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Abstract

We propose and analyze an H(div)-conforming and mass conservative finite element method
for the coupling of nonisothermal fluid flow with nonisothermal porous media flow. The governing
equations are the Navier-Stokes/heat system, commonly known as the Boussinesq system, in the
free-fluid region, and the Darcy-heat coupled model in the membrane. These systems are coupled
through buoyancy terms and a set of transmission conditions on the fluid-membrane interface,
including mass conservation, balance of normal forces, the Beavers-Joseph-Saffman law, and conti-
nuity of heat flux and fluid temperature. We consider a velocity-pressure-temperature variational
scheme for the Boussinesq system in the free-fluid region whereas in the membrane region we
consider a dual-mixed formulation for the Darcy system coupled with a primal equation for the
temperature model. In this way, the unknowns of the resulting formulation are given by the veloc-
ity, pressure and temperature in both domains. For the associated Galerkin scheme, we combine
an H(div)-conforming scheme for the fluid variables and a conforming Galerkin discretization for
the heat equation. Therefore, the resulting numerical scheme produces exactly divergence-free ve-
locities and also allows preserve the law of conservation of mass at a discrete level. The analysis of
the continuous and discrete problems is carried out by means of a fixed-point strategy under a suf-
ficiently small data assumption. We derive optimal error estimates under an additional assumption
over the data and present numerical results illustrating the performance of the method.
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1231336, Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination
Processes (ACT210087) and Becas Chile Programme for national students 21190766.
†jecamano@ucsc.cl
‡royarzua@ubiobio.cl
§mseron@ubiobio.cl
¶msolano@ing-mat.udec.cl

1



1 Introduction

For more than two decades, an important part of the numerical analysis community has been actively
working on the devising of more efficient and robust numerical methods for simulating the dynamic
interaction between a fluid flow, governed by the Stokes or Navier–Stokes equations, and porous media
flow, modeled by the Darcy law. The above, motivated by its applicability in different areas of interest,
such as medicine, petroleum engineering, and environmental and geophysical sciences, to name a few.

Several contributions can be found in the literature, from conforming to nonconforming schemes,
including primal and mixed methods, along with Discontinuous Galerkin (DG) schemes and Hybri-
dazible DG methods, domain decomposition and mortar methods. See, for instance, [4, 13, 14, 21,
22, 23, 25, 27, 28, 29, 30, 31, 32, 43], and the references therein. Nevertheless, the extension to the
nonisothermal case remains limited, despite the diversity of applications where the model, recently
studied in [44] (also see [45]), can be found, such as in geophysical sciences (see [35, 42]), petroleum en-
gineering ([1, 36]), and desalination processes ([47, 52]). In fact, the first contribution in this direction
is [12], where a conforming numerical scheme for the steady-state nonisothermal Navier-Stokes-Darcy
coupled system is proposed. More precisely, a velocity-pressure-temperature variational formulation
was employed for both the free-fluid and porous medium regions, coupled through terms involving
a Lagrange multiplier representing the trace of the porous medium pressure on the interface. The
Galerkin scheme utilizes Bernardi-Raugel and Raviart-Thomas elements for velocities in the free-fluid
and porous medium domains, respectively, whereas piece-wise constant and linear elements were used
for pressure and temperature, respectively, and continuous and piece-wise linear functions for the La-
grange multiplier. Through the integration of the theories presented in [22] and [7], and employing a
suitable lifting technique for temperature data (as in [18] and [8]), the study in [12] establishes the
existence of a solution using a fixed-point strategy under a smallness assumption on the data. More-
over, with more stringent conditions applied to the temperature solution, the paper demonstrates both
uniqueness (for the continuous problem) and convergence.

In this work we proceed similarly to [39] and consider an H(div)-conforming approximation for
the velocity in both, the free-fluid region and the porous medium domain, to propose a strongly
mass conservative discretization for the nonisothermal Navier-Stokes-Darcy coupled system. With
this approach, the continuity of the normal components of the velocity are exactly preserved along
the interface, thereby eliminating the need for introducing the aforementioned Lagrange multiplier,
and differently from [12], the analysis of the discrete scheme can be conducted without modifying the
convective term of the heat equation. In addition, the method has the distinct property that it yields
exactly divergence-free velocity approximations. To enforce the H1 continuity of the velocity in the
free-fluid region, we proceed analogously to [17] and make use of an interior penalty discontinuous
Galerkin (DG) technique.

For the discretization of the formulation, we utilize Brezzi–Douglas–Marini (BDM) elements of order
k for the velocities, discontinuous elements of order k − 1 for the pressure, and standard continuous
elements of order k for the temperature in the free-fluid and porous media domains, respectively.

The analysis of the discrete problem is carried out by means of a sufficiently small data assumption
and a fixed-point strategy. More precisely, we rewrite the variational problem as an equivalent fixed-
point problem and apply the classical Brouwer fixed-point theorem to conclude existence of solution.
In addition, under a smallness assumption on data and on the temperature in the membrane, we
obtain the convergence of the Galerkin scheme and the corresponding theoretical rate of convergence.

To validate the theoretical results, we conduct several numerical simulations using manufactured
solutions. These simulations demonstrate that the theoretical rates of convergence are consistently
achieved in all scenarios, while also confirming the mass conservation property of the method. Fur-
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thermore, we employ the proposed numerical scheme in more realistic scenarios, where it successfully
captures phenomena documented in the literature. In particular, as highlighted in [45] (also see [44]), it
is observed that convection patterns within the free-fluid and porous medium regions undergo changes
as the size of the free-fluid region decreases. To be more precise, when the free-fluid region has a
shallow depth, the convection patterns extend to encompass both domains, whereas when the free-
fluid region has a greater depth, the predominant convection patterns are primarily confined within
the free-fluid region. In this context, we conduct simulations for both cases in Section 5 and achieve
results that closely align with those reported in [45].

The remainder of the paper is organized as follows. In Section 2, we introduce the model problem,
and present the corresponding variational formulation and the stability results together with the
corresponding existence and uniqueness of the solution. Next, in Section 3, we introduce the mass-
conservative numerical scheme and analyze its well-posedness. Section 4 focuses on error analysis and
the derivation of the theoretical rate of convergence and conclude in Section 5 with the aforementioned
numerical results.

We conclude this section by introducing some definitions and establishing specific notations. Let
O ⊆ Rd, d ∈ {2, 3}, denote a domain with Lipschitz boundary Γ. For s ≥ 0 and p ∈ [1,+∞], we
denote by Ws,p(O) the usual Sobolev space endowed with the norm ‖ · ‖s,p,O. If s = 0, W0,p(O)
corresponds to the usual Lebesgue space Lp(O), which is endowed with the norm ‖ · ‖0,p,O. If p = 2,
we write Hs(O) in place of Ws,2(O), and denote the corresponding Lebesgue and Sobolev norms by
‖ · ‖0,O and ‖ · ‖s,O, respectively, and the seminorm by | · |s,O. In addition, H1

0(O) will denote the space
of functions in H1(O) with null trace on Γ, and L2

0(O) will be the space of L2(O) functions with zero
mean value over O, that is

L2
0(O) :=

{
v ∈ L2(O) :

∫
O
v = 0

}
.

Given p, q ∈ (1,+∞) satisfying 1/p+1/q = 1, in what follows, we will denote by W1/q,p(Γ) the trace
space of W1,p(O) and by W−1/q,q(Γ) the dual space of W1/q,p(Γ) endowed with the norms ‖ · ‖1/q,p;Γ
and ‖ · ‖−1/q,q;Γ, defined respectively by

‖φ‖1/q,p,Γ := inf
{
‖ψ‖1,p,O : ψ ∈W1,p(O), ψ|Γ = φ

}
∀φ ∈W1/q,p(Γ),

and

‖ψ‖−1/q,p,Γ = sup
ξ∈W1/q,p(Γ)\{0}

〈ψ, ξ〉Γ
‖ξ‖1/q,p,Γ

∀ψ ∈W−1/q,q(Γ),

where 〈·, ·〉Γ denotes the duality parity between W−1/q,q(Γ) and W1/q,p(Γ), which coincides with the
inner product on L2(Γ) when restricted to L2(Γ). When p = 2, we will write H1/2(Γ) := W1/2,2(Γ),
‖ · ‖1/2,2,Γ = ‖ · ‖1/2,Γ, H−1/2(Γ) := W−1/2,2(Γ) and ‖ · ‖−1/2,2,Γ = ‖ · ‖−1/2,Γ.

Additionally, we recall that H(div;O) :=
{

w ∈ L2(O) : div w ∈ L2(O)
}
, endowed with the norm

‖w‖div;O :=
(
‖w‖20,O + ‖div w‖20,O

)1/2
is a standard Hilbert space in the realm of mixed problems

(see, e.g., [10]). We also define the following subspace of H(div;O)

H0(div;O) :=
{

v ∈ H(div;O) : v · n = 0 on ∂O
}
,

where n is the exterior unit normal vector on define on the boundary ∂O.

For simplicity, in what follows for any scalar fields v and w, vector fields v = (vi)i=1,d and w =
(wi)i=1,d, and tensor fields A = (aij)i,j=1,d and B = (bij)i,j=1,d, we will denote

(v, w)D :=

∫
D
vw, (v,w)D :=

∫
D

v ·w and (A,B)D :=

∫
D

A : B,
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where D ∈ {O, ∂O, e}, with e ⊆ ∂O and A : B :=
d∑

i,j=1

aijbij .

By M and M we will denote the corresponding vectorial and tensorial counterparts of the generic
scalar functional space M, In turn, when no confusion arises, | · | will denote the Euclidean norm in
Rd or Rd×d. Furthermore, given a non-negative integer k and a subset S of Rd, Pk(S) stands for the
space of polynomials defined on S of degree ≤ k.

In the sequel we will employ 0 as a generic null vector, and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic positive constants independent of the discretization parameters,
which may take different values at different places.

Finally we recall that the following continuous embeddings hold (see [48, Theorem 1.3.4] and [9,
Proposition 1.4.2.]):

Wq,r(O) ↪→ C0(O) and W1,s(O) ↪→W1,t(O), (1.1)

for all q > d
r , and for all 1 ≤ t ≤ s ≤ ∞, respectively.

2 Continuous problem

In this section, we briefly present the model problem and establish the existence, uniqueness and
stability of the associated weak formulation. The corresponding analysis can be found in [12, Section
2].

2.1 The model problem and its variational formulation

In order to describe the geometry of the problem, we let Ωf and Ωm be two bounded and simply
connected polygonal domains in R2, such that ∂Ωf ∩ ∂Ωm = Σ 6= ∅, and Ωf ∩ Ωm = ∅. Then, we let
Γf := ∂Ωf \ Σ , Γm := ∂Ωm \ Σ, and denote by n the unit normal vector on the boundaries, which is
chosen pointing outward from Ω := Ωf ∪ Ωm ∪ Σ and Ωf (and hence inward to Ωm when seen on Σ).
On Σ we also consider a unit tangent vector t (see Fig. 2.1).

Ωf

Ωm

Σ

Γm

Γf
n

n

tn

Figure 2.1: Sketch of the geometry of the domains.

The problem we are interested in consists of the movement of an incompressible viscous fluid subject
to a heat source occupying Ωf which flows towards and from a porous membrane Ωm through Σ, where
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Ωm is saturated with the same fluid (see [44, 47]). The mathematical model is defined by two separate
groups of equations and a set of coupling terms. In the free fluid domain Ωf , the motion of the fluid
can be described by the following Navier–Stokes/Heat system:

σf = 2µ e(uf) − pf I in Ωf , (2.1a)

−divσf + (uf · ∇) uf − gf θf = 0 in Ωf , (2.1b)

div uf = 0 in Ωf , (2.1c)

−κf ∆ θf + uf · ∇ θf = 0 in Ωf , (2.1d)

where µ > 0 is the dynamic viscosity of the fluid, uf is the fluid velocity, pf is the fluid pressure,
σf is the Cauchy stress tensor, I is the 2 × 2 identity matrix, θf is the fluid temperature, κf > 0
is the fluid thermal conductivity, gf ∈ L2(Ωf) is the external force per unit mass, div is the usual
divergence operator div acting row-wise on each tensor, and e(uf) is the strain rate tensor given by
e(uf) := 1

2

(
∇uf + (∇uf)

t
)
, where the superscript t denotes transposition.

In the porous membrane Ωm the behavior of the fluid can be described by the following Darcy-Heat
system,

K−1 um + ∇ pm − gm θm = 0 in Ωm, (2.2a)

div um = 0 in Ωm, (2.2b)

−κm ∆ θm + um · ∇ θm = 0 in Ωm, (2.2c)

where um represents the fluid velocity, pm the fluid pressure, θm the fluid temperature, gm ∈ L3(Ωm)
a given external force, κm > 0 the thermal conductivity, and K ∈ [L∞(Ωm)]2×2 is a symmetric and
uniformly positive definite tensor in Ωm representing the intrinsic permeability κ of the membrane
divided by the dynamic viscosity µ of the fluid. Throughout the paper we assume that there exists
CK > 0 such that

ξtK(x) ξ ≥ CK |ξ|2,
for almost all x ∈ Ωm, and for all ξ ∈ R2.

The transmission conditions that couple the systems (2.1) and (2.2) on the interface Σ are given by

θf = θm on Σ, κf ∇ θf · n = κm∇ θm · n on Σ,

uf · n = um · n on Σ, σf n +
αd µ√
t · κ · t

(uf · t) t = −pm n on Σ,
(2.3)

where αd is a dimensionless constant which depends only on the geometrical characteristics of the
membrane (see [6]). In particular, the fourth condition in (2.3) can be decomposed, at least formally,
into its normal and tangential components as follows:

(σf n) · n = −pm and (σf n) · t = − αd µ√
t · κ · t

(uf · t) on Σ. (2.4)

The first equation in (2.4) corresponds to the balance of normal forces, whereas the second one is known
as the Beavers–Joseph–Saffman law, which establishes that the slip velocity along Σ is proportional to
the shear stress along Σ (assuming also, based on experimental evidence, that um · t is negligible). We
refer to [6, 37, 50] for further details on this interface condition. Finally, the Navier–Stokes/Darcy/Heat
system (2.1), (2.2) and (2.3) is complemented with suitable boundary conditions:

uf = 0 on Γf , um · n = 0 on Γm,

θf = θD|Γf
on Γf , θm = θD|Γm on Γm,

(2.5)
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where θD ∈W3/4,4(Γ) is a given function defined on Γ := Γf ∪ Γm.

2.2 The variational formulation

Here, we derive the variational formulation for the coupled problem given by (2.1), (2.2), (2.3) and
(2.5). We observe in advance that the weak problem introduced below is equivalent to the one
introduced in [12].

First, we let

H1
Γf

(Ωf) := {v ∈ H1(Ωf) : v = 0 on Γf

}
, Ψ∞ := {ψ ∈ H1(Ω) : ψ|Ωm ∈ L∞(Ωm)},

and define the spaces

H := {v ∈ H0(div; Ω) : v|Ωf
∈ H1

Γf
(Ωf)} and Ψ∞,0 := Ψ∞ ∩H1

0(Ω),

where H is endowed with the norm

‖v‖H := ‖v|Ωf
‖1,Ωf

+ ‖v|Ωm‖div;Ωm ∀v ∈ H.

Then we define the global unknowns

u := ufχf + umχm, p := pfχf + pmχm and θ := θfχf + θmχm,

with χ? being the characteristic function:

χ? :=

{
1 in Ω?,

0 in Ω \ Ω?,

for ? ∈ {f,m}, and proceed analogously to [12] to obtain the variational problem: Find u ∈ H,
p ∈ L2

0(Ω) and θ ∈ H1(Ω), with θ|Γ = θD, such that:

AF(u,v) + OF(u; u,v) + B(v, p) − D(θ,v) = 0 ∀v ∈ H,

B(u, q) = 0 ∀ q ∈ L2
0(Ω),

AT(θ, ψ) + OT(u; θ, ψ) = 0 ∀ψ ∈ Ψ∞,0,

(2.6)

where the forms AF : H ×H → R, OF : H1
Γf

(Ωf) ×H1
Γf

(Ωf) ×H1
Γf

(Ωf) → R, B : H × L2
0(Ω) → R,

D : H1(Ω) × H → R, AT : H1(Ω) × Ψ∞,0 → R, and OT : H × H1(Ω) × Ψ∞,0 → R, are defined
respectively, as

AF(u,v) := aF,f(u,v) + aF,m(u,v), AT(θ, ψ) := κf(∇θ,∇ψ)Ωf
+ κm(∇θ,∇ψ)Ωm ,

B(v, q) := − (q,div v)Ω, D(θ,v) := (θ gf ,v)Ωf
+ (θ gm,v)Ωm ,

OF(w; u,v) := ((w · ∇)u,v)Ωf
, OT(w; θ, ψ) := (w · ∇θ, ψ)Ωf

+ (w · ∇θ, ψ)Ωm ,

(2.7)

with
aF,f(u,v) := 2µ (e(u), e(v))Ωf

+
〈

αd µ√
t·κ·t(u · t),v · t

〉
Σ
,

aF,m(u,v) := (K−1 u,v)Ωm .
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We observe that (2.6) is nothing but a slight reformulation of the continuous variational formulation
analyzed in [12]. In fact since the following inf-sup condition holds

sup
(vf ,vm)∈H1

Γf
(Ωf)×HΓm (div;Ωm)

〈vf · n− vm · n, ξ〉Σ
‖vf‖1,Ωf

+ ‖vm‖div;Ωm

≥ C‖ξ‖1/2,Σ ∀ ξ ∈ H1/2(Σ),

where HΓm(div; Ωm) := {v ∈ H(div; Ωm) : v · n = 0 on Γm} (see [22, Lemma 1]), it is easy to see
that problem (2.6) is equivalent to [12, eq. (2.8)].

To establish the existence, uniqueness and stability result for (2.6), we need to introduce some
further notations and results. We first let E : W3/4,4(Γ)→W1,4(Ω) be the usual lifting operator (see
for instance [24, Corollary B.53]), satisfying

γ0(E(ζ)) = ζ and ‖E(ζ)‖1,4,Ω ≤ c‖ζ‖3/4,4,Γ ∀ ζ ∈W3/4,4(Γ),

where γ0 : W1,4(Ω) → W3/4,4(Γ) is the trace operator. In turn, we let δ > 0, and similarly to [8,
Lemma 2.8], define the function βδ : R2 → R given by

βδ(x) :=


1 if 0 ≤ dist(x,Γ) ≤ δ,
2− δ−1dist(x,Γ) if δ ≤ dist(x,Γ) ≤ 2δ,

0 if dist(x,Γ) ≥ 2δ,

where dist(x,Γ) denotes the distance from the point x to the boundary Γ. Observe that βδ is continuous
and satisfies

βδ ∈W1,∞(Ω), 0 ≤ βδ ≤ 1 in Ωδ, βδ ≡ 0 in Ω \ Ωδ, and ‖∇βδ‖0,4,Ωδ ≤ δ
−1|Ωδ|1/4,

where Ωδ := {x ∈ Ω : dist(x,Γ) < 2δ}. In this way, in order to handle the non-homogeneous Dirichlet
boundary condition for the temperature, we introduce the extension operator

Eδ := βδE : W3/4,4(Γ)→W1,4(Ω). (2.8)

The following theorem establishes the stability of solution of problem (2.6).

Theorem 2.1 Let θ1 = Eδ(θD) ∈W1,4(Ω), with δ > 0 satisfying

c1

αFαT
γg δ

1/12 ‖θD‖3/4,4,Γ ≤ 1, (2.9)

where γg := ‖gf‖0,Ωf
+ ‖gm‖0,3,Ωm, αF := 1

2 min {c2µ,CK}, αT := c3 min{κf , κm}. Let (u, p, θ) be a
solution of (2.6) and assume that

‖u · n‖0,Σ ≤ c4µ.

Assume further that θ1 satisfies
c5

αF αT
γg ‖θ1‖0,∞,Ω ≤ 1. (2.10)

There hold
‖u‖H ≤ Cu γg ‖θ1‖1,Ω, ‖θ0‖1,Ω ≤ Cθ ‖θ1‖1,Ω, (2.11)

and
‖p‖0,Ω ≤ c7

(
CAF

Cu + C2
u γg ‖θ1‖1,Ω + (Cθ + 1)

)
γg‖θ1‖1,Ω, (2.12)

where θ0 = θ − θ1 ∈ H1
0(Ω), Cu := c6 α

−1
F α−1

T (CAT
+ αT) and Cθ := α−1

T (2CAT
+ αT), with

CAT
and CAF

being the continuity constants of the bilinear forms AT and AF, respectively. Above,
c1, ..., c7 > 0 are constants independent of the physical parameters.
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Proof. Estimates (2.11) can be found in [12, Theorem 2.6] whereas (2.12) can be obtained analogously
to [12, Corollary 2.7]. We omit further details. �

Now we establish the existence and uniqueness result for problem (2.6).

Theorem 2.2 Let δ > 0 satisfying (2.9) and let θ1 = Eδ(θD) ∈ W1,4(Ω) be such that (2.10) holds.
Assume further that

Cu γg δ
−3/4(1 + δ2)1/2 ‖θD‖3/4,4,Γ ≤ C1µ,

where γg = ‖gf‖0,Ωf
+‖gm‖0,3,Ωm and C1 is a positive constant independent of the physical parameters.

Then, there exist u ∈ H, θ0 ∈ H1
0(Ω) and p ∈ L2

0(Ω), such that (u, p, θ0 + θ1) is a solution to problem
(2.6). In addition, if we assume that θ0|Ωm ∈ L∞(Ωm), and

(M1 γg +M2)Clift,2δ
−3/2(1 + δ2)1/2‖θD‖3/4,4,Γ +M3‖θ0‖0,∞,Ωm +M3‖θ1‖0,∞,Ωm +M4γg < 1,

where

M1 := C2α
−1
F Cu, M2 := C3α

−1
T (Cθ + 1) , M3 := C4α

−1
T , and M4 := C5α

−1
F ,

with C1, C2, C3, C4, C5 being positive constants independent of the physical parameters, then the so-
lution is unique.

Proof. The existence result is a direct consequence of [12, Theorem 2.12 and Lemma 2.5], whereas the
uniqueness result can be found in [12, Theorem 2.13]. �

3 A mass conservative numerical scheme

In this section we combine an H(div)-conforming scheme for the fluid variables and a conforming
Galerkin discretization for the temperature, to obtain a mass conservative numerical method to ap-
proximate the solution of problem (2.6). As we shall see next in the forthcoming sections, the study
of the associated discrete scheme can be easily derived by applying the same arguments employed for
the finite-dimensional problem presented in [12, Section 2.3.4].

3.1 Preliminaries

Let T f
h and T m

h be respective triangulations of the domains Ωf and Ωm, which are formed by shape-
regular triangles of diameter hT , and assume that they match in Σ so that Th := T f

h ∪ T m
h is a

triangulation of Ω = Ωf ∪ Σ ∪ Ωm. In addition, we let h = max{hT : T ∈ Th}.
For each T ∈ Th, we denote by nT the unit outward normal vector on the boundary ∂T and let

E(T ) be the set of edges of T . We also denote by Eh the set of all edges of Th, subdivided as follows:

Eh := Eh(Γf) ∪ Eh(Γm) ∪ Eh(Ωf) ∪ Eh(Ωm) ∪ Eh(Σ) ,

where Eh(Γ?) := { e ∈ Eh : e ⊆ Γ? }, Eh(Ω?) := { e ∈ Eh : e ⊆ Ω? } for each ? ∈ {f,m}, and
Eh(Σ) := { e ∈ Eh : e ⊆ Σ }. In what follows, he stands for the diameter of a given edge e ∈ Eh.

We will use standard average and jump operators on Ωf . To define them, let T+ and T− be two
adjacent elements of T f

h , and e = ∂T+ ∩ ∂T− ∈ Eh(Ωf). Let v be a piecewise smooth vector–valued
function and let us denote by v± its trace taken from within the interior of T±. Then the jump J·K
acting on v is defined as

JvK :=

{
v+ ⊗ nT+ + v− ⊗ nT− , e ∈ Eh(Ωf),

v ⊗ n, e ∈ Eh(Γf) ∪ Eh(Σ),
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where n is the outward unit normal vector on ∂Ωf = Γf ∪ Σ and u ⊗ n is the tensor product matrix
u⊗n = (uinj)i,j . In turn, for any smooth enough piecewise (vector- or tensor-valued) function η, and
denoting by η± its trace taken from within the interior of T±, we define its average as

{{η}} :=

{
1
2 (η+ + η−) , e ∈ Eh(Ωf),

η, e ∈ Eh(Γf) ∪ Eh(Σ).

3.2 Galerkin Scheme

For k ≥ 1, let Pk(T ) be the space of polynomials functions on T of degree less or equal than k and
inspired by [39, 46], define the following finite element subspaces

Hh := {v ∈ H0(div; Ω) : v|T ∈ [Pk(T )]d ∀T ∈ Th},
Qh := {q ∈ L2

0(Ω) : q|T ∈ Pk−1(T ) ∀T ∈ Th},
Ψh := {ψ ∈ C0(Ω) : ψ|T ∈ Pk(T ) ∀T ∈ Th}, and Ψh,0 := Ψh ∩H1

0(Ω).

(3.1)

Notice that Hh corresponds to the well-known Brezzi–Douglas–Marini finite element space [5]. In
turn, denoting by Hh(Ω?) the restriction of Hh to Ω? for ? ∈ {f,m}, we observe that Hh(Ωm) ⊆
H(div; Ωm), whereas Hh(Ωf) is not a subspace of H1

Γf
(Ωf). Then, to overcome the nonconformity in

Ωf , we proceed similarly to [17] and introduce the following discontinuous versions of the forms aF,f

and OF:

ahF,f(u,v) := 2µ
∑
T∈T f

h

(e(u), e(v))T − 2µ
∑

e∈Eh(Ωf)∪Eh(Γf)

({{e(u)}}, JvK)e − 2µ
∑

e∈Eh(Ωf)∪Eh(Γf)

({{e(v)}}, JuK)e

+2µ
∑

e∈Eh(Ωf)∪Eh(Γf)

apen

he
(JuK, JvK)e +

∑
e∈Eh(Σ)

〈
αd µ√
t · κ · t

(u · t),v · t
〉
e

,

OhF(w; u,v) :=
∑
T∈T f

h

((w · ∇)u,v)T +
∑

e∈Eh(Ωf)

1

2

(
w · nT − |w · nT |, (uext − u) · v

)
e
.

Above, apen > 0 is the well-known interior penalty parameter chosen on each edge to enforce stability
(see, e.g., [2, 20]) whereas uext is the trace of u taken from within the exterior of T . ahF,f , is the well-

known Symmetric Interior Penalty Galerkin discrete form (SIPG) (see [2, 32]) and OhF is the upwind
form introduced by Lasaint–Raviart in [41]. Other choices for aF,f and OF are equally feasible (see,
e.g., [3] and [20, Section 6]), provided that the stability properties in Section 3.3 below hold.

Now, to introduce an approximation for the boundary datum θD, we proceed similarly to [12]. In
fact, we let Ih : C0(Ω)→ Ψh be the well-known Lagrange interpolation operator and recall that, under
the assumption θD ∈W3/4,4(Γ) and for a given δ > 0, Eδ(θD) belongs to W1,4(Ω) ⊆ C0(Ω) (cf. (1.1)).
Then, for a fixed δ > 0 (to be specified below), we define the following approximation to θD:

θδD,h = Ih(Eδ(θD))|Γ ∈ {ψD,h ∈ C0(Γ) : ψD,h|e ∈ Pk(e) for all e ∈ Eh(Γf) ∪ Eh(Γm)}. (3.2)

Let us observe that since Ω is a polygonal domain, Ωδ is also a polygon that can be discretized by
shaped-regular triangles. According to this, for the forthcoming analysis we let T δh be a triangulation
of Ωδ and assume that T δh ⊆ Th.

9



In this way, we propose the following numerical scheme to approximate the solution of problem
(2.6): Find (uh, ph, θh) ∈ Hh ×Qh ×Ψh, such that θh|Γ = θδD,h, and

AhF(uh,v) +OhF(uh; uh,v) +B(v, ph)−D(θh,v) = 0 ∀v ∈ Hh,

B(uh, q) = 0 ∀ q ∈ Qh,

AT(θh, ψ) +OT(uh; θh, ψ) = 0 ∀ψ ∈ Ψh,0,

(3.3)

where
AhF(u,v) := ahF,f(u,v) + aF,m(u,v), ∀u,v ∈ Hh,

and aF,m, B, D, AT, and OT are the forms defined in (2.7).

Remark 3.1 If uh ∈ Hh is the discrete velocity satisfying (3.3), then the second equation of (3.3)
and the fact that Hh ⊆ H0(div; Ω), imply that div uh = 0 in Ω and uh|Ωf

· n = uh|Ωm · n on Σ, thus
the method is strongly conservative. In turn, another feasible choice to approximate the velocity is

Hh := {v ∈ H0(div; Ω) : v|T ∈ RTk(T ), ∀T ∈ Th},

where RTk(T ) corresponds to the well-known local Raviart–Thomas space of order k defined by RTk(T ) :=
[Pk(T )]2 ⊕ P̃k(T )x, with P̃k(T ) being the space of polynomials with total degree equal to k on element
T , and x is the generic vector in R2.

3.3 Discrete stability properties

Here we discuss the stability properties of the forms involved restricted to the corresponding discrete
spaces. To that end, for a given l ≥ 1, we first define the following broken Sobolev space

Hl
h :=

{
v ∈ H(div; Ω) : v|T ∈ Hl(T ) ∀T ∈ T f

h

}
.

On Hl
h, and for each l = 1, 2 we define the following norm:

‖v‖l,Hh
:=
(
‖v‖2

l,T f
h

+ ‖v‖2div;Ωm

)1/2 ∀v ∈ Hl
h,

where

‖v‖1,T f
h

:=

∑
T∈T f

h

‖∇v‖20,T +
αd µ√
t · κ · t

∑
e∈Eh(Σ)

‖v · t‖20,e +
∑

e∈Eh(Ωf)∪Eh(Γf)

apen

he
‖JvK‖20,e

1/2

,

for all v ∈ H1
h, and

‖v‖2,T f
h

:=

‖v‖2
1,T f

h
+
∑
T∈T f

h

h2
T |v|22,T

1/2

,

for all v ∈ H2
h.

In turn, for all T ∈ Th, we recall the following inverse and trace inequalities (see, e.g., [20])

|η|2,T ≤ ch−1
T |η|1,T ∀ η ∈ Pl(T ), (3.4)

‖η‖0,∂T ≤ c(h
−1/2
T ‖η‖0,T + h

1/2
T |η|1,T ) ∀ η ∈ H1(T ), (3.5)

‖η‖0,q,∂T ≤ ch
−1/q
T ‖η‖0,q,T ∀ η ∈ Pl(T ), (3.6)
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where c represents a positive constant independent of the mesh-size. In particular, from (3.4) we
obtain that there exists a positive constant c, independent of the mesh size, such that (see [46, eq.
(3.11)])

‖v‖2,T f
h
≤ c‖v‖1,T f

h
∀v ∈ Hh. (3.7)

This inequality, and estimates (3.5) and (3.6), the latter with q = 2, imply (see [3])

|AhF(u,v)| ≤ C̃AF
‖u‖2,Hh

‖v‖1,Hh
∀u ∈ H2

h, ∀v ∈ Hh, (3.8a)

|AhF(u,v)| ≤ ĈAF
‖u‖1,Hh

‖v‖1,Hh
∀u,v ∈ Hh. (3.8b)

In addition, the following estimates are straightforward

|B(v, q)| ≤ ĈB‖v‖1,Hh
‖q‖0,Ω ∀v ∈ Hh, ∀ q ∈ Qh, (3.9)

|AT(θ, ψ)| ≤ CAT
‖θ‖1,Ω‖ψ‖1,Ω ∀ θ, ψ ∈ Ψh,0. (3.10)

Now, for each q ≥ 1 if d = 2 and q ∈ [1, 6] if d = 3 we recall from [38, Proposition 4.5] that the
following inequality holds

‖v‖0,q,Ωf
≤ c‖v‖1,T f

h
∀v ∈ H1

h, (3.11)

where c > 0 represents a positive constant independent of h. In addition, from [32, Theorem 4.4] we
know that there exists Ĉtr,q > 0 independent of h, such that

‖v‖0,q,Σ ≤ Ĉtr,q‖v‖1,T f
h

∀v ∈ Hh. (3.12)

In particular, from (3.11), and after simple computations, we obtain

|D(θ,v)| ≤ ĈD(‖gf‖0,Ωf
+ ‖gm‖0,3,Ωm)‖θ‖1,Ω‖v‖1,Hh

∀ θ ∈ Ψh, ∀v ∈ Hh. (3.13)

On the other hand, proceeding analogously to the proof of [16, Proposition 4.2] for the two-dimensional
case and as in [38, Section 7] for the 3D case (see also [46, Lemma 3.4]), we can obtain the estimate

|OhF(w1; u,v)−OhF(w2; u,v)| ≤ CLip,F‖w1 −w2‖1,T f
h
‖u‖1,T f

h
‖v‖1,T f

h
, (3.14)

for all w1,w2,u ∈ H2
h and for all v ∈ Hh, with CLip,F > 0, being a constant independent of h.

Let us now define the discrete kernel of B as

Vh := {v ∈ Hh : B(v, q) = 0 ∀ q ∈ Qh}.

Since the pair
(
Hh,Qh

)
satisfies div (Hh) ⊆ Qh, it readily follows that (see [17])

Vh = {v ∈ Hh : div v = 0 in Ω}.

We observe that, proceeding similarly to [12, Lemma 2.2], that is, integrating by parts and employing
estimate (3.11), we deduce

|OT(w; θ, ψ)| ≤ COT
‖w‖1,Hh

‖ψ‖1,Ω(‖θ‖0,3,Ωf
+ ‖θ‖0,∞,Ωm) ∀w ∈ Vh, ∀ θ, ψ ∈ Ψh,0, (3.15)

|OT(w; θ, ψ)| ≤ C̃OT
‖w‖1,Hh

‖ψ‖1,Ω(‖θ‖1,Ωf
+ ‖θ‖0,∞,Ωm) ∀w ∈ Vh, ∀ θ, ψ ∈ Ψh,0. (3.16)

In turn, noticing that AT is elliptic on Ψh,0 and, for a given w ∈ Vh, OT(w; ·, ·) is skew-symmetric,
that is

AT(ψ,ψ) ≥ αT‖ψ‖21,Ω and OT(w;ψ,ψ) = 0 ∀ψ ∈ Ψh,0,
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where αT is a positive constant independent of h, we conclude that for all w ∈ Vh, AT(·, ·)+OT(w; ·, ·)
is elliptic:

AT(ψ,ψ) +OT(w;ψ,ψ) ≥ αT‖ψ‖21,Ω ∀ψ ∈ Ψh,0. (3.17)

Now, we recall from [49, Lemma 2.6] that, for a sufficiently large choice of apen > 0, there holds

ahF,f(v,v) + aF,m(v,v) ≥ 2µα̂f‖v‖21,T f
h

+ CK‖v‖2div;Ωm
∀v ∈ Vh, (3.18)

with α̂f > 0 independent of h. In addition, we recall from [16] that for any w ∈ Vh, OhF satisfies

OhF(w; v,v) =
1

2

∑
T∈T f

h

(
|w · n|, |v|2

)
0,∂K\∂Ωf

+
1

2

∑
e∈Eh(Σ)

(w · n, |v|2)e ∀v ∈ Hh. (3.19)

Then, combining (3.18) and (3.19) we readily obtain the following result.

Lemma 3.1 Let w ∈ Vh, be such that

‖w · n‖0,Σ ≤ 2µα̂fĈ
−2
tr,4. (3.20)

Then,
AhF(v,v) +OhF(w; v,v) ≥ α̂F‖v‖21,Hh

∀v ∈ Vh. (3.21)

Proof. Given w ∈ Vh satisfying (3.20), from (3.18) and (3.19) we obtain

AhF(v,v) +OhF(w; v,v) ≥ 2µα̂f‖v‖21,T f
h

+ CK‖v‖2div;Ωm
− 1

2

∑
e∈Eh(Σ)

|(w · n, |v|2)e| ∀v ∈ Vh.

Then, the result follows by applying (3.12) and proceeding analogously to the proof of [22, Lemma
10]. We omit further details. �

Let us now observe that combining [51, Theorem 6.12] and [11, eq. (7.1.28)], it is possible to prove
that B satisfies the discrete inf-sup condition

sup
v∈Hh\{0}

B(v, q)

‖v‖1,Hh

≥ β̂‖q‖0,Ω ∀ q ∈ Qh, (3.22)

with β̂ > 0, independent of h.

Finally, analogously to the continuous case, for a given δ > 0 we introduce the discrete extension
operator Eδ,h : W3/4,4(Γ) → Ψh given by Eδ,h := IhEδ, where Eδ is the extension operator defined in
(2.8) and Ih is the Lagrange interpolation operator. Then, it is clear from (3.2) that there holds

θδD,h = Eδ,h(θD)|Γ. (3.23)

Moreover, we recall from [12, Lemma 3.3], that the aforementioned operator satisfies:

‖Eδ,h(ζ)‖0,3,Ω ≤ Ĉlift,1δ
1/12(hδ−1 + h+ 1)‖ζ‖3/4,4,Γ, (3.24a)

‖Eδ,h(ζ)‖1,Ω ≤ Ĉlift,2δ
1/4(2 + δ−1)‖ζ‖3/4,4,Γ, (3.24b)

‖Eδ,h(ζ)‖0,∞,Ω ≤ 3‖E(ζ)‖0,∞,Ωδ , (3.24c)

for all ζ ∈W3/4,4(Γ), where Ĉlift,1, Ĉlift,2 > 0 are constants independent of h and δ.
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3.4 Existence of solution

In this section we proceed similarly to [12, Section 2.3.4] to establish existence of a discrete solution
to problem (3.3) by means of an equivalent fixed-point problem. To that end, we let δ > 0 be fixed
(to be specified below in Lemma 3.4) and decompose the discrete temperature θh as θh = θh,0 + θh,1,
with θh,1 = Eδ,h(θD) ∈ Ψh and θh,0 = θh − θh,1 ∈ Ψh,0. In turn, to simplify the subsequent analysis,
we introduce the reduced version of problem (3.3): Find (uh, θh,0) ∈ Vh ×Ψh,0 such that

AhF(uh,v) +OhF(uh; uh,v)−D(θh,0,v) = D(θh,1,v) ∀v ∈ Vh,

AT(θh,0, ψ) +OT(uh; θh,0 + θh,1, ψ) = −AT(θh,1, ψ) ∀ψ ∈ Ψh,0.
(3.25)

The equivalence between problems (3.3) and (3.25) follow from the discrete inf-sup condition (3.22)
and the definition of the lifting θh,1 (cf. (3.23)). This is established in the following lemma, whose
proof is standard and therefore omitted.

Lemma 3.2 If (uh, ph, θh) ∈ Hh × Qh × Ψh is a solution of (3.3), then uh ∈ Vh and (uh, θh,0) =
(uh, θh − θh,1) is a solution of (3.25). Conversely, if (uh, θh,0) ∈ Vh × Ψh,0 is a solution of (3.25),
then there exists ph ∈ Qh, such that (uh, ph, θh) = (uh, ph, θh,0 + θh,1) is a solution of (3.3).

According to the previous lemma, to prove existence of solution of problem (2.6), it suffices to prove
solvability of problem (3.25). To do that, now we define the bounded and convex set

Xh :=

{
(w, φ) ∈ Vh ×Ψh,0 : ‖w‖1,Hh

≤ Ĉu(‖gf‖0,Ωf
+ ‖gm‖0,3,Ωm)‖θh,1‖1,Ω

and ‖φ‖1,Ω ≤ Cθ‖θh,1‖1,Ω

}
, (3.26)

with
Ĉu := 2α̂−1

F α−1
T ĈD(CAT

+ αT) and Cθ := α−1
T (2CAT

+ αT),

and the discrete operator Jh : Xh → Vh ×Ψh,0, given by

Jh(w, φ) = (uh, θh,0) ∀ (w, φ) ∈ Xh,

where (uh, θh,0) is the solution of the linearized version of problem (3.25): Find (uh, θh,0) ∈ Vh×Ψh,0,
such that

AhF(uh,v) +OhF(w; uh,v) = D(φ,v) +D(θh,1,v) ∀v ∈ Vh,

AT(θh,0, ψ) +OT(w; θh,0, ψ) = −AT(θh,1, ψ)−OT(w; θh,1, ψ) ∀ψ ∈ Ψh,0.
(3.27)

It is clear that (uh, θh,0) ∈ Vh ×Ψh,0 is a solution of problem (3.25), if and only if, Jh(uh, θh,0) =
(uh, θh,0). In this way, to prove solvability of (3.25) in what follows we prove equivalently that Jh has
a fixed-point in Xh by means of the well-known Brouwer’s fixed-point theorem written in the following
form (see [15, Theorem 9.9-2]):

Theorem 3.3 Let f : Y → Y be a continuous mapping. If Y is a compact and convex subset of a
finite dimensional Banach space X, then f has at least one fixed point.

The following result establishes existence of a fixed-point of Jh.

Lemma 3.4 Let δ > 0 be such that h ≤ δ and

ĈDCOT

α̂FαT
(‖gf‖0,Ωf

+ ‖gm‖0,3,Ωm)Ĉlift,1δ
1/12(δ + 2)‖θD‖3/4,4,Γ ≤

1

4
. (3.28)
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In addition, assume that θh,1 = Eδ,h(θD) ∈ Ψh and θD satisfy, respectively,

ĈDCOT

α̂FαT
(‖gf‖0,Ωf

+ ‖gm‖0,3,Ωm)‖θh,1‖0,∞,Ω ≤
1

4
, (3.29)

and
Ĉtr,2Ĉu(‖gf‖0,Ωf

+ ‖gm‖0,3,Ωm)Ĉlift,2δ
1/4(2 + δ−1)‖θD‖3/4,4,Γ ≤ 2µα̂fĈ

−2
tr,4. (3.30)

Then, Jh is well defined and there exists at least one (uh, θh,0) ∈ Vh ×Ψh,0, such that Jh(uh, θh,0) =
(uh, θh,0).

Proof. Let us start by noting that the assumption h ≤ δ implies that estimate (3.24a) with ζ = θD

becomes
‖θh,1‖0,3,Ω = ‖Eδ,h(θD)‖0,3,Ω ≤ Ĉlift,1δ

1/12(δ + 2)‖θD‖3/4,4,Γ.

In addition, for a given (w, φ) ∈ Xh, we note that using the trace inequality (3.12) and the estimates
(3.24b) and (3.30), we get

‖w · n‖0,Σ ≤ Ĉtr,2‖w‖1,T f
h
≤ Ĉtr,2‖w‖1,Hh

≤ Ĉtr,2Ĉu(‖gf‖0,Ωf
+ ‖gm‖0,3,Ωm)‖θh,1‖1,Ω ≤ 2µα̂fĈ

−2
tr,4.

Then, from (3.17) and (3.21) and the Lax-Milgram lemma we conclude the unique solvability of (3.27),
which implies that Jh is well defined. In addition, employing (3.17), (3.21), (3.27), (3.28) and (3.29)
we easily obtain that (uh, θh,0) = Jh(w, φ) ∈ Xh, thus Jh(Xh) ⊆ Xh (see [12, Lemma 2.9] for details).
In turn, proceeding analogously to the proof of [12, Lemma 2.10], is it possible to obtain that Jh is
continuous. In this way, applying Theorem 3.3 it follows that there exists at least one (uh, θh,0) ∈ Xh,
such that (uh, θh,0) = Jh(uh, θh,0). �

We end this section by establishing the existence result for problem (3.3).

Theorem 3.5 Assume that the hypotheses of Lemma 3.4 hold. Then, there exists at least one
(uh, ph, θh) = (uh, ph, θh,0 + θh,1) ∈ Hh × Qh × Ψh solution to (3.3). Moreover, there exists C > 0,
independent of the solution and h, such that

‖uh‖1,Hh
+ ‖ph‖0,Ω + ‖θh‖1,Ω ≤ C

(
‖gf‖0,Ωf

+ ‖gm‖0,3,Ωm + ‖θD‖3/4,4,Γ
)
. (3.31)

Proof. The existence of solution of (3.3) is a direct consequence of Lemmas 3.2 and 3.4, whereas
estimate (3.31) follows from the fact that (uh, θh,0) ∈ Xh (cf. (3.26)) and the inf-sup condition (3.22).
We omit further details and refer the reader to [12, Corollary 2.7]. �

4 Error analysis

In this section, we carry out the error analysis of the finite element scheme (3.3). To that end, from
now on we assume that the hypotheses of Theorem 2.2 hold and let (u, p, θ) = (u, p, θ0 + θ1) ∈
H × L2

0(Ω) × H1(Ω) be the unique solution of problem (2.6), with θ1 = Eδ(θD) ∈ W1,4(Ω) and
θ0 ∈ H1

0(Ω). In addition, we assume that the hypotheses of Lemma 3.4 hold and let (uh, ph, θh) =
(uh, ph, θh,0 + θh,1) ∈ Hh ×Qh ×Ψh be a solution of (3.3), with θh,1 = Eδ,h(θD) ∈ Ψh and θh,0 ∈ Ψh,0.
In addition, given k ≥ 1, in what follows we assume that the exact solution satisfies:

u ∈
{
v ∈ H : v|Ωf

∈ Hk+1(Ωf), v|Ωm ∈ Hk(Ωm) and div (v|Ωm) ∈ Hk(Ωm)
}
,

p ∈ Hk(Ω), θ ∈ Hk+1(Ω), θ|Ωm ∈Wk+1,4(Ωm).
(4.1)
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Then, we let Πh : H1(Ω) → Hh be the BDM interpolation, Ph : L2(Ω) → Qh the L2-projection,
and Ih : C(Ω)→ Ψh the nodal projection, and write the corresponding errors as

eu = u− uh, ep = p− ph, and eθ = θ − θh.

then, we decompose these errors as follows

eu = %u + χu, %u = u−Πh(u), χu = Πh(u)− uh,

ep = %p + χp, %p = p− Ph(p), χp = Ph(p)− ph,

eθ = %θ + χθ, %θ = θ − Ih(θ), χθ = Ih(θ)− θh.

(4.2)

With the above definitions, we observe from [11, Chapter 2], [26, Chapter 3], and [24, Section 1.5]
that the following estimates hold

‖%u‖2,T f
h
≤ chk‖u‖k+1,Ωf

, ‖%u‖div;Ωm ≤ chk(‖u‖k,Ωm + ‖div u‖k,Ωm),

‖%p‖0,Ω ≤ chk‖p‖k,Ω, ‖%θ‖1,Ωf
≤ chk‖θ‖k+1,Ωf

, ‖%θ‖1,4,Ωm ≤ chk‖θ‖k+1,4,Ωm .
(4.3)

Finally, the following estimate for OT will be employed next in the error analysis for a given w ∈ Hh,
whose proof can be obtained proceeding analogously to the proof of [12, Lemma 4.1]: There exists
C̄OT

> 0, independent of h, such that

|OT(w; θ, ψ)| ≤ C̄OT
‖w‖1,Hh

(‖θ‖1,Ωf
+ ‖θ‖1,4,Ωm)‖ψ‖1,Ω, (4.4)

for all θ ∈ {ψ ∈ H1(Ω) : ψ|Ωm ∈W1,4(Ωm)} and ψ ∈ Ψh,0.

Now we are in position of establishing the main result of this section, namely, the theoretical rate
of convergence for the Galerkin scheme (3.3).

Theorem 4.1 Assume that the hypotheses in Theorem 2.2 and Lemma 3.4 hold. Let (u, p, θ) =
(u, p, θ0 + θ1) ∈ H × L2

0(Ω) × H1(Ω) be the unique solution to (2.6), with θ1 = Eδ(θD) ∈ W1,4(Ω)
and θ0 ∈ H1

0(Ω), and assume that (4.1) holds. In addition, let (uh, ph, θh) = (uh, ph, θh,0 + θh,1) ∈
Hh × Qh × Ψh be a solution to (3.3), with θh,1 = Eδ,h(θD) ∈ Ψh and θh,0 ∈ Ψh,0. Finally, let
γg = ‖gf‖0,Ωf

+ ‖gm‖0,3,Ωm, and assume further that

C1δ
−3/2(1 + δ2)1/2γg‖θD‖3/4,4,Γ + C2γg‖θ‖1,4,Ωm ≤

1

2
, (4.5)

where C1 and C2 are positive constants (defined in (4.12)) independent of h. Then, there exists
Crate > 0, independent of h and the continuous and discrete solutions, such that

‖eu‖1,Hh
+ ‖ep‖0,Ω + ‖eθ‖1,Ω ≤ Cratehk

{
‖u‖k+1,Ωf

+ ‖u‖k,Ωm + ‖div u‖k,Ωm

+ ‖p‖k,Ω + ‖θ‖k+1,Ωf
+ ‖θ‖k+1,4,Ωm

}
.

(4.6)

Proof. We begin by noticing that, owing to the extra regularity of the exact solution, we have

AhF(u,v) = AF(u,v) and OhF(u; u,v) = OF(u; u,v), ∀v ∈ Hh.

Then, the following orthogonality property holds:

AhF(eu,v) +
[
OhF(u; u,v)−OhF(uh; uh,v)

]
+B(v, ep)−D(eθ,v) = 0 ∀v ∈ Hh,

B(eu, q) = 0 ∀ q ∈ Qh,

AT(eθ, ψ) + [OT(u; θ, ψ)−OT(uh; θh, ψ)] = 0 ∀ψ ∈ Ψh,0.

(4.7)
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In particular, from the first equation of (4.7), adding and subtracting suitable terms and utilizing the
decomposition (4.2), we obtain

AhF(χu,v) +OhF(uh;χu,v) =−AhF(%u,v)−OhF(uh;%u,v)

+D(χθ,v) +D(%θ,v)−
[
OhF(u; u,v)−OhF(uh; u,v)

]
,

for all v ∈ Vh. From this identity with v = χu, and employing the coercivity of AhF(·, ·) +OhF(uh; ·, ·)
(cf. (3.21)), the continuity of AhF (cf. (3.8a)), the continuity of D (cf. (3.13)), and the Lipschitz
continuity of OhF (cf. (3.14)), we obtain

α̂F‖χu‖1,Hh
≤ ĈDγg‖χθ‖1,Ω + CLip,F‖χu‖1,T f

h
‖u‖1,T f

h
+ L1, (4.8)

where
L1 := C̃AF

‖%u‖2,Hh
+ CLip,F(‖uh‖1,T f

h
+ ‖u‖1,T f

h
)‖%u‖1,T f

h
+ ĈDγg‖%θ‖1,Ω.

Similarly, from the third equation of (4.7), we obtain

AT(χθ, ψ) +OT(uh;χθ, ψ) = −AT(%θ, ψ)−OT(uh; %θ, ψ)− [OT(u; θ, ψ)−OT(uh; θ, ψ)] ,

for all ψ ∈ Ψh,0, and in particular taking ψ = χθ, and making use of estimates (3.10), (3.17), (4.4), to
obtain

αT‖χθ‖1,Ω ≤ C̄OT
‖χu‖1,Hh

(‖θ‖1,Ωf
+ ‖θ‖1,4,Ωm) + L2, (4.9)

where

L2 := CAT
‖%θ‖1,Ω + C̄OT

‖uh‖1,Hh
(‖%θ‖1,Ωf

+ ‖%θ‖1,4,Ωm) + C̄OT
‖%u‖1,Hh

(‖θ‖1,Ωf
+ ‖θ‖1,4,Ωm) .

Then, combining (4.8) and (4.9), it follows that

‖χu‖1,Hh
≤ α̂−1

F ĈDγgα
−1
T C̄OT

‖θ‖1,Ωf
‖χu‖1,Hh

+ α̂−1
F ĈDγgα

−1
T C̄OT

‖θ‖1,4,Ωm‖χu‖1,Hh

+α̂−1
F CLip,F‖u‖1,T f

h
‖χu‖1,Hh

+ α̂−1
F L1 + α̂−1

F ĈDγgα
−1
T L2.

(4.10)

Now, using the following estimate for the continuous lifting (see [12, Lemma 2.4])

‖EδθD‖1,Ω ≤ Clift,2 δ
−3/2(1 + δ2)1/2 ‖θD‖3/4,4,Γ,

from (2.11) we observe that u and θ satisfy

‖u‖1,T f
h
≤ ‖u‖1,Ωf

≤ ‖u‖H ≤ CuClift,2δ
−3/2(1 + δ2)1/2γg‖θD‖3/4,4,Γ,

‖θ‖1,Ωf
≤ ‖θ‖1,Ω ≤ (Cθ + 1)Clift,2δ

−3/2(1 + δ2)1/2‖θD‖3/4,4,Γ.
(4.11)

Hence, from (4.10) and (4.11), we obtain

‖χu‖1,Hh
≤ (C1δ

−3/2(1 + δ2)1/2γg‖θD‖3/4,4,Γ + C2γg‖θ‖1,4,Ωm)‖χu‖1,Hh

+ α̂−1
F L1 + α̂−1

F ĈDγgα̂
−1
T L2,

with
C1 := α̂−1

F ĈDα
−1
T C̄OT

(Cθ + 1)Clift,2 + α̂−1
F CLip,FCuClift,2,

C2 := α̂−1
F ĈDα

−1
T C̄OT

.
(4.12)
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Which together with assumption (4.5), implies

‖χu‖1,Hh
≤ c1L1 + c2L2, (4.13)

with c1 := 2α̂−1
F and c2 := 2α̂−1

F ĈDγgα
−1
T . Moreover, replacing (4.13) in (4.9), and employing (4.5)

and the estimate for θ in (2.11), we deduce

‖χθ‖1,Ω ≤ c3L1 + c4L2, (4.14)

with

c3 := 2α̂−1
F α−1

T C̄OT
[(Cθ + 1)Clift,2δ

−3/2(1 + δ2)1/2‖θD‖3/4,4,Γ + (2C2γg)−1],

c4 := 2α̂−1
F α−2

T ĈDγgC̄OT
[(Cθ + 1)Clift,2δ

−3/2(1 + δ2)1/2‖θD‖3/4,4,Γ + (2C2γg)−1] + α−1
T .

In turn, observing that estimate (3.24b) and the fact that (uh, θh,0) ∈ Xh (cf. (3.26)) imply that uh
satisfies

‖uh‖1,T f
h
≤ ‖uh‖1,Hh

≤ Ĉuγg‖θh,1‖1,Ω ≤ ĈuγgĈlift,2δ
1/4(2 + δ−1)‖θD‖3/4,4,Γ, (4.15)

from (3.7), (4.5), (4.10), (4.15), and the fact that ‖%θ‖1,Ω ≤ ‖%θ‖1,Ωf
+ c‖%θ‖1,4,Ωm , we deduce

L1 ≤ c5

(
‖%u‖2,Hh

+ ‖%u‖2,T f
h

+ ‖%θ‖1,Ωf
+ ‖%θ‖1,4,Ωm

)
,

L2 ≤ c6

(
‖%u‖2,Hh

+ ‖%θ‖1,Ωf
+ ‖%θ‖1,4,Ωm

)
,

(4.16)

with c5, c6 being positive constants independent of h. Therefore, from (4.13), (4.14) and (4.16), the
fact ‖%u‖2,Hh

≤ ‖%u‖2,T f
h

+ ‖%u‖div;Ωm , and the triangle inequality, it follows that

‖eu‖1,Hh
+ ‖eθ‖1,Ω ≤ c7

(
‖%u‖2,T f

h
+ ‖%u‖div;Ωm + ‖%θ‖1,Ωf

+ ‖%θ‖1,4,Ωm

)
, (4.17)

where c7 > 0 is independent of h.

On the other hand, to estimate ep we first use the discrete inf-sup condition (3.22), to deduce that

β̂‖χp‖0,Ω ≤ sup
v∈Hh\{0}

B(v, χp)

‖v‖1,Hh

= sup
v∈Hh\{0}

B(v, ep)

‖v‖1,Hh

+ sup
v∈Hh\{0}

B(v,−%p)
‖v‖1,Hh

≤ sup
v∈Hh\{0}

B(v, ep)

‖v‖1,Hh

+ ‖%p‖0,Ω.

(4.18)

Then, noticing that adding and subtracting OhF(uh; u,v) in the first equation of (4.7), yields

B(v, ep) = −AhF(eu,v)−
[
OhF(u; u,v)−OhF(uh; u,v)

]
−OhF(uh; eu,v) +D(eθ,v),

for all v ∈ Hh, employing estimates (3.8a), (3.13) and (3.14) we obtain

|B(v, ep)| ≤
(
C̃AF
‖eu‖2,Hh

+ CLip,F‖eu‖1,T f
h
(‖u‖1,T f

h
+ ‖uh‖1,T f

h
) + ĈDγg‖eθ‖1,Ω

)
‖v‖1,Hh

,

and then, from the latter, estimates (4.11), (4.15), (4.17), (4.18) and the triangle inequality, we obtain

‖ep‖0,Ω ≤ ‖χp‖0,Ω + ‖%p‖0,Ω ≤ c8

(
‖%u‖2,T f

h
+ ‖%u‖div;Ωm + ‖%θ‖1,Ωf

+ ‖%θ‖1,4,Ωm + ‖%p‖0,Ω
)
, (4.19)

where c8 > 0 is independent of h.

We conclude the proof by observing that (4.6) is a direct consequence of (4.17), (4.19) and the
approximation properties (4.3). �
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5 Numerical results

In this section we present some numerical results illustrating the performance of our nonconforming
scheme (3.3) analyzed in Section 3 for approximating the solutions of (2.6), and to confirm the theoret-
ical converges rates (4.6) predicted by the theory according to the Theorem 4.1. Our implementation
is based on a FreeFem++ code [34], in conjunction with the direct linear solver UMFPACK [19]. The
experimental errors and convergence rates for the velocity, pressure, and temperature are the result
of iterations based on a Picard-type algorithm over a family of quasi-uniform triangulations of the
corresponding domains. This process ends when the relative error of the entire coefficient vectors
between two consecutive iterates is sufficiently small, that is

‖coeffn+1 − coeffn‖l2
‖coeffn+1‖l2

≤ tol,

where tol is a fixed tolerance and ‖ · ‖l2 stands for the usual euclidean norm in Rdof, with dof denoting
the total number of degrees of freedom defining the finite element subspaces Hh, Qh, and Ψh.

Now, we introduce some additional notations. As in Section 4, the individual errors for each variable
are denoted by eu, ep, and eθ. In addition, we define the experimental rates of convergence ru, rp,
and rθ, as

ru :=
log(eu/e

′
u)

log(h/h′)
, rp :=

log(ep/e
′
p)

log(h/h′)
, and rθ :=

log(eθ/e
′
θ)

log(h/h′)
,

where h and h′ denote two consecutive mesh sizes with their respective errors e, e′ (or e, e′).

For all examples bellow, we simply take u0 = 0 and θ0 = 0 as initial guess, we consider tol = 1e− 6
and apen = 5.

Example 1: Robustness and rates of convergence

For our first example, we illustrate the robustness and accuracy of our discontinuous method consid-
ering a manufactured exact solution defined on the following computational domain Ω = Ωf ∪Σ∪Ωm,
with Ωf := (−1, 1)× (0, 1) and Ωm := (−1, 1)× (−1, 0). We chose the parameters µ = 1, gf = (0,−1)t,
gm = (0,−1)t, αd = 1, κf = 1, κm = 1, K = I, κ = I, and the terms on the right-hand side are
adjusted so that the exact solution is given by the functions:

u(x1, x2) :=

(
−2 sin(πx1)2(x2 − 1)
π sin(2πx1)(x2 − 1)2

)
in Ω,

p(x1, x2) := x5
1 + x3

1 + x1x2 in Ω,

θ(x1, x2) := exp(−x1x2) in Ω.

We notice that uf |Σ = um|Σ, θf |Σ = θm|Σ, and κf ∇θf |Σ = κm∇θm|Σ. We notice also that these
functions do not satisfy the interface conditions (2.3), thus the difference must be incorporated as a
functional at the right-hand side of the resulting system.

Furthermore, in order to assess the introduction of other type of discretizations for aF,f , in the
following results we consider the bilinear form

ahF,f(u,v) := 2µ
∑
T∈T f

h

(e(u), e(v))T − 2µ
∑

e∈Eh(Ωf)∪Eh(Γf)

({{e(u)}}, JvK)e + 2µε
∑

e∈Eh(Ωf)∪Eh(Γf)

({{e(v)}}, JuK)e

+2µ
∑

e∈Eh(Ωf)∪Eh(Γf)

apen

he
(JuK, JvK)e +

∑
e∈Eh(Σ)

〈
αd µ√
t · κ · t

(u · t),v · t
〉
e

,
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for all u, v ∈ Hh, with ε ∈ {1, 0,−1}. We note that for ε = −1 we recover the SIPG form employed
in Section 3.2. The cases ε = 1 and ε = 0 correspond to the Non-symmetric Interior Penalty Galerkin
(NIPG) and Incomplete Interior Penalty Galerkin (IIPG) methods, respectively. We also observe that
for any ε ∈ {1, 0,−1}, the form ahF,f satisfies all properties mentioned for ahF,f in Section 3.3 (see [32]).

In Tables 5.1, 5.2, and 5.3, we summarize the convergence history on a sequence of quasi-uniform
triangulations for the finite element families presented in (3.1) with k = 1, considering the SIPG
(ε = −1), NIPG (ε = 1) and IIPG (ε = 0) methods, respectively. We observe there that the rate of
convergence O(h) predicted by Theorem 4.1 is attained in all the cases for all unknowns. In addition, in
the last two columns of each table we show the l∞-norm of divuh and the number of iterations required
to stop the algorithm. In particular, we observe there that the velocity is practically divergence-free for
all refinement steps. Finally, in the first row of Figure 5.1 we display the exact velocity, pressure and
temperature (from left to right) and we compare them with their exact counterpart (second row). We
observe there that the finite element method provides very accurate approximations to the unknowns.

dof h eu ru ep rp eθ rθ ‖div uh‖l∞ itt

697 0.375 8.640 – 4.159 – 0.336 – 1.001e-08 8
2815 0.190 4.487 0.964 2.777 0.594 0.162 1.068 1.185e-08 9
10516 0.098 1.971 1.236 1.264 1.183 0.084 0.993 1.314e-08 10
41200 0.052 0.941 1.163 0.621 1.117 0.042 1.067 1.390e-08 10
164713 0.027 0.449 1.152 0.313 1.071 0.021 1.078 1.433e-08 10
672280 0.015 0.224 1.158 0.171 1.005 0.010 1.183 1.455e-08 13

Table 5.1: Example 1: Degrees of Freedom, mesh sizes, errors, rates of convergence, l∞-norm of
div uh and number of iterations, considering the SIPG method (ε = −1).

dof h eu ru ep rp eθ rθ ‖div uh‖l∞ itt

697 0.375 6.455 – 4.011 – 0.333 – 9.840e-09 8
2815 0.190 3.821 0.771 2.718 0.572 0.161 1.064 1.176e-08 9
10516 0.098 1.909 1.043 1.229 1.192 0.083 0.984 1.310e-08 10
41200 0.052 0.929 1.132 0.606 1.113 0.042 1.067 1.390e-08 10
164713 0.027 0.447 1.143 0.305 1.072 0.021 1.078 1.433e-08 10
672280 0.015 0.223 1.156 0.168 0.988 0.010 1.183 1.455e-08 10

Table 5.2: Example 1: Degrees of Freedom, mesh sizes, errors, rates of convergence, l∞-norm of
div uh and number of iterations, considering the NIPG method (ε = 1).

Example 2: Kovasznay’s analytical solution

In our second example, we focus on the performance of the iterative method with respect to the
viscosity µ. To this end, we consider the domain Ω = Ωf ∪ Σ ∪ Ωm, with Ωf := (−1/2, 3/2)× (0, 1/2)
and Ωm := (−1/2, 3/2)× (−1/2, 0). In turn, the terms on the right-hand side are adjusted so that the
exact solution are given by the functions

u(x1, x2) :=

(
1− eλx1 cos(2πx2)
λ
2πe

λx1 sin(2πx2)

)
, p(x1, x2) := −1

2 e
2λx1 + c0, and θ(x1, x2) := exp(−x1x2),
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dof h eu ru ep rp eθ rθ ‖div uh‖l∞ itt

697 0.375 6.366 – 4.036 – 0.331 – 9.939e-09 8
2815 0.190 3.789 0.763 2.737 0.571 0.161 1.064 1.180e-08 9
10516 0.098 2.085 0.897 1.246 1.183 0.083 0.981 1.312e-08 10
41200 0.052 1.218 0.845 0.614 1.114 0.042 1.065 1.390e-08 10
164713 0.027 0.761 0.734 0.308 1.073 0.021 1.077 1.433e-08 10
672280 0.015 0.498 0.704 0.169 0.997 0.010 1.183 1.455e-08 10

Table 5.3: Example 1: Degrees of Freedom, mesh sizes, errors, rates of convergence, l∞-norm of
div uh and number of iterations, considering the IIPG method (ε = 0).

in Ω. Above, λ is given by

λ :=
−8π2

µ−1 +
√
µ−2 + 16π2

,

with µ > 0 being the viscosity of the fluid and c0 is a constant chosen in such a way (p, 1)Ω = 0.
We note that (uf , pf) is the well known analytical solution for the Navier–Stokes problem obtained by
Kovasznay in [40], which presents a boundary layer at {−1/2} × (0, 2).

In Table 5.4 we show the behavior of the iterative method as a function of the viscosity µ, considering
different mesh sizes h. As expected, when viscosity is reduced, the method requires a larger number
of iterations to achieve convergence. We do not present numerical experiments for smaller values of
µ as, in such instances, the maximum iteration limit set in the code (200 iterations) is reached for all
meshes. Next, in Table 5.5 we show the convergence history considering the viscosity µ = 0.1. We
observe there that the rate of convergence O(h) predicted by Theorem 4.1 is attained by all unknowns.

µ h = 0.362 h = 0.180 h = 0.094 h = 0.047 h = 0.023 h = 0.013

1 9 9 9 9 9 9
0.1 13 14 14 14 14 14
0.01 14 17 17 17 17 17
0.001 ** 31 31 31 31 31

Table 5.4: Number of iterations of the iterative method with respect to µ.

dof h eu ru ep rp eθ rθ ‖div uh‖l∞ itt

391 0.362 4.249 – 2.557 – 0.240 – 7.757e-05 13
1636 0.180 2.012 1.066 0.518 2.275 0.108 1.140 9.426e-05 14
6133 0.094 1.064 0.993 0.276 0.983 0.054 1.081 9.240e-05 14
24370 0.047 0.486 1.146 0.138 1.011 0.026 1.018 9.452e-05 14
101101 0.023 0.233 1.054 0.068 1.019 0.013 0.997 9.478e-05 14
388987 0.013 0.121 1.099 0.034 1.137 0.006 1.167 9.482e-05 14

Table 5.5: Example 2: Degree of Freedom, mesh sizes, errors, rates of convergence, l∞-norm of div uh
for the coupled problem and iterations for the Kovasnay solution with µ = 0.1.
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4.1e-08 1.3e+012 4 6 8 10 -3.0e+00 3.0e+00-1 0 1 2 3.7e-01 2.7e+001 1.5 2

4.1e-08 1.3e+012 4 6 8 10 -3.0e+00 3.0e+00-1 0 1 2 3.7e-01 2.7e+001 1.5 2

Figure 5.1: Example 1: On top: exact magnitude of the velocity (left), pressure (center) and tem-
perature (right). On bottom: approximate magnitude of the velocity (left), pressure (center) and
temperature (right).

Example 3: Dimensionless problem

In our last example, we consider the domain Ω = Ωf ∪Σ∪Ωm, with Ωf := (−1, 1)× (0, df) and Ωm :=
(−1, 1)× (−dm, 0) and address the behavior of convection patterns as df decreases. As documented in
[44] and [45], it has been observed that when the free-fluid region has a shallow depth, the convection
patterns extend to encompass both domains (full convection). Conversely, when the free-fluid region
has greater depth, the dominant convection patterns are mainly localized within the free-fluid region
(fluid-dominated convection). To study this behavior, we proceed similarly to [33, 44, 45] and consider
the following dimensionless problem

σ̃f = 2 e(ũf)− p̃f I, −div( σ̃f) + (ũf · ∇) ũf + Raf θ̃fgf = 0 in Ωf ,

div ũf = 0, −εT∆θ̃f + Prf ũf · ∇ θ̃f + 1
εT

ũf · gf = 0 in Ωf ,

1
Da ũm +∇p̃m = −Ram

Da θ̃mgm, div ũm = 0, −∆θ̃m + Prm ũm · ∇θ̃m = −ũm · gm in Ωm,

θ̃f = θ̃m, εT∇θ̃f · n = ∇θ̃m · n, ũf · n = ũm · n, σ̃f n + αd√
Da

(ũf · t) t = −p̃m n on Σ,

θ̃f = 0, ũf = 0 on Γf ,

θ̃m = 0, ũm · n = 0 on Γm,

(5.1)

where Pr? and Ra? represent the Prandtl and Rayleigh numbers in the domain Ω? for ? ∈ {f,m}, Da
represents the Darcy number, and εT = κf

κm
is the ratio of thermal diffusivities. Additionally, we define

the dimensionless number d̂ = df
dm

which represents the depth ratio.
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0.0e+00 1.0e+000.4 0.6 0.0e+00 1.0e+000.4 0.6

Figure 5.2: Example 3: Fluid-dominated and Full convection with temperature (colour) and stream-
lines (contour), with d̂ = 0.35, Ram = 10 (left) and d̂ = 0.2, Ram = 30 (right). Fixed parameters
Prf = 0.7, Prm = 0.7, εT = 0.7, Da = 1.0× 10−4, and αd = 1.0.

We observe that the temperature profile can be recovered by means of the relationship

θ = (T f + θ̃f(TU − T0)Prfε
−1
T )χf + (Tm + θ̃m(T0 − TB)Prm)χm,

where θ̃? for ? ∈ {f,m} is the temperature solution of (5.1), TU and TB are constant temperatures
in the upper and bottom boundaries, respectively, T f := T0 + y TU−T0

df
, Tm := T0 + y T0−TB

dm
, and

T 0 := d̂TB+εTTU
d̂+εT

. In [44] and [45] is also established that if TU > TB, the conductive state is stable,

whereas if TB > TU , buoyancy can destabilize the system.

In Figure 5.2, we present flow configurations (streamlines) and temperature profiles (color) for two
cases with different d̂ values, specifically d̂ = 0.2 and d̂ = 0.35. We set the temperatures as TB = 1
and TU = 0, representing an unstable scenario.

On the right side, similarly to [44] and [45], we observe a situation of full convection with the
following parameter values: df = 0.2, dm = 1.0, and Ram = 30. On the left side, we witness a fluid-
dominated convection scenario characterized by the parameters df = 0.35, dm = 1.0, and Ram = 10.
For both cases, we consider the following parameter settings: Prf = 0.7, Prm = 0.7, εT = 0.7,
Da = 1.0× 10−4, αd = 1.0, gf = (0, 1)t, gm = (0, 1)t, and the Rayleigh number within Ωf is calculated
as Raf = Ram

Da .
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[27] Gatica, G.N., Meddahi, S. & Oyarzúa, R. A conforming mixed finite-element method for
the coupling of fluid flow with porous media flow. IMA J. Numer. Anal, vol. 29, no. 1, pp. 86–108,
(2009).
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