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Abstract

We propose and analyze new mixed finite element methods for a regularized µpIq-rheology model
of granular flows with an equivalent viscosity depending nonlinearly on the pressure and the eu-
clidean norm of the symmetric part of the velocity gradient. To this end, and besides the velocity,
the pressure and the aforementioned strain rate, we introduce a modified stress tensor that in-
cludes the convective term, and the skew-symmetric vorticity, as auxiliary tensor unknowns, thus
yielding a mixed variational formulation within a Banach spaces framework. Then, the pressure is
obtained through an iterative postprocess suggested by the incompressibility condition of the fluid,
which allows us to express this unknown in terms of the aforementioned stress and the velocity.
A fixed-point strategy combined with a solvability result for a class of nonlinear twofold saddle
point operator equations in Banach spaces, are employed to show, along with the classical Banach
fixed-point theorem, the well-posedness of the continuous and discrete formulations. In particular,
PEERS and AFW elements of order ℓ ě 0 for the stress, the velocity, and the skew-symmetric
vorticity, and piecewise polynomials of degree ď ℓ ` n (resp. ď ℓ ` 1) for the strain rate with
PEERS (resp. with AFW), yield stable Galerkin schemes. Optimal a priori error estimates are
derived and associated rates of convergence are established. Finally, numerical results confirming
the latter and illustrating the good performance of the methods, are reported.

Keywords: granular flows, nonlinear viscosity, twofold saddle point, mixed finite elements, fixed-
point theory, a priori error analysis
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1 Introduction

Granular flows are present in our daily lives in different scales: dust on the streets, pills in flasks or in
pharmaceutical production lines and sand, that can be found in beaches and as dunes in deserts, for

∗This research was partially supported by ANID-Chile through Centro de Modelamiento Matemático
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example. Understanding the dynamics of granular flows is of utmost importance, especially if lives are
at a threat when large scale granular flows occur, such as in landslides and snow avalanches. The first
revolutionary work on the mathematical and computational modelling of granular flows was carried
out by Cundall & Strack [19]: they proposed a discrete element method (DEM) technique to model
the motion of individual granular particles and their contacts with one-another. With this model,
several flows of granular materials were studied with outstanding results [2]. However, large scale
granular flows posed, and still pose, a major computational problem, as the computational power to
simulate enough particles to capture all the relevant features of large scale flows is still unavailable.

The idea of proposing continuum equations, similar to the Navier-Stokes equations for Newtonian
fluids, has always attracted researchers in granular materials. One of the first attempts was carried
out in [35], but it was only when the very thorough work in [27], which proposed consistent rheological
measurements of granular flow properties, that the foundations of an adequate constitutive formulation
for granular materials were properly laid. It was proposed in [31] that the dissipative nature of granular
flows was due to frictional behaviour, and that the frictional coefficient µ of the flow was governed
by the dimensionless inertial number I, that compares the shear and collisional time scales in dense
granular flows. There was a lot of excitement in the granular materials community with the proposition
of this model, as it would be able to handle large scale granular flows, such as avalanches, landslides,
sand dunes, etc., that cannot be simulated in their full scale using discrete particles. Since [31] was
published, there have been already several works proposing numerical solutions of the µpIq-rheology
equations in different physical setups [33, 36, 15, 21], but there is still some work to be done both
on the model itself and on the numerical techniques that are used to solve the underlying governing
equations [5].

The major difficulty imposed by the µpIq-rheology model is the dependence of the dissipative
terms on the pressure of the flow. This will be presented in more detail in the following section.
However, it is clear that this poses an extra complication to the numerical algorithms that are normally
based on pressure-correction projection schemes [28]. In other words, the strong non-linearity of the
µpIq-rheology model prevents us from guaranteeing in advance successful applications of classical
numerical methods, such as primal finite elements and related techniques, which are known to be
usually more suitable for linear problems, particularly if they are posed within a Hilbertian framework.
In this regard, we find it important to stress that the suitability of Banach spaces-based approaches to
analyze the continuous and discrete solvabilities of diverse nonlinear problems in continuum mechanics,
including several coupled models, and employing mainly mixed formulations, has been confirmed by
a significant amount of contributions in recent years. Brinkman-Forchheimer, Darcy-Forchheimer,
Navier-Stokes, Boussinesq, coupled flow-transport, and fluidized beds are some of the respective models
addressed, and a non-exhaustive list of the corresponding references includes [6, 10, 13, 14, 16, 17,
18, 25]. Needless to say, the most distinctive feature of a mixed formulation is the incorporation of
additional unknowns, usually depending on the original ones of the model, for either analytical or
physical reasons.

Furthermore, one of the main advantages of employing a Banach framework is the fact that no
augmentation is required, a common “trick” of Hilbert spaces-based formulations to force them to
become, for instance, elliptic or strongly monotone, and hence the spaces to which the unknowns
belong are the natural ones arising simply from the testing of the equations of the model along with
the use of the Cauchy-Schwarz and Hölder inequalities. In this way, simpler and closer to the original
physical model formulations are derived. In turn, the main benefits of employing a mixed approach
include the derivation of momentum-conservative numerical schemes, and the possibility of obtaining
direct approximations of further variables of physical interest, either by incorporating them into the
formulation, or by employing a postprocessing formula in terms of the remaining unknowns. In the
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particular case of our model of interest, to be described below in Section 2, the above might certainly
mean to be able to obtain direct calculations of strain rate tensor, shear rate, inertia number, and
vorticity, among other variables of interest, thus avoiding numerical differentiation and its consequent
loss of accuracy, to approximate them.

According to the previous discussion, the goal of the present work is to introduce and analyze mixed
finite element methods for numerically solving the steady-state µpIq-rheology equations for granular
flows. The work is organized as follows. In the rest of this section we collect some notations to be
employed throughout the paper. In Section 2 we describe the mathematical model, which includes
the setting of a regularized viscosity, and introduce, besides the velocity and the pressure, the further
unknowns to be considered. Next, in Section 3 we develop the mixed variational formulation, which is
shown to have a twofold saddle point-type structure. The corresponding solvability analysis is carried
out in Section 4 by adopting a fixed-point strategy in terms of the velocity and the pressure, and
by employing an abstract result on the well-posedness of Banach spaces-based twofold saddle point
operator equations, along with the classical Banach theorem. Lipschitz-continuity and motononicity
properties of the viscosity function are also required for the analysis. In turn, in Section 5 we define the
associated Galerkin scheme, and assume suitable hypotheses on the finite element subspaces in order
to prove the corresponding well-posedness by means of a discrete fixed-point approach. A priori error
estimates are also obtained here. Then, specific finite element subspaces satisfying the aforementioned
assumptions, are derived in Section 6 by applying a useful connection with the discrete stability of
the usual Hilbertian mixed formulation for linear elasticity, and optimal rates of convergence are
established as well. Finally, numerical experiments illustrating the theoretical findings are reported in
Section 7, whereas the fulfillment of the hypotheses on the viscosity is discussed in Appendix A.

Preliminary notations

In what follows, Ω is a bounded domain of Rn, n P
␣

2, 3
(

, with Lipschitz-continuous boundary Γ, and
corresponding outward normal denoted ν. Then, we adopt the usual notation for Lebesgue spaces
LtpΩq and Sobolev spaces Wl,tpΩq and Wl,t

0 pΩq, with l ě 0 and t P r1,`8q, whose corresponding
norms, either for the scalar and vectorial case, are denoted by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively.
In particular, W0,tpΩq “ LtpΩq, and when t “ 2 we write HlpΩq instead of Wl,2pΩq, with the
corresponding norm and seminorm denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In addition, given
any generic scalar functional space M, we let M and M be its vectorial and tensorial counterparts,
respectively, whereas } ¨ } is employed for the norm of any element or operator whenever there is no
confusion about the spaces to which they belong. Also, I stands for the identity tensor in Rnˆn, and,
besides denoting the absolute value in R, | ¨ | stands for the Euclidean norms in Rn and Rnˆn. In turn,
for any vector fields v “ pviqi“ 1,n and w “ pwiqi“ 1,n, we set the gradient, divergence, and tensor
product operators, respectively, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j “ 1,n

, divpvq :“

n
ÿ

j “ 1

Bvj
Bxj

, and v b w :“ pviwjqi,j “ 1,n .

On the other hand, for any tensor fields τ “ pτijqi,j “ 1,n and ζ “ pζijqi,j “ 1,n, we let divpτ q be the
divergence operator div acting along the rows of τ , and define the transpose, the trace, the tensor
inner product operators, and the deviatoric tensor, respectively, as

τ t “ pτjiqi,j “ 1,n, trpτ q “

n
ÿ

i“ 1

τ ii, τ : ζ :“

n
ÿ

i,j “ 1

τijζij ,

and τ d :“ τ ´
1

n
trpτ q I .

(1.1)
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Furthermore, given t P p1,`8q, we introduce the Banach space

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.2)

which is endowed with the natural norm defined by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq . (1.3)

Then, proceeding as in [22, eq. (1.43), Section 1.3.4] (see also [11, Section 4.1] and [16, Section 3.1]),

it is easy to show that for each t P

"

p1,`8q if n “ 2
r6{5,`8q if n “ 3

, there holds

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.4)

where x¨, ¨y stands for the duality pairing between H´1{2pΓq and H1{2pΓq.

2 The mathematical model

We are interested in the flows of granular materials based on the µpIq-rheology approach introduced
in [31]. This rheological model arose from the fundamental hypothesis that the corresponding stresses
can be described by a visco-plastic constitutive equation in which the internal friction µ of the material,
which governs the yield stress, is not constant and depends on a flow parameter called the inertial
number I. In order to introduce the corresponding mathematical model, we consider the flow of
particles of constant density ρp and diameter d in Ω, denote by u the velocity of the flow, and assume
that the latter is incompressible, that is, the volume fraction ϕ of particles is constant throughout the
flow, so that the overall density is ρ “ ϕρp. The governing equations are then given by:

ρ

ˆ

Bu

Bt
` p∇uqu

˙

“ divpσq ` ρg in Ω , (2.1)

and
divpuq “ 0 in Ω . (2.2)

In turn, the stress tensor σ is composed of two terms, a deviatoric one associated to dissipation due to
the internal friction of the medium, which is inspired by a Coulomb friction-like law, and an isotropic
one related to the pressure p on the medium. More precisely, there holds

σ “
?
2µ p

D

|D|
´ p I in Ω , (2.3)

where µ is the internal friction coefficient of the granular continuum, D is the symmetric part of the
velocity gradient, namely

D :“
1

2

´

∇u ` p∇uqt
¯

, (2.4)

which is also known as the rate of strain tensor, and

|D| “
?
D : D . (2.5)

Note, thanks to the incompressibility condition (2.2), that there holds

trpDq “ divpuq “ 0 . (2.6)
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Now, if the friction coefficient is constant, we have the traditional Coulomb model for granular ma-
terials [32]. However, there is strong evidence [27] that µ actually depends on the local properties of
the flow through the inertial number I, in the form

µpIq :“ µs `

ˆ

µd ´ µs

I ` I0

˙

I with I “

?
2 d |D|
a

p{ρ
, (2.7)

where the coefficients µs and µd correspond, respectively, to the static and dynamic friction limits,
and I0 is a reference (experimental) constant. Then, substituting (2.7) in the constitutive relation
(2.3), we arrive at

σ “ ηpp, |D|qD ´ p I in Ω , (2.8)

where η : R` ˆ R` ÝÑ R` is defined as

ηpϱ, ωq :“
a1 ϱ

ω
`

a2 ϱ

a3
?
ϱ ` a4 ω

@ pϱ, ωq P R` ˆ R` , (2.9)

with positive coefficients ai, i P
␣

1, 2, 3, 4
(

, given by

a1 :“
?
2µs , a2 :“ 2 dpµd ´ µsq , a3 :“ ρ´1{2 I0 , and a4 :“

?
2 d . (2.10)

We stress here that the term ηpp, |D|q in (2.8), which can be understood as an equivalent viscosity,
is singular when |D| “ 0. Indeed, it is expected that some regions of the granular flows are static,
as granular materials can exhibit a solid-like behavior [2], just as in a sand pile. In this particular
case, the flow of grains only happens near the surface of the dunes, while in the inner core of flow,
the material remains static (and resist stresses). In this regard, there are different ways to regularize
this problem [21]. For instance, one way is to add a small parameter 0 ă ε ! 1 to the denominators
in (2.9), thus yielding

ηpϱ, ωq :“
a1 ϱ

ω ` ε
`

a2 ϱ

a3
?
ϱ ` a4 ω ` ε

@ pϱ, ωq P R` ˆ R` . (2.11)

Finally, regarding boundary conditions, and knowing that recent evidence [29] suggests that there can
be some slip between the grains and the boundaries, we proceed accordingly and assume this condition
for the steady-state regime that we consider below.

In virtue of the above discussion, the governing equations of the stationary model arising from (2.1),
(2.2), and (2.8), are given by

ρ p∇uqu “ div
`

ηpp, |D|qD
˘

´ ∇p ` ρg in Ω ,

divpuq “ 0 in Ω , u “ uD on Γ ,
(2.12)

where uD P H1{2pΓq constitutes a non-necessarily null Dirichlet boundary condition for u. In addition,
since our main interest is to develop a fully-mixed finite element method for (2.12), we now introduce
a modified stress tensor, still denoted σ, as the further unknown defined by

σ :“ ηpp, |D|qD ´ p I ´ ρ pu b uq . (2.13)

In this way, recalling that the overall density is constant, and noting that the incompressibility con-
dition allows us to show that div

`

u b u
˘

“ p∇uqu, we deduce that the momentum equation can be
rewritten as

divpσq ` ρg “ 0 in Ω . (2.14)
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Moreover, applying deviatoric operator (cf. (1.1)) to (2.13), and using (2.6), which obviously yields
Dd “ D, we find that

σd :“ ηpp, |D|qD ´ ρ pu b uqd in Ω . (2.15)

In turn, applying now matrix trace to (2.13), we obtain an explicit formula for the pressure p in terms
of σ and u, namely

p “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

. (2.16)

We remark here that (2.13) and the incompressibility condition (2.2) are jointly equivalent to (2.15) -
(2.16). On the other hand, in order to perform the usual integration by parts procedure required by
a mixed formulation, which reduces to be able to test ∇u, we now decompose D as

D “ ∇u ´ γ , (2.17)

where γ is the auxiliary known given by

γ :“
1

2

´

∇u ´ p∇uqt
¯

. (2.18)

Note that the diagonal entries of γ are all null, and that the off diagonal ones include the components
of the vorticity ∇ ˆ u. Summarizing, (2.12) can be equivalently reformulated as: Find D, σ, u, p,
and γ in suitable spaces, to be defined later on, such that

D ´ ∇u ` γ “ 0 in Ω ,

ηpp, |D|qD ´ σd ´ ρ pu b uqd “ 0 in Ω ,

divpσq ` f “ 0 in Ω ,

p “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

in Ω , u “ uD on Γ ,

(2.19)

where, for sake of generality as well as for convenience of the numerical experiments to be reported
later on, we have replaced ρg by a source term f , which belongs to a space to be precised in due
course. We end this section by remarking that, because of (2.2), the datum uD must satisfy the
compatibility condition

ż

Γ
uD ¨ ν “ 0 . (2.20)

3 The continuous formulation

In this section we derive a variational formulation for the system (2.19). To this end, we first proceed
analogously to [7, Section 3] and look originally for u in H1pΩq. In this way, multiplying the first

equation of (2.19) by τ P Hpdivt; Ωq, where t P

"

p1,`8q if n “ 2
r6{5,`8q if n “ 3

, and then applying the

integration by parts formula (1.4) along with the Dirichlet boundary condition for u, we obtain
ż

Ω
τ : D `

ż

Ω
u ¨ divpτ q `

ż

Ω
τ : γ “ xτ ν,uDy @ τ P Hpdivt; Ωq . (3.1)

We notice that the first and third terms make sense for D, γ P L2pΩq, which, due to the free trace
property of D (cf. (2.6)) and the skew symmetry of γ (cf. (2.18)), leads to look for D P L2

trpΩq and
γ P L2

skpΩq, where

LtrpΩq :“
!

E P L2pΩq : trpEq “ 0
)

, (3.2)
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and
LskpΩq :“

!

ξ P L2pΩq : ξt “ ´ξ
)

. (3.3)

In turn, since divpτ q P LtpΩq, we realize by Hölder’s inequality that the second term from (3.1) is
actually well defined for u P Lt1

pΩq, where t1 P p1,`8q is the conjugate of t. On the other hand, in
order to continue the present derivation, we need to introduce the following hypothesis:

(H.1) there exist constants η1, η2 such that

0 ă η1 ď ηpϱ, ωq ď η2 @ pϱ, ωq P R` ˆ R` . (3.4)

Certainly, the above assumption might imply the need to suitably redefine η in (2.11). Next, testing
the second equation of (2.19) against E P L2

trpΩq, and using that ζd : E “ ζ : E for all ζ P L2pΩq, we
formally obtain

ż

Ω
ηpp, |D|qD : E ´

ż

Ω
σ : E ´ ρ

ż

Ω
pu b uq : E “ 0 , (3.5)

which says, thanks to (3.4), that the first term is well defined, whereas the second one makes sense if
σ is sought in L2pΩq. Regarding the last term, we first notice, thanks to Cauchy-Schwarz’s inequality
in L2pΩq and Rn, that there holds

}w b v}0,Ω ď n1{2 }w}0,4;Ω }v}0,4;Ω @w, v P L4pΩq . (3.6)

It follows that
ˇ

ˇ

ˇ

ˇ

ż

Ω
pu b uq : E

ˇ

ˇ

ˇ

ˇ

ď }pu b uq}0,Ω }E}0,Ω ď n1{2 }u}20,4;Ω }E}0,Ω , (3.7)

from which we deduce that it suffices to consider t1 “ 4, thus looking for u in L4pΩq (equivalently
pu b uq P L2pΩq), and then t “ 4{3, whence the test space of (3.1) becomes Hpdiv4{3; Ωq. The above

suggests to seek σ in this same space, which requires f to belong to L4{3pΩq, so that the third equation
of (2.19) is tested as

ż

Ω
v ¨ divpσq “ ´

ż

Ω
f ¨ v @v P L4pΩq . (3.8)

Now, having identified the spaces to which σ and u belong, we realize from the first equation in the
last row of (2.19) that the pressure p must be sought in L2pΩq. Furthermore, the symmetry of σ (cf.
(2.13)) is weakly imposed by

ż

Ω
σ : ξ “ 0 @ ξ P L2

skpΩq . (3.9)

Finally, we resort to the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , (3.10)

where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

)

. (3.11)

In this way, the unknown σ can be decomposed as σ “ σ0 ` c0 I, where σ0 P H0pdiv4{3; Ωq and,
according to the expression for p in (2.19), there holds

c0 :“
1

n |Ω|

ż

Ω
trpσq “ ´

1

|Ω|

ż

Ω
p ´

ρ

n |Ω|

ż

Ω
trpu b uq , (3.12)
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which means that, given p, the constant c0 can be computed once the velocity is known. Thus, it
only remains to find σ0, which can be placed instead of σ in (3.5), (3.8), and (3.9) without altering
the validity of these equations. Moreover, it is easy to see that for each τ P R I both sides of (3.1)
vanish, in particular the right one because of the compatibility condition (2.20), and hence testing
(3.1) against τ P Hpdiv4{3; Ωq is equivalent to doing it against τ P H0pdiv4{3; Ωq. Consequently,
redenoting from now on σ0 as simply σ P H0pdiv4{3; Ωq, and suitably gathering (3.1), (3.5), (3.8),
and (3.9), we deduce the following mixed variational formulation of (2.19): Given p P L2pΩq, find
pD,σ,u,γq P L2

trpΩq ˆ H0pdiv4{3; Ωq ˆ L4pΩq ˆ L2
skpΩq such that

ż

Ω
ηpp, |D|qD : E ´

ż

Ω
σ : E ´ρ

ż

Ω
pu b uq : E “ 0 ,

´

ż

Ω
τ : D ´

ż

Ω
u ¨ divpτ q ´

ż

Ω
τ : γ “ ´xτ ν,uDy ,

´

ż

Ω
v ¨ divpσq ´

ż

Ω
σ : ξ “

ż

Ω
f ¨ v ,

(3.13)

for all pE, τ ,v, ξq P L2
trpΩqˆH0pdiv4{3; ΩqˆL4pΩqˆL2

skpΩq. Next, in order to emphasize the particular
structure of (3.13), we set the spaces

H1 :“ L2
trpΩq , H2 :“ H0pdiv4{3; Ωq , and Q :“ L4pΩq ˆ L2

skpΩq , (3.14)

which are endowed with the norms

}E}H1 :“ }E}0,Ω , }τ }H2 :“ }τ }div4{3;Ω , and }pv, ξq}Q :“ }v}0,4;Ω ` }ξ}0,Ω ,

respectively, and introduce the notations

u⃗ :“ pu,γq , v⃗ :“ pv, ξq P Q .

Then, denoting from now on by r ¨, ¨ s the duality pairing between X 1 and X for any Banach space X,
the system (3.13) can be rewritten as: Given p P L2pΩq, find pD,σ, u⃗q P H1 ˆ H2 ˆ Q such that

rAppDq,Es `B1pE,σq “ FupEq @E P H1 ,

B1pD, τ q `Bpτ , u⃗q “ Gpτ q @ τ P H2 ,

Bpσ, v⃗q “ Fpv⃗q @ v⃗ P Q ,

(3.15)

where the nonlinear operator Ap : H1 Ñ H1
1, the bilinear forms B1 : H1ˆH2 Ñ R and B : H2ˆQ Ñ R,

and the functionals Fz : H1 Ñ R, for each z P L4pΩq, G : H2 Ñ R, and F : Q Ñ R, are defined by

rAppDq,Es :“

ż

Ω
ηpp, |D|qD : E @D, E P H1 , (3.16)

B1pE, τ q :“ ´

ż

Ω
τ : E @ pE, τ q P H1 ˆ H2 , (3.17)

Bpτ , v⃗q :“ ´

ż

Ω
v ¨ divpτ q ´

ż

Ω
τ : ξ @ pτ , v⃗q P H2 ˆ Q , (3.18)

FzpEq :“ ρ

ż

Ω
pz b zq : E @E P H1 , (3.19)

Gpτ q :“ ´xτ ν,uDy @ τ P H2 , (3.20)
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and

Fpv⃗q :“

ż

Ω
f ¨ v @ v⃗ P Q . (3.21)

Note that the upper bound of η (cf. (3.4)) guarantees that Ap is well-defined in the sense that
AppDq P H1

1 for all D P H1. In turn, regarding the boundedness properties of the above bilinear forms
and linear functionals, we employ the Cauchy-Schwarz and Hölder inequalities, along with (3.7), and
the continuity of both the normal trace operator in Hpdiv4{3; Ωq and the injection i4 : H

1pΩq Ñ L4pΩq,
to deduce the existence of positive constants, denoted and given as

}B1} :“ 1 , }B} :“ 1 , }Fz} :“ ρn1{2 }z}20,4;Ω ,

}G} :“ max
␣

1, }i4}
(

}uD}1{2,Γ , and }F} :“ }f}0,4{3;Ω ,
(3.22)

such that
|B1pE, τ q| ď }B1} }E}H1 }τ }H2 @ pE, τ q P H1 ˆ H2 ,

|Bpτ , v⃗q| ď }B} }τ }H2 }v⃗}Q @ pτ , v⃗q P H2 ˆ Q ,

|FzpEq| ď }Fz} }E}H1 @E P H1 ,

|Gpτ q| ď }G} }τ }H2 @ τ P H2 , and

|Fpv⃗q| ď }F} }v⃗}Q @ v⃗ P Q .

(3.23)

We stress here that (3.15) can be seen as a twofold saddle point-type formulation with a nonlinear
operator Ap. Furthermore, once this system is solved, and because of its dependence on the given p,
we propose to update the pressure unknown according to the expression provided in the last row of
(2.19). More precisely, bearing in mind that the stress tensor appearing there is actually σ`c0 I, with
σ P H0pdiv4{3; Ωq being part of the solution of (3.15), and c0 given by (3.12), we find that the new
pressure, say pN , becomes

pN “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

`
1

|Ω|

ż

Ω
p `

ρ

n |Ω|

ż

Ω
trpu b uq .

Note from the foregoing equation that pN , and hence all the subsequent updates of it, keep the same
mean value of p, that is

ş

Ω pN “
ş

Ω p, so that from now on we assume a given positive value, say κ,
and define

L2
κpΩq :“

!

q P L2pΩq :

ż

Ω
q “ κ

)

.

In this way, after solving (3.15) with a given p P L2
κpΩq, we simply define

pN “ ´
1

n
tr
`

σ ` ρ pu b uq
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpu b uq . (3.24)

We will go back to the above when introducing below in Section 4 a suitable fixed-point approach to
analyze the solvability of (3.15).

4 The continuous solvability analysis

In this section we employ a fixed-point approach along with an abstract result on the well-posedness of
the aforementioned type of nonlinear operator equations in Banach spaces, to analyze the solvability
of the mixed variational formulation (3.15).
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4.1 The fixed point strategy

We begin by introducing the operator T : L4pΩq ˆ L2
κpΩq ÝÑ L4pΩq ˆ L2

κpΩq defined as

Tpz, rq :“ pu, pq @ pz, rq P L4pΩq ˆ L2
κpΩq , (4.1)

where pD,σ, u⃗q :“
`

D,σ, pu,γq
˘

P H1ˆH2ˆQ is the unique solution (to be confirmed later on) of the
problem arising from (3.15) when Ap and the functional Fu are replaced by Ar and Fz, respectively,
that is

rArpDq,Es `B1pE,σq “ FzpEq @E P H1 ,

B1pD, τ q `Bpτ , u⃗q “ Gpτ q @ τ P H2 ,

Bpσ, v⃗q “ Fpv⃗q @ v⃗ P Q ,

(4.2)

and p is computed according to (3.24), that is

p :“ ´
1

n
tr
`

σ ` ρ pu b uq
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpu b uq . (4.3)

Then, it is readily seen that solving (3.15) is equivalent to finding a fixed point of T, that is pu, pq P

L4pΩq ˆ L2
κpΩq such that

Tpu, pq “ pu, pq . (4.4)

4.2 Well-definedness of the fixed point operator

In this section we prove that the operator T (cf. (4.1) - (4.2)) is well-defined, for which we make use
of the following abstract result establishing sufficient conditions for the well-posedness of a class of
twofold saddle point operator equations.

Theorem 4.1. Let X1, X2, and Y be reflexive and separable Banach spaces, and let A : X1 Ñ X1
1

be a nonlinear operator, and B1 : X1 ˆ X2 Ñ R and B : X2 ˆ Y Ñ R be bounded bilinear forms. In
addition, let V be the null space of the operator induced by B, and assume that

i) A is Lipschitz-continuous, that is there exists a positive constant LA such that

}Aprq ´ Apsq}X1
1

ď LA }r ´ s}X1 @ r, s P X1 ,

ii) the family of operators
␣

Apt ` ¨q
(

tPX1
is uniformly strongly monotone, that is there exists a

positive constant αA such that

rApt ` rq ´ Apt ` sq, r ´ ss ě αA }r ´ s}2X1
@ t, r, s P X1 ,

iii there exists a positive constant β such that

sup
τPX2
τ ­“0

Bpτ, vq

}τ}X2

ě β }v}Y @ v P Y ,

iv) and there exists a positive constant β1 such that

sup
rPX1
r­“0

B1pr, τq

}r}X1

ě β1 }τ}X2 @ τ P V .

10



Then, for each pF1,F2,Gq P X1
1 ˆ X1

2 ˆ Y1 there exists a unique pt, σ, uq P X1 ˆ X2 ˆ Y such that

rAptq, ss ` B1ps, σq “ F1psq @ s P X1 ,

B1pt, τq ` Bpτ, uq “ F2pτq @ τ P X2 ,

Bpσ, vq “ Gpvq @ v P Y .

(4.5)

Moreover, there exists a positive constant C, depending only on LA, αA, β, β1, and the boundedness
constant of B1, say }B1}, such that

}pt,σ,uq}X1ˆX2ˆY ď C
!

}F1}X1
1

` }F2}X1
2

` }G}Y1 ` }Ap0q}X1
1

)

. (4.6)

Proof. It is a particular case of [12, Theorem 3.4].

As already announced, we plan to apply Theorem 4.1 to conclude the well-posedness of (4.2), for
which we proceed next to show that the respective hypotheses are satisfied. In particular, for those
involving Ar, we need to incorporate additional assumptions on the function η, namely

(H.2) with the same positive constants η1 and η2 from (H.1), there holds

0 ă η1 ď ηpϱ, ωq ` ω
B

Bω
ηpϱ, ωq ď η2 @ pϱ, ωq P R` ˆ R` , and (4.7)

(H.3) there exists a positive constant Lη such that
ˇ

ˇηpϱ, ωq ´ ηpχ, ωq
ˇ

ˇω ď Lη |ϱ ´ χ| @ ϱ, χ, ω P R`. (4.8)

In the Appendix A we prove that η, as defined by (2.11), satisfies (H.3) and that, under a suitable
modification of its domain, it accomplishes (H.1) and (H.2) as well.

Then, we can prove the following lemma establishing continuity and strong-monotonicity properties
of the nonlinear operator Ar.

Lemma 4.2. Let LA :“ 2η2 ´ η1 and αA :“ η1. Then, there holds

}ArpDq ´ ArpEq}H1
1

ď LA }D ´ E}H1 @ r P L2pΩq , @D, E P H1 , (4.9)

rArpDq ´ ArpEq,D ´ Es ě αA }D ´ E}2H1
@ r P L2pΩq , @D, E P H1 , (4.10)

and
ˇ

ˇrArpDq ´ AqpDq,Es
ˇ

ˇ ď Lη }r ´ q}0,Ω }E}H1 @ r, q P L2pΩq , @D, E P H1 . (4.11)

Proof. For the proofs of (4.9) and (4.10) we refer to [26, Theorem 3.8]. In turn, given r, q P L2pΩq,
and D, E P H1, bearing in mind the definition of Ar (cf. (3.16)), and using (4.8) with ϱ “ r, χ “ q,
and ω “ |D|, we deduce that

ˇ

ˇrArpDq ´ AqpDq,Es
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

Ω

!

ηpr, |D|q ´ ηpq, |D|q

)

D : E

ˇ

ˇ

ˇ

ˇ

ď

ż

Ω

ˇ

ˇηpr, |D|q ´ ηpq, |D|q
ˇ

ˇ |D| |E| ď Lη

ż

Ω
|r ´ q| |E| ,

from which, applying Cauchy-Schwarz’s inequality, we obtain (4.11) and end the proof.
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We now observe from (4.9) and (4.10) that, for each r P L2pΩq, Ar verifies the hypotheses i) and ii)
of Theorem 4.1 with the constants LA and αA (cf. Lemma 4.2), respectively. In particular, for ii) we
simply notice that there holds

rArpJ ` Dq ´ ArpJ ` Eq,D ´ Es “ rArpJ ` Dq ´ ArpJ ` Eq, pD ` Jq ´ pE ` Jqs

ě αA }pD ` Jq ´ pE ` Jq}2H1
“ αA }D ´ E}2H1

@J, D, E P H1 .

Next, we recall from [25] the following lemma establishing the continuous inf-sup condition for B.

Lemma 4.3. There exists a positive constant rβ such that

sup
τPH2
τ ­“0

Bpτ , v⃗q

}τ }H2

ě rβ }v⃗}Q “ rβ
!

}v}0,4;Ω ` }ξ}0,Ω

)

@ v⃗ :“ pv, ξq P Q . (4.12)

Proof. See [25, Lemma 3.5] for details.

Regarding the continuous inf-sup condition for B1, we first observe from the definition of B (cf.
(3.18)) that the null space of its induced operator is given by

V :“
!

τ P H2 : divpτ q “ 0 and τ “ τ t in Ω
)

.

Then, we recall from [24] the following result.

Lemma 4.4. There exists a positive constant rβ1 such that

sup
EPH1
E ­“0

B1pE, τ q

}E}H1

ě rβ1 }τ }H2 @ τ P V . (4.13)

Proof. See [24, Lemma 3.3] for details.

We remark here that the proof of Lemma 4.4 makes use of the inequality establishing the existence
of a positive constant c1 such that

c1 }τ }0,Ω ď }τ d}0,Ω ` }divpτ q}0,4{3;Ω @ τ P H0pdiv4{3; Ωq . (4.14)

The well-posedness of (4.2), equivalently the well-definedness of T, is stated now as follows.

Theorem 4.5. For each pz, rq P L4pΩq ˆ L2
κpΩq there exists a unique pD,σ, u⃗q :“

`

D,σ, pu,γq
˘

P

H1 ˆ H2 ˆ Q solution to (4.2), and hence one can define Tpz, rq :“ pu, pq P L4pΩq ˆ L2
κpΩq, where p

is computed according to (4.3). Moreover, there exists a positive constant CT, depending only on LA,
αA, rβ, rβ1, n, and }i4}, such that

}u}0,4;Ω ď }pD,σ, u⃗q}H1ˆH2ˆQ ď CT

!

ρ }z}20,4;Ω ` }uD}1{2,Γ ` }f}0,4{3;Ω

)

. (4.15)

Proof. Having already checked that (4.2) verifies the assumptions i) and ii) of Theorem 4.1, and noting
that Lemmas 4.3 and 4.4 confirm that ii) and iv) also hold, the proof is a straightforward application
of that abstract result. In particular, the a priori estimate (4.15) follows from (4.6), the boundedness
properties of the functionals involved (cf. (3.22), (3.23)), and the fact that App0q “ 0 P H1

1. Regarding
CT, note that we omit its dependence on }B1} since this latter value equals 1 (cf. (3.22)).
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4.3 Solvability analysis of the fixed point equation

Knowing that T is well-defined, we now address the solvability of the fixed-point equation (4.4).
We begin the analysis deriving sufficient conditions on T to map a complete metric subspace of
L4pΩ ˆ L2

κpΩq into itself. Indeed, given δ ą 0, we set

Wpδq :“
!

z P L4pΩq : }z}0,4;Ω ď δ
)

and Spδq :“ Wpδq ˆ L2
κpΩq . (4.16)

Then, proceeding as in [7, Lemma 4.7], we are able to prove the following result.

Lemma 4.6. Assume that

ρ δ ď
1

2CT
and CT

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

ď
δ

2
. (4.17)

Then, T
`

Spδq
˘

Ď Spδq.

Proof. Given pz, rq P Spδq, we know from Theorem 4.5 that Tpz, rq :“ pu, pq is well-defined and that,
in virtue of (4.15) and the assumptions from (4.17), there holds

}u}0,4;Ω ď CT

!

ρ }z}20,4;Ω ` }uD}1{2,Γ ` }f}0,4{3;Ω

)

ď CT ρ δ2 `
δ

2
ď δ ,

whereas (4.3) guarantees that p P L2
κpΩq, and hence pu, pq P Spδq.

The continuity property of T is established next.

Lemma 4.7. Under the same assumption of Lemma 4.6, that is (4.17), there exist positive constants
LjpTq, j P

␣

1, 2
(

, depending only on LA, αA, rβ, rβ1, n, and }i4}, such that

}Tpz, rq ´ Tpz
r

, r
r

q} ď L1pTq ρ δ }z ´ z
r

}0,4;Ω ` L2pTqLη }r ´ r
r

}0,Ω (4.18)

for all pz, rq, pz
r

, r
r

q P Spδq.

Proof. Given pz, rq, pz
r

, r
r

q P Spδq, we let

Tpz, rq :“ pu, pq and Tpz
r

, r
r

q :“ pu
r

, p
r

q , (4.19)

where pD,σ, u⃗q “
`

D,σ, pu,γq
˘

P H1 ˆ H2 ˆ Q is the unique solution of (4.2) and p is defined by
(4.3), and, analogously, pD

r

,σ
r

, u⃗
r

q “
`

D
r

,σ
r

, pu
r

,γ
r

q
˘

P H1 ˆ H2 ˆ Q is the unique solution of (4.2) with

Ar
r

and Fz
r

instead of Ar and Fz, respectively, and, following (4.3),

p
r

:“ ´
1

n
tr
`

σ
r

` ρ pu
r

b u
r

q
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpu

r

b u
r

q . (4.20)

Then, subtracting from each other the aforementioned systems (4.2) whose solutions are pD,σ, u⃗q and
pD
r

,σ
r

, u⃗
r

q, we obtain

rArpDq ´ Ar
r

pD
r

q,Es `B1pE,σ ´ σ
r

q “
`

Fz ´ Fz
r

˘

pEq @E P H1 ,

B1pD ´ D
r

, τ q `Bpτ , u⃗ ´ u⃗
r

q “ 0 @ τ P H2 ,

Bpσ ´ σ
r

, v⃗q “ 0 @ v⃗ P Q .

(4.21)
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Next, taking τ “ σ ´ σ
r

, we get from the second and third rows of the foregoing equation that

B1pD ´ D
r

,σ ´ σ
r

q “ ´Bpσ ´ σ
r

, u⃗ ´ u⃗
r

q “ 0 ,

which, along with the first row applied to E “ D ´ D
r

, yields

rArpDq ´ Ar
r

pD
r

q,D ´ D
r

s “
`

Fz ´ Fz
r

˘

pD ´ D
r

q .

Thus, subtracting and adding Ar
r

pD
r

q , we see that

rArpDq ´ ArpD
r

q,D ´ D
r

s “ rArpDq ´ Ar
r

pD
r

q,D ´ D
r

s ´ rArpD
r

q ´ Ar
r

pD
r

q,D ´ D
r

s

“
`

Fz ´ Fz
r

˘

pD ´ D
r

q ´ rArpD
r

q ´ Ar
r

pD
r

q,D ´ D
r

s ,

so that, using (4.10) and (4.11), we find that

αA }D ´ D
r

}20,Ω ď rArpDq ´ ArpD
r

q,D ´ D
r

s

ď |
`

Fz ´ Fz
r

˘

pD ´ D
r

q| ` Lη }r ´ r
r

}0,Ω }D ´ D
r

}0,Ω .
(4.22)

In turn, it is clear from (3.19) that

`

Fz ´ Fz
r

˘

pD ´ D
r

q “ ρ

ż

Ω

`

pz b zq ´ pz
r

b z
r

q
˘

: pD ´ D
r

q , (4.23)

from which, subtracting and adding z
r

to one of the factors of pz b zq, and using Cauchy-Schwarz’s
inequality, (3.6), and the fact that z, z

r

P Wpδq, we readily deduce that

|
`

Fz ´ Fz
r

˘

pD ´ D
r

q| ď n1{2 ρ
`

}z}0,4;Ω ` }z
r

}0,4;Ω
˘

}z ´ z
r

}0,4;Ω }D ´ D
r

}0,Ω

ď 2n1{2 ρ δ }z ´ z
r

}0,4;Ω }D ´ D
r

}0,Ω .
(4.24)

In this way, employing (4.24) in (4.22), we arrive at

}D ´ D
r

}0,Ω ď α´1
A

!

2n1{2 ρ δ }z ´ z
r

}0,4;Ω ` Lη }r ´ r
r

}0,Ω

)

. (4.25)

On the other hand, using the continuous inf-sup condition for B (cf. (4.12)) and the second row of
(4.21), we get

rβ }u⃗ ´ u⃗
r

}Q ď sup
τPH2
τ ­“0

Bpτ , u⃗ ´ u⃗
r

q

}τ }H2

“ sup
τPH2
τ ­“0

´B1pD ´ D
r

, τ q

}τ }H2

ď }D ´ D
r

}0,Ω ,

which, along with (4.25), implies

}u⃗ ´ u⃗
r

}Q ď α´1
A

rβ´1
!

2n1{2 ρ δ }z ´ z
r

}0,4;Ω ` Lη }r ´ r
r

}0,Ω

)

. (4.26)

Next, noting from the third row of (4.21) that σ ´ σ
r

belongs to V :“ NpBq, we have from the
continuous inf-sup condition for B1 (cf. (4.13)) and the first row of (4.21), that

rβ1 }σ ´ σ
r

}H2 ď sup
EPH1
E­“0

B1pE,σ ´ σ
r

q

}E}H1

“ sup
EPH1
E ­“0

`

Fz ´ Fz
r

˘

pEq ´ rArpDq ´ Ar
r

pD
r

q,Es

}E}H1

. (4.27)
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Then, exactly as for the derivation of (4.24), we deduce that

|
`

Fz ´ Fz
r

˘

pEq| ď 2n1{2 ρ δ }z ´ z
r

}0,4;Ω }E}0,Ω . (4.28)

In turn, similarly as previously done in the present proof, it is easily seen that

rArpDq ´ Ar
r

pD
r

q,Es “ rArpDq ´ ArpD
r

q,Es ` rArpD
r

q ´ Ar
r

pD
r

q,Es ,

from which, employing (4.9) and (4.11), it follows that
ˇ

ˇrArpDq ´ Ar
r

pD
r

q,Es
ˇ

ˇ ď

!

LA }D ´ D
r

}0,Ω ` Lη }r ´ r
r

}0,Ω

)

}E}0,Ω . (4.29)

In this way, replacing the estimates (4.28) and (4.29) back into (4.27), we conclude that

}σ ´ σ
r

}H2 ď rβ´1
1

!

2n1{2 ρ δ }z ´ z
r

}0,4;Ω ` LA }D ´ D
r

}0,Ω ` Lη }r ´ r
r

}0,Ω

)

, (4.30)

which, combined with the estimate for }D ´ D
r

}0,Ω (cf. (4.25)), leads to

}σ ´ σ
r

}H2 ď
`

1 ` LA α´1
A
˘

rβ´1
1

!

2n1{2 ρ δ }z ´ z
r

}0,4;Ω ` Lη }r ´ r
r

}0,Ω

)

. (4.31)

Furthermore, invoking (4.19), (4.3), and (4.20), and performing some simple algebraic computations,
which include the use of Cauchy-Schwarz’s inequality and the fact that }trpτ q}0,Ω ď n1{2 }τ }0,Ω, we
easily deduce that

}Tpz, rq ´ Tpz
r

, r
r

q} ď }u ´ u
r

}0,4;Ω ` n´1{2 }σ ´ σ
r

}0,Ω ` 2n´1{2 ρ }pu b uq ´ pu
r

b u
r

q}0,Ω , (4.32)

from which, subtracting and adding u to one of the factors of u b u, employing (3.6), recalling that
u, u

r

P Wpδq, and using from (4.17) that ρ δ ď 1
2CT

, we arrive at

}Tpz, rq ´ Tpz
r

, r
r

q} ď
`

1 ` 4 ρ δ
˘

}u ´ u
r

}0,4;Ω ` n´1{2 }σ ´ σ
r

}0,Ω

ď
`

1 ` 2C´1
T

˘

}u ´ u
r

}0,4;Ω ` n´1{2 }σ ´ σ
r

}0,Ω .

Finally, replacing the estimates for }u ´ u
r

}0,4;Ω (cf. (4.26)) and }σ ´ σ
r

}0,Ω (cf. (4.31)) into the

foregoing inequality, and recalling from Theorem 4.5 that CT depends on LA, αA, rβ, rβ1, n, and }i4},
we conclude the required inequality (4.18) with the constants

L1pTq :“ 2
`

1 ` 2C´1
T

˘

α´1
A

rβ´1 n1{2 ` 2
`

1 ` LA α´1
A
˘

rβ´1
1

and
L2pTq :“

`

1 ` 2C´1
T

˘

α´1
A

rβ´1 `
`

1 ` LA α´1
A
˘

rβ´1
1 n´1{2 .

We are now in a position to state the first main result of this section.

Theorem 4.8. Assume that ρ δ, Lη, and the data are sufficiently small so that

ρ δ ă min
! 1

2CT
,

1

L1pTq

)

, Lη ă
1

L2pTq
, and

CT

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

ď
δ

2
.

(4.33)

Then, the operator T has a unique fixed point pu, pq P Spδq. Equivalently, given this p P L2
κpΩq, the

system (3.15) has a unique solution pD,σ, u⃗q :“
`

D,σ, pu,γq
˘

P H1 ˆ H2 ˆ Q with u P Wpδq and p
satisfying (4.3). Moreover, there holds

}pD,σ, u⃗q}H1ˆH2ˆQ ď 2CT

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

. (4.34)
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Proof. According to the assumptions stipulated in (4.33), we deduce from Lemmas 4.6 and 4.7 that T
is a contraction mapping Spδq into itself. Hence, a straightforward application of the classical Banach
theorem implies the existence of a unique fixed point pu, pq P Spδq of this operator, thus yielding the
indicated consequences regarding the system (3.15). In turn, thanks to (4.15) (cf. Theorem 4.5) we
have

}pD,σ, u⃗q}H1ˆH2ˆQ ď CT

!

ρ }u}20,4;Ω ` }uD}1{2,Γ ` }f}0,4{3;Ω

)

,

whereas the fact that u P Wpδq and the first assumption in (4.33) lead to

ρ }u}20,4;Ω ď ρ δ }u}0,4;Ω ď
1

2CT
}pD,σ, u⃗q}H1ˆH2ˆQ ,

so that from these two inequalities we readily obtain (4.34) and conclude the proof.

5 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed variational formulation (3.15),
analyze its solvability by means of a discrete version of the fixed-point approach employed in Section
4, and derive the corresponding a priori error estimate.

5.1 Preliminaries

We begin by letting H1,h, rH2,h, Q1,h, and Q2,h be arbitrary finite dimensional subspaces of L2
trpΩq,

Hpdiv4{3; Ωq, L4pΩq, and L2
skpΩq, respectively, and let Ph :“ rPh ‘

! κ

|Ω|

)

, where rPh is a finite

dimensional subspace of L2
0pΩq :“

!

q P L2pΩq :
ş

Ω q “ 0
)

. Hereafter, h stands for both the sub-

index of each subspace and the size of each member of a regular family
␣

Th
(

hą0
of triangulations of

sΩ made up of triangles K (when n “ 2) or tetrahedra K (when n “ 3) of diameters hK , so that
h :“ max

␣

hK : K P Th
(

. Now, defining

H2,h :“ H0pdiv4{3; Ωq X rH2,h and Qh :“ Q1,h ˆ Q2,h ,

and letting ph P Ph be a given discrete approximation of the pressure p, the Galerkin scheme associated
with (3.15) reads: Find pDh,σh, u⃗hq :“

`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh such that

rAphpDhq,Ehs `B1pEh,σhq “ Fuh
pEhq @Eh P H1,h ,

B1pDh, τ hq `Bpτ h, u⃗hq “ Gpτ hq @ τ h P H2,h ,

Bpσh, v⃗hq “ Fpv⃗hq @ v⃗h P Qh .

(5.1)

Next, we consider the discrete analogue of the fixed-point strategy employed in Section 4. Indeed,
we introduce the discrete operator Th : Q1,h ˆ Ph Ñ Q1,h ˆ Ph defined by

Thpzh, rhq :“ puh, phq @ pzh, rhq P Q1,h ˆ Ph , (5.2)

where pDh,σh, u⃗hq :“
`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh is the unique solution (to be confirmed
later on) of the problem arising from (5.1) when Aph and the functional Fuh

are replaced by Arh and
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Fzh , respectively, that is

rArhpDhq,Ehs `B1pEh,σhq “ FzhpEhq @Eh P H1,h ,

B1pDh, τ hq `Bpτ h, u⃗hq “ Gpτ hq @ τ h P H2,h ,

Bpσh, v⃗hq “ Fpv⃗hq @ v⃗h P Qh ,

(5.3)

whereas ph is computed as suggested by the discrete version of (3.24), that is

ph :“ ´
1

n
tr
`

σh ` ρ puh b uhq
˘

`
κ

|Ω|
`

ρ

n |Ω|

ż

Ω
trpuh b uhq . (5.4)

Note from (5.4) that the specific subspaces to which σh and uh belong determine the choice of
rPh. Then, it is readily seen that solving (5.1) is equivalent to finding a fixed point of Th, that is
puh, phq P Q1,h ˆ Ph such that

Thpuh, phq “ puh, phq . (5.5)

5.2 Discrete solvability analysis

In what follows we proceed analogously to Sections 4.2 and 4.3, and establish the well-posedness of
the Galerkin scheme (5.1) by means of the solvability study of the equivalent fixed-point equation
(5.5). In this regard, we announce in advance that, being the respective discussion similar to the one
developed for the continuous formulation, here we simply collect the main results and provide selected
details of their proofs. To this end, suitable hypotheses regarding the arbitrary subspaces H1,h, rH2,h,
and Qh, need to be introduced throughout the analysis. Explicit finite element subspaces satisfying
them will be specified later on in Section 6.

We begin by letting Vh be the discrete kernel of the bilinear form B, that is

Vh :“
!

τ h P H2,h : Bpτ h, v⃗hq “ 0 @ v⃗h P Qh

)

, (5.6)

and by assuming that

(H.4) rH2,h contains multiples of the identity tensor I,

(H.5) divp rH2,hq Ď Q1,h,

(H.6) Vd
h :“

!

τ d
h : τ h P Vh

)

Ď H1,h, and

(H.7) there exists a positive constant rβd, independent of h, such that

sup
τhPH2,h

τh ­“0

Bpτ h, v⃗hq

}τ h}H2

ě rβd }v⃗h}Q “ rβd

!

}vh}0,4;Ω ` }ξh}0,Ω

)

@ v⃗h :“ pvh, ξhq P Qh . (5.7)

Then, as a consequence of (H.4), there holds the discrete version of the decomposition (3.10),
namely rH2,h “ H2,h ‘ RI, which confirms the validity of using H2,h as the subspace where σh is
sought. Now, according to the definition of B (cf. (3.18)), and noting that (H.5) can be equivalently
rephrased as divpH2,hq Ď Q1,h, it readily follows from (5.6) that

Vh :“
!

τ h P H2,h : divpτ hq “ 0 and

ż

Ω
τ h : ξh “ 0 @ ξh P Q2,h

)

, (5.8)
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which yields the discrete analogue of (4.13). Indeed, given τ h P Vh such that τ d
h ‰ 0, we have thanks

to (H.6) that ´τ d
h P H1,h, and thus

sup
EhPH1,h

Eh ­“0

B1pEh, τ hq

}Eh}H1

ě
B1p´τ d

h, τ hq

}τ d
h}H1

“ }τ d
h}0,Ω ,

from which, employing the inequality (4.14), we arrive at

sup
EhPH1,h

Eh ­“0

B1pEh, τ hq

}Eh}H1

ě rβ1,d }τ h}H1 , (5.9)

with rβ1,d “ c1. Now, if τ h P Vh is such that τ d
h “ 0, then it follows from (4.14) that τ h “ 0, whence

(5.9) holds trivially in this case.

Furthermore, it is not difficult to see that the Lipschitz-continuity and monotoniticity properties of
Ar provided in Lemma 4.2 (cf. (4.9), (4.10), and (4.11)), are also valid in the present discrete case,
and with the same constants LA, αA, and Lη, that is

}ArhpDhq ´ ArhpEhq}H1
1,h

ď LA }Dh ´ Eh}H1 @ rh P Ph , @Dh, Eh P H1,h , (5.10)

rArhpDhq ´ ArhpEhq,Dh ´ Ehs ě αA }Dh ´ Eh}2H1
@ rh P Ph , @Dh, Eh P H1,h , (5.11)

and

ˇ

ˇrArhpDhq ´ AqhpDhq,Ehs
ˇ

ˇ ď Lη }rh ´ qh}0,Ω }Eh}H1 @ rh, qh P Ph , @Dh, Eh P H1,h . (5.12)

Consequently, we are now in a position to establish the discrete analogue of Theorem 4.5.

Theorem 5.1. For each pzh, rhq P Q1,h ˆPh there exists a unique pDh,σh, u⃗hq :“
`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh solution to (5.3), and hence one can define Tpzh, rhq :“ puh, phq P Q1,h ˆ Ph,
where ph is computed according to (5.4). Moreover, there exists a positive constant CT,d, depending

only on LA, αA, rβd, rβ1,d, n, and }i4}, such that

}uh}0,4;Ω ď }pDh,σh, u⃗hq}H1ˆH2ˆQ ď CT,d

!

ρ }zh}20,4;Ω ` }uD}1{2,Γ ` }f}0,4{3;Ω

)

. (5.13)

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.7)) and B1 (cf. (5.9)), and the properties
(5.10), (5.11) and (5.12), the proof follows from a direct application of Theorem 4.1. We omit further
details.

Knowing that the discrete operator Th is well defined, we now address the solvability of the fixed
point equation (5.5). In fact, letting δd be an arbitrary radius, we now set

Wpδdq :“
!

zh P Q1,h : }zh}0,4;Ω ď δd

)

and Spδdq :“ Wpδdq ˆ Ph . (5.14)

In this way, proceeding analogously to the deduction of Lemma 4.6, we find that, under the discrete
analogue of (4.17), that is

ρ δd ď
1

2CT,d
and CT,d

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

ď
δd
2
, (5.15)
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Th maps Spδdq into itself. Note that the above is the same as for the continuous case (cf. (4.17)),
except that the constant CT and the radius δ are replaced by CT,d and δd, respectively.

In addition, employing similar arguments to those from the proof of Lemma 4.7, we can prove the
discrete version of (4.18) with the constants

L1,dpTq :“ 2
`

1 ` 2C´1
T,d

˘

α´1
A

rβ´1
d n1{2 ` 2

`

1 ` LA α´1
A
˘

rβ´1
1,d

and
L2,dpTq :“

`

1 ` 2C´1
T,d

˘

α´1
A

rβ´1
d `

`

1 ` LA α´1
A
˘

rβ´1
1,d n

´1{2 ,

that is

}Thpzh, rhq ´ Thpz
r

h, r
r

hq} ď L1,dpTq ρ δd }zh ´ z
r

h}0,4;Ω ` L2,dpTqLη }rh ´ r
r

h}0,Ω (5.16)

for all pzh, rhq, pz
r

h, r
r

hq P Spδdq.

The main result of this section, which constitutes the discrete analogue of Theorem 4.8, is then
established as follows.

Theorem 5.2. Assume that ρ δd, Lη, and the data are sufficiently small so that

ρ δd ă min
! 1

2CT,d
,

1

L1,dpTq

)

, Lη ă
1

L2,dpTq
, and

CT,d

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

ď
δd
2
.

(5.17)

Then, the operator Th has a unique fixed point puh, phq P Spδdq. Equivalently, given this ph P Ph,
the system (5.1) has a unique solution pDh,σh, u⃗hq :“

`

Dh,σh, puh,γhq
˘

P H1,h ˆ H2,h ˆ Qh with
uh P Wpδdq and ph satisfying (5.4). Moreover, there holds

}pDh,σh, u⃗hq}H1ˆH2ˆQ ď 2CT,d

!

}uD}1{2,Γ ` }f}0,4{3;Ω

)

. (5.18)

Proof. It is clear from the previous discussion and the assumptions in (5.17), that Th is a contraction
mapping Spδdq into itself. Thus, a straightforward application of the classical Banach Theorem implies
the existence of a unique solution to (5.5), and hence, equivalently, to the system (5.1). In turn, thanks
to (5.13) (cf. Theorem 5.1), and performing similar algebraic manipulations to those utilized in the
proof of Theorem 4.8, we deduce the a priori estimate (5.18).

5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the assumptions specified in
Section 5.2, and derive the Céa estimate for the Galerkin error given by

}D⃗ ´ D⃗h}H ` }p ´ ph}0,Ω :“ }D ´ Dh}0,Ω ` }σ ´ σh}div4{3;Ω ` }u⃗ ´ u⃗h}Q ` }p ´ ph}0,Ω ,

where D⃗ :“ pD,σ, u⃗q “
`

D,σ, pu,γq
˘

P H :“ H1 ˆ H2 ˆ Q is the unique solution of (3.15), with

u P Spδq, and D⃗h :“ pDh,σh, u⃗hq “
`

Dh,σh, puh,γhq
˘

P Hh :“ H1,h ˆ H2,h ˆ Qh is the unique
solution of (5.1), with uh P Spδdq, whereas p and ph are computed according to (4.3) and (5.4),
respectively.
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We begin by defining for each r P L2
κpΩq the operator Ξr : H Ñ H1 that arises from the left-hand

side of the variational formulation (3.15) after adding all its rows, that is

rΞrpC⃗q, E⃗s :“ rArpCq,Es ` B1pE, ζq ` B1pC, τ q ` Bpτ , w⃗q ` Bpζ, v⃗q , (5.19)

for all C⃗ :“ pC, ζ, w⃗q, E⃗ :“ pE, τ , v⃗q P H, so that (3.15) and (5.1) can be rewritten, respectively, as

rΞppD⃗q, E⃗s “ FupEq ` Gpτ q ` Fpv⃗q @ E⃗ :“ pE, τ , v⃗q P H , (5.20)

and
rΞphpD⃗hq, E⃗hs “ Fuh

pEhq ` Gpτ hq ` Fpv⃗hq @ E⃗h :“ pEh, τ h, v⃗hq P Hh . (5.21)

It readily follows from (5.20) and (5.21) that

rΞppD⃗q, E⃗hs ´ rΞphpD⃗hq, E⃗hs “
`

Fu ´ Fuh

˘

pEhq @ E⃗h :“ pEh, τ h, v⃗hq P Hh . (5.22)

Now, the smoothness of the regularized η (cf. (2.11)) allows to show that for each r P L2
κpΩq, the

operator Ar, and hence Ξr as well, have first order Gpateaux derivatives DpArq P L
`

H1,LpH1,H1
1q
˘

and DpΞrq P L
`

H,LpH,H1q
˘

, respectively, as well as their corresponding discrete versions denoted by
DhpArq P L

`

H1,h,LpH1,h,H1
1,hq

˘

and DhpΞrq P L
`

Hh,LpHh,H1
hq
˘

. Moreover, using (4.9) and (4.10)
(cf. Lemma 4.2), one is able to prove (see, e.g. [23, Lemma 3.1]) that for each Ch P H1,h, the
operator DhpArqpChq P LpH1,h,H1

1,hq can be identified as a bounded and H1-elliptic bilinear form

with constants LA and αA, respectively. It follows that for each r P L2
κpΩq, and for each C⃗h P Hh, the

operatorDhpΞrqpC⃗hq P LpHh,H1
hq satisfies the hypotheses of the discrete linear version of Theorem 4.1,

and hence the corresponding global inf-sup condition as well with a positive constant αΞ,d, depending

only on LA, αA, rβd, and rβ1,d. In this way, proceeding analogously to the proof of [23, Theorem
3.3], which includes, in particular, applying the mean value theorem to Ξr, we deduce that for each
r P L2

κpΩq there holds

αΞ,d }C⃗
r

h
´ C⃗h}H ď sup

E⃗hPHh

E⃗h ­“0

rΞrpC⃗
r

hq ´ ΞrpC⃗hq, E⃗hs

}E⃗h}H
@ C⃗
r

h, C⃗h P Hh . (5.23)

Then, we begin our derivation by employing the triangle inequality, which gives

}D⃗ ´ D⃗h}H ď }D⃗ ´ C⃗h}H ` }D⃗h ´ C⃗h}H @ C⃗h P Hh , (5.24)

whereas, applying (5.23) with r “ p, we obtain

αΞ,d }D⃗h ´ C⃗h}H ď sup
E⃗hPHh

E⃗h ­“0

rΞppD⃗hq ´ ΞppC⃗hq, E⃗hs

}E⃗h}H
. (5.25)

Next, subtracting and adding rΞppD⃗q, E⃗hs, we find that

rΞppD⃗hq ´ ΞppC⃗hq, E⃗hs “ rΞppD⃗hq ´ ΞppD⃗q, E⃗hs ` rΞppD⃗q ´ ΞppC⃗hq, E⃗hs , (5.26)

so that, employing the Lipschitz-continuity of Ap (cf. (4.9), Lemma 4.2), we deduce from (5.19) the
existence of a positive constant LΞ, depending on LA, }B}, and }B1}, such that the second term on
the right-hand side of (5.26) is bounded as

ˇ

ˇrΞppD⃗q ´ ΞppC⃗hq, E⃗hs
ˇ

ˇ ď LΞ }D⃗ ´ C⃗h}H }E⃗h}H . (5.27)
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In turn, subtracting and adding rΞphpD⃗hq, E⃗hs, applying the Lipschitz-continuity of A with respect
to the pressure (cf. (4.11), Lemma 4.2), and employing (5.22), we find that

ˇ

ˇrΞppD⃗hq ´ ΞppD⃗q, E⃗hs
ˇ

ˇ “
ˇ

ˇrΞppD⃗hq ´ ΞphpD⃗hq, E⃗hs ` rΞphpD⃗hq ´ ΞppD⃗q, E⃗hs
ˇ

ˇ

ď

!

Lη }p ´ ph}0,Ω ` }Fu ´ Fuh
}H1

1,h

)

}E⃗h}H .
(5.28)

In this way, using (5.27) and (5.28) to bound the expression in (5.26), and then replacing the resulting
estimate in (5.25), we arrive at

αΞ,d }D⃗h ´ C⃗h}H ď LΞ }D⃗ ´ C⃗h}H ` Lη }p ´ ph}0,Ω ` }Fu ´ Fuh
}H1

1,h
, (5.29)

which, along with (5.24), implies

}D⃗ ´ D⃗h}H ď
`

1 ` α´1
Ξ,d LΞ

˘

distpD⃗,Hh

˘

` α´1
Ξ,d

!

Lη }p ´ ph}0,Ω ` }Fu ´ Fuh
}H1

1,h

)

, (5.30)

where, as usual,
distpD⃗,Hh

˘

:“ inf
C⃗hPHh

}D⃗ ´ C⃗h}H .

Furthermore, according to the expressions provided by (4.3) and (5.4), and proceeding similarly to
the derivation of the last two terms in (4.32), we get

}p ´ ph}0,Ω ď n´1{2
!

}σ ´ σh}0,Ω ` 2 ρ }pu b uq ´ puh b uhq}0,Ω

)

. (5.31)

In addition, invoking now the definition of Fz (cf. (3.19)) as in (4.23), we obtain

`

Fu ´ Fuh

˘

pEhq “ ρ

ż

Ω

`

pu b uq ´ puh b uhq
˘

: Eh @Eh P H1,h ,

which gives
}Fu ´ Fuh

}H1
1,h

ď ρ }pu b uq ´ puh b uhq}0,Ω . (5.32)

Then, replacing the bounds from (5.31) and (5.32) back into (5.30), and denoting the constants

C1,Ξ :“ 1 ` α´1
Ξ,d LΞ , C2,Ξ :“ α´1

Ξ,d n
´1{2 , and C3,Ξ :“ α´1

Ξ,d ρ
`

2n´1{2 Lη ` 1
˘

,

we conclude that

}D⃗ ´ D⃗h}H ď C1,Ξ distpD⃗,Hh

˘

` C2,Ξ Lη }σ ´ σh}0,Ω ` C3,Ξ }pu b uq ´ puh b uhq}0,Ω . (5.33)

Finally, similarly to the derivation of (4.24), there holds

}pubuq´puhbuhq}0,Ω ď n1{2
`

}u}0,4;Ω`}uh}0,4;Ω
˘

}u´uh}0,4;Ω ď n1{2
`

δ`δd
˘

}u´uh}0,4;Ω , (5.34)

and hence the inequalities (5.31) and (5.33) become, respectively,

}p ´ ph}0,Ω ď n´1{2 }σ ´ σh}0,Ω ` 2 ρ
`

δ ` δd
˘

}u ´ uh}0,4;Ω , (5.35)

and

}D⃗ ´ D⃗h}H ď C1,Ξ distpD⃗,Hh

˘

` C2,Ξ Lη }σ ´ σh}0,Ω ` C3,Ξ n1{2
`

δ ` δd
˘

}u ´ uh}0,4;Ω . (5.36)

We are now in position to establish the main result of this section.
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Theorem 5.3. In addition to the notations and hypotheses of Theorems 4.8 and 5.2, assume that Lη,
and the radii δ and δd are sufficiently small so that

C2,Ξ Lη ď
1

2
and C3,Ξ n1{2

`

δ ` δd
˘

ď
1

2
. (5.37)

Then, there exists a positive constant C, independent of h, such that

}D⃗ ´ D⃗h}H ` }p ´ ph}0,Ω ď C distpD⃗,Hh

˘

. (5.38)

Proof. By employing (5.37) in (5.36), we readily deduce that

}D⃗ ´ D⃗h}H ď 2C1,Ξ distpD⃗,Hh

˘

,

whereas the corresponding estimate for }p´ph}0,Ω follows from (5.35) and the foregoing inequality.

6 Specific finite element subspaces

In this section we proceed as in [24, Section 4.4], where, in turn, the analysis from [25, Section 4.4] is
employed, to describe two examples of finite element subspaces H1,h, rH2,h, Q1,h, and Q2,h, satisfying
the hypotheses (H.4), (H.5), (H.6), and (H.7) that were introduced in Section 5.2. The associated
rates of convergence are also provided.

6.1 Polynomial spaces

We first collect some definitions regarding local and global polynomial spaces, for which we make
use of the regular family of triangulations

␣

Th
(

hą0
of sΩ introduced in Section 5.1. Indeed, given an

integer ℓ ě 0 and K P Th, we let PℓpKq be the space of polynomials of degree ď ℓ defined on K, and
denote its vector and tensor versions by PℓpKq :“ rPℓpKqsn and PℓpKq “ rPℓpKqsnˆn, respectively.
In addition, we let RTℓpKq :“ PℓpKq‘PℓpKqx be the local Raviart–Thomas space of order ℓ defined
on K, where x stands for a generic vector in R :“ Rn. Also, we let bK be the bubble function on K,
which is defined as the product of its n ` 1 barycentric coordinates. Then, we define the local bubble
spaces of order ℓ as

BℓpKq :“ curl
`

bK PℓpKq
˘

if n “ 2 , and BℓpKq :“ curl
`

bK PℓpKq
˘

if n “ 3 , (6.1)

where curl pvq :“
`

Bv
Bx2

,´ Bv
Bx1

˘

if n “ 2 and v : K Ñ R, and curl pvq :“ ∇ˆv if n “ 3 and v : K Ñ R3.
The following global spaces are also needed

PℓpΩq :“
!

vh P L2pΩq : vh|K P PℓpKq @K P Th
)

,

PℓpΩq :“
!

ξh P L2pΩq : ξh|K P PℓpKq @K P Th
)

,

RTℓpΩq :“
!

τ h P Hpdiv; Ωq : τ h,i|K P RTℓpKq @ i P
␣

1, ..., n
(

, @K P Th
)

,

and
BℓpΩq :“

!

τ h P Hpdiv; Ωq : τ h,i|K P BℓpKq @ i P
␣

1, ..., n
(

, @K P Th
)

,

where τ h,i stands for the ith-row of τ h. While PℓpΩq and PℓpΩq are defined here as subspaces of
L2pΩq and L2pΩq, we stress that they are also subspaces of L4pΩq and L4pΩq, respectively. Similarly,
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it is easy to see that RTℓpΩq and BℓpΩq are both subspaces of Hpdiv4{3; Ωq as well. Actually, recalling
that Hpdiv; Ωq stands for the Hilbertian version of (1.2), that is with t “ 2, it is clear that Hpdiv; Ωq

is contained in Hpdiv4{3; Ωq, and hence any subspace of the former is also subspace of the latter.
Certainly, the same observation is valid for H0pdiv; Ωq and H0pdiv4{3; Ωq, where the former is defined
analogously to (3.11).

6.2 Connection with linear elasticity

Here we describe a useful connection between (H.7) and the stability of a usual mixed finite element
method for the linear elasticity model. We begin by recalling that a triplet of subspaces rH2,h, Q1,h,
and Q2,h of Hpdiv; Ωq, L2pΩq, and L2

skpΩq, respectively, is said to yield a stable Galerkin scheme for
the Hilbertian mixed formulation of linear elasticity if it satisfies the corresponding hypotheses of the
discrete Babuška-Brezzi theory (see, e.g., [22, Theorem 2.4]). In particular, the above includes the
discrete inf-sup condition for the bilinear form B (cf. (3.18)), which, settingH2,h :“ rH2,hXH0pdiv; Ωq,

reduces to the existence of a positive constant rβe, independent of h, such that

sup
τhPH2,h

τh ­“0

Bpτ h, v⃗hq

}τ h}div;Ω
ě rβe

!

}vh}0,Ω ` }ξh}0,Ω

)

@ v⃗h :“ pvh, ξhq P Qh . (6.2)

Note that, though similar, (6.2) and (5.7) differ because of the different norms in which τ h and vh

are measured. However, the following result (cf. [25, Lemma 4.8]) establishes that (6.2), along with
suitable further assumptions on the subspaces, constitute a sufficient condition for (5.7).

Lemma 6.1. Let rH2,h, Q1,h, and Q2,h be subspaces of Hpdiv; Ωq, L2pΩq, and L2
skpΩq, respectively,

such that they accomplish (6.2). In addition, assume that there exists an integer ℓ ě 0 such that
RTℓpΩq Ď rH2,h and Q1,h Ď PℓpΩq. Then H2,h :“ rH2,h X H0pdiv4{3; Ωq, Q1,h, and Q2,h satisfy (5.7)

with a positive constant rβd, independent of h.

6.3 Examples of stable finite element subspaces

We now apply Lemma 6.1 to each one of the stable triplets for linear elasticity proposed in [25, Section
4.4], thus deriving two examples of finite element subspacesH1,h, rH2,h, Q1,h, andQ2,h satisfying (H.4),
(H.5), (H.6), and (H.7).

Our first example is based on the plane elasticity element with reduced symmetry (PEERS) of order
ℓ ě 0, which, denoting CpΩ̄q :“ rCpΩ̄qsnˆn, is given by

rH2,h :“ RTℓpΩq ‘ BℓpΩq , Q1,h :“ PℓpΩq , and Q2,h :“ CpΩ̄q X Pℓ`1pΩq X L2
skpΩq . (6.3)

The discrete stability of these subspaces was originally proved in [3] for ℓ “ 0 and n “ 2, and later
on for ℓ ě 0 and n P

␣

2, 3
(

in [34]. It is easily seen from (6.3), in particular using due to (6.1)

that divp rH2,hq “ div
`

RTℓpΩq
˘

Ď PℓpΩq, that rH2,h and Q1,h satisfy (H.4) and (H.5), and that
the assumptions on them required by Lemma 6.1 are accomplished as well, whence (H.7) holds true.
It remains to check (H.6), for which we first recall that the divergence free tensors of RTℓpΩq are
contained in PℓpΩq (cf. [22, proof of Theorem 3.3]). Thus, noting again that the tensors of BℓpΩq are
divergence free, and that this space is contained in Pℓ`npΩq, we deduce from (5.8) that

Vh Ď PℓpΩq ‘ BℓpΩq Ď Pℓ`npΩq ,
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so that, in order to guarantee (H.6), it suffices to take

H1,h :“ Pℓ`npΩq X L2
trpΩq .

Finally, it follows from (5.4) and the above definitions of H2,h and Q1,h, that Ph :“ rPh ‘

! κ

|Ω|

)

, where

rPh :“ Pℓ̄pΩq X L2
0pΩq, with ℓ̄ :“ max

␣

ℓ ` n, 2 ℓ
(

. Our second example is the Arnold-Falk-Winther
(AFW) element of order ℓ ě 0, whose stability for the Hilbertian mixed formulation of linear elasticity
is proved in [4], and which is defined as

rH2,h :“ Pℓ`1pΩq X Hpdiv; Ωq , Q1,h :“ PℓpΩq , and Q2,h :“ PℓpΩq X L2
skpΩq . (6.4)

According to the above, it is also simple to realize that (H.4) and (H.5) are satisfied, and that,
thanks to the inclusion RTℓpΩq Ď Pℓ`1pΩq, the corresponding hypotheses of Lemma 6.1 are fulfilled,
thus establishing (H.7). In turn, being in this case Vh (cf. (5.8)) not further simplifiable, we deduce
that (H.6) is accomplished if we simply choose

H1,h :“ Pℓ`1pΩq X L2
trpΩq .

Furthermore, it is readily seen in this case that Ph :“ rPh ‘

! κ

|Ω|

)

, where rPh :“ P2ℓpΩq X L2
0pΩq.

6.4 The rates of convergence

We now provide the rates of convergence of (5.1) for both specific examples of finite element subspaces
introduced in Section 6.3. To this end, we first collect next the corresponding approximation properties
of H1,h, H2,h, Q1,h, and Q2,h, which, taken mainly from [8], [9], [16, eqs. (5.37) and (5.40)], and
[20, Proposition 1.135], are derived by employing the error estimates of suitable interpolation and
projection operators, along with associated commuting diagram properties and interpolation estimates
of Sobolev spaces.

Denoting ℓ˚ :“

"

ℓ ` n for PEERS-based
ℓ ` 1 for AFW-based

, the respective statements are as follows:

AP
`

H1,h

˘

there exists a positive constant C, independent of h, such that for each r P r0, ℓ˚ ` 1s, and
for each E P HrpΩq X L2

trpΩq, there holds

dist
`

E,H1,h

˘

:“ inf
EhPH1,h

}E ´ Eh}0,Ω ď C hr}E}r,Ω ,

AP
`

H2,h

˘

there exists a positive constant C, independent of h, such that for each r P p0, ℓ ` 1s, and

for each τ P HrpΩq X H0pdiv4{3; Ωq with divpτ q P Wr,4{3pΩq, there holds

dist
`

τ ,H2,h

˘

:“ inf
τhPH2,h

}τ ´ τ h}div4{3;Ω ď C hr
!

}τ }r,Ω ` }divpτ q}r,4{3;Ω

)

,

AP
`

Q1,h

˘

there exists a positive constant C, independent of h, such that for each r P r0, ℓ ` 1s, and
for each v P Wr,4pΩq, there holds

dist
`

v,Q1,h

˘

:“ inf
vhPQ1,h

}v ´ vh}0,4;Ω ď C hr}v}r,4;Ω ,
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AP
`

Q2,h

˘

there exists a positive constant C, independent of h, such that for each r P r0, ℓ ` 1s, and
for each ξ P HrpΩq X L2

skpΩq, there holds

dist
`

ξ,Q2,h

˘

:“ inf
ξhPQ2,h

}ξ ´ ξh}0,Ω ď C hr}ξ}r,Ω .

As a consequence of the Céa estimate (5.38) (cf. Theorem 5.3), along with AP
`

H1,h

˘

, AP
`

H2,h

˘

,
AP

`

Q1,h

˘

, and AP
`

Q2,h

˘

, we are now able to provide the main result of this section.

Theorem 6.2. In addition to the notations and hypotheses of Theorem 5.3, assume that there exists
r P p0, ℓ ` 1s, such that D P HrpΩq X L2

trpΩq, σ P HrpΩq X H0pdiv4{3; Ωq, divpσq P Wr,4{3pΩq,
u P Wr,4pΩq, and γ P HrpΩq X L2

skpΩq. Then, there exists a positive constant C, independent of h,
such that

}D⃗ ´ D⃗h}H ` }p ´ ph}0,Ω ď C hr
!

}D}r,Ω ` }σ}r,Ω ` }divpσq}r,4{3;Ω ` }u}r,4;Ω ` }γ}r,Ω

)

.

7 Numerical results

In this section we consider the two pairs of finite element subspaces detailed in Section 6 to present
three examples illustrating the performance of the mixed finite element method (5.1) on a set of quasi-
uniform triangulations of the respective domains. In what follows, we refer to the corresponding sets of
finite element subspaces generated by ℓ “ t0, 1u as simply PEERSℓ and AFWℓ based discretizations.
The numerical methods have been implemented using the open source finite element library FEniCS

[1]. The corresponding iterative procedure to solve the nonlinear problem (5.1) is described as follows:

(1) Start solving the Stokes problem arising from (5.1) by choosing η “ 1 and ρ “ 0 to obtain the
initial data: pD0

h,u
0
hq P H1,h ˆ Q1,h and p0h as in (5.4).

(2) Given pD0
h,u

0
h, p

0
hq from step (1), for each m ě 1, a Newton-type strategy is used to obtain the

solution of (5.1): pDm
h ,σm

h , u⃗m
h q :“

`

Dm
h ,σm

h , pum
h ,γm

h q
˘

P H1,h ˆ H2,h ˆ Qh.

(3) Update the pressure pmh by employing the formula (5.4), and go to step (2).

The iterative method is finished when the relative error between two consecutive iterations of the
complete coefficient vector, namely coeffm and coeffm`1, is sufficiently small, that is,

}coeffm`1 ´ coeffm}DOF

}coeffm`1}DOF
ď tol ,

where } ¨ }DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total number of
degrees of freedom defining the finite element subspaces H1,h, rH2,h, Q1,h, and Q2,h (cf. (6.3)–(6.4)),
and tol is a fixed tolerance chosen as tol “ 1E ´ 06.

We now introduce some additional notation. The individual errors are denoted by

epDq :“ }D ´ Dh}0,Ω , epσq :“ }σ ´ σh}div4{3;Ω , epuq :“ }u ´ uh}0,4;Ω ,

epγq :“ }γ ´ γh}0,Ω , eppq :“ }p ´ ph}0,Ω ,

and, as usual, for each ‹ P
␣

D,σ,u,γ, p
(

we let rp‹q be the experimental rate of convergence given by

rp‹q :“ logpep‹q{pep‹qq{ logph{phq, where h and ph denote two consecutive meshsizes with errors e and pe,
respectively.
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The examples to be considered in this section are described next, for which we consider the regular-
ized viscosity ηpϱ, ωq defined by (2.11), but without needing to make use of the modification described
by Figure A.1. In the first two examples, for the sake of simplicity, we take µs “ 0.1, µd “ 1, I0 “ 1,
d “ 1 and ρ “ 1. In addition, the null mean value of trpσhq over Ω is fixed via a real Lagrange
multiplier strategy.

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain set by the square
Ω “ p0, 1q2. We choose the regularization factor ε “ 1E ´ 08, and adjust the datum f in (2.19) such
that the exact solution is given by

upx1, x2q “

ˆ

sinpx1q cospx2q

´ cospx1q sinpx2q

˙

and ppx1, x2q “ exppx1 ` x2q, (7.1)

where p P L2
κpΩq, with κ “ pexpp1q ´ 1q2. The model problem is then complemented with the

appropriate Dirichlet boundary condition. Tables 7.1 and 7.2 show the convergence history for a
sequence of quasi-uniform mesh refinements, including the number of Newton iterations. As already
announced, we stress that we are able not only to approximate the original unknowns but also the
pressure field through the formula (5.4). The results confirm that the optimal rates of convergence
Ophℓ`1q predicted by Theorem 6.2 are attained for ℓ “ t0, 1u for both PEERSℓ and AFWℓ based
schemes. The Newton method exhibits a behavior dependent on the mesh size, converging faster
for finer meshes in both discrete schemes. The latter is justified by the fact that for finer mesh a
better initial data pD0

h,u
0
hq and p0h are provided for the iterative method. In Figure 7.1 we display

the discrete internal friction coefficient µpIhq recovered from (2.7), with Ih “
?
2 d |Dh|{

a

ph{ρ, and
some solutions obtained with the mixed PEERS1 approximation with meshsize h “ 0.014 and 20, 000
triangle elements (actually representing 1, 081, 202 DOF).

PEERSℓ–based discretization with ℓ “ 0

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

842 0.354 16 3.15e-01 – 1.14e+00 – 7.84e-02 – 1.08e-01 – 4.27e-01 –
3314 0.177 14 1.87e-01 0.750 5.53e-01 1.044 3.70e-02 1.085 4.58e-02 1.236 1.95e-01 1.131
13154 0.088 13 1.00e-01 0.905 2.67e-01 1.051 1.78e-02 1.057 1.74e-02 1.393 8.91e-02 1.130
46082 0.047 11 5.44e-02 0.969 1.40e-01 1.026 9.35e-03 1.021 6.83e-03 1.491 4.55e-02 1.069

183962 0.024 9 2.74e-02 0.991 6.95e-02 1.011 4.65e-03 1.006 2.38e-03 1.521 2.23e-02 1.029
510602 0.014 8 1.65e-02 0.997 4.16e-02 1.004 2.79e-03 1.002 1.09e-03 1.526 1.33e-02 1.012

AFWℓ–based discretization with ℓ “ 0

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

609 0.354 15 5.62e-02 – 5.63e-01 – 6.94e-02 – 6.76e-02 – 3.27e-01 –
2369 0.177 14 2.65e-02 1.086 2.80e-01 1.005 3.48e-02 0.995 3.34e-02 1.018 1.63e-01 1.000
9345 0.088 12 1.30e-02 1.027 1.40e-01 1.002 1.74e-02 0.999 1.66e-02 1.006 8.17e-02 1.000
32641 0.047 10 6.89e-03 1.008 7.46e-02 1.001 9.29e-03 1.000 8.85e-03 1.002 4.36e-02 1.000

130081 0.024 7 3.44e-03 1.002 3.73e-02 1.001 4.65e-03 1.000 4.42e-03 1.001 2.18e-02 1.000
360801 0.014 6 2.06e-03 1.001 2.24e-02 1.001 2.79e-03 1.000 2.65e-03 1.000 1.31e-02 1.000

Table 7.1: [Example 1, ℓ “ 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.
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PEERSℓ–based discretization with ℓ “ 1

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

1778 0.354 12 1.80e-02 – 4.59e-02 – 4.59e-03 – 7.45e-03 – 1.84e-02 –
7010 0.177 10 5.36e-03 1.750 1.17e-02 1.970 1.15e-03 1.999 3.12e-03 1.257 4.51e-03 2.031
27842 0.088 8 1.48e-03 1.858 2.98e-03 1.977 2.87e-04 2.001 9.81e-04 1.668 1.12e-03 2.006
97562 0.047 6 4.42e-04 1.922 8.56e-04 1.983 8.15e-05 2.000 3.09e-04 1.840 3.19e-04 1.998

389522 0.024 4 1.14e-04 1.958 2.16e-04 1.990 2.04e-05 2.000 8.16e-05 1.919 8.00e-05 1.997
1081202 0.014 4 4.14e-05 1.977 7.78e-05 1.993 7.34e-06 2.000 3.00e-05 1.957 2.88e-05 1.998

AFWℓ–based discretization with ℓ “ 1

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

1393 0.354 10 2.21e-03 – 2.49e-02 – 4.57e-03 – 2.84e-03 – 1.73e-02 –
5473 0.177 7 5.35e-04 2.046 6.12e-03 2.027 1.15e-03 1.997 7.29e-04 1.963 4.33e-03 1.996
21697 0.088 5 1.32e-04 2.020 1.52e-03 2.013 2.87e-04 1.999 1.84e-04 1.983 1.08e-03 1.999
75961 0.047 4 3.73e-05 2.009 4.29e-04 2.008 8.15e-05 2.000 5.27e-05 1.992 3.08e-04 2.000

303121 0.024 3 9.29e-06 2.007 1.07e-04 2.008 2.04e-05 2.000 1.32e-05 1.997 7.70e-05 2.000
841201 0.014 3 3.34e-06 2.002 3.84e-05 2.002 7.34e-06 2.000 4.76e-06 1.998 2.77e-05 2.000

Table 7.2: [Example 1, ℓ “ 1] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.

Figure 7.1: [Example 1] Computed internal friction coefficient, magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain Ω “ p0, 1q3, and the regularization factor ε “

1E ´ 06. The manufactured solution is given by

upx1, x2, x3q “

¨

˝

sinpx1q cospx2q cospx3q

´2 cospx1q sinpx2q cospx3q

cospx1q cospx2q sinpx3q

˛

‚ and ppx1, x2, x3q “ 10 exppx1 ` x2 ` x3q ,

where p P L2
κpΩq, with κ “ 10 pexpp1q ´ 1q3. Similarly to the first example, the data f and uD is

computed from (2.19) using the above solution. The convergence history for a set of quasi-uniform
mesh refinements using ℓ “ 0 is shown in Table 7.3. Again, the mixed finite element method converges
optimally with order Ophq, as it was proved by Theorem 6.2. We observe a considerable increasing
of degrees of freedom in the PEERS0-based scheme compared to the AFW0 one. This is justified
mainly by the fact that the symmetric part of the velocity gradient is approximated with P3pΩq and

27



P1pΩq, respectively. In addition, the discrete internal friction coefficient and some components of the
numerical solution are displayed in Figure 7.2, which were built using the mixed AFW0 approximation
with meshsize h “ 0.108 and 24, 576 tetrahedral elements (actually representing 1, 390, 081 DOF).

PEERSℓ-based discretization with ℓ “ 0

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

8698 0.866 20 9.95e-01 – 5.05e+01 – 2.41e-01 – 6.04e-01 – 1.66e+01 –
69016 0.433 20 5.85e-01 0.766 2.73e+01 0.885 1.10e-01 1.135 2.28e-01 1.406 9.01e+00 0.884
550156 0.217 19 3.24e-01 0.852 1.36e+01 1.008 4.96e-02 1.143 7.95e-02 1.520 4.32e+00 1.061

1854688 0.144 18 2.23e-01 0.926 8.89e+00 1.046 3.19e-02 1.091 4.17e-02 1.590 2.74e+00 1.122
4393876 0.108 18 1.69e-01 0.957 6.59e+00 1.045 2.35e-02 1.056 2.62e-02 1.625 1.99e+00 1.113

AFWℓ–based discretization with ℓ “ 0

DOF h it epDq rpDq epσq rpσq epuq rpuq epγq rpγq eppq rppq

2905 0.866 12 2.09e-01 – 2.59e+01 – 1.78e-01 – 2.01e-01 – 1.43e+01 –
22369 0.433 11 8.24e-02 1.344 1.21e+01 1.104 9.12e-02 0.969 9.34e-02 1.103 7.15e+00 1.005
175489 0.217 9 3.56e-02 1.212 5.82e+00 1.050 4.59e-02 0.992 4.55e-02 1.037 3.57e+00 1.002
588385 0.144 8 2.28e-02 1.097 3.85e+00 1.023 3.06e-02 0.997 3.02e-02 1.014 2.38e+00 1.001

1390081 0.108 7 1.68e-02 1.054 2.87e+00 1.013 2.30e-02 0.999 2.26e-02 1.007 1.78e+00 1.000

Table 7.3: [Example 2, ℓ “ 0] Number of degrees of freedom, meshsizes, Newton iteration count,
errors, and rates of convergence for the mixed approximations.

Figure 7.2: [Example 2] Computed internal friction coefficient, magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

Example 3: Fluid flow through a cavity 2D with a circular obstacle

In the last example, motivated by [30, Section 2.1], we study the behavior of the regularized µpIq-
rheology model of granular materials for fluid flow through a cavity 2D with a circular obstacle without
manufactured solution. More precisely, we consider the domain Ω “ p0, 1q2 zΩc, where

Ωc “

!

px1, x2q : px1 ´ 0.5q2 ` px2 ´ 0.5q2 ă 0.12
)

,

with boundary Γ, whose part around the circle is given by Γc “ BΩc. The model parameters are chosen
as µs “ 0.36, µd “ 0.91, I0 “ 0.73, d “ 0.05, ρ “ 2500, and the regularization factor is ε “ 1E ´ 08.
Notice that the relation between the diameter of the particles d and the width of the cavity is 1 : 20,
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whereas the radius of the circular obstacle is double that of d. The mean value of p is fixed as κ “ 100,
no presence of gravity is assumed, that is, f “ 0, and the boundaries conditions are

u “ p2x2 ´ 1, 0qt on Γ zΓc and u “ 0 on Γc .

In particular, we impose that flows cannot in nor out through Γc, whereas at the top and bottom of
the domain flows are faster in opposite direction. In Figure 7.3, we display the computed internal
friction coefficient, magnitude of the velocity and symmetric part of the velocity gradient, and pressure
field, which were built using the mixed AFW0-based scheme on a mesh with meshsize h “ 0.020 and
12, 433 triangle elements (actually representing 224, 441 DOF). We observe higher velocities at the top
and bottom of the boundary going to the right and left of the domain, respectively, as we expected. In
addition, most of the variations in both the magnitude of the symmetric part of the velocity gradient
tensor and pressure field occur around the circular obstacle. This observation aligns with the results
obtained for the discrete internal friction coefficient. Notice also that at the middle of the domain
the magnitude of the symmetric part of the velocity gradient is zero or close to it describing a region
where the original viscosity η (2.9) is singular and hence the granular flows are static. The latter is in
agreement with the velocity of the fluid and it is overcome by the mixed approximation considering
the regularized viscosity (2.11) as it was described in Section 2.

Figure 7.3: [Example 3] Computed internal friction coefficient, magnitude of the velocity and sym-
metric part of the velocity gradient, and pressure field.

A The hypotheses on the viscosity

In this appendix we refer to the regularized viscosity η and the corresponding fulfillment of the
hypotheses (H.1), (H.2), and (H.3). We begin by recalling from (2.11) that

ηpϱ, ωq :“
a1 ϱ

ω ` ε
`

a2 ϱ

a3
?
ϱ ` a4 ω ` ε

@ pϱ, ωq P R` ˆ R` , (A.1)

so that
B

Bω
ηpϱ, ωq “ ´

a1 ϱ

pω ` εq2
´

a2 a4 ϱ

pa3
?
ϱ ` a4 ω ` εq2

@ pϱ, ωq P R` ˆ R` , (A.2)

and then

ηpϱ, ωq ` ω
B

Bω
ηpϱ, ωq “

a1 ϱ ε

pω ` εq2
`

a2 pa3
?
ϱ ` εq ϱ

pa3
?
ϱ ` a4 ω ` εq2

@ pϱ, ωq P R` ˆ R` . (A.3)
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Thus, in order to satisfy (H.1) and (H.2), we restrict the evaluation of η, as defined by (A.1), to a
given rectangle rϱ1, ϱ2s ˆ rω1, ω2s Ď R` ˆ R`, so that η is extended by continuity outside this region,
as illustrated in Figure A.1 below.

Figure A.1: Graphic representation of the modified version of the viscosity function η.

In this way, it is possible to accomplish the aforementioned hypotheses with positive constants η1
and η2, depending on ϱ1, ϱ2, ω1, ω2, ε, and the coefficients ai, i P

␣

1, ..., 4
(

, defined in (2.10). Note
also that, under this modification, one could even get rid of the parameter ε.

On the other hand, regarding (H.3), we show next that it is satisfied with a positive constant Lη

depending only on the coefficients a1, a2, and a4 (cf. (2.10)). Indeed, given ϱ, χ, and ω in R`, we
first deduce from (A.1) and some algebraic manipulations, that

!

ηpϱ, ωq ´ ηpχ, ωq

)

ω

“

"

a1 ω

ω ` ε
`

a2 a3
?
ϱ

?
χω

p
?
ϱ `

?
χqapϱ, ω, εqapχ, ω, εq

`
a2 ω pa4 ω ` εq

apϱ, ω, εqapχ, ω, εq

*

pϱ ´ χq ,
(A.4)

where
apϱ, ω, εq :“ a3

?
ϱ ` a4 ω ` ε ,

and analogously for apχ, ω, εq. In order to bound the right-hand side of (A.4) we first observe that

a1 ω

ω ` ε
ď a1 . (A.5)

Then, it is straightforward to show that

?
ϱ

?
ϱ `

?
χ

ď 1 ,
a3

?
χ

apχ, ω, εq
“

a3
?
χ

a3
?
χ ` a4 ω ` ε

ď 1 , and

a2 ω

apϱ, ω, εq
“

a2 a4 ω

a4 pa3
?
ϱ ` a4 ω ` εq

ď
a2
a4

,

(A.6)
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which yield
a2 a3

?
ϱ

?
χω

p
?
ϱ `

?
χqapϱ, ω, εqapχ, ω, εq

ď
a2
a4

. (A.7)

In turn, it is readily seen that

a4 ω ` ε

apχ, ω, εq
“

a4 ω ` ε

a3
?
χ ` a4 ω ` ε

ď 1 ,

which, along with the third inequality from (A.6), imply

a2 ω pa4 ω ` εq

apϱ, ω, εqapχ, ω, εq
ď

a2
a4

. (A.8)

Finally, employing (A.5), (A.7), and (A.8) in (A.4), we arrive at

ˇ

ˇηpϱ, ωq ´ ηpχ, ωq
ˇ

ˇω ď Lη |ϱ ´ χ| , (A.9)

where, using (2.10),

Lη :“ a1 `
2 a2
a4

“
`

2µd ´ µsq
?
2 ,

thus proving (H.3).
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