
UNIVERSIDAD DE CONCEPCIÓN
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Abstract

This paper proposes and analyzes a new mixed variational formulation for the Navier-Stokes equa-
tions with constant density and variable viscosity that depends nonlinearly on the velocity gra-
dient. Differently from previous works in which augmented terms are added to the formulation,
the present approach employs a technique previously applied to the stationary Boussinesq problem
and the Navier-Stokes equations with constant viscosity. Firstly, a modified pseudostress tensor is
introduced involving the diffusive and convective terms and the pressure. Secondly, by using an
equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and
the gradient of velocity is incorporated as an auxiliary unknown to handle the nonlinear viscos-
ity. As a consequence, a Banach spaces-based formulation is obtained, which can be written as a
perturbed twofold saddle point operator equation. We analyze the continuous and discrete solv-
ability of this problem using a relevant abstract theory developed specifically for this purpose, by
linearizing the perturbation and applying the classical Banach fixed point theorem. In particular,
given an integer ℓ ≥ 0, feasible choices of finite element subspaces include piecewise polynomials
of degree ≤ ℓ for the gradient of velocity, Raviart-Thomas spaces of order ℓ for the pseudostress,
and piecewise polynomials of degree ≤ ℓ for the velocity. Finally, optimal a priori error estimates
are derived, and several numerical results illustrating the good performance of the scheme and
confirming the theoretical rates of convergence, are reported.
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1 Introduction

The development of mixed finite element techniques for Newtonian and non-Newtonian incompressible
fluids has received special attention in recent years. The Navier-Stokes problem with variable viscosity
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refers to the mathematical description of the motion of a fluid whose viscosity coefficient is not constant
but rather varies with respect to position and/or time. This problem is more complex than the
conventional Navier-Stokes problem for Newtonian fluids with constant viscosity since it requires a
more sophisticated numerical solution. In the context of augmented methods, a mixed finite element
approach for solving the Navier-Stokes equations with a viscosity that depends non-linearly on the
magnitude of the velocity gradient has been recently introduced and analyzed in [6, 5]. In the first
approach, the modified pseudostress tensor used in [8] is employed, which, like the one from [21],
involves diffusive and convective terms as well as pressure. The second approach takes into account
the dependence of the viscosity on the strain rate tensor, resulting in a more physically relevant model
that incorporates both deformation and vorticity as auxiliary unknowns. Additionally, in both works,
the pressure unknown is eliminated through an equivalent statement implied by the incompressibility
condition. In turn, due to the convective term, and in order to stay within a Hilbertian framework,
the velocity is sought in the Sobolev space of order 1, which requires the incorporation into the
variational formulation of additional Galerkin-type terms arising from the constitutive and equilibrium
equations. Although, the augmentation procedure avoids the need to prove continuous and discrete
inf-sup conditions, which yields, in particular, more flexibility for choosing finite element subspaces, the
complexity of both the resulting system and its associated computational implementation increases
considerably, leading to much more expensive schemes. This latter remark constitutes our main
motivation to look now for non-augmented schemes.

In the context of nonlinear twofold saddle point operator equations, also known as dual-dual vari-
ational formulations, there has been a diverse range of theories developed over the past two decades.
These theories arose from the need of applying dual-mixed methods to a class of nonlinear boundary
value problems in continuum mechanics. In [14], the Babuška-Brezzi theory in Hilbert spaces is gen-
eralized to a class of nonlinear variational problems, and in [16], a natural extension of the abstract
framework for continuous and discrete nonlinear twofold saddle point formulations is derived. More
recently, a fully-mixed finite element method has been developed and analyzed for the coupling of the
Stokes and Darcy-Forchheimer problems in [1]. This method was later extended to the coupling of
the Navier-Stokes and Darcy-Forchheimer problems with constant density and viscosity in [10]. The
main novelty of these works is the use of a new approach that leads to Banach spaces and a twofold
saddle point structure for the equation of the corresponding operator. The continuous and discrete
solubilities of this structure are analyzed in both papers using a suitable abstract theory developed
for this purpose in the context of separable reflexive Banach spaces.

According to the previous discussion, the goal of the present paper is to extend the applicability
of the Banach spaces framework discussed above by introducing a new fully-mixed formulation for
the Navier-Stokes equations with constant density and variable viscosity, without any augmentation
procedure. The analysis and results from [10] are used to achieve this goal. The paper proves the
well-posedness and uniqueness of both the continuous and discrete formulations using a fixed point
argument and an abstract theory for twofold saddle point problems. An a priori analysis is also per-
formed, and optimal rates of convergence are derived. Given an integer ℓ ≥ 0, piecewise polynomials
of degree ≤ ℓ for the gradient of velocity, Raviart-Thomas spaces of order ℓ for the pseudostress, and
piecewise polynomials of degree ≤ ℓ for the velocity are feasible choices. The paper is structured as
follows. In the rest of this section, we provide an overview of the standard notation and functional
spaces that will be utilized throughout the paper. In Section 2 we introduce the model problem of
interest and define the unknown to be considered in the variational formulation. Subsequently, in
Section 3 we identify the twofold saddle point structure of the corresponding variational system. We
then proceed to analyze the continuous solvability and the equivalent fixed point setting in Section
4, and present the corresponding well-posedness result, assuming sufficiently small data. In Section
5, we investigate the associated Galerkin scheme by utilizing a discrete version of the fixed point
strategy developed in Section 4 for the continuous case. Additionally, we derive the associated a
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priori error estimate in the same section. Furthermore, in Section 6 we specify particular choices of
discrete subspaces that satisfy the hypotheses from Section 4 and provide the rates of convergence of
the Galerkin schemes. Finally, we present several numerical examples in Section 7, which illustrate
the good performance of the fully mixed finite element method and confirm the theoretical rates of
convergence.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈
{
2, 3

}
, which is star

shaped with respect to a ball, and whose outward normal at Γ := ∂Ω is denoted by ν. Standard
notation will be adopted for Lebesgue spaces Lt(Ω) and Sobolev spaces Wl,t(Ω) and Wl,t

0 (Ω), with
l ≥ 0 and t ∈ [1,+∞), whose corresponding norms, either for the scalar and vectorial case, are
denoted by ∥ · ∥0,t;Ω and ∥ · ∥l,t;Ω, respectively. Note that W0,t(Ω) = Lt(Ω), and if t = 2 we write
Hl(Ω) instead of Wl,2(Ω), with the corresponding norm and seminorm denoted by ∥ · ∥l,Ω and | · |l,Ω,
respectively. On the other hand, given any generic scalar functional space M, we let M and M be
the corresponding vectorial and tensorial counterparts, whereas ∥ · ∥ will be employed for the norm
of any element or operator whenever there is no confusion about the spaces to which they belong.
Furthermore, as usual, I stands for the identity tensor in R : = Rn×n, and | · | denotes the Euclidean
norm in R : = Rn. Also, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient,
divergence, and tensor product operators, respectively, as

∇v : =

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=
n∑

j=1

∂vj
∂xj

, and v ⊗w : = (viwj)i,j=1,n .

Additionally, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the diver-
gence operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner
product operators, and the deviatoric tensor, respectively, as

τ t = (τji)i,j=1,n, tr(τ ) =
n∑

i=1

τ ii, τ : ζ : =
n∑

i,j=1

τijζij , and τ d : = τ − 1

n
tr(τ )I .

On the other hand, given t ∈ (1,+∞), we also introduce the Banach spaces

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (1.1)

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (1.2)

which are endowed with the natural norms defined, respectively, by

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) , (1.3)

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) . (1.4)

Then, proceeding as in [15, eq. (1.43), Section 1.3.4] (see also [7, Section 4.1] and [11, Section 3.1]), it

is easy to show that for each t ∈
{

(1,+∞) if n = 2
[6/5,+∞) if n = 3

, there holds

⟨τ · ν, v⟩ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ H(divt; Ω)×H1(Ω) , (1.5)

and analogously

⟨τ ν,v⟩ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (1.6)

where ⟨·, ·⟩ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ), as well as between H−1/2(Γ)
and H1/2(Γ).
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2 The model problem

2.1 The Navier-Stokes equations with variable viscosity

The Navier-Stokes problem with variable viscosity and constant density consists of finding the velocity
u and the pressure p of a fluid occupying the region Ω, such that

−div(µ(|∇u|)∇u) + (∇u)u+∇p = f in Ω ,

div(u) = 0 in Ω , u = g on Γ ,

∫
Ω
p = 0 ,

(2.1)

where the given data are a function µ : R+ −→ R describing the nonlinear viscosity, a volume force f ,
and the boundary velocity g. The right spaces to which f and g need to belong are specified later on.
Note that g must formally satisfy the compatibility condition∫

Γ
g · ν = 0, (2.2)

which arises from the incompressibility condition of the fluid, and that uniqueness of a pressure solution
of (2.1) is ensured in the space

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. (2.3)

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 s ≥ 0 , (2.4)

which, according to the result provided by [20, Theorem 3.8], implies Lipschitz continuity and strong
monotonicity of the nonlinear operator induced by µ, which is defined later on (cf. (3.9)). We will go
back to this fact in Section 4. Some examples of nonlinear µ are the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2, (2.5)

where α0 , α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both
satisfy (2.4) with (µ1, µ2) = (2, 3) and (µ1, µ2) = (α0, α0 + α1), respectively. The forthcoming
analysis also applies to the slightly more general case of a viscosity function acting on Ω×R+. Next,
proceeding similarly as in [6], we introduce the pseudostress tensor unknown, which is defined by

σ : = µ(|∇u|)∇u− (u⊗ u)− pI in Ω . (2.6)

In this way, noting that div(u⊗ u) = (∇u)u, which makes uses of the fact that div(u) = 0, we find
that the first equation of (2.1) can be rewritten as

−div(σ) = f in Ω .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (2.6), which
can be understood as the constitutive equation expressing σ in terms of u, that the latter and the
incompressibility condition are equivalent to the pair

σd = µ(|∇u|)∇u− (u⊗ u)d in Ω , and

p = − 1

n
tr
(
σ + (u⊗ u)

)
in Ω .

(2.7)
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Thus, eliminating the pressure unknown which, anyway, can be approximated later on by the post-
processed formula suggested in (2.7), we arrive, at first instance, at the following system of equations
with unknowns u and σ:

σd = µ(|∇u|)∇u− (u⊗ u)d in Ω ,

−div(σ) = f in Ω , u = g on Γ ,

∫
Ω
tr
(
σ + (u⊗ u)

)
= 0 .

(2.8)

Finally, since we are interested in a mixed variational formulation of our nonlinear problem, and in
order to employ the integration by parts formula typically required by this approach, we introduce
the auxiliary unknown t := ∇u in Ω. Consequently, instead of (2.8), we consider from now the set
of equations with unknowns t, u, and σ, given by

t = ∇u in Ω , σd = µ(|t|)t− (u⊗ u)d in Ω ,

−div(σ) = f in Ω , u = g on Γ ,

∫
Ω
tr
(
σ + (u⊗ u)

)
= 0 .

(2.9)

3 The fully mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (2.9). The integration by
parts formula provided by (1.6), along with the Cauchy-Schwarz and Hölder inequalities, play a key
role in this derivation. We begin by looking originally for u ∈ H1(Ω). Then, multiplying the first

equation of (2.9) by τ ∈ H(divt; Ω), with t ∈
{

(1,+∞) if n = 2
[6/5,+∞) if n = 3

, applying the integration by

parts formula (1.6), and using the Dirichlet boundary conditions for u, which implicity assumes that
g ∈ H1/2(Γ), we find ∫

Ω
τ : t+

∫
Ω
u · div(τ ) = ⟨τ ν,g⟩Γ ∀ τ ∈ H(divt; Ω) . (3.1)

It is clear from (3.1) that its first term is well defined for t ∈ L2(Ω), which, along with the free trace
property of t, suggests to look for t ∈ L2

tr(Ω), where

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0

}
.

In addition, knowing that div(τ ) ∈ Lt(Ω), we realize from the second term and Hölder’s inequality
that it suffices to look for u ∈ Lt′(Ω), where t′ is the conjugate of t. Next, it follows from the second
equation of (2.9), that formally∫

Ω
µ(|t|)t : s−

∫
Ω
σd : s−

∫
Ω
(u⊗ u)d : s = 0 ∀ s ∈ L2

tr(Ω) , (3.2)

from which we notice that the first term is well-defined, whereas the second one makes sense if σ is
sought in L2(Ω). In turn, for the third one there holds∣∣∣∣∫

Ω
(u⊗ u)d : s

∣∣∣∣ =

∣∣∣∣∫
Ω
(u⊗ u) : s

∣∣∣∣ ≤ ∥u∥0,4;Ω ∥u∥0,4;Ω ∥s∥0,Ω , (3.3)

which, necessarily yields t′ = 4, and thus t = 4/3. Finally, looking for σ in the same space of its
corresponding test function τ , that is σ ∈ H(div4/3; Ω), the equilibrium equation in (2.9) is tested as

−
∫
Ω
v · div(σ) =

∫
Ω
f · v ∀v ∈ L4(Ω) , (3.4)
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which forces f to belong to L4/3(Ω). Now we consider the decomposition

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I , (3.5)

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω
tr(τ ) = 0

}
.

It follows that σ can be uniquely decomposed as σ = σ0+c0I, where, according to the third equation
of the second row of (2.9),

σ0 ∈ H0(div4/3; Ω) and c0 :=
1

n|Ω|

∫
Ω
tr(σ) = − 1

n |Ω|

∫
Ω
tr(u⊗ u) . (3.6)

In this way, the constant c0 can be computed once the velocity is known, and hence it only remains to
obtain σ0. In this regard, we notice that (3.2) and (3.4) remain unchanged if σ is replaced by σ0. In
addition, thanks to the fact that t is sought in L2

tr(Ω), and using the compatibility condition (2.2), we
realize that testing (3.1) against τ ∈ H(div4/3; Ω) is equivalent to doing it against τ ∈ H0(div4/3; Ω).
Thus, redenoting from now on σ0 as simply σ ∈ H0(div4/3; Ω), and suitably gathering (3.1), (3.2) and
(3.4), we arrive at the following mixed formulation: Find (t,σ,u) ∈ L2

tr(Ω) × H0(div4/3; Ω) × L4(Ω)
such that∫

Ω
µ(|t|)t : s −

∫
Ω
σd : s −

∫
Ω
(u⊗ u)d : s = 0 ∀ s ∈ L2tr(Ω),

−
∫
Ω
τ d : t −

∫
Ω
u · div(τ ) = −⟨τν,g⟩Γ ∀ τ ∈ H0(div4/3; Ω),

−
∫
Ω
v · div(σ) =

∫
Ω
f · v ∀v ∈ L4(Ω).

(3.7)

Next, we observe that (3.7) has a perturbed twofold saddle point structure. Indeed, we first define
the Banach spaces

H1 := L2
tr(Ω) , H2 := H0(div4/3; Ω) , and Q := L4(Ω) , (3.8)

which are endowed with the norms ∥·∥0,Ω, ∥·∥div4/3;Ω, and ∥·∥0,4;Ω, respectively. Next, we introduce the
nonlinear operator A : H1 −→ H′

1, and the bounded linear operators B1 : H1 −→ H′
2 and B : H2 −→ Q′,

given by

[A(r), s] :=

∫
Ω
µ(|r|)r : s ∀ r, s ∈ H1,

[B1(s), τ ] := −
∫
Ω
τ d : s ∀ (s, τ ) ∈ H1 ×H2,

[B(ζ),v] := −
∫
Ω
v · div(ζ) ∀ (ζ,v) ∈ H2 ×Q.

(3.9)

Hereafter, [· , ·] stands for the duality pairing between the corresponding Banach space involved and
its dual. In turn, G ∈ H′

2, and F ∈ Q′ are the bounded linear functionals defined by

[G, τ ] := −⟨τν,g⟩Γ ∀ τ ∈ H2 , (3.10)

and

[F,v] :=

∫
Ω
f · v ∀v ∈ Q . (3.11)
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Regarding the boundedness of G and F, we first observe, using the identity (1.6) and the continuous
injection i4 : H

1(Ω) −→ L4(Ω), that∣∣[G, τ ]
∣∣ ≤ max

{
1, ∥i4∥

}
∥g∥1/2,Γ ∥τ∥div4/3;Ω ∀ τ ∈ H2 . (3.12)

In addition, it follows by Hölder’s inequality that∣∣[F,v]∣∣ ≤ ∥f∥0,4/3;Ω ∥v∥0,4;Ω ∀v ∈ Q . (3.13)

According to the above, the fully mixed formulation (3.7) can be rewritten as: Find (t,σ,u) ∈
H1 ×H2 ×Q such that

[A(t), s] + [B1(s),σ] −
∫
Ω
(u⊗ u)d : s = 0 ∀ s ∈ H1,

[B1(t), τ ] + [B(τ ),u] = [G, τ ] ∀ τ ∈ H2,

[B(σ),v] = [F,v] ∀v ∈ Q.

(3.14)

4 The continuous solvability analysis

In this section, we analyze the solvability of (3.14). For this purpose, we employ the recently developed
theory, in the context of reflexive and separable Banach spaces, which is described in [10, Theorem
3.4].

4.1 The fixed-point strategy

We begin by rewriting (3.14) as an equivalent fixed point equation. To this end, we proceed to linearize
the perturbation (third term of the first equation of (3.14)) defining for each w ∈ Q the functional
Hw : H1 → R by

[Hw, s] :=

∫
Ω
(w ⊗w)d : s ∀ s ∈ H1, (4.1)

and let T : Q → Q be the operator given by

T(w) = u ∀w ∈ Q, (4.2)

where (t,σ,u) ∈ H1 × H2 ×Q is the unique solution (to be proved later on) of the following system
of equations:

[A(t), s] + [B1(s),σ] = [Hw, s] ∀ s ∈ H1,

[B1(t), τ ] + [B(τ ),u] = [G, τ ] ∀ τ ∈ H2,

[B(σ),v] = [F,v] ∀v ∈ Q.

(4.3)

Thus, we realize that solving (3.14) is equivalent to finding a fixed point of T, that is u ∈ Q such that

T(u) = u.
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4.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem (4.3) is
well-posed. To this end, we employ the abstract theory mentioned above for this type of twofold saddle-
point operator equation. More precisely, let H1, H2, and Q be separable and reflexive Banach spaces
so that theirs duals H′

1, H′
2, and Q′ are separable and reflexive as well. In addition, let A : H1 −→ H′

1

be a nonlinear operator, and let B1 : H1 −→ H′
2 and B : H2 −→ Q′ be bounded linear operators. Then,

given (H,G,F) ∈ H′
1×H′

2×Q′, we are interested in the following nonlinear variational problem: Find
(t,σ,u) ∈ H1 ×H2 ×Q such that

[A(t), s] + [B1(s),σ] = [H, s] ∀ s ∈ H1,

[B1(t), τ ] + [B(τ ),u] = [G, τ ] ∀ τ ∈ H2,

[B(σ),v] = [F,v] ∀v ∈ Q.

(4.4)

The following abstract theorem establishes sufficient conditions for the well-posedness of (4.4).

Theorem 4.1. Let K := N(B) and assume that

i) A : H1 −→ H′
1 is Lipschitz continuous, that is there exists a constant γ > 0 such that

∥A(r)−A(s)∥H′
1
≤ γ ∥r− s∥H1 ∀ r, s ∈ H1, (4.5)

ii) for each s ∈ H1, the family of operators A(· + s) : H1 −→ H′
1 is strictly monotone with a

monotonicity constant α > 0, independent of s, that is

[A(t+ s)−A(r+ s), t− r] ≥ α ∥t− r∥2H1
∀ t, r ∈ H1, (4.6)

iii) there exists a positive constant β such that

sup
τ∈H2
τ ̸=0

[B(τ ),v]
∥τ∥H2

≥ β ∥v∥Q ∀v ∈ Q, and (4.7)

iv) there exists a positive constant β1 such that

sup
s∈H1
s̸=0

[B1(s), τ ]

∥s∥H1

≥ β1 ∥τ∥H2 ∀ τ ∈ K . (4.8)

Then, for each (H,G,F) ∈ H′
1 × H′

2 × Q′ there exists a unique (t,σ,u) ∈ H1 × H2 × Q solution of
(4.4). Moreover, there exists a constant C > 0, depending only on γ, α, β, β1, ∥B1∥ and ∥B′

1∥, such
that

∥(t,σ,u)∥H1×H2×Q ≤ C
{
∥H∥H′

1
+ ∥G∥H′

2
+ ∥F∥Q′ + ∥A(0)∥H′

1

}
. (4.9)

Proof. It follows from a straightforward application of [10, Theorem 3.4] to the particular case of the
exponents p1 = p2 = 2 considered there.

Now, if A becomes linear, the above theorem reduces to the following.

Theorem 4.2. Let K := N(B) and assume that
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i) A : H1 → H′
1 is linear, bounded and H1-elliptic, that is, there exist constants γ, α > 0 such that

∥A(s)∥H′
1
≤ γ ∥s∥H1 and [A(s), s] ≥ α ∥s∥2H1

∀ s ∈ H1, and (4.10)

ii) the hypotheses iii)-iv) of Theorem 4.1 are satisfied.

Then, for each (H,G,F) ∈ H′
1 × H′

2 × Q′ there exists a unique (t,σ,u) ∈ H1 × H2 × Q solution of
(4.4). Moreover, there exists a constant C > 0, depending only on γ, α, β, β1, ∥B1∥ and ∥B′

1∥, such
that

∥(t,σ,u)∥H1×H2×Q ≤ C
{
∥H∥H′

1
+ ∥G∥H′

2
+ ∥F∥Q′

}
. (4.11)

Proof. It suffices to observe that the linearity, boundedness, and ellipticity of A imply that this
operator is Lipschitz continuous and strongly monotone, and that A(0) = 0. Therefore, the proof
follows from a straightforward application of Theorem 4.1.

We remark here that (4.11) is equivalent to an inf-sup condition for the bilinear form arising after
adding the left-hand sides of (4.4) in the linear case of A. More precisely, letting

[S(r,ρ,w), (s, τ ,v)] := [A(r), s] + [B1(s),ρ] + [B1(r), τ ] + [B(τ ),w] + [B(ρ),v] , (4.12)

for all (r,ρ,w), (s, τ ,v) ∈ H′
1×H′

2×Q , there exists a constant C > 0, depending only on γ, α, β, β1,
∥B1∥ and ∥B′

1∥, such that

sup
(s,τ ,v)∈H1×H2×Q

(s,τ ,v) ̸=0

[S(r,ρ,w), (s, τ ,v)]

∥(s, τ ,v)∥H1×H2×Q
≥ C∥(r,ρ,w)∥H1×H2×Q (4.13)

for all (r,ρ,w) ∈ H1 ×H2 ×Q.

We now verify that problem (4.3) satisfies the hypotheses of Theorem 4.1. To this end, in what
follows we establish the Lipschitz continuity and strong monotonicity of A, as well as the continuous
inf-sup conditions for B and B1.

Lemma 4.3. Let γµ := max{µ2, 2µ2 − µ1}, where µ1 and µ2 are the bounds of µ given in (2.4).
Then, for each r, s ∈ L2(Ω), there hold the following inequalities:

∥A(r)−A(s)∥H′
1
≤ γµ ∥r− s∥H1 , (4.14)

and

[A(r)−A(s), r− s]H′
1
≥ µ1 ∥r− s∥2H1

. (4.15)

Proof. See [20, Theorem 3.8] for details.

Lemma 4.4. There exists a constant β > 0, such that

sup
τ∈H2
τ ̸=0

[B(τ ),v]
∥τ∥H2

≥ β ∥v∥Q ∀v ∈ Q. (4.16)

Proof. See [11, Lemma 3.3] or [4, Lemma 3.5] for details.
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In turn, in order to prove that B1 satisfies hypothesis iv), we need to recall a useful estimate for
tensors in H0(div4/3; Ω). Indeed, suitably modifying the proof of [15, Lemma 2.3], one can show that
there exists a positive constant c1, depending only on Ω, such that

c1 ∥τ∥0,Ω ≤ ∥τ d∥0,Ω + ∥div(τ )∥0,4/3;Ω ∀ τ ∈ H0(div4/3; Ω). (4.17)

Lemma 4.5. There exists a constant β1 > 0, such that

sup
s∈H1
s ̸=0

[B1(s), τ ]

∥s∥H1

≥ β1 ∥τ∥H2 ∀ τ ∈ K . (4.18)

Proof. In order to satisfy the continuous inf-sup condition for B1, it is necessary to first realize t hat
K := N(B) (cf. (3.9)), is given by

K =
{
τ ∈ H0(div4/3; Ω) : div(τ ) = 0 in Ω

}
. (4.19)

Then, given τ ∈ K such that τ d ̸= 0, we have that τ d ∈ L2
tr(Ω), so that bounding the supremum in

(4.18) by below with s = −τ d, it follows that

sup
s∈H1
s̸=0

[B1(s), τ ]

∥s∥H1

= sup
s∈L2tr(Ω)

s̸=0

−
∫
Ω
τ d : s

∥s∥0,Ω
≥

∫
Ω
τ d : τ d

∥τ d∥0,Ω
= ∥τ d∥0;Ω ,

which, using (4.17) and the fact that div(τ ) = 0, implies that B1 satisfies the inf-sup condition with
a constant β1 = c1. On the other hand, if τ d = 0, it is clear from (4.17) that τ = 0, and so (4.18)
is trivially satisfied.

Consequently, the well-definedness of the operator T can be stated as follows.

Theorem 4.6. For each w ∈ Q there exists a unique (t,σ,u) ∈ H1 ×H2 ×Q solution to (4.4), and
hence we can define T(w) := u ∈ Q. Moreover, there exists a positive constant CT, depending only
on γµ, µ1, β, β1, ∥B1∥, ∥B′

1∥, and ∥i4∥, and hence independent of w, such that

∥T(w)∥0,4;Ω = ∥u∥Q ≤ ∥(t,σ,u)∥H1×H2×Q ≤ CT

{
∥w∥20,4;Ω + ∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (4.20)

Proof. It follows from Lemmas 4.3-4.5 and a straightforward application of Theorem 4.1. In turn,
estimate (4.20) is a direct consequence of (4.9) (cf. Theorem 4.1) and the boundedness of G (cf.
(3.12)) and F (cf. (3.13)).

4.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T is well-defined, in this section we address the solvability of the fixed-
point equation (4.2). To this end, in what follows we first derive sufficient conditions on T to map a
closed ball of Q into itself, and then we apply the Banach Theorem to conclude the unique solvability
of (4.2). Indeed, given δ > 0, from now on we let

W(δ) :=
{
w ∈ Q : ∥w∥0,4;Ω ≤ δ

}
. (4.21)
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Lemma 4.7. Assume that δ ≤ 1

2CT
and that there holds

CT

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δ

2
. (4.22)

Then T
(
W(δ)

)
⊆ W(δ).

Proof. Given w ∈ W(δ), we know from Theorem 4.6 that T(w) is well defined and that there holds

∥T(w)∥0,4;Ω ≤ CT

{
∥w∥20,4;Ω + ∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ CTδ

2 +
δ

2
≤ δ,

which confirms that T(w) ∈ W (δ).

We continue with the continuity property of the operator T.

Lemma 4.8. There exists a positive constant LT, depending only on β, ∥B1∥, and µ1, such that

∥T(w)−T(ŵ)∥0,4;Ω ≤ LT

{
∥w∥0,4;Ω + ∥ŵ∥0,4;Ω

}
∥w − ŵ∥0,4;Ω (4.23)

for all w, ŵ ∈ Q.

Proof. Given w, ŵ ∈ Q, we let T(w) := u and T(ŵ) := û, where (t,σ,u) ∈ H1 × H2 × Q and
(t̂, σ̂, û) ∈ H1 × H2 × Q are the corresponding unique solutions of (4.3). Then, subtracting both
systems, we obtain

[A(t)−A(t̂), s] +[B1(s),σ − σ̂] = [Hw −Hŵ, s] ∀ s ∈ H1,

[B1(t− t̂), τ ] +[B(τ ),u− û] = 0 ∀ τ ∈ H2,

[B(σ − σ̂),v] = 0 ∀v ∈ Q.

(4.24)

In particular, taking s = t − t̂ and τ = σ − σ̂, we realize from the second and third equations of
(4.24) that

[B1(t− t̂),σ − σ̂] = −[B(σ − σ̂),u− û] = 0 ,

which, along with the first equation of (4.24), yields

[A(t)−A(t̂), t− t̂] = [Hw −Hŵ, t− t̂] ,

whence, using the stric monotonicity of A (cf. (4.15)) and the definition of Hw (cf. (4.1)), we find
that

∥t− t̂∥0,Ω ≤ 1

µ1

{
∥w∥0,4;Ω + ∥ŵ∥0,4;Ω

}
∥w − ŵ∥0,4;Ω . (4.25)

In turn, from Lemma 4.4 and the second equation of (4.24), we bound ∥u− û∥0,4;Ω as follows:

∥u− û∥0,4;Ω ≤ 1

β
sup
τ∈H2
τ ̸=0

[B(τ ),u− û]

∥τ∥H2

=
1

β
sup
τ∈H2
τ ̸=0

[B1(t− t̂), τ ]

∥τ∥H2

≤ ∥B1∥
β

∥t− t̂∥0,Ω . (4.26)

Finally, by combining (4.25) and (4.26), we have that

∥T(w)−T(ŵ)∥0,4;Ω = ∥u− û∥0,4;Ω ≤ ∥B1∥
βµ1

{
∥w∥0,4;Ω + ∥ŵ∥0,4;Ω

}
∥w − ŵ∥0,4;Ω ,

which confirms the announced property on T (cf. (4.23)) with LT :=
βµ1

∥B1∥
.
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Owing to the above analysis, we now establish the main result of this section.

Theorem 4.9. Assume that δ <
1

2
min

{ 1

CT
,
βµ1

∥B1∥

}
and the data are sufficiently small so that the

hypothesis of Lemma 4.7 holds, that is

CT

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δ

2
. (4.27)

Then, the operator T has a unique fixed point u ∈ W(δ). Equivalently, the problem (3.14) has a unique
solution (t,σ,u) ∈ H1 ×H2 ×Q. Moreover, there holds

∥(t,σ,u)∥H1×H2×Q ≤ 2CT

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (4.28)

Proof. We first recall that the choice of δ and assumption (4.27) guarantee, thanks to Lemma 4.7,
that T maps W(δ) into itself. Then, bearing in mind the Lipschitz-continuity of T : W(δ) → W(δ) (cf.
(4.23)), a straightforward application of the classical Banach theorem yields the existence of a unique
fixed point u ∈ W(δ) of this operator, and hence a unique solution of (3.14). Finally, regarding the a
priori estimate, we first observe from (4.20) that

∥T(u)∥0,4;Ω = ∥u∥0,4;Ω ≤ ∥(t,σ,u)∥H1×H2×Q ≤ CT

{
∥u∥20,4;Ω + ∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
, (4.29)

from which, using that

∥u∥20,4;Ω ≤ δ ∥u∥0,4;Ω ≤ 1

2CT
∥(t,σ,u)∥H1×H2×Q ,

we arrive at
∥T(u)∥0,4;Ω = ∥u∥0,4;Ω ≤ ∥(t,σ,u)∥H1×H2×Q

≤ 1

2
∥(t,σ,u)∥H1×H2×Q + CT

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
,

which yields (4.28) and concludes the proof.

5 The Galerkin scheme

In order to approximate the solution of our fully-mixed variational formulation (3.14), we now in-
troduce the associated Galerkin scheme, analyze its solvability by applying a discrete version of the
fixed-point approach adopted in the previous section, and derive the corresponding a priori error
estimate.

5.1 Preliminaries

We begin by introducing finite element subspacesH1,h, H̃2,h, andQh of the spaces L2
tr(Ω), H(div4/3; Ω),

and L4(Ω), respectively. Hereafter, h := max{hK : K ∈ Th} denotes the size of a regular triangulation
Th of Ω made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK . Then,
letting

H2,h := H0(div4/3; Ω) ∩ H̃2,h , (5.1)

12



the Galerkin scheme associated with (3.14) reads: Find (th,σh,uh) ∈ H1,h ×H2,h ×Qh such that

[A(th), sh] + [B1(sh),σh] −
∫
Ω
(uh ⊗ uh)

d : sh = 0 ∀ τ h ∈ H1,h,

[B1(th), τ h] + [B(τ h),uh] = [G, τ h] ∀ τ h ∈ H2,h,

[B(σh),vh] = [F,vh] ∀vh ∈ Qh.

(5.2)

Then, we adopt the discrete version of the strategy employed in Section 4.2 to analyse the solvability
of (5.2). To this end, we let Th : Qh → Qh be the discrete operator defined by

Th(wh) = uh ∀wh ∈ Qh, (5.3)

where (th,σh,uh) ∈ H1,h ×H2,h ×Qh is the unique solution (to be confirmed below) of the following
system of equations:

[A(th), sh] +[B1(sh),σh] = [Hwh
, sh] ∀ sh ∈ H1,h,

[B1(th), τ h] + [B(τ h),uh] = [G, τ h] ∀ τ h ∈ H2,h,

[B(σh),vh] = [F,vh] ∀vh ∈ Qh.

(5.4)

Then, similarly as in the continuous case, we realize that solving (5.2) is equivalent to finding a fixed
point of Th, that is uh ∈ Qh such that

Th(uh) = uh. (5.5)

5.2 Discrete solvability analysis

In this section we proceed analogously to Sections 4.2 and 4.3 and establish the well-posedness of
the discrete system (5.2), equivalently of (5.5). To this end, we need to introduce certain hypotheses
concerning the arbitrary spaces H1,h, H̃2,h, and Qh, and the discrete kernel associated with the linear
operator B, that is

Kh :=
{
τ ∈ H2,h : [B(τ h),vh] = 0 ∀vh ∈ Qh

}
. (5.6)

More precisely, from now on we assume that:

(H.0) H̃2,h contains the multiplies of the identity tensor I,

(H.1) div
(
H̃2,h

)
⊆ Qh,

(H.2) Kd
h :=

{
τ d
h : τ h ∈ Kh

}
⊆ H1,h, and

(H.3) there exists a positive constant βd, independent of h, such that

sup
τh∈H2,h

τh ̸=0

[B(τ h),vh]

∥τ h∥H2

≥ βd ∥vh∥Q ∀vh ∈ Qh . (5.7)

We highlight here that as a consequence of (H.0) we can employ the discrete version of the decom-
position H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I , namely H̃2,h = H2,h ⊕ R I , thanks to which H2,h (cf.
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(5.1)) can be used as the subspace where the unknown σh is sought. However, for the computational
implementation of the Galerkin scheme (5.2), which will be addressed later on in Section 7, we will
utilize a real Lagrange multiplier to impose the mean value condition on the trace of the unknown
tensor lying in H2,h.

In turn, according to the definition of B (cf. (3.9)), it follows from (5.6) and (H.1) that

Kh :=
{
τ ∈ H2,h : div(τ h) = 0 ∀vh ∈ Qh

}
, (5.8)

which yields the discrete analogue of (4.18), that is, given τ h ∈ Kh such that τ d
h ̸= 0, we realize that

sh = −τ d
h ∈ H1,h (which follows from (H.2)), and thus

sup
sh∈H1,h

sh ̸=0

[B1(sh), τ h]

∥sh∥H1

≥ β1,d ∥τ h∥H2 ∀ τ ∈ Kh , (5.9)

with constant β1,d = c1 (cf. (4.17)). On the other hand, if τ d
h = 0, it is clear from (4.17) that

τ h = 0, and so the discrete inf-sup condition for B1 (cf. (5.9)) is trivially satisfied.

In addition, we recall that the Lipschitz-continuity and strict monotonicity of A (cf. Lemma 4.3),
is also valid on H1,h ×H′

1,h, which means that, with the same constants γµ and µ1, there hold

∥A(rh)−A(sh)∥H′
1
≤ γµ ∥rh − sh∥H1 ∀ rh, sh ∈ H1,h , (5.10)

and

[A(rh)−A(sh), rh − sh]H′
1
≥ µ1 ∥rh − sh∥2H1

∀ rh, sh ∈ H1,h . (5.11)

In this way, bearing the above discussion in mind, we are now in a position to establish the discrete
analogue of Theorem 4.6.

Theorem 5.1. For each wh ∈ Qh there exists a unique (th,σh,uh) ∈ H1,h × H2,h ×Qh solution to
(4.4), and hence we can define Th(wh) := uh ∈ Qh. Moreover, there exists a positive constant CT,d,
depending only on γµ, µ1,βd, β1,d, ∥B1∥, ∥B′

1∥, and ∥i4∥, and hence independent of wh, such that

∥Th(wh)∥0,4;Ω = ∥uh∥Q ≤ ∥(th,σh,uh)∥H1×H2×Q

≤ CT,d

{
∥wh∥20,4;Ω + ∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
.

(5.12)

Proof. Thanks to the discrete inf-sup conditions for B (cf. (H.3)) and B1 (cf. (5.9)), and the inequal-
ities (5.10) and (5.11), the proof follows from a direct application of Theorem 4.1. We omit further
details.

Having established that the discrete operator Th is well defined, we now address the solvability of
the corresponding fixed point equation (5.5). Then, letting δd be an arbitrary radius, we now set

W(δd) :=
{
wh ∈ Qh : ∥wh∥0,4;Ω ≤ δd

}
. (5.13)

Then, reasoning analogously to the derivation of Lemma 4.7, we deduce that Th maps W(δd) into
itself under the analogue discrete assumptions, namely

CT,d

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤ δd

2
and δd ≤ 1

2CT,d
. (5.14)
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We emphasize that the above is exactly the same as for the continuous case (cf. Lemma 4.7), except
that the constant CT and the radius δ are replaced by CT,d and δd, respectively. Moreover, employing
similar arguments to those from the proof of Lemma 4.8, we are able to prove the discrete version of

(4.23) with constant LT,d :=
βdµ1

∥B1∥
, that is

∥Th(wh)−Th(ŵh)∥0,4;Ω ≤ LT,d

{
∥wh∥0,4;Ω + ∥ŵh∥0,4;Ω

}
∥wh − ŵh∥0,4;Ω (5.15)

for all wh , ŵh ∈ Qh, which proves the continuity of Th.

According to the above, the main result of this section is establish as follows.

Theorem 5.2. Assume that δd and the data are sufficiently small so that they satisfy (5.14). Then,
the operator Th has at least one fixed point uh ∈ W(δd). Equivalently, the problem (5.2) has at least
one solution (th,σh,uh) ∈ H1,h ×H2,h ×Qh. Moreover, under the further assumption

δd <
1

2
min

{ 1

CT,d
,
βdµ1

∥B1∥

}
, (5.16)

this solution is unique. In addition, there holds

∥(th,σh,uh)∥H1×H2×Q ≤ 2CT,d

{
∥g∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (5.17)

Proof. The fact that Th maps W(δd) into itself, together with the continuity of Th (cf. (5.15)), allow
to apply the Brouwer Theorem to conclude the existence of a solution to (5.5), and hence to (5.2).
Next, the assumption (5.16) and the Banach fixed-point Theorem imply the uniqueness. Finally, the a
priori estimate is consequence of Theorem 4.1 and analogue algebraic manipulations to those utilized
in the proof of Theorem 4.9.

5.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in Section 5.2,
and derive the Céa estimate for the Galerkin error

∥⃗t− t⃗h∥X = ∥t− th∥0,Ω + ∥σ − σh∥0,4/3,Ω + ∥u− uh∥0,4;Ω , (5.18)

where t⃗ := (t,σ,u) ∈ X := H1 ×H2 ×Q and t⃗h := (th,σh,uh) ∈ Xh := H1,h ×H2,h ×Qh are the
unique solutions of (3.14) and (5.2) respectively, with u ∈ W(δ) and uh ∈ W(δd). In what follows,
given a subspace Zh of an arbitrary Banach space

(
Z, ∥ · ∥Z

)
, we set

dist
(
z, Zh

)
:= inf

zh∈Zh

∥z − zh∥Z ∀ z ∈ Z . (5.19)

In turn, in order to simplify our analysis, we recall a previous result concerning the operator A. More
precisely, we employ the following lemma.

Lemma 5.3. The operator A defined in (3.9) has a first-order Gâteaux derivative DA. Moreover,
for any s1 ∈ H1, DA(s1) is a bounded and H1-elliptic bilinear form, with boundedness and ellipticity
constants given by γµ and µ1, respectively.

Proof. See [16, Lemma 3.1].
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We begin by introducing the global operator P : X → X′, and for each w ∈ Q the linear functional
Fw : X → R associated with the variational formulation (3.14), that is

[P(r,ρ,w), (s, τ ,v)] := [A(r), s] + [B1(s),ρ] + [B1(r), τ ] + [B(τ ),w] + [B(ρ),v] , (5.20)

[Fw, (s, τ ,v)] :=

∫
Ω
(w ⊗w)d : s+ [G, τ ] + [F,v], (5.21)

for all (r,ρ,w), (s, τ ,v) ∈ X. In this way, we realize from (3.14) and (5.2) that there holds

[P(⃗t), s⃗h] = [P(⃗th), s⃗h] + [Fu − Fuh
, s⃗h] ∀ s⃗h ∈ Xh , (5.22)

whereas the triangle inequality gives for each r⃗h := (rh,ρh,wh) ∈ Xh

∥⃗t− t⃗h∥X ≤ ∥⃗t− r⃗h∥X + ∥⃗rh − t⃗h∥X . (5.23)

In order to establish a connection between the second term on the right-hand side of the above
inequality and the operator P, we proceed almost verbatim as in [16, Theorem 3.3]. In fact, given
s⃗h, r⃗h ∈ Xh, we can write

[P(⃗th), s⃗h]− [P(⃗rh), s⃗h] =

∫ 1

0

d

dµ
{[P(µ⃗th + (1− µ)⃗rh), s⃗h]} dµ

=

∫ 1

0
DP(µ⃗th + (1− µ)⃗rh)(⃗th − r⃗h, s⃗h) dµ ,

(5.24)

where DP : X → L(X,X′) is the first-order Gâteaux derivative of the operator P : X → X′. More
precisely, for any s⃗1 := (s1, τ 1,v1), r⃗ := (r,ρ,w), s⃗ := (s, τ ,v) ∈ X, DP(⃗s1)(⃗r, s⃗) is obtained from
(5.20) by replacing [A(r), s] by DA(s1)(r, s), that is

DP(⃗s1)(⃗r, s⃗) :=DA(s1)(r, s) + [B1(s),ρ] + [B1(r), τ ] + [B(τ ),w] + [B(ρ),v] . (5.25)

Thus, for any s⃗1 ∈ X, (5.25) induces the definition of an operator in L(X,X′), which, according to
Lemma 5.3, satisfies the hypotheses of the discrete version of the linear Theorem 4.2 with constants
independent of h and of s⃗1. Consequently, bearing in mind that in this case the discrete version of the
estimate (4.11) is equivalent to a global discrete inf-sup condition (cf. (4.13)), it follows that, there
exists Ĉ > 0, depending only on γµ , µ1 , β1 , ∥B1∥ and β, such that

∥⃗th − r⃗h∥X ≤ Ĉ sup
s⃗h∈Xh
s⃗h ̸=0

DP(⃗s1)(⃗th − r⃗h, s⃗h)

∥⃗sh∥X
∀ s⃗1 ∈ X. (5.26)

On the other hand, the continuity of DA implies the same property for DP, and hence there exists
µ0 ∈ (0, 1) such that (5.24) becomes

[P(⃗th), s⃗h]− [P(⃗rh), s⃗h] = DP(µ0t⃗h + (1− µ0)⃗rh)(⃗th − r⃗h, s⃗h) . (5.27)

It follows from (5.26) (with s⃗1 := µ0t⃗h + (1− µ0)⃗rh) and (5.27) that

∥⃗th − r⃗h∥X ≤ Ĉ sup
s⃗h∈Xh
s⃗h ̸=0

[P(⃗th), s⃗h]− [P(⃗rh), s⃗h]

∥⃗sh∥X
. (5.28)

Next, since P is Lipschitz continuous, with a constant γ̂, depending only on γµ , ∥B1∥ and ∥B′
1∥, we

subtract and add P(⃗t), and use (5.22), to find that

[P(⃗th), s⃗h]− [P(⃗rh), s⃗h] = [P(⃗th)−P(⃗t), s⃗h] + [P(⃗t)−P(⃗rh), s⃗h]

= [Fuh
− Fu, s⃗h] + [P(⃗t)−P(⃗rh), s⃗h]

≤
{(

∥u∥Q + ∥uh∥Q
)
∥u− uh∥Q + γ̂ ∥⃗t− r⃗h∥X

}
∥⃗sh∥X ,

(5.29)

16



which, replaced back into (5.28), gives

∥⃗th − r⃗h∥X ≤ Ĉ
{(

∥u∥Q + ∥uh∥Q
)
∥u− uh∥Q + γ̂ ∥⃗t− r⃗h∥X

}
. (5.30)

Finally, the triangle inequality (cf. (5.23)) along with (5.30) and the fact that ∥u∥Q and ∥uh∥Q are
bounded by δ and δd, respectively, yield

∥⃗t− t⃗h∥X ≤
(
1 + γ̂ Ĉ

)
inf

s⃗h∈X
∥⃗t− s⃗h∥X + Ĉ

(
δ + δd

)
∥u− uh∥Q . (5.31)

In this way, our main result for the error ∥⃗t− t⃗h∥X is stated as follows.

Theorem 5.4. Assume that the hypotheses of Theorems 4.9 and 5.2 hold, and let t⃗ = (t,σ,u) ∈ X
and t⃗h = (th ,σh ,uh) ∈ Xh be the unique solutions of (3.14) and (5.2), respectively. Assume further
that

(δ + δd) ≤ 1

2Ĉ
, (5.32)

where Ĉ is the global inf-sup constant of DP. Then, there exists a positive constant C, independent
of h, such that

∥⃗t− t⃗h∥X ≤ C dist(⃗t,Xh) . (5.33)

Proof. It suffices to use (5.32) in (5.31), which yields (5.33) with C := 2
(
1 + γ̂ Ĉ

)
.

We end this section by remarking that (2.7) and (3.6) suggest the following postprocessed approx-
imation for the pressure p

ph := − 1

n
tr
(
σh + (uh ⊗ uh)

)
− c0,h in Ω , (5.34)

where

c0,h := − 1

n |Ω|

∫
Ω
tr(uh ⊗ uh) .

Then, applying the Cauchy-Schwarz inequality, performing some algebraic manipulations, and em-
ploying the a priori bounds for ∥u∥0,4;Ω and ∥uh∥0,4;Ω, we deduce the existence of a positive constant
C, depending on data, but independent of h, such that

∥p − ph∥0,Ω ≤ C
{
∥σ − σh∥0,Ω + ∥u − uh∥0,4;Ω

}
. (5.35)

Thus, combining (5.33) and (5.35), we conclude the existence of a positive constant C̃, independent
of h, such that

∥t− th∥H1 + ∥σ − σh∥H2 + ∥u− uh∥Q + ∥p − ph∥0,Ω

≤ C̃
{
dist(t,H1,h) + dist(σ,H2,h) + dist(u,Qh)

}
.

(5.36)

6 Specific finite element subspaces

In this section, we introduce specific finite element subspaces H1,h, H̃2,h, and Qh of the spaces L2
tr(Ω),

H(div4/3; Ω), and L4(Ω), respectively. These subspaces satisfy the hypotheses (H.0), (H.1), (H.2),
and (H.3), which were introduced in Section 5.2 to ensure the well-posedness of our Galerkin scheme.
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6.1 Preliminaries

In what follows, given an integer ℓ ≥ 0 and K ∈ Th, we let Pℓ(K) be the space of polinomials of
degree ≤ ℓ defined on K, whose vector and tensor versions are denoted by Pℓ(K) := [Pℓ(K)]n and
Pℓ(K) := [Pℓ(K)]n×n, respectively. Next, we define the corresponding local Raviart-Thomas spaces
of order ℓ as

RTℓ(K) := Pℓ(K)⊕ Pℓ(K)x ∀K ∈ Th ,

and its associated tensor counterpart RTℓ(K), where x is a generic vector in R := Rn. In turn, we let
Pℓ(Th), Pℓ(Th) and RTℓ(Th) be the global versions of Pℓ(K), Pℓ(K) and RTℓ(K), respectively, that is

Pℓ(Th) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

Pℓ(Th) :=
{
τ h ∈ L2(Ω) : τ h|K ∈ Pℓ(K) ∀K ∈ Th

}
,

RTℓ(Th) :=
{
τ h ∈ H(div; Ω) : τ h|K ∈ RTℓ(K) ∀K ∈ Th

}
.

We stress here that there hold Pℓ(Th) ⊆ L4(Ω) and RTℓ(Th) ⊆ H(div4/3; Ω), inclusions that are
implicitly utilized below to introduce the announced specific finite element subspaces. Indeed, we now
define

H1,h := L2
tr(Ω) ∩ Pℓ(Th) , H̃2,h := RTℓ(Th),

H2,h := H0(div4/3; Ω) ∩ H̃2,h , and Qh := L4(Ω) ∩Pℓ(Th) .
(6.1)

6.2 Verification of the hypotheses (H.0) -(H.3)

We now confirm that the subspaces defined by (6.1) satisfy the hypotheses (H.0)-(H.3). Indeed, it is
easily seen that H̃2,h satisfy (H.0) and (H.1). Next, in order to check (H.2), we recall from (5.8) that

Kh :=
{
τ h ∈ H2,h : div(τ h) = 0 ∀vh ∈ Qh

}
, (6.2)

from which, using that the divergence free tensors of RTℓ(Th) are contained in Pℓ(Th) (cf. [15, Lemma
3.6]), it follows that Kh ⊆ Pℓ(Th). Hence, noting that certainly tr(τ d

h) = 0, for all τ h ∈ Kh, we
deduce that (Kh)

d ⊆ L2
tr(Ω) ∩ Pℓ(Th) = H1,h , which proves (H.2). Finally, (H.3) is proved precisely

in [9, Lemma 5.1] (see also [12, Lemma 6.1]).

6.3 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (5.2) with the specific finite element
subspaces introduced in Section 6.1, for which we previously collect the respective approximation
properties. In fact, thanks to [13, Proposition 1.135] and its corresponding vector version, along with
interpolation estimates of Sobolev spaces, those of H1,h, H2,h, and Qh, are given as follows:(
APt

h

)
there exists a positive constant C, independent of h, such that for each l ∈ [0, ℓ+ 1], and for

each s ∈ Hl(Ω) ∩ L2
tr(Ω), there holds

dist
(
s,H1,h

)
:= inf

sh∈H1,h

∥s − sh∥0,Ω ≤ C hl ∥s∥l,Ω ,

(APσ
h ) there exists a positive constant C, independent of h, such that for each l ∈ [0, ℓ + 1], and for
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each τ ∈ Hl(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈ Wl,4/3(Ω), there holds

dist
(
τ ,H2,h

)
:= inf

τh∈H2,h

∥τ − τ h∥div4/3;Ω ≤ C hl
{
∥τ∥l,Ω + ∥div(τ )∥l,4/3;Ω

}
,

(APu
h) there exists a positive constant C, independent of h, such that for each l ∈ [0, ℓ + 1], and for

each v ∈ Wl,4(Ω), there holds

dist
(
v,Qh

)
:= inf

vh∈Qh

∥v − vh∥0,4;Ω ≤ C hl ∥v∥l,4;Ω .

The rates of convergence of (5.2) are now established by the following theorem.

Theorem 6.1. Let
(
t,σ,u) ∈ H1×H2×Q and

(
th,σh,uh

)
∈ H1,h×H2,h×Qh be the unique solutions

of (3.14) and (5.2) with u ∈ W(δ) and uh ∈ W(δd), whose existences are guaranteed by Theorems
4.9 and 5.2, respectively. In turn, let p and ph given by (2.7) and (5.34), respectively. Assume
the hypotheses of Theorem 5.4, and that there exists l ∈ [1, ℓ + 1] such that t ∈ Hl(Ω) ∩ L2

tr(Ω),
σ ∈ Hl(Ω) ∩ H0(div4/3; Ω), div(σ) ∈ Wl,4/3(Ω), and u ∈ Wl,4(Ω) . Then, there exists a positive
constant C, independent of h, such that

∥((t,σ,u)− (th,σh,uh)∥H1×H2×Q + ∥p− ph∥0,Ω

≤ C hl
{
∥u∥l,4;Ω + ∥t∥l,Ω + ∥σ∥l,Ω + ∥div(σ)∥l,4/3;Ω

}
.

Proof. It follows straightforwardly from the Céa estimate (5.36), and the approximation properties(
APt

h

)
, (APσ

h ), and (APu
h).

7 Computational results

We now turn to the computational results, which mainly refer to the numerical verification of the
rates of convergence anticipated by Theorem 6.1. The examples in 2D and 3D to be reported below
have been developed with the finite element library FEniCS [2]. In all them, the linear systems
emanating from the Newton-Raphson linearisation, with the zero vector as initial guess and iterations
stopped once the absolute or relative residual drops below 10−8, have been solved with the multifrontal
massively parallel sparse direct method MUMPS [3]. In turn, the condition of zero-average pressure,
which, owing to (2.7), entails to fix the trace of the tensor quantity σ + (u⊗u), is imposed by means
of a real Lagrange multiplier. Subsequently, errors are defined as follows:

e(t) = ∥t− th∥0,Ω , e(σ) = ∥σ − σh∥div4/3;Ω ,

e(u) = ∥u− uh∥0,4;Ω , e(p) = ∥p− ph∥0,Ω ,

whereas convergence rates are set as

r(⋆) =
log(e(⋆)/ê(⋆))

log(h/ĥ)
∀ ⋆ ∈

{
t,σ,u, p

}
,

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ. In addition, we
refer to the number of degrees of freedom and the number of Newton iterations as dof and iter,
respectively.
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7.1 Example 1: 2D smooth solution

In our first numerical test, we consider the computational domain Ω = (0, 1)2, and set the nonlinear
viscosity to

µ(s) := 2 +
1

1 + s
∀ s ≥ 0 . (7.1)

In addition, we define the manufactured exact solution:

p = x2 − y2, u =

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, t = ∇u,

and σ = µ(|∇u|)∇u− (u⊗ u)− pI ,

so that the load function f and the Dirichlet datum g are computed accordingly. Table 7.1 shows
the convergence history for a sequence of quasi-uniform mesh refinements, including the number of
Newton iterations for the approximations. The experiments confirm the theoretical rate of convergence
O(hℓ+1) for ℓ ∈

{
0, 1

}
, provided by Theorem 6.1. In addition, the number of Newton-Raphson

iterations required to reach the convergence criterion based on the residuals with a tolerance of 1e−8,
was less than or equal to 4 in all runs. Sample of approximate solutions with ℓ = 1 and dof = 279041
are shown in Figure 7.1.

P0 − RT0 −P0

dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

121 0.7071 1.26e+ 00 ∗ 1.71e+ 01 ∗ 4.11e− 01 ∗ 7.55e− 01 ∗ 3
465 0.3536 6.20e− 01 1.02 8.99e+ 00 0.93 2.26e− 01 0.86 3.69e− 01 1.03 3
1825 0.1768 3.10e− 01 1.00 4.59e+ 00 0.97 1.16e− 01 0.96 1.82e− 01 1.02 4
7233 0.0884 1.55e− 01 1.00 2.31e+ 00 0.99 5.84e− 02 0.99 8.86e− 02 1.04 4
28801 0.0442 7.77e− 02 1.00 1.16e+ 00 1.00 2.92e− 02 1.00 4.33e− 02 1.03 4
114945 0.0221 3.89e− 02 1.00 5.79e− 01 1.00 1.46e− 02 1.00 2.15e− 02 1.01 4

d
P1 − RT1 −P1

dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

289 0.7071 2.75e− 01 ∗ 4.46e+ 00 ∗ 1.55e− 01 ∗ 2.60e− 01 ∗ 4
1121 0.3536 7.35e− 02 1.90 1.22e+ 00 1.87 4.11e− 02 1.91 5.62e− 02 2.21 4
4417 0.1768 1.93e− 02 1.93 3.58e− 01 1.77 1.05e− 02 1.97 1.30e− 02 2.11 4
17537 0.0884 4.93e− 03 1.97 1.02e− 01 1.82 2.64e− 03 1.99 3.17e− 03 2.04 4
69889 0.0442 1.24e− 03 1.99 2.76e− 02 1.88 6.62e− 04 2.00 7.84e− 04 2.01 4
279041 0.0221 3.12e− 04 1.99 7.31e− 03 1.92 1.66e− 04 2.00 1.95e− 04 2.01 4

Table 7.1: Example 1, convergence history and Newton iteration count for the Pℓ−RTℓ−Pℓ approxi-
mations of the Navier-Stokes model with variable viscosity, and convergence of the Pℓ−approximation
of the postprocessed pressure field, with ℓ ∈

{
0, 1

}
.

7.2 Example 2: 2D smooth solution in a non-convex domain

Now we illustrate the accuracy of our method in the non-convex domain Ω := (−1, 1)2 \ [0, 1]2. The
data f and g are computed so that the manufactured exact solution is defined as:

p = sin(πx) exp(y), u =

(
− cos(2πy) sin(2πx)
sin(2πy) cos(2πx)

)
, t = ∇u ,

and σ = µ(|∇u|)∇u− (u⊗ u)− pI .
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Figure 7.1: Example 1, P1 −RT1 −P1 approximation with dof = 279041 of velocity gradient compo-
nents (top panels), pseudostress components (center panels), and viscosity, velocity component with
vector directions, and postprocessed pressure field (bottom row).
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The variable viscosity is defined in the same way as in Example 1. The convergence history for
a sequence of quasi-uniform mesh refinements with ℓ = 1 is shown in Table 7.2. As proven by
Theorem 6.1, the mixed finite element method converges optimally with O(h2). Additionally, Figure
7.2 displays selected components of the numerical solution, which were obtained using the P1−RT1−P1

approximation with dof = 238603.

P1 − RT1 −P1

dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

383 1.1180 8.59e+ 00 ∗ 2.07e+ 02 ∗ 8.07e− 01 ∗ 4.63e+ 00 ∗ 4
941 0.6212 3.93e+ 00 1.33 9.23e+ 01 1.38 4.15e− 01 1.13 2.46e+ 00 1.08 4
3646 0.3171 1.13e+ 00 1.85 2.40e+ 01 2.00 1.29e− 01 1.74 5.48e− 01 2.23 4
15233 0.1582 2.85e− 01 1.98 6.25e+ 00 1.94 3.29e− 02 1.96 1.29e− 01 2.08 4
59869 0.0795 7.40e− 02 1.96 1.94e+ 00 1.70 8.50e− 03 1.97 3.38e− 02 1.95 4
238603 0.0398 1.85e− 02 2.00 6.03e− 01 1.69 2.16e− 03 1.98 8.50e− 03 1.99 4

Table 7.2: Example 2, convergence history and Newton iteration count for the fully-mixed P1−RT1−
P1 approximations of the Navier-Stokes model with variable viscosity, and convergence of the P1-
approximation of the postprocessed pressure field.

7.3 Example 3: 2D non-smooth solution in a non-convex domain

The third example is devoted to show that the rates of convergence are affected when the exact solution
does not have enough regularity, in particular if it has a singularity near the vertex with major angle
of a non-convex domain. In fact, here we consider again the L-shaped domain Ω := (−1, 1)2 \ [0, 1]2,
define the manufactured exact solution:

p =
1− x

2(x− 0.02)2 + 2(y − 0.02)2
, u =

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, t = ∇u ,

and σ = µ(|∇u|)∇u− (u⊗ u)− pI ,

and compute the data f and g accordingly. The variable viscosity is defined in the same way as in
Example 1. The convergence history for a sequence of quasi-uniform mesh refinements with ℓ = 1
is shown in Table 7.3. As announced, suboptimal rates arise in this case, which is explained by the
fact that the pressure exhibits high gradients near the corner region of the L-shaped domain. This is
observed in Figure 7.3 below where selected components of the numerical solution, obtained with the
P1 − RT1 −P1 approximation and dof = 238603, are displayed.

P1 − RT1 −P1

dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

383 1.1180 1.10e+ 01 ∗ 5.58e+ 02 ∗ 1.20e+ 00 ∗ 4.26e+ 01 ∗ 3
941 0.6212 6.98e+ 00 0.77 3.72e+ 02 0.69 5.67e− 01 1.27 2.35e+ 01 1.01 3
3646 0.3171 7.23e+ 00 −0.05 4.57e+ 02 −0.31 3.66e− 01 0.65 1.88e+ 01 0.33 3
15233 0.1582 4.50e+ 00 0.68 3.74e+ 02 0.29 1.43e− 01 1.35 1.17e+ 01 0.68 3
59869 0.0795 2.57e+ 00 0.82 1.83e+ 02 1.04 6.60e− 02 1.12 6.21e+ 00 0.92 3
238603 0.0398 1.22e+ 00 1.07 7.49e+ 01 1.29 2.05e− 02 1.68 2.64e+ 00 1.23 5

Table 7.3: Example 3, convergence history and Newton iteration count for the P1−RT1−P1 approx-
imations of the Navier-Stokes model with variable viscosity, and convergence of the P1-approximation
of the postprocessed pressure field.
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Figure 7.2: Example 2, P1−RT1−P1 approximation with dof = 238603 of the fluid velocity magnitude,
velocity gradient magnitude, pseudostress component, and postprocessed pressure field.

7.4 Example 4: 3D smooth solution

Next we illustrate a three-dimensional problem. In this case, we consider the cube domain Ω = (0, 1)3,
and define the nonlinear viscosity as

µ(s) := α0 + α1(1 + s2)(β−2)/2 ,

with α0 = 2/5, α1 = 1/2, and β = 1. The data are suitably adjusted according to the exact solution
defined by the functions:
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Figure 7.3: Example 3, P1−RT1−P1 approximation with dof = 238603 of the fluid velocity magnitude,
velocity gradient magnitude, pseudostress component, and postprocessed pressure field.

p = sin(xyz) , u =

 sin(π x) cos(π y) cos(π z)
−2 cos(π x) sin(π y) cos(π z)
cos(π x) cos(πy) sin(π z)

 , t = ∇u ,

and σ = µ(|∇u|)∇u− (u⊗ u)− pI .

The convergence history for a sequence of quasi-uniform mesh refinements with ℓ = 0 is shown in
Table 7.4, while some components of the approximate solutions with dof = 3360769 are displayed in
Figure 7.4. We observe that the Newton method exhibits a behavior independent of the meshsize,
achieving the tolerance of 1e−8 in four iterations in all cases. Again, the mixed finite element method
converges optimally with O(h), as it was proved by Theorem 6.1.
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P0 − RT0 −P0

dof h e(t) r(t) e(σ) r(σ) e(u) r(u) e(p) r(p) iter

889 0.8660 2.61e+ 00 ∗ 8.08e+ 00 ∗ 5.65e− 01 ∗ 2.61e− 01 ∗ 4
6817 0.4330 1.41e+ 00 0.89 4.21e+ 00 0.94 3.01e− 01 0.91 2.02e− 01 0.37 4
53377 0.2165 7.31e− 01 0.95 2.14e+ 00 0.97 1.55e− 01 0.96 1.15e− 01 0.82 4
422401 0.1083 3.71e− 01 0.98 1.07e+ 00 1.00 7.79e− 02 0.99 5.34e− 02 1.10 4
3360769 0.0541 1.87e− 01 0.99 5.36e− 01 1.00 3.90e− 02 1.00 2.40e− 02 1.15 4

Table 7.4: Example 4, convergence history and Newton iteration count for the P0−RT0−P0 approx-
imation of the Navier-Stokes model with variable viscosity, and convergence of the P0-approximation
of the postprocessed pressure field.

7.5 Example 5: 3D cavity problem

To conclude the set of numerical examples, we apply our mixed method with ℓ = 0 to the driven
cavity flow problem in the cube domain Ω = (0, 1)3 by using the same sequence of quasi-uniform mesh
refinements from Example 4. Again, the viscosity is taken as the Carreau law (2.5) with α0 = 1,
α1 = 0.1, and β = 1. The external body force is zero, and the three-dimensional flow patterns
are determined by the boundary conditions only: a unidirectional Dirichlet velocity is set on the
top lid g := (1, 0, 0)t , and no-slip velocity u = 0 are imposed elsewhere on Γ. Some approximate
solutions obtained with dof = 3360769 are depicted in Figure 7.5. As expected, abrupt changes are
observed near the top corners of the domain, where the Dirichlet datum is discontinuous, and where
the pseudostress is concentrated. The maximum number of iterations required over the course of the
Newton-Raphson loop was 3.
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