh(Cop 920)| + 1TA(Cop Y10)) — T (Cops V2n)) | -
Then, employing (5.29b) and (5.24), we find that

Hﬁh(Cl,m V1)) — ﬁh(C2,h:792,h)) I
0,9, {th(Cth J1,n) — §h(C2,hv Y1) (5.32)
+ 20 (G 1.0) = BnlCops Vo) + 101 = D2l }
whereas (5.29a) and (5.22) imply
IS(C1s D1,8) = Shl(Cans D2,n)

< Cs.a70) {I18(C0n 910) = En(Gom D) + 91 — D2l }

(5.31)

< Lig Hﬁ2,h(C2,h»UQ2,h>

(5.33)
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In this way, replacing (5.33) back into (5.32) and (5.31), and the resulting (5.32) back into (5.31) as
well, and performing minor algebraic manipulations, we arrive at

ITh(¢ 1 910) — Th(ConY20)| < (1+ Lira o n(Con V2.0)0.p0) (1+ Csav(N))
% {IZ(Capr 010) = (G Dan)| + 191 = Dl

Finally, (5.34) and (5.23) give (5.30) with Lt 4 := (1+Cgav())) (1+C=,av(A)), and end the proof. [

(5.34)

The main result of this section, which establishes the existence of solution of the discrete fixed-point
equation (5.19), or equivalently of the discrete coupled system (5.2), is presented now.

Theorem 5.10. Let p, o, 7 and s be the real numbers within the range specified in (3.27), and
A > M. Moreover, assume that h < hgy := mln{hr, S} and that the data are sufficiently small so
that there hold (5.9), (5.21a) and (5.21b). Then, the operator T}, has a fixed-point (py,,01) € Wh(9).
Equivalently, the coupled problem (5.2) has a solution (py,up) € Xop X My p, (wp,pn) € Xop X My,

and (5h,&h) € Hy, x Qp, with (py, 0n) € Wh(9). Moreover, there hold

) 5}

(s wn)x, v, < C {

Q+’Y(/\)5}

I(whpr)|xaan, < Cza
(

161, 1) |Hxq < Crra(l +9)

where Cs 4, Czq and Crrq are constants depending on Cs 4, C=q and Cryg.

Proof. From the assumptions (5.21a) and (5.21b), and Lemma 5.5 we have that Tj; maps W, (0)
into itself. Furthermore, bearing in mind the continuity of T} (cf. Lemma 5.9), a straightforward
application of the Brouwer Theorem implies the existence of a solution (py,, 05) € Wy, (d) of (5.19), and
hence, the existence of (py,, un) € Xap x My p, (wp, pn) € Xgp x My, and (gh, o) € Hy x Qy, solution
of (5.2). Finally, the a priori estimates follows straightforwardly from (5.6), (5.11), and (5.17), and
bounding | p;,|x, and [|0]x, by o. O

5.5 A priori error analysis

The goal of this section is to establish an a priori error estimate for the Galerkin scheme (5.2). More
precisely, we are interested in deriving the usual Céa estimate for the global error

E = [[(p,w) = (P, wn) s xmy + (@, ) = (wh, o) [ %030y + [(0,6) = (0, ) |HxQ

where ((p,u), (w,p), (67, 5')) € (Xy x M) x (X2 x My) x (H x Q), with (p,0) € W(), is the unique
solution of (3.34), which is guaranteed by Theorem 4.11, and ((py,, us), (wp, pn), (gh,&h)) € (Xgp x
M 1) x (Xgpn x My ) x (Hp, x Qp), with (py,, 0,) € Wh(6), is a solution of (5.2), which is guaranteed
by Theorem 5.10. To this end, we proceed as in [20, Section 4.3] and apply suitable Strang estimates
to each one of the three pairs of associated continuous and discrete formulations forming (3.34) and
(5.2). Throughout the rest of this section, given a subspace Z, of a generic Banach space (Z, | - |z),
we set for each z € Z
dist(z, Zp) = mf |z — znl|z -
z2heZ

We begin the analysis by applying the Strang estimate provided by [6, Proposition 2.1, Corollary
2.3, Theorem 2.3] to the context given by the first and second rows of (3.34) and (5.2). In this way,
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we deduce the existence of a positive constant Cs, depending on aAa; B1a> Bags [al, [b1], and [ba]
(cf. (3.11), Section 5.3), such that there holds

[(p,w) = (o un) [xx01, < Cs {diSt((PaU%th X M) + [Fpg—Fp, 0, ng,h} : (5.35)
Then, according to the definition of F» (cf. (3.10a)), we have that
(Fpo — Fpuo,) (Th) = —7() L (a(p—pn) +B(0—0p)) tr(Th)  VTheXp,

from which, applying Holder’s inequality, and using that r < p, we find that there exists a positive
constant Cr, depending on n, r, p, ||, @, and S, such that

0,79 + H9 - eh

Fps —Fpo.ly, < CorON) {Ip— o0} (5.36)

Next, we apply the classical first Strang’s Lemma (cf. [24, Lemma 2.27]) to the context given by
the third and fourth rows of (3.34) and (5.2). As a consequence, we obtain a positive constant Cg,
depending on aa 4, |c|, |di], |d2], and |e| (cf. (3.22), Section 5.3), such that there holds

|(w,p) = (Wh,pn)[xsxMm, < C= {diSt((wap)v)(Q,h X Mip) + [Gpo — gphﬁhHM;’h}' (5.37)

In this case, the definition of G¢ y (cf. (3.21b)) yields

(Goo— G o) (@) = (V) f

o tr(p — pp) qn + c3(N) L(Qo —0ho)aqn Van € My,

so that, employing again Holder’s inequality and the inequality » < p, and bearing in mind the
definitions of the constants ca(\) and c3(A) (cf. (2.5)), we deduce that

G0~ Gopanlr,, < CavN) o~ prlora + 16— Bulo e (5.38)
where Cg is a positive constant depending on n, r, p, ||, o, and 5.

Furthermore, we apply the Strang estimate provided by [21, Lemma 6.1] to the context given by
the fifth and sixth rows of (3.34) and (5.2). As a result, we get a positive constant Cry, depending on
aaa, Ba, llagoll, |ap, 0,ll, and [b] (cf. (3.31), (3.32), Section 5.3), such that there holds

1(6,8) — (6h, 1) |Hxq < Cm {dist((@ &), Hy, x Qp) + lage(6,-) — aﬁh,eh(@')ﬂﬂfh}, (5.39)

where p = (p,w,p) and P;, = (py,wn,pr). Note that, being ||w| and |wy| bounded by a4 and ay 4,
it turns out that |azg| and [ag, g, are bounded by |a| + aa and |a| + a4, respectively. Now,

according to the definition of ag¢ (cf. (3.30a)), we have for all T = (9n,3n)

ag.o(0,9,) — ag, g, (0,05) = J {’C(P,p, 0) — ’C(Pmph,@h)}%' 3n + J (w—wp) - t9),.  (5.40)
Q Q
Regarding the first term on the right hand side of (5.40), we proceed exactly as for the derivation of
(4.28), so that, employing again the Lipschitz-continuity of IC (cf. (2.11)), the Cauchy—Schwarz and
Holder inequalities, the fact that r < p, and the regularity assumption (H.1) (cf. (4.23)), we obtain
with the same constant Ly from (4.28) that

| {Kto.0.0) = k(om0 } -5

(5.41)

0,0 + H9 - 6)h|

< Lnlgloga {lo = pulore + Ip — pil opcf [Balos-
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In turn, proceeding similarly to the deduction of (4.29), which means using the above mentioned
classical inequalities, along with the a priori estimate (4.15), we can write with the same constant Cy
from (4.15) that

< Cullg

0,002 |[w — whllor0 [Inllo,p0 - (5.42)

[ 70

Hence, utilizing the bounds provided by (5.42) and (5.41), we readily conclude from (5.40) that

lage(0,-) — ap, 0, (0,) |,
_ (5.43)
< Culg

lors0 + [0 — On

|0,p;9} :

where C, := max{EH,CH}. In this way, replacing (5.43) back into (5.39), (5.38) back into (5.37),
and (5.36) back into (5.35), and then adding the resulting inequalities, we arrive at

0,0;2 {Hp — prlora + |w — whlomo + [P —pa

E < Oy {dist((p, ), X x Mi) + dist((w,p), Xon x M)
) ~ ~ (5.44)
+dist((6,5), Hy x Qi) |+ {G27(0) + Gy lglogo} B

where 6’1 = max{és,é’c,én}, 6’2 = max{é’s C’F,éa C’g}, and 6’3 = 6’1-[ C,.

—_

The announced Céa estimate can be stated now.

Theorem 5.11. In addition to the hypotheses of Theorems 4.11 and 5.10, assume that

—_

Cav(N) + Cs g

0,02 S (5.45)

5 .
Then, denoting C = 26’1, there holds
[(p,w) = (o> wn) x50, + [(@,0) = (@hspr) x50, + [(6,8) = (B, Fn) [1xq

<C {dist((p, w), Xo x My ) + dist ((w, p), X, x My) + dist((6, &), Hy, x Qh)} .

Proof. Tt readily follows after employing the assumption (5.45) in (5.44). O

We now aim to establish the associated rates of convergence of the Galerkin scheme (5.2), for which
we collect approximation properties of the finite element subspaces that were introduced in Section
5.2. Indeed, thanks to the error estimates of the vector and tensor versions of the Raviart—Thomas
interpolator (see, e.g. [29, Section 4.1, eq. (4.6)]), as well as of the scalar and vector versions of the
L2-type projector onto piecewise polynomial spaces (see, e.g. [24, Proposition 1.135]), and due to
interpolation estimates of Sobolev spaces, there hold the following:

(AP?) there exists a positive constant C, independent of h, such that for each k € [1,¢ + 1], and for
each T € WE(Q) n Hj(div,; Q), with div(T) € W*"(Q), there holds

dist(7,Xy4) = . ienxf |7 — 74
h 2,h

raivi < CH{ Ik + 1div(T) lre)

(AP}) there exists a positive constant C, independent of h, such that for each k € [0, + 1], and for
each v € WFT(Q), there holds

dist(v, My ) = v énf lv = vnllora < C " V[l
h h

1,
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(AP}’) there exists a positive constant C, independent of h, such that for each k € [1,¢ + 1], and for
each z € WF(Q), with div(z) € WF"(Q), there holds

dist(z, Xpp) = _inf |z 2zhlnaive0 < Chk{uz
h 2,h

e+ V(=) |

(AP‘Z) there exists a positive constant C', independent of h, such that for each k € [0,¢ + 1], and for
each ¢ € W*"(Q), there holds

dist(q, My p) = . inf g —anlome < CHY gk,
h

€M1 n

(AP?L) there exists a positive constant C', independent of h, such that for each k € [0,¢ + 1], and for
each ¥ € W**(Q), there holds

diSt(ﬂ, Hl,h) = inf Hﬁ — ﬂh

ﬁhEHl’h

0,00 S Cn* Hﬂl

k,piS2

(APE) there exists a positive constant C, independent of h, such that for each k € [0,¢ + 1], and for
each 3 € H*(9), there holds

dist(8,Hap) := _inf 8 —Bnfon < C 1" |3]ra,
n€Ha p

(AP;:’) there exists a positive constant C, independent of h, such that for each k € [1,¢ + 1], and for
each 7 € H*(Q), with div(7) e W*¢(Q), there holds

dist(%,Qu) 1= _inf |7~ Fulaivg < OB {[Flia + 1div(F)ls.on)

Th€ERR

The rates of convergence of (5.2) are then stated as follows.

Theorem 5.12. Let ((p,u), (w,p), @, 7)) € (Xgx My) x (Xo x M) x (Hx Q), with (p,0) € W(J), be
the unique solution of (3.34), and let ((py,un), (Wh,pp), (gh,&h)) e (Xgp x Myp) x (Xgp x My p) X
(Hp, x Qp), with (py,,0r) € Wh(0), be a solution of (5.2), which is guaranteed by Theorems 4.11 and
5.10, respectively. Assume the hypotheses of Theorem 5.11 and that there exists k € [1,£ + 1], such
that p € WE(Q) n HE(div,; Q), div(p) € WH(Q), uw e WET(Q), w € WF(Q), div(w) € WF(Q),
pe WhT(Q), 0 e Whe(Q), te HF(Q), & € HF(Q), and div(&) € WHe(Q). Then, there exists a positive
constant C, independent of h, such that

[(p, ) = (s wn) oty + (@, p) = (@hs i) [xaxrty + [(6,8) = (6, &4) [11xa

< CH {llplre + Idiv(p)

ks + [ div(w) [0 (5.46)

’k@;Q} :

|kﬂ";ﬂ + Ju ki T |w|

ki + [0lkp0 + [Eleo + |&

|,I<;7Q + ||div(e)

+ |p

Proof. 1t follows straightforwardly from Theorem 5.11 and the above approximation properties. [

6 Numerical examples

In this final section we present two sets of computational tests, first the verification of convergence
with respect to manufactured solutions in 2D and 3D, and an application example pertaining to the
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flow through a deformable porous channel with obstacles and temperature gradient. In all cases we
take the following indexes (according to (3.27), valid for both 2D and 3D) r = 3, s = %, p =6, and
0= g. The numerical realization has been done using the finite element library FEniCS [1], selecting
Newton-Raphson as nonlinear solver, with an incremental relative tolerance of 10~%. The linear solves

are done with the direct method MUMPS.

6.1 Example 1: convergence verification

The error history (investigating the error decay with respect to mesh refinement — in a sequence of
successively refined regular grids) is done comparing approximate and closed-form exact solutions
defined on the unit square domain = (0,1)2. The mixed variables, forcing and source terms for the
balance equations, and non-homogenous boundary data are taken in such a way that the manufactured
primal unknowns are

1 sin(mzy) L ) B
u(z,y) = 10 (cos(mp) cos(7ry)> , plx,y) = sin(rz)sin(mry), O(x,y) = cos(z) exp(—x — y).

The model constants assume the following simple values: u=1, A=1, k=1 a=1, =1,
x =1, n =1, whereas the stress-assisted diffusion coeflicient is

D(o) = Dy + Dy exp(—tr(a?)), with Dy=0.1 and D;=0.01. (6.1)

The error history associated with the proposed mixed finite element method on a sequence of

successively refined partitions of the domain, are collected in Table 6.1. Absolute errors are computed
for each variable in the following way

|07P;Q’ e(p) = Hp — Ph |7’,divr;Q,

o0, e(F) = |0 — anlaiv,0

e(u) = |u—uplora, e®) =p—prloro, e@) =00k
rdivis0,  e(t) = [t—1,

and we also tabulate rates of error decay computed as r(-) = log(e(-)/é(-))[log(h/h)]~!, where e, é
denote errors generated on two consecutive meshes of sizes h and iL, respectively. All results indicate
optimal convergence of O(h**1) in all fields and for the two tested polynomial degrees, which coincides
with the theoretical result proposed in Theorem 5.12. For this test we have also tabulated the loss
of momentum and mass conservation by taking the * norm of the corresponding residuals projected
into the discrete spaces for displacement and pressure. More precisely, letting P, and Py be the
L2(Q)-type and L2()-type orthogonal projectors, respectively, onto the scalar and vector piecewise
polynomials of degree < k, we set

e(w) = |w —wy,

mony, := |Pr[div(ey) + f]|e=, massy = ||Pglc1(A) pp — div(wy) + c3(A) O + c2(N) tr(pp) — 1],

which, according to the second and fourth equations of (5.2), are essentially zero at machine precision.
The table also reports that a maximum of three iterations are needed by the Newton—Raphson method
to reach a tolerance (either absolute or relative) of 10~® on the residual. Sample approximate solutions
for all fields, obtained with the method using k£ = 0, are plotted in Figure 6.1.

The convergence tests are also done in 3D, taking Q = (0,1)3, the same model parameters as in
the 2D case, and using the following manufactured primal solutions

sin(rzyz)
u(x,y,z) = — | cos(mz)cos(my) cos(mz) |, p(x,y,z) = sin(7rz)sin(my) sin(7z),
sin(mz) sin(my) sin(7z)
O(x,y,z) = cos(zy) exp(—z —y — 2).

We report on the lowest-order case in Table 6.2 and Figure 6.2, allowing us to draw the same conclusions
as in the 2D case.
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PRIMAL UNKNOWNS AND DISCRETE CONSERVATION
DoFs h e(u) r(u) e(p) r(p) e(d) r(¢)  momy, massy,
Errors and convergence rates for k = 0
113 0.707 4.79e-02 * 2.78-01 *  1.59e-01  x  4.44e-16 2.11e-15
417 0.354 2.23e-02 1.11 1.50e-01 0.89 8.15¢-02 0.96 1.52e-15 4.77e-15
1601 0.177 1.04e-02 1.10 7.65e-02 0.98 4.11e-02 0.99 5.12e-15 9.21e-15
6273 0.088 5.05e-03 1.04 3.84e-02 0.99 2.06e-02 1.00 1.48e-13 2.09e-14
24833 0.044 2.50e-03 1.01 1.92e-02 1.00 1.03e-02 1.00 2.14e-12 5.94e-13
98817 0.022 1.25e-03 1.00 9.61e-03 1.00 5.16e-03 1.00 1.26e-12 2.38e-13
Errors and convergence rates for k = 1
337 0.707 1.22e-02 * 8.91e-02 1.48e-02  x  6.46e-15 7.49e-15
1281 0.354 3.02e-03 2.02 2.29e-02 1.96 3.64e-03 2.02 1.17e-14 3.50e-14
4993 0.177 7.48¢-04 2.01 5.83e-03 1.98 9.13e-04 1.99 3.08e-14 5.20e-14
19713 0.088 1.86e-04 2.01 1.46e-03 1.99 2.29e-04 2.00 7.4le-14 1.51e-13
78337 0.044 4.65e-05 2.00 3.66e-04 2.00 5.72e-05 2.00 1.49e-13 3.46e-13
312321 0.022 1.16e-05 2.00 9.16e-05 2.00 1.43e-05 2.00 1.66e-12 1.02e-12

MIXED UNKNOWNS AND ITERATION COUNT

DoFs h e(p) r(p) e(w) r(w) e(t) r(t) e(o) r(o) iter
Errors and convergence rates for k =0
113 0.707 2.14e4+00  « 6.50e+00 * 1.50e-01 % 1.08e-01 * 3
417 0.354 1.16e+00 0.88 3.55e4+00 0.87 7.38e-02 1.02 5.06e-02 1.09 3
1601 0.177 5.98e-01 0.96 1.81e+00 0.98 3.70e-02 1.00 2.81e-02 0.85 3
6273 0.088 3.01e-01 0.99 9.07e-01 0.99 1.86e-02 0.99 1.48e-02 0.93 3
24833 0.044 1.51e-01 1.00 4.54e-01 1.00 9.31e-03 1.00 7.48¢-03 0.98 3
98817 0.022 7.54e-02 1.00 2.27e-01 1.00 4.65e-03 1.00 3.75e-03 1.00 3
Errors and convergence rates for k = 1
337 0.707  6.93e-01 * 1.99e+4-00 * 3.31e-02 x  6.14e-02 * 3
1281 0.354 2.00e-01 1.79 5.12e-01 1.96 4.77e-03 2.79 1.44e-02 2.10 3
4993 0.177 5.21e-02 1.94 1.30e-01 1.98 1.27e-03 1.91 4.65¢-03 1.63 3
19713 0.088 1.32e-02 1.98 3.26e-02 1.99 3.39e-04 1.91 1.33e-03 1.80 3
78337 0.044 3.31e-03 1.99 8.16e-03 2.00 8.82e-05 1.94 3.31e-04 2.01 3
312321 0.022 8.29e-04 2.00 2.04e-03 2.00 2.23e-05 1.98 8.33e-05 1.99 3

Table 6.1: Example 1 (2D). Error history for the primal unknowns together with discrete approxima-
tion of momentum and mass conservation (top table) and convergence of mixed unknowns together
with Newton—Raphson iteration count with respect to mesh refinement (bottom table). The symbol
* indicates that no convergence rate is computed at that refinement level.

6.2 Example 2: injection of fluid in a deformable porous channel

To conclude this section, we investigate the flow patterns of infiltration of a poroelastic channel having
an irregular array of eight circular cylinders that are maintained at a low temperature. The problem
setup mimics the behaviour of sponge-like materials or soils in the presence of macro-pores, for example
[18, 32]. The undeformed body occupies the rectangular domain € = (0,1.6) x (0,1) (in m?), which
we discretize into an unstructured mesh of 55450 triangles.

We consider a simple time-dependent version of the model (2.1), where only the energy balance
equation (2.1c) is modified to have ;0. We use a backward Euler discretization in time, with constant
time step At = 1 (in s) and an initial temperature of 10 degrees. In addition, the boundary conditions
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Figure 6.1: Example 1 (2D). Verification of convergence with respect to manufactured solutions.
Approximate primal (top) and mixed (bottom) unknowns computed using the lowest-order scheme,
and portrayed in the deformed configuration (the outline of the undeformed domain is also shown for

reference).
PRIMAL UNKNOWNS AND DISCRETE CONSERVATION

DoFs h e(u) r(u) e(p) r(p) e(6) r(f)  momy, massy,
139 1.732 7.10e-02 * 3.27e-01 * 2.18e-01 * 6.45e-16  4.00e-15

985 0.866 3.82e¢-02 0.89 2.23e-01 0.55 1.33e-01 0.71 1.16e-15 6.41e-15
7393 0.433 1.91e-02 1.00 1.17e-01 0.94 7.12e-02 0.90 2.72e-15 1.08e-14
07217 0.217 9.35e-03 1.03 5.96e-02 0.97 3.63e-02 0.97 7.76e-15 2.07e-14
450049 0.108 4.63e-03 1.01 3.00e-02 0.99 1.82¢-02 0.99 1.99e-14 3.79e-14

MIXED UNKNOWNS AND ITERATION COUNT

DoF's e(p) r(p) e(w) r(w) e(t) r(t) e(@) r(o) iter
139 1.732  3.76e4-00 * 1.06e+01 * 2.65e-01 * 7.99e-02 * 3
985 0.866 2.17e+00 0.79 7.55e+00 0.49 1.29e-01 1.04 4.67e-02 0.78 3
7393 0.433 1.16e+00 0.90 4.01e+00 0.91 6.56e-02 0.98 2.90e-02 0.69 3
57217 0.217  5.90e-01  0.97 2.05e4+00 0.97 3.27e-02 1.00 1.65e-02 0.81 3
450049 0.108 2.96e-01  0.99 1.03e+00 0.99 1.63e-02 1.00 8.64e-03 0.94 3

Table 6.2: Example 1 (3D). Error history for the primal unknowns together with discrete approxima-
tion of momentum and mass conservation (top table) and convergence of mixed unknowns together
with Newton-Raphson iteration count with respect to mesh refinement (bottom table). The symbol
* indicates that no convergence rate is computed at that refinement level.

are of mixed type and do not coincide exactly with those analyzed in the manuscript. The left segment
is considered an inflow boundary where we set zero displacements (as a natural boundary condition),
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Figure 6.2: Example 1 (3D). Verification of convergence with respect to manufactured solutions.
Approximate primal (top) and mixed (bottom) unknowns computed using the lowest-order scheme,
and portrayed in the deformed configuration (the outline of the undeformed domain is also shown for
reference).

a time-dependent parabolic profile as inflow of filtration flux (as an essential boundary condition), and
a quadratic temperature profile (natural boundary condition)

t
u=0 w-v= %atan(y[l —y)m/s, 0= —Tdy* + 91y + 3 (in °C) on Iin;

on the horizontal walls we approximate a zero-traction boundary condition with a zero normal pseu-
dostress condition (imposed essentially), zero normal flux (essential), and a hot temperature on the
top of the channel and cold on the bottom (natural boundary conditions)

pr=0, w-vr=0, 6=0p, on I'yai,
(where 0p is 3 degrees on the bottom and 20 degrees on the top); on the holes we impose
u=0 w-v=0 60=3°C, on ey

and the boundary conditions are completed by prescribing zero traction (approximated by a zero
normal pseudostress), a vanishing pressure (natural boundary condition), and a zero thermal flux on
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Figure 6.3: Example 2. Fluid injection using Biot—heat equations on a deformable channel with an
array of cylinders, plotted on the undeformed configuration at time ¢ = 50s. Approximate solutions
computed with a second-order method.

the outlet region (essentially imposed)
pvr=0, p=0, o -v=0, on Iyyt.

We do not consider external volume forces nor fluid sources, therefore f = 0, f = g = 0, the stress-
assisted diffusion term is as in Example 1 (cf. (6.1)) with Dy = 1073 and D; = 107, and the
remaining physical parameters are all constant and assuming the values

u=210Pa, A = 1800Pa, n = 10 3Pas, k = 10°m? a=0.9, 3 =15 y = 10 ?Pa.

The simulation runs until £ = 50s. The numerical solutions obtained with a second-order scheme
(setting k = 1, for which the method consists of 667928 DoFs) are portrayed in Figure 6.3, showing
snapshots of the deformed poroelastic region, filtration flux, and all other field variables at the final
time. The expected injection patterns are seen in the flux plot, as well as the progressive heating of
the fluid near the top plate.
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